Analysis of macromolecules, ligands and macromolecule-ligand complexes
Von Dreele, Robert B [Los Alamos, NM
2008-12-23
A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glagolev, Mikhail K.; Vasilevskaya, Valentina V., E-mail: vvvas@polly.phys.msu.ru; Khokhlov, Alexei R.
Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a singlemore » direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.« less
Highly Regioregular Polythiophenes for Magneto-Optical Applications
2010-07-01
Macromolecules, 2007, 40, 8142-8150 Lieven De Cremer et.al., Macromolecules, 2008, 41, 568-578 Lieven De Cremer et.al., Macromolecules, 2008, 41, 591-598 Marnix...Vangheluwe et.al., Macromolecules, 2008, 41, 1041-1044 David Cornelis et.al., Chem. Mater. 2008, 20, 2133-2143 Palash Gangopadhyay et.al., J. Phys
Macromolecules Inquiry: Transformation of a Standard Biochemistry Lab
ERIC Educational Resources Information Center
Unsworth, Elizabeth
2014-01-01
Identification of macromolecules in food is a standard introductory high school biology lab. The intent of this article is to describe the conversion of this standard cookbook lab into an inquiry investigation. Instead of verifying the macromolecules found in food, students use their knowledge of the macromolecules in food to determine the…
Effects of hydration on steric and electric charge-induced interstitial volume exclusion--a model.
Øien, Alf H; Justad, Sigrid R; Tenstad, Olav; Wiig, Helge
2013-09-03
The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
INFLUENCE OF MACROMOLECULES ON CHEMICAL TRANSPORT
Macromolecules in the pore fluid influence the mobility of hydrophobic compounds through soils. his study evaluated the significance of macromolecules in facilitating chemical transport under laboratory conditions. Partition coefficients between 14C-labeled hexachlorobenzene and ...
Controlled doping by self-assembled dendrimer-like macromolecules
NASA Astrophysics Data System (ADS)
Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping
2017-02-01
Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm-3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.
Contact Kinetics in Fractal Macromolecules.
Dolgushev, Maxim; Guérin, Thomas; Blumen, Alexander; Bénichou, Olivier; Voituriez, Raphaël
2015-11-13
We consider the kinetics of first contact between two monomers of the same macromolecule. Relying on a fractal description of the macromolecule, we develop an analytical method to compute the mean first contact time for various molecular sizes. In our theoretical description, the non-Markovian feature of monomer motion, arising from the interactions with the other monomers, is captured by accounting for the nonequilibrium conformations of the macromolecule at the very instant of first contact. This analysis reveals a simple scaling relation for the mean first contact time between two monomers, which involves only their equilibrium distance and the spectral dimension of the macromolecule, independently of its microscopic details. Our theoretical predictions are in excellent agreement with numerical stochastic simulations.
Adsorption of polymethacrylic acid from aqueous solutions on disperse titanium dioxide
NASA Astrophysics Data System (ADS)
Yaremko, Z. M.; Tkachenko, N. G.; Fedushinskaya, L. B.
2011-10-01
The state of macromolecules of polymethacrylic acid adsorbed on the surface of disperse titanium dioxide was assessed using a combination of the differential concentration approach to the determination of adsorption and methods for determining the size of disperse adsorbents by dynamic light scattering and sedimentation analysis in the field of centrifugal forces. Three sections were found on the isotherm of adsorption: in the first, isolated islands of adsorbed macromolecules formed; in the second, layers of macromolecules with a different degree of deformation were observed; in the third, determining the adsorption of macromolecules is complicated by other accompanying processes, and assessing the state of macromolecules in the adsorption layer becomes difficult.
MACROMOLECULES FACILITATE THE TRANSPORT OF TRACE ORGANICS
Macromolecules in the pore fluid of a soil may influence the mobility of hydrophobic compounds by their partitioning to the macromolecule, which moves with, or even faster than, the water. The mobility is described mathematically by a chemical transport model. The significance of...
USDA-ARS?s Scientific Manuscript database
Surface macromolecule cleavage experiments were conducted on enterohaemorrhagic Escherichia coli O157:H7 cells to investigate the influence of these macromolecules on cell surface properties. Electrophoretic mobility, hydrophobicity, and titration experiments were carried out on proteinase K treate...
Cao, Kai; Ward, Jonathan; Amos, Ryan C; Jeong, Moon Gon; Kim, Kyoung Taek; Gauthier, Mario; Foucher, Daniel; Wang, Xiaosong
2014-09-11
Theoretical calculations illustrate that organometallic macromolecules with piano stool coordination repeating units (Fe-acyl complex) adopt linear chain configuration with a P-Fe-C backbone surrounded by aromatic groups. The macromolecules show molecular weight-dependent and temperature stimulated solution behaviour in DMSO.
Noise reduction methods for nucleic acid and macromolecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander
Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.
NASA Astrophysics Data System (ADS)
Cudalbu, C.; Mlynárik, V.; Xin, L.; Gruetter, Rolf
2009-10-01
Reliable quantification of the macromolecule signals in short echo-time 1H MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. 1H spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
New Directions in Biotechnology
NASA Technical Reports Server (NTRS)
2003-01-01
The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.
Characterization of Nylon 6 by 15N Solid State NMR
1989-05-31
M.; Ritchey, W.; de Boer, E. Macromolecules, 1979, 12, 924. 2. Garroway , A. N.; Ritchey, W. M.; Moniz, W. B.; Macromolecules, 1982, It, 1051. 3...E. Macromolecules, 1982, 15, 1406. 23. Veeman, W. S.; Menger, E. M. Bull. Magn. Reson., 1980,2,77. 24. VanderHart, D. L.; Garroway , A. N. J. Chem
Zhao, Qing; Petersen, Elijah J.; Cornelis, Geert; Wang, Xilong; Guo, Xiaoying; Tao, Shu; Xing, Baoshan
2016-01-01
Developing methods to measure interactions of carbon nanotubes (CNTs) with soils and sediments and understanding the impact of soil and sediment properties on CNT deposition are essential for assessing CNT environmental risks. In this study, we utilized functionalized carbon-14 labeled nanotubes to systematically investigate retention of multiwall CNTs (MWCNTs) by 3 humic acids, 3 natural biopolymers, and 10 model solid-phase polymers, collectively termed macromolecules. Surface properties, rather than bulk properties of macromolecules, greatly influenced MWCNT retention. As shown via multiple linear regression analysis and path analysis, aromaticity and surface polarity were the two most positive factors for retention, suggesting retention was regulated by π-π stacking and hydrogen bonding interactions. Moreover, MWCNT deposition was irreversible. These observations may explain the high retention of MWCNT in natural soils. Moreover, our findings on the relative contribution of each macromolecule property on CNT retention provide information on macromolecule selection for removal of MWCNTs from wastewater and provide a method for measuring CNT interactions with organic macromolecules. PMID:27458320
Macromolecule diffusion and confinement in prokaryotic cells.
Mika, Jacek T; Poolman, Bert
2011-02-01
We review recent observations on the mobility of macromolecules and their spatial organization in live bacterial cells. We outline the major fluorescence microscopy-based methods to determine the mobility and thus the diffusion coefficients (D) of molecules, which is not trivial in small cells. The extremely high macromolecule crowding of prokaryotes is used to rationalize the reported lower diffusion coefficients as compared to eukaryotes, and we speculate on the nature of the barriers for diffusion observed for proteins (and mRNAs) in vivo. Building on in vitro experiments and modeling studies, we evaluate the size dependence of diffusion coefficients for macromolecules in vivo, in case of both water-soluble and integral membrane proteins. We comment on the possibilities of anomalous diffusion and provide examples where the macromolecule mobility may be limiting biological processes. Copyright © 2010 Elsevier Ltd. All rights reserved.
PlaMoM: a comprehensive database compiles plant mobile macromolecules
Guan, Daogang; Yan, Bin; Thieme, Christoph; Hua, Jingmin; Zhu, Hailong; Boheler, Kenneth R.; Zhao, Zhongying; Kragler, Friedrich; Xia, Yiji; Zhang, Shoudong
2017-01-01
In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein–protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/. PMID:27924044
Polyacid macromolecule primers
Sugama, Toshifumi
1989-01-01
Hydrophylic polyacids, such as macromolecules of polyitaconic acid and polyacrylic acid, where such macromolecules have molecular weights >50,000 as primers between a polymeric top coating, such as polyurethane, and an oxidized aluminum or aluminum alloy. A near monolayer of primer is used in polymeric adhesive/oxidized aluminum adhered joint systems in 0.05% primer concentration to give superior results in standard peel tests.
Lam, Fan; Li, Yudu; Clifford, Bryan; Liang, Zhi-Pei
2018-05-01
To develop a practical method for mapping macromolecule distribution in the brain using ultrashort-TE MRSI data. An FID-based chemical shift imaging acquisition without metabolite-nulling pulses was used to acquire ultrashort-TE MRSI data that capture the macromolecule signals with high signal-to-noise-ratio (SNR) efficiency. To remove the metabolite signals from the ultrashort-TE data, single voxel spectroscopy data were obtained to determine a set of high-quality metabolite reference spectra. These spectra were then incorporated into a generalized series (GS) model to represent general metabolite spatiospectral distributions. A time-segmented algorithm was developed to back-extrapolate the GS model-based metabolite distribution from truncated FIDs and remove it from the MRSI data. Numerical simulations and in vivo experiments have been performed to evaluate the proposed method. Simulation results demonstrate accurate metabolite signal extrapolation by the proposed method given a high-quality reference. For in vivo experiments, the proposed method is able to produce spatiospectral distributions of macromolecules in the brain with high SNR from data acquired in about 10 minutes. We further demonstrate that the high-dimensional macromolecule spatiospectral distribution resides in a low-dimensional subspace. This finding provides a new opportunity to use subspace models for quantification and accelerated macromolecule mapping. Robustness of the proposed method is also demonstrated using multiple data sets from the same and different subjects. The proposed method is able to obtain macromolecule distributions in the brain from ultrashort-TE acquisitions. It can also be used for acquiring training data to determine a low-dimensional subspace to represent the macromolecule signals for subspace-based MRSI. Magn Reson Med 79:2460-2469, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Diffusion of macromolecules through sclera.
Miao, Heng; Wu, Bi-Dong; Tao, Yong; Li, Xiao-Xin
2013-02-01
To quantify the in vitro permeability coefficient over different topographical locations of porcine sclera to macromolecules with different molecular weight. Fresh equatorial and posterior superotemporal porcine sclera was mounted in a two-chamber diffusion apparatus, and its permeability to fluorescein isothiocyanate (FITC)-conjugated dextrans ranging in molecular weight from 40 kDa to 150 kDa was determined by fluorescence spectrophotometry. The sclera was processed as frozen sections and viewed with a fluorescence microscope. The thickness of the area and the thickness that macromolecules enriched in the surface of sclera were measured. The permeability coefficient (Pc) of porcine sclera to macromolecules was significantly higher (40 kDa, p = 0.028; 70 kDa, p = 0.033; 150 kDa, p = 0.007) in equatorial region than posterior, which could be attributed to the significant difference of thickness (p < 0.001, Kruskal-Wallis) between them. Moreover, linear regression indicated a significant negative relationship (40 kDa, p < 0.001; 70 kDa, p = 0.015; 150 kDa, p < 0.001) between scleral permeability coefficient and thickness. Also, Pc declined significantly with increasing molecular weight (MW, p < 0.001, Kruskal-Wallis). The area that the macromolecules enriched in the scleral surface was thicker for those with larger MW (p < 0.001, Kruskal-Wallis). The maximum MW and size for equatorial and posterior superotemporal scleral tissue were 185.01 KDa and 180.42 KDa, 9.92 nm and 9.67 nm, respectively. The permeability coefficient of porcine sclera has a significant negative relationship with scleral thickness and MW of macromolecules. Larger macromolecules are more likely to accumulate in scleral surface. The difference between topographical locations may have pharmacokinetic implications when considering transscleral diffusion of macromolecules. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
The Biological Macromolecule Crystallization Database and NASA Protein Crystal Growth Archive
Gilliland, Gary L.; Tung, Michael; Ladner, Jane
1996-01-01
The NIST/NASA/CARB Biological Macromolecule Crystallization Database (BMCD), NIST Standard Reference Database 21, contains crystal data and crystallization conditions for biological macromolecules. The database entries include data abstracted from published crystallographic reports. Each entry consists of information describing the biological macromolecule crystallized and crystal data and the crystallization conditions for each crystal form. The BMCD serves as the NASA Protein Crystal Growth Archive in that it contains protocols and results of crystallization experiments undertaken in microgravity (space). These database entries report the results, whether successful or not, from NASA-sponsored protein crystal growth experiments in microgravity and from microgravity crystallization studies sponsored by other international organizations. The BMCD was designed as a tool to assist x-ray crystallographers in the development of protocols to crystallize biological macromolecules, those that have previously been crystallized, and those that have not been crystallized. PMID:11542472
Von Dreele, Robert B.; D'Amico, Kevin
2006-10-31
A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.
Polyacid macromolecule primers
Sugama, Toshifumi.
1989-12-26
Hydrophilic polyacids are described, such as macromolecules of polyitaconic acid and polyacrylic acid, where such macromolecules have molecular weights >50,000 as primers between a polymeric top coating, such as polyurethane, and an oxidized aluminum or aluminum alloy. A near monolayer of primer is used in polymeric adhesive/oxidized aluminum adhered joint systems in 0.05% primer concentration to give superior results in standard peel tests. 2 figs.
Radiolysis of lignin: Prospective mechanism of high-temperature decomposition
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.
2017-12-01
The range of the radiation-thermal processes resulting in conversion of lignin into monomeric phenols is considered. Statistically the most probable places of macromolecule ionization are aromatic units. Release of phenolic products from a lignin macromolecule is the multistage process beginning via fragmentation of primary cation-radicals. Reactions of electrons and small radicals with macromolecules, also as degradation of cation-radicals, result in formation of phenoxyl radicals. Macroradicals possess lower heat stability in comparison with macromolecules. Thermal decomposition of macroradicals leads to release of monohydric and dihydric phenols. The probability of benzenediols formation increases in the presence of alkanes. As noted, partial transformation of lignin into charcoal is inevitable.
Novel fluorescent core-shell nanocontainers for cell membrane transport.
Yin, Meizhen; Kuhlmann, Christoph R W; Sorokina, Ksenia; Li, Chen; Mihov, George; Pietrowski, Eweline; Koynov, Kaloian; Klapper, Markus; Luhmann, Heiko J; Müllen, Klaus; Weil, Tanja
2008-05-01
The synthesis and characterization of novel core-shell macromolecules consisting of a fluorescent perylene-3,4,9,10-tetracarboxdiimide chromophore in the center surrounded by a hydrophobic polyphenylene shell as a first and a flexible hydrophilic polymer shell as a second layer was presented. Following this strategy, several macromolecules bearing varying polymer chain lengths, different polymer shell densities, and increasing numbers of positive and negative charges were achieved. Because all of these macromolecules reveal a good water solubility, their ability to cross cellular membranes was investigated. In this way, a qualitative relationship between the molecular architecture of these macromolecules and the biological response was established.
PlaMoM: a comprehensive database compiles plant mobile macromolecules.
Guan, Daogang; Yan, Bin; Thieme, Christoph; Hua, Jingmin; Zhu, Hailong; Boheler, Kenneth R; Zhao, Zhongying; Kragler, Friedrich; Xia, Yiji; Zhang, Shoudong
2017-01-04
In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein-protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Crystallization of Macromolecules
Friedmann, David; Messick, Troy; Marmorstein, Ronen
2014-01-01
X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560
Molecular Imprinting of Macromolecules for Sensor Applications
Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil
2017-01-01
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting. PMID:28422082
Iontophoretic transport of charged macromolecules across human sclera.
Chopra, Poonam; Hao, Jinsong; Li, S Kevin
2010-03-30
The mechanisms of transscleral iontophoresis have been investigated previously with small molecules in rabbit sclera. The objective of the present study was to examine transscleral iontophoretic transport of charged macromolecules across excised human sclera. Passive and 2mA iontophoretic transport experiments were conducted in side-by-side diffusion cells with human sclera. The effects of iontophoresis upon transscleral transport of model permeants bovine serum albumin (BSA) and polystyrene sulfonic acid (PSS) as well as a model drug bevacizumab (BEV) were determined. Passive and iontophoretic transport experiments of tetraethylammonium (TEA) and salicylic acid (SA) and passive transport experiments of the macromolecules served as the controls. The results of iontophoresis enhanced transport of TEA and SA across human sclera were consistent with those in a previous rabbit sclera study. For the iontophoretic transport of macromolecules BSA and BEV, higher iontophoretic fluxes were observed in anodal iontophoresis as compared to passive and cathodal iontophoresis. This suggests the importance of electroosmosis. For the polyelectrolyte PSS, higher iontophoretic flux was observed in cathodal iontophoresis compared to anodal iontophoresis. Both electroosmosis and electrophoresis affected iontophoretic fluxes of the macromolecules; the relative contributions of electroosmosis and electrophoresis were a function of molecular size and charge of the macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Molecular Imprinting of Macromolecules for Sensor Applications.
Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil
2017-04-19
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.
Immersion freezing of birch pollen washing water
NASA Astrophysics Data System (ADS)
Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; Stratmann, F.
2013-11-01
Birch pollen grains are known to be ice nucleating active biological particles. The ice nucleating activity has previously been tracked down to biological macromolecules that can be easily extracted from the pollen grains in water. In the present study, we investigated the immersion freezing behavior of these ice nucleating active (INA) macromolecules. Therefore we measured the frozen fractions of particles generated from birch pollen washing water as a function of temperature at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Two different birch pollen samples were considered, with one originating from Sweden and one from the Czech Republic. For the Czech and Swedish birch pollen samples, freezing was observed to start at -19 and -17 °C, respectively. The fraction of frozen droplets increased for both samples down to -24 °C. Further cooling did not increase the frozen fractions any more. Instead, a plateau formed at frozen fractions below 1. This fact could be used to determine the amount of INA macromolecules in the droplets examined here, which in turn allowed for the determination of nucleation rates for single INA macromolecules. The main differences between the Swedish birch pollen and the Czech birch pollen were obvious in the temperature range between -17 and -24 °C. In this range, a second plateau region could be seen for Swedish birch pollen. As we assume INA macromolecules to be the reason for the ice nucleation, we concluded that birch pollen is able to produce at least two different types of INA macromolecules. We were able to derive parameterizations for the heterogeneous nucleation rates for both INA macromolecule types, using two different methods: a simple exponential fit and the Soccer ball model. With these parameterization methods we were able to describe the ice nucleation behavior of single INA macromolecules from both the Czech and the Swedish birch pollen.
2016-04-12
AFRL-AFOSR-CL-TR-2016-0012 Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules Ronald Ziolo CIQA Final Report 07/07...3. DATES COVERED (From - To) 15 Aug 2014 to 14 Jan 2016 4. TITLE AND SUBTITLE Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene...characterization of a new series of conjugated macromolecules bearing ferrocene as a highly efficient electron donor material coupled to 2,5-di(alcoxy) benzene
NASA Astrophysics Data System (ADS)
Sarkar, Sumona
Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous system tissue function.
NASA Astrophysics Data System (ADS)
Wu, Xue-Ru; Lieske, John C.; Evan, Andrew P.; Sommer, Andre J.; Liaw, Lucy; Mo, Lan
2008-09-01
Urinary protein macromolecules have long been thought to play a role in influencing the various phases of urolithiasis including nucleation, growth, aggregation of mineral crystals and their subsequent adhesion to the renal epithelial cells. However, compelling evidence regarding their precise role was lacking, due partly to the fact that most prior studies were done in vitro and results were highly variable depending on the experimental conditions. The advent of genetic engineering technology has made it possible to study urinary protein macromolecules within an in vivo biological system. Indeed, recent studies have begun to shed light on the net effects of loss of one or more macromolecules on the earliest steps of urolithiasis. This paper focuses on the in vivo consequences of inactivating Tamm-Horsfall protein and/or osteopontin, two major urinary glycoproteins, using the knockout approach. The renal phenotypes of both single and double knockout mice under spontaneous or hyperoxaluric conditions will be described. The functional significance of the urinary macromolecules as critical defense factors against renal calcification will also be discussed.
NASA Astrophysics Data System (ADS)
Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.
2013-12-01
In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortoleva, Peter J.
Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.
Gallyamov, Marat O; Qin, Shuhui; Matyjaszewski, Krzysztof; Khokhlov, Alexei; Möller, Martin
2009-07-21
Using SFM we have observed a peculiar twisting motion of diblock macromolecules pre-collapsed in ethanol vapour during their subsequent spreading in water vapour. The intrinsic asymmetry of the diblock macromolecules has been considered to be the reason for such twisting. Further, friction-deposited PTFE nano-stripes have been employed as nano-trails with the purpose of inducing lateral directed motion of the asymmetric diblock macromolecules under cyclic impact from the changing vapour surroundings. Indeed, some of the macromolecules have demonstrated a certain tendency to orient along the PTFE stripes, and some of the oriented ones have moved occasionally in a directed manner along the trail. However, it has been difficult to reliably record such directed motion at the single molecule level due to some mobility of the PTFE nano-trails themselves in the changing vapour environment. In vapours, the PTFE stripes have demonstrated a distinct tendency towards conjunction. This tendency has manifested itself in efficient expelling of groups of the mobile brush-like molecules from the areas between two PTFE stripes joining in a zip-fastener manner. This different kind of vapour-induced cooperative macromolecular motion has been reliably observed as being directed. The PTFE nano-frame experiences some deformation when constraining the spreading macromolecules. We have estimated the possible force causing such deformation of the PTFE fence. The force has been found to be a few pN as calculated by a partial contribution from every single molecule of the constrained group.
Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.
Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola
2017-02-01
Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dermal and transdermal delivery of pharmaceutically relevant macromolecules.
Münch, S; Wohlrab, J; Neubert, R H H
2017-10-01
The skin offers an attractive way for dermal and transdermal drug delivery that is why the drug still needs certain qualities to transcend the outermost layer of the skin, the stratum corneum. The requirements are: drugs with a maximum molecular weight of 1kDa, high lipophilicity and a certain polarity. This would restrict the use of a transdermal delivery of macromolecules, which would make the drug more effective in therapeutic administration. Various studies have shown that macromolecules without support do not penetrate the human skin. This effect can be achieved using physical and chemical methods, as well as biological peptides. The most popular physical method is the use of microneedles to create micropores in the skin and release the active agent in different sections. But also, other methods have been tested. Microjets, lasers, electroporation, sonophoresis and iontophoresis are also promising methods to successfully deliver dermal and transdermal macromolecules. Additionally, there are different penetration enhancer groups and biological peptides, which are also considered to be interesting approaches of enabling macromolecules to travel along the skin. All these methods will be described and evaluated in this review article. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantifying Nucleic Acid Ensembles with X-ray Scattering Interferometry.
Shi, Xuesong; Bonilla, Steve; Herschlag, Daniel; Harbury, Pehr
2015-01-01
The conformational ensemble of a macromolecule is the complete description of the macromolecule's solution structures and can reveal important aspects of macromolecular folding, recognition, and function. However, most experimental approaches determine an average or predominant structure, or follow transitions between states that each can only be described by an average structure. Ensembles have been extremely difficult to experimentally characterize. We present the unique advantages and capabilities of a new biophysical technique, X-ray scattering interferometry (XSI), for probing and quantifying structural ensembles. XSI measures the interference of scattered waves from two heavy metal probes attached site specifically to a macromolecule. A Fourier transform of the interference pattern gives the fractional abundance of different probe separations directly representing the multiple conformation states populated by the macromolecule. These probe-probe distance distributions can then be used to define the structural ensemble of the macromolecule. XSI provides accurate, calibrated distance in a model-independent fashion with angstrom scale sensitivity in distances. XSI data can be compared in a straightforward manner to atomic coordinates determined experimentally or predicted by molecular dynamics simulations. We describe the conceptual framework for XSI and provide a detailed protocol for carrying out an XSI experiment. © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Barabash, Yu. M.; Lyamets, A. K.
2016-12-01
The structural and dynamical properties of biological macromolecules under non-equilibrium conditions determine the kinetics of their basic reaction to external stimuli. This kinetics is multiexponential in nature. This is due to the operation of various subsystems in the structure of macromolecules, as well as the effect of the basic reaction on the structure of macromolecules. The situation can be interpreted as a manifestation of the stationary states of macromolecules, which are represented by monoexponential components of the basic reaction (Monod-Wyman-Changeux model) Monod et al. (J Mol Cell Biol 12:88-118, 1965). The representation of multiexponential kinetics of the basic reaction in the form of a sum of exponential functions (A(t)={sum}_{i=1}^n{a}_i{e}^{-{k}_it}) is a multidimensional optimization problem. To solve this problem, a gradient method of optimization with software determination of the amount of exponents and reasonable calculation time is developed. This method is used to analyze the kinetics of photoinduced electron transport in the reaction centers (RC) of purple bacteria and the fluorescence induction in the granum thylakoid membranes which share a common function of converting light energy.
A new bead-spring model for simulation of semi-flexible macromolecules
NASA Astrophysics Data System (ADS)
Saadat, Amir; Khomami, Bamin
2016-11-01
A bead-spring model for semi-flexible macromolecules is developed to overcome the deficiencies of the current coarse-grained bead-spring models. Specifically, model improvements are achieved through incorporation of a bending potential. The new model is designed to accurately describe the correlation along the backbone of the chain, segmental length, and force-extension behavior of the macromolecule even at the limit of 1 Kuhn step per spring. The relaxation time of different Rouse modes is used to demonstrate the capabilities of the new model in predicting chain dynamics.
van Lessen, Max; Shibata-Germanos, Shannon; van Impel, Andreas; Hawkins, Thomas A; Rihel, Jason; Schulte-Merker, Stefan
2017-05-12
The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain.
Perfect mixing of immiscible macromolecules at fluid interfaces
NASA Astrophysics Data System (ADS)
Sheiko, Sergei S.; Zhou, Jing; Arnold, Jamie; Neugebauer, Dorota; Matyjaszewski, Krzysztof; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.; Rubinstein, Michael
2013-08-01
The difficulty of mixing chemically incompatible substances—in particular macromolecules and colloidal particles—is a canonical problem limiting advances in fields ranging from health care to materials engineering. Although the self-assembly of chemically different moieties has been demonstrated in coordination complexes, supramolecular structures, and colloidal lattices among other systems, the mechanisms of mixing largely rely on specific interfacing of chemically, physically or geometrically complementary objects. Here, by taking advantage of the steric repulsion between brush-like polymers tethered to surface-active species, we obtained long-range arrays of perfectly mixed macromolecules with a variety of polymer architectures and a wide range of chemistries without the need of encoding specific complementarity. The net repulsion arises from the significant increase in the conformational entropy of the brush-like polymers with increasing distance between adjacent macromolecules at fluid interfaces. This entropic-templating assembly strategy enables long-range patterning of thin films on sub-100 nm length scales.
Perfect mixing of immiscible macromolecules at fluid interfaces
NASA Astrophysics Data System (ADS)
Sheiko, Sergei; Matyjaszewski, Krzysztof; Tsukruk, Vladimir; Carrillo, Jan-Michael; Rubinstein, Michael; Dobrynin, Andrey; Zhou, Jing
2014-03-01
Macromolecules typically phase separate unless their shapes and chemical compositions are tailored to explicitly drive mixing. But now our research has shown that physical constraints can drive spontaneous mixing of chemically different species. We have obtained long-range 2D arrays of perfectly mixed macromolecules having a variety of molecular architectures and chemistries, including linear chains, block-copolymer stars, and bottlebrush copolymers with hydrophobic, hydrophilic, and lipophobic chemical compositions. This is achieved by entropy-driven enhancement of steric repulsion between macromolecules anchored on a substrate. By monitoring the kinetics of mixing, we have proved that molecular intercalation is an equilibrium state. The array spacing is controlled by the length of the brush side chains. This entropic templating strategy opens new ways for generating patterns on sub-100 nm length scales with potential application in lithography, directed self-assembly, and biomedical assays. Financial support from the National Science Foundation DMR-0906985, DMR-1004576, DMR-1122483, and DMR-0907515.
Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG
Leibfarth, Frank A.; Johnson, Jeremiah A.; Jamison, Timothy F.
2015-01-01
We report a semiautomated synthesis of sequence and architecturally defined, unimolecular macromolecules through a marriage of multistep flow synthesis and iterative exponential growth (Flow-IEG). The Flow-IEG system performs three reactions and an in-line purification in a total residence time of under 10 min, effectively doubling the molecular weight of an oligomeric species in an uninterrupted reaction sequence. Further iterations using the Flow-IEG system enable an exponential increase in molecular weight. Incorporating a variety of monomer structures and branching units provides control over polymer sequence and architecture. The synthesis of a uniform macromolecule with a molecular weight of 4,023 g/mol is demonstrated. The user-friendly nature, scalability, and modularity of Flow-IEG provide a general strategy for the automated synthesis of sequence-defined, unimolecular macromolecules. Flow-IEG is thus an enabling tool for theory validation, structure–property studies, and advanced applications in biotechnology and materials science. PMID:26269573
Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.
Hwang, Jiye; Kim, Jeongmin; Sung, Bong June
2016-08-01
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm
NASA Astrophysics Data System (ADS)
Hwang, Jiye; Kim, Jeongmin; Sung, Bong June
2016-08-01
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (Dtot) and the displacement distribution functions (P (r ,t ) ) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ , which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ =0.65 , while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ . We also investigate the distribution (P (θ ,t ) ) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.
ERIC Educational Resources Information Center
Hess, V. L.; Szabo, Attila
1979-01-01
A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)
Development for equipment of the milk macromolecules content detection
NASA Astrophysics Data System (ADS)
Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen
Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.
NASA Astrophysics Data System (ADS)
Yashchuk, Valeriy M.; Kudrya, Vladislav Yu
2017-03-01
This paper summarizes the results of studies of the spectral properties—optical absorption, fluorescence and phosphorescence—of DNA and RNA macromolecules and synthetic poly-, oligo- and mono-nucleotides, which have been carried out in our laboratory. The system of first excited singlet and triplet energy levels for DNA and RNA is evaluated using low-temperature (4.2 K-77 K) luminescent measurements. The traps of the singlet and triplet electronic excitations in these compounds are identified. An important self-protection mechanism against photo-damage of DNA and RNA by UV photons or penetrative radiation based on the capture of triplet electronic-energy excitations by the most photostable centers—in DNA, the complex formed by neighboring adenosine (A) and thymidine (T) links; in RNA, the adenosine links—is described. It is confirmed that despite similarities in the chemical and partly energy structures DNA is more stable than RNA. The spectral manifestation of the telomeres (the important functional system) in DNA macromolecules is examined. The results obtained on telomere fragments provide the possibility of finding the configuration peculiarities of the triplet excitations traps in DNA macromolecules. The resulting spreading length of the migrating singlet (l s) and triplet (l t) excitations for DNA and RNA macromolecules are evaluated.
Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .
The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...
MOLECULAR BIOLOGY OF PHARMACOLOGIC VITREOLYSIS
Sebag, J
2005-01-01
Purpose Pharmacologic vitreolysis is a promising new therapy to improve vitreoretinal surgery and, ultimately, prevent disease by mitigating the contribution of vitreous to retinopathy. The mechanism of action of the agents being developed for pharmacologic vitreolysis remains unclear. The experiments in this thesis test the hypothesis that pharmacologic vitreolysis agents break down vitreous macromolecules into smaller particles. Methods Microplasmin, hyaluronidase, and collagenase were tested in solutions of hyaluronan (n = 15) and collagen (n = 15), explants of bovine vitreous (n = 15), dissected porcine vitreous (n = 9), and intact porcine eyes (n = 18). There were also 21 controls, totaling 93 specimens. Vitreous macromolecule sizes were determined with dynamic light scattering (DLS), performed at intervals from 10 minutes to 24 hours following injections. Results Studies of DLS reproducibility showed a coefficient of variance of less than 3.3% in all but one specimen. Microplasmin decreased porcine vitreous macromolecule size in a dose-dependent manner (correlation coefficient r = 0.93), with an 85% reduction after a 30-minute exposure to the maximum dose. Hyaluronidase decreased vitreous macromolecule size in hyaluronan solutions by 50% at high (1,000 IU/mL, P < .001) doses and in bovine vitreous by 20%. Collagenase decreased macromolecule size in collagen solutions by 20% at both low (1 mg/mL, P < .001) and high (10 mg/mL, P < .001) doses, but not at all in bovine vitreous. Conclusions Pharmacologic vitreolysis can induce a significant decrease in vitreous macromolecule sizes, depending upon the pharmacologic agents and the experimental model. Broad-spectrum agents were more effective than substrate-specific enzymes. Defining the molecular biology of pharmacologic vitreolysis has implications for surgical developments and may impact upon the design of clinical trials to induce prophylactic posterior vitreous detachment. PMID:17057814
NASA Technical Reports Server (NTRS)
Karpova, E. A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Three different types of ribosome crystals were grown by the vapor diffusion technique in hanging drops as described in (1,2). The ribosome is a large asymmetric RNA-protein complex (2.3 million Da), which is protein syntheses machinery of the cell. In this poster we would like to discuss the features of ribosome crystallization. Ribosomes were purified from the thermophilic bacteria Thermus thermophilus by centrifugation (3). Three types of crystals (needle, flat tetragonal and tetragonal-like pyramid) can be grown from the same solution; furthermore, in the same drop using 10-15% 2-methyl-2,4- pentanediol as a precipitant. The crystals appeared in 5-48 hours. The crystals were stable and can co-exist in solution over long period of time. The kinetics of appearance of different crystal forms was different: first the needle crystals were grown, then the tetragonal, and finally the tetragonal pyramids. Later studies of the process of ribosome crystal growth depending on supersaturation showed that low supersaturation results in the appearance of tetragonal plates or tetragonal-like pyramids. An electron microscopy study, together with computer modeling, has shown that crystals of different forms have a high probability of having the same unit cell parameters. According to these experiments the following conclusion can be dranvn: the level of supersaturation of the macromolecule in a crystallizing solution is one of the major factors for forming three-dimensional crystals convenient for X-rays diffraction analysis. From the same macromolecule solution, crystals of different forms can be grown at approximately the same conditions by varying the concentration of macromolecule in the solution. Ion-macromolecule and water-macromolecule interactions, apparently, play the main role in the formation of the unit cell of the crystals.
Ye, Sang-Ho; Arazawa, David T.; Zhu, Yang; Shankarraman, Venkat; Malkin, Alexander D.; Kimmel, Jeremy D.; Gamble, Lara J.; Ishihara, Kazuhiko; Federspiel, William J.; Wagner, William R.
2015-01-01
Respiratory assist devices seek optimized performance in terms of gas transfer efficiency and thromboresistance to minimize device size and reduce complications associated with inadequate blood biocompatibility. The exchange of gas with blood occurs at the surface of the hollow fiber membranes (HFMs) used in these devices. In this study, three zwitterionic macromolecules were attached to HFM surfaces to putatively improve thromboresistance: (1) carboxyl-functionalized zwitterionic phosphorylcholine (PC) and (2) sulfobetaine (SB) macromolecules (mPC or mSB-COOH) prepared by a simple thiol-ene radical polymerization and (3) a low-molecular weight sulfobetaine (SB)-co-methacrylic acid (MA) block copolymer (SBMAb-COOH) prepared by reversible addition–fragmentation chain transfer (RAFT) polymerization. Each macromolecule type was covalently immobilized on an aminated commercial HFM (Celg-A) by a condensation reaction, and HFM surface composition changes were analyzed by X-ray photoelectron spectroscopy. Thrombotic deposition on the HFMs was investigated after contact with ovine blood in vitro. The removal of CO2 by the HFMs was also evaluated using a model respiratory assistance device. The HFMs conjugated with zwitterionic macromolecules (Celg-mPC, Celg-mSB, and Celg-SBMAb) showed expected increases in phosphorus or sulfur surface content. Celg-mPC and Celg-SBMAb experienced rates of platelet deposition significantly lower than those of unmodified (Celg-A, >95% reduction) and heparin-coated (>88% reduction) control HFMs. Smaller reductions were seen with Celg-mSB. The CO2 removal rate for Celg-SBMAb HFMs remained comparable to that of Celg-A. In contrast, the rate of removal of CO2 for heparin-coated HFMs was significantly reduced. The results demonstrate a promising approach to modifying HFMs using zwitterionic macromolecules for artificial lung devices with improved thromboresistance without degradation of gas transfer. PMID:25669307
ERIC Educational Resources Information Center
Trimm, Harold H.; And Others
1984-01-01
Describes a birefringence apparatus that can be assembled for less than $100 and can be used to measure both the dimensions and dipole moments of many macromolecules. Details are given of the construction and manipulation of the apparatus. (JN)
ERIC Educational Resources Information Center
Horta, Arturo
1985-01-01
Describes a senior-level course that: (1) focuses on the structure and reactions of macromolecules; (2) treats industrial polymers in a unified way; and (3) uses analysis of conformation and conformational statistics as a unifying approach. Also discusses course topics, including polysaccharides, proteins, nucleic acids, and others. (JN)
Solid State Nuclear Magnetic Resonance Studies of the Murchison Organic Macromolecule
NASA Technical Reports Server (NTRS)
Cody, G. D., III; Alexander, C. M. OD.; Tera, F.
2001-01-01
We have used high speed H-1 (DEPTH) and C-13 (VACP MAS-slow spinning) solid state NMR to determine the contributions of protonated vs non-protonated carbon in the Murchison Macromolecule. Additional information is contained in the original extended abstract.
van Lessen, Max; Shibata-Germanos, Shannon; van Impel, Andreas; Hawkins, Thomas A; Rihel, Jason; Schulte-Merker, Stefan
2017-01-01
The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain. DOI: http://dx.doi.org/10.7554/eLife.25932.001 PMID:28498105
Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher
2016-01-01
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. PMID:27901024
Ganeva, V; Galutzov, B; Teissié, J
1995-12-13
The mechanism of electric field mediated macromolecule transfer inside an intact yeast cell was investigated by observing, under a microscope, the fluorescence associated to cells after pulsation in a buffer containing two different hydrophilic fluorescent dyes. In the case of a small probe such as propidium iodide, a long lived permeabilized state was induced by the field as classically observed on wall free systems. Penetration of a 70 kDa FITC dextran was obtained only by using drastic conditions and only a very limited number of yeast cells which took up macromolecules remained viable. Most dextrans were trapped in the wall. A dramatic improvement in transfer of dextrans was observed when the cells were treated by dithiothreitol before pulsation. A cytoplasmic protein leakage was detected after the electric treatment suggesting that an irreversible damage took place in the walls of many pulsed cells. Electroloading of macromolecules in intact yeast cells appears to be controlled by a field induced short lived alteration of the envelope organization.
Identifiability, reducibility, and adaptability in allosteric macromolecules.
Bohner, Gergő; Venkataraman, Gaurav
2017-05-01
The ability of macromolecules to transduce stimulus information at one site into conformational changes at a distant site, termed "allostery," is vital for cellular signaling. Here, we propose a link between the sensitivity of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these parameters, and macromolecular adaptability. We demonstrate that the parameters of a canonical model of the mSlo large-conductance Ca 2+ -activated K + (BK) ion channel are non-identifiable with respect to the equilibrium open probability-voltage relationship, a common functional assay. We construct a reduced model with emergent parameters that are identifiable and expressed as combinations of the original mechanistic parameters. These emergent parameters indicate which coordinated changes in mechanistic parameters can leave assay output unchanged. We predict that these coordinated changes are used by allosteric macromolecules to adapt, and we demonstrate how this prediction can be tested experimentally. We show that these predicted parameter compensations are used in the first reported allosteric phenomena: the Bohr effect, by which hemoglobin adapts to varying pH. © 2017 Bohner and Venkataraman.
Identifiability, reducibility, and adaptability in allosteric macromolecules
Bohner, Gergő
2017-01-01
The ability of macromolecules to transduce stimulus information at one site into conformational changes at a distant site, termed “allostery,” is vital for cellular signaling. Here, we propose a link between the sensitivity of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these parameters, and macromolecular adaptability. We demonstrate that the parameters of a canonical model of the mSlo large-conductance Ca2+-activated K+ (BK) ion channel are non-identifiable with respect to the equilibrium open probability-voltage relationship, a common functional assay. We construct a reduced model with emergent parameters that are identifiable and expressed as combinations of the original mechanistic parameters. These emergent parameters indicate which coordinated changes in mechanistic parameters can leave assay output unchanged. We predict that these coordinated changes are used by allosteric macromolecules to adapt, and we demonstrate how this prediction can be tested experimentally. We show that these predicted parameter compensations are used in the first reported allosteric phenomena: the Bohr effect, by which hemoglobin adapts to varying pH. PMID:28416647
Interphase vs confinement in starch-clay bionanocomposites.
Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis
2015-03-06
Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher
2016-11-30
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy-combining sequential and modular concepts-enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain.
Method for selective immobilization of macromolecules on self assembled monolayer surfaces
Laskin, Julia [Richland, WA; Wang, Peng [Billerica, MA
2011-11-29
Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.
Single molecule optical measurements of orientation and rotations of biological macromolecules.
Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E
2016-11-22
Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.
Ando, Tadashi; Yu, Isseki; Feig, Michael; Sugita, Yuji
2016-11-23
The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.
NASA Astrophysics Data System (ADS)
Golovin, Yuri I.; Gribanovsky, Sergey L.; Golovin, Dmitry Y.; Zhigachev, Alexander O.; Klyachko, Natalia L.; Majouga, Alexander G.; Sokolsky, Marina; Kabanov, Alexander V.
2017-02-01
In the past decade, magneto-nanomechanical approach to biochemical systems stimulation has been studied intensively. This method involves macromolecule structure local deformation via mechanical actuation of functionalized magnetic nanoparticles (f-MNPs) by non-heating low frequency (LF) alternating magnetic field (AMF). Specificity at cellular or molecular level and spatial locality in nanometer scale are its key advantages as compared to magnetic fluid hyperthermia. However, current experimental studies have weak theoretical basis. Several models of magneto-nanomechanical actuation of macromolecules and cells in non-heating uniform LF AMF are presented in the article. Single core-shell spherical, rod-like, and Janus MNPs, as well as dimers consisting of two f-MNPs with macromolecules immobilized on their surfaces are considered. AMF-induced rotational oscillations of MNPs can affect properties and functioning of macromolecules or cellular membranes attached to them via periodic deformations in nanometer scale. This could be widely used in therapy, in particular for targeted drug delivery, controlled drug release, and cancer cell killing. An aggregate composed of MNPs can affect associated macromolecules by force up to several hundreds of piconewton in the case of MNPs of tens of nanometers in diameter and LF AMF below 1 T. AMF parameters and MNP design requirements for effective in vitro and in vivo magneto-nanomechanical treatment are presented.
Single molecule optical measurements of orientation and rotations of biological macromolecules
Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E
2016-01-01
The subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measuring their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, we review the relevant types of probes and labeling techniques, and we highlight the advantages and disadvantages of these technologies for addressing specific inquiries. PMID:28192292
A primer in macromolecular linguistics.
Searls, David B
2013-03-01
Polymeric macromolecules, when viewed abstractly as strings of symbols, can be treated in terms of formal language theory, providing a mathematical foundation for characterizing such strings both as collections and in terms of their individual structures. In addition this approach offers a framework for analysis of macromolecules by tools and conventions widely used in computational linguistics. This article introduces the ways that linguistics can be and has been applied to molecular biology, covering the relevant formal language theory at a relatively nontechnical level. Analogies between macromolecules and human natural language are used to provide intuitive insights into the relevance of grammars, parsing, and analysis of language complexity to biology. Copyright © 2012 Wiley Periodicals, Inc.
Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1987-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
Fluid Physics and Macromolecular Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.; Helliwell, J.; Rose, M. Franklin (Technical Monitor)
2000-01-01
The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows.
Microphase separation of comb copolymers with two different lengths of side chains
NASA Astrophysics Data System (ADS)
Aliev, M. A.; Kuzminyh, N. Yu.
2009-10-01
The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in numbers of side chains and numbers of monomer units in these chains. It is shown (by analysis of the structure factor of the melt) that microphase separation at two different length scales in the melt is possible. The large and small length scales correspond to separation between comb blocks and separation between monomer units in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is favored for a given parameters of chemical structure of macromolecules are constructed.
Jain, Aastha; Chugh, Archana
2016-09-01
Mitochondrial malfunction under various circumstances can lead to a variety of disorders. Effective targeting of macromolecules (drugs) is important for restoration of mitochondrial function and treatment of related disorders. We have designed a novel cell-penetrating mitochondrial transit peptide (CpMTP) for delivery of macromolecules to mitochondria. Comparison between properties of cell-penetrating peptides (CPPs) and mitochondrial signal sequences enabled prediction of peptides with dual ability for cellular translocation and mitochondrial localization. Among the predicted peptides, CpMTP translocates across HeLa cells and shows successful delivery of noncovalently conjugated cargo molecules to mitochondria. CpMTP may have applications in transduction and transfection of mitochondria for therapeutics. © 2016 Federation of European Biochemical Societies.
High and low thermal conductivity of amorphous macromolecules
NASA Astrophysics Data System (ADS)
Xie, Xu; Yang, Kexin; Li, Dongyao; Tsai, Tsung-Han; Shin, Jungwoo; Braun, Paul V.; Cahill, David G.
2017-01-01
We measure the thermal conductivity, heat capacity and sound velocity of thin films of five polymers, nine polymer salts, and four caged molecules to advance the fundamental understanding of the lower and upper limits to heat conduction in amorphous macromolecules. The thermal conductivities vary by more than one order of magnitude, from 0.06 W m-1K-1 for [6,6]-phenyl-C71-butyric acid methyl ester to 0.67 W m-1K-1 for poly(vinylphosphonic acid calcium salt). Minimum thermal conductivity calculated from the measured sound velocity and effective atomic density is in good agreement with the thermal conductivity of macromolecules with various molecular structures and intermolecular bonding strength.
Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao
2017-08-16
Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.
Measuring the shapes of macromolecules – and why it matters
Li, Jie; Mach, Paul; Koehl, Patrice
2013-01-01
The molecular basis of life rests on the activity of biological macromolecules, mostly nucleic acids and proteins. A perhaps surprising finding that crystallized over the last handful of decades is that geometric reasoning plays a major role in our attempt to understand these activities. In this paper, we address this connection between geometry and biology, focusing on methods for measuring and characterizing the shapes of macromolecules. We briefly review existing numerical and analytical approaches that solve these problems. We cover in more details our own work in this field, focusing on the alpha shape theory as it provides a unifying mathematical framework that enable the analytical calculations of the surface area and volume of a macromolecule represented as a union of balls, the detection of pockets and cavities in the molecule, and the quantification of contacts between the atomic balls. We have shown that each of these quantities can be related to physical properties of the molecule under study and ultimately provides insight on its activity. We conclude with a brief description of new challenges for the alpha shape theory in modern structural biology. PMID:24688748
Miyake, Masateru; Minami, Takanori; Yamazaki, Hiroyuki; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime
2017-05-01
Therapeutic peptides and protein are being used in several indications; however, their poor permeability still remains to be solved. This study focused on the pulmonary route of macromolecules. First, the effects of arachidonic acid (AA) as an absorption enhancer on drug serum concentration, after intratracheal administration, were investigated in rats. Second, the safety of AA was assessed in rats in an acute toxicity study for 7days. AA enhanced the exposure of both interferon-α (IFN-α) and fluorescein isothiocyanate 4000 (FD-4). In addition, the histopathological analysis indicated that AA caused alveolitis and bronchitis in rats. In combination with Taurine (Tau), these lung injuries were prevented through the histopathological analysis. The combined use of Tau with AA did not show any changes in the pharmacokinetics of FD-4. From these results, we suggest the combined use of AA with Tau as a novel formulation on the pulmonary route of macromolecule drugs. This formulation could improve the bioavailability of macromolecule drugs without any serious local damage to the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.
Route of steroid-activated macromolecules through nuclear pores imaged with atomic force microscopy.
Oberleithner, H; Schäfer, C; Shahin, V; Albermann, L
2003-02-01
In eukaryotic cells, two concentric membranes, the nuclear envelope (NE), separate the nucleus from the cytoplasm. The NE is punctured by nuclear pore complexes (NPCs; molecular mass 120 MDa) that serve as regulated pathways for macromolecules entering and leaving the nuclear compartment. Transport across NPCs occurs through central channels. Such import and export of macromolecules through individual NPCs can be elicited in the Xenopus laevis oocyte by injecting the mineralocorticoid aldosterone and can be visualized with atomic force microscopy. The electrical NE resistance in intact cell nuclei can be measured in parallel. Resistance increases when macromolecules are engaged with the NPC. This article describe six observations made from these experiments and the conclusions that can be drawn from them. (i) A homogeneous population of macromolecules (approx. 100 kDa) attaches to the cytoplasmic face of the NPC 2 min after aldosterone injection. They are most likely to be aldosterone receptors. After a few minutes, they have disappeared. (ii) Large plugs (approx. molecular mass 1 MDa) appear in the central channels 20 min after hormone injection. They are most likely to be ribonucleoproteins exiting the nucleus. (iii) Electrical resistance measurements in isolated nuclei reveal transient electrical NE resistance peaks: an early (2 min) peak and a late (20 min) peak. Electrical peaks reflect macromolecule interaction with the NPC. (iv) Spironolactone blocks both the early and late peaks. This indicates that classic aldosterone receptors are involved in the pregenomic (early) and post-genomic (late) responses. (v) Actinomycin D and, independently, RNase A block the late electrical peak, confirming that plugs are genomic in nature. (vi) Intracellular calcium chelation blocks both early and late electrical peaks. Thus, the release of calcium from internal stores, which is known to be the first intracellular signal in response to aldosterone, is a prerequisite for the late genomic response.
ERIC Educational Resources Information Center
Halsall, H. B.; Wermeling, J. R.
1982-01-01
Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…
Tonal Interface to MacroMolecules (TIMMol): A Textual and Tonal Tool for Molecular Visualization
ERIC Educational Resources Information Center
Cordes, Timothy J.; Carlson, C. Britt; Forest, Katrina T.
2008-01-01
We developed the three-dimensional visualization software, Tonal Interface to MacroMolecules or TIMMol, for studying atomic coordinates of protein structures. Key features include audio tones indicating x, y, z location, identification of the cursor location in one-dimensional and three-dimensional space, textual output that can be easily linked…
Force spectroscopy of biomolecular folding and binding: theory meets experiment
NASA Astrophysics Data System (ADS)
Dudko, Olga
2015-03-01
Conformational transitions in biological macromolecules usually serve as the mechanism that brings biomolecules into their working shape and enables their biological function. Single-molecule force spectroscopy probes conformational transitions by applying force to individual macromolecules and recording their response, or ``mechanical fingerprints,'' in the form of force-extension curves. However, how can we decode these fingerprints so that they reveal the kinetic barriers and the associated timescales of a biological process? I will present an analytical theory of the mechanical fingerprints of macromolecules. The theory is suitable for decoding such fingerprints to extract the barriers and timescales. The application of the theory will be illustrated through recent studies on protein-DNA interactions and the receptor-ligand complexes involved in blood clot formation.
Xiong, Ranhua; Raemdonck, Koen; Peynshaert, Karen; Lentacker, Ine; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C; Skirtach, Andre G; Braeckmans, Kevin
2014-06-24
There is a great interest in delivering macromolecular agents into living cells for therapeutic purposes, such as siRNA for gene silencing. Although substantial effort has gone into designing nonviral nanocarriers for delivering macromolecules into cells, translocation of the therapeutic molecules from the endosomes after endocytosis into the cytoplasm remains a major bottleneck. Laser-induced photoporation, especially in combination with gold nanoparticles, is an alternative physical method that is receiving increasing attention for delivering macromolecules in cells. By allowing gold nanoparticles to bind to the cell membrane, nanosized membrane pores can be created upon pulsed laser illumination. Depending on the laser energy, pores are created through either direct heating of the AuNPs or by vapor nanobubbles (VNBs) that can emerge around the AuNPs. Macromolecules in the surrounding cell medium can then diffuse through the pores directly into the cytoplasm. Here we present a systematic evaluation of both photoporation mechanisms in terms of cytotoxicity, cell loading, and siRNA transfection efficiency. We find that the delivery of macromolecules under conditions of VNBs is much more efficient than direct photothermal disturbance of the plasma membrane without any noticeable cytotoxic effect. Interestingly, by tuning the laser energy, the pore size could be changed, allowing control of the amount and size of molecules that are delivered in the cytoplasm. As only a single nanosecond laser pulse is required, we conclude that VNBs are an interesting photoporation mechanism that may prove very useful for efficient high-throughput macromolecular delivery in live cells.
Bujalowski, Wlodzimierz; Jezewska, Maria J.
2011-01-01
Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand–macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein–nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein–nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein–nucleic acid interactions, it can generally be applied to any ligand–macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. PMID:21195223
[Dynamics of biomacromolecules in coherent electromagnetic radiation field].
Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I
2014-01-01
It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.
Solid-State 15N NMR of 15N-Labeled Nylon 6 and Nylon 11
1990-05-22
S. Veeman, E. M. Menger, W. Ritchey, and E. de Boer, Macromolecules, 1979, 12, 924. 2. A. N. Garroway , W. M. Ritchey and W. B. Moniz, Macromolecules...S. Veeman and E. M. Menger, Bull. Magn. Reson., 1980, 2, 77. 26. D. L. VanderHart and A. N. Garroway , J. Chem. Phys., 1979, 71, 2773. 27. M. D
NASA Astrophysics Data System (ADS)
Pelin, Irina M.; Maier, Vasilica; Suflet, Dana M.; Popescu, Irina; Darie-Nita, Raluca N.; Aflori, Magdalena; Butnaru, Maria
2017-10-01
The synthetic nanocrystalline calcium orthophosphates have a notable bioactivity due to the chemical similarity with biological apatite from calcified tissues. In mineralized tissues, the highly ordered structures come from organized assemblies of biomacromolecules and inorganic nanoparticles. One of the purposes of this work was to study the effect of two types of acidic macromolecules: atelocollagen and phosphorylated curdlan onto calcium orthophosphates formation after 30 days of maturation at 2 ± 2 °C. The resulted samples after a long aging time, either calcium orthophosphates or composites, were first investigated by FT-IR spectroscopy and X-ray diffractometry and the results indicated that precipitated hydroxyapatite with low crystallinity was obtained when the synthesis was performed in the presence of phosphorylated curdlan. The macromolecules influenced the morphology of the particles as shown by scanning and transmission electron microscopy. The presence of macromolecules as demonstrated by thermal investigation also influenced the rheological properties of the samples. The second purpose of the work was to evaluate the cytotoxicity of the samples using the MTT assay, and the results revealed very good cells viability. The preliminary results are encouraging regarding the use of these materials for further tests in order to develop injectable bone substitutes.
Hagiwara, Yohsuke; Tateno, Masaru
2010-10-20
We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems. © 2010 IOP Publishing Ltd
Method for detecting and diagnosing disease caused by pathological protein aggregation
Stevens, Fred J.; Myatt, Elizabeth A.; Solomon, Alan
2000-01-01
A method is provided for detecting pathological macromolecules in a patient, comprising obtaining body fluid from the patient, pretreating the body fluid, subjecting the pretreated body fluid to size-exclusion chromatography to create an excluded fluid, and analyzing the excluded fluid to detect macromolecules having a predetermined molecular weight. The method also allows for comparing elution spectra with reference spectra of suspect pathologic proteins.
Suemizu, Hiroshi; Kawai, Kenji; Higuchi, Yuichiro; Hashimoto, Haruo; Ogura, Tomoyuki; Itoh, Toshio; Sasaki, Erika; Nakamura, Masato
2013-01-01
Here, we present a versatile method for detecting human tumor xenografts in vivo, based on the enhanced permeability and retention (EPR) effect, using near-infrared (NIR) fluorochrome-conjugated macromolecule probes. Bovine serum albumin (BSA) and two immunoglobulins—an anti-human leukocyte antigen (HLA) monoclonal antibody and isotype control IgG2a—were labeled with XenoLight CF770 fluorochrome and used as NIR-conjugated macromolecule probes to study whole-body imaging in a variety of xenotransplantation mouse models. NIR fluorescent signals were observed in subcutaneously transplanted BxPC-3 (human pancreatic cancer) cells and HCT 116 (colorectal cancer) cells within 24 h of NIR-macromolecule probe injection, but the signal from the fluorochrome itself or from the NIR-conjugated small molecule (glycine) injection was not observed. The accuracy of tumor targeting was confirmed by the localization of the NIR-conjugated immunoglobulin within the T-HCT 116 xenograft (in which the orange-red fluorescent protein tdTomato was stably expressed by HCT 116 cells) in the subcutaneous transplantation model. However, there was no significant difference in the NIR signal intensity of the region of interest between the anti-HLA antibody group and the isotype control group in the subcutaneous transplantation model. Therefore, the antibody accumulation within the tumor in vivo is based on the EPR effect. The liver metastasis generated by an intrasplenic injection of T-HCT 116 cells was clearly visualized by the NIR-conjugated anti-HLA probe but not by the orange-red fluorescent signal derived from the tdTomato reporter. This result demonstrated the superiority of the NIR probes over the tdTomato reporter protein at enhancing tissue penetration. In another xenograft model, patient-derived xenografts (PDX) of LC11-JCK (human non-small cell lung cancer) were successfully visualized using the NIR-conjugated macromolecule probe without any genetic modification. These results suggested that NIR-conjugated macromolecule, preferably, anti-HLA antibody probe is a valuable tool for the detection of human tumors in experimental metastasis models using whole-body imaging. PMID:24358218
NASA Technical Reports Server (NTRS)
Westall, F.; Steele, A.; Toporski, J.; Walsh, M. M.; Allen, C. C.; Guidry, S.; McKay, D. S.; Gibson, E. K.; Chafetz, H. S.
2000-01-01
Polymers of bacterial origin, either through cell secretion or the degraded product of cell lysis, form isolated mucoidal strands as well as well-developed biofilms on interfaces. Biofilms are structurally and compositionally complex and are readily distinguishable from abiogenic films. These structures range in size from micrometers to decimeters, the latter occurring as the well-known, mineralised biofilms called stromatolites. Compositionally bacterial polymers are greater than 90 % water, with while the majority of the macromolecules forming the framework of the polymers consisting of polysaccharides (with and some nucteic acids and proteins). These macromolecules contain a vaste amount of functional groups, such as carboxyls, hydroxyls, and phosphoryls which are implicated in cation-binding. It is the elevated metal- binding capacity which provides the bacterial polymer with structural support and also helps to preserves it for up to 3.5 b.y. in the terrestrial rock record. The macromolecules, thus, can become rapidly mineralised and trapped in a mineral matrix. Through early and late diagenesis (bacterial degradation, burial, heat, pressure and time) they break down, losing the functional groups and, gradually, their hydrogen atoms. The degraded product is known as "kerogen". With further diagenesis and metamorphism, all the hydrogen atoms are lost and the carbonaceous matter becomes graphite. until the remnant carbonaceous material become graphitised. This last sentence reads a bit as if ALL these macromolecules break down and end up as graphite., but since we find 441 this is not true for all of the macromolecules. We have traced fossilised polymer and biofilms in rocks from throughout Earth's history, to rocks as old as the oldest being 3.5 b.y.-old. Furthermore, Time of Flight Secondary Ion Mass Spectrometry has been able to identify individual macromolecules of bacterial origin, the identities of which are still being investigated, in all the samples containing fossil biofilm, including the 3.5 b.y..-old carbonaceous cherts from South Africa and Australia. As a result of the unique compositional, structural and "mineralisable" properties of bacterial polymer and biofilms, we conclude that bacterial polymers and biofilms constitute a robust and reliable biomarker for life on Earth and could be a potential biomarker for extraterrestrial life.
Ice nucleation rates of single protein complexes and single macromolecules
NASA Astrophysics Data System (ADS)
Stratmann, F.; Wex, H.; Niedermeier, D.; Hartmann, S.; Augustin, S.; Clauss, T.; Voigtlaender, J.; Pummer, B.; Grothe, H.
2012-12-01
With our flow-tube LACIS (Leipzig Aerosol cloud Interaction Simulator), we measured immersion freezing of droplets containing biological ice nucleating (IN) agents. From our measurements, we were able to deduce ice nucleation rates for single IN protein complexes (for Snomax) and for IN macromolecules (in the case of Birch pollen). For the measurements, aerosol particles were produced from solutions/suspensions of either Snomax (deadened and partly fractionalized pseudomonas syringae bacteria) or of Birch pollen washing water (BW in the following). All particles were dried and size selected before entering LACIS. In LACIS, particles were activated to droplets, and we measured the fraction of all droplets that froze (F(ice)) as function of temperature. For Snomax, a strong increase in F(ice) was observed around -7 to -10°C, for BW around -19 to -25°C, respectively. After this initial steep increase, F(ice) stayed constant for both examined substances down to -35°C. We found that the values of F(ice) in the plateau region depended on the dry particle size. The initial solution used to generate the particles contained parts of bacteria with ice active protein complexes on them in the case of Snomax, or IN macromolecules in the case of BW (Pummer et al., 2011). We show that the distribution of the IN proteins or IN molecules in the aerosol particles follows the Poisson distribution. With this knowledge, derivation of the ice nucleation rates for single IN protein complexes or for single IN macromolecules is possible. Combining the Poisson distribution with a stochastic model and using the derived nucleation rates, we can reproduce not only our measurements for both examined substances, but also past measurements done for Snomax and even pseudomonas syringae bacteria. As an additional peculiarity, we seem to observe two different macromolecules being ice active for Birch trees growing in Central Europe or Northern Europe, with the latter initiating freezing at slightly warmer temperatures. Pummer, B. G. et al. (2012), Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Aerosol Chem. Phys., 12, 2541-2550.
Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Paul D.; Aertgeerts, Kathleen; Bauer, Cary
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographicmore » Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.« less
Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop
Adams, Paul D.; Aertgeerts, Kathleen; Bauer, Cary; ...
2016-04-05
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographicmore » Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.« less
Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop.
Adams, Paul D; Aertgeerts, Kathleen; Bauer, Cary; Bell, Jeffrey A; Berman, Helen M; Bhat, Talapady N; Blaney, Jeff M; Bolton, Evan; Bricogne, Gerard; Brown, David; Burley, Stephen K; Case, David A; Clark, Kirk L; Darden, Tom; Emsley, Paul; Feher, Victoria A; Feng, Zukang; Groom, Colin R; Harris, Seth F; Hendle, Jorg; Holder, Thomas; Joachimiak, Andrzej; Kleywegt, Gerard J; Krojer, Tobias; Marcotrigiano, Joseph; Mark, Alan E; Markley, John L; Miller, Matthew; Minor, Wladek; Montelione, Gaetano T; Murshudov, Garib; Nakagawa, Atsushi; Nakamura, Haruki; Nicholls, Anthony; Nicklaus, Marc; Nolte, Robert T; Padyana, Anil K; Peishoff, Catherine E; Pieniazek, Susan; Read, Randy J; Shao, Chenghua; Sheriff, Steven; Smart, Oliver; Soisson, Stephen; Spurlino, John; Stouch, Terry; Svobodova, Radka; Tempel, Wolfram; Terwilliger, Thomas C; Tronrud, Dale; Velankar, Sameer; Ward, Suzanna C; Warren, Gregory L; Westbrook, John D; Williams, Pamela; Yang, Huanwang; Young, Jasmine
2016-04-05
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, ∼75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide PDB/Cambridge Crystallographic Data Center/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the PDB? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Outcome of the first wwPDB/CCDC/D3R Ligand Validation Workshop
Adams, Paul D.; Aertgeerts, Kathleen; Bauer, Cary; Bell, Jeffrey A.; Berman, Helen M.; Bhat, Talapady N.; Blaney, Jeff; Bolton, Evan; Bricogne, Gerard; Brown, David; Burley, Stephen K.; Case, David A.; Clark, Kirk L.; Darden, Tom; Emsley, Paul; Feher, Victoria A.; Feng, Zukang; Groom, Colin R.; Harris, Seth F.; Hendle, Jorg; Holder, Thomas; Joachimiak, Andrzej; Kleywegt, Gerard J.; Krojer, Tobias; Marcotrigiano, Joseph; Mark, Alan E.; Markley, John L.; Miller, Matthew; Minor, Wladek; Montelione, Gaetano T.; Murshudov, Garib; Nakagawa, Atsushi; Nakamura, Haruki; Nicholls, Anthony; Nicklaus, Marc; Nolte, Robert T.; Padyana, Anil K.; Peishoff, Catherine E.; Pieniazek, Susan; Read, Randy J.; Shao, Chenghua; Sheriff, Steven; Smart, Oliver; Soisson, Stephen; Spurlino, John; Stouch, Terry; Svobodova, Radka; Tempel, Wolfram; Terwilliger, Thomas C.; Tronrud, Dale; Velankar, Sameer; Ward, Suzanna; Warren, Gregory L.; Westbrook, John D.; Williams, Pamela; Yang, Huanwang; Young, Jasmine
2016-01-01
Summary Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographic Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30–31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated. PMID:27050687
Neish, C D; Somogyi, A; Imanaka, H; Lunine, J I; Smith, M A
2008-04-01
Organic macromolecules ("complex tholins") were synthesized from a 0.95 N(2)/0.05 CH(4) atmosphere in a high-voltage AC flow discharge reactor. When placed in liquid water, specific water soluble compounds in the macromolecules demonstrated Arrhenius type first order kinetics between 273 and 313 K and produced oxygenated organic species with activation energies in the range of approximately 60+/-10 kJ mol(-1). These reactions displayed half lives between 0.3 and 17 days at 273 K. Oxygen incorporation into such materials--a necessary step toward the formation of biological molecules--is therefore fast compared to processes that occur on geologic timescales, which include the freezing of impact melt pools and possible cryovolcanic sites on Saturn's organic-rich moon Titan.
NASA Astrophysics Data System (ADS)
Neish, C. D.; Somogyi, Á.; Imanaka, H .; Lunine, J. I.; Smith, M. A.
2008-04-01
Organic macromolecules (``complex tholins'') were synthesized from a 0.95 N2 / 0.05 CH4 atmosphere in a high-voltage AC flow discharge reactor. When placed in liquid water, specific water soluble compounds in the macromolecules demonstrated Arrhenius type first order kinetics between 273 and 313 K and produced oxygenated organic species with activation energies in the range of ~60 +/- 10 kJ mol-1. These reactions displayed half lives between 0.3 and 17 days at 273 K. Oxygen incorporation into such materials-a necessary step toward the formation of biological molecules-is therefore fast compared to processes that occur on geologic timescales, which include the freezing of impact melt pools and possible cryovolcanic sites on Saturn's organic-rich moon Titan.
Flexible Charged Macromolecules on Mixed Fluid Lipid Membranes: Theory and Monte Carlo Simulations
Tzlil, Shelly; Ben-Shaul, Avinoam
2005-01-01
Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive potentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon adsorption. Extending Rosenbluth's Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we argue that similar information could be derived from a biased superposition of quenched membrane simulations. Using a simple cell model we account for surface concentration effects, and show that the average adsorption probabilities on annealed and quenched membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein. PMID:16126828
Workshop on High-Field NMR and Biological Applications
NASA Astrophysics Data System (ADS)
Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.
Gustin, Marie-Paule; Molnar, Attila; Oparka, Karl J.
2016-01-01
In addition to moving sugars and nutrients, the phloem transports many macromolecules. While grafting and aphid stylectomy experiments have identified many macromolecules that move in the phloem, the functional significance of phloem transport of these remains unclear. To gain insight into protein trafficking, we micrografted Arabidopsis thaliana scions expressing GFP-tagged chloroplast transit peptides under the 35S promoter onto nontransgenic rootstocks. We found that plastids in the root tip became fluorescent 10 d after grafting. We obtained identical results with the companion cell-specific promoter SUC2 and with signals that target proteins to peroxisomes, actin, and the nucleus. We were unable to detect the respective mRNAs in the rootstock, indicating extensive movement of proteins in the phloem. Outward movement from the root protophloem was restricted to the pericycle-endodermis boundary, identifying plasmodesmata at this interface as control points in the exchange of macromolecules between stele and cortex. Intriguingly, signals directing proteins to the endoplasmic reticulum and Golgi apparatus from membrane-bound ribosomes were not translocated to the root. It appears that many organelle-targeting sequences are insufficient to prevent the loss of their proteins into the translocation stream. Thus, nonspecific loss of proteins from companion cells to sieve elements may explain the plethora of macromolecules identified in phloem sap. PMID:27600534
NASA Astrophysics Data System (ADS)
Wang, Yu; Zhao, Yan-Jiao; Huang, Ji-Ping
2012-07-01
The detection of macromolecular conformation is particularly important in many physical and biological applications. Here we theoretically explore a method for achieving this detection by probing the electricity of sequential charged segments of macromolecules. Our analysis is based on molecular dynamics simulations, and we investigate a single file of water molecules confined in a half-capped single-walled carbon nanotube (SWCNT) with an external electric charge of +e or -e (e is the elementary charge). The charge is located in the vicinity of the cap of the SWCNT and along the centerline of the SWCNT. We reveal the picosecond timescale for the re-orientation (namely, from one unidirectional direction to the other) of the water molecules in response to a switch in the charge signal, -e → +e or +e → -e. Our results are well understood by taking into account the electrical interactions between the water molecules and between the water molecules and the external charge. Because such signals of re-orientation can be magnified and transported according to Tu et al. [2009 Proc. Natl. Acad. Sci. USA 106 18120], it becomes possible to record fingerprints of electric signals arising from sequential charged segments of a macromolecule, which are expected to be useful for recognizing the conformations of some particular macromolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrillo, Jan-Michael; Brown, W Michael; Dobrynin, Andrey
2012-01-01
We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbonemore » deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.« less
High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids
Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua
2014-01-01
High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (< 25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem’ can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086
Isothermal titration calorimetry for measuring macromolecule-ligand affinity.
Duff, Michael R; Grubbs, Jordan; Howell, Elizabeth E
2011-09-07
Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given.
Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity
Duff,, Michael R.; Grubbs, Jordan; Howell, Elizabeth E.
2011-01-01
Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given. PMID:21931288
Analysis of the conductivity of plasmodesmata by microinjection.
Kragler, Friedrich
2015-01-01
Pressure microinjection can be used to introduce fluorescent dyes and labeled macromolecules into single cells. The method allows measuring transport activity of macromolecules such as proteins and RNA molecules within and between cells. Routinely, plant mesophyll cells are injected with fluorescent dextran molecules of specific sizes to measure an increase of the size exclusion limit of plasmodesmata in the presence of a co-injected or expressed protein. The mobility of a macromolecule can also be addressed directly by injecting a recombinant protein that itself is labeled with fluorescent dye and following its transport to neighboring cells. This chapter describes a pressure microinjection protocol successfully applied to Nicotiana leaves. This protocol requires basic skills and experience in handling a microscope equipped with an imaging system, a micromanipulator, and a microinjection system attached to an upright microscope. Using this equipment, a trained person can inject approximately 10-20 mesophyll cells per hour.
Jelsch, C
2001-09-01
The normal matrix in the least-squares refinement of macromolecules is very sparse when the resolution reaches atomic and subatomic levels. The elements of the normal matrix, related to coordinates, thermal motion and charge-density parameters, have a global tendency to decrease rapidly with the interatomic distance between the atoms concerned. For instance, in the case of the protein crambin at 0.54 A resolution, the elements are reduced by two orders of magnitude for distances above 1.5 A. The neglect a priori of most of the normal-matrix elements according to a distance criterion represents an approximation in the refinement of macromolecules, which is particularly valid at very high resolution. The analytical expressions of the normal-matrix elements, which have been derived for the coordinates and the thermal parameters, show that the degree of matrix sparsity increases with the diffraction resolution and the size of the asymmetric unit.
An Overview of Biological Macromolecule Crystallization
Krauss, Irene Russo; Merlino, Antonello; Vergara, Alessandro; Sica, Filomena
2013-01-01
The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality. PMID:23727935
Huh, Yeamin; Smith, David E.; Feng, Meihau Rose
2014-01-01
Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879
Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins.
Albeck, S; Addadi, I; Weiner, S
1996-01-01
Many biologically formed calcite crystals contain intracrystalline macromolecules. The ways in which they interact with growing calcite crystals were evaluated by monitoring changes in the morphology of calcite crystals grown in vitro in their presence. Macromolecules were extracted from within isolated prisms from the prismatic layer of the shell of the mollusk Atrina rigida and from spines of the sea urchin Paracentrotus lividus. Two modes of interaction were identified; the interaction of highly acidic proteins with calcite planes perpendicular to the c crystallographic axis and the interaction of glycoproteins with planes roughly parallel to the c axis. By different preparative procedures we demonstrated that the polysaccharide moieties of the sea urchin spine glycoproteins are directly involved in the latter mode of interactions. We suggest that organisms utilize the abilities of these macromolecules to interact in different ways with calcite crystals, and in so doing fine-tune aspects of the control of crystal growth in vivo.
Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.
2000-01-01
While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.
Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization
NASA Astrophysics Data System (ADS)
Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.
2017-02-01
Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.
Delta L: An Apparatus for Measuring Macromolecule Crystal Growth Rates in Microgravity
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Strongly diffracting high quality macromolecule crystals of suitable volume are keenly sought for X-ray diffraction analysis so that high-resolution molecular structure data can be obtained. Such data is of tremendous value to medical research, agriculture and commercial biotechnology. In previous studies by many investigators microgravity has been reported in some instances to improve biological macromolecule X-ray crystal quality while little or no improvement was observed in other cases. A better understanding of processes effecting crystal quality improvement in microgravity will therefore be of great benefit in optimizing crystallization success in microgravity. In ground based research with the protein lysozyme we have previously shown that a population of crystals grown under the same solution conditions, exhibit a variation in X-ray diffraction properties (Judge et al., 1999). We have also observed that under the same solution conditions, individual crystals will grow at slightly different growth rates. This phenomenon is called growth rate dispersion. For small molecule materials growth rate dispersion has been directly related to crystal quality (Cunningham et al., 1991; Ristic et al., 1991). We therefore postulate that microgravity may act to improve crystal quality by reducing growth rate dispersion. If this is the case then as different, Materials exhibit different degrees of growth rate dispersion on the ground then growth rate dispersion could be used to screen which materials may benefit the most from microgravity crystallization. In order to assess this theory the Delta L hardware is being developed so that macromolecule crystal growth rates can be measured in microgravity. Crystal growth rate is defined as the change or delta in crystal size (defined as a characteristic length, L) over time; hence the name of the hardware. Delta L will consist of an optics, a fluids, and a data acquisition sub-assemblies. The optics assembly will consist of a video microscope camera mounted on three axis computer controlled translation stages. The fluids assembly consists of macromolecule and precipitant reservoirs, a temperature controlled growth cell and waste container, The data acquisition is achieved by using a frame-gabber, with images being stored on a hard drive. In operation, macromolecule and precipitant solution will be injected into the temperature controlled growth cell. As macromolecule crystals grow, the video microscope camera controlled by the translation stages, will be used to locate and record images of individual crystals, returning to the same crystals at specific time intervals. The images will be stored on the hard drive and used to calculate the crystal growth rate. To prevent vibrations interfering in the crystal growth rate measurements (Snell et al., 1997) Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS).
Strongly Phase-Segregating Block Copolymers with Sub-20 nm Features
2013-07-19
PERSON 19b. TELEPHONE NUMBER Francis Doyle Kristian Kempe, Kato L. Killops, Justin E. Poelma, Hyunjung Jung, Joona Bang, Richard Hoogenboom , Helen...Hyunjung Jung,# Joona Bang,# Richard Hoogenboom ,▽ Helen Tran,○ Craig J. Hawker,*,∥,¶ Ulrich S. Schubert,*,†,‡,◆ and Luis M. Campos*,○ †Laboratory of Organic...Macromolecules 2011, 44, 5825. (30) Wiesbrock, F.; Hoogenboom , R.; Leenen, M. A. M.; Meier, M. A. R.; Schubert, U. S. Macromolecules 2005, 38, 5025
2015-01-15
isoprene determined by 1H NMR of each copolymer. Hydration Macromolecules Article DOI: 10.1021/ma502362a Macromolecules XXXX, XXX, XXX−XXX B number (λ) is...C. This is attributed to the decomposition of the TMA groups. Slight weight loss at lower temperatures is presumably due to the loss of trapped water...that at sufficiently high hydration levels the diffusion coefficient of ions approach their dilute solution diffusivity limits.30 Since conductivity is
Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.
2017-01-01
Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596
NASA Astrophysics Data System (ADS)
Tarhan, Mehmet C.; Lafitte, Nicolas; Tauran, Yannick; Jalabert, Laurent; Kumemura, Momoko; Perret, Grégoire; Kim, Beomjoon; Coleman, Anthony W.; Fujita, Hiroyuki; Collard, Dominique
2016-06-01
Monitoring biological reactions using the mechanical response of macromolecules is an alternative approach to immunoassays for providing real-time information about the underlying molecular mechanisms. Although force spectroscopy techniques, e.g. AFM and optical tweezers, perform precise molecular measurements at the single molecule level, sophisticated operation prevent their intensive use for systematic biosensing. Exploiting the biomechanical assay concept, we used micro-electro mechanical systems (MEMS) to develop a rapid platform for monitoring bio/chemical interactions of bio macromolecules, e.g. DNA, using their mechanical properties. The MEMS device provided real-time monitoring of reaction dynamics without any surface or molecular modifications. A microfluidic device with a side opening was fabricated for the optimal performance of the MEMS device to operate at the air-liquid interface for performing bioassays in liquid while actuating/sensing in air. The minimal immersion of the MEMS device in the channel provided long-term measurement stability (>10 h). Importantly, the method allowed monitoring effects of multiple solutions on the same macromolecule bundle (demonstrated with DNA bundles) without compromising the reproducibility. We monitored two different types of effects on the mechanical responses of DNA bundles (stiffness and viscous losses) exposed to pH changes (2.1 to 4.8) and different Ag+ concentrations (1 μM to 0.1 M).
A natural and readily available crowding agent: NMR studies of proteins in hen egg white.
Martorell, Gabriel; Adrover, Miquel; Kelly, Geoff; Temussi, Piero Andrea; Pastore, Annalisa
2011-05-01
In vitro studies of biological macromolecules are usually performed in dilute, buffered solutions containing one or just a few different biological macromolecules. Under these conditions, the interactions among molecules are diffusion limited. On the contrary, in living systems, macromolecules of a given type are surrounded by many others, at very high total concentrations. In the last few years, there has been an increasing effort to study biological macromolecules directly in natural crowded environments, as in intact bacterial cells or by mimicking natural crowding by adding proteins, polysaccharides, or even synthetic polymers. Here, we propose the use of hen egg white (HEW) as a simple natural medium, with all features of the media of crowded cells, that could be used by any researcher without difficulty and inexpensively. We present a study of the stability and dynamics behavior of model proteins in HEW, chosen as a prototypical, readily accessible natural medium that can mimic cytosol. We show that two typical globular proteins, dissolved in HEW, give NMR spectra very similar to those obtained in dilute buffers, although dynamic parameters are clearly affected by the crowded medium. The thermal stability of one of these proteins, measured in a range comprising both heat and cold denaturation, is also similar to that in buffer. Our data open new possibilities to the study of proteins in natural crowded media. Copyright © 2010 Wiley-Liss, Inc.
Vasoactive intestinal peptide stimulates tracheal submucosal gland secretion in ferret
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peatfield, A.C.; Barnes, P.J.; Bratcher, C.
1983-07-01
We studied the effect of vasoactive intestinal peptide (VIP) on the output of 35S-labeled macromolecules from ferret tracheal explants either placed in beakers or suspended in modified Ussing chambers. In Ussing chamber experiments, the radiolabel precursor, sodium (35S)sulfate, and all drugs were placed on the submucosal side of the tissue. Washings were collected at 30-min intervals from the luminal side and were dialyzed to remove unbound 35S, leaving radiolabeled macromolecules. Vasoactive intestinal peptide at 3 X 10(-7) M stimulated bound 35S output by a mean of + 252.6% (n . 14). The VIP response was dose-dependent with a near maximalmore » response and a half maximal response at approximately 10(-6) M and 10(-8), M, respectively. The VIP effect was not inhibited by a mixture of tetrodotoxin, atropine, I-propranolol, and phentolamine. Vasoactive intestinal peptide had no effect on the electrical properties of the of the tissues. We conclude that VIP stimulates output of sulfated-macromolecules from ferret tracheal submucosal glands without stimulating ion transport. Our studies also suggest that VIP acts on submucosal glands via specific VIP receptors. Vasoactive intestinal peptide has been shown to increase intracellular levels of cyclic AMP, and we suggest that this may be the mechanism for its effect on the output of macromolecules. This mechanism may be important in the neural regulation of submucosal gland secretion.« less
REGULATION OF COAL POLYMER DEGRADATION BY FUNGI
DOE Office of Scientific and Technical Information (OSTI.GOV)
John A. Bumpus
1998-11-30
A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures.more » Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate substantial solubilization of leonardite at physiological pH values. Lastly, we present evidence that some fungi appear to possess coal solubilization ability in which the initial events of solubilization is not mediated by oxalate ion.« less
NASA Technical Reports Server (NTRS)
Borgstahl, Gloria (Inventor); Lovelace, Jeff (Inventor); Snell, Edward Holmes (Inventor); Bellamy, Henry (Inventor)
2008-01-01
The present invention provides a digital topography imaging system for determining the crystalline structure of a biological macromolecule, wherein the system employs a charge coupled device (CCD) camera with antiblooming circuitry to directly convert x-ray signals to electrical signals without the use of phosphor and measures reflection profiles from the x-ray emitting source after x-rays are passed through a sample. Methods for using said system are also provided.
Basal-body-associated macromolecules: a continuing debate.
Pierre Mignot, J; Brugerolle, G; Didier, P; Bornens, M
1993-07-01
Controversy over the possibility that centrioles/basal bodies contain nucleic acids has overshadowed results demonstrating other macromolecules in the lumen of these organelles. Glycogen particles, which are known to be present within the lumen of the centriole/basal body of sperm cells, have now been found in basal bodies of protists belonging to three different groups. Here, we extend the debate on a role for RNA in basal body/centriole function and speculate on the origin and the function of centriolar glycogen.
Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors
Stern, Eric; Wagner, Robin; Sigworth, Fred J.; Breaker, Ronald; Fahmy, Tarek M.; Reed, Mark A.
2009-01-01
Nanowire field effect transistors (NW-FETs) can serve as ultrasensitive detectors for label-free reagents. The NW-FET sensing mechanism assumes a controlled modification in the local channel electric field created by the binding of charged molecules to the nanowire surface. Careful control of the solution Debye length is critical for unambiguous selective detection of macromolecules. Here we show the appropriate conditions under which the selective binding of macromolecules is accurately sensed with NW-FET sensors. PMID:17914853
Importance of the Debye screening length on nanowire field effect transistor sensors.
Stern, Eric; Wagner, Robin; Sigworth, Fred J; Breaker, Ronald; Fahmy, Tarek M; Reed, Mark A
2007-11-01
Nanowire field effect transistors (NW-FETs) can serve as ultrasensitive detectors for label-free reagents. The NW-FET sensing mechanism assumes a controlled modification in the local channel electric field created by the binding of charged molecules to the nanowire surface. Careful control of the solution Debye length is critical for unambiguous selective detection of macromolecules. Here we show the appropriate conditions under which the selective binding of macromolecules is accurately sensed with NW-FET sensors.
Growing Hyperbranched Polymers Using Natural Sunlight
Yan, Jun-Jie; Sun, Jiao-Tong; You, Ye-Zi; Wu, De-Cheng; Hong, Chun-Yan
2013-01-01
In nature, a sapling can grow into a big tree under irradiation of sunlight. In chemistry, a similar concept that a small molecule only exposing to sunlight grows into a hyperbranched macromolecule has not been realized by now. The achievement of the concept will be fascinating and valuable for polymer synthesis wherein sunlight is inexpensive, abundant, renewable, and nonpolluting. Herein, we report a new strategy in which small monomers can directly grow into big hyperbranched macromolecule under irradiation of sunlight without any catalyst. PMID:24100948
Self-assembly in densely grafted macromolecules with amphiphilic monomer units: diagram of states.
Lazutin, A A; Vasilevskaya, V V; Khokhlov, A R
2017-11-22
By means of computer modelling, the self-organization of dense planar brushes of macromolecules with amphiphilic monomer units was addressed and their state diagram was constructed. The diagram of states includes the following regions: disordered position of monomer units with respect to each other, strands composed of a few polymer chains and lamellae with different domain spacing. The transformation of lamellae structures with different domain spacing occurred within the intermediate region and could proceed through the formation of so-called parking garage structures. The parking garage structure joins the lamellae with large (on the top of the brushes) and small (close to the grafted surface) domain spacing, which appears like a system of inclined locally parallel layers connected with each other by bridges. The parking garage structures were observed for incompatible A and B groups in selective solvents, which result in aggregation of the side B groups and dense packing of amphiphilic macromolecules in the restricted volume of the planar brushes.
Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules
Su, Jielong; Raghuwanshi, Vikram S.; Raverty, Warwick; Garvey, Christopher J.; Holden, Peter J.; Gillon, Marie; Holt, Stephen A.; Tabor, Rico; Batchelor, Warren; Garnier, Gil
2016-01-01
Novel thin and smooth deuterated cellulose films were synthesised to visualize adsorbed bio-macromolecules using contrast variation neutron reflectivity (NR) measurements. Incorporation of varying degrees of deuteration into cellulose was achieved by growing Gluconacetobacter xylinus in deuterated glycerol as carbon source dissolved in growth media containing D2O. The derivative of deuterated cellulose was prepared by trimethylsilylation(TMS) in ionic liquid(1-butyl-3-methylimidazolium chloride). The TMS derivative was dissolved in toluene for thin film preparation by spin-coating. The resulting film was regenerated into deuterated cellulose by exposure to acidic vapour. A common enzyme, horseradish peroxidase (HRP), was adsorbed from solution onto the deuterated cellulose films and visualized by NR. The scattering length density contrast of the deuterated cellulose enabled accurate visualization and quantification of the adsorbed HRP, which would have been impossible to achieve with non-deuterated cellulose. The procedure described enables preparing deuterated cellulose films that allows differentiation of cellulose and non-deuterated bio-macromolecules using NR. PMID:27796332
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2016-05-01
The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.
Burgener, Matthias; Putzeys, Tristan; Gashti, Mazeyar Parvinzadeh; Busch, Susanne; Aboulfadl, Hanane; Wübbenhorst, Michael; Kniep, Rüdiger; Hulliger, Jürg
2015-09-14
The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed. In natural hard tissues (teeth and bone investigated by SPEM) and the biomimetic FAp/gelatin composite, we find a surprising analogy in view of growth-induced states of polarity: The development of polarity in vivo and in vitro can be explained by a Markov-type mechanism of molecular recognition during the attachment of macromolecules.
The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1988-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
Hepp, Christof; Maier, Berenike
2017-10-01
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics
Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth
2016-01-01
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts. PMID:27124275
Small-Molecule-Based Self-Assembled Ligands for G-Quadruplex DNA Surface Recognition.
Rivera-Sánchez, María Del C; García-Arriaga, Marilyn; Hobley, Gerard; Morales-de-Echegaray, Ana V; Rivera, José M
2017-10-31
Most drugs are small molecules because of their attractive pharmacokinetics, manageable development and manufacturing, and effective binding into the concave crevices of bio-macromolecules. Despite these features, they often fall short when it comes to effectively recognizing the surfaces of bio-macromolecules. One way to overcome the challenge of biomolecular surface recognition is to develop small molecules that become self-assembled ligands (SALs) prior to binding. Herein, we report SALs made from 8-aryl-2'-deoxyguanosine derivatives forming precise hydrophilic supramolecular G-quadruplexes (SGQs) with excellent size, shape, and charge complementarity to G-quadruplex DNA (QDNA). We show that only those compounds forming SGQs act as SALs, which in turn differentially stabilize QDNAs from selected oncogene promoters and the human telomeric regions. Fluorescence resonance energy-transfer melting assays are consistent with spectroscopic, calorimetric, and light scattering studies, showing the formation of a "sandwichlike" complex QDNA·SGQ·QDNA. These results open the door for the advent of SALs that recognize QDNAs and potentially the surfaces of other bio-macromolecules such as proteins.
Poitevin, Frédéric; Orland, Henri; Doniach, Sebastian; Koehl, Patrice; Delarue, Marc
2011-07-01
Small Angle X-ray Scattering (SAXS) techniques are becoming more and more useful for structural biologists and biochemists, thanks to better access to dedicated synchrotron beamlines, better detectors and the relative easiness of sample preparation. The ability to compute the theoretical SAXS profile of a given structural model, and to compare this profile with the measured scattering intensity, yields crucial structural informations about the macromolecule under study and/or its complexes in solution. An important contribution to the profile, besides the macromolecule itself and its solvent-excluded volume, is the excess density due to the hydration layer. AquaSAXS takes advantage of recently developed methods, such as AquaSol, that give the equilibrium solvent density map around macromolecules, to compute an accurate SAXS/WAXS profile of a given structure and to compare it to the experimental one. Here, we describe the interface architecture and capabilities of the AquaSAXS web server (http://lorentz.dynstr.pasteur.fr/aquasaxs.php).
NASA Technical Reports Server (NTRS)
Eugenbrode, J.; Glavin, D.; Dworkin, J.; Conrad, P.; Mahaffy, P.
2011-01-01
Organic chemicals, when present in extraterrestrial samples, afford precious insight into past and modern conditions elsewhere in the Solar System . No single technology identifies all molecular components because naturally occurring molecules have different chemistries (e.g., polar vs. non-polar, low to high molecular weight) and interface with the ambient sample chemistry in a variety of modes (i.e., organics may be bonded, absorbed or trapped by minerals, liquids, gases, or other organics). More than 90% of organic matter in most natural samples on Earth and in meteorites is composed of complex macromolecules (e.g. biopolymers, complex biomolecules, humic substances, kerogen) because the processes that tend to break down organic molecules also tend towards complexation of the more recalcitrant components. Thus, methodologies that tap the molecular information contained within macromolecules may be critical to detecting extraterrestrial organic matter and assessing the sources and processes influencing its nature.
Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.
Maximova, Tatiana; Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda
2016-04-01
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Determining the bacterial cell biology of Planctomycetes.
Boedeker, Christian; Schüler, Margarete; Reintjes, Greta; Jeske, Olga; van Teeseling, Muriel C F; Jogler, Mareike; Rast, Patrick; Borchert, Daniela; Devos, Damien P; Kucklick, Martin; Schaffer, Miroslava; Kolter, Roberto; van Niftrik, Laura; Engelmann, Susanne; Amann, Rudolf; Rohde, Manfred; Engelhardt, Harald; Jogler, Christian
2017-04-10
Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we develop methods for expression of fluorescent proteins and for gene deletion in a model planctomycete, Planctopirus limnophila, to analyse its cell organization in detail. Super-resolution light microscopy of mutants, cryo-electron tomography, bioinformatic predictions and proteomic analyses support an altered Gram-negative cell plan for Planctomycetes, including a defined outer membrane, a periplasmic space that can be greatly enlarged and convoluted, and an energized cytoplasmic membrane. These conclusions are further supported by experiments performed with two other Planctomycetes, Gemmata obscuriglobus and Rhodopirellula baltica. We also provide experimental evidence that is inconsistent with endocytosis-like macromolecule uptake; instead, extracellular macromolecules can be taken up and accumulate in the periplasmic space through unclear mechanisms.
NASA Astrophysics Data System (ADS)
Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier
2018-04-01
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes – often drugs or pollutants – that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/ molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Validating metal binding sites in macromolecule structures using the CheckMyMetal web server
Zheng, Heping; Chordia, Mahendra D.; Cooper, David R.; Chruszcz, Maksymilian; Müller, Peter; Sheldrick, George M.
2015-01-01
Metals play vital roles in both the mechanism and architecture of biological macromolecules. Yet structures of metal-containing macromolecules where metals are misidentified and/or suboptimally modeled are abundant in the Protein Data Bank (PDB). This shows the need for a diagnostic tool to identify and correct such modeling problems with metal binding environments. The "CheckMyMetal" (CMM) web server (http://csgid.org/csgid/metal_sites/) is a sophisticated, user-friendly web-based method to evaluate metal binding sites in macromolecular structures in respect to 7350 metal binding sites observed in a benchmark dataset of 2304 high resolution crystal structures. The protocol outlines how the CMM server can be used to detect geometric and other irregularities in the structures of metal binding sites and alert researchers to potential errors in metal assignment. The protocol also gives practical guidelines for correcting problematic sites by modifying the metal binding environment and/or redefining metal identity in the PDB file. Several examples where this has led to meaningful results are described in the anticipated results section. CMM was designed for a broad audience—biomedical researchers studying metal-containing proteins and nucleic acids—but is equally well suited for structural biologists to validate new structures during modeling or refinement. The CMM server takes the coordinates of a metal-containing macromolecule structure in the PDB format as input and responds within a few seconds for a typical protein structure modeled with a few hundred amino acids. PMID:24356774
Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Baaijens, Frank P T; Oomens, Cees W J
2015-10-01
Delivering a drug into and through the skin is of interest as the skin can act as an alternative drug administration route for oral delivery. The development of new delivery methods, such as microneedles, makes it possible to not only deliver small molecules into the skin, which are able to pass the outer layer of the skin in therapeutic amounts, but also macromolecules. To provide insight into the administration of these molecules into the skin, the aim of this study was to assess the transport of macromolecules within and between its various layers. The diffusion coefficients in the epidermis and several locations in the papillary and reticular dermis were determined for fluorescein dextran of 40 and 500 kDa using a combination of fluorescent recovery after photobleaching experiments and finite element analysis. The diffusion coefficient was significantly higher for 40 kDa than 500 kDa dextran, with median values of 23 and 9 µm(2)/s in the dermis, respectively. The values only marginally varied within and between papillary and reticular dermis. For the 40 kDa dextran, the diffusion coefficient in the epidermis was twice as low as in the dermis layers. The adopted method may be used for other macromolecules, which are of interest for dermal and transdermal drug delivery. The knowledge about diffusion in the skin is useful to optimize (trans)dermal drug delivery systems to target specific layers or cells in the human skin. Copyright © 2015 Elsevier Ltd. All rights reserved.
New mechanisms of macroion-induced disintegration of charged droplets
NASA Astrophysics Data System (ADS)
Consta, Styliani; Oh, Myong In; Malevanets, Anatoly
2016-10-01
Molecular modeling has revealed that the presence of charged macromolecules (macroions) in liquid droplets dramatically changes the pathways of droplet fission. These mechanisms are not captured by the traditional theories such as ion-evaporation and charge-residue models. We review the general mechanisms by which macroions emerge from droplets and the factors that determine the droplet fission. These mechanisms include counter-intuitive ;star; droplet formations and extrusion of linear macroions from droplets. These findings may play a direct role in determining macromolecule charge states in electrospray mass spectrometry experiments.
NASA Technical Reports Server (NTRS)
Max, S. R.; Markelonis, G. J.
1983-01-01
Cholinergic innervation regulates the physiological and biochemical properties of skeletal muscle. The mechanisms that appear to be involved in this regulation include soluble, neurally-derived polypeptides, transmitter-evoked muscle activity and the neurotransmitter, acetylcholine, itself. Despite extensive research, the interacting neural mechanisms that control such macromolecules as acetylcholinesterase, the acetylcholine receptor and glucose 6-phosphate dehydrogenase remain unclear. It may be that more simplified in vitro model systems coupled with recent dramatic advances in the molecular biology of neurally-regulated proteins will begin to allow researchers to unravel the mechanisms controlling the expression and maintenance of these macromolecules.
Peptide-directed self-assembly of hydrogels
Kopeček, Jindřich; Yang, Jiyuan
2009-01-01
This review focuses on the self-assembly of macromolecules mediated by the biorecognition of peptide/protein domains. Structures forming α-helices and β-sheets have been used to mediate self-assembly into hydrogels of peptides, reactive copolymers and peptide motifs, block copolymers, and graft copolymers. Structural factors governing the self-assembly of these molecules into precisely defined three-dimensional structures (hydrogels) are reviewed. The incorporation of peptide motifs into hybrid systems, composed of synthetic and natural macromolecules, enhances design opportunities for new biomaterials when compared to individual components. PMID:18952513
Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering.
Tria, Giancarlo; Mertens, Haydyn D T; Kachala, Michael; Svergun, Dmitri I
2015-03-01
Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of 'unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernadó et al. (2007 ▶). J. Am. Chem. Soc. 129, 5656-5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
Regulation of Coal Polymer Degradation by Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
During this reporting period we have further studied the oxidation of soluble coal macromolecules by lignin peroxidase from Phanerochaete chrysosporium . Previous studies by others have suggested that a soluble fraction (coal macromolecule B-111) from a nitric acid solubilized North Dakota Lignite is depolymerized by this enzyme. Our investigations indicate that fraction B-111 is a substrate for lignin peroxidase as this material is decolorized in the presence of lignin peroxidase H8 and hydrogen peroxide. Of interest, however, is the observation that little, if any, depolymerization of this material occurs. Instead, it appears that lignin peroxidase and coal macromolecule B-111 formmore » a precipitate. These results are similar to those observed in our investigations of lignin peroxidase mediated oxidation of oxalate solubilize coal macromolecule. Previous studies in our laboratory using a spectrophotometric assay suggested that, in addition to oxalate, several other fungal metabolites are able to solubilize leonardite. We have reinvestigated this phenomenon using a more reliable gravimetric procedure for assessing solubilization. Our results confirm our earlier findings that malate, oxaloacetate and citrate are effective solubilizing agents whereas succinate, fumarate and x-ketoglutarate solubilize relatively small amounts of leonardite. Finally, we have studied the composition of the insoluble material remaining following extensive solubilization by sodium oxalate. The ratio of hydrogen to carbon is increased in the insoluble material relative to the parent leonardite. However, the ratio of oxygen to carbon is also increased in the insoluble material. Thus, the insoluble material does not appear to be more highly reduced that the parent leonardite and is not likely to be a better fuel that the parent material.« less
NASA Technical Reports Server (NTRS)
Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.
2001-01-01
The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.
Controlled method of reducing electrophoretic mobility of various substances
NASA Technical Reports Server (NTRS)
Vanalstine, James M. (Inventor)
1989-01-01
A method of reducing electrophoretic mobility of macromolecules, particles, cells, and the like is provided. The method comprises interacting the particles or cells with a polymer-linked affinity compound composed of: a hydrophilic neutral polymer such as polyethylene glycol, and an affinity component consisting of a hydrophobic compound such as a fatty acid ester, an immunocompound such as an antibody or active fragment thereof or simular macromolecule, or other ligands. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and the mobility reduction obtainable is up to 100 percent for particular particles and cells. The present invention is advantageous in that analytical electrophoretic separation can not be achieved for macromolecules, particles, and cells whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions. The present method is also advantageous in that it can be used in a variety of standard laboratory electrophoresis equipment.
NUTS and BOLTS: Applications of Fluorescence Detected Sedimentation
Kroe, Rachel R.; Laue, Thomas M.
2008-01-01
Analytical ultracentrifugation is a widely used method for characterizing the solution behavior of macromolecules. However, the two commonly used detectors (absorbance and interference) impose some fundamental restrictions on the concentrations and complexity of the solutions that can be analyzed. The recent addition of a fluorescence detector for the XL-I analytical ultracentrifuge (AU-FDS) enables two different types of sedimentation experiments. First, the AU-FDS can detect picomolar concentrations of labeled solutes allowing the characterization of very dilute solutions of macromolecules, applications we call Normal Use Tracer Sedimentation (NUTS). The great sensitivity of NUTS analysis allows the characterization of small quantities of materials and high affinity interactions. Second, AU-FDS allows characterization of trace quantities of labeled molecules in solutions containing high concentrations and complex mixtures of unlabeled molecules, applications we call Biological On Line Tracer Sedimentation (BOLTS). The discrimination of BOLTS enables the size distribution of a labeled macromolecule to be determined in biological milieu such as cell lysates and serum. Examples are presented that embody features of both NUTS and BOLTS applications, along with our observations on these applications. PMID:19103145
NASA Astrophysics Data System (ADS)
Rai, Brajesh; Prohofsky, Earl
2003-03-01
Dynamics of functionally active regions of biological macromolecules can be studied using a Green-function technique. This approach uses the fact that in most cases one has a good set of force constants for active sites, and rather poorly defined force field parameters for other regions of the macromolecule. The Green-function method is applied to study the iron vibrational modes of the heme active site in myoglobin. In this approach, the heme active site is viewed as a system interacting with surrounding globin, which acts as an excitation bath. The normal modes of heme and globin are separately calculated using the best available force fields for the two entities. The iron vibrational spectrum of myoglobin is then obtained using the solutions of the heme and globin, and by considering physically meaningful interactions between the two units. The refinement of the Green-function calculations to the experimental data from an x-ray synchrotron-based Nuclear Resonance Vibrational Spectroscopy provides important insights into the character of iron normal modes of myoglobin.
Qu, Yuangang; Zhang, Shuai; Lian, Yuji; Kuang, Tingyun
2017-03-01
Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.
The renal excretion and retention of macromolecules: The chemical structure effect.
Rypácek, F; Drobník, J; Chmelar, V; Kálal, J
1982-01-01
Five derivatives of polyaspartamide were used as macromolecular models to study the effect of chemical structure of macromolecules on their renal excretion and retention. The parent polymer was formed solely by N(2-hydroxyethyl)aspartamide units (I) and in its derivatives about 20% of 2-hydroxyethyl groups were randomly replaced by either n-butyl- (II), 2(4-hydroxyphenyl)ethyl- (III, N- dimethylamino propyl- (IV) or the aspartamide unit was modified to free aspartic acid carboxyl (V). The rate of clearance from the serum, the deposition in the kidney tissue in comparison with the deposition in reticuloendothelial system organs-liver and spleen, as well as tissue and cellular localisation of deposits were studied on rabbits and mice taking advantage of fluorescence labelling. The clearance of macromolecular models from the serum compartment by the glomerular filtration is mainly molecular weight controlled, while the retention of macromolecules possessing the same molecular weight by the kidney tubular epithelium is strongly affected chemical modification. About thirty and hundred times higher retentions due to reabsorption in proximal tubule were found with macromolecular models II and III respectively.
Analysis of diffusion and binding in cells using the RICS approach.
Digman, Michelle A; Gratton, Enrico
2009-04-01
The movement of macromolecules in cells is assumed to occur either through active transport or by diffusion. However, the determination of the diffusion coefficients in cells using fluctuation methods or FRAP frequently give diffusion coefficient that are orders of magnitude smaller than the diffusion coefficients measured for the same macromolecule in solution. It is assumed that the cell internal viscosity is partially responsible for this decrease in the apparent diffusion. When the apparent diffusion is too slow to be due to cytoplasm viscosity, it is assumed that weak binding of the macromolecules to immobile or quasi immobile structures is taking place. In this article, we derive equations for fitting of the RICS (Raster-scan Image Correlations Spectroscopy) data in cells to a model that includes transient binding to immobile structures, and we show that under some conditions, the spatio-temporal correlation provided by the RICS approach can distinguish the process of diffusion and weak binding. We apply the method to determine the diffusion in the cytoplasm and binding of Focal Adhesion Kinase-EGFP to adhesions in MEF cells.
Oxygen-Free Biochemistry: The Putative CHN Foundation for Exotic Life in a Hydrocarbon World?
NASA Astrophysics Data System (ADS)
Lv, Kong-Peng; Norman, Lucy; Li, Yi-Liang
2017-11-01
Since Earth's biochemistry is carbon-based and water-borne, the main strategies for searching for life elsewhere are "follow the carbon" and "follow the water." Recently, however, there is a growing focus on the prospect that putative exotic life on other planets could rely on unearthly biochemistries. Here, we hypothesize a novel oxygen-free organic chemistry for supporting potential exotic biosystems, which is named CHN biochemistry. This oxygen-free CHN biochemistry starts from simple oxygen-free species (including hydrocarbons, hydrogen cyanide, and nitriles) and produces a range of functional macromolecules that may function in similar ways to terran macromolecules, such as sugars (cyanosugars), acids (cyanoacids), amino acids (amino cyanoacids), and nucleobases (cyanonucleobases). These CHN macromolecules could further interact with each other to generate higher "cyanoester" and "cyanoprotein" systems. In addition, theoretical calculations indicate that the energy changes of some reactions are consistent with their counterparts in Earth's biochemistry. The CHN biochemistry-based life would be applicable in habitats with a low bioavailability of oxygen, such as the alkane lakes of Titan and non-aquatic liquids on extrasolar bodies.
Kundu, Achintya; Verma, Pramod Kumar; Cho, Minhaeng
2018-02-15
Osmolytes found endogenously in almost all living beings play an important role in regulating cell volume under harsh environment. Here, to address the longstanding questions about the underlying mechanism of osmolyte effects, we use femtosecond mid-IR pump-probe spectroscopy with two different IR probes that are the OD stretching mode of HDO and the azido stretching mode of azido-derivatized poly(ethylene glycol) dimethyl ether (PEGDME). Our experimental results show that protecting osmolytes bind strongly with water molecules and dehydrate polymer surface, which results in promoting intramolecular interactions of the polymer. By contrast, urea behaves like water molecules without significantly disrupting water H-bonding network and favors extended and random-coil segments of the polymer chain by directly participating in solvation of the polymer. Our findings highlight the importance of direct interaction between urea and macromolecule, while protecting osmolytes indirectly affect the macromolecule through enhancing the water-osmolyte interaction in a crowded environment, which is the case that is often encountered in real biological systems.
Chirikjian; Wang
2000-07-01
Partial differential equations (PDE's) for the probability density function (PDF) of the position and orientation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-Siggia models are examples of stiffness models to which the present formulation is applied. The solution technique uses harmonic analysis on the rotation and motion groups to convert PDE's governing the PDF's of interest into linear algebraic equations which have mathematically elegant solutions.
The immersion freezing behavior of mixtures of mineral dust and biological substances
NASA Astrophysics Data System (ADS)
Augustin, Stefanie; Schneider, Johannes; Schmidt, Susan; Niedermeier, Dennis; Ebert, Martin; Voigtländer, Jens; Rösch, Michael; Stratmann, Frank; Wex, Heike
2014-05-01
Biological particles such as bacteria or pollen are known to be efficient ice nuclei. It is also known that ice nucleating active (INA) macromolecules, i.e. protein complexes in the case of bacteria (e.g. Wolber et al., 1986), and most likely polysaccharides in the case of pollen (Pummer et al., 2012) are responsible for the freezing. Very recently it was suggested that these INA macromolecules maintain their nucleating ability even when they are separated from their original carriers (Hartmann et al., 2013; Augustin et al., 2013). This opens the possibility of accumulation of such INA macromolecules in e.g. soils and the resulting particles could be an internal mixture of mineral dust and INA macromolecules. If such biological IN containing soil particles are then dispersed into the atmosphere due to e.g. wind erosion or agricultural processes they could induce ice nucleation at temperatures higher than -20°C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INA macromolecules. Specifically, we mixed pure mineral dust (illite) with INA biological material (SNOMAX and birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the produced aerosol we used single mass spectrometry as well as electron microscopy. We found that internally mixed particles which containing ice active biological material show the same ice nucleation behavior as the purely biological particles. That shows that INA macromolecules which are located on a mineral dust particle dominate the freezing process. Acknowledgement: Part of this work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. Augustin, S., Hartmann, S., Pummer, B., Grothe, H., Niedermeier, D., Clauss, T., Voigtländer, J., Tomsche, L, Wex, H. and Stratmann, F., Atmos. Chem. Phys. Discuss., 13, 10989-11003, 2013. Hartmann, S., Augustin, S.,D. Niedermeier, J. Voigtlander, T. Clauss, H. Wex, and F. Stratmann, Atmos. Chem. Physics , 13, 5751-5766, 2013. Hoose, C., Kristjansson, J. E., Burrows, S. M., Environ. Res. Lett. 5, 024009, 2010. Kanitz, T., Seifert, P., Ansmann, A., Engelmann, R., Althausen, D., Casiccia, C., and Rohwer, E. G., Geophys. Res. Lett., 38, L17802, 2011. Murray, B. J., OSullivan, D., Atkinson, J. D. and Webb, M. E., Chem. Soc. Rev., 41, 6519-6554, 2012. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S. and Grothe, H, Atmos. Chem. Phys., 12, 2541-2550, 2012. Wolber, P. K., Deininger, C. A., Southworth, M. W., Vandekerckhove, J., Vanmontagu, M. and Warren, G. J, Proc. Natl. Acad. Sci. USA, 83, 7256- 7260, 1986
Cabra, Vanessa; Samsó, Montserrat
2015-01-09
Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level.
Porosity of porcine bladder acellular matrix: impact of ACM thickness.
Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman
2003-12-01
The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003
Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.)
2011-01-01
Background Members of the legume genus Lupinus exude phloem 'spontaneously' from incisions made to the vasculature. This feature was exploited to document macromolecules present in exudate of white lupin (Lupinus albus [L.] cv Kiev mutant), in particular to identify proteins and RNA molecules, including microRNA (miRNA). Results Proteomic analysis tentatively identified 86 proteins from 130 spots collected from 2D gels analysed by partial amino acid sequence determination using MS/MS. Analysis of a cDNA library constructed from exudate identified 609 unique transcripts. Both proteins and transcripts were classified into functional groups. The largest group of proteins comprised those involved in metabolism (24%), followed by protein modification/turnover (9%), redox regulation (8%), cell structural components (6%), stress and defence response (6%) with fewer in other groups. More prominent proteins were cyclophilin, ubiquitin, a glycine-rich RNA-binding protein, a group of proteins that comprise a glutathione/ascorbate-based mechanism to scavenge oxygen radicals, enzymes of glycolysis and other metabolism including methionine and ethylene synthesis. Potential signalling macromolecules such as transcripts encoding proteins mediating calcium level and the Flowering locus T (FT) protein were also identified. From around 330 small RNA clones (18-25 nt) 12 were identified as probable miRNAs by homology with those from other species. miRNA composition of exudate varied with site of collection (e.g. upward versus downward translocation streams) and nutrition (e.g. phosphorus level). Conclusions This is the first inventory of macromolecule composition of phloem exudate from a species in the Fabaceae, providing a basis to identify systemic signalling macromolecules with potential roles in regulating development, growth and stress response of legumes. PMID:21342527
Chooi, K Yean; Comerford, Andrew; Cremers, Stephanie J; Weinberg, Peter D
2016-07-01
Transport of macromolecules between plasma and the arterial wall plays a key role in atherogenesis. Scattered hotspots of elevated endothelial permeability to macromolecules occur in the aorta; a fraction of them are associated with dividing cells. Hotspots occur particularly frequently downstream of branch points, where lesions develop in young rabbits and children. However, the pattern of lesions varies with age, and can be explained by similar variation in the pattern of macromolecule uptake. We investigated whether patterns of hotspots and mitosis also change with age. Evans' Blue dye-labeled albumin was injected intravenously into immature or mature rabbits and its subsequent distribution in the aortic wall around intercostal branch ostia examined by confocal microscopy and automated image analysis. Mitosis was detected by immunofluorescence after adding 5-bromo-2-deoxiuridine to drinking water. Hotspots were most frequent downstream of branches in immature rabbits, but a novel distribution was observed in mature rabbits. Neither pattern was explained by mitosis. Hotspot uptake correlated spatially with the much greater non-hotspot uptake (p < 0.05), and the same pattern was seen when only the largest hotspots were considered. The pattern of hotspots changes with age. The data are consistent with there being a continuum of local permeabilities rather than two distinct mechanisms. The distribution of the dye, which binds to elastin and collagen, was similar to that of non-binding tracers and to lesions apart from a paucity at the lateral margins of branches that can be explained by lower levels of fibrous proteins in those regions. Copyright © 2016. Published by Elsevier Ireland Ltd.
Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.
2014-12-01
Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.
Following isotopes in pulse-chase enriched aspen seedlings
NASA Astrophysics Data System (ADS)
Norris, C. E.; Wasylishen, R. E.; Landhäusser, S.; Quideau, S. A.
2011-12-01
One method to quantitatively trace biogeochemical fluxes through ecosystems, such as organic matter decomposition, is to use plant material enriched with stable isotopes. However, as plant macromolecules are known to vary in their rate of formation and decomposition, both the enrichment levels and the location of enrichment within the plant material should be characterized prior to decomposition and tracing studies. Aspen (Populus tremuloides Michx.) is a common tree species with a diverse organic matter chemical structure found in the western Canadian boreal forest. This study used a multi pulse and multi chase enrichment of stable isotopes (15N and 13C) on aspen seedlings to determine the seedling enrichment, isotope movement among plant tissues and translocation of isotopes within plant macromolecules e.g., carbohydrates and lignin. As expected, all tissues experienced increased enrichment with multiple pulses. An initial enrichment with 13C was observed in the leaves followed by translocation to the stems and roots while the 15N moved upward from the roots to leaves. The macromolecular chemistry of the organic carbon was further characterized using 13C solid state nuclear magnetic resonance spectroscopy. After the initial two hour chase period enrichment of the O-alkyl type (carbohydrate) carbon within the leaves was identified, followed by redistribution to more complex carbon compounds after the one week chase period. Root and stem tissues did not show the same pattern. Rather, changes in 13C enrichment were observed in shifting ethyl and methyl alkyl (lipid) carbon peak intensities for the stem samples while roots did not preferentially allocate 13C to a specific macromolecule. These results confirm that stable isotope enrichment of plants was non-uniform across macromolecules and tissue types. Enrichment of aspen seedlings was therefore dependant on the pulse-chase sequence used.
UTSI/CFFF MHD Program Completion and Related Activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvin, R.L.; Bumpus, J.A.
1997-10-31
During this reporting period we have further studied the oxidation of soluble coal macromolecules by lignin peroxidase from Phanerochaete chrysosporium. Previous studies by others have suggested that a soluble fraction (coal macromolecule B-111) from a nitric acid solubilized North Dakota Lignite is depolymerized by this enzyme. Our investigations indicate that fraction B-111 is a substrate for lignin peroxidase as this material is decolorized in the presence of lignin peroxidase H{sub 8} and hydrogen peroxide. Of interest, however, is the observation that little, if any, depolymerization of this material occurs. Instead, it appears that lignin peroxidase and coal macromolecule B-111 formmore » a precipitate. These results are similar to those observed in our investigations of lignin peroxidase mediated oxidation of oxalate solubilize coal macromolecule. Previous studies in our laboratory using a spectrophotometric assay suggested that, in addition to oxalate, several other fungal metabolites are able to solubilize leonardite. We have reinvestigated this phenomenon using a more reliable gravimetric procedure for assessing solubilization. Our results confirm our earlier findings that malate, oxaloacetate and citrate are effective solubilizing agents whereas succinate, fumarate and {alpha}-ketoglutarate solubilize relatively small amounts of leonardite. Finally, we have studied the composition of the insoluble material remaining following extensive solubilization by sodium oxalate. The ratio of hydrogen to carbon is increased in the insoluble material relative to the parent leonardite. However, the ratio of oxygen to carbon is also increased in the insoluble material. Thus, the insoluble material does not appear to be more highly reduced that the parent leonardite and is not likely to be a better fuel that the parent material.« less
Tandem catalysis: a new approach to polymers.
Robert, Carine; Thomas, Christophe M
2013-12-21
The creation of polymers by tandem catalysis represents an exciting frontier in materials science. Tandem catalysis is one of the strategies used by Nature for building macromolecules. Living organisms generally synthesize macromolecules by in vivo enzyme-catalyzed chain growth polymerization reactions using activated monomers that have been formed within cells during complex metabolic processes. However, these biological processes rely on highly complex biocatalysts, thus limiting their industrial applications. In order to obtain polymers by tandem catalysis, homogeneous and enzyme catalysts have played a leading role in the last two decades. In the following feature article, we will describe selected published efforts to achieve these research goals.
Protein associations and analytical ultracentrifugation
NASA Astrophysics Data System (ADS)
Laue, Tom
2010-03-01
Analytical ultracentrifugation (AUC) is a first principle method for characterizing the thermodynamics of macromolecules in solution. Since AUC directly assesses mass, it is particularly useful for characterizing both reversible and irreversible binding interactions between macromolecules. The principle measurement in AUC is the concentration as a function of radial position, which may be provided by either absorbance, interference or fluorescence detection. Each of these three different detectors may be used to characterize protein associations using either sedimentation equilibrium or sedimentation velocity analysis. Examples will be shown for characterizing irreversible (aggregate) formation, high-accuracy reversible association analysis, and the detection of protein interactions in complex and concentrated fluids (e.g. serum, cell cytosol).
Chiu, Michael H.; Prenner, Elmar J.
2011-01-01
Differential Scanning Calorimetry (DSC) is a highly sensitive technique to study the thermotropic properties of many different biological macromolecules and extracts. Since its early development, DSC has been applied to the pharmaceutical field with excipient studies and DNA drugs. In recent times, more attention has been applied to lipid-based drug delivery systems and drug interactions with biomimetic membranes. Highly reproducible phase transitions have been used to determine values, such as, the type of binding interaction, purity, stability, and release from a drug delivery mechanism. This review focuses on the use of DSC for biochemical and pharmaceutical applications. PMID:21430954
Massover, William H
2011-02-01
Resolution in transmission electron microscopy (TEM) now is limited by the properties of specimens, rather than by those of instrumentation. The long-standing difficulties in obtaining truly high-resolution structure from biological macromolecules with TEM demand the development, testing, and application of new ideas and unconventional approaches. This review concisely describes some new concepts and innovative methodologies for TEM that deal with unsolved problems in the preparation and preservation of macromolecular specimens. The selected topics include use of better support films, a more protective multi-component matrix surrounding specimens for cryo-TEM and negative staining, and, several quite different changes in microscopy and micrography that should decrease the effects of electron radiation damage; all these practical approaches are non-traditional, but have promise to advance resolution for specimens of biological macromolecules beyond its present level of 3-10 Å (0.3-1.0 nm). The result of achieving truly high resolution will be a fulfillment of the still unrealized potential of transmission electron microscopy for directly revealing the structure of biological macromolecules down to the atomic level. Published by Elsevier Ltd.
Modeling shape and topology of low-resolution density maps of biological macromolecules.
De-Alarcón, Pedro A; Pascual-Montano, Alberto; Gupta, Amarnath; Carazo, Jose M
2002-01-01
In the present work we develop an efficient way of representing the geometry and topology of volumetric datasets of biological structures from medium to low resolution, aiming at storing and querying them in a database framework. We make use of a new vector quantization algorithm to select the points within the macromolecule that best approximate the probability density function of the original volume data. Connectivity among points is obtained with the use of the alpha shapes theory. This novel data representation has a number of interesting characteristics, such as 1) it allows us to automatically segment and quantify a number of important structural features from low-resolution maps, such as cavities and channels, opening the possibility of querying large collections of maps on the basis of these quantitative structural features; 2) it provides a compact representation in terms of size; 3) it contains a subset of three-dimensional points that optimally quantify the densities of medium resolution data; and 4) a general model of the geometry and topology of the macromolecule (as opposite to a spatially unrelated bunch of voxels) is easily obtained by the use of the alpha shapes theory. PMID:12124252
Oxygen-Free Biochemistry: The Putative CHN Foundation for Exotic Life in a Hydrocarbon World?
Lv, Kong-Peng; Norman, Lucy; Li, Yi-Liang
2017-11-01
Since Earth's biochemistry is carbon-based and water-borne, the main strategies for searching for life elsewhere are "follow the carbon" and "follow the water." Recently, however, there is a growing focus on the prospect that putative exotic life on other planets could rely on unearthly biochemistries. Here, we hypothesize a novel oxygen-free organic chemistry for supporting potential exotic biosystems, which is named CHN biochemistry. This oxygen-free CHN biochemistry starts from simple oxygen-free species (including hydrocarbons, hydrogen cyanide, and nitriles) and produces a range of functional macromolecules that may function in similar ways to terran macromolecules, such as sugars (cyanosugars), acids (cyanoacids), amino acids (amino cyanoacids), and nucleobases (cyanonucleobases). These CHN macromolecules could further interact with each other to generate higher "cyanoester" and "cyanoprotein" systems. In addition, theoretical calculations indicate that the energy changes of some reactions are consistent with their counterparts in Earth's biochemistry. The CHN biochemistry-based life would be applicable in habitats with a low bioavailability of oxygen, such as the alkane lakes of Titan and non-aquatic liquids on extrasolar bodies. Key Words: Oxygen-free biochemistry-Titan-Hydrocarbons-Hydrogen cyanide-Nitriles. Astrobiology 17, 1173-1181.
Ye, Sang-Ho; Jang, Yong-Seok; Yun, Yeo-Heung; Shankarraman, Venkat; Woolley, Joshua R; Hong, Yi; Gamble, Lara J; Ishihara, Kazuhiko; Wagner, William R
2013-07-02
Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi- and SBSSi-modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys.
Lee, Mel S; Trindade, Michael C D; Ikenoue, Takashi; Schurman, David J; Goodman, Stuart B; Smith, R Lane
2003-02-01
To test the effects of intermittent hydrostatic pressure (IHP) on nitric oxide (NO) release induced by shear stress and matrix macromolecule gene expression in human osteoarthritic chondrocytes in vitro. Chondrocytes isolated from cartilage samples from 9 patients with osteoarthritis were cultured and exposed to either shear stress or an NO donor. Nitrite concentration was measured using the Griess reaction. Matrix macromolecule mRNA signal levels were determined using reverse-transcriptase polymerase chain reaction and quantified by imaging analysis software. Exposure to shear stress upregulated NO release in a dose and time-dependent manner. Application of IHP inhibited shear stress induced NO release but did not alter NO release from chondrocytes not exposed to shear stress. Shear stress induced NO or addition of an NO donor (sodium nitroprusside) was associated with decreased mRNA signal levels for the cartilage matrix proteins, aggrecan, and type II collagen. Intermittent hydrostatic pressure blocked the inhibitory effects of sodium nitroprusside but did not alter the inhibitory effects of shear stress on cartilage macromolecule gene expression. Our data show that shear stress and IHP differentially alter chondrocyte metabolism and suggest that a balance of effects between different loading forces preserve cartilage extracellular matrix in vivo.
Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols.
Hu, Bing; Liu, Xixia; Zhang, Chunlan; Zeng, Xiaoxiong
2017-01-01
Diet polyphenols-primarily categorized into flavonoids (e.g., flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones) and nonflavonoids (with major subclasses of stilbenes and phenolic acids)-are reported to have health-promoting effects, such as antioxidant, antiinflammatory, anticarcinoma, antimicrobial, antiviral, and cardioprotective properties. However, their applications in functional foods or medicine are limited because of their inefficient systemic delivery and poor oral bioavailability. Epigallocatechin-3-gallate, curcumin, and resveratrol are the well-known representatives of the bioactive diet polyphenols but with poor bioavailability. Food macromolecule based nanoparticles have been fabricated using reassembled proteins, crosslinked polysaccharides, protein-polysaccharide conjugates (complexes), as well as emulsified lipid via safe procedures that could be applied in food. The human gastrointestinal digestion tract is the first place where the food grade macromolecule nanoparticles exert their effects on improving the bioavailability of diet polyphenols, via enhancing their solubility, preventing their degradation in the intestinal environment, elevating the permeation in small intestine, and even increasing their contents in the bloodstream. We contend that the stability and structure behaviors of nanocarriers in the gastrointestinal tract environment and the effects of nanoencapsulation on the metabolism of polyphenols warrant more focused attention in further studies. Copyright © 2016. Published by Elsevier B.V.
Balajthy, Zoltan
2008-04-01
Macromolecule-bound Val-Leu-Lys-ara-C (1) prodrugs were synthesized with spacers (-HN-(CH(2))(x)-CO-; x =1,3,5) between the dextran carrier (T-70) and 1, in order to achieve a sustained-release drug delivery system dextran-NH-(CH(2))(x:1,3,5)-CO-Val-Leu-Lys-ara-C (5, 6 and 7). The conjugation increased the stability of 1 in aqueous buffer solutions by three times (t((1/2)) 53.0 h, pH 7.4). The length of spacer also regulated the rate of hydrolysis of the prodrugs in serum. The shortest spacer (-HN-(CH(2))-CO-, (2)) in 5 provided the best protection of 1 against the hydrolyzing ability of proteinase- alpha(2)-macroglobulin complexes, increasing its half-life approximately 30-fold. The conjugation procedure resulted in a growth arrest ability for macromolecular-bound prodrugs 5, 6 and 7 against L1210 with IC(50) of 0.01 microM in vitro, which is significantly lower than that of other ara-C-macromolecule conjugates. 5 and 6 arrested cell growth in a broader range of concentration, between 1 x 10(-5)-1.0 microM, than ara-C could.
Wen, Quan
2014-01-01
Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. PMID:25530633
NASA Astrophysics Data System (ADS)
Palombo, Francesca; Danoux, Charlène B.; Weinberg, Peter D.; Kazarian, Sergei G.
2009-07-01
Diffusion of two model drugs-benzyl nicotinate and ibuprofen-and the plasma macromolecule albumin across atherosclerotic rabbit aorta was studied ex vivo by attenuated total reflection-Fourier transform infrared (ATR-FTIR) imaging. Solutions of these molecules were applied to the endothelial surface of histological sections of the aortic wall that were sandwiched between two impermeable surfaces. An array of spectra, each corresponding to a specific location in the section, was obtained at various times during solute diffusion into the wall and revealed the distribution of the solutes within the tissue. Benzyl nicotinate in Ringer's solution showed higher affinity for atherosclerotic plaque than for apparently healthy tissue. Transmural concentration profiles for albumin demonstrated its permeation across the section and were consistent with a relatively low distribution volume for the macromolecule in the middle of the wall. The ability of albumin to act as a drug carrier for ibuprofen, otherwise undetected within the tissue, was demonstrated by multivariate subtraction image analysis. In conclusion, ATR-FTIR imaging can be used to study transport processes in tissue samples with high spatial and temporal resolution and without the need to label the solutes under study.
A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T.; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge
2015-01-01
The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease. PMID:26077718
A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.
Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge; Alitalo, Kari
2015-06-29
The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease. © 2015 Aspelund et al.
Illien, Bertrand; Ying, Ruifeng
2009-05-11
New static light scattering (SLS) equations for dilute binary solutions are derived. Contrarily to the usual SLS equations [Carr-Zimm (CZ)], the new equations have no need for the experimental absolute Rayleigh ratio of a reference liquid and solely rely on the ratio of scattered intensities of solutions and solvent. The new equations, which are based on polarizability equations, take into account the usual refractive index increment partial differential n/partial differential rho(2) complemented by the solvent specific polarizability and a term proportional to the slope of the solution density rho versus the solute mass concentration rho(2) (density increment). Then all the equations are applied to 21 (macro)molecules with a wide range of molar mass (0.2
Martin, C J; Allender, C J; Brain, K R; Morrissey, A; Birchall, J C
2012-02-28
Transdermal drug delivery is limited by the barrier properties of the outer skin layer. Microneedles (MNs) effectively circumvent the skin barrier to offer this route as a potential alternative to oral and parenteral delivery of therapeutics. Biodegradable microneedles offer particular advantages however processing commonly requires elevated temperatures that may adversely affect heat-labile molecules and macromolecules. In this study, solid amorphous sugar glasses containing low residual quantities of water were created by dehydration of trehalose and sucrose sugar combination solutions. Biodegradable sugar glass MNs were fabricated following optimisation of a simple and novel low temperature vacuum deposition micromoulding methodology. These had absolute morphological fidelity to silicon master structures and demonstrated sufficient structural rigidity to efficiently penetrate excised human breast skin. Sugar glass MNs incorporating a marker compound dissolved rapidly and completely in situ releasing dye into deeper skin layers. The biological activity of a model macromolecule was partially retained over extended storage following incorporation into sugar glass. This is the first demonstration that MNs created from amorphous sugar glasses can be used for incorporating and delivering molecules, and potentially biologically active macromolecules, via the transdermal route. Copyright © 2011 Elsevier B.V. All rights reserved.
Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel
NASA Astrophysics Data System (ADS)
Liu, Lei; Li, Pusheng; Asher, Sanford A.
1999-01-01
The separation of macromolecules such as polymers and DNA by means of electrophoresis, gel permeation chromatography or filtration exploits size-dependent differences in the time it takes for the molecules to migrate through a random porous network. Transport through the gel matrices, which usually consist of full swollen crosslinked polymers, depends on the relative size of the macromolecule compared with the pore radius. Sufficiently small molecules are thought to adopt an approximately spherical conformation when diffusing through the gel matrix, whereas larger ones are forced to migrate in a snake-like fashion. Molecules of intermediate size, however, can get temporarily trapped in the largest pores of the matrix, where the molecule can extend and thus maximize its conformational entropy. This `entropic trapping' is thought to increase the dependence of diffusion rate on molecular size. Here we report the direct experimental verification of this phenomenon. Bragg diffraction from a hydrogel containing a periodic array of monodisperse water voids confirms that polymers of different weights partition between the hydrogel matrix and the water voids according to the predictions of the entropic trapping theory. Our approach might also lead to the design of improved separation media based on entropic trapping.
Banerjee, Soma; Sarkar, Soumik; Lakshman, Karthik; Dutta, Joydeep; Pal, Samir Kumar
2013-04-11
Reactions involving electron transfer (ET) and reactive oxygen species (ROS) play a pivotal role in carcinogenesis and cancer biochemistry. Our present study emphasizes UVA radiation induced ET reaction as one of the key aspects of a potential carcinogen, benzo[a]pyrene (BP), in the presence of a wide variety of molecules covering organic p-benzoquinone (BQ), biological macromolecules like calf-thymus DNA (CT-DNA), human serum albumin (HSA) protein, and inorganic zinc oxide (ZnO) nanorods (NRs). Steady-state and picosecond-resolved fluorescence spectroscopy have been used to monitor such ET reactions. Physical consequences of BP association with CT-DNA have been investigated through temperature-dependent circular dichroism (CD) spectroscopy. The temperature-dependent steady-state, picosecond-resolved fluorescence lifetime and anisotropy studies reveal the effect of temperature on the perturbation of such ET reactions from BP to biological macromolecules, highlighting their temperature-dependent association. Furthermore, the electron-donating property of BP has been corroborated by measuring wavelength-dependent photocurrent in a BP-anchored ZnO NR-based photodevice, offering new physical insights for the carcinogenic study of BP.
Cooperation and selfishness both occur during molecular evolution.
Penny, David
2014-11-26
Perhaps the 'selfish' aspect of evolution has been over-emphasised, and organisms considered as basically selfish. However, at the macromolecular level of genes and proteins the cooperative aspect of evolution is more obvious and balances this self-centred aspect. Thousands of proteins must function together in an integrated manner to use and to produce the many molecules necessary for a functioning cell. The macromolecules have no idea whether they are functioning cooperatively or competitively with other genes and gene products (such as proteins). The cell is a giant cooperative system of thousands of genes/proteins that function together, even if it has to simultaneously resist 'parasites'. There are extensive examples of cooperative behavior among genes and proteins in both functioning cells and in the origin of life, so this cooperative nature, along with selfishness, must be considered part of normal evolution. The principles also apply to very large numbers of examples of 'positive interactions' between organisms, including both eukaryotes and akaryotes (prokaryotes). This does not negate in any way the 'selfishness' of genes - but macromolecules have no idea when they are helping, or hindering, other groups of macromolecules. We need to assert more strongly that genes, and gene products, function together as a cooperative unit.
Effect of various solvent on the specific amino acids of black soybean (Glycine soja) sprout
NASA Astrophysics Data System (ADS)
Kanetro, B.; Slamet, A.; Wazyka, A.
2018-01-01
The objective of this research was to study the effect of various solvent extractions on the specific amino acids as small peptide or free amino acids that was contained in the extract after removal of the macromolecule protein of black soybean sprouts. The experimental design of this research was randomized complete design with one factor, which was the three various solvent, i.e. hexane, ethanol and water. The black soybean seed was germinated for 36 h. The small peptide and free amino acids of black soybean sprout were isolated at 3 various of solvents extraction, and then the macromolecule proteins in the extracts were precipitated at the pH 4. The extracts of black soybean sprout after removal of the macromolecule protein were analysed by HPLC to determine the profile of amino acids for stimulation of insulin secretion. The result of this research showed that the extracts contained the small peptide and free amino acid for stimulation of insulin secretion. The best solvent extraction was water that was due to the content of Leu, Arg, Ala, Phe, Ile, and Lys of water extract was higher than hexane and ethanol extracts.
Pluen, Alain; Boucher, Yves; Ramanujan, Saroja; McKee, Trevor D.; Gohongi, Takeshi; di Tomaso, Emmanuelle; Brown, Edward B.; Izumi, Yotaro; Campbell, Robert B.; Berk, David A.; Jain, Rakesh K.
2001-01-01
The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors. PMID:11274375
NASA Astrophysics Data System (ADS)
Mahata, C. R.
2012-12-01
Response of living bodies to different vastly `diluted' homeopathic medicines are different (rejecting the sceptic's view of `placebo' effect), though they are chemically same. Till now there is no satisfactory answer to how one such medicine differs from another in terms of scientifically measurable parameters. This paper tries to address this basic issue by taking two medicines of the same potency and two different potencies of the same medicine, namely, Arnica Mont 30c, 200c and Anacardium Orient 30c, 200c. These potencies are well above the Avogadro limit. The investigation reported here proceeds with the concept of `induced molecular structure' advanced by a number of scientists. Dielectric dispersion is used as the tool for experimental verification. It is based on the fact that when the exciting frequency of applied electric field equals the characteristic frequency, then macromolecules resonate leading to anomalous dielectric dispersion associated with sharp increase in dielectric loss, the resonance frequencies being different for macromolecules of different structures or dimensions. The results suggest that medicine- and potency-specific attributes are acquired by the vehicle (i.e. water) in the form of macromolecules generated by the potentization process of homeopathy making one medicine structurally different from another.
Spectral Photosensitization of Optical Anisotropy in Solid Poly(Vinyl Cinnamate) Films
NASA Astrophysics Data System (ADS)
Kozenkov, V. M.; Spakhov, A. A.; Belyaev, V. V.; Chausov, D. N.; Chigrinov, V. G.
2018-04-01
The possibility and features of formation of sensitized photoinduced optical anisotropy in amorphous films of poly(vinyl cinnamate) and its derivative poly(vinyl-4-metoxicinnamate) under the action of polarized light (including light that is not absorbed by polymer macromolecules themselves) have been investigated. It is found that the effect of induced optical anisotropy is based on the transfer of electron excitation energy from donor (sensitizer) molecules to acceptor molecules and is observed in the course of phototopochemical biomolecular cyclization reaction of cinnamate fragments in polymer macromolecules. The detected photoinduced anisotropy in solid films of poly(vinyl cinnamate) and its derivative poly(vinyl-4-metoxicinnamate) ensures sensitized photo-orientation of low-molecular thermotropic liquid crystals.
Dynamic light-scattering study of gelatin and aggregation of gastric mucin
NASA Astrophysics Data System (ADS)
Bansil, Rama; Cao, Xingxiang; Bhaskar, K. Ramakrishnan; LaMont, Jeffrey T.
1997-05-01
Dynamic light scattering studies show that concentration and pH play important roles in determining pig gastric mucin's (PGM) ability to aggregate and gel. At low concentrations, PGM macromolecules exist in solution predominantly in the form of monomers. At high concentrations, PGM macromolecules aggregate to form supra-macromolecular clusters. When the pH of the high concentration PGM solution is changed from 7.0 to 2.0, the system undergoes a sol-gel transition: from a solution of polydisperse aggregates to a gel. This pH and concentration dependent sol-gel transition of PGM solution may provide a mechanism for the mammalian stomach to protect itself against being digested by the gastric juice.
Quality control in molecular immunohistochemistry
2008-01-01
Immunoperoxidase histochemistry is a widespread method of assessing expression of biomolecules in tissue samples. Accurate assessment of the expression levels of genes is critical for the management of disease, particularly as therapy targeted to specific molecules becomes more widespread. Determining the quality of preservation of macromolecules in tissue is important to avoid false negative and false positive results. In this review we discuss (1) issues of sensitivity (false negativity) and specificity (false positivity) of immunohistochemical stains, (2) approaches to better understanding differences in immunostains done by different laboratories (including the recently proposed MISFISHIE specification for tissue localization studies), and (3) approaches to assessing the quality of preservation of macromolecules in tissue, particularly in small biopsy samples. PMID:18648842
Microvascular leakage of plasma proteins after PUVA and UVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staberg, B.; Worm, A.M.; Rossing, N.
1982-04-01
The transcapillary escape rate of albumin (TERalb), is a parameter of the leakage of macromolecules from the total microvasculature. In patients with psoriasis short-term PUVA treatment induces an increase in TERalb. In this study TERalb was measured in 3 groups of normal humans treated with PUVA, UVA and 8-methoxypsoralen. Treatment with PUVA and UVA caused a statistically significant increase in TERalb, whereas treatment with 8-methoxypsoralen did not induce any measurable changes. It is concluded that the UVA irradiation causes the abnormal leakage of macromolecules, whereas psoralen is not the responsible component. Furthermore the phenomenon can be elicited in normals andmore » is not based on a preexisting psoriasis.« less
Free-falling Crystals: Biological Macromolecular Crystal Growth Studies in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, E. H.; Pusey, M. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Spacecraft orbiting the earth experience a reduced acceleration environment due to being in a state of continuous free-fall. This state colloquially termed microgravity, has produced improved X-ray diffraction quality crystals of biological macromolecules. Improvements in X-ray diffraction resolution (detail) or signal to noise, provide greater detail in the three-dimensional molecular structure providing information about the molecule, how it works, how to improve its function or how to impede it. Greater molecular detail obtained by crystallization in microgravity, has important implications for structural biology. In this article we examine the theories behind macromolecule crystal quality improvement in microgravity using results obtained from studies with the model protein, chicken egg white lysozyme.
Crowding in Cellular Environments at an Atomistic Level from Computer Simulations
2017-01-01
The effects of crowding in biological environments on biomolecular structure, dynamics, and function remain not well understood. Computer simulations of atomistic models of concentrated peptide and protein systems at different levels of complexity are beginning to provide new insights. Crowding, weak interactions with other macromolecules and metabolites, and altered solvent properties within cellular environments appear to remodel the energy landscape of peptides and proteins in significant ways including the possibility of native state destabilization. Crowding is also seen to affect dynamic properties, both conformational dynamics and diffusional properties of macromolecules. Recent simulations that address these questions are reviewed here and discussed in the context of relevant experiments. PMID:28666087
Zeng, Qiao-Hui; Zhang, Xue-Wu; Xu, Kai-Peng; Jiang, Jian-Guo
2014-02-01
Active substances in traditional Chinese Medicine (TCM) contain not only a variety of small molecules, but also many other macromolecules (TCMMs), such as proteins, peptides and polysaccharides. Active TCMM can achieve good therapeutic effects by regulating the body's overall function with lower side effects. This review summarized the literatures published in recent years on the application of fluorescently labeled tracer technique for detection of natural active macromolecules in TCM. Classified by fluorescent markers, applications of fluorescein, rhodamine, and quantum dots (QDs) in TCMM active tracer are reviewed, and the methods and principles of TCMM fluorescent marker are illustrated. Studies on active TCMMs and their action mechanism are quite difficult due to a multitarget, multicomponent, and multipath system of TCM. However, the development of fluorescently labeled active tracer technique (FLATT) provides this research with new tools. Traditional fluorescent markers have many deficiencies, such as easily quenched, short luminous cycle, and intrinsic toxicity. Relatively, FLATT has many obvious advantages, and its application in TCMM is still at the early stage. In order to improve the overall level of fluorescence labeling in TCMM active tracer, the improvement on FLATT's detection sensitivity and biological affinity is urgent and critical to allow study of these interesting molecules.
Yoshikawa, H; Takada, K; Muranishi, S
1984-01-01
The permselectivity to the small intestinal blood-lymph barrier for the exogenous macromolecules absorbed from the lumen was investigated using in situ rat closed loop experiment. We chose the fluorescein isothiocyanate-labelled dextran (FD) as macromolecule and lipid-surfactant mixed micelles as an absorption promoter. The mean molecular weights of FDs used were 10500, 17500, 39000 and 64200 (abbreviated: FD10 , 20, 40 and 70). The lymph/plasma ratios of FDs concentrations during 5 h post administration were 0.2-1.2 ( FD10 ), 0.4-1.3 ( FD20 ), 1.3-7.2 ( FD40 ) and 2.6-11.9 ( FD70 ), respectively. The FD40 and FD70 levels in the lymph were significantly higher than those in the plasma. The cumulative amounts (% of the absorbed quantity) of FDs in the lymph from the lumen of the small intestine for 5 h after administration were 0.46% ( FD10 ), 0.51% ( FD20 ), 1.17% ( FD40 ) and 1.89% ( FD70 ), respectively. These findings suggest that the threshold molecular weight of FD for the transfer into the lymphatics with higher level compared to the blood concentration from the lumen across the small intestinal blood-lymph barrier exists between 17500 and 39000.
Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.
Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei
2011-04-01
The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.
Patel, Trushar R; Chojnowski, Grzegorz; Astha; Koul, Amit; McKenna, Sean A; Bujnicki, Janusz M
2017-04-15
The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Measuring In Vivo Protein Dynamics Throughout the Cell Cycle Using Microfluidics.
de Leeuw, Roy; Brazda, Peter; Charl Moolman, M; Kerssemakers, J W J; Solano, Belen; Dekker, Nynke H
2017-01-01
Studying the dynamics of intracellular processes and investigating the interaction of individual macromolecules in live cells is one of the main objectives of cell biology. These macromolecules move, assemble, disassemble, and reorganize themselves in distinct manners under specific physiological conditions throughout the cell cycle. Therefore, in vivo experimental methods that enable the study of individual molecules inside cells at controlled culturing conditions have proved to be powerful tools to obtain insights into the molecular roles of these macromolecules and how their individual behavior influence cell physiology. The importance of controlled experimental conditions is enhanced when the investigated phenomenon covers long time periods, or perhaps multiple cell cycles. An example is the detection and quantification of proteins during bacterial DNA replication. Wide-field microscopy combined with microfluidics is a suitable technique for this. During fluorescence experiments, microfluidics offer well-defined cellular orientation and immobilization, flow and medium interchangeability, and high-throughput long-term experimentation of cells. Here we present a protocol for the combined use of wide-field microscopy and microfluidics for the study of proteins of the Escherichia coli DNA replication process. We discuss the preparation and application of a microfluidic device, data acquisition steps, and image analysis procedures to determine the stoichiometry and dynamics of a replisome component throughout the cell cycle of live bacterial cells.
Mass Transport of Macromolecules within an In Vitro Model of Supragingival Plaque
Thurnheer, Thomas; Gmür, Rudolf; Shapiro, Stuart; Guggenheim, Bernhard
2003-01-01
The aim of this study was to examine the diffusion of macromolecules through an in vitro biofilm model of supragingival plaque. Polyspecies biofilms containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, Veillonella dispar, and Candida albicans were formed on sintered hydroxyapatite disks and then incubated at room temperature for defined periods with fluorescent markers with molecular weights ranging from 3,000 to 900,000. Subsequent examination by confocal laser scanning microscopy revealed that the mean square penetration depths for all tested macromolecules except immunoglobulin M increased linearly with time, diffusion coefficients being linearly proportional to the cube roots of the molecular weights of the probes (range, 10,000 to 240,000). Compared to diffusion in bulk water, diffusion in the biofilms was markedly slower. The rate of diffusion for each probe appeared to be constant and not a function of biofilm depth. Analysis of diffusion phenomena through the biofilms suggested tortuosity as the most probable explanation for retarded diffusion. Selective binding of probes to receptors present in the biofilms could not explain the observed extent of retardation of diffusion. These results are relevant to oral health, as selective attenuated diffusion of fermentable carbohydrates and acids produced within dental plaque is thought to be essential for the development of carious lesions. PMID:12620862
Recent perspectives on the delivery of biologics to back of the eye
Joseph, Mary; Trinh, Hoang M.; Cholkar, Kishore; Pal, Dhananjay; Mitra, Ashim K.
2017-01-01
Introduction Biologics are generally macromolecules, large in size with poor stability in biological environments. Delivery of biologics to tissues at the back of the eye remains a challenge. To overcome these challenges and treat posterior ocular diseases, several novel approaches have been developed. Nanotechnology-based delivery systems, like drug encapsulation technology, macromolecule implants and gene delivery are under investigation. We provide an overview of emerging technologies for biologics delivery to back of the eye tissues. Moreover, new biologic drugs currently in clinical trials for ocular neovascular diseases have been discussed. Areas Covered Anatomy of the eye, posterior segment disease and diagnosis, barriers to biologic delivery, ocular pharmacokinetic, novel biologic delivery system Expert Opinion Anti-VEGF therapy represents a significant advance in developing biologics for the treatment of ocular neovascular diseases. Various strategies for biologic delivery to posterior ocular tissues are under development with some in early or late stages of clinical trials. Despite significant progress in the delivery of biologics, there is unmet need to develop sustained delivery of biologics with nearly zero-order release kinetics to the back of the eye tissues. In addition, elevated intraocular pressure associated with frequent intravitreal injections of macromolecules is another concern that needs to be addressed. PMID:27573097
Fang, Jun; Long, Liao; Maeda, Hiroshi
2016-01-01
The use of bacteria, about 1 μm in size, is now becoming an attractive strategy for cancer treatment. Solid tumors exhibit the enhanced permeability and retention (EPR) effect for biocompatible macromolecules such as polymer-conjugated anticancer agents, liposomes, and micelles. This phenomenon permits tumor-selective delivery of such macromolecules. We report here that bacteria injected intravenously evidenced a property similar to that can of these macromolecules. Bacteria that can accumulate selectively in tumors may therefore be used in cancer treatment.Facultative or anaerobic bacteria will grow even under the hypoxic conditions present in solid tumors. We found earlier that nitric oxide (NO) was among the most important factors that facilitated the EPR effect via vasodilatation, opening of endothelial cell junction gaps, and increasing the blood flow of hypovascular tumors. Here, we describe the augmentation of the EPR effect by means of nitroglycerin (NG), a commonly used NO donor, using various macromolecular agents in different tumor models. More importantly, we report that NG significantly enhanced the delivery of Lactobacillus casei to tumors after intravenous injection of the bacteria, more than a tenfold increase in bacterial accumulation in tumors after NG treatment. This finding suggests that NG has a potential advantage to enhance bacterial therapy of cancer, and further investigations of this possibility are warranted.
Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina
2016-02-01
A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Jaross, Werner
2018-01-01
The molecular vibration patterns of structure-forming macromolecules in the living cell create very specific electromagnetic frequency patterns which might be used for information on spatial position in the three-dimensional structure as well as the chemical characteristics. Chemical change of a molecule results in a change of the vibration pattern and thus in a change of the emitted electromagnetic frequency pattern. These patterns have to be received by proteins responsible for the necessary interactions and functions. Proteins can function as resonators for frequencies in the range of 1013-1015 Hz. The individual frequency pattern is defined by the amino acid sequence and the polarity of every amino acid caused by their functional groups. If the arriving electromagnetic signal pattern and the emitted pattern of the absorbing protein are matched in relevant parts and in opposite phase, photon energy in the characteristic frequencies can be transferred resulting in a conformational change of that molecule and respectively in an increase of its specific activity. The electromagnetic radiation is very weak. The possibilities to overcome intracellular distances are shown. The motor-driven directed transport of macromolecules starts in the Golgi apparatus. The relevance of molecular interactions based on this signaling for the induction and navigation in the intracellular transport is discussed.
Ashkenazy, Haim; Abadi, Shiran; Martz, Eric; Chay, Ofer; Mayrose, Itay; Pupko, Tal; Ben-Tal, Nir
2016-01-01
The degree of evolutionary conservation of an amino acid in a protein or a nucleic acid in DNA/RNA reflects a balance between its natural tendency to mutate and the overall need to retain the structural integrity and function of the macromolecule. The ConSurf web server (http://consurf.tau.ac.il), established over 15 years ago, analyses the evolutionary pattern of the amino/nucleic acids of the macromolecule to reveal regions that are important for structure and/or function. Starting from a query sequence or structure, the server automatically collects homologues, infers their multiple sequence alignment and reconstructs a phylogenetic tree that reflects their evolutionary relations. These data are then used, within a probabilistic framework, to estimate the evolutionary rates of each sequence position. Here we introduce several new features into ConSurf, including automatic selection of the best evolutionary model used to infer the rates, the ability to homology-model query proteins, prediction of the secondary structure of query RNA molecules from sequence, the ability to view the biological assembly of a query (in addition to the single chain), mapping of the conservation grades onto 2D RNA models and an advanced view of the phylogenetic tree that enables interactively rerunning ConSurf with the taxa of a sub-tree. PMID:27166375
Ye, Sang-Ho; Jang, Yong-Seok; Yun, Yeo-Heung; Shankarraman, Venkat; Woolley, Joshua R.; Hong, Yi; Gamble, Lara J.; Ishihara, Kazuhiko; Wagner, William R.
2013-01-01
Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi and SBSSi modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys. PMID:23705967
Albumin transcytosis from the pleural space.
Agostoni, Emilio; Bodega, Francesca; Zocchi, Luciano
2002-11-01
Occurrence of transcytosis in pleural mesothelium was verified by measuring removal of labeled macromolecules from pleural liquid in experiments without and with nocodazole. To this end, we injected 0.3 ml of Ringer-albumin with 750 microg of albumin-Texas red or with 600 microg of dextran 70-Texas red in the right pleural space of anesthetized rabbits, and after 3 h we measured pleural liquid volume, labeled macromolecule concentration, and, hence, labeled macromolecule quantity in the liquid of this space. Labeled albumin left was 318 +/- 28 microg in control and 419 +/- 17 microg in nocodazole experiments (means +/- SE); hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. Labeled dextran left was 283 +/- 10 microg in control and 381 +/- 21 microg in nocodazole experiments; hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. These findings indicate occurrence of transcytosis from the pleural space. Liquid removed by transcytosis was 0.05 ml/h. This amount times unlabeled albumin concentration under physiological conditions (10 mg/ml) times lumen-vesicle partition coefficient for albumin (0.78) provides fluid-phase albumin transcytosis: approximately 203 microg. h(-1) kg(-2/3). Transcytosis might contribute a relevant part of protein and liquid removal from the pleural space.
Qureshi, Rashid Nazir
2010-01-01
An overview is given of the recent literature on (bio) analytical applications of flow field-flow fractionation (FlFFF). FlFFF is a liquid-phase separation technique that can separate macromolecules and particles according to size. The technique is increasingly used on a routine basis in a variety of application fields. In food analysis, FlFFF is applied to determine the molecular size distribution of starches and modified celluloses, or to study protein aggregation during food processing. In industrial analysis, it is applied for the characterization of polysaccharides that are used as thickeners and dispersing agents. In pharmaceutical and biomedical laboratories, FlFFF is used to monitor the refolding of recombinant proteins, to detect aggregates of antibodies, or to determine the size distribution of drug carrier particles. In environmental studies, FlFFF is used to characterize natural colloids in water streams, and especially to study trace metal distributions over colloidal particles. In this review, first a short discussion of the state of the art in instrumentation is given. Developments in the coupling of FlFFF to various detection modes are then highlighted. Finally, application studies are discussed and ordered according to the type of (bio) macromolecules or bioparticles that are fractionated. PMID:20957473
AboulFotouh, Khaled; Allam, Ayat A; El-Badry, Mahmoud; El-Sayed, Ahmed M
2018-07-01
Self-emulsifying drug delivery systems (SEDDS) have been widely employed to improve the oral bioavailability of poorly soluble drugs. In the past few years, SEDDS were extensively investigated to overcome various barriers encountered in the oral delivery of hydrophilic macromolecules (e.g., protein/peptide therapeutics and plasmid DNA (pDNA)), as well as in lowering the effect of food on drugs' bioavailability. However, the main mechanism(s) by which SEDDS could achieve such promising effects remains not fully understood. This review summarizes the recent progress in the use of SEDDS for protecting protein therapeutics and/or pDNA against enzymatic degradation and increasing the oral bioavailability of various drug substances regardless of the dietary condition. Understanding the underlying mechanism(s) of such promising applications will aid in the future development of rationally designed SEDDS. Entrapment of hydrophilic macromolecules in the oil phase of the formed emulsion is critical for protection of the loaded cargoes against enzymatic degradation and the enhancement of oral bioavailability. On the other hand, drug administration as a preconcentrated solution in the SEDDS preconcentrate allows the process of drug absorption to occur independently of the dietary condition, and thus reducing interindividual variability that results from concomitant food intake. Copyright © 2018 Elsevier B.V. All rights reserved.
JAIL: a structure-based interface library for macromolecules.
Günther, Stefan; von Eichborn, Joachim; May, Patrick; Preissner, Robert
2009-01-01
The increasing number of solved macromolecules provides a solid number of 3D interfaces, if all types of molecular contacts are being considered. JAIL annotates three different kinds of macromolecular interfaces, those between interacting protein domains, interfaces of different protein chains and interfaces between proteins and nucleic acids. This results in a total number of about 184,000 database entries. All the interfaces can easily be identified by a detailed search form or by a hierarchical tree that describes the protein domain architectures classified by the SCOP database. Visual inspection of the interfaces is possible via an interactive protein viewer. Furthermore, large scale analyses are supported by an implemented sequential and by a structural clustering. Similar interfaces as well as non-redundant interfaces can be easily picked out. Additionally, the sequential conservation of binding sites was also included in the database and is retrievable via Jmol. A comprehensive download section allows the composition of representative data sets with user defined parameters. The huge data set in combination with various search options allow a comprehensive view on all interfaces between macromolecules included in the Protein Data Bank (PDB). The download of the data sets supports numerous further investigations in macromolecular recognition. JAIL is publicly available at http://bioinformatics.charite.de/jail.
Olechnovič, Kliment; Venclovas, Ceslovas
2014-07-01
The Contact Area Difference score (CAD-score) web server provides a universal framework to compute and analyze discrepancies between different 3D structures of the same biological macromolecule or complex. The server accepts both single-subunit and multi-subunit structures and can handle all the major types of macromolecules (proteins, RNA, DNA and their complexes). It can perform numerical comparison of both structures and interfaces. In addition to entire structures and interfaces, the server can assess user-defined subsets. The CAD-score server performs both global and local numerical evaluations of structural differences between structures or interfaces. The results can be explored interactively using sortable tables of global scores, profiles of local errors, superimposed contact maps and 3D structure visualization. The web server could be used for tasks such as comparison of models with the native (reference) structure, comparison of X-ray structures of the same macromolecule obtained in different states (e.g. with and without a bound ligand), analysis of nuclear magnetic resonance (NMR) structural ensemble or structures obtained in the course of molecular dynamics simulation. The web server is freely accessible at: http://www.ibt.lt/bioinformatics/cad-score. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Charging and Release Mechanisms of Flexible Macromolecules in Droplets
NASA Astrophysics Data System (ADS)
Oh, Myong In; Consta, Styliani
2017-08-01
We study systematically the charging and release mechanisms of a flexible macromolecule, modeled by poly(ethylene glycol) (PEG), in a droplet by using molecular dynamics simulations. We compare how PEG is solvated and charged by sodium Na+ ions in a droplet of water (H2O), acetonitrile (MeCN), and their mixtures. Initially, we examine the location and the conformation of the macromolecule in a droplet bearing no net charge. It is revealed that the presence of charge carriers do not affect the location of PEG in aqueous and MeCN droplets compared with that in the neutral droplets, but the location of the macromolecule and the droplet size do affect the PEG conformation. PEG is charged on the surface of a sodiated aqueous droplet that is found close to the Rayleigh limit. Its charging is coupled to the extrusion mechanism, where PEG segments leave the droplet once they coordinate a Na+ ion or in a correlated motion with Na+ ions. In contrast, as PEG resides in the interior of a MeCN droplet, it is sodiated inside the droplet. The compact macro-ion transitions through partially unwound states to an extended conformation, a process occurring during the final stage of desolvation and in the presence of only a handful of MeCN molecules. For charged H2O/MeCN droplets, the sodiation of PEG is determined by the H2O component, reflecting its slower evaporation and preference over MeCN for solvating Na+ ions. We use the simulation data to construct an analytical model that suggests that the droplet surface electric field may play a role in the macro-ion-droplet interactions that lead to the extrusion of the macro-ion. This study provides the first evidence of the effect of the surface electric field by using atomistic simulations. [Figure not available: see fulltext.
Ghim, Mean; Alpresa, Paola; Yang, Sung-Wook; Braakman, Sietse T; Gray, Stephen G; Sherwin, Spencer J; van Reeuwijk, Maarten; Weinberg, Peter D
2017-11-01
Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow. Endothelial monolayers were cultured under static conditions or on an orbital shaker producing different flow profiles in different parts of the wells. Fluorescent tracers that bound to the substrate after crossing the endothelium were used to identify transport pathways. Maps of tracer distribution were compared with numerical simulations of flow to determine effects of different shear stress metrics on permeability. Albumin-sized tracers dominantly crossed the cultured endothelium via junctions between neighboring cells, high-density lipoprotein-sized tracers crossed at tricellular junctions, and low-density lipoprotein-sized tracers crossed through cells. Cells aligned close to the angle that minimized shear stresses across their long axis. The rate of paracellular transport under flow correlated with the magnitude of these minimized transverse stresses, whereas transport across cells was uniformly reduced by all types of flow. These results contradict the long-standing two-pore theory of solute transport across microvessel walls and the consensus view that endothelial cells align with the mean shear vector. They suggest that endothelial cells minimize transverse shear, supporting its postulated proatherogenic role. Preliminary data show that similar tracer techniques are practicable in vivo. NEW & NOTEWORTHY Solutes of increasing size crossed cultured endothelium through intercellular junctions, through tricellular junctions, or transcellularly. Cells aligned to minimize the shear stress acting across their long axis. Paracellular transport correlated with the level of this minimized shear, but transcellular transport was reduced uniformly by flow regardless of the shear profile. Copyright © 2017 the American Physiological Society.
Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery.
Thakur, Raghu Raj Singh; Tekko, Ismaiel A; Al-Shammari, Farhan; Ali, Ahlam A; McCarthy, Helen; Donnelly, Ryan F
2016-12-01
In this study, dissolving microneedles (MNs) were used to enhance ocular drug delivery of macromolecules. MNs were fabricated using polyvinylpyrrolidone (PVP) polymer of various molecular weights (MWs) containing three model molecules of increasing MW, namely fluorescein sodium and fluorescein isothiocyanate-dextrans (with MW of 70 k and 150 k Da). Arrays (3 × 3) of PVP MNs with conical shape measuring about 800 μm in height with a 300 μm base diameter, containing the model drugs, were fabricated and characterized for their fracture forces, insertion forces (in the sclera and cornea), depth of penetration (using OCT and confocal imaging), dissolution time and in vitro permeation. The average drug content of the MNs (only in MN shafts) ranged from 0.96 to 9.91 μg, and the average moisture content was below 11 %. High MW PVP produced MNs that can withstand higher forces with minimal reduction in needle height. PVP MNs showed rapid dissolution that ranged from 10 to 180 s, which was dependent upon PVP's MW. In vitro studies showed significant enhancement of macromolecule permeation when MNs were used, across both the corneal and scleral tissues, in comparison to topically applied aqueous solutions. Confocal images showed that the macromolecules formed depots within the tissues, which led to sustained permeation. However, use of MNs did not significantly benefit the permeation of small molecules; nevertheless, MN application has the potential for drug retention within the selected ocular tissues unlike topical application for small molecules. The material used in the fabrication of the MNs was found to be biocompatible with retinal cells (i.e. ARPE-19). Overall, this study reported the design and fabrication of minimally invasive rapidly dissolving polymeric MN arrays which were able to deliver high MW molecules to the eye via the intrastromal or intrascleral route. Thus, dissolving MNs have potential applications in enhancing ocular delivery of both small and macromolecules.
Chen, Yanting; Du, Wenjiao; Chen, Jinsheng; Hong, Youwei; Zhao, Jinping; Xu, Lingling; Xiao, Hang
2017-02-01
Particulate matter (PM 10 ) associated with the fractions of organic macromolecules, including humic acid (HA), kerogen + black carbon (KB), and black carbon (BC), was determined during summer and winter at urban and suburban sites in a coastal city of southeast China. The organic macromolecules were characterized by elemental analysis (EA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR), and their sources were identified by using stable carbon/nitrogen isotope (δ 13 C/δ 15 N) and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model. The results showed that HA, kerogen (K), and BC accounted for the range of 3.89 to 4.55 % in PM 10 , while they were the dominant fractions of total organic carbon (TOC), ranging from 64.70 to 84.99 %. SEM analysis indicated that BC particles were porous/nonporous and consisted of spherical and non-spherical (i.e., cylindrical and elongate) structures. The FTIR spectra of HA, KB, and BC exhibited similar functional groups, but the difference of various sites and seasons was observed. HA in PM 10 contained a higher fraction of aliphatic structures, such as long-chain fatty and carbohydrates with a carboxylic extremity. The C/N ratio, SEM, and δ 13 C/δ 15 N values provided reliable indicators of the sources of HA, K, and BC in PM 10 . The results suggested that HA and K majorly originated from terrestrial plants, and BC came from the mixture of combustion of terrestrial plants, fossil fuel, and charcoal. The air masses in winter originated from Mongolia (4 %), the northern area of China (48 %), and northern adjacent cities (48 %), suggesting the influence of anthropogenic sources through long-range transport, while the air masses for the summer period came from South China Sea (34 %) and Western Pacific Sea (66 %), representing clean marine air masses with low concentrations of organic macromolecules.
Fluid Physics and Macromolecular Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.
2000-01-01
The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows. Buoyancy driven convection results from density differences between the bulk solution and fluid close to the crystal surface which has been depleted of macromolecules due to crystal growth. Schlieren photograph of a growing lysozyme crystal illustrating a 'growth plume' resulting from buoyancy driven convection. Both sedimentation and buoyancy driven convection have a negative effect on crystal growth and microgravity is seen as a way to both greatly reduce sedimentation and provide greater stability for 'depletion zones' around growing crystals. Some current crystal growth hardware however such as those based on a vapor diffusion techniques, may also be introducing unwanted Marangoni convection which becomes more pronounced in microgravity. Negative effects of g-jitter on crystal growth have also been observed. To study the magnitude of fluid flows around growing crystals we have attached a number of different fluorescent probes to lysozyme molecules. At low concentrations, less than 40% of the total protein, the probes do not appear to effect the crystal growth process. By using these probes we expect to determine not only the effect of induced flows due to crystal growth hardware design but also hope to optimize crystallization hardware so that destructive flows are minimized both on the ground and in microgravity.
Characterization of R5020 and RU486 binding to progesterone receptor from calf uterus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, C.; Moudgil, V.K.
1988-05-17
The authors have examined and compared the binding characteristics of the progesterone agonist R5020 (promegestrone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione) and the progesterone antagonist RU486 (mifepristone, 17..beta..-hydroxy-11..beta..-(4-(dimethylamino)phenyl)-17..cap alpha..-(prop-1-ynyl)-estra-4,9-dien-3-one) in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting K/sub d/ values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4/sup 0/C, showing saturation of binding sites at 1-2 h for (/sup 3/H)progesterone and 2-4 h for both (/sup 3/H)R5020 and (/sup 3/H)RU486. Addition of molybdate and glycerol to cytosol increased the extent of (/sup 3/H)R5020 binding. Themore » extent of (/sup 3/H)RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the (/sup 3/H)R5020- and (/sup 3/H)RU486-receptor complexes at 37/sup 0/C. Competitive steroid binding analysis revealed that (/sup 3/H)progesterone, (/sup 3/H)R5020, and (/sup 3/H)RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S (/sup 3/H)R5020 and (/sup 3/H)RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020. The results of this study suggest that, although there are some differences in the nature of their interaction with the PR, both R5020 and RU486 bind to the same 8S receptor in calf uterine cytosol.« less
Adsorption of polypropylene from dilute solutions on a zeolite column packing.
Macko, Tibor; Pasch, Harald; Denayer, Joeri F
2005-01-01
Faujasite type zeolite CBV-780 was tested as adsorbent for isotactic polypropylene by liquid chromatography. When cyclohexane, cyclohexanol, n-decanol, n-dodecanol, diphenylmethane, or methylcyclohexane was used as mobile phase, polypropylene was fully or partially retained within the column packing. This is the first series of sorbent-solvent systems to show a pronounced retention of isotactic polypropylene. According to the hydrodynamic volumes of polypropylene in solution, macromolecules of polypropylene should be fully excluded from the pore volume of the sorbent. Sizes of polypropylene macromolecules in linear conformations, however, correlate with the pore size of the column packing used. It is presumed that the polypropylene chains partially penetrate into the pores and are retained due to the high adsorption potential in the narrow pores.
Some Fundamental Molecular Mechanisms of Contractility in Fibrous Macromolecules
Mandelkern, L.
1967-01-01
The fundamental molecular mechanisms of contractility and tension development in fibrous macromolecules are developed from the point of view of the principles of polymer physical chemistry. The problem is treated in a general manner to encompass the behavior of all macromolecular systems irrespective of their detailed chemical structure and particular function, if any. Primary attention is given to the contractile process which accompanies the crystal-liquid transition in axially oriented macromolecular systems. The theoretical nature of the process is discussed, and many experimental examples are given from the literature which demonstrate the expected behavior. Experimental attention is focused on the contraction of fibrous proteins, and the same underlying molecular mechanism is shown to be operative for a variety of different systems. PMID:6050598
Critical considerations for developing nucleic acid macromolecule based drug products.
Muralidhara, Bilikallahalli K; Baid, Rinku; Bishop, Steve M; Huang, Min; Wang, Wei; Nema, Sandeep
2016-03-01
Protein expression therapy using nucleic acid macromolecules (NAMs) as a new paradigm in medicine has recently gained immense therapeutic potential. With the advancement of nonviral delivery it has been possible to target NAMs against cancer, immunodeficiency and infectious diseases. Owing to the complex and fragile structure of NAMs, however, development of a suitable, stable formulation for a reasonable product shelf-life and efficacious delivery is indeed challenging to achieve. This review provides a synopsis of challenges in the formulation and stability of DNA/m-RNA based medicines and probable mitigation strategies including a brief summary of delivery options to the target cells. Nucleic acid based drugs at various stages of ongoing clinical trials are compiled. Copyright © 2016. Published by Elsevier Ltd.
Batianovskiĭ, A V; Filatov, I V; Namiot, V A; Esipova, N G; Volotovskiĭ, I D
2012-01-01
It was shown that selective interactions between helical segments of macromolecules can realize in globular proteins in the segments characterized by the same periodicities of charge distribution i.e. between conformationally conservative oligopeptides. It was found that in the macromolecules of alpha-helical proteins conformationally conservative oligopeptides are disposed at a distance being characteristic of direct interactions. For representatives of many structural families of alpha-type proteins specific disposition of conformationally conservative segments is observed. This disposition is inherent to a particular structural family. Disposition of conformationally conservative segments is not related to homology of the amino acid sequence but reflects peculiarities of native 3D-architectures of protein globules.
Hancock, R
2018-04-01
The view of the cell nucleus as a crowded system of colloid particles and that chromosomes are giant self-avoiding polymers is stimulating rapid advances in our understanding of its structure and activities, thanks to concepts and experimental methods from colloid, polymer, soft matter, and nano sciences and to increased computational power for simulating macromolecules and polymers. This review summarizes current understanding of some characteristics of the molecular environment in the nucleus, of how intranuclear compartments are formed, and of how the genome is highly but precisely compacted, and underlines the crucial, subtle, and sometimes unintuitive effects on structures and reactions of entropic forces caused by the high concentration of macromolecules in the nucleus.
Three dimensional electron microscopy and in silico tools for macromolecular structure determination
Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru
2013-01-01
Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033
Seto, Jennifer E.; Polat, Baris E.; Lopez, Renata F.V.; Blankschtein, Daniel; Langer, Robert
2010-01-01
The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700-μm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules. PMID:20346994
Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.
Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S
2015-10-14
The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.
Wang, Leyu; Chen, Hongqi; Li, Ling; Xia, Tingting; Dong, Ling; Wang, Lun
2004-03-01
The polystyrene-acrylic acid (PS-AA) nanoparticles have been prepared by ultrasonic polymerization, characterized by FT-IR and TEM. It is the first report on the determination of proteins with macromolecules nanoparticles of PS-AA by resonance light-scattering (RLS). At pH 6.9, the RLS of macromolecules nanoparticles of PS-AA can be enhanced by proteins. Based on this, a novel quantitative assay of proteins at the nanogram levels has been proposed. At pH 6.9, the RLS signals of PS-AA were greatly enhanced by proteins in the region of 250-700 nm characterized by the peak at 342 nm. Under optimal conditions, the linear ranges of the calibration curves were 0.02-11.0 microgml-1, 0.04-10.0 microgml-1 and 0.03-10.0 microgml-1 for gamma-globulin (gamma-IgG), bovine serum albumin (BSA) and human serum albumin (HSA), respectively. The detection limits were 16.0 ngml-1, 19.0 ngml-1, and 15.0 ngml-1 for gamma-IgG, BSA and HSA, respectively. The method has been applied to the analysis of total proteins in human serum samples collected from the hospital and the results were in good agreement with those reported by the hospital, which indicates that the method presented here is not only sensitive, simple, but also reliable and suitable for practical application.
Labille, J; Thomas, F; Milas, M; Vanhaverbeke, C
2005-04-01
The molecular mechanism of montmorillonite flocculation by bacterial polysaccharides was investigated, with special emphasis on the effect of carboxylic charges in the macromolecules on the mechanisms of interaction with the clay surface. An indirect way to quantify the energy of interaction was used, by comparing the flocculation ability of variously acidic polysaccharides. Data on tensile strength of aggregates in diluted suspension were collected by timed size measurements in the domain 0.1-600 microm, using laser diffraction. The flow behavior of settled aggregates was studied by rheology measurements. Flocculation of colloidal clay suspension by polysaccharides requires cancelling of the electrostatic repulsions by salts, which allows approach of clay surfaces close enough to be bridged by adsorbing macromolecules. The amount of acidic charges of the polysaccharides, and especially their location in the molecular structure, governs the bridging mechanism and the resulting tensile strength of the aggregates. The exposure of carboxylate groups located on side chains strongly promotes flocculation. In turn, charges located on the backbone of the polysaccharide are less accessible to interaction, and the flocculation ability of such polysaccharides is lowered. Measurements at different pH indicate that adsorption of acidic polysaccharides occurs via electrostatic interactions on the amphoteric edge surface of clay platelets, whereas neutral polysaccharides rather adsorb via weak interactions. Increased tensile strength in diluted aggregates due to strong surface interactions results in proportionally increased viscosity of the concentrated aggregates.
Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors.
Kuzmanic, Antonija; Zagrovic, Bojan
2010-03-03
Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,
¹H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors.
Hulsey, Keith M; Mashimo, Tomoyuki; Banerjee, Abhishek; Soesbe, Todd C; Spence, Jeffrey S; Vemireddy, Vamsidhara; Maher, Elizabeth A; Bachoo, Robert M; Choi, Changho
2015-01-01
Glioblastoma (GBM), the most common primary brain tumor, is resistant to currently available treatments. The development of mouse models of human GBM has provided a tool for studying mechanisms involved in tumor initiation and growth as well as a platform for preclinical investigation of new drugs. In this study we used (1) H MR spectroscopy to study the neurochemical profile of a human orthotopic tumor (HOT) mouse model of human GBM. The goal of this study was to evaluate differences in metabolite concentrations in the GBM HOT mice when compared with normal mouse brain in order to determine if MRS could reliably differentiate tumor from normal brain. A TE =19 ms PRESS sequence at 9.4 T was used for measuring metabolite levels in 12 GBM mice and 8 healthy mice. Levels for 12 metabolites and for lipids/macromolecules at 0.9 ppm and at 1.3 ppm were reliably detected in all mouse spectra. The tumors had significantly lower concentrations of total creatine, GABA, glutamate, total N-acetylaspartate, aspartate, lipids/macromolecules at 0.9 ppm, and lipids/macromolecules at 1.3 ppm than did the brains of normal mice. The concentrations of glycine and lactate, however, were significantly higher in tumors than in normal brain. Copyright © 2014 John Wiley & Sons, Ltd.
Moussavi-Baygi, R; Mofrad, M R K
2016-07-29
Conformational behavior of intrinsically disordered proteins, such as Phe-Gly repeat domains, alters drastically when they are confined in, and tethered to, nan channels. This has challenged our understanding of how they serve to selectively facilitate translocation of nuclear transport receptor (NTR)-bearing macromolecules. Heterogeneous FG-repeats, tethered to the NPC interior, nonuniformly fill the channel in a diameter-dependent manner and adopt a rapid Brownian motion, thereby forming a porous and highly dynamic polymeric meshwork that percolates in radial and axial directions and features two distinguishable zones: a dense hydrophobic rod-like zone located in the center, and a peripheral low-density shell-like zone. The FG-meshwork is locally disrupted upon interacting with NTR-bearing macromolecules, but immediately reconstructs itself between 0.44 μs and 7.0 μs, depending on cargo size and shape. This confers a perpetually-sealed state to the NPC, and is solely due to rapid Brownian motion of FG-repeats, not FG-repeat hydrophobic bonds. Elongated-shaped macromolecules, both in the presence and absence of NTRs, penetrate more readily into the FG-meshwork compared to their globular counterparts of identical volume and surface chemistry, highlighting the importance of the shape effects in nucleocytoplasmic transport. These results can help our understanding of geometrical effects in, and the design of, intelligent and responsive biopolymer-based materials in nanofiltration and artificial nanopores.
Isakari, Yu; Kishi, Yuhi; Yoshimoto, Noriko; Yamamoto, Shuichi; Podgornik, Aleš
2018-02-02
Combining chemical reaction with separation offers several advantages. In this work possibility to induce spontaneous desorption of adsorbed macromolecules, once being PEGylated, through adjustment of the reagent composition is investigated. Bovine serum albumin (BSA) and activated oligonucleotide, 9T, are used as the test molecules and 20 kDa linear activated PEG is used for their PEGylation. BSA solid-phase PEGylation is performed on Q Sepharose HP. Distribution coefficient of BSA and PEG-BSA as a function of NaCl is determined using linear gradient elution (LGE) experiments and Yamamoto model. According to the distribution coefficient the selectivity between BSA and PEG - BSA of around 15 is adjusted by using NaCl. Spontaneous desorption of PEG - BSA is detected with no presence of BSA. However, due to a rather low selectivity, also desorption of BSA occurred at high elution volume. A similar procedure is applied for activated 9T oligonucleotide, this time using monolithic CIM QA disk monolithic column for adsorption. Selectivity of over 2000 is obtained by proper adjustment of PEG reagent composition. High selectivity enables spontaneous desorption of PEG-9T without any desorption of activated 9T. Both experiments demonstrates that reaction-mediated desorption of macromolecules is possible when the reaction conditions are properly tuned. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improved Measurement of B(sub 22) of Macromolecules in a Flow Cell
NASA Technical Reports Server (NTRS)
Wilson, Wilbur; Fanguy, Joseph; Holman, Steven; Guo, Bin
2008-01-01
An improved apparatus has been invented for use in determining the osmotic second virial coefficient of macromolecules in solution. In a typical intended application, the macromolecules would be, more specifically, protein molecules, and the protein solution would be pumped through a flow cell to investigate the physical and chemical conditions that affect crystallization of the protein in question. Some background information is prerequisite to a meaningful description of the novel aspects of this apparatus. A method of determining B22 from simultaneous measurements of the static transmittance (taken as an indication of concentration) and static scattering of light from the same location in a flowing protein solution was published in 2004. The apparatus used to implement the method at that time included a dual-detector flow cell, which had two drawbacks: a) The amount of protein required for analysis of each solution condition was of the order of a milligram - far too large a quantity for a high-throughput analysis system, for which microgram or even nanogram quantities of protein per analysis are desirable. b) The design of flow cell was such that two light sources were used to probe different regions of the flowing solution. Consequently, the apparatus did not afford simultaneous measurements at the same location in the solution and, hence, did not guarantee an accurate determination of B22.
Iborra, Francisco J
2007-04-12
The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.
Barker, Matthew; Billups, Brian; Hamann, Martine
2009-01-01
Electroporation creates transient pores in the plasma membrane to introduce macromolecules within a cell or cell population. Generally, electrical pulses are delivered between two electrodes separated from each other, making electroporation less likely to be localised. We have developed a new device combining local pressure ejection with local electroporation through a double-barrelled glass micropipette to transfer impermeable macromolecules in brain slices or in cultured HEK293 cells. The design achieves better targeting of the site of pressure ejection with that of electroporation. With this technique, we have been able to limit the delivery of propidium iodide or dextran amine within areas of 100–200 μm diameter. We confirm that local electroporation is transient and show that when combined with pressure ejection, it allows local transfection of EGFP plasmids within HEK293 cells or within cerebellar and hippocampal slice cultures. We further show that local electroporation is less damaging when compared to global electroporation using two separate electrodes. Focal delivery of dextran amine dyes within trapezoid body fibres allowed tracing axonal tracts within brainstem slices, enabling the study of identified calyx of Held presynaptic terminals in living brain tissue. This labelling method can be used to target small nuclei in neuronal tissue and is generally applicable to the study of functional synaptic connectivity, or live axonal tracing in a variety of brain areas. PMID:19014970
Regulation of DNA conformations and dynamics in flows with hybrid field microfluidics.
Ren, Fangfang; Zu, Yingbo; Kumar Rajagopalan, Kartik; Wang, Shengnian
2012-01-01
Visualizing single DNA dynamics in flow provides a wealth of physical insights in biophysics and complex flow study. However, large signal fluctuations, generated from diversified conformations, deformation history dependent dynamics and flow induced stochastic tumbling, often frustrate its wide adoption in single molecule and polymer flow study. We use a hybrid field microfluidic (HFM) approach, in which an electric field is imposed at desired locations and appropriate moments to balance the flow stress on charged molecules, to effectively regulate the initial conformations and the deformation dynamics of macromolecules in flow. With λ-DNA and a steady laminar shear flow as the model system, we herein studied the performance of HFM on regulating DNA trapping, relaxation, coil-stretch transition, and accumulation. DNA molecules were found to get captured in the focused planes when motions caused by flow, and the electric field were balanced. The trapped macromolecules relaxed in two different routes while eventually became more uniform in size and globule conformations. When removing the electric field, the sudden stretching dynamics of DNA molecules exhibited a more pronounced extension overshoot in their transient response under a true step function of flow stress while similar behaviors to what other pioneering work in steady shear flow. Such regulation strategies could be useful to control the conformations of other important macromolecules (e.g., proteins) and help better reveal their molecular dynamics.
Determination of Ensemble-Average Pairwise Root Mean-Square Deviation from Experimental B-Factors
Kuzmanic, Antonija; Zagrovic, Bojan
2010-01-01
Abstract Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,
Mori, Shingo; Kamei, Noriyasu; Murata, Yoji; Takayama, Kozo; Matozaki, Takashi; Takeda-Morishita, Mariko
2017-09-01
The stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1) is a receptor-type protein tyrosine phosphatase that is specifically expressed on the apical membrane of the intestinal epithelium. SAP-1 is known to maintain the balance of phosphorylation of proteins together with protein kinases; however, its biological function and impact on pharmacokinetics in the intestine remain unclear. The present study, therefore, aimed at clarifying the relationship between SAP-1 and the intestinal absorption behaviors of typical transporter substrates and macromolecules. The endogenous levels of glucose and total cholesterol in the blood were similar between wild-type and SAP-1-deficient mice (Sap1 -/- ), suggesting no contribution of SAP-1 to biogenic influx. Moreover, in vitro transport study with everted ileal sacs demonstrated that there was no difference in the absorption of breast cancer resistance protein, P-glycoprotein, and peptide transporter substrates between both mice. However, absorptive clearance of macromolecular model dextrans (FD-4 and FD-10) in Sap1 -/- mice was significantly higher than that in wild-type mice, and this was confirmed by the trend of increased FD-4 absorption from colonic loops of Sap1 -/- mice. Therefore, the results of this study suggest the partial contribution of SAP-1 to the regulated transport of hydrophilic macromolecules through paracellular tight junctions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter
2006-05-01
Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.
Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi
2011-01-25
A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.
Transition from Gaseous Compounds to Aerosols in Titan's Atmosphere
NASA Technical Reports Server (NTRS)
Lebonnois, Sebastien; Bakes, E. L. O.; McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)
2002-01-01
We investigate the chemical transition of simple molecules like C2H2 and HCN into aerosol particles in the context of Titan's atmosphere. Experiments that synthesize analogs (tholins) for these aerosols can help understand and constrain these polymerization mechanisms. Using information available from these experiments, we suggest chemical pathways that can link simple molecules to macromolecules, that will be the precursors to aerosol particles: polymers of acetylene and cyanoacetylene, polycyclic aromatics (PAHs), polymers of HCN and other nitriles, and polynes. Although our goal here is not to build a detailed kinetic model for this transition, we propose parameterizations to estimate the production rates of these macromolecules, their C/N and C/H ratios, and the loss of parent molecules (C2H2, HCN, HC3N and other nitriles, C6H6) from the gas phase to the haze. We use a 1-dimensional photochemical model of Titan's atmosphere to estimate the formation rate of precursors macromolecules. We find a production zone slightly lower than 200 km altitude with a total production rate of 4 x 10(exp -14) g/ sq cm s and a C/N approx. = 4. These results are compared with experimental data, and to microphysical models requirements. The Cassini/Huygens mission will bring a detailed picture of the haze distribution and properties, that will be a great challenge for our understanding of those chemical processes.
NASA Astrophysics Data System (ADS)
Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.
2016-03-01
Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.
Robert, A-M
2012-02-01
Connective tissues play an important role in the physiological functions of the organism. The integrity of the macromolecular components of these tissues, also called extracellular matrix, is necessary for their functional efficiency. A number of proteinases present in the organism, and the activity of which increases with age and with several pathologies, specifically degrade the components of the extracellular matrix. For a long time, tentatives for the protection of the matrix-components against degradation were made with low molecular weight inhibitors, not very efficient in vivo and not devoid of inconveniencies. We initiated a different approach for the preservation of the macromolecules of the extracellular matrix against proteolytic degradation with substances which exert an intense antiproteolytic activity not only in vitro, but also in vivo. The particularity of these substances is the fact that they do not act on the enzymes, but combine with the macromolecules. This is the type of combination of substances with the macromolecules of the matrix that prevents their degradation by the proteinases. Because of this affinity of such antiproteolytic agents not for the enzymes but for the substrates, we called them "substrate protectors" (Robert et al., 1979). The aim of the present review is to summarise the essential of our experiments which led to the description of substrate protectors. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Multifunctional Delivery Systems for Advanced oral Uptake of Peptide/Protein Drugs.
Park, Jin Woo; Kim, Sun Jin; Kwag, Dong Sup; Kim, Sol; Park, Jeyoung; Youn, Yu Seok; Bae, You Han; Lee, Eun Seong
2015-01-01
In recent years, advances in biotechnology and protein engineering have enabled the production of large quantities of proteins and peptides as important therapeutic agents. Various researchers have used biocompatible functional polymers to prepare oral dosage forms of proteins and peptides for chronic use and for easier administration to enhance patient compliance. However, there is a need to enhance their safety and effectiveness further. Most macromolecules undergo severe denaturation at low pH and enzymatic degradation in the gastrointestinal tract. The macromolecules' large molecular size and low lipophilicity cause low permeation through the intestinal membrane. The major strategies that have been used to overcome these challenges (in oral drug carrier systems) can be classified as follows: enteric coating or encapsulation with pH-sensitive polymers or mucoadhesive polymers, co-administration of protease inhibitors, incorporation of absorption enhancers, modification of the physicochemical properties of the macromolecules, and site-specific delivery to the colon. This review attempts to summarize the various advanced oral delivery carriers, including nanoparticles, lipid carriers, such as liposomes, nano-aggregates using amphiphilic polymers, complex coacervation of oppositely charged polyelectrolytes, and inorganic porous particles. The particles were formulated and/or surface modified with functional polysaccharides or synthetic polymers to improve oral bioavailability of proteins and peptides. We also discuss formulation strategies to overcome barriers, therapeutic efficacies in vivo, and potential benefits and issues for successful oral dosage forms of the proteins and peptides.
A proposed role for efflux transporters in the pathogenesis of hydrocephalus
Krishnamurthy, Satish; Tichenor, Michael D.; Satish, Akhila G.; Lehmann, David B.
2014-01-01
Hydrocephalus is a common brain disorder that is treated only with surgery. The basis for surgical treatment rests on the circulation theory. However, clinical and experimental data to substantiate circulation theory have remained inconclusive. In brain tissue and in the ventricles, we see that osmotic gradients drive water diffusion in water-permeable tissue. As the osmolarity of ventricular CSF increases within the cerebral ventricles, water movement into the ventricles increases and causes hydrocephalus. Macromolecular clearance from the ventricles is a mechanism to establish the normal CSF osmolarity, and therefore ventricular volume. Efflux transporters, (p-glycoprotein), are located along the blood brain barrier and play an important role in the clearance of macromolecules (endobiotics and xenobiotics) from the brain to the blood. There is clinical and experimental data to show that macromolecules are cleared out of the brain in normal and hydrocephalic brains. This article summarizes the existing evidence to support the role of efflux transporters in the pathogenesis of hydrocephalus. The location of p-gp along the pathways of macromolecular clearance and the broad substrate specificity of this abundant transporter to a variety of different macromolecules are reviewed. Involvement of p-gp in the transport of amyloid beta in Alzheimer disease and its relation to normal pressure hydrocephalus is reviewed. Finally, individual variability of p-gp expression might explain the variability in the development of hydrocephalus following intraventricular hemorrhage. PMID:25165050
Sarin, Hemant
2010-08-11
Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof. Non-sinusoidal blood capillaries were further sub-classified as non-fenestrated or fenestrated based on the absence or presence of endothelial cells with fenestrations. The sinusoidal blood capillaries of the liver, myeloid (red) bone marrow, and spleen were sub-classified as reticuloendothelial or non-reticuloendothelial based on the phago-endocytic capacity of the endothelial cells. The physiologic upper limit of pore size for transvascular flow across capillary walls of non-sinusoidal non-fenestrated blood capillaries is less than 1 nm for those with interendothelial cell clefts lined with zona occludens junctions (i.e. brain and spinal cord), and approximately 5 nm for those with clefts lined with macula occludens junctions (i.e. skeletal muscle). The physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated blood capillaries with diaphragmed fenestrae ranges between 6 and 12 nm (i.e. exocrine and endocrine glands); whereas, the physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated capillaries with open 'non-diaphragmed' fenestrae is approximately 15 nm (kidney glomerulus). In the case of the sinusoidal reticuloendothelial blood capillaries of myeloid bone marrow, the transvascular transport of non-endogenous macromolecules larger than 5 nm into the bone marrow interstitial space takes place via reticuloendothelial cell-mediated phago-endocytosis and transvascular release, which is the case for systemic bone marrow imaging agents as large as 60 nm in diameter. The physiologic upper limit of pore size in the capillary walls of most non-sinusoidal blood capillaries to the transcapillary passage of lipid-insoluble endogenous and non-endogenous macromolecules ranges between 5 and 12 nm. Therefore, macromolecules larger than the physiologic upper limits of pore size in the non-sinusoidal blood capillary types generally do not accumulate within the respective tissue interstitial spaces and their lymphatic drainages. In the case of reticuloendothelial sinusoidal blood capillaries of myeloid bone marrow, however, non-endogenous macromolecules as large as 60 nm in diameter can distribute into the bone marrow interstitial space via the phago-endocytic route, and then subsequently accumulate in the locoregional lymphatic drainages of tissues following absorption into the lymphatic drainage of periosteal fibrous tissues, which is the lymphatic drainage of myeloid bone marrow. When the ultrastructural basis for transcapillary exchange across the capillary walls of different capillary types is viewed in this light, it becomes evident that the physiologic evidence for the existence of aqueous large pores ranging between 24 and 60 nm in diameter in the capillary walls of blood capillaries, is circumstantial, at best.
Small-angle x-ray scattering study of polymer structure: Carbosilane dendrimers in hexane solution
NASA Astrophysics Data System (ADS)
Shtykova, E. V.; Feigin, L. A.; Volkov, V. V.; Malakhova, Yu. N.; Streltsov, D. R.; Buzin, A. I.; Chvalun, S. N.; Katarzhanova, E. Yu.; Ignatieva, G. M.; Muzafarov, A. M.
2016-09-01
The three-dimensional organization of monodisperse hyper-branched macromolecules of regular structure—carbosilane dendrimers of zero, third, and sixth generations—has been studied by small-angle X-ray scattering (SAXS) in solution. The use of modern methods of SAXS data interpretation, including ab initio modeling, has made it possible to determine the internal architecture of the dendrimers in dependence of the generation number and the number of cyclosiloxane end groups (forming the shell of dendritic macromolecules) and show dendrimers to be spherical. The structural results give grounds to consider carbosilane dendrimers promising objects for forming crystals with subsequent structural analysis and determining their structure with high resolution, as well as for designing new materials to be used in various dendrimer-based technological applications.
Decades of Data: Extracting Trends from Microgravity Crystallization History
NASA Technical Reports Server (NTRS)
Judge, R. A.; Snell, E. H.; Kephart, R.; vanderWoerd, M.
2004-01-01
The reduced acceleration environment of an orbiting spacecraft has been proposed as an ideal environment for biological crystal growth as the first sounding rocket flight in 1981 many crystallization experiments have flown with some showing improvement and others not. To further explore macromolecule crystal improvement in microgravity we have accumulated data from published reports and reports submitted by 63 missions including the Space Shuttle program, unmanned satellites, the Russian Space Station MIR and sounding rocket experiments. While it is not at this point in time a comprehensive record of all flight crystallization experimental results, there is however sufficient information for emerging trends to be identified. In this study the effects of the acceleration environment, the techniques of crystallization, sample molecular weight and the response of individual macromolecules to microgravity crystallization will be investigated.
Elasticity and Strength of Biomacromolecular Crystals: Lysozyme
NASA Technical Reports Server (NTRS)
Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.
2003-01-01
The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.
NASA Astrophysics Data System (ADS)
McAllister, Devin V.; Wang, Ping M.; Davis, Shawn P.; Park, Jung-Hwan; Canatella, Paul J.; Allen, Mark G.; Prausnitz, Mark R.
2003-11-01
Arrays of micrometer-scale needles could be used to deliver drugs, proteins, and particles across skin in a minimally invasive manner. We therefore developed microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 μm. When solid microneedles were used, skin permeability was increased in vitro by orders of magnitude for macromolecules and particles up to 50 nm in radius. Intracellular delivery of molecules into viable cells was also achieved with high efficiency. Hollow microneedles permitted flow of microliter quantities into skin in vivo, including microinjection of insulin to reduce blood glucose levels in diabetic rats. transdermal drug delivery | skin | microelectromechanical systems | solid microneedle | hollow needle injection
Macromolecule exchange in Cuscuta-host plant interactions.
Kim, Gunjune; Westwood, James H
2015-08-01
Cuscuta species (dodders) are parasitic plants that are able to grow on many different host plants and can be destructive to crops. The connections between Cuscuta and its hosts allow movement of not only water and small nutrients, but also macromolecules including mRNA, proteins and viruses. Recent studies show that RNAs move bidirectionally between hosts and parasites and involve a large number of different genes. Although the function of mobile mRNAs has not been demonstrated in this system, small RNAs are also transmitted and a silencing construct expressed in hosts is able to affect expression of the target gene in the parasite. High throughput sequencing of host-parasite associations has the potential to greatly accelerate understanding of this remarkable interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
CheckMyMetal: a macromolecular metal-binding validation tool
Porebski, Przemyslaw J.
2017-01-01
Metals are essential in many biological processes, and metal ions are modeled in roughly 40% of the macromolecular structures in the Protein Data Bank (PDB). However, a significant fraction of these structures contain poorly modeled metal-binding sites. CheckMyMetal (CMM) is an easy-to-use metal-binding site validation server for macromolecules that is freely available at http://csgid.org/csgid/metal_sites. The CMM server can detect incorrect metal assignments as well as geometrical and other irregularities in the metal-binding sites. Guidelines for metal-site modeling and validation in macromolecules are illustrated by several practical examples grouped by the type of metal. These examples show CMM users (and crystallographers in general) problems they may encounter during the modeling of a specific metal ion. PMID:28291757
The application and use of chemical space mapping to interpret crystallization screening results
Snell, Edward H.; Nagel, Ray M.; Wojtaszcyk, Ann; O’Neill, Hugh; Wolfley, Jennifer L.; Luft, Joseph R.
2008-01-01
Macromolecular crystallization screening is an empirical process. It often begins by setting up experiments with a number of chemically diverse cocktails designed to sample chemical space known to promote crystallization. Where a potential crystal is seen a refined screen is set up, optimizing around that condition. By using an incomplete factorial sampling of chemical space to formulate the cocktails and presenting the results graphically, it is possible to readily identify trends relevant to crystallization, coarsely sample the phase diagram and help guide the optimization process. In this paper, chemical space mapping is applied to both single macromolecules and to a diverse set of macromolecules in order to illustrate how visual information is more readily understood and assimilated than the same information presented textually. PMID:19018100
The application and use of chemical space mapping to interpret crystallization screening results.
Snell, Edward H; Nagel, Ray M; Wojtaszcyk, Ann; O'Neill, Hugh; Wolfley, Jennifer L; Luft, Joseph R
2008-12-01
Macromolecular crystallization screening is an empirical process. It often begins by setting up experiments with a number of chemically diverse cocktails designed to sample chemical space known to promote crystallization. Where a potential crystal is seen a refined screen is set up, optimizing around that condition. By using an incomplete factorial sampling of chemical space to formulate the cocktails and presenting the results graphically, it is possible to readily identify trends relevant to crystallization, coarsely sample the phase diagram and help guide the optimization process. In this paper, chemical space mapping is applied to both single macromolecules and to a diverse set of macromolecules in order to illustrate how visual information is more readily understood and assimilated than the same information presented textually.
Van Berkel, Gary J; Kertesz, Vilmos; Boeltz, Harry
2017-11-01
The aim of this work was to demonstrate and evaluate the analytical performance of coupling the immediate drop on demand technology to a mass spectrometer via the recently introduced open port sampling interface and ESI. Methodology & results: A maximum sample analysis throughput of 5 s per sample was demonstrated. Signal reproducibility was 10% or better as demonstrated by the quantitative analysis of propranolol and its stable isotope-labeled internal standard propranolol-d7. The ability of the system to multiply charge and analyze macromolecules was demonstrated using the protein cytochrome c. This immediate drop on demand technology/open port sampling interface/ESI-MS combination allowed for the quantitative analysis of relatively small mass analytes and was used for the identification of macromolecules like proteins.
Perez-Rea, Daysi; Zielke, Claudia; Nilsson, Lars
2017-07-14
Starch and hence, amylopectin is an important biomacromolecule in both the human diet as well as in technical applications. Therefore, accurate and reliable analytical methods for its characterization are needed. A suitable method for analyzing macromolecules with ultra-high molar mass, branched structure and high polydispersity is asymmetric flow field-flow fractionation (AF4) in combination with multiangle light scattering (MALS) detection. In this paper we illustrate how co-elution of low quantities of very large analytes in AF4 may cause disturbances in the MALS data which, in turn, causes an overestimation of the size. Furthermore, it is shown how pre-injection filtering of the sample can improve the results. Copyright © 2017 Elsevier B.V. All rights reserved.
Size-exclusion chromatography system for macromolecular interaction analysis
Stevens, Fred J.
1988-01-01
A low pressure, microcomputer controlled system employing high performance liquid chromatography (HPLC) allows for precise analysis of the interaction of two reversibly associating macromolecules such as proteins. Since a macromolecular complex migrates faster than its components during size-exclusion chromatography, the difference between the elution profile of a mixture of two macromolecules and the summation of the elution profiles of the two components provides a quantifiable indication of the degree of molecular interaction. This delta profile is used to qualitatively reveal the presence or absence of significant interaction or to rank the relative degree of interaction in comparing samples and, in combination with a computer simulation, is further used to quantify the magnitude of the interaction in an arrangement wherein a microcomputer is coupled to analytical instrumentation in a novel manner.
Polymerization as a Model Chain Reaction
ERIC Educational Resources Information Center
Morton, Maurice
1973-01-01
Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)
NASA Astrophysics Data System (ADS)
Miyata, Y.; Sawada, K.; Nakamura, H.; Takashima, R.; Takahashi, M.
2014-12-01
Resistant macromolecules composing living plant tissues tend to be preserved through degradation and diagenesis, hence constituate major parts of sedimentary plant-derived organic matter (kerogen), and their monomer compositions vary widely among different plant taxa, organs and growth stages. Thus, analysis of such macromolecule may serve as new technique for paleobotanical evaluation distinctive from classical paleobotnical studies depends on morphological preservation of fossils. In the present study, we analyzed plant fossils and kerogens in sediments from the Cretaceous strata in Japan to examine chemotaxonomic characteristics of fossil macromolecules and to reconstruct paleovegetation change by kerogen analysis. The kerogens were separated from the powdered sediments of Cretaceous Yezo Group, Hokkaido, Japan. All kerogens have been confirmed to be mostly originated from land plant tissues by microscopic observation. Mummified angiosperm and gymnosperm fossil leaves were separated from carbonaceous sandstone of the Cretaceous Ashizawa Formation, Futaba Group. The kerogens and plant fossils were extracted with methanol and dichloromethane, and were subsequently refluxed under 110°C to remove free compounds completely. The residues are hydrolyzed by KOH/methanol under 110°C. These released compounds are analyzed by GC-MS. As main hydrolyzed products (ester-bound molecular units) from all kerogens, C10-C28 n-alkanoic acids and C10-C30 n-alkanols were detected. Recent studies on the hydrolysis products of plant tissues suggested the long chain (>C20) n-alkanols were predominantly abundant in deciduous broadleaved angiosperms. Correspondingly, the stratigraphic variation of the ratios of long chain (>C20) n-alkanols to fatty acids was concordant with the variation of angiosperm/gymnosperm ratios recorded by land plant-derived terpenoid biomarkers. In addition, we found that the long chain n-alkanols/fatty acids ratio in the angiosperm fossil leaf was significantly higher than that of conifer fossil leaf from Ashizawa coal bed. From these results, we propose that the proportions of long chain n-alkanols released from terrigenous kerogens are applicable for paleovegetation reconstruction.
ERIC Educational Resources Information Center
Friedstein, Harriet G., Ed.
1982-01-01
Reviews three audiovisual instructional aids, providing information on time, format, catalog number, price, and supplier. "Distillation: Simple and Fractional,""The Periodic Table," and "Manmade Macromolecules" are considered to be excellent materials for secondary school chemistry classes. (JN)
Purification of polymorphic components of complex genomes
Stodolsky, Marvin
1991-01-01
A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments.
Purification of polymorphic components of complex genomes
Stodolsky, M.
1988-01-21
A method for processing related subject and reference macromolecule composed of complementary strand into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 fig.
75 FR 53271 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... invite comments on the question of whether instruments of equivalent scientific value, for the purposes... structure of biological macromolecules, which will be observed under cryogenic conditions. Justification for...
Progress in developing Poisson-Boltzmann equation solvers
Li, Chuan; Li, Lin; Petukh, Marharyta; Alexov, Emil
2013-01-01
This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nano-objects. PMID:24199185
Ocular delivery of macromolecules
Kim, Yoo-Chun; Chiang, Bryce; Wu, Xianggen; Prausnitz, Mark R.
2014-01-01
Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non--invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance. PMID:24998941
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Xuyi; Taraban, Marc B.; Hyland, Laura L.
2012-10-05
In making defect-free macromolecules, the challenge occurs during chemical synthesis. This challenge is especially pronounced in dendrimer synthesis where exponential growth quickly leads to steric congestion. To overcome this difficulty, proportionate branching in dendrimer growth is proposed. In proportionate branching, both the number and the length of branches increase exponentially but in opposite directions to mimic tree growth. The effectiveness of this strategy is demonstrated through the synthesis of a fluorocarbon dendron containing 243 chemically identical fluorine atoms with a MW of 9082 Da. Monodispersity is confirmed by nuclear magnetic resonance spectroscopy, mass spectrometry, and small-angle X-ray scattering. Moreover, growingmore » different parts proportionately, as nature does, could be a general strategy to achieve defect-free synthesis of macromolecules.« less
Recent advances in oxidative valorization of lignin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ruoshui; Guo, Mond; Zhang, Xiao
Lignin, an aromatic macromolecule synthesized by all higher plants, is one of the most intriguing natural materials for utilization across a wide range of applications. Depolymerization and fragmentation of lignin into small chemicals constituents which can either replace current market products or be used building blocks for new material synthesis is a focus of current lignin valorization strategies. And among the variety of lignin degradation chemistries, catalytic oxidation of lignin presents an energy efficient means of lignin depolymerization and generating selective reaction products. Our review provides a summary of the recent advancements in oxidative lignin valorization couched in a discussionmore » on how these chemistries may contribute to the degradation of the lignin macromolecule through three major approaches: 1) inter-unit linkages cleavage; 2) propanyl side-chain oxidative modification; and 3) oxidation of the aromatic ring and ring cleavage reactions.« less
Herwadkar, Anushree; Banga, Ajay K
2012-03-01
A large number of biopharmaceuticals and other macromolecules are being developed for therapeutic applications. Conventional oral delivery is not always possible due to first-pass metabolism and degradation in the GI tract. Parenteral delivery is invasive and has poor patient compliance. Transdermal delivery provides one attractive route of administration. Transdermal administration can achieve the continuous and non-invasive delivery of drugs. However, passive transdermal delivery is restricted to small lipophilic molecules. Active physical-enhancement technologies are being investigated to increase the scope of transdermal delivery to hydrophilic molecules and macromolecules. Recent developments in transdermal technologies, such as microporation, iontophoresis and sonophoresis can enable therapeutic delivery of many drug molecules, biopharmaceuticals, cosmeceuticals and vaccines. This review provides an update of recent developments in transdermal delivery focusing on physical-enhancement technologies.
Recent advances in oxidative valorization of lignin
Ma, Ruoshui; Guo, Mond; Zhang, Xiao
2017-07-21
Lignin, an aromatic macromolecule synthesized by all higher plants, is one of the most intriguing natural materials for utilization across a wide range of applications. Depolymerization and fragmentation of lignin into small chemicals constituents which can either replace current market products or be used building blocks for new material synthesis is a focus of current lignin valorization strategies. And among the variety of lignin degradation chemistries, catalytic oxidation of lignin presents an energy efficient means of lignin depolymerization and generating selective reaction products. Our review provides a summary of the recent advancements in oxidative lignin valorization couched in a discussionmore » on how these chemistries may contribute to the degradation of the lignin macromolecule through three major approaches: 1) inter-unit linkages cleavage; 2) propanyl side-chain oxidative modification; and 3) oxidation of the aromatic ring and ring cleavage reactions.« less
Like-charge attraction in a one-dimensional setting: the importance of being odd
NASA Astrophysics Data System (ADS)
Trizac, Emmanuel; Téllez, Gabriel
2018-03-01
From cement cohesion to DNA condensation, a proper statistical physics treatment of systems with long-range forces is important for a number of applications in physics, chemistry, and biology. We compute here the effective force between fixed charged macromolecules, screened by oppositely charged mobile ions (counterions). We treat the problem in a one-dimensional configuration that allows for interesting discussion and derivation of exact results, remaining at a level of mathematical difficulty compatible with an undergraduate course. Emphasis is put on the counterintuitive but fundamental phenomenon of like-charge attraction, which our treatment brings for the first time to the level of undergraduate teaching. The parity of the number of counterions is shown to play a prominent role, which sheds light on the binding mechanism at work when like-charge macromolecules do attract.
Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors
Singer, A.; Zhao, Z.; Shkolnisky, Y.; Hadani, R.
2012-01-01
The cryo-electron microscopy (cryo-EM) reconstruction problem is to find the three-dimensional structure of a macromolecule given noisy versions of its two-dimensional projection images at unknown random directions. We introduce a new algorithm for identifying noisy cryo-EM images of nearby viewing angles. This identification is an important first step in three-dimensional structure determination of macromolecules from cryo-EM, because once identified, these images can be rotationally aligned and averaged to produce “class averages” of better quality. The main advantage of our algorithm is its extreme robustness to noise. The algorithm is also very efficient in terms of running time and memory requirements, because it is based on the computation of the top few eigenvectors of a specially designed sparse Hermitian matrix. These advantages are demonstrated in numerous numerical experiments. PMID:22506089
How cryo‐electron microscopy and X‐ray crystallography complement each other
Wang, Jia‐Wei
2016-01-01
Abstract With the ability to resolve structures of macromolecules at atomic resolution, X‐ray crystallography has been the most powerful tool in modern structural biology. At the same time, recent technical improvements have triggered a resolution revolution in the single particle cryo‐EM method. While the two methods are different in many respects, from sample preparation to structure determination, they both have the power to solve macromolecular structures at atomic resolution. It is important to understand the unique advantages and caveats of the two methods in solving structures and to appreciate the complementary nature of the two methods in structural biology. In this review we provide some examples, and discuss how X‐ray crystallography and cryo‐EM can be combined in deciphering structures of macromolecules for our full understanding of their biological mechanisms. PMID:27543495
How cryo-electron microscopy and X-ray crystallography complement each other.
Wang, Hong-Wei; Wang, Jia-Wei
2017-01-01
With the ability to resolve structures of macromolecules at atomic resolution, X-ray crystallography has been the most powerful tool in modern structural biology. At the same time, recent technical improvements have triggered a resolution revolution in the single particle cryo-EM method. While the two methods are different in many respects, from sample preparation to structure determination, they both have the power to solve macromolecular structures at atomic resolution. It is important to understand the unique advantages and caveats of the two methods in solving structures and to appreciate the complementary nature of the two methods in structural biology. In this review we provide some examples, and discuss how X-ray crystallography and cryo-EM can be combined in deciphering structures of macromolecules for our full understanding of their biological mechanisms. © 2016 The Protein Society.
Specificity of marine microbial surface interactions.
Imam, S H; Bard, R F; Tosteson, T R
1984-01-01
The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293
Effect of D-002 on gastric mucus composition in ethanol-induced ulcer.
Carbajal, D; Molina, V; Noa, M; Valdés, S; Arruzazabala, M L; Aguilar, C; Más, R
2000-10-01
This study was designed to determine the effect of D-002, a natural product isolated and purified from beeswax (Apis mellifera), on gastric mucus composition on ethanol-induced ulcer in rats. The morphology of the lesions was analysed histologically, and morphometric analysis of gastric-gland content in total glycoprotein and sulphated macromolecules were done. Oral pretreatment with D-002 at 5 and 25 mgkg(-1)1 before oral administration of ethanol at 60%, produced a significant increase in the amount of gastric mucus and total protein. The histomorphometric evaluation of the gastric damage at the same doses showed a significant increase in neutral glycoproteins and sulfated macromolecules. It is concluded that enhancement of the quantity and quality of the mucus could partly explain the gastroprotective effect of D-002. Copyright 2000 Academic Press.
Seto, Jennifer E; Polat, Baris E; Lopez, Renata F V; Blankschtein, Daniel; Langer, Robert
2010-07-01
The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700microm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules. 2010 Elsevier B.V. All rights reserved.
Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I
2017-01-01
Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050
Suberin: the biopolyester at the frontier of plants
NASA Astrophysics Data System (ADS)
Graça, José
2015-10-01
Suberin is a lipophilic macromolecule found in specialized plant cell walls, wherever insulation or protection towards the surroundings is needed. Suberized cells form the periderm, the tissue that envelops secondary stems as part of the bark, and develop as the sealing tissue after wounding or leaf abscission. Suberin is a complex polyester built from poly-functional long-chain fatty acids (suberin acids) and glycerol. The suberin acids composition of a number of plant tissues and species is now established, but how the polyester macromolecule is assembled within the suberized cell walls is not known. In the last years contributions from several areas have however significantly enriched our understanding of suberin. The primary structure of the polyester, i.e. how the suberin acids and glycerol are sequentially linked was revealed, together with the stereochemistry of the mid-chain functional groups some suberin acids have; solid-state NMR studies showed the presence of methylene chains spatially separated and with different molecular mobility; biophysical studies showed the membrane behaviour of suberin acids derivatives, allowing new insights on structure-properties relationships; and a number of candidate genes were conclusively related to suberin biosynthesis. The comprehension of suberin as a macromolecule will be essential to understand its vital protective roles in plants and how they will deal with eventual environmental changes. Suberin is also expected to be a source for high-performing bio-based chemicals, taking advantage of the structural uniqueness of their constituent suberin acids.
Hydrodynamic properties of human cervical-mucus glycoproteins in 6M-guanidinium chloride.
Sheehan, J K; Carlstedt, I
1984-01-01
Cervical mucins and fragments thereof were studied by sedimentation-velocity, rotatory viscometry and laser light-scattering performed as photon-correlation spectroscopy as well as low-angle total-intensity measurements. The Mr of the whole mucins is 10 X 10(6)-15 X 10(6), whereas fragments obtained after reduction of disulphide bonds ('subunits') have Mr 2.1 X 10(6)-2.9 X 10(6), depending on the method used. Subsequent trypsin digestion of subunits afforded glycopeptides with Mr approx. 0.4 X 10(6). The high frictional ratio for the whole mucins is interpreted as a large degree of expansion. The Stokes radius calculated from the diffusion coefficient is approx. 110nm for the whole mucins, which is in agreement with that estimated from the radius of gyration (130nm) by using the concept of the equivalent hydrodynamic sphere. The ratio of the concentration-dependence parameter for the reciprocal sedimentation coefficient (Ks) to the intrinsic viscosity ( [eta] ) for the whole mucins is 1.42, suggesting that the individual macromolecule occupies a spheroidal domain in solution. The relationship between [eta] and Mr for whole mucins, subunits and T-domains suggests that they are linear flexible macromolecules behaving as somewhat 'stiff' random coils. This conclusion is supported by the relationships between the sedimentation coefficients, the diffusion coefficients and the Mr. The hydrodynamic behaviour of the mucins is thus close to that expected for coiling macromolecules entrapping a lot of solvent, which is consistent with the postulated polymeric structure. PMID:6696734
Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; ...
2015-10-13
Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed formore » labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.« less
Freeze-thaw and high-voltage discharge allow macromolecule uptake into ileal brush-border vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donowitz, M.; Emmer, E.; McCullen, J.
1987-06-01
High-voltage discharge or one cycle of freeze-thawing are shown to transiently permeabilize rabbit ileal brush-border membrane vesicles to macromolecules. Uptake of the radiolabeled macromolecule dextran, mol wt 70,000, used as a marker for vesicle permeability, was determined by a rapid filtration technique, with uptake defined as substrate associated with the vesicle and releasable after incubation of vesicles with 0.1% saponin. Dextran added immediately after electric shock (2000 V) or at the beginning of one cycle of freeze-thawing was taken up approximately eightfold compared with control. ATP also was taken up into freeze-thawed vesicles, whereas there was no significant uptake intomore » control vesicles. The increase in vesicle permeability was reversible, based on Na-dependent D-glucose uptake being decreased when studied 5 but not 15 min after electric shock, and was not significantly decreased after completion of one cycle of freeze-thawing. In addition, adenosine 3',5'-cyclic monophosphate and Ca/sup 2 +/-calmodulin-dependent protein kinase activity were similar in control vesicles and vesicles exposed to high-voltage discharge or freeze-thawing. Also, vesicles freeze-thawed with (/sup 32/P)ATP demonstrated increased phosphorylation compared with nonfrozen vesicles, while freeze-thawing did not alter vesicle protein as judged by Coomassie blue staining. These techniques should allow intestinal membrane vesicles to be used for studies of intracellular control of transport processes, for instance, studies of protein kinase regulation of transport.« less
Moussavi-Baygi, R.; Mofrad, M. R. K.
2016-01-01
Conformational behavior of intrinsically disordered proteins, such as Phe-Gly repeat domains, alters drastically when they are confined in, and tethered to, nan channels. This has challenged our understanding of how they serve to selectively facilitate translocation of nuclear transport receptor (NTR)-bearing macromolecules. Heterogeneous FG-repeats, tethered to the NPC interior, nonuniformly fill the channel in a diameter-dependent manner and adopt a rapid Brownian motion, thereby forming a porous and highly dynamic polymeric meshwork that percolates in radial and axial directions and features two distinguishable zones: a dense hydrophobic rod-like zone located in the center, and a peripheral low-density shell-like zone. The FG-meshwork is locally disrupted upon interacting with NTR-bearing macromolecules, but immediately reconstructs itself between 0.44 μs and 7.0 μs, depending on cargo size and shape. This confers a perpetually-sealed state to the NPC, and is solely due to rapid Brownian motion of FG-repeats, not FG-repeat hydrophobic bonds. Elongated-shaped macromolecules, both in the presence and absence of NTRs, penetrate more readily into the FG-meshwork compared to their globular counterparts of identical volume and surface chemistry, highlighting the importance of the shape effects in nucleocytoplasmic transport. These results can help our understanding of geometrical effects in, and the design of, intelligent and responsive biopolymer-based materials in nanofiltration and artificial nanopores. PMID:27470900
Al-Azawi, Khalida F; Al-Baghdadi, Shaimaa B; Mohamed, Ayad Z; Al-Amiery, Ahmed A; Abed, Talib K; Mohammed, Salam A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2016-01-01
The acid corrosion inhibition process of mild steel in 1 M HCl by 4-[(2-amino-1, 3, 4-thiadiazol-5-yl)methoxy]coumarin (ATC), has been investigated using weight loss technique and scanning electron microscopy (SEM). ATC was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared and nuclear magnetic resonance spectroscopy). The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. The adsorption equilibrium constant (K) and standard free energy of adsorption (ΔGads) were calculated. Quantum chemical parameters such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in both the EHOMO and μ values but with a decrease in the ELUMO value. Our research show that the synthesized macromolecule represents an excellent inhibitor for materials in acidic solutions. The efficiency of this macromolecule had maximum inhibition efficiency up to 96 % at 0.5 mM and diminishes with a higher temperature degree, which is revealing of chemical adsorption. An inhibitor molecule were absorbed by metal surface and follow Langmuir isotherms low and establishes an efficient macromolecule inhibitor having excellent inhibitive properties due to entity of S (sulfur) atom, N (nitrogen) atom and O (oxygen) atom.
Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials
NASA Astrophysics Data System (ADS)
Hernani; Mudzakir, A.; Sumarna, O.
2017-02-01
This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.
1978-01-01
A series of specific macromolecules (tetanus toxin, cholera toxin, nerve growth factor [NGF], and several lectins) have been shown to be transported retrogradely with high selectivity from terminals to cell bodies in various types of neurons. Under identical experimental conditions (low protein concentrations injected), most other macromolecules, e.g. horseradish peroxidase (HRP), albumin, ferritin, are not transported in detectable amounts. In the present EM study, we demonstrate selective binding of tetanus toxin to the surface membrane of nerve terminals, followed by uptake and subsequent retorgrade axonal transport. Tetanus toxin or albumin was adsorbed to colloidal gold particles (diam 200 A). The complex was shown to be stable and well suited as an EM tracer. 1-4 h after injection into the anterior eye chamber of adult rats, tetanus toxin-gold particles were found to be selectively associated with membranes of nerve terminals and preterminal axons. Inside terminals and axons, the tracer was localized mainly in smooth endoplasmic reticulum (SER)-like membrane compartments. In contrast, association of albumin-gold complexes with nervous structures was never observed, in spite of extensive uptake into fibroblasts. Electron microscope and biochemical experiments showed selective retrograde transport of tetanus toxin-gold complexes to the superior cervical ganglion. Specific binding to membrane components at nerve terminals and subsequent internalization and retrograde transport may represent an important pathway for macromolecules carrying information from target organs to the perikarya of their innervating neurons. PMID:659508
NASA Astrophysics Data System (ADS)
Tretiak, Sergei
2014-03-01
The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.
Chains are more flexible under tension
Carrillo, Jan-Michael Y.; Rubinstein, Michael
2010-01-01
The mechanical response of networks, gels, and brush layers is a manifestation of the elastic properties of the individual macromolecules. Furthermore, the elastic response of macromolecules to an applied force is the foundation of the single-molecule force spectroscopy techniques. The two main classes of models describing chain elasticity include the worm-like and freely-jointed chain models. The selection between these two classes of models is based on the assumptions about chain flexibility. In many experimental situations the choice is not clear and a model describing the crossover between these two limiting classes is therefore in high demand. We are proposing a unified chain deformation model which describes the force-deformation curve in terms of the chain bending constant K and bond length b. This model demonstrates that the worm-like and freely-jointed chain models correspond to two different regimes of polymer deformation and the crossover between these two regimes depends on the chain bending rigidity and the magnitude of the applied force. Polymer chains with bending constant K>1 behave as a worm-like chain under tension in the interval of the applied forces f ≤ KkBT/b and as a freely-jointed chain for f ≥ KkBT/b (kB is the Boltzmann constant and T is the absolute temperature). The proposed crossover expression for chain deformation is in excellent agreement with the results of the molecular dynamics simulations of chain deformation and single-molecule deformation experiments of biological and synthetic macromolecules. PMID:21415940
Nedredal, Geir I; Elvevold, Kjetil; Chedid, Marcio F; Ytrebø, Lars M; Rose, Christopher F; Sen, Sambit; Smedsrød, Bård; Jalan, Rajiv; Revhaug, Arthur
2016-01-01
Pulmonary complications are common in acute liver failure (ALF). The role of the lungs in the uptake of harmful soluble endogenous macromolecules was evaluated in a porcine model of ALF induced by hepatic devascularization (n = 8) vs. controls (n = 8). In additional experiments, pulmonary uptake was investigated in healthy pigs. Fluorochrome-labeled modified albumin (MA) was applied to investigate the cellular uptake. As compared to controls, the ALF group displayed a 4-fold net increased lung uptake of hyaluronan, and 5-fold net increased uptake of both tissue plasminogen activator and lysosomal enzymes. Anatomical distribution experiments in healthy animals revealed that radiolabeled MA uptake (taken up by the same receptor as hyaluronan) was 53% by the liver, and 24% by the lungs. The lung uptake of LPS was 14% whereas 60% remained in the blood. Both fluorescence and electron microscopy revealed initial uptake of MA by pulmonary endothelial cells (PECs) with later translocation to pulmonary intravascular macrophages (PIMs). Moreover, the presence of PIMs was evident 10 min after injection. Systemic inflammatory markers such as leukopenia and increased serum TNF-α levels were evident after 20 min in the MA and LPS groups. Significant lung uptake of harmful soluble macromolecules compensated for the defect liver scavenger function in the ALF-group. Infusion of MA induced increased TNF-α serum levels and leukopenia, similar to the effect of the known inflammatory mediator LPS. These observations suggest a potential mechanism that may contribute to lung damage secondary to liver disease.
Shiraishi, Kouichi; Wang, Zuojun; Kokuryo, Daisuke; Aoki, Ichio; Yokoyama, Masayuki
2017-05-10
Blood-brain barrier (BBB) opening is a key phenomenon for understanding ischemia-reperfusion injuries that are directly linked to hemorrhagic transformation. The recombinant human tissue-type plasminogen activator (rtPA) increases the risk of symptomatic intracranial hemorrhages. Recent imaging technologies have advanced our understanding of pathological BBB disorders; however, an ongoing challenge in the pre-"rtPA treatment" stage is the task of developing a rigorous method for hemorrhage-risk assessments. Therefore, we examined a novel method for assessment of rtPA-extravasation through a hyper-permeable BBB. To examine the image diagnosis of rtPA-extravasation for a rat transient occlusion-reperfusion model, in this study we used a polymeric micelle MRI contrast-agent (Gd-micelles). Specifically, we used two MRI contrast agents at 1h after reperfusion. Gd-micelles provided very clear contrast images in 15.5±10.3% of the ischemic hemisphere at 30min after i.v. injection, whereas a classic gadolinium chelate MRI contrast agent provided no satisfactorily clear images. The obtained images indicate both the hyper-permeable BBB area for macromolecules and the distribution area of macromolecules in the ischemic hemisphere. Owing to their large molecular weight, Gd-micelles remained in the ischemic hemisphere through the hyper-permeable BBB. Our results indicate the feasibility of a novel clinical diagnosis for evaluating rtPA-related hemorrhage risks. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza
2018-07-01
Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.
Stabilization and Anomalous Hydration of Collagen Fibril under Heating
Gevorkian, Sasun G.; Allahverdyan, Armen E.; Gevorgyan, David S.; Simonian, Aleksandr L.; Hu, Chin-Kun
2013-01-01
Background Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones) and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. Methodology/Principal Finding When heating a native fibril sample, its Young’s modulus decreases in temperature range 20–58°C due to partial denaturation of triple-helices, but it is approximately constant at 58–75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58–75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. Conclusion/Significance We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen. PMID:24244320
EDITORIAL: SPECTROSCOPIC IMAGING
A foremost goal in biology is understanding the molecular basis of single cell behavior, as well as cell interactions that result in functioning tissues. Accomplishing this goal requires quantitative analysis of multiple, specific macromolecules (e.g. proteins, ligands and enzyme...
Purification of polymorphic components of complex genomes
Stodolsky, M.
1991-07-16
A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 figure.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.
2015-01-01
Carbonates can potentially provide sites for organic materials to accrue and develop into complex macromolecules. This study examines the organics associated with carbonates in carbonaceous chondrites using micron-Raman imaging.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.
2015-01-01
Carbonates can potentially provide sites for organic materials to accrue and develop into complex macromolecules. This study examines the organics associated with carbonates in carbonaceous chondrites using µ-Raman imaging.
Nanostructured Membranes for Enzyme Catalysis and Green Synthesis of Nanoparticles
Macroporous membranes functionalized with ionizable macromolecules provide promising applications in toxic metal capture at high capacity, nanoparticle synthesis, and catalysis. Our low-pressure membrane approach is marked by reaction and separation selectivity and their tunabil...
Nanostructured Membranes for Green Synthesis of Nanoparticles and Enzyme Catalysis
Macroporous membranes functionalized with ionizable macromolecules provide promising applications in toxic metal capture at high capacity, nanoparticle synthesis, and catalysis. Our low‐pressure membrane approach is marked by reaction and separation selectivity and their tunabili...
Innovative NMR strategies for complex macromolecules
USDA-ARS?s Scientific Manuscript database
In recent years there has been an increasing research emphasis on complex macromolecular systems. These include polymers with precise control of structures, multicomponent systems with higher degrees of organization, polymers involved in micelles, interfaces, and confined environments, nanochemistr...
Electrostatic potential of B-DNA: effect of interionic correlations.
Gavryushov, S; Zielenkiewicz, P
1998-01-01
Modified Poisson-Boltzmann (MPB) equations have been numerically solved to study ionic distributions and mean electrostatic potentials around a macromolecule of arbitrarily complex shape and charge distribution. Results for DNA are compared with those obtained by classical Poisson-Boltzmann (PB) calculations. The comparisons were made for 1:1 and 2:1 electrolytes at ionic strengths up to 1 M. It is found that ion-image charge interactions and interionic correlations, which are neglected by the PB equation, have relatively weak effects on the electrostatic potential at charged groups of the DNA. The PB equation predicts errors in the long-range electrostatic part of the free energy that are only approximately 1.5 kJ/mol per nucleotide even in the case of an asymmetrical electrolyte. In contrast, the spatial correlations between ions drastically affect the electrostatic potential at significant separations from the macromolecule leading to a clearly predicted effect of charge overneutralization. PMID:9826596
Insulin in human milk and the prevention of type 1 diabetes.
Shehadeh, N; Shamir, R; Berant, M; Etzioni, A
2001-12-01
Although controversial, exclusive breast milk feeding was shown to exert a protective effect in preventing type 1 diabetes. In contrast, an early introduction of cow's milk-based formula in young infants may enhance the risk of disease, especially in genetically susceptible children, presumably by an increase of intestinal permeability to macromolecules such as bovine serum albumin and beta-casein, which may arouse autoimmunity. We have shown that human milk contains insulin in substantial concentrations, while insulin is barely detectable (if at all) in infant formulas. Orally administered insulin was demonstrated to promote gut maturation and to reduce intestinal permeability to macromolecules. Furthermore, oral insulin may induce tolerance to insulin and protect against the development of type 1 diabetes. We herewith raise a hypothesis that human milk is protective against the development of type 1 diabetes by virtue of the effects of its substantial content of insulin.
Structure and interactions of biological helices
NASA Astrophysics Data System (ADS)
Kornyshev, Alexei A.; Lee, Dominic J.; Leikin, Sergey; Wynveen, Aaron
2007-07-01
Helices are essential building blocks of living organisms, be they molecular fragments of proteins ( α -helices), macromolecules (DNA and collagen), or multimolecular assemblies (microtubules and viruses). Their interactions are involved in packing of meters of genetic material within cells and phage heads, recognition of homologous genes in recombination and DNA repair, stability of tissues, and many other processes. Helical molecules form a variety of mesophases in vivo and in vitro. Recent structural studies, direct measurements of intermolecular forces, single-molecule manipulations, and other experiments have accumulated a wealth of information and revealed many puzzling physical phenomena. It is becoming increasingly clear that in many cases the physics of biological helices cannot be described by theories that treat them as simple, unstructured polyelectrolytes. The present article focuses on the most important and interesting aspects of the physics of structured macromolecules, highlighting various manifestations of the helical motif in their structure, elasticity, interactions with counterions, aggregation, and poly- and mesomorphic transitions.
Varakin, A I; Mazur, V V; Arkhipova, N V; Serianov, Iu V
2009-01-01
Mathematical models of the transfer of charged macromolecules have been constructed on the basis of the classical equations of electromigration diffusion of Helmholtz-Smolukhovskii, Goldman, and Goldman-Hodgkin-Katz. It was shown that ion transfer in placental (mimicking lipid-protein barriers) and muscle barriers occurs by different mechanisms. In placental barriers, the electromigration diffusion occurs along lipid-protein channels formed due to the conformational deformation of phospholipid and protein molecules with the coefficients of diffusion D = (2.6-3.6) x 10(-8) cm2/s. The transfer in muscle barriers is due to the migration across charged interfibrillar channels with the negative diffusion activation energy, which is explained by changes in the structure of muscle fibers and expenditures of thermal energy for the extrusion of Cl- from channel walls with the diffusion coefficient D = (6.0-10.0) x 10(-6) cm2/s.
Microgravity protein crystallization
McPherson, Alexander; DeLucas, Lawrence James
2015-01-01
Over the past 20 years a variety of technological advances in X-ray crystallography have shortened the time required to determine the structures of large macromolecules (i.e., proteins and nucleic acids) from several years to several weeks or days. However, one of the remaining challenges is the ability to produce diffraction-quality crystals suitable for a detailed structural analysis. Although the development of automated crystallization systems combined with protein engineering (site-directed mutagenesis to enhance protein solubility and crystallization) have improved crystallization success rates, there remain hundreds of proteins that either cannot be crystallized or yield crystals of insufficient quality to support X-ray structure determination. In an attempt to address this bottleneck, an international group of scientists has explored use of a microgravity environment to crystallize macromolecules. This paper summarizes the history of this international initiative along with a description of some of the flight hardware systems and crystallization results. PMID:28725714
Decades of Data: Extracting Trends from Microgravity Crystallization History
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, Edward H.; Kephart, Richard; vanderWoerd, Mark; Curreri, Peter A. (Technical Monitor)
2002-01-01
The reduced acceleration environment of an orbiting spacecraft has been posited as an ideal environment for biological crystal growth since buoyancy driven convection and sedimentation are greatly reduced. Since the first sounding rocket flight in 1981 many crystallization experiments have flown with some showing improvement and others not. To further explore macromolecule crystal improvement in microgravity we have accumulated data from published reports and reports submitted by individual investigators to NASA, forming a database called BIOSEArCH (Biological Space Experiment Archive of Crystallization History). To date it contains information from 63 missions including, the Space Shuttle program, unmanned satellites, the Russian Space Station MIR and sounding rocket experiments, containing reports for more than 736 macromolecule experiments. While it is not at this point in time a comprehensive record of all flight crystallization experimental results, there is however sufficient information for emerging trends to be identified. These trends will be highlighted.
Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)
NASA Astrophysics Data System (ADS)
Wu, Tao; Efimenko, Kirill; Genzer, Jan
2001-03-01
We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.
Ligand field theory and the origin of life as an emergent feature of the periodic table of elements.
Morowitz, Harold J; Srinivasan, Vijayasarathy; Smith, Eric
2010-08-01
The assumption that all biological catalysts are either proteins or ribozymes leads to an outstanding enigma of biogenesis-how to determine the synthetic pathways to the monomers for the efficient formation of catalytic macromolecules in the absence of any such macromolecules. The last 60 years have witnessed chemists developing an understanding of organocatalysis and ligand field theory, both of which give demonstrable low-molecular-weight catalysts. We assume that transition-metal-ligand complexes are likely to have occurred in the deep ocean trenches by the combination of naturally occurring oceanic metals and ligands synthesized from the emergent CO(2), H(2), NH(3), H(2)S, and H(3)PO(4). We are now in a position to investigate experimentally the metal-ligand complexes, their catalytic function, and the reaction networks that could have played a role in the development of metabolism and life itself.
Comparison of the Single Molecule Dynamics of Linear and Circular DNAs in Planar Extensional Flows
NASA Astrophysics Data System (ADS)
Li, Yanfei; Hsiao, Kai-Wen; Brockman, Christopher; Yates, Daniel; McKenna, Gregory; Schroeder, Charles; San Francisco, Michael; Kornfield, Julie; Anderson, Rae
2015-03-01
Chain topology has a profound impact on the flow behaviors of single macromolecules. The absence of free ends separates circular polymers from other chain architectures, i.e., linear, star, and branched. In the present work, we study the single chain dynamics of large circular and linear DNA molecules by comparing the relaxation dynamics, steady state coil-stretch transition, and transient molecular individualism behaviors for the two types of macromolecules. To this end, large circular DNA molecules were biologically synthesized and studied in a microfluidic device that has a cross-slot geometry to develop a stagnation point extensional flow. Although the relaxation time of rings scales in the same way as for the linear analog, the circular polymers show quantitatively different behaviors in the steady state extension and qualitatively different behaviors during a transient stretch. The existence of some commonality between these two topologies is proposed. Texas Tech University John R. Bradford Endowment.
Iranmanesh, M; Hulliger, J
2017-10-02
The use of strong magnetic field gradients and high magnetic fields generated by permanent magnets or superconducting coils has found applications in many fields such as mining, solid state chemistry, biochemistry and medical research. Lab scale or industrial implementations involve separation of macro- and nanoparticles, cells, proteins, and macromolecules down to small molecules and ions. Most promising are those attempts where the object to be separated is attached to a strong magnetic nanoparticle. Here, all kinds of specific affinity interactions are used to attach magnetic carrier particles to mainly objects of biological interest. Other attempts use a strong paramagnetic suspension for the separation of purely diamagnetic objects, such as bio-macromolecules or heavy metals. The application of magnetic separation to superconducting inorganic phases is of particular interest in combination with ceramic combinatorial chemistry to generate a library of e.g. cuprate superconductors.
Interfacial properties of hydrosoluble polymers. Final report, June 15, 1993--June 15, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
During this period, the authors treated a myriad of problems associated with the interfacial properties of macromolecules. Many of them concerned indirect interactions between surfaces engendered by intervening species. The issues ranged from colloidal forces to membrane induced coupling between embedded macromolecules (membrane-bound proteins). This report presents summaries of the following papers published as a result of this study: membrane interactions with polymers and colloids; escape transitions and force laws for compressed polymer mushrooms; interaction between finite-sized particles and end grafted polymers; one long chain among shorter chains--the Flory approach revisited; conformation of star polymers in high molecular weight solvents;more » membrane-induced interactions between inclusions; filled polymer brushes--a hydrodynamic analogy; polymer adsorption at liquid/air interfaces under lateral pressure; flow induced instability of the interface between a fluid and a gel at low Reynolds number; and fluctuation-induced forces in stacked fluid membranes.« less
Dutta, Sibasish; Saikia, Gunjan Prasad; Sarma, Dhruva Jyoti; Gupta, Kuldeep; Das, Priyanka; Nath, Pabitra
2017-05-01
In this paper the utilization of smartphone as a detection platform for colorimetric quantification of biological macromolecules has been demonstrated. Using V-channel of HSV color space, the quantification of BSA protein, catalase enzyme and carbohydrate (using D-glucose) have been successfully investigated. A custom designed android application has been developed for estimating the total concentration of biological macromolecules. The results have been compared with that of a standard spectrophotometer which is generally used for colorimetric quantification in laboratory settings by measuring its absorbance at a specific wavelength. The results obtained with the designed sensor is found to be similar when compared with the spectrophotometer data. The designed sensor is low cost, robust and we envision that it could promote diverse fields of bio-analytical investigations. Schematic illustration of the smartphone sensing mechanism for colorimetric analysis of biomolecular samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thio-amide functionalized polymers via polymerization or post-polymerization modification
NASA Astrophysics Data System (ADS)
Ozcam, Ali; Henke, Adam; Stibingerova, Iva; Srogl, Jiri; Genzer, Jan
2011-03-01
Decreasing supplies of fresh water and increasing population necessitates development of advanced water cleaning technologies, which would facilitate the removal of water pollutants. Amongst the worst of such contaminants are heavy metals and cyanides, infamous for their high toxicity. To assist the water purification processes, we aim to synthesize functionalized macromolecules that would contribute in the decontamination processes by scavenging detrimental chemicals. Epitomizing this role thio-amide unit features remarkable chemical flexibility that facilitates reversible catch-release of the ions, where the behavior controlled by subtle red-ox changes in the environment. Chemical tunability of the thio-amide moiety enables synthesis of thio-amide based monomers and post-polymerization modification agents. Two distinct synthetic pathways, polymerization and post-polymerization modification, have been exploited, leading to functional thioamide-based macromolecules: thioamide-monomers were copolymerized with N-isopropylacrylamide and post-polymerization modifications of poly(dimethylaminoethyl methacrylate) and poly(propargyl methacrylate) were accomplished via quarternization and ``click'' reactions, respectively.
The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules.
Abou Matar, Tamara; Karam, Pierre
2018-02-01
It is generally accepted that positively charged molecules are the gold standard to by-pass the negatively charged cell membrane. Here, it is shown that cellular uptake is also possible for polymers with negatively charged side chains and hydrophobic backbones. Specifically, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], a conjugated polyelectrolyte with sulfonate, as water-soluble functional groups, is shown to accumulate in the intracellular region. When the polymer hydrophobic backbone is dissolved using polyvinylpyrrolidone, an amphiphilic macromolecule, the cellular uptake is dramatically reduced. The report sheds light on the fine balance between negatively charged side groups and the hydrophobicity of polymers to either enhance or reduce cellular uptake. As a result, these findings will have important ramifications on the future design of targeted cellular delivery nanocarriers for imaging and therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioactive and Porous Metal Coatings for Improved Tissue Regeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, A. A.
Our first objective was to develop the SIM process for the deposition of calcium phosphate films. This process is based on the observation that, in nature, living organisms use macromolecules to control the nucleation and growth of mineral phases. These macromolecules act as templates where various charged functional groups, contained within the molecule, can interact with the ions in the surrounding media, thus stimulating crystal nucleation and growth. Rather than using complex proteins or biopolymers, surface modification schemes were developed to place simple functional groups on the underlying substrate using self-assembling monolayers. Once the substrate was chemically modified, it wasmore » then placed into an aqueous solution containing soluble precursors of the desired mineral coating. Solution pH, ionic concentration and temperature is maintained in a regime where the solution is supersaturated with respect to the desired mineral phase, thereby creating the driving force for nucleation and growth.« less
Luginbühl, P; Güntert, P; Billeter, M; Wüthrich, K
1996-09-01
A new program for molecular dynamics (MD) simulation and energy refinement of biological macromolecules, OPAL, is introduced. Combined with the supporting program TRAJEC for the analysis of MD trajectories, OPAL affords high efficiency and flexibility for work with different force fields, and offers a user-friendly interface and extensive trajectory analysis capabilities. Salient features are computational speeds of up to 1.5 GFlops on vector supercomputers such as the NEC SX-3, ellipsoidal boundaries to reduce the system size for studies in explicit solvents, and natural treatment of the hydrostatic pressure. Practical applications of OPAL are illustrated with MD simulations of pure water, energy minimization of the NMR structure of the mixed disulfide of a mutant E. coli glutaredoxin with glutathione in different solvent models, and MD simulations of a small protein, pheromone Er-2, using either instantaneous or time-averaged NMR restraints, or no restraints.
[Physical methods and molecular biology].
Serdiuk, I N
2009-01-01
The review is devoted to the description of the current state of physical and chemical methods used for studying the structural and functional bases of living processes. Special attention is focused on the physical methods that have opened a new page in the research of the structure of biological macromolecules. They include primarily the methods of detecting and manipulating single molecules using optical and magnetic traps. New physical methods, such as two-dimensional infrared spectroscopy, fluorescence correlation spectroscopy and magnetic resonance microscopy are also analyzed briefly in the review. The path that physics and biology have passed for the latest 55 years shows that there is no single method providing all necessary information on macromolecules and their interactions. Each method provides its space-time view of the system. All physical methods are complementary. It is just complementarity that is the fundamental idea justifying the existence in practice of all physical methods, whose description is the aim of the review.
Work of adhesion between mucin macromolecule and calcium-alginate gels on molecular level.
Popeski-Dimovski, Riste
2015-06-05
The bioadhesion of biopolymers to mucus layers is of great interest for the development of drug delivery systems. Herein we use AFM force measurements to evaluate the interaction on molecular level between a mucin macromolecule attached to an AFM tip and a calcium-alginate gel layer. The total work of adhesion is measured from the AFM force curves depending on different parameters: time of contact, G/M ratio of the alginate, and crosslink ratio of the gel. The total work of adhesion is found to be in the range of 1×10(-19) to 6×10(-18)J. The results show that the work of adhesion increases with the time of contact but it is independent from the molecular mass of the alginate, the G/M ratio of the alginate and crosslink ratio of the gel. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kutuzova, G. D.; Ugarova, N. N.; Berezin, Ilya V.
1984-11-01
The principal structural and physicochemical factors determining the stability of protein macromolecules in solution and the characteristics of the structure of the proteins from thermophilic microorganisms are examined. The mechanism of the changes in the thermal stability of proteins and enzymes after the chemical modification of their functional side groups and the experimental data concerning the influence of chemical modification on the thermal stability of proteins are analysed. The dependence of the stabilisation effect and of the changes in the structure of protein macromolecules on the degree of modification and on the nature of the modified groups and the groups introduced into proteins in the course of modification (their charge and hydrophobic properties) is demonstrated. The great practical value of the method of chemical modification for the preparation of stabilised forms of biocatalysts is shown in relation to specific examples. The bibliography includes 178 references.
Cordier, Christopher; Morton, Daniel; Murrison, Sarah; O'Leary-Steele, Catherine
2008-01-01
The purpose of diversity-oriented synthesis is to drive the discovery of small molecules with previously unknown biological functions. Natural products necessarily populate biologically relevant chemical space, since they bind both their biosynthetic enzymes and their target macromolecules. Natural product families are, therefore, libraries of pre-validated, functionally diverse structures in which individual compounds selectively modulate unrelated macromolecular targets. This review describes examples of diversity-oriented syntheses which have, to some extent, been inspired by the structures of natural products. Particular emphasis is placed on innovations that allow the synthesis of compound libraries that, like natural products, are skeletally diverse. Mimicking the broad structural features of natural products may allow the discovery of compounds that modulate the functions of macromolecules for which ligands are not known. The ability of innovations in diversity-oriented synthesis to deliver such compounds is critically assessed. PMID:18663392
Brain delivery research in public-private partnerships: The IMI-JU COMPACT consortium as an example.
Meyer, Axel H; Untucht, Christopher; Terstappen, Georg C
2017-07-01
The Blood-Brain Barrier (BBB) represents a major hurdle in the development of treatments for CNS disorders due to the fact that it very effectively keeps drugs, especially biological macromolecules, out of the brain. Concomitantly with the increasing importance of biologics research on the BBB and, more specifically, on brain delivery technologies has intensified in recent years. Public-Private Partnerships (PPPs) represent an innovative opportunity to address such complex challenges as they bring together the best expertise from both industry and academia. Here we present the IMI-JU COMPACT (Collaboration on the Optimisation of Macromolecular Pharmaceutical Access to Cellular Targets) consortium working on nanocarriers for targeted delivery of macromolecules as an example. The scope of the consortium, its goals and the expertise within the consortium are outlined. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders". Copyright © 2016 Elsevier Ltd. All rights reserved.
Cooperative polymerization of α-helices induced by macromolecular architecture
NASA Astrophysics Data System (ADS)
Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun
2017-07-01
Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.
Role of semiconductivity and ion transport in the electrical conduction of melanin
Mostert, Albertus B.; Powell, Benjamin J.; Pratt, Francis L.; Hanson, Graeme R.; Sarna, Tadeusz; Gentle, Ian R.; Meredith, Paul
2012-01-01
Melanins are pigmentary macromolecules found throughout the biosphere that, in the 1970s, were discovered to conduct electricity and display bistable switching. Since then, it has been widely believed that melanins are naturally occurring amorphous organic semiconductors. Here, we report electrical conductivity, muon spin relaxation, and electron paramagnetic resonance measurements of melanin as the environmental humidity is varied. We show that hydration of melanin shifts the comproportionation equilibrium so as to dope electrons and protons into the system. This equilibrium defines the relative proportions of hydroxyquinone, semiquinone, and quinone species in the macromolecule. As such, the mechanism explains why melanin at neutral pH only conducts when “wet” and suggests that both carriers play a role in the conductivity. Understanding that melanin is an electronic-ionic hybrid conductor rather than an amorphous organic semiconductor opens exciting possibilities for bioelectronic applications such as ion-to-electron transduction given its biocompatibility. PMID:22615355
Han, Bong-Gyoon; Watson, Zoe; Kang, Hannah; ...
2016-06-15
We describe a rapid and convenient method of growing streptavidin (SA) monolayer crystals directly on holey-carbon EM grids. As expected, these SA monolayer crystals retain their biotin-binding function and crystalline order through a cycle of embedding in trehalose and, later, its removal. This fact allows one to prepare, and store for later use, EM grids on which SA monolayer crystals serve as an affinity substrate for preparing specimens of biological macromolecules. In addition, we report that coating the lipid-tail side of trehalose-embedded monolayer crystals with evaporated carbon appears to improve the consistency with which well-ordered, single crystals are observed tomore » span over entire, 2 μm holes of the support films. Randomly biotinylated 70S ribosomes are used as a test specimen to show that these support films can be used to obtain a high-resolution cryo-EM structure« less
Why did Jacques Monod make the choice of mechanistic determinism?
Loison, Laurent
2015-06-01
The development of molecular biology placed in the foreground a mechanistic and deterministic conception of the functioning of macromolecules. In this article, I show that this conception was neither obvious, nor necessary. Taking Jacques Monod as a case study, I detail the way he gradually came loose from a statistical understanding of determinism to finally support a mechanistic understanding. The reasons of the choice made by Monod at the beginning of the 1950s can be understood only in the light of the general theoretical schema supported by the concept of mechanistic determinism. This schema articulates three fundamental notions for Monod, namely that of the rigidity of the sequence of the genetic program, that of the intrinsic stability of macromolecules (DNA and proteins), and that of the specificity of molecular interactions. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Molchanov, Stanislav; Faizullin, Dzhigangir A; Nesmelova, Irina V
2016-10-06
Translational diffusion is the most fundamental form of transport in chemical and biological systems. The diffusion coefficient is highly sensitive to changes in the size of the diffusing species; hence, it provides important information on the variety of macromolecular processes, such as self-assembly or folding-unfolding. Here, we investigate the behavior of the diffusion coefficient of a macromolecule in the vicinity of heat-induced transition from folded to unfolded state. We derive the equation that describes the diffusion coefficient of the macromolecule in the vicinity of the transition and use it to fit the experimental data from pulsed-field-gradient nuclear magnetic resonance (PFG NMR) experiments acquired for two globular proteins, lysozyme and RNase A, undergoing temperature-induced unfolding. A very good qualitative agreement between the theoretically derived diffusion coefficient and experimental data is observed.
Nazemi, K.; Moztarzadeh, F.; Jalali, N.; Asgari, S.; Mozafari, M.
2014-01-01
The functionality of tissue engineering scaffolds can be enhanced by localized delivery of appropriate biological macromolecules incorporated within biodegradable nanoparticles. In this research, chitosan/58S-bioactive glass (58S-BG) containing poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been prepared and then characterized. The effects of further addition of 58S-BG on the structure of scaffolds have been investigated to optimize the characteristics of the scaffolds for bone tissue engineering applications. The results showed that the scaffolds had high porosity with open pores. It was also shown that the porosity decreased with increasing 58S-BG content. Furthermore, the PLGA nanoparticles were homogenously distributed within the scaffolds. According to the obtained results, the nanocomposites could be considered as highly bioactive bone tissue engineering scaffolds with the potential of localized delivery of biological macromolecules. PMID:24949477
Kulp, John L.; Cloudsdale, Ian S.; Kulp, John L.
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition. PMID:28837642
NASA Astrophysics Data System (ADS)
Kavanagh, John P.; Rao, P. Nagaraj
2007-04-01
The stone farm is a system for measuring macroscopic stone growth of 12 calcium stones simultaneously. It is based on mixed suspension, mixed product removal continuous crystallization principles and the stones are grown continuously for about 500 hours or more. The growth of the stones follows a surface area dependent pattern and the growth rate constants are very similar irrespective of whether the stating materials are fragments of human stone or pieces of marble chip. Increasing citrate from 2mM to 6mM caused a significant growth inhibition which persisted in the presence of urinary macromolecules. Phytate was a very effective inhibitor (about 50% at sub-μM concentrations) but the effective concentration was increased by an order of magnitude in the presence of urinary macromolecules. The effective concentration for inhibition in a crystallization assay was a further two orders of magnitude higher. Urinary macromolecules or almost whole urine were also strongly inhibitory although neither human serum albumin nor bovine mucin had any great effect. The relationship between the size distribution of crystals in suspension and the stone enlargement rate suggests that the primary enlargement mechanism for these in vitro stones is through aggregation. The stone farm is a powerful tool with which to study crystallization inhibitors in a new light. Some differences between inhibition of crystallization and inhibition of stone growth have emerged and we have obtained quantitative evidence on the mechanism of stone enlargement in vitro. Our findings suggest that the interface between crystals in suspension and the stone surface is the key to controlling stone enlargement.
Kulp, John L; Cloudsdale, Ian S; Kulp, John L; Guarnieri, Frank
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
Dynamic cross-correlations between entangled biofilaments as they diffuse
Tsang, Boyce; Dell, Zachary E.; Jiang, Lingxiang; Schweizer, Kenneth S.; Granick, Steve
2017-01-01
Entanglement in polymer and biological physics involves a state in which linear interthreaded macromolecules in isotropic liquids diffuse in a spatially anisotropic manner beyond a characteristic mesoscopic time and length scale (tube diameter). The physical reason is that linear macromolecules become transiently localized in directions transverse to their backbone but diffuse with relative ease parallel to it. Within the resulting broad spectrum of relaxation times there is an extended period before the longest relaxation time when filaments occupy a time-averaged cylindrical space of near-constant density. Here we show its implication with experiments based on fluorescence tracking of dilutely labeled macromolecules. The entangled pairs of aqueous F-actin biofilaments diffuse with separation-dependent dynamic cross-correlations that exceed those expected from continuum hydrodynamics up to strikingly large spatial distances of ≈15 µm, which is more than 104 times the size of the solvent water molecules in which they are dissolved, and is more than 50 times the dynamic tube diameter, but is almost equal to the filament length. Modeling this entangled system as a collection of rigid rods, we present a statistical mechanical theory that predicts these long-range dynamic correlations as an emergent consequence of an effective long-range interpolymer repulsion due to the de Gennes correlation hole, which is a combined consequence of chain connectivity and uncrossability. The key physical assumption needed to make theory and experiment agree is that solutions of entangled biofilaments localized in tubes that are effectively dynamically incompressible over the relevant intermediate time and length scales. PMID:28283664
de Souza, Tereza Pereira; Fahr, Alfred; Luisi, Pier Luigi; Stano, Pasquale
2014-12-01
One of the main open questions in origin of life research focuses on the formation, by self-organization, of primitive cells composed by macromolecular compounds enclosed within a semi-permeable membrane. A successful experimental strategy for studying the emergence and the properties of primitive cells relies on a synthetic biology approach, consisting in the laboratory assembly of cell models of minimal complexity (semi-synthetic minimal cells). Despite the recent advancements in the construction and characterization of synthetic cells, an important physical aspect related to their formation is still not well known, namely, the mechanism of solute entrapment inside liposomes (in particular, the entrapment of macromolecules). In the past years, we have investigated this phenomenon and here we shortly review our experimental results. We show how the detailed cryo-transmission electron microscopy analyses of liposome populations created in the presence of ferritin (taken as model protein) or ribosomes have revealed that a small fraction of liposomes contains a high number of solutes, against statistical expectations. The local (intra-liposomal) macromolecule concentration in these liposomes largely exceeds the bulk concentration. A similar behaviour is observed when multi-molecular reaction mixtures are used, whereby the reactions occur effectively only inside those liposomes that have entrapped high number of molecules. If similar mechanisms operated in early times, these intriguing results support a scenario whereby the formation of lipid compartments plays an important role in concentrating the components of proto-metabolic systems-in addition to their well-known functions of confinement and protection.
van den Goorbergh, J A; de Wit, H; Tijdens, R B; Mulder, G J; Meerman, J H
1987-02-01
In order to find potentially effective compounds that could prevent the covalent binding of the carcinogen N-hydroxy-2-acetylaminofluorene (N-OH-AAF) to rat liver macromolecules in vivo, the prevention of the covalent binding to RNA of the sulfate ester of the carcinogen N-OH-AAF by a series of thioethers was investigated in vitro. The most effective thioethers, which inhibited the covalent binding by 70% or more, were studied for their protection against acute hepatotoxicity of N-OH-AAF in the rat in vivo. Three of these thioethers, thiazolidine, methyl 4-(methylthio)benzoate, and 2-(methylthio)benzimidazole significantly decreased the hepatoxicity of N-OH-AAF, by 45, 71 and 83%, respectively. The effects of these thioethers on the covalent binding of N-OH-AAF to cellular macromolecules in vivo were also studied. Methyl 4-(methylthio)benzoate and 2-(methylthio)benzimidazole decreased the adduct formation of N-OH-AAF to DNA by 54 and 44%, respectively, but had no effect on protein adduct formation. Only 2-(methylthio)benzimidazole caused a slight decrease (23%) in the AAF-- protein adduct formation. 2-Acetylaminofluorene (AAF) and methyl 4-(methyl-sulfinyl)benzoate were the main products in the incubation of methyl 4-(methylthio)benzoate with AAF-N-sulfate in vitro. This suggests that the thioether attacks the nitrenium ion which is formed by spontaneous breakdown of AAF-N-sulfate; the formation of a sulfonium--AAF conjugate is postulated which decomposes into AAF and a sulfinyl compound.
Jung, Da-Mi; De Ropp, Jeffrey S; Ebeler, Susan E
2002-07-17
Two diffusion-based NMR techniques are presented and used to investigate the binding of selected flavor compounds to macromolecules. A pulsed field gradient NMR (PFG-NMR) method was applied to measure the apparent diffusion coefficients of four alkanone compounds as they associated with bovine serum albumin (BSA). The change in the apparent diffusion coefficient as a function of the BSA/alkanone ratio was fitted to yield binding constants (K(a)()) and binding stoichiometry (n) for each alkanone. The results showed that the apparent diffusion coefficients of alkanones increased with a decrease in the BSA/alkanone ratios, and the measured values of K(a)() and n were comparable with those obtained with other methods and depended on the alkanone structure. A diffusion-based nuclear Overhauser effect (called diffusion NOE pumping) method was also applied to screen mixtures of flavor compounds and identify those that have a binding affinity to complex macromolecules. Using this technique benzaldehyde and vanillin were observed to bind with bovine serum albumin, whereas 2-phenylethanol was identified as a nonbinding or weakly binding ligand with BSA. The diffusion NOE pumping method was also applied to a hydro alcoholic solution of cacao bean tannin extracts to which a mixture of ethylbenzoate, benzaldehyde, and 2-phenylethanol was added. The diffusion NOE pumping technique clearly indicated that ethylbenzoate had a stronger binding affinity to the polymeric (-)-epicatechin units of the cacao bean tannin extracts than the other two flavor compounds. The results successfully demonstrate the potential applications of diffusion-based NMR techniques for studying flavors and nonvolatile food matrix interactions.
Heade, Joanne; Maher, Sam; Bleiel, Sinead B; Brayden, David J
2018-06-01
In addition to their solubilizing properties, excipients used in lipid-based formulations can improve intestinal permeability of macromolecules. We determined whether admixing of medium-chain fatty acid (MCFA) permeation enhancers with a lipoidal excipient (Labrasol ® ) could potentiate transepithelial flux of a poorly permeable macromolecule (fluorescein isothiocyanate dextran 4 kDa [FD4]) across rat intestinal mucosae mounted in Ussing chambers. Low concentrations of sodium caprate (C 10 ), sodium undecylenate (C 11:1 ), or sodium laurate (C 12 ) combined with Labrasol ® increased the apparent permeability coefficient (P app ) of FD4 to values typically seen with higher concentrations of MCFAs or Labrasol ® alone. For example, combination of C 11:1 (0.5 mg/mL) with Labrasol ® (1 mg/mL) increased the P app of FD4 by 10- and 11-fold over the respective individual agents at the same concentrations where no enhancement was evident. The increased enhancement ratios seen with the combinations were associated with some perturbation in intestinal histology and with attenuation of an epithelial functional measure, carbachol-stimulated inward short-circuit current. In conclusion, combining three MCFAs separately with Labrasol ® increased the P app of FD4 to values greater than those seen for MCFAs or Labrasol ® alone. Ultimately, this may permit lower concentrations of MCFA to be used in combination with other excipients in oral formulations of poorly permeable molecules. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Rowland, L M; Krause, B W; Wijtenburg, S A; McMahon, R P; Chiappelli, J; Nugent, K L; Nisonger, S J; Korenic, S A; Kochunov, P; Hong, L E
2016-02-01
Gamma-butyric acid (GABA) dysfunction has been implicated in the pathophysiology of schizophrenia and its cognitive deficits. Proton magnetic resonance spectroscopy (MRS) was used to test the hypothesis that older participants with schizophrenia have lower anterior cingulate GABA levels compared with older control participants. One-hundred forty-five participants completed this study. For detection of GABA, spectra were acquired from the medial frontal/anterior cingulate cortex using a macromolecule-suppressed MEGA-PRESS sequence. Patients were evaluated for psychopathology and all participants completed neuropsychological tests of working memory, processing speed and functional capacity. GABA levels were significantly lower in the older participants with schizophrenia (n=31) compared with the older control (n=37) group (P=0.003) but not between the younger control (n=40) and schizophrenia (n=29) groups (P=0.994). Age strongly predicted GABA levels in the schizophrenia group accounting for 42% of the variance, but the effect of age was less in the control group accounting for 5.7% of the variance. GABA levels were specifically related to working memory but not processing speed performance, functional capacity, or positive or negative symptom severity. This is the largest MRS study of GABA in schizophrenia and the first to examine GABA without macromolecule contamination, a potentially significant issue in previous studies. GABA levels more rapidly declined with advancing age in the schizophrenia compared with the control group. Interventions targeted at halting the decline or increasing GABA levels may improve functional outcomes and quality of life as patients with schizophrenia age.
Rowland, Laura M; Krause, Benjamin W.; Wijtenburg, S. Andrea; McMahon, Robert P.; Chiappelli, Joshua; Nugent, Katie L.; Nisonger, Sarah J.; Korenic, Stephanie A.; Kochunov, Peter; Hong, L. Elliot
2015-01-01
Gamma-butyric acid (GABA) dysfunction has been implicated in the pathophysiology of schizophrenia and its cognitive deficits. Proton magnetic resonance spectroscopy (MRS) was used to test the hypothesis that older participants with schizophrenia have lower anterior cingulate GABA levels compared to older control participants. One-hundred and forty-five participants completed this study. For detection of GABA, spectra were acquired from the medial frontal/anterior cingulate cortex using a macromolecule-suppressed MEGA-PRESS sequence. Patients were evaluated for psychopathology and all participants completed neuropsychological tests of working memory, processing speed, and functional capacity. GABA levels were significantly lower in the older participants with schizophrenia(n=31) compared to the older control(n=37) group (p=0.003) but not between the younger control(n=40) and schizophrenia (n=29) groups (p=0.994). Age strongly predicted GABA levels in the schizophrenia group accounting for 42% of the variance, but the effect of age was less in the control group accounting for 5.7% of the variance. GABA levels were specifically related to working memory but not processing speed performance, functional capacity, or positive or negative symptom severity. This is the largest MRS study of GABA in schizophrenia and the first to examine GABA without macromolecule contamination, a potentially significant issue in previous studies. GABA levels more rapidly declined with advancing age in the schizophrenia compared to the control group. Interventions targeted at halting the decline or increasing GABA levels may improve functional outcomes and quality of life as patients with schizophrenia age. PMID:25824298
The effects of osmotic stress on the structure and function of the cell nucleus.
Finan, John D; Guilak, Farshid
2010-02-15
Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis. (c) 2009 Wiley-Liss, Inc.
Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.
Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille
2016-06-14
Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins.
Haslene-Hox, Hanne; Oveland, Eystein; Woie, Kathrine; Salvesen, Helga B; Tenstad, Olav; Wiig, Helge
2015-01-01
Elements of the extracellular matrix (ECM), notably collagen and glucosaminoglycans, will restrict part of the space available for soluble macromolecules simply because the molecules cannot occupy the same space. This phenomenon may influence macromolecular drug uptake. To study the influence of steric and charge effects of the ECM on the distribution volumes of macromolecules in human healthy and malignant gynecologic tissues we used as probes 15 abundant plasma proteins quantified by high-resolution mass spectrometry. The available distribution volume (VA) of albumin was increased in ovarian carcinoma compared with healthy ovarian tissue. Furthermore, VA of plasma proteins between 40 and 190 kDa decreased with size for endometrial carcinoma and healthy ovarian tissue, but was independent of molecular weight for the ovarian carcinomas. An effect of charge on distribution volume was only found in healthy ovaries, which had lower hydration and high collagen content, indicating that a condensed interstitium increases the influence of negative charges. A number of earlier suggested biomarker candidates were detected in increased amounts in malignant tissue, e.g., stathmin and spindlin-1, showing that interstitial fluid, even when unfractionated, can be a valuable source for tissue-specific proteins. We demonstrate that the distribution of abundant plasma proteins in the interstitium can be elucidated by mass spectrometry methods and depends markedly on hydration and ECM structure. Our data can be used in modeling of drug uptake, and give indications on ECM components to be targeted to increase the uptake of macromolecular substances. Copyright © 2015 the American Physiological Society.
Mazarin, Michael; Phan, Trang N T; Charles, Laurence
2008-12-01
Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.
Biotechnology Computing: Information Science for the Era of Molecular Medicine.
ERIC Educational Resources Information Center
Masys, Daniel R.
1989-01-01
The evolution from classical genetics to biotechnology, an area of research involving key macromolecules in living cells, is chronicled and the current state of biotechnology is described, noting related advances in computing and clinical medicine. (MSE)
Modes of action for arsenic carcinogenesis and toxicity
There are three principal ways in which arsenic species can interact with important biological molecules. First, trivalent arsenicals can bind to macromolecule sites, principally the sulfhydryls of peptides and proteins. Selenocysteines, selenium atoms and molybdenum atoms are al...
Large volume continuous counterflow dialyzer has high efficiency
NASA Technical Reports Server (NTRS)
Mandeles, S.; Woods, E. C.
1967-01-01
Dialyzer separates macromolecules from small molecules in large volumes of solution. It takes advantage of the high area/volume ratio in commercially available 1/4-inch dialysis tubing and maintains a high concentration gradient at the dialyzing surface by counterflow.
The chemistry side of AOP: implications for toxicity extrapolation
An adverse outcome pathway (AOP) is a structured representation of the biological events that lead to adverse impacts following a molecular initiating event caused by chemical interaction with a macromolecule. AOPs have been proposed to facilitate toxicity extrapolation across s...
Mode of action from dose-response microarray data: case study using 10 environmental chemicals
Ligand-activated nuclear receptors regulate many biological processes through complex interactions with biological macromolecules. Certain xenobiotics alter nuclear receptor signaling through direct or indirect interactions. Defining the mode of action of such xenobiotics is di...
Physical, chemical, biological, and biotechnological sciences are incomplete without each other
USDA-ARS?s Scientific Manuscript database
Chemical analysis and chromatographic techniques could not separate plasma lipoproteins which are now known as cholesterol- containing, heart-disease related macromolecules in human blood. Scientists at the Lawrence Berkeley Laboratory successfully separated plasma lipoproteins using equilibrium den...
MOLECULAR MODELING AS A TOOL FOR UNDERSTANDING HUMAN HEALTH RISKS
A GENERIC STEP IN MANY MECHANISMS FOR CHEMICAL TOXICITY IS THE INTERACTION BETWEEN A SMALL MOLECULE AND A BIOLOGICAL MACROMOLECULE. THE INFORMATION THAT IS GATHERED FROM THIS STUDY WILL THEN BE USED TO EXTRACT RELATIONSHIPS AMONG THE INFORMATION DOMAINS.
A Review of Shock Mitigation Techniques (Briefing Charts)
2015-04-01
Public Release; Distribution Unlimited (PA# 96TW- 2014-0154). 6 Viscoelastic • Polyurea – energy dissipation from hard and soft...Response of Coarse-Grained Models of Multiblock versus Diblock Copolymers: Insights into Dissipative Properties of Polyurea ”, Macromolecules, 2012, 45 (7
Optical tweezers study life under tension.
Fazal, Furqan M; Block, Steven M
2011-05-31
Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.
An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.
ERIC Educational Resources Information Center
Turchi, Sandra L.; Weiss, Monica
1988-01-01
Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)
architectures. Crowlely's group has designed and implemented new methods and algorithms specifically for biomass , Crowley developed highly parallel methods for simulations of bio-macromolecules. Affiliated Research advanced sampling methods, Crowley and his team determine free energies such as binding of substrates
Stachybotrys is a hydrophilic fungal genus that is well known for its ability to colonize water-damaged building materials in indoor environments. Personal exposure to Stachybotrys chartarum allergens, mycotoxins, cytolytic peptides, and other immunostimulatory macromolecules has...
Macromolecules Vis-a-Vis the Traditions of Chemistry
ERIC Educational Resources Information Center
Flory, Paul J.
1973-01-01
Summarizes the history of concepts concerning the molecular nature of polymers, involving the carbon chain theory, graphic formula, polycondensation, colloidal properties, polypeptide hypothesis, secondary aggregation, and Watson-Crick model. Indicates that macromolecular science should be accommodated within the discipline of molecular science…
Santos, Mariane Gonçalves; Moraes, Gabriel de Oliveira Isac; Nakamura, Maurício Gustavo; dos Santos-Neto, Álvaro José; Figueiredo, Eduardo Costa
2015-11-21
Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion.
Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J
2015-03-17
A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and <50 μJ pulse energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.
Elcock, Adrian H.
2013-01-01
Inclusion of hydrodynamic interactions (HIs) is essential in simulations of biological macromolecules that treat the solvent implicitly if the macromolecules are to exhibit correct translational and rotational diffusion. The present work describes the development and testing of a simple approach aimed at allowing more rapid computation of HIs in coarse-grained Brownian dynamics simulations of systems that contain large numbers of flexible macromolecules. The method combines a complete treatment of intramolecular HIs with an approximate treatment of the intermolecular HIs which assumes that the molecules are effectively spherical; all of the HIs are calculated at the Rotne-Prager-Yamakawa level of theory. When combined with Fixman’s Chebyshev polynomial method for calculating correlated random displacements, the proposed method provides an approach that is simple to program but sufficiently fast that it makes it computationally viable to include HIs in large-scale simulations. Test calculations performed on very coarse-grained models of the pyruvate dehydrogenase (PDH) E2 complex and on oligomers of ParM (ranging in size from 1 to 20 monomers) indicate that the method reproduces the translational diffusion behavior seen in more complete HI simulations surprisingly well; the method performs less well at capturing rotational diffusion but its discrepancies diminish with increasing size of the simulated assembly. Simulations of residue-level models of two tetrameric protein models demonstrate that the method also works well when more structurally detailed models are used in the simulations. Finally, test simulations of systems containing up to 1024 coarse-grained PDH molecules indicate that the proposed method rapidly becomes more efficient than the conventional BD approach in which correlated random displacements are obtained via a Cholesky decomposition of the complete diffusion tensor. PMID:23914146
Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate.
Lebedeva, Natalia V; Nese, Alper; Sun, Frank C; Matyjaszewski, Krzysztof; Sheiko, Sergei S
2012-06-12
Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C ─ C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (k(B)T) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V(0)(1 - e(-βx))(2) - fx, we determined the depth and width of the potential to be V(0) = 141 ± 19 kJ/mol and β(-1) = 0.18 ± 0.03 Å, respectively. Whereas the V(0) value is in reasonable agreement with the activation energy E(a) = 80-220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C ─ C bond D(e) = 350 kJ/mol. Moreover, the force constant K(x) = 2β(2)V(0) = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C ─ C bond K(l) = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains.
Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems.
Bernkop-Schnürch, A; Kast, C E; Guggi, D
2003-12-05
Thiolated polymers (= thiomers) in combination with reduced glutathione (GSH) were shown to improve the uptake of hydrophilic macromolecules from the GI tract. The mechanism responsible for this permeation enhancing effect seems to be based on the thiol groups of the polymer. These groups inhibit protein tyrosine phosphatase, being involved in the closing process of tight junctions, via a GSH-mediated mechanism. The strong permeation enhancing effect of various thiomer/GSH systems such as poly(acrylic acid)-cysteine/GSH or chitosan-4-thio-butylamidine (chitosan-TBA)/GSH could be shown via permeation studies on freshly excised intestinal mucosa in Ussing-type chambers. Furthermore, the efficacy of the system was also shown in vivo. By utilizing poly(acrylic acid)-cysteine/GSH as carrier matrix, an absolute oral bioavailability for low molecular weight heparin of 19.9 +/- 9.3% and a pharmacological efficacy--calculated on the basis of the areas under the reduction in serum glucose levels of the oral formulation versus subcutaneous (s.c.) injection-for orally given insulin of 7% could be achieved. The incorporation of salmon calcitonin in chitosan-TBA/GSH led on the other hand to a pharmacological efficacy based on the areas under the reduction in plasma calcium levels of the oral thiomer formulation versus intravenous (i.v.) injection of 1.3%. Because of this high efficacy (i), the possibility to combine thiomer/GSH systems with additional low molecular weight permeation enhancers acting in other ways (ii) and minimal toxicological risks as these polymers are not absorbed from the GI tract (iii), thiolated polymers represent a promising novel tool for the oral administration of hydrophilic macromolecules.
Papa, Gabriella; Spagnol, Manuela; Tambone, Fulvia; Pilu, Roberto; Scaglia, Barbara; Adani, Fabrizio
2010-02-01
Previous studies suggested that micropore surface area (MSA) of alkali-soluble bio-macromolecules of aerial plant residues of maize constitutes an important factor that explains their humification in soil, that is, preservation against biological degradation. On the other hand, root plant residue contributes to the soil humus balance, as well. Following the experimental design used in a previous paper published in this journal, this study shows that the biochemical recalcitrance of the alkali-soluble acid-insoluble fraction of the root plant material, contributed to the root maize humification of both Wild-type maize plants and its corresponding mutant brown midrib (bm3), this latter characterized by reduced lignin content. Humic acids (HAs) existed in root (root-HAs) were less degraded in soil than corresponding HAs existed in shoot (shoot-HAs): shoot-HAs bm3 (48%)>shoot-HAs Wild-type (37%)>root-HAs Wild-type (33%)>root-HAs bm3 (22%) (degradability shown in parenthesis). These differences were related to the MSA of HAs, that is, root-HAs having a higher MSA than shoot-HAs: shoot-HAs bm3 (41.43+/-1.2m(2)g(-1))
Contribution of pollen to atmospheric ice nuclei concentrations
NASA Astrophysics Data System (ADS)
Hader, J. D.; Wright, T. P.; Petters, M. D.
2014-06-01
Recent studies have suggested that the ice-nucleating ability of some types of pollen is derived from non-proteinaceous macromolecules. These macromolecules may become dispersed by the rupturing of the pollen grain during wetting and drying cycles in the atmosphere. If true, this mechanism might prove to be a significant source of ice nuclei (IN) concentrations when pollen is present. Here we test this hypothesis by measuring ambient IN concentrations from the beginning to the end of the 2013 pollen season in Raleigh, North Carolina, USA. Air samples were collected using a swirling aerosol collector twice per week and the solutions were analysed for ice nuclei activity using a droplet freezing assay. Rainwater samples were collected at times when pollen grain number concentrations were near their maximum value and analysed with the drop-freezing assay to compare the potentially enhanced IN concentrations measured near the ground with IN concentrations found aloft. Ambient ice nuclei spectra, defined as the number of ice nuclei per volume of air as a function of temperature, are inferred from the aerosol collector solutions. No general trend was observed between ambient pollen grain counts and observed IN concentrations, suggesting that ice nuclei multiplication via pollen grain rupturing and subsequent release of macromolecules was not prevalent for the pollen types and meteorological conditions typically encountered in the southeastern US. A serendipitously sampled collection after a downpour provided evidence for a rain-induced IN burst with an observed IN concentration of approximately 30 per litre, a 30-fold increase over background concentrations at -20 °C. The onset temperature of freezing for these particles was approximately -12 °C, suggesting that the ice-nucleating particles were biological in origin.
Øien, Alf H; Wiig, Helge
2016-07-07
Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial fluid and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a fluid background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal hydration. This fraction, however, increases with rising hydration as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as hydration changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue hydration. The presented models may improve our biophysical understanding of acting forces influencing tissue fluid dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rezaee, Mohammad; Cloutier, Pierre; Bass, Andrew D.; Michaud, Marc; Hunting, Darel J.; Sanche, Léon
2013-01-01
Cross sections (CSs) for the interaction of low-energy electrons (LEE) with condensed macromolecules are essential parameters for accurate modeling of radiation-induced molecular decomposition and chemical synthesis. Electron irradiation of dry nanometer-scale macromolecular solid films has often been employed to measure CSs and other quantitative parameters for LEE interactions. Since such films have thicknesses comparable with electron thermalization distances, energy deposition varies throughout the film. Moreover, charge accumulation occurring inside the films shields a proportion of the macromolecules from electron irradiation. Such effects complicate the quantitative comparison of the CSs obtained in films of different thicknesses and limit the applicability of such measurements. Here, we develop a simple mathematical model, termed the molecular survival model, that employs a CS for a particular damage process together with an attenuation length related to the total CS, to investigate how a measured CS might be expected to vary with experimental conditions. As a case study, we measure the absolute CS for the formation of DNA strand breaks (SBs) by electron irradiation at 10 and 100 eV of lyophilized plasmid DNA films with thicknesses between 10 and 30 nm. The measurements are shown to depend strongly on the thickness and charging condition of the nanometer-scale films. Such behaviors are in accord with the model and support its validity. Via this analysis, the CS obtained for SB damage is nearly independent of film thickness and charging effects. In principle, this model can be adapted to provide absolute CSs for electron-induced damage or reactions occurring in other molecular solids across a wider range of experimental conditions. PMID:23030950
Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules
NASA Astrophysics Data System (ADS)
Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.
2016-12-01
The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized "particle in a box" problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.
Macromolecular Crystallization in Microgravity
NASA Technical Reports Server (NTRS)
Snell, Edward H.; Helliwell, John R.
2004-01-01
The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered.
Enhanced Sampling Methods for the Computation of Conformational Kinetics in Macromolecules
NASA Astrophysics Data System (ADS)
Grazioli, Gianmarc
Calculating the kinetics of conformational changes in macromolecules, such as proteins and nucleic acids, is still very much an open problem in theoretical chemistry and computational biophysics. If it were feasible to run large sets of molecular dynamics trajectories that begin in one configuration and terminate when reaching another configuration of interest, calculating kinetics from molecular dynamics simulations would be simple, but in practice, configuration spaces encompassing all possible configurations for even the simplest of macromolecules are far too vast for such a brute force approach. In fact, many problems related to searches of configuration spaces, such as protein structure prediction, are considered to be NP-hard. Two approaches to addressing this problem are to either develop methods for enhanced sampling of trajectories that confine the search to productive trajectories without loss of temporal information, or coarse-grained methodologies that recast the problem in reduced spaces that can be exhaustively searched. This thesis will begin with a description of work carried out in the vein of the second approach, where a Smoluchowski diffusion equation model was developed that accurately reproduces the rate vs. force relationship observed in the mechano-catalytic disulphide bond cleavage observed in thioredoxin-catalyzed reduction of disulphide bonds. Next, three different novel enhanced sampling methods developed in the vein of the first approach will be described, which can be employed either separately or in conjunction with each other to autonomously define a set of energetically relevant subspaces in configuration space, accelerate trajectories between the interfaces dividing the subspaces while preserving the distribution of unassisted transition times between subspaces, and approximate time correlation functions from the kinetic data collected from the transitions between interfaces.
Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules.
Trovato, Fabio; Tozzini, Valentina
2014-12-02
Recent experiments carried out in the dense cytoplasm of living cells have highlighted the importance of proteome composition and nonspecific intermolecular interactions in regulating macromolecule diffusion and organization. Despite this, the dependence of diffusion-interaction on physicochemical properties such as the degree of poly-dispersity and the balance between steric repulsion and nonspecific attraction among macromolecules was not systematically addressed. In this work, we study the problem of diffusion-interaction in the bacterial cytoplasm, combining theory and experimental data to build a minimal coarse-grained representation of the cytoplasm, which also includes, for the first time to our knowledge, the nucleoid. With stochastic molecular-dynamics simulations of a virtual cytoplasm we are able to track the single biomolecule motion, sizing from 3 to 80 nm, on submillisecond-long trajectories. We demonstrate that the size dependence of diffusion coefficients, anomalous exponents, and the effective viscosity experienced by biomolecules in the cytoplasm is fine-tuned by the intermolecular interactions. Accounting only for excluded volume in these potentials gives a weaker size-dependence than that expected from experimental data. On the contrary, adding nonspecific attraction in the range of 1-10 thermal energy units produces a stronger variation of the transport properties at growing biopolymer sizes. Normal and anomalous diffusive regimes emerge straightforwardly from the combination of high macromolecular concentration, poly-dispersity, stochasticity, and weak nonspecific interactions. As a result, small biopolymers experience a viscous cytoplasm, while the motion of big ones is jammed because the entanglements produced by the network of interactions and the entropic effects caused by poly-dispersity are stronger. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Herold, Christoph; Schwille, Petra; Petrov, Eugene P.
2016-02-01
We present experimental results on the interaction of DNA macromolecules with cationic lipid membranes with different properties, including freestanding membranes in the fluid and gel state, and supported lipid membranes in the fluid state and under conditions of fluid-gel phase coexistence. We observe diverse conformational dynamics of membrane-bound DNA molecules controlled by the local properties of the lipid bilayer. In case of fluid-state freestanding lipid membranes, the behaviour of DNA on the membrane is controlled by the membrane charge density: whereas DNA bound to weakly charged membranes predominantly behaves as a 2D random coil, an increase in the membrane charge density leads to membrane-driven irreversible DNA collapse and formation of subresolution-sized DNA globules. On the other hand, electrostatic binding of DNA macromolecules to gel-state freestanding membranes leads to completely arrested diffusion and conformational dynamics of membrane-adsorbed DNA. A drastically different picture is observed in case of DNA interaction with supported cationic lipid bilayers: When the supported bilayer is in the fluid state, membrane-bound DNA molecules undergo 2D translational Brownian motion and conformational fluctuations, irrespectively of the charge density of the supported bilayer. At the same time, when the supported cationic membrane shows fluid-gel phase coexistence, membrane-bound DNA molecules are strongly attracted to micrometre-sized gel-phase domains enriched with the cationic lipid, which results in 2D compaction of the membrane-bound macromolecules. This DNA compaction, however, is fully reversible, and disappears as soon as the membrane is heated above the fluid-gel coexistence. We also discuss possible biological implications of our experimental findings.
Ben-Dov, Nadav; Korenstein, Rafi
2012-01-01
The different pathways of endocytosis share an initial step involving local inward curvature of the cell’s lipid bilayer. It has been shown that to generate membrane curvature, proteins or lipids enforce transversal asymmetry of the plasma membrane. Thus it emerges as a general phenomenon that transversal membrane asymmetry is the common required element for the formation of membrane curvature. The present study demonstrates that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesiculation accompanied by efficient uptake of macromolecules (Dextran-FITC, 70 kD), relative to the constitutive one. The insensitivity of proton induced uptake to inhibiting treatments and agents of the known endocytic pathways suggests the entry of macromolecules to proceeds via a yet undefined route. This is in line with the fact that neither ATP depletion, nor the lowering of temperature, abolishes the uptake process. In addition, fusion mechanism such as associated with low pH uptake of toxins and viral proteins can be disregarded by employing the polysaccharide dextran as the uptake molecule. The proton induced uptake increases linearly in the extracellular pH range of 6.5 to 4.5, and possesses a steep increase at the range of 4> pH>3, reaching a plateau at pH≤3. The kinetics of the uptake implies that the induced vesicles release their content to the cytosol and undergo rapid recycling to the plasma membrane. We suggest that protonation of the cell’s surface induces local charge asymmetries across the cell membrane bilayer, inducing inward curvature of the cell membrane and consequent vesiculation and uptake. PMID:22558127
The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.
2000-01-01
While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.
USDA-ARS?s Scientific Manuscript database
Lignocellulosic biomass is comprised of cellulose and hemicellulose, sources of polysaccharides, and lignin, a macromolecule with extensive aromaticity. Lignocellulose requires pretreatment before biochemical conversion to its monomeric sugars which can provide a renewable carbon based feedstock for...
A Unified Description of Structural Levels in Biomolecules.
ERIC Educational Resources Information Center
Macarulla, Alberto; And Others
1990-01-01
A single, didactic criterion for the description of all biological macromolecules is proposed. This criterion is applicable to globular, fibrous or mixed proteins, as well as to nucleic acids and lipids or polysaccharides. Specific examples are given for all except lipids and polysaccarides. (KR)
ERIC Educational Resources Information Center
Goodsell, David S.
2010-01-01
Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of a mitochondrion. The image magnifies a portion of the mitochondrion by one million times, showing the location and form of membranes and individual macromolecules,…
Functionalized membranes represent a field with multiple applications. Examination of specific metal-macromolecule interactions on these surfaces presents an excellent method for characterizion of these materials. These interactions may also be exploited for heavy metal sorptio...
Abnormal dispersion of refractive index of purple membranes in an aqueous medium.
Zhivkov, Alexandar Metodiev
2010-01-10
The refractive index of purple membranes in a water suspension has been measured refractometrically in the visible range of the spectrum. A region of anomalous dispersion has been found, due to a strong absorption by the retinal residue in bacteriorhodopsin macromolecules.
Management of soil biota and their properties
USDA-ARS?s Scientific Manuscript database
In natural systems organisms can be structured compartmentally to be, close to other organism for symbiosis, away from other organisms for protection and in proximity to nutrients and water. An example of organism symbiosis is fungi breaking down the macromolecule cellulose into smaller more “diges...
Çelik, Ecem Evrim; Rubio, Jose Manuel Amigo; Andersen, Mogens L; Gökmen, Vural
2017-12-15
The interactions between free and macromolecule-bound antioxidants were investigated in order to evaluate their combined effects on the antioxidant environment. Dietary fiber (DF), protein and lipid-bound antioxidants, obtained from whole wheat, soybean and olive oil products, respectively and Trolox were used for this purpose. Experimental studies were carried out in autoxidizing liposome medium by monitoring the development of fluorescent products formed by lipid oxidation. Chemometric methods were used both at experimental design and multivariate data analysis stages. Comparison of the simple addition effects of Trolox and bound antioxidants with measured values on lipid oxidation revealed synergetic interactions for DF and refined olive oil-bound antioxidants, and antagonistic interactions for protein and extra virgin olive oil-bound antioxidants with Trolox. A generalized version of logistic function was successfully used for modelling the oxidation curve of liposomes. Principal component analysis revealed two separate phases of liposome autoxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure-property relationships of a biological mesocrystal in the adult sea urchin spine
Seto, Jong; Ma, Yurong; Davis, Sean A.; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut
2012-01-01
Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature’s demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials. PMID:22343283
Fluorescence Approaches to Growing Macromolecule Crystals
NASA Technical Reports Server (NTRS)
Pusey, Marc; Forsythe, Elizabeth; Achari, Aniruddha
2006-01-01
Trace fluorescent labeling, typically < 1%, can be a powerful aid in macromolecule crystallization. Precipitation concentrates a solute, and crystals are the most densely packed solid form. The more densely packed the fluorescing material, the more brightly the emission from it, and thus fluorescence intensity of a solid phase is a good indication of whether one has crystals or not. The more brightly fluorescing crystalline phase is easily distinguishable, even when embedded in an amorphous precipitate. This approach conveys several distinct advantages: one can see what the protein is doing in response to the imposed conditions, and distinguishing between amorphous and microcrystalline precipitated phases are considerably simpler. The higher fluorescence intensity of the crystalline phase led us to test if we could derive crystallization conditions from screen outcomes which had no obvious crystalline material, but simply "bright spots" in the precipitated phase. Preliminary results show that the presence of these bright spots, not observable under white light, is indeed a good indicator of potential crystallization conditions.
Immunoassays for pesticide monitoring
NASA Astrophysics Data System (ADS)
Wengatz, Ingrid; Szurdoki, Ferenc; Swamy, Anand R.; Evans, Lawrence, III; Patonay, Gabor; Stimmann, Eric; Delwiche, Michael; Stoutamire, Donald; Gee, Shirley J.; Hammock, Bruce D.
1995-05-01
This study compares two formats of rapid assays for the detection of pesticides (bromacil and pyrethroid based metabolites): enzyme linked immunosorbent assay (ELISA) and immunoassay with near-infrared (NIR) fluorescence detection. NIR dye immunoassay (NIRDIA) measurements were carried out by using two different instruments, both having a silicon photodiode as the detector and a laser diode for excitation. ELISA and NIRDIA were performed in a tracer format, where the specific antibody is bound to the surface of a microtiter plate well and the tracer with enzyme or fluorescent dye label competes with the analyte for the antibody binding site. It was demonstrated that the NIRDIA is at least as sensitive as the ELISA. Both assays detect pesticides in the (mu) g/L (ppb) range. Hapten- macromolecule-NIR dye-conjugates have been synthesized with various biopolymers (e.g., proteins) as carriers. The use of carrier macromolecules enables convenient purification of the cyanine dye derivatives. The mild conjugation method of the dye is based on isothiocyanate chemistry.
Oxidative damage to macromolecules in human Parkinson’s disease and the rotenone model
Sanders, Laurie H.; Greenamyre, J. Timothy
2013-01-01
Parkinson’s disease (PD), the most common neurodegenerative movement disorder, is associated with selective degeneration of nigrostriatal dopamine neurons. While the underlying mechanisms contributing to neurodegeneration in PD appear to be multifactorial, mitochondrial impairment and oxidative stress are widely considered to be central to many forms of the disease. Whether oxidative stress is a cause or consequence of dopaminergic death, there is substantial evidence for oxidative stress in both human PD patients and in animal models of PD, especially using rotenone, a complex I inhibitor. There are many indices of oxidative stress, but this review covers the recent evidence for oxidative damage to nucleic acids, lipids and proteins in both the brain and peripheral tissues in human PD and in the rotenone model. Limitations of the existing literature and future perspectives are discussed. Understanding how each particular macromolecule is damaged by oxidative stress and the interplay of secondary damage to other biomolecules may help design better targets for treatment of PD. PMID:23328732
High susceptibility to fatty liver disease in two-pore channel 2-deficient mice.
Grimm, Christian; Holdt, Lesca M; Chen, Cheng-Chang; Hassan, Sami; Müller, Christoph; Jörs, Simone; Cuny, Hartmut; Kissing, Sandra; Schröder, Bernd; Butz, Elisabeth; Northoff, Bernd; Castonguay, Jan; Luber, Christian A; Moser, Markus; Spahn, Saskia; Lüllmann-Rauch, Renate; Fendel, Christina; Klugbauer, Norbert; Griesbeck, Oliver; Haas, Albert; Mann, Matthias; Bracher, Franz; Teupser, Daniel; Saftig, Paul; Biel, Martin; Wahl-Schott, Christian
2014-08-21
Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.
Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J
2009-07-01
The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.
Bashan, Anat; Yonath, Ada
2009-01-01
Crystallography of ribosomes, the universal cell nucleoprotein assemblies facilitating the translation of the genetic-code into proteins, met with severe problems owing to their large size, complex structure, inherent flexibility and high conformational variability. For the case of the small ribosomal subunit, which caused extreme difficulties, post crystallization treatment by minute amounts of a heteropolytungstate cluster allowed structure determination at atomic resolution. This cluster played a dual role in ribosomal crystallography: providing anomalous phasing power and dramatically increased the resolution, by stabilization of a selected functional conformation. Thus, four out of the fourteen clusters that bind to each of the crystallized small subunits are attached to a specific ribosomal protein in a fashion that may control a significant component of the subunit internal flexibility, by “gluing” symmetrical related subunits. Here we highlight basic issues in the relationship between metal ions and macromolecules and present common traits controlling in the interactions between polymetalates and various macromolecules, which may be extended towards the exploitation of polymetalates for therapeutical treatment. PMID:19915655
Park, Hahnbeom; Bradley, Philip; Greisen, Per; Liu, Yuan; Mulligan, Vikram Khipple; Kim, David E.; Baker, David; DiMaio, Frank
2017-01-01
Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking, have been parameterized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data. The energy function improves performance in a wide range of protein structure prediction challenges, including monomeric structure prediction, protein-protein and protein-ligand docking, protein sequence design, and prediction of the free energy changes by mutation, while reasonably recapitulating small-molecule thermodynamic properties. PMID:27766851
Energy transfer dynamics in Light-Harvesting Dendrimers
NASA Astrophysics Data System (ADS)
Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.
2002-03-01
We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.
A world in one dimension: Linus Pauling, Francis Crick and the central dogma of molecular biology.
Strasser, Bruno J
2006-01-01
In 1957, Francis Crick outlined a startling vision of life in which the great diversity of forms and shapes of macromolecules was encoded in the one-dimensional sequence of nucleic acids. This paper situates Crick's new vision in the debates of the 1950s about protein synthesis and gene action. After exploring the reception of Crick's ideas, it shows how they differed radically from a different model of protein synthesis which enjoyed wide currency in that decade. In this alternative model, advocated by Linus Pauling and other luminaries, three-dimensional templates directed the folding of proteins. Even though it was always considered somewhat speculative, this theory was supported by a number of empirical results originating in different experimental systems. It was eventually replaced by a model in which the forms and shapes of macromolecules resulted solely from their amino acid sequence, dramatically simplifying the problem of protein synthesis which Crick was attempting to solve in 1957.
Analytical application of femtosecond laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Melikechi, Noureddine; Markushin, Yuri
2015-05-01
We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.
Forkey, Joseph N.; Quinlan, Margot E.; Goldman, Yale E.
2005-01-01
A new approach is presented for measuring the three-dimensional orientation of individual macromolecules using single molecule fluorescence polarization (SMFP) microscopy. The technique uses the unique polarizations of evanescent waves generated by total internal reflection to excite the dipole moment of individual fluorophores. To evaluate the new SMFP technique, single molecule orientation measurements from sparsely labeled F-actin are compared to ensemble-averaged orientation data from similarly prepared densely labeled F-actin. Standard deviations of the SMFP measurements taken at 40 ms time intervals indicate that the uncertainty for individual measurements of axial and azimuthal angles is ∼10° at 40 ms time resolution. Comparison with ensemble data shows there are no substantial systematic errors associated with the single molecule measurements. In addition to evaluating the technique, the data also provide a new measurement of the torsional rigidity of F-actin. These measurements support the smaller of two values of the torsional rigidity of F-actin previously reported. PMID:15894632
Challenges and dreams: physics of weak interactions essential to life
Chien, Peter; Gierasch, Lila M.
2014-01-01
Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak “quinary” interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological “glue” that sustains life at a molecular and cellular level. PMID:25368424
Alstonine as a potential fluorescent marker for tiny tumor detection and imaging
NASA Astrophysics Data System (ADS)
Viallet, Pierre M.; Vo-Dinh, Tuan; Salmon, Jean-Marie; Watts, Wendi; Rocchi, Emmanuelle; Isola, Narayana R.; Rebillard, Xavier
1997-06-01
3,4,5,6,16,17-Hexadehydro-16-(methoxycarbolyl)-19(alpha) - methyl-20(alpha) -oxyohimbanium (alstonine) is a fluorescent alcaloid which is known to stain tumor cells more efficiently than normal. The interactions between alstonine and biological macromolecules were first investigated to provide the rationale for preferential labelling. Molecular filtration and spectrosfluorometric techniques with different macromolecules and isopolynucleotides have demonstrated that binding occurs only in the presence of uridyl rings. For the binding affect only the fluorescence intensity of alstonine it can be assumed that it involves only the side chain of the fluorescent compound. The capability for preferential staining was verified in culture using SK-OV-3 cells and rat hepatocarcinoma cells as tumor cells and Mouse fibroblasts or rat liver cells as controls. Techniques of image analysis have demonstrated the efficiency of cellular labelling even in aggregates of rat hepatocarcinoma. These experiments lead the way to the detection of tiny tumors developed on thin visceral walls, using a fiber optic device.
A Hydrogen Exchange Method Using Tritium and Sephadex: Its Application to Ribonuclease*
Englander, S. Walter
2012-01-01
A new method for measuring the hydrogen exchange of macromolecules in solution is described. The method uses tritium to trace the movement of hydrogen, and utilizes Sephadex columns to effect, in about 2 minutes, a separation between tritiated macromolecule and tritiated solvent great enough to allow the measurement of bound tritium. High sensitivity and freedom from artifact is demonstrated and the possible value of the technique for investigation of other kinds of colloid-small molecule interaction is indicated. Competition experiments involving tritium, hydrogen, and deuterium indicate the absence of any equilibrium isotope effect in the ribonuclease-hydrogen isotope system, though a secondary kinetic isotope effect is apparent when ribonuclease is largely deuterated. Ribonuclease shows four clearly distinguishable kinetic classes of exchangeable hydrogens. Evidence is marshaled to suggest the independently measurable classes II, III, and IV (in order of decreasing rate of exchange) to represent “random-chain” peptides, peptides involved in α-helix, and otherwise shielded side-chain and peptide hydrogens, respectively. PMID:14075117
Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win
2018-02-27
Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.
Rojas, Cinthia Carola; Wahlund, Karl-Gustav; Bergenståhl, Björn; Nilsson, Lars
2008-06-01
In this paper we aim to understand the size/conformation relationship in waxy barley starch, a polydisperse and ultrahigh molar mass biomacromolecule. Characterizations are performed with asymmetrical flow field-flow fractionation (AsFlFFF). Furthermore, we study the effect of homogenization on the molar mass, rms radius (r rms) and hydrodynamic radius (r h). For the untreated sample, the macromolecules are elongated objects with low apparent density. As a result of homogenization, molar mass, and r rms decrease, while r h remains unaffected. The process also induces an increase, and scaling with size, of apparent density as well as changes in conformation, represented qualitatively by r rms/ r h. Finally, results from AsFlFFF are compared with viscosimetry and discussed in terms of concentration and close-packing in relation to macromolecular shape and conformation. Hence, the results show that AsFlFFF and our novel methodology enable the determination of several physical properties with high relevance for the solution behavior of polydisperse macromolecules.
An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells
NASA Astrophysics Data System (ADS)
Powell, Jonathan J.; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E.; Skepper, Jeremy N.; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A.; Gomez-Morilla, Inmaculada; Grime, Geoffrey W.; Kirkby, Karen J.; Mabbott, Neil A.; Donaldson, David S.; Williams, Ifor R.; Rios, Daniel; Girardin, Stephen E.; Haas, Carolin T.; Bruggraber, Sylvaine F. A.; Laman, Jon D.; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P. H.; Pele, Laetitia C.
2015-05-01
In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1’, whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis.
LRP-1-mediated intracellular antibody delivery to the Central Nervous System
NASA Astrophysics Data System (ADS)
Tian, Xiaohe; Nyberg, Sophie; S. Sharp, Paul; Madsen, Jeppe; Daneshpour, Nooshin; Armes, Steven P.; Berwick, Jason; Azzouz, Mimoun; Shaw, Pamela; Abbott, N. Joan; Battaglia, Giuseppe
2015-07-01
The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH- sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells.
Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.
Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim
2014-07-08
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.
An Endogenous Nanomineral Chaperones Luminal Antigen and Peptidoglycan to Intestinal Immune Cells
Powell, Jonathan J; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E; Skepper, Jeremy N; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Gomez-Morilla, Inmaculada; Grime, Geoffrey W; Kirkby, Karen J; Mabbott, Neil A; Donaldson, David S; Williams, Ifor R; Rios, Daniel; Girardin, Stephen E; Haas, Carolin T; Bruggraber, Sylvaine FA; Laman, Jon D; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P H; Pele, Laetitia C
2015-01-01
In humans and other mammals, it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally-fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer’s patches - small areas of the intestine concentrated with particle-scavenging immune cells. In wild type mice, intestinal immune cells containing these naturally-formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1 (PD-L1)’, whereas in NOD1/2 double knock-out mice, which cannot recognize peptidoglycan, PD-L1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and how this helps to shape intestinal immune homeostasis. PMID:25751305
Polymer absorption in dense polymer brushes vs. polymer adsorption on the brush-solvent interface
NASA Astrophysics Data System (ADS)
Milchev, Andrey; Binder, Kurt
2014-06-01
Molecular-dynamics simulations of a coarse-grained model of a dense brush of flexible polymers (of type A) interacting with a long flexible macromolecule (of type B) are presented, considering the case of an attractive AB interaction, while effective interactions between AA and BB pairs of monomers are repulsive. Varying the strength \\varepsilon_{AB} of the attraction between unlike monomers, an adsorption transition at some critical value \\varepsilon^c_{AB} is found, where the B-chain is bound to the brush-solvent interface, similar to the adsorption on a planar solid substrate. However, when \\varepsilon_{AB} is much higher than \\varepsilon^c_{AB} , the long macromolecule is gradually “sucked in” the brush, developing many pieces that are locally stretched in the z-direction perpendicular to the substrate, in order to fit between the brush chains. The resulting hairpin-like structures of the absorbed chain shows up via oscillatory decay of the bond vector autocorrelation function. Chain relaxation is only possible via reptation.
The macromolecular aromatic domain in suberized tissue: a changing paradigm
NASA Technical Reports Server (NTRS)
Bernards, M. A.; Lewis, N. G.
1998-01-01
As a structural feature of specialized cell walls, suberization remains an enigma, despite its obvious importance both during normal growth and development and as a stress response in plants. While it is clear that suberized tissues contain both polyaromatic and polyaliphatic domains, and that each of these has its own unique characteristics, whether there is a contiguous macromolecule that can be called suberin is an open question. From a structural perspective, the aromatic domain is unique and distinct from lignin, and is apparently comprised primarily of (poly)hydroxycinnamates, such as amides (e.g., feruloyltyramine). The aliphatic domain is also unique, being quite distinct from cutin in terms of both its chemical composition and cellular location. In the present paper, histochemical, structural and biochemical data, particularly, regarding the polyaromatic domain of suberized tissues, are critically reviewed. A revised description of the polyaromatic domain of suberized tissues, based on the consensus that is emerging from the current data, is presented and especially includes a spatially distinct (poly)hydroxycinnamoyl-containing macromolecule.
Zettl, Thomas; Mathew, Rebecca S.; Seifert, Sönke; ...
2016-05-31
Accurate determination of molecular distances is fundamental to understanding the structure, dynamics, and conformational ensembles of biological macromolecules. Here we present a method to determine the full,distance,distribution between small (~7 Å) gold labels attached to macromolecules with very high-precision(≤1 Å) and on an absolute distance scale. Our method uses anomalous small-angle X-ray scattering close to a gold absorption edge to separate the gold-gold interference pattern from other scattering contributions. Results for 10-30 bp DNA constructs achieve excellent signal-to-noise and are in good agreement with previous results obtained by single-energy,SAXS measurements without requiring the preparation and measurement of single labeled andmore » unlabeled samples. Finally, the use of small gold labels in combination with ASAXS read out provides an attractive approach to determining molecular distance distributions that will be applicable to a broad range of macromolecular systems.« less
Controlled method of reducing electrophoretic mobility of macromolecules, particles, or cells
NASA Technical Reports Server (NTRS)
Vanalstine, James M. (Inventor)
1992-01-01
A method of reducing electrophoretic mobility of macromolecules, particles, cells, and other substances is provided which comprises interacting in a conventional electrophoretic separating procedure, the substances with a polymer-linked affinity compound comprised of a hydrophilic neutral polymer such as polyethylene glycol bound to a second component such as a hydrophobic compound, an immunocompound such as an antibody or antibody active fragment, or a ligand such as a hormone, drug, antigen, or a hapten. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and such reduction can comprise up to 100 percent for particular particles and cells. The present invention is advantageous in that electrophoretic separation can now be achieved for substances whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of the specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions.
Wang, Xianhua; Wu, Jing; Chen, Yingquan; Pattiya, Adisak; Yang, Haiping; Chen, Hanping
2018-06-01
Wet torrefaction (WT) possesses some advantages over dry torrefaction (DT). In this study, a comparative analysis of torrefied corn stalk from WT and DT was conducted along with an investigation of their pyrolysis properties under optimal conditions for biomass pyrolysis polygeneration. Compared with DT, WT removed 98% of the ash and retained twice the amount of hydrogen. The impacts of DT and WT on the biomass macromolecular structure was also found to be different using two-dimensional perturbation correlation infrared spectroscopy (2D-PCIS). WT preserved the active hydroxyl groups and rearranged the macromolecule structure to allow cellulose to be more ordered, while DT removed these active hydroxyl groups and formed inter-crosslinking structures in macromolecules. Correspondingly, the bio-char yield after WT was lower than DT but the bio-char quality was upgraded due to high ash removal. Furthermore, higher bio-oil yield, higher sugar content, and higher H 2 generation, were obtained after WT. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vibroacoustic processes and structural variations in muscular tissue
NASA Astrophysics Data System (ADS)
Antonets, V. A.; Klochkov, B. N.; Kovaleva, E. P.
1995-03-01
This paper reviews the problems and results obtained in the course of experimental and theoretical investigations of the vibroacoustic activity of contracting muscles. Two types of such processes are examined: (1) acoustic vibrations due to the macromolecular recombinations of muscle proteins, which are responsible for the muscle contraction, and (2) acoustic vibrations associated with the finite accuracy and speed of the receptor-effector system that controls the muscle contraction. By investigating the acoustic vibrations, we examine structural recombinations (conformation variations) in macromolecules during mechanochemical reactions. Since chemical reactions of macromolecules are always accompanied by conformational recombinations, the generation mechanism, which is responsible for the contraction processes in a muscular tissue, can also be extended to other macromolecular media. Investigation of infrasound vibrations makes it possible to explore the quality and error of control for the processes in the muscle under different types of loading. Since a living body is controlled via perceptions, the latter can be quantitatively estimated by the parametess of infrasound vibrations.
Cellular and Molecular Biology of Airway Mucins
Lillehoj, Erik P.; Kato, Kosuke; Lu, Wenju; Kim, Kwang C.
2017-01-01
Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins. PMID:23445810
Poree, Dawanne E; Zablocki, Kyle; Faig, Allison; Moghe, Prabhas V; Uhrich, Kathryn E
2013-08-12
Amphiphilic macromolecules (AMs) based on carbohydrate domains functionalized with poly(ethylene glycol) can inhibit the uptake of oxidized low density lipoprotein (oxLDL) and counteract foam cell formation, a key characteristic of early atherogenesis. To investigate the influence of lipophilicity and stereochemistry on the AMs' physicochemical and biological properties, mucic acid-based AMs bearing four aliphatic chains (2a) and tartaric acid-based AMs bearing two (2b and 2l) and four aliphatic chains (2g and 2k) were synthesized and evaluated. Solution aggregation studies suggested that both the number of hydrophobic arms and the length of the hydrophobic domain impact AM micelle sizes, whereas stereochemistry impacts micelle stability. 2l, the meso analogue of 2b, elicited the highest reported oxLDL uptake inhibition values (89%), highlighting the crucial effect of stereochemistry on biological properties. This study suggests that stereochemistry plays a critical role in modulating oxLDL uptake and must be considered when designing biomaterials for potential cardiovascular therapies.
Mas, J; Pedrós-Alió, C; Guerrero, R
1985-01-01
Procaryotic microorganisms accumulate several polymers in the form of intracellular inclusions as a strategy to increase survival in a changing environment. Such inclusions avoid osmotic pressure increases by tightly packaging certain macromolecules into the inclusion. In the present paper, a model describing changes in volume and density of the microbial cell as a function of the weight of the macromolecule forming the inclusion is derived from simple theoretical principles. The model is then tested by linear regression with experimental data from glycogen accumulation in Escherichia coli, poly-beta-hydroxybutyrate accumulation in Alcaligenes eutrophus, and sulfur accumulation in Chromatium spp. The model predicts a certain degree of hydration of the polymer in the inclusion and explains both the linear relationship between volume of the cell and weight of the polymer and the hyperbolic relationship between density of the cell and weight of the polymer. Other implications of the model are also discussed. PMID:3902798
Electronic method for autofluorography of macromolecules on two-D matrices
Davidson, Jackson B.; Case, Arthur L.
1983-01-01
A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100-1000 times.
Duan, Liang; Song, Yonghui; Yu, Huibin; Xia, Siqing; Hermanowicz, Slawomir W
2014-07-01
In this study, the effect of solids retention times (SRTs) on extracellular polymeric substances (EPS) and soluble microbial products (SMPs) were investigated in a membrane bioreactor (MBR) at SRTs of 10, 5 and 3 days. The results showed that more carbohydrates and proteins were accumulated at short SRT, which can due to the higher biomass activity in the reactor. The molecular weight (MW) distribution analysis suggested that macromolecules (MW>30 kDa) and small molecules (MW<1 kDa) were the dominant fraction of EPS and SMP, respectively. The reactor at shorter SRT had more small molecules and less macromolecules of carbohydrates. The MW distribution of total organic carbon (TOC) suggested that other organic moieties were exuded by microbes into the solution. The shorter SRT had more undefined microbial by-product-like substances and different O − H bonds in hydroxyl functional groups. Copyright © 2014 Elsevier Ltd. All rights reserved.
J-Refocused Coherence Transfer Spectroscopic Imaging at 7 T in Human Brain
Pan, J.W.; Avdievich, N.; Hetherington, H.P.
2013-01-01
Short echo spectroscopy is commonly used to minimize signal modulation due to J-evolution of the cerebral amino acids. However, short echo acquisitions suffer from high sensitivity to macromolecules which make accurate baseline determination difficult. In this report, we describe implementation at 7 T of a double echo J-refocused coherence transfer sequence at echo time (TE) of 34 msec to minimize J-modulation of amino acids while also decreasing interfering macromolecule signals. Simulation of the pulse sequence at 7 T shows excellent resolution of glutamate, glutamine, and N-acetyl aspartate. B1 sufficiency at 7 T for the double echo acquisition is achieved using a transceiver array with radiofrequency (RF) shimming. Using an alternate RF distribution to minimize receiver phase cancellation in the transceiver, accurate phase determination for the coherence transfer is achieved with rapid single scan calibration. This method is demonstrated in spectroscopic imaging mode with n = 5 healthy volunteers resulting in metabolite values consistent with literature and in a patient with epilepsy. PMID:20648684
Structure-property relationships of a biological mesocrystal in the adult sea urchin spine.
Seto, Jong; Ma, Yurong; Davis, Sean A; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut
2012-03-06
Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature's demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials.
Long charged macromolecule in an entropic trap with rough surfaces.
Mamasakhlisov, Yevgeni Sh; Hayryan, Shura; Hu, Chin-Kun
2012-11-01
The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and shallow slits known as an "entropic trap" is used to represent the environment. The flux is supported by the external electrostatic field. The "wormlike chain" model is used for the macromolecule (dsDNA in the present study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface roughness. The scope of the accuracy of the proposed model is discussed.
New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization.
Pacelli, Settimio; Paolicelli, Patrizia; Casadei, Maria Antonietta
2015-08-01
A new derivative of dextran grafted with polyethylene glycol methacrylate through a carbonate bond (DEX-PEG-MA) has been synthesized and characterized. The photo-crosslinking reaction of DEX-PEG-MA allowed the obtainment of biodegradable networks tested for their mechanical and release properties. The new hydrogels were compared with those made of dextran methacrylate (DEX-MA), often employed as drug delivery systems of small molecules. The inclusion of PEG as a spacer created additional interactions among the polymeric chains improving the extreme fragility and lack of hardness typical of gels made of DEX-MA. Moreover, the different behavior in terms of swelling and degradability of the networks was able to affect the release of a model macromolecule over time, making DEX-PEG-MA matrices suitable candidates for the delivery of high molecular weight peptides. Interestingly, the combination of the two dextran derivatives showed intermediate ability to modulate the release of high molecular weight macromolecules. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Biomolecular Crystallization Database Version 4: expanded content and new features.
Tung, Michael; Gallagher, D Travis
2009-01-01
The Biological Macromolecular Crystallization Database (BMCD) has been a publicly available resource since 1988, providing a curated archive of information on crystal growth for proteins and other biological macromolecules. The BMCD content has recently been expanded to include 14 372 crystal entries. The resource continues to be freely available at http://xpdb.nist.gov:8060/BMCD4. In addition, the software has been adapted to support the Java-based Lucene query language, enabling detailed searching over specific parameters, and explicit search of parameter ranges is offered for five numeric variables. Extensive tools have been developed for import and handling of data from the RCSB Protein Data Bank. The updated BMCD is called version 4.02 or BMCD4. BMCD4 entries have been expanded to include macromolecule sequence, enabling more elaborate analysis of relations among protein properties, crystal-growth conditions and the geometric and diffraction properties of the crystals. The BMCD version 4.02 contains greatly expanded content and enhanced search capabilities to facilitate scientific analysis and design of crystal-growth strategies.
Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle
Ross-Elliott, Timothy J; Jensen, Kaare H; Haaning, Katrine S; Wager, Brittney M; Knoblauch, Jan; Howell, Alexander H; Mullendore, Daniel L; Monteith, Alexander G; Paultre, Danae; Yan, Dawei; Otero, Sofia; Bourdon, Matthieu; Sager, Ross; Lee, Jung-Youn; Helariutta, Ykä; Knoblauch, Michael; Oparka, Karl J
2017-01-01
In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of ‘funnel plasmodesmata’. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as ‘batch unloading’. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots. DOI: http://dx.doi.org/10.7554/eLife.24125.001 PMID:28230527
Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High-Tg Polymeric Materials.
Holmberg, Angela L; Reno, Kaleigh H; Nguyen, Ngoc A; Wool, Richard P; Epps, Thomas H
2016-05-17
As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition-fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o -methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties.
Hierarchy, determinism, and specificity in theories of development and evolution.
Deichmann, Ute
2017-10-16
The concepts of hierarchical organization, genetic determinism and biological specificity (for example of species, biologically relevant macromolecules, or genes) have played a crucial role in biology as a modern experimental science since its beginnings in the nineteenth century. The idea of genetic information (specificity) and genetic determination was at the basis of molecular biology that developed in the 1940s with macromolecules, viruses and prokaryotes as major objects of research often labelled "reductionist". However, the concepts have been marginalized or rejected in some of the research that in the late 1960s began to focus additionally on the molecularization of complex biological structures and functions using systems approaches. This paper challenges the view that 'molecular reductionism' has been successfully replaced by holism and a focus on the collective behaviour of cellular entities. It argues instead that there are more fertile replacements for molecular 'reductionism', in which genomics, embryology, biochemistry, and computer science intertwine and result in research that is as exact and causally predictive as earlier molecular biology.
A biomimetic approach for enhancing the in vivo half-life of peptides
Penchala, Sravan C; Miller, Mark R; Pal, Arindom; Dong, Jin; Madadi, Nikhil R.; Xie, Jinghang; Joo, Hyun; Tsai, Jerry; Batoon, Patrick; Samoshin, Vyacheslav; Franz, Andreas; Cox, Trever; Miles, Jesse; Chan, William K; Park, Miki S; Alhamadsheh, Mamoun M
2015-01-01
The tremendous therapeutic potential of peptides has not yet been realized, mainly due to their short in vivo half-life. While conjugation to macromolecules has been a mainstay approach for enhancing the half-life of proteins, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of peptides without compromising their potency. Our approach involves endowing peptides with a small-molecule that binds reversibly to the serum protein, transthyretin. Although there are few reversible albumin-binding molecules, we are unaware of designed small molecules that bind reversibly to other serum proteins and are used for half-life extension in vivo. We show here that our strategy was indeed effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy. PMID:26344696
Fuzzy and fast nuclear transport
Mulder, Frans A. A.
2018-01-01
Exchange of macromolecules between the cytoplasm and the nucleus of all eukaryotic cells is controlled by nuclear pore complexes, which form a selective permeability barrier. The requirement for rapid but selective transport leads to a “transport paradox.” A new experimental study now provides a thermodynamic explanation. PMID:29572326
USDA-ARS?s Scientific Manuscript database
Lignocellulosic biomass is comprised of cellulose and hemicellulose, sources of polysaccharides, and lignin, a macromolecule with extensive aromaticity. Terrestrial biomass can provide a renewable carbon based feedstock for fuel and chemical production. However, recalcitrance of biomass to deconstru...
Improved ion exchange membrane
NASA Technical Reports Server (NTRS)
Rembaum, A.; Yen, S. P. S.; Klein, E.
1975-01-01
Membrane, made from commercially-available hollow fibers, is used in reverse osmosis, or dialysis. Fiber has skin layers which pass only small molecules. Macromolecules cannot penetrate skin. Fibers can also be used to remove other undesirable anions, such as phosphate, sulfate, carbonate, and uranium in form of uranium-sulfate complex.
USDA-ARS?s Scientific Manuscript database
The endoplasmic reticulum (ER) is a dynamic network that consists of numerous regions or subdomains with discrete morphological features and functional properties, including those involved in protein and oil-body formation, anterograde transport of secretory proteins, the exchange of macromolecules ...
ERIC Educational Resources Information Center
Goodsell, David S.
2009-01-01
Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…
ERIC Educational Resources Information Center
Goodsell, David S.
2011-01-01
Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…
Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress
USDA-ARS?s Scientific Manuscript database
Water stress (WS) predisposes peanut plants to fungal infection resulting in pre-harvest aflatoxin contamination. Major changes during water stress including oxidative stress, lead to destruction of photosynthetic apparatus and other macromolecules within cells. Two peanut cultivars with diverse dro...
ERIC Educational Resources Information Center
Wrigley, Colin
2012-01-01
Proteins are a diverse class of biochemical macromolecules, including substances as (apparently) unrelated as silk and sinew, hair and horn, feathers and flagella, enzymes and epidermis, gelatine (jelly) and gluten and gore, spider web, meat and fish muscle. Yet they are unified by being polymers of amino acids. Discovery of the nature of proteins…
Starch waxiness in hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy
USDA-ARS?s Scientific Manuscript database
Starch, the primary energy storage component of plants, consists of two large macromolecules, amylose and amylopectin. Each molecule is composed of long chains of alpha-D-glucopyranosyl units, with branching present in amylopectin and absent in amylose. The relative abundance of these two molecules ...
Software for Demonstration of Features of Chain Polymerization Processes
ERIC Educational Resources Information Center
Sosnowski, Stanislaw
2013-01-01
Free software for the demonstration of the features of homo- and copolymerization processes (free radical, controlled radical, and living) is described. The software is based on the Monte Carlo algorithms and offers insight into the kinetics, molecular weight distribution, and microstructure of the macromolecules formed in those processes. It also…
USDA-ARS?s Scientific Manuscript database
Accumulation of damage to the genome and macromolecules is a hallmark of aging, age-associated degeneration, and genome instability syndromes. Although the processes of aging are irreversible, they can be modulated by genome maintenance pathways and environmental factors such as diet. Selenium (Se) ...
Binary mixtures of waxy wheat and conventional wheat as measured by nir reflectance
USDA-ARS?s Scientific Manuscript database
Waxy wheat contains very low concentration (generally <2%) of amylose in endosperm starch, in contrast to conventional wheat whose starch is typically 20% amylose, with the balance being the branched macromolecule, amylopectin. With the release of a commercial hard winter waxy wheat cultivar in the ...
NMR Spectroscopy and Its Value: A Primer
ERIC Educational Resources Information Center
Veeraraghavan, Sudha
2008-01-01
Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…
Mage: A Tool for Developing Interactive Instructional Graphics
ERIC Educational Resources Information Center
Pavkovic, Stephen F.
2005-01-01
Mage is a graphics program developed for visualization of three-dimensional structures of proteins and other macromolecules. An application of the Mage program is reported here for developing interactive instructional graphics files (kinemages) of much smaller scale. Examples are given illustrating features of VSEPR models, permanent dipoles,…
An Accessible Two-Dimensional Solution Nuclear Magnetic Resonance Experiment on Human Ubiquitin
ERIC Educational Resources Information Center
Rovnyak, David; Thompson, Laura E.
2005-01-01
Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have…
Mechanics of the Adhesive Properties of Ivy Nanoparticles
2013-11-21
macromolecule with multiple physiological functions in the growth of plants, such as signaling, cell wall plasticizer, guiding pollen tube growth, and many...others. The AGPs on the stigma surface were believed to act as an adhesive base for pollens , indicating the adhesion function that AGPs play in plants
USDA-ARS?s Scientific Manuscript database
The endoplasmic reticulum (ER) is a dynamic network that consists of numerous regions or subdomains with discrete morphological features and functional properties, including those involved in protein and oil-body formation, anterograde transport of secretory proteins, the exchange of macromolecules ...
Integrating Introductory Biology and General Chemistry Laboratories.
ERIC Educational Resources Information Center
Godrick, Elizabeth; Hartman, Standish
2000-01-01
Introduces a science laboratory integrating biology and chemistry courses that includes four modules: (1) the fundamental process of reactions; (2) a semester-long project on the chemical assay of ascorbic acid; (3) human metabolism of Vitamin C; and (4) an open-ended project on the manipulation of macromolecules. (YDS)
A Simple Endpoint Assay for Starch-Degrading Enzymes.
ERIC Educational Resources Information Center
Kroen, William K.
1998-01-01
Since many of the important energy-transferring pathways involve synthesis or degradation of biological macromolecules, observations of the enzymes responsible for starch breakdown provide a useful case study. Provides a short, one-step assay for the enzymes amylase and amyloglucosidase. Topics covered include goals, preparation, assay procedure,…
Preserving brain function in aging: The anti-glycative potential of berry fruit
USDA-ARS?s Scientific Manuscript database
Advanced glycation end-products (AGEs) are naturally occurring macromolecules that are formed in vivo by the non-enzymatic modification of proteins, lipids, or nucleic acids by sugar, even in the absence of hyperglycemia. In the diet, AGEs are found in animal products, and additional AGEs are produc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holm, Christian; Gompper, Gerhard; Dill, Ken A.
This special issue highlights new developments in theory and coarse-graining in biological and synthetic macromolecules and membranes. Such approaches give unique insights into the principles and design of the structures, dynamics, and assembly processes of these complex fluids and soft materials, where the length and time scales are often prohibitively long for fully atomistic modeling.
Toxic properties of specific radiation determinant molecules, derived from radiated species
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Maliev, Vecheslav; Kedar, Prasad; Casey, Rachael; Jones, Jeffrey
Introduction: High doses of radiation induce the formation of radiation toxins in the organs of irradiated mammals. After whole body irradiation, cellular macromolecules and cell walls are damaged as a result of long-lived radiation-induced free radicals, reactive oxygen species, and fast, charged particles of radiation. High doses of radiation induce breaks in the chemical bonds of macromolecules and cross-linking reactions via chemically active processes. These processes result in the creation of novel modified macromolecules that possess specific toxic and antigenic properties defined by the type and dose of irradiation by which they are generated. Radiation toxins isolated from the lymph of irradiated animals are classified as hematotoxic, neurotoxic, and enteric non-bacterial (GI) radiation toxins, and they play an important role in the development of hematopoietic, cerebrovascular, and gastrointestinal acute radiation syndromes (ARS). Seven distinct toxins derived from post-irradiated animals have been designated as Specific Radiation Determinants (SRD): SRD-1 (neurotoxic radiation toxin generated by the cerebrovascular form of ARS), SRD-3 (enteric non-bacterial radiation toxins generated by the gastrointestinal form of ARS), and SRD-4 (hematotoxic radiation toxins generated by the hematological, bone marrow form of ARS). SRD-4 is further subdivided into four groups depending on the severity of the ARS induced: SRD-4/1, mild ARS; SRD-4/2, moderate ARS; SRD-4/3, severe ARS; and SRD-4/4, extremely severe ARS. The seventh SRD, SRD-2 is a toxic extract derived from animals suffering from a fourth form of ARS, as described in European literature and produces toxicity primarily in the autonimic nervous system. These radiation toxins have been shown to be responsible for the induction of important pathophysiological, immunological, and biochemical reactions in ARS. Materials and Methods: These studies incorporated the use of statistically significant numbers of a variety of animals. Lymphatic fluid was collected from the thoracic ducts of bovine species exposed to lethal doses of gamma radiation, and the SRDs were separated by size exclusion gel filtration and high-performance liquid chromatography. We compared the toxicity of isolated radiation toxins in a variety of animals. The clinical characteristics of ARS induced by intravenous or intra-muscular injections of radiation toxins were observed. Results: In radiation-na¨ animals (rats, rabbits, and sheep), toxicity was defined ıve by observing the timing and rate of lethality following injections with extracted radiation toxins (SRDs). Preparations of SRD-1 were injected intra-muscularly in doses of 5 or 10 mg/kg body weight. We observed the development of cerebrovascular ARS with 100% lethality at 10-30 minutes after injection. Analysis of the toxicity of different forms of radiation toxins showed that cerebrovascular neurotoxins possess the highest toxicity compared with other forms of radiation toxins. The other SRD's were also injected into radiation-naive animals and observed for subsequent toxicity/lethality, with the other SRDs producing less virulent forms of ARS. However, both the SRD-2- and SRD-3-injected animals also suffered lethality between 2 and 30 days post-injection. Conclusions: We have observed that radiation toxins are transported from the cells and tissues of irradiated organisms to the interstitial blood and lymphatic fluids, and that this migration of radiation toxins occurs hours after irradiation. Upon analysis of the results of our research and literature sources, we postulate that radiation toxins arise from the radiation-induced chemical modification of macromolecules resident in cell membranes and other cellular structures. Furthermore, we postulate that these altered macromolecules are not processed by antigen processing cells, but instead bind to class II MHC molecules and TCR-beta chains. This causes nonspecific activation of T cells, pro-inflammatory agents such as cytokines and isozymes of phospholipase A2 and phospholipase C, and platelet-activating factor. Longer-term effects induced by the altered macromolecules include the activation of cytotoxic T cells, which induces cytolysis in radiation-damaged cells. Activated CD8+ T cells produce tumor necrosis factor-B and additional cytokines. By these mechanisms, we postulate that radiation toxins generate the pathophysiological reactions associated with acute radiation syndromes.
Fluorinated Polyhedral Oligomeric Silsesquioxanes (F-POSS)
2008-01-01
Ed. 2001, 40, 2121. [11] T. Hayashi , M. Terrones, C. Scheu, Y. A. Kim, M. RQhle, T. Nakajima, M. Endo, Nano Lett. 2002, 2, 491. [12] a) K... Ohno , Y. Tsujii, T. Fukuda, M. Yamahiro, T. Iijima, H. Oikawa, K. Watanabe, T. Miyashita, Macromolecules 2005, 38, 1264; b) S. T. Iacono, A. Vij, W. W
Berman, Helen M.; Westbrook, John; Feng, Zukang; Gilliland, Gary; Bhat, T. N.; Weissig, Helge; Shindyalov, Ilya N.; Bourne, Philip E.
2000-01-01
The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource. PMID:10592235
The Distribution of Macromolecular Principles throughout Introductory Organic Chemistry
ERIC Educational Resources Information Center
Shulman, Joel I.
2017-01-01
Many of the principles of organic polymer chemistry are direct extensions of the information contained in the standard introductory organic chemistry course. Often, however, the discussion of macromolecules is relegated to a chapter at the end of the organic chemistry text and is covered briefly, if at all. Connecting the organic-chemical…
USDA-ARS?s Scientific Manuscript database
Polyamines (PA) involve in the gene regulation by interacting with various anionic macromolecules such as DNA, RNA and proteins and modulating their structure and function. Previous studies have showed that changing in polyamine biosynthesis alters plant response to different abiotic stresses. Here,...
ERIC Educational Resources Information Center
Maurye, Praveen; Basu, Arpita; Biswas, Jayanta Kumar; Bandyopadhyay, Tapas Kumar; Naskar, Malay
2018-01-01
Polyacrylamide gel electrophoresis (PAGE) is the most classical technique favored worldwide for resolution of macromolecules in many biochemistry laboratories due to its incessant advanced developments and wide modifications. These ever-growing advancements in the basic laboratory equipments lead to emergence of many expensive, complex, and tricky…
Genome sequence of the algicidal bacterium Kordia algicida OT-1.
Lee, Hyun Sook; Kang, Sung Gyun; Kwon, Kae Kyoung; Lee, Jung-Hyun; Kim, Sang-Jin
2011-08-01
Kordia algicida OT-1 is an algicidal bacterium against the bloom-forming microalgae. The genome sequence of K. algicida revealed a number of interesting features, including the degradation of macromolecules, the biosynthesis of carotenoid pigment and secondary metabolites, and the capacity for gliding motility, which might facilitate the understanding of algicidal mechanisms.
Expanding the biological periodic table.
Seravalli, Javier; Ragsdale, Stephen W
2010-08-27
Metal ions play an indispensable role in biology, enabling enzymes to perform their functions and lending support to the structures of numerous macromolecules. Despite their prevalence and importance, the metalloproteome is still relatively unexplored. Cvetkovic et al. (2010) now describe an approach to identify metalloproteins on a genome-wide scale. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Jaswal, Sheila S.; O'Hara, Patricia B.; Williamson, Patrick L.; Springer, Amy L.
2013-01-01
Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of…
A Protein in the Palm of Your Hand through Augmented Reality
ERIC Educational Resources Information Center
Berry, Colin; Board, Jason
2014-01-01
Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for…
Robust Plasma Polymerized-Titania/Silica Janus Microparticles
2010-04-29
vladimir@mse.gatech.edu. (1) De Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645. (2) Perro , A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E. J. Mater...Rubner,M. F.; Cohen, R. E.Macromolecules 2005, 38, 7876. (12) Perro ,A.;Meunier, F.; Schmitt, V.;Ravaine, S.Colloid. Surface.A. 2009, 332, 57. (13
The expanding universe of hypoxia.
Zhang, Huafeng; Semenza, Gregg L
2008-07-01
Reduced oxygen availability (hypoxia) is sensed and transduced into changes in the activity or expression of cellular macromolecules. These responses impact on virtually all areas of biology and medicine. In this meeting report, we summarize major developments in the field that were presented at the 2008 Keystone Symposium on Cellular, Physiological, and Pathogenic Responses to Hypoxia.
Novel approach using DNA-RNA hybrids in RNA nanotechnology | Center for Cancer Research
Developing simple approaches to detect interactions, modifications, and cellular locations of macromolecules is essential for understanding biochemical processes. The use of protein fragment complementation assays, also called split-protein systems, is a highly sensitive approach for studying protein interactions in biological systems. In this approach, functional proteins are
Dynamics of essential collective motions in proteins: Theory
NASA Astrophysics Data System (ADS)
Stepanova, Maria
2007-11-01
A general theoretical background is introduced for characterization of conformational motions in protein molecules, and for building reduced coarse-grained models of proteins, based on the statistical analysis of their phase trajectories. Using the projection operator technique, a system of coupled generalized Langevin equations is derived for essential collective coordinates, which are generated by principal component analysis of molecular dynamic trajectories. The number of essential degrees of freedom is not limited in the theory. An explicit analytic relation is established between the generalized Langevin equation for essential collective coordinates and that for the all-atom phase trajectory projected onto the subspace of essential collective degrees of freedom. The theory introduced is applied to identify correlated dynamic domains in a macromolecule and to construct coarse-grained models representing the conformational motions in a protein through a few interacting domains embedded in a dissipative medium. A rigorous theoretical background is provided for identification of dynamic correlated domains in a macromolecule. Examples of domain identification in protein G are given and employed to interpret NMR experiments. Challenges and potential outcomes of the theory are discussed.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2014-11-01
The effects of solution pH and the content of cationic groups in polyacrylamide (PAM) macromolecules on the stability mechanism of aqueous alumina suspension were investigated. The following experimental techniques were applied: spectrophotometry, potentiometric titration, microelectrophoresis, viscosimetry and turbidimetry. They enable determination of polymer adsorbed amount, surface charge density and zeta potential of solid particles in the presence and absence of PAM, as well as thickness of polymer adsorption layer, size of macromolecules in the solution and stability of the Al2O3-polymer systems, respectively. The obtained results indicate that adsorption of PAM increases with the increasing pH, whereas the thickness of polymeric adsorption layer decreases. Additionally, the greater the number of cationic groups in the PAM chains is, the higher adsorption was found. The polymer presence influences on the alumina suspension stability. At pH 3 and 6 the slight deterioration of stability conditions of solid particle covered with polyacrylamide was observed. At pH 9 the systems containing polymer are unstable, similarly to the suspension without PAM, but the mechanism of their destabilization is different.
NASA Astrophysics Data System (ADS)
Hagiwara, Yohsuke; Ohta, Takehiro; Tateno, Masaru
2009-02-01
An interface program connecting a quantum mechanics (QM) calculation engine, GAMESS, and a molecular mechanics (MM) calculation engine, AMBER, has been developed for QM/MM hybrid calculations. A protein-DNA complex is used as a test system to investigate the following two types of QM/MM schemes. In a 'subtractive' scheme, electrostatic interactions between QM/MM regions are truncated in QM calculations; in an 'additive' scheme, long-range electrostatic interactions within a cut-off distance from QM regions are introduced into one-electron integration terms of a QM Hamiltonian. In these calculations, 338 atoms are assigned as QM atoms using Hartree-Fock (HF)/density functional theory (DFT) hybrid all-electron calculations. By comparing the results of the additive and subtractive schemes, it is found that electronic structures are perturbed significantly by the introduction of MM partial charges surrounding QM regions, suggesting that biological processes occurring in functional sites are modulated by the surrounding structures. This also indicates that the effects of long-range electrostatic interactions involved in the QM Hamiltonian are crucial for accurate descriptions of electronic structures of biological macromolecules.
Rigidity of Glasses and Macromolecules
NASA Astrophysics Data System (ADS)
Thorpe, M. F.
1998-03-01
The simple yet powerful ideas of percolation theory have found their way into many different areas of research. In this talk we show how RIGIDITY PERCOLATION can be studied at a similar level of sophistication, using a powerful new program THE PEBBLE GAME (D. J. Jacobs and M. F. Thorpe, Phys. Rev. E) 53, 3682 (1996). that uses an integer algorithm. This program can analyse the rigidity of two and three dimensional networks containing more than one million bars and joints. We find the total number of floppy modes, and find the critical behavior as the network goes from floppy to rigid as more bars are added. We discuss the relevance of this work to network glasses, and how it relates to experiments that involve the mechanical properties like hardness and elasticity of covalent glassy networks like Ge_xAs_ySe_1-x-y and dicuss recent experiments that suggest that the rigidity transition may be first order (Xingwei Feng, W. J.Bresser and P. Boolchand, Phys. Rev. Lett 78), 4422 (1997).. This approach is also useful in macromolecules and proteins, where detailed information about the rigid domain structure can be obtained.
Solovieva, Anna B; Kardumian, Valeria V; Aksenova, Nadezhda A; Belovolova, Lyudmila V; Glushkov, Mikhail V; Bezrukov, Evgeny A; Sukhanov, Roman B; Kotova, Svetlana L; Timashev, Peter S
2018-05-23
By the example of a model process of tryptophan photooxidation in the aqueous medium in the presence of a three-component photosensitizing complex (porphyrin photosensitizer-polyvinylpyrrolidone- chitosan, PPS-PVP-CT) in the temperature range of 20-40 °С, we have demonstrated a possibility of modification of such a process by selecting different molar ratios of the components in the reaction mixture. The actual objective of this selection is the formation of a certain PPS-PVP-CT composition in which PVP macromolecules would coordinate with PPS molecules and at the same time practically block the complex binding of PPS molecules with chitosan macromolecules. Such blocking allows utilization of the bactericidal properties of chitosan to a greater extent, since chitosan is known to depress the PPS photosensitizing activity in PPS-PVP-CT complexes when using those in photodynamic therapy (PDT). The optimal composition of photosensitizing complexes appears to be dependent on the temperature at which the PDT sessions are performed. We have analyzed the correlations of the effective rate constants of tryptophan photooxidation with the photophysical characteristics of the formed complexes.
Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods
Du, Xing; Li, Yi; Xia, Yuan-Ling; Ai, Shi-Meng; Liang, Jing; Sang, Peng; Ji, Xing-Lai; Liu, Shu-Qun
2016-01-01
Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed. PMID:26821017
Majee, Sujay Kumar; Ray, Sayani; Ghosh, Kanika; Micard, Valérie; Ray, Bimalendu
2015-04-01
Red peppers, Capsicum annuum, are used worldwide as spices, foods and medicines. Herein, we have analyzed an antiradical polysaccharide isolated from red peppers through successive acetate buffer extraction. This macromolecule was purified using graded precipitation with ethanol, α-amylase treatment, deproteination and anion-exchange chromatography. This highly-branched polysaccharide (360 kDa) was esterified with phenolic acids and contained a (1,3)-linked-β-Galp chain substituted at O-6 by (1,6)-linked-β-Galp residues. The latter was substituted at O-3 by (1,5)- and (1,3,5)-linked-α-Araf residues, and non-reducing end-units of α-Araf and β-Galp. The antiradical potential of this polysaccharide was comparable to standard antioxidants. The phenolic acid residues were the functional sites. This polysaccharide could form complex with bovine serum albumin having binding constant K = 5.24 × 10(6)/M and change its microenvironment. Thus, aqueous extraction method provides a macromolecule that stimulates biological responses; this emphasizes the significance of red pepper as dietary antioxidant. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, V. T., E-mail: vlebedev@pnpi.spb.ru; Toeroek, Gy.; Vinogradova, L. V.
The self-organization of star-shaped polymers in toluene has been studied by small-angle neutron scattering. Polystyrene stars with a mono-C{sub 60} branching center are ordered into globular clusters ({approx}1700 nm in diameter), whereas stars with a double (C{sub 60}-C{sub 60}) center are ordered into anisotropic structures (superchains), which are linked (depending on the concentration) into triads (chain clusters {approx}2500 nm in diameter). On the contrary, heteroarm polystyrene and poly-2-vinylpyridine stars with a C{sub 60} center are weakly associated into dimers. Moderately polar stars with arms composed of polystyrene and diblock copolymer (poly-2-vinylpyridine-poly-tret-butyl methacrylate) form short chains composed of four macromolecules, whilemore » stars of higher polarity based on polystyrene and poly-tret-butyl methacrylate form clusters containing {approx}12 macromolecules {approx}50 nm in diameter. Thus, by varying the structure of the center and the arm polarity, one can control the modes of star structuring.« less
iMODS: internal coordinates normal mode analysis server.
López-Blanco, José Ramón; Aliaga, José I; Quintana-Ortí, Enrique S; Chacón, Pablo
2014-07-01
Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
On macromolecular refinement at subatomic resolution with interatomic scatterers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
2007-11-01
Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules. A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented bymore » additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.« less
Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.
Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C
2014-01-21
Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.
Shimozu, Yuuki; Hirai, Takayasu; Hatano, Tsutomu
2018-07-01
Three oligomeric hydrolysable tannins, coriariins K, L, and M, which were previously undescribed, together with five known hydrolysable tannins were isolated from dried leaves of Coriaria japonica. Their structures were determined based on 1D and 2D NMR spectroscopy, HR-ESI-MS, and ECD spectroscopy experiments. Among the isolated compounds, coriariin M has a unique trimer structure where both dehydrodigalloyl and valoneoyl group linkages were found between the hydrolysable tannin monomers. Dimeric hydrolysable tannins coriariins K and L, having a dehydrodigalloyl group as the linking unit, were structurally related to coriariin A, the main hydrolysable tannin of this plant species. Additionally, the complexation of the eight hydrolysable tannins isolated in this study with bovine serum albumin (BSA) to form water-soluble macromolecules was analyzed using native polyacrylamide gel electrophoresis (PAGE). A comparison of the behaviors of the oligomeric hydrolysable tannins suggested the participation of the hexahydroxydiphenoyl group and the importance of the molecular sizes of the hydrolysable tannins in the formation of macromolecules. Copyright © 2018 Elsevier Ltd. All rights reserved.
Growing Larger Crystals for Neutron Diffraction
NASA Technical Reports Server (NTRS)
Pusey, Marc
2003-01-01
Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.
Molecular Simulation Evaluation of Macromolecular Transport through Nanofiltration Membranes
NASA Astrophysics Data System (ADS)
Almodovar Arbelo, Noelia; Boudouris, Bryan; Corti, David
A hybrid Monte Carlo and Molecular Dynamics simulation technique was implemented to elucidate the equilibrium behavior and transport properties of a model macromolecule as it navigated across a nanoporous polymer thin film (i.e., a nanofiltration membrane). The model linear homopolymer chosen was one that had interactions that were representative of poly(ethylene oxide) (PEO) due to the known interactions of PEO with solution molecules when a PEO chain is dissolved in an aqueous environment. The structural rearrangements of the PEO chain as it passes through the nanopore under an imposed chemical potential gradient was quantified as a function of solvent quality, polymer chain length, nanopore diameter and shape, and PEO-nanopore wall interactions. Thus, these computational studies provide a more detailed picture of the underlying physical mechanisms that drive macromolecular transport through nanopores, and, in particular, how dimensionally-large macromolecules (i.e., with large radii of gyration) enter and move through dimensionally-small pores (i.e., small radii nanopores). The insights gained from these studies will aid in the development of more cost-effective water purification systems in separation technologies for myriad industrial applications.
Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide
Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim
2014-01-01
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor. PMID:25001596
McPherson, Alexander
2017-01-01
Protein crystallization was discovered by chance nearly 200 years ago and was developed in the late nineteenth century as a powerful purification tool, and a demonstration of chemical purity. The crystallization of proteins, nucleic acids, and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule, but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by manipulation of various parameters that include temperature, ionic strength, and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors, or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch, and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years due to the advent of practical, easy-to-use screening kits, and the application of laboratory robotics.
Wiig, Helge; Gyenge, Christina; Iversen, Per Ole; Gullberg, Donald; Tenstad, Olav
2008-05-01
The interstitial space is a dynamic microenvironment that consists of interstitial fluid and structural molecules of the extracellular matrix, such as glycosaminoglycans (hyaluronan and proteoglycans) and collagen. Macromolecules can distribute in the interstitium only in those spaces unoccupied by structural components, a phenomenon called interstitial exclusion. The exclusion phenomenon has direct consequences for plasma volume regulation. Early studies have assigned a major role to collagen as an excluding agent that accounts for the sterical (geometrical) exclusion. More recently, it has been shown that the contribution of negatively charged glycosaminoglycans might also be significant, resulting in an additional electrostatical exclusion effect. This charge effect may be of importance for drug uptake and suggests that either the glycosaminoglycans or the net charge of macromolecular substances to be delivered may be targeted to increase the available volume and uptake of macromolecular therapeutic agents in tumor tissue. Here, we provide an overview of the structural components of the interstitium and discuss the importance the sterical and electrostatical components have on the dynamics of transcapillary fluid exchange.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, C.; Santschi, P; Roberts, K
Relatively recently, inorganic colloids have been invoked to reconcile the apparent contradictions between expectations based on classical dissolved-phase Pu transport and field observations of 'enhanced' Pu mobility (Kersting et al. Nature 1999, 397, 56-59). A new paradigm for Pu transport is mobilization and transport via biologically produced ligands. This study for the first time reports a new finding of Pu being transported, at sub-pM concentrations, by a cutin-like natural substance containing siderophore-like moieties and virtually all mobile Pu. Most likely, Pu is complexed by chelating groups derived from siderophores that are covalently bound to a backbone of cutin-derived soil degradationmore » products, thus revealing the history of initial exposure to Pu. Features such as amphiphilicity and small size make this macromolecule an ideal collector for actinides and other metals and a vector for their dispersal. Cross-linking to the hydrophobic domains (e.g., by polysaccharides) gives this macromolecule high mobility and a means of enhancing Pu transport. This finding provides a new mechanism for Pu transport through environmental systems that would not have been predicted by Pu transport models.« less
Choi, Jaeyeong; Zielke, Claudia; Nilsson, Lars; Lee, Seungho
2017-07-01
The macromolecular composition of beer is largely determined by the brewing and the mashing process. It is known that the physico-chemical properties of proteinaceous and polysaccharide molecules are closely related to the mechanism of foam stability. Three types of "American pale ale" style beer were prepared using different mashing protocols. The foam stability of the beers was assessed using the Derek Rudin standard method. Asymmetric flow field-flow fractionation (AF4) in combination with ultraviolet (UV), multiangle light scattering (MALS) and differential refractive index (dRI) detectors was used to separate the macromolecules present in the beers and the molar mass (M) and molar mass distributions (MD) were determined. Macromolecular components were identified by enzymatic treatments with β-glucanase and proteinase K. The MD of β-glucan ranged from 10 6 to 10 8 g/mol. In addition, correlation between the beer's composition and foam stability was investigated (increased concentration of protein and β-glucan was associated with increased foam stability).
Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries.
Dyer, Kippi M; Perkyns, John S; Pettitt, B Montgomery
2015-07-23
In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.
NASA Astrophysics Data System (ADS)
Chang, Alice Chinghsuan; Liu, Bernard Haochih
2018-02-01
The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods. The characteristic macromolecules located among cellular surface were considered as surface layer proteins and were found to be specific to the Escherichia coli genotypes, from which the averaged molecular sizes were characterized with diameters ranging from 38 to 66 nm, and the molecular shapes were kidney-like or round. In conclusion, the surface macromolecular structures have unique characteristics that link to the E. coli genotype, which suggests that the genomic effects on cellular morphologies can be rapidly identified using AFM mechanical mapping. [Figure not available: see fulltext.
Drive the Car(go)s-New Modalities to Control Cargo Trafficking in Live Cells.
Mondal, Payel; Khamo, John S; Krishnamurthy, Vishnu V; Cai, Qi; Zhang, Kai
2017-01-01
Synaptic transmission is a fundamental molecular process underlying learning and memory. Successful synaptic transmission involves coupled interaction between electrical signals (action potentials) and chemical signals (neurotransmitters). Defective synaptic transmission has been reported in a variety of neurological disorders such as Autism and Alzheimer's disease. A large variety of macromolecules and organelles are enriched near functional synapses. Although a portion of macromolecules can be produced locally at the synapse, a large number of synaptic components especially the membrane-bound receptors and peptide neurotransmitters require active transport machinery to reach their sites of action. This spatial relocation is mediated by energy-consuming, motor protein-driven cargo trafficking. Properly regulated cargo trafficking is of fundamental importance to neuronal functions, including synaptic transmission. In this review, we discuss the molecular machinery of cargo trafficking with emphasis on new experimental strategies that enable direct modulation of cargo trafficking in live cells. These strategies promise to provide insights into a quantitative understanding of cargo trafficking, which could lead to new intervention strategies for the treatment of neurological diseases.
NASA Astrophysics Data System (ADS)
Colomban, Philippe
2013-03-01
The coupled mechanical and Raman/infrared (IR) analysis of the (nano)structure and texture of synthetic and natural polymer fibres (polyamides (PA66), polyethylene terephthalate (PET), polypropylene (PP), poly(paraphenylene benzobisoxazole) (PBO), keratin/hair, Bombyx mori, Gonometa rufobrunea/postica Antheraea/Tussah silkworms and Nephila Madagascarensis spider silks) is applied so as to differentiate between crystalline and amorphous macromolecules. Bonding is very similar in the two cases but a broader distribution of conformations is observed for the amorphous macromolecules. These conclusions are then used to discuss the modifications induced by the application of a tensile or compressive stress, including the effects of fatigue. Detailed attention is paid to water and the inter-chain coupling for which the importance of hydrogen bonding is reconsidered. The significant role of the ‘amorphous’ bonds/domains in the process of fracture/fatigue is shown. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2012, 30 October-2 November 2012, Ha Long, Vietnam.
Catalytic Activity of a Binary Informational Macromolecule
NASA Technical Reports Server (NTRS)
Reader, John S.; Joyce, Gerald F.
2003-01-01
RNA molecules are thought to have played a prominent role in the early history of life on Earth based on their ability both to encode genetic information and to exhibit catalytic function. The modern genetic alphabet relies on two sets of complementary base pairs to store genetic information. However, due to the chemical instability of cytosine, which readily deaminates to uracil, a primitive genetic system composed of the bases A, U, G and C may have been difficult to establish. It has been suggested that the first genetic material instead contained only a single base-pairing unie'. Here we show that binary informational macromolecules, containing only two different nucleotide subunits, can act as catalysts. In vitro evolution was used to obtain ligase ribozymes composed of only 2,6-diaminopurine and uracil nucleotides, which catalyze the template-directed joining of two RNA molecules, one bearing a 5'-triphosphate and the other a 3'-hydroxyl. The active conformation of the fastest isolated ribozyme had a catalytic rate that was about 36,000-fold faster than the uncatalyzed rate of reaction. This ribozyme is specific for the formation of biologically relevant 3',5'-phosphodiester linkages.
Gabellieri, Edi; Balestreri, Ettore; Galli, Alvaro; Cioni, Patrizia
2008-01-01
Changes in flexibility and structural stability of Pseudomonas aeruginosa azurin in response to cavity-creating mutations were probed by the phosphorescence emission of Trp-48, which was deeply buried in the compact hydrophobic core of the macromolecule, and by measurements of guanidinum hydrochloride unfolding, respectively. Replacement of the bulky side chains Phe-110, Phe-29, and Tyr-108 with the smaller Ala introduced cavities at different distances from the hydrophobic core. The phosphorescence lifetime (τ0) of Trp-48, buried inside the protein core, and the acrylamide quenching rate constant (kq) were used to monitor local and global flexibility changes induced by the introduction of the cavity. The results of this work demonstrate the following: 1), the effect on core flexibility of the insertion of cavities is not correlated readily to the distance of the cavity from the core; 2), the protein global flexibility results are related to the cavity distance from the packed core of the macromolecule; and 3), the increase in protein flexibility does not correspond necessarily to a comparable destabilizing effect of some mutations. PMID:18424505
Electronic method for autofluorography of macromolecules on two-D matrices. [Patent application
Davidson, J.B.; Case, A.L.
1981-12-30
A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100 to 1000 times.
Krokan, H; Eriksen, A
1977-02-01
Addition of methyl glyoxal bis(guanylhydrazone) to HeLa S3 suspension cultures resulted in increased putrescine levels and decreased spermidine and spermine levels preceding a drop in incorporation of [3H]thymidine, [3H]uridine and [14C]leucine into macromolecules. When putrescine, spermidine, spermine or cadaverine was added simultaneously with methyl glyoxal bis(guanylhydrazone), the drug had no detectable effect on the synthesis of macromolecules. In nuclei isolated from cells treated with methyl glyoxal bis(guanylhydrazone) the reduction in the rate of DNA synthesis was equal to the reduction of [3H]thymidine incorporation in the corresponding whole cells. The capability of the nuclei to synthesize DNA could not be restored by adding spermidine or spermine to the system in vitro. The rate of DNA chain elongation was only reduced slightly by methyl glyoxal bis(guanylhydrazone) indicating that decreased levels of spermidine and spermine lead to a decrease in the number of replication units active in DNA synthesis within each cell.
Essential role of conformational selection in ligand binding.
Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico
2014-02-01
Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and only sufficient in a few cases. Therefore, the long assumed importance and preponderance of induced fit as a mechanism of ligand binding should be reconsidered. © 2013 Elsevier B.V. All rights reserved.
Martínez-Ruiz, Erika Berenice; Martínez-Jerónimo, Fernando
2015-12-01
In recent years, the release of chemical pollutants to water bodies has increased due to anthropogenic activities. Ni(2+) is an essential metal that causes damage to aquatic biota at high concentrations. Phytoplankton are photosynthesizing microscopic organisms that constitute a fundamental community in aquatic environments because they are primary producers that sustain the aquatic food web. Nickel toxicity has not been characterized in all of the affected levels of biological organization. For this reason, the present study evaluated the toxic effects of nickel on the growth of a primary producer, the green microalga Ankistrodesmus falcatus, and on its biochemical, enzymatic, and structural levels. The IC50 (96h) was determined for Ni(2+). Based on this result, five concentrations were determined for additional tests, in which cell density was evaluated daily. At the end of the assay, pigments and six biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], superoxide dismutase [SOD]), and macromolecules (proteins, carbohydrates and lipids), were quantified; the integrated biomarker response (IBR) was determined also. The microalgae were observed by SEM and TEM. Population growth was affected starting at 7.5 μg L(-1) (0.028 μM), and at 120 μg L(-1) (0.450 μM), growth was inhibited completely; the determined IC50 was 17 μg L(-1). Exposure to nickel reduced the concentration of pigments, decreased the content of all of the macromolecules, inhibited of SOD activity, and increased CAT and GPx activities. The IBR revealed that Ni(2+) increased the antioxidant response and diminished the macromolecules concentration. A. falcatus was affected by nickel at very low concentrations; negative effects were observed at the macromolecular, enzymatic, cytoplasmic, and morphological levels, as well as in population growth. Ni(2+) toxicity could result in environmental impacts with consequences on the entire aquatic community. Current regulations should be revised to protect primary producers. Copyright © 2015 Elsevier B.V. All rights reserved.
1986-01-01
It is generally proposed that embryonic mesenchymal cells use sulfated macromolecules during in situ migration. Attempts to resolve the molecular mechanisms for this hypothesis using planar substrates have been met with limited success. In the present study, we provide evidence that the functional significance of certain sulfated macromolecules during mesenchyme migration required the presence of the endogenous migratory template; i.e., native collagen fibrils. Using three-dimensional collagen gel lattices and whole embryo culture procedures to produce metabolically labeled sulfated macromolecules in embryonic chick cardiac tissue, we show that these molecules were primarily proteoglycan (PG) in nature and that their distribution was class specific; i.e., heparan sulfate PG, the minor labeled component (15%), remained pericellular while chondroitin sulfate (CS) PG, the predominately labeled PG (85%), was associated with collagen fibrils as "trails" of 50-60-nm particles when viewed by scanning electron microscopy. Progressive "conditioning" of collagen with CS-PG inhibited the capacity of the template to support subsequent cell migration. Lastly, metabolically labeled, PG-derived CS chains were compared with respect to degree of sulfation in either the C-6 or C-4 position by chromatographic separation of chondroitinase AC digestion products. Results from temporal and regional comparisons of in situ-labeled PGs indicated a positive correlation between the presence of mesenchyme and an enrichment of disaccharide-4S relative to that from regions lacking mesenchyme (i.e., principally myocardial tissue). The suggestion of a mesenchyme-specific CS-PG was substantiated by similarly examining the PGs synthesized solely by cardiac mesenchymal cells migrating within hydrated collagen lattice in culture. These data were incorporated into a model of "substratum conditioning" which provides a molecular mechanism by which secretion of mesenchyme-specific CS-PGs not only provides for directed and sustained cell movement, but ultimately inhibits migration of the cell population as a whole. PMID:3782305
NASA Astrophysics Data System (ADS)
Zhou, J.; Deyhim, A.; Krueger, S.; Gregurick, S. K.
2005-08-01
A program for determining the low resolution shape of biological macromolecules, based on the optimization of a small angle neutron scattering profile to experimental data, is presented. This program, termed LORES, relies on a Monte Carlo optimization procedure and will allow for multiple scattering length densities of complex structures. It is therefore more versatile than utilizing a form factor approach to produce low resolution structural models. LORES is easy to compile and use, and allows for structural modeling of biological samples in real time. To illustrate the effectiveness and versatility of the program, we present four specific biological examples, Apoferritin (shell model), Ribonuclease S (ellipsoidal model), a 10-mer dsDNA (duplex helix) and a construct of a 10-mer DNA/PNA duplex helix (heterogeneous structure). These examples are taken from protein and nucleic acid SANS studies, of both large and small scale structures. We find, in general, that our program will accurately reproduce the geometric shape of a given macromolecule, when compared with the known crystallographic structures. We also present results to illustrate the lower limit of the experimental resolution which the LORES program is capable of modeling. Program summaryTitle of program:LORES Catalogue identifier: ADVC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:SGI Origin200, SGI Octane, SGI Linux, Intel Pentium PC Operating systems:UNIX64 6.5 and LINUX 2.4.7 Programming language used:C Memory required to execute with typical data:8 MB No. of lines in distributed program, including test data, etc.:2270 No. of bytes in distributed program, including test data, etc.:13 302 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MATH library
Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping.
Mason, Ronald Paul
2016-08-01
The accurate and sensitive detection of biological free radicals in a reliable manner is required to define the mechanistic roles of such species in biochemistry, medicine and toxicology. Most of the techniques currently available are either not appropriate to detect free radicals in cells and tissues due to sensitivity limitations (electron spin resonance, ESR) or subject to artifacts that make the validity of the results questionable (fluorescent probe-based analysis). The development of the immuno-spin trapping technique overcomes all these difficulties. This technique is based on the reaction of amino acid- and DNA base-derived radicals with the spin trap 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) to form protein- and DNA-DMPO nitroxide radical adducts, respectively. These adducts have limited stability and decay to produce the very stable macromolecule-DMPO-nitrone product. This stable product can be detected by mass spectrometry, NMR or immunochemistry by the use of anti-DMPO nitrone antibodies. The formation of macromolecule-DMPO-nitrone adducts is based on the selective reaction of free radical addition to the spin trap and is thus not subject to artifacts frequently encountered with other methods for free radical detection. The selectivity of spin trapping for free radicals in biological systems has been proven by ESR. Immuno-spin trapping is proving to be a potent, sensitive (a million times higher sensitivity than ESR), and easy (not quantum mechanical) method to detect low levels of macromolecule-derived radicals produced in vitro and in vivo. Anti-DMPO antibodies have been used to determine the distribution of free radicals in cells and tissues and even in living animals. In summary, the invention of the immuno-spin trapping technique has had a major impact on the ability to accurately and sensitively detect biological free radicals and, subsequently, on our understanding of the role of free radicals in biochemistry, medicine and toxicology. Published by Elsevier B.V.
Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate
Lebedeva, Natalia V.; Nese, Alper; Sun, Frank C.; Matyjaszewski, Krzysztof; Sheiko, Sergei S.
2012-01-01
Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C─C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (kBT) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V0(1 - e-βx)2 - fx, we determined the depth and width of the potential to be V0 = 141 ± 19 kJ/mol and β-1 = 0.18 ± 0.03 Å, respectively. Whereas the V0 value is in reasonable agreement with the activation energy Ea = 80–220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C─C bond De = 350 kJ/mol. Moreover, the force constant Kx = 2β2V0 = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C─C bond Kl = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains. PMID:22645366
NASA Astrophysics Data System (ADS)
Smentkowski, V. S.; Duong, H. M.; Tamaki, R.; Keenan, M. R.; Ohlhausen, J. A. Tony; Kotula, P. G.
2006-11-01
Silsesquioxane, with an empirical formula of RSiO3/2, has the potential to combine the mechanical properties of plastics with the oxidative stability of ceramics in one material [D.W. Scott, J. Am. Chem. Soc. 68 (1946) 356; K.J. Shea, D.A. Loy, Acc. Chem. Res. 34 (2001) 707; K.-M. Kim, D.-K. Keum, Y. Chujo, Macromolecules 36 (2003) 867; M.J. Abad, L. Barral, D.P. Fasce, R.J.J. William, Macromolecules 36 (2003) 3128]. The high sensitivity, surface specificity, and ability to detect and image high mass additives make time-of-flight secondary ion mass spectrometry (ToF-SIMS) a powerful surface analytical instrument for the characterization of polymer composite surfaces in an analytical laboratory [J.C. Vickerman, D. Briggs (Eds.), ToF-SIMS Surface Analysis by Mass Spectrometry, Surface Spectra/IMPublications, UK, 2001; X. Vanden Eynde, P. Bertand, Surf. Interface Anal. 27 (1999) 157; P.M. Thompson, Anal. Chem. 63 (1991) 2447; S.J. Simko, S.R. Bryan, D.P. Griffis, R.W. Murray, R.W. Linton, Anal. Chem. 57 (1985) 1198; S. Affrossman, S.A. O'Neill, M. Stamm, Macromolecules 31 (1998) 6280]. In this paper, we compare ToF-SIMS spectra of control samples with spectra generated from polymer nano-composites based on octabenzyl-polyhedral oligomeric silsesquioxane (BnPOSS) as well as spectra (and images) generated from multivariate statistical analysis (MVSA) of the entire spectral image. We will demonstrate that ToF-SIMS is able to detect and image low concentrations of BnPOSS in polycarbonate. We emphasize the use of MVSA tools for converting the massive amount of data contained in a ToF-SIMS spectral image into a smaller number of useful chemical components (spectra and images) that fully describe the ToF-SIMS measurement.
A mathematical model for filtration and macromolecule transport across capillary walls.
Facchini, L; Bellin, A; Toro, E F
2014-07-01
Metabolic substrates, such as oxygen and glucose, are rapidly delivered to the cells of large organisms through filtration across microvessels walls. Modelling this important process is complicated by the strong coupling between flow and transport equations, which are linked through the osmotic pressure induced by the colloidal plasma proteins. The microvessel wall is a composite media with the internal glycocalyx layer exerting a strong sieving effect on macromolecules, with respect to the external layer composed by the endothelial cells. The physiological structure of the microvessel is represented as the superimposition of two membranes with different properties; the inner membrane represents the glycocalyx, while the outer membrane represents the surrounding endothelial cells. Application of the mass conservation principle and thermodynamic considerations lead to a model composed of two coupled second-order ordinary differential equations for the hydrostatic and osmotic pressures, one, expressing volumetric mass conservation and the other, which is non-linear in the unknown osmotic pressure, expressing macromolecules mass conservation. Despite the complexity of the system, the assumption that the properties of the layers are piece-wise constant allows us to obtain analytical solutions for the two pressures. This solution is in agreement with experimental observations, which contrary to common belief, show that flow reversal cannot occur in steady-state conditions unless the hydrostatic pressure in the lumen drops below physiologically plausible values. The observed variations of the volumetric flux and the solute mass flux in case of a significant reduction of the hydrostatic pressure at the lumen are in qualitative agreement with observed variations during detailed experiments reported in the literature. On the other hand, homogenising the microvessel wall into a single-layer membrane with equivalent properties leads to a very different distribution of pressure across the microvessel walls, not consistent with observations. Copyright © 2014 Elsevier Inc. All rights reserved.
Morris, Christopher J; Smith, Mathew W; Griffiths, Peter C; McKeown, Neil B; Gumbleton, Mark
2011-04-10
With the aim of identifying a peptide sequence that promotes pulmonary epithelial transport of macromolecule cargo we used a stringent peptide-phage display library screening protocol against rat lung alveolar epithelial primary cell cultures. We identified a peptide-phage clone (LTP-1) displaying the disulphide-constrained 7-mer peptide sequence, C-TSGTHPR-C, that showed significant pulmonary epithelial translocation across highly restrictive polarised cell monolayers. Cell biological data supported a differential alveolar epithelial cell interaction of the LTP-1 peptide-phage clone and the corresponding free synthetic LTP-1 peptide. Delivering select phage-clones to the intact pulmonary barrier of an isolated perfused rat lung (IPRL) resulted in 8.7% of lung deposited LTP-1 peptide-phage clone transported from the IPRL airways to the vasculature compared (p<0.05) to the cumulative transport of less than 0.004% for control phage-clone groups. To characterise phage-independent activity of LTP-1 peptide, the LTP-1 peptide was conjugated to a 53kDa anionic PAMAM dendrimer. Compared to respective peptide-dendrimer control conjugates, the LTP-1-PAMAM conjugate displayed a two-fold (bioavailability up to 31%) greater extent of absorption in the IPRL. The LTP-1 peptide-mediated enhancement of transport, when LTP-1 was either attached to the phage clone or conjugated to dendrimer, was sequence-dependent and could be competitively inhibited by co-instillation of excess synthetic free LTP-1 peptide. The specific nature of the target receptor or mechanism involved in LTP-1 lung transport remains unclear although the enhanced transport is enabled through a mechanism that is non-disruptive with respect to the pulmonary transport of hydrophilic permeability probes. This study shows proof-of principle that array technologies can be effectively exploited to identify peptides mediating enhanced transmucosal delivery of macromolecule therapeutics across an intact organ. Copyright © 2010 Elsevier B.V. All rights reserved.
Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery.
Szunerits, Sabine; Boukherroub, Rabah
2018-01-01
Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum , the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section "Frontiers in Bioengineering and Biotechnology," the advances in this field and the handful of examples of thermal technologies for local and systemic transdermal drug delivery will be discussed and put into perspective.
NASA Astrophysics Data System (ADS)
Tessier, Frederic
Microfluidic and nanofluidic technology is revolutionizing experimental practices in analytical chemistry, molecular biology and medicine. Indeed, the development of systems of small dimensions for the processing of fluids heralds the miniaturization of traditional, cumbersome laboratory equipment onto robust, portable and efficient microchip devices (similar to the electronic microchips found in computers). Moreover, the conjunction of scale between the smallest man-made device and the largest macromolecules evolved by Nature is fertile ground for the blooming of our knowledge about the key processes of life. In fact, the conjunction is threefold, because modern computational resources also allow us to contemplate a rather explicit modelling of physical systems between the nanoscale and the microscale. In the five articles comprising this thesis, we present the results of computer simulations that address specific questions concerning the operation of two different model systems relevant to the development of small-scale fluidic devices for the manipulation and analysis of biomolecules. First, we use a Bond-Fluctuation Monte Carlo approach to study the electrophoretic drift of macromolecules across an entropic trap array built for the length separation of long, double-stranded DNA molecules. We show that the motion of the molecules is consistent with a simple balance between electric and entropic forces, in terms of a single characteristic parameter. We also extract detailed information on polymer deformation during migration, predict the separation of topoisomers, and investigate innovative ratchet driving regimes. Secondly, we present theoretical derivations, numerical calculations and Molecular Dynamics simulation results for an electrolyte confined in a capillary of nanoscopic dimensions. In particular, we study the effectiveness of neutral grafted polymer chains in reducing the magnitude of electroosmotic flow (fluid flow induced by an external electric field). Our results constitute the first independent, quantitative verification of theoretical scaling predictions for the coupling between grafted macromolecules and electroosmotic flow. Such simulations will contribute to the rationalization of the existing empirical knowledge about flow control with polymer coatings.
Le Fur, Yann; Viout, Patrick; Ratiney, Hélène; Confort-Gouny, Sylviane; Cozzone, Patrick J.; Girard, Nadine
2016-01-01
Preterm birth represents a high risk of neurodevelopmental disabilities when associated with white-matter damage. Recent studies have reported cognitive deficits in children born preterm without brain injury on MRI at term-equivalent age. Understanding the microstructural and metabolic underpinnings of these deficits is essential for their early detection. Here, we used diffusion-weighted imaging and single-voxel 1H magnetic resonance spectroscopy (MRS) to compare brain maturation at term-equivalent age in premature neonates with no evidence of white matter injury on conventional MRI except diffuse excessive high-signal intensity, and normal term neonates. Thirty-two infants, 16 term neonates (mean post-conceptional age at scan: 39.8±1 weeks) and 16 premature neonates (mean gestational age at birth: 29.1±2 weeks, mean post-conceptional age at scan: 39.2±1 weeks) were investigated. The MRI/MRS protocol performed at 1.5T involved diffusion-weighted MRI and localized 1H-MRS with the Point RESolved Spectroscopy (PRESS) sequence. Preterm neonates showed significantly higher ADC values in the temporal white matter (P<0.05), the occipital white matter (P<0.005) and the thalamus (P<0.05). The proton spectrum of the centrum semiovale was characterized by significantly lower taurine/H2O and macromolecules/H2O ratios (P<0.05) at a TE of 30 ms, and reduced (creatine+phosphocreatine)/H2O and (glutamine+glutamate)/H2O ratios (P<0.05) at a TE of 135 ms in the preterm neonates than in full-term neonates. Our findings indicate that premature neonates with normal conventional MRI present a delay in brain maturation affecting the white matter and the thalamus. Their brain metabolic profile is characterized by lower levels of creatine, glutamine plus glutamate, and macromolecules in the centrum semiovale, a finding suggesting altered energy metabolism and protein synthesis. PMID:27547969
On the suitability of refractometry for the analysis of glucose in blood-derived fluids.
Zirk, K; Poetzschke, H
2004-07-01
Refractometry is the determination of the optical refractive index of a substance or a mixture of substances. It is a very sensitive method for the detection and quantification of dissolved analytes, but it is incapable of distinguishing between different analytes. The aim of this investigation was to determine the principle suitability of refractometry for the quantification of glucose (blood sugar) in blood and various blood fluids which can readily be obtained for medical diagnosis, in particular blood plasma, blood serum, and their ultrafiltrates. After the oral intake of freshly dissolved alpha-glucose, the in vivo blood contents of the alpha and beta anomers of glucose were found to be in an at least approximate equilibrium at all times. This observation is a prerequisite for a refractometrical determination of glucose due to the fact that both molecule forms have different refractive index increments. An assessment of the glucose content in untreated blood fluids was not possible, since no suitable relationship to the refractive index was found, most probably due to the influence of the many other substances present in blood on this parameter. However, after removal of certain macromolecules by ultrafiltration, value pairs showed a high level of correlation, providing the nominal molecular weight limit (cut-off) of the ultrafilter used possessed a maximum of 300 kDa. Besides macromolecules, the osmolality of the fluids undergoing measurement also proved to be a considerable interfering factor, particularly when values were outside the normal physiological range between 285 and 293 mmol/L. If a clinical application of this method is to be contemplated it is imperative (1) that blood cells are separated and removed, (2) that macromolecules present in plasma or serum are removed, e.g. by ultrafiltration, and (3) that beyond the results presented the influence of all small molecules other than glucose on the overall refractive index be determined and included in the calculation of analysis results.
The Electric Potential of a Macromolecule in a Solvent: A Fundamental Approach
NASA Astrophysics Data System (ADS)
Juffer, André H.; Botta, Eugen F. F.; van Keulen, Bert A. M.; van der Ploeg, Auke; Berendsen, Herman J. C.
1991-11-01
A general numerical method is presented to compute the electric potential for a macromolecule of arbitrary shape in a solvent with nonzero ionic strength. The model is based on a continuum description of the dielectric and screening properties of the system, which consists of a bounded internal region with discrete charges and an infinite external region. The potential obeys the Poisson equation in the internal region and the linearized Poisson-Boltzmann equation in the external region, coupled through appropriate boundary conditions. It is shown how this three-dimensional problem can be presented as a pair of coupled integral equations for the potential and the normal component of the electric field at the dielectric interface. These equations can be solved by a straightforward application of boundary element techniques. The solution involves the decomposition of a matrix that depends only on the geometry of the surface and not on the positions of the charges. With this approach the number of unknowns is reduced by an order of magnitude with respect to the usual finite difference methods. Special attention is given to the numerical inaccuracies resulting from charges which are located close to the interface; an adapted formulation is given for that case. The method is tested both for a spherical geometry, for which an exact solution is available, and for a realistic problem, for which a finite difference solution and experimental verification is available. The latter concerns the shift in acid strength (pK-values) of histidines in the copper-containing protein azurin on oxidation of the copper, for various values of the ionic strength. A general method is given to triangulate a macromolecular surface. The possibility is discussed to use the method presented here for a correct treatment of long-range electrostatic interactions in simulations of solvated macromolecules, which form an essential part of correct potentials of mean force.
Single cell adhesion assay using computer controlled micropipette.
Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint
2014-01-01
Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes.
Fluorescent Approaches to High Throughput Crystallography
NASA Technical Reports Server (NTRS)
Minamitani, Elizabeth Forsythe; Pusey, Marc L.
2004-01-01
X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of a macromolecules purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals will show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "bits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.
Tetrapyrrole-photosensitizers vectorization and plasma LDL: a physico-chemical approach.
Bonneau, Stéphanie; Vever-Bizet, Christine; Mojzisova, Halina; Brault, Daniel
2007-11-01
A photosensitizer is defined as a chemical entity able to induce, under light-irradiation effect, a chemical or physical alteration of another chemical entity. Thanks to their preferential retention in proliferating tissues, some photosensitizers are therapeutically used such as in photodynamic therapy (PDT). Besides, this method has already been approved for several indications. The selectivity of photosenzitizers for cells in proliferation involves both their association with low density lipoproteins (LDLs) and their ability to cross membranes under various pH conditions. The photosensitizers used are in most cases based on the porphyrin structure, but other compounds, of which far-red-light absorption properties are most compatible with biological tissues irradiation, have been developed, such as phthalocyanines. This paper presents physico-chemical studies of the interaction of a disulfonated aluminium phthalocyanine (AlPcS2) with human LDLs. The data obtained are compared with the parameters of the interaction of these lipoproteins with deuteroporphyrin (DP) and chlorin e6 (Ce6). A close attention is paid to the dynamic aspects of these phenomena. The data obtained on these simple systems then allowed us to interpret the sub-cellular localization of the photosensitizers on a human line of fibroblasts, and to evaluate the influence of LDLs on the intracellular distribution of the compounds. This last point is of major importance because the localization of such photosensitizers (in particular AlPcS2) in endocytic vesicles and their subsequent ability to induce a release of the contents of these vesicles - including externally added macromolecules - into the cytosol is the basis for a recent method for macromolecule activation, named photochemical internalization (PCI). PCI has been shown to potentiate the biological activity of a large variety of macromolecules. The comprehension of the mechanisms governing this particular sub-cellular localization could allow the design of better candidates for PCI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruetzel, Linda K.; Fischer, Stefan; Salditt, Annalena
2016-02-15
We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 10{sup 6} photons/s at a beam size of 1.2 × 1.2 mm{sup 2} at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å{sup −1} down to 0.009 Å{sup −1} in SAXS configuration and of 0.26 Å{sup −1} up to 5.7 Å{sup −1} in wide-angle X-ray scattering (WAXS) mode. Tomore » determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5–24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å{sup −1} allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.« less
Chou, Cheng-Ying; Huang, Chih-Kang; Lu, Kuo-Wei; Horng, Tzyy-Leng; Lin, Win-Li
2013-01-01
The transport and accumulation of anticancer nanodrugs in tumor tissues are affected by many factors including particle properties, vascular density and leakiness, and interstitial diffusivity. It is important to understand the effects of these factors on the detailed drug distribution in the entire tumor for an effective treatment. In this study, we developed a small-scale mathematical model to systematically study the spatiotemporal responses and accumulative exposures of macromolecular carriers in localized tumor tissues. We chose various dextrans as model carriers and studied the effects of vascular density, permeability, diffusivity, and half-life of dextrans on their spatiotemporal concentration responses and accumulative exposure distribution to tumor cells. The relevant biological parameters were obtained from experimental results previously reported by the Dreher group. The area under concentration-time response curve (AUC) quantified the extent of tissue exposure to a drug and therefore was considered more reliable in assessing the extent of the overall drug exposure than individual concentrations. The results showed that 1) a small macromolecule can penetrate deep into the tumor interstitium and produce a uniform but low spatial distribution of AUC; 2) large macromolecules produce high AUC in the perivascular region, but low AUC in the distal region away from vessels; 3) medium-sized macromolecules produce a relatively uniform and high AUC in the tumor interstitium between two vessels; 4) enhancement of permeability can elevate the level of AUC, but have little effect on its uniformity while enhancement of diffusivity is able to raise the level of AUC and improve its uniformity; 5) a longer half-life can produce a deeper penetration and a higher level of AUC distribution. The numerical results indicate that a long half-life carrier in plasma and a high interstitial diffusivity are the key factors to produce a high and relatively uniform spatial AUC distribution in the interstitium. PMID:23565142
Li, Wen; Fan, Chun Chieh; Mäki-Marttunen, Tuomo; Thompson, Wesley K; Schork, Andrew J; Bettella, Francesco; Djurovic, Srdjan; Dale, Anders M; Andreassen, Ole A; Wang, Yunpeng
2018-06-01
Traditional genome-wide association studies (GWAS) have successfully detected genetic variants associated with schizophrenia. However, only a small fraction of heritability can be explained. Gene-set/pathway-based methods can overcome limitations arising from single nucleotide polymorphism (SNP)-based analysis, but most of them place constraints on size which may exclude highly specific and functional sets, like macromolecules. Voltage-gated calcium (Ca v ) channels, belonging to macromolecules, are composed of several subunits whose encoding genes are located far away or even on different chromosomes. We combined information about such molecules with GWAS data to investigate how functional channels associated with schizophrenia. We defined a biologically meaningful SNP-set based on channel structure and performed an association study by using a validated method: SNP-set (sequence) kernel association test. We identified eight subtypes of Ca v channels significantly associated with schizophrenia from a subsample of published data (N = 56,605), including the L-type channels (Ca v 1.1, Ca v 1.2, Ca v 1.3), P-/Q-type Ca v 2.1, N-type Ca v 2.2, R-type Ca v 2.3, T-type Ca v 3.1, and Ca v 3.3. Only genes from Ca v 1.2 and Ca v 3.3 have been implicated by the largest GWAS (N = 82,315). Each subtype of Ca v channels showed relatively high chip heritability, proportional to the size of its constituent gene regions. The results suggest that abnormalities of Ca v channels may play an important role in the pathophysiology of schizophrenia and these channels may represent appropriate drug targets for therapeutics. Analyzing subunit-encoding genes of a macromolecule in aggregate is a complementary way to identify more genetic variants of polygenic diseases. This study offers the potential of power for discovery the biological mechanisms of schizophrenia. © 2018 Wiley Periodicals, Inc.
Flow-induced conformational changes in gelatin structure and colloidal stabilization.
Akbulut, Mustafa; Reddy, Naveen K; Bechtloff, Bernd; Koltzenburg, Sebastian; Vermant, Jan; Prud'homme, Robert K
2008-09-02
Flow can change the rate at which solutes adsorb on surfaces by changing mass transfer to the surface, but moreover, flow can induce changes in the conformation of macromolecules in solution by providing sufficient stresses to perturb the segmental distribution function. However, there are few studies where the effect of flow on macromolecules has been shown to alter the structure of macromolecules adsorbed on surfaces. We have studied how the local energy dissipation alters the adsorption of gelatin onto polystyrene nanoparticles ( r = 85 nm). The change in the nature of the adsorbed layer is manifest in the change in the ability of the nanoparticles to resist aggregation. Circular dichroism spectroscopy was used to assess conformational changes in gelatin, and dynamic light scattering was used to assess the colloid stability. Experiments were conducted in a vortex jet mixer where energy density and mixing times have been quantified; mixing of the gelatin and unstable nanoparticles occurs on the order of milliseconds. The adsorption of the gelatin provides steric stabilization to the nanoparticles. We found that the stability of the gelatin-adsorbed nanoparticles increased with increasing mixing velocities: when the mixing velocities were changed from 0.9 to 550 m/s, the radius of the nanoclusters (aggregates) formed 12 h after the mixing decreased from 2620 to 600 nm. Increasing temperature also gave rise to similar trends in the stability behavior with increasing temperature, leading to increasing colloid stability. Linear flow birefringence studies also suggested that the velocity fields in the mixer are sufficiently strong to produce conformational changes in the gelatin. These results suggest that the energy dissipation produced by mixing can activate conformational changes in gelatin to alter its adsorption on the surfaces of nanoparticles. Understanding how such conformational changes in gelatin can be driven by local fluid mechanics and how these changes are related to the adsorption behavior of gelatin is very important both industrially and scientifically.
Single Cell Adhesion Assay Using Computer Controlled Micropipette
Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint
2014-01-01
Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes. PMID:25343359
Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery
Szunerits, Sabine; Boukherroub, Rabah
2018-01-01
Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field and the handful of examples of thermal technologies for local and systemic transdermal drug delivery will be discussed and put into perspective. PMID:29497609