Science.gov

Sample records for macronutrientes minerais ca

  1. Cytosolic Ca2+ Buffers

    PubMed Central

    Schwaller, Beat

    2010-01-01

    Ca2+ buffers,” a class of cytosolic Ca2+-binding proteins, act as modulators of short-lived intracellular Ca2+ signals; they affect both the temporal and spatial aspects of these transient increases in [Ca2+]i. Examples of Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Besides their proven Ca2+ buffer function, some might additionally have Ca2+ sensor functions. Ca2+ buffers have to be viewed as one of the components implicated in the precise regulation of Ca2+ signaling and Ca2+ homeostasis. Each cell is equipped with proteins, including Ca2+ channels, transporters, and pumps that, together with the Ca2+ buffers, shape the intracellular Ca2+ signals. All of these molecules are not only functionally coupled, but their expression is likely to be regulated in a Ca2+-dependent manner to maintain normal Ca2+ signaling, even in the absence or malfunctioning of one of the components. PMID:20943758

  2. Fusion calculations for 40Ca+40Ca, 48Ca+48Ca, 40Ca+48Ca and p+208Pb systems

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Zhang, Haifei; Bao, Xiaojun; Li, Junqing; Zhang, Hongfei

    2014-09-01

    The fusion cross sections of calcium isotopes and proton induced fusion have been calculated in terms of a coupled-channels formulation. Results indicated that there are big differences between the two fusion types. In the calculations of calcium isotopes fusion, the pair-transfer coupling has been applied in addition to the vibrational coupling, the combined effects showed that pair-transfer has played a significant role in the fusion process for the asymmetric 40Ca+48Ca system. The result of proton induced fusion for p+208Pb system successfully presents the fusion oscillation, which agrees with the experimental data rather well.

  3. The Ca(2+)/Calmodulin/CaMKK2 Axis: Nature's Metabolic CaMshaft.

    PubMed

    Marcelo, Kathrina L; Means, Anthony R; York, Brian

    2016-10-01

    Calcium (Ca(2+)) is an essential ligand that binds its primary intracellular receptor calmodulin (CaM) to trigger a variety of downstream processes and pathways. Central to the actions of Ca(2+)/CaM is the activation of a highly conserved Ca(2+)/CaM kinase (CaMK) cascade that amplifies Ca(2+) signals through a series of subsequent phosphorylation events. Proper regulation of Ca(2+) flux is necessary for whole-body metabolism and disruption of Ca(2+) homeostasis has been linked to various metabolic diseases. Here we provide a synthesis of recent advances that highlight the roles of the Ca(2+)/CaMK axis in key metabolic tissues. An appreciation of this information is critical to understanding the mechanisms by which Ca(2+)/CaM-dependent signaling contributes to metabolic homeostasis and disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Desulfurizing Ability of the CaOsatd.-CaCl2-CaF2 Slags

    NASA Astrophysics Data System (ADS)

    Liu, Jiazhan; Kobayashi, Yoshinao

    2017-04-01

    Desulfurizing ability of the CaO-CaCl2-CaF2 slags saturated with CaO has been investigated from the viewpoint of the sulfide capacity and CaO solubility. The CaO-CaCl2-CaF2 slags containing small amounts of Cu2O and CaS were inserted in a CaO crucible with metallic copper. The CaO crucible was sealed in a nickel holder to prevent the evaporation of CaCl2, then heated up and kept at temperatures from 1573 K (1300 °C) to 1673 K (1400 °C) for 24 hours, which enabled the system inside the CaO crucible to reach the equilibrium. As expected, the sulfide capacity derived from the data obtained as well as CaO solubility of the slag increase with an increase in temperature at a constant ratio of CaCl2/CaF2. The solubility of CaO increases by the replacement of CaF2 with CaCl2, whereas the sulfide capacity slightly decreases and the activity coefficient of CaS ( γ CaS) increases. This suggests that CaF2 has stronger interaction with CaS than CaCl2. The sulfur distribution ratio between carbon-saturated iron melts and the CaO-CaCl2 slag has been calculated to be about 10 000 at 1573 K (1300 °C) using the sulfide capacity obtained, which value is still large enough even with the replacement of CaF2 by CaCl2.

  5. Desulfurizing Ability of the CaOsatd.-CaCl2-CaF2 Slags

    NASA Astrophysics Data System (ADS)

    Liu, Jiazhan; Kobayashi, Yoshinao

    2016-12-01

    Desulfurizing ability of the CaO-CaCl2-CaF2 slags saturated with CaO has been investigated from the viewpoint of the sulfide capacity and CaO solubility. The CaO-CaCl2-CaF2 slags containing small amounts of Cu2O and CaS were inserted in a CaO crucible with metallic copper. The CaO crucible was sealed in a nickel holder to prevent the evaporation of CaCl2, then heated up and kept at temperatures from 1573 K (1300 °C) to 1673 K (1400 °C) for 24 hours, which enabled the system inside the CaO crucible to reach the equilibrium. As expected, the sulfide capacity derived from the data obtained as well as CaO solubility of the slag increase with an increase in temperature at a constant ratio of CaCl2/CaF2. The solubility of CaO increases by the replacement of CaF2 with CaCl2, whereas the sulfide capacity slightly decreases and the activity coefficient of CaS (γ CaS) increases. This suggests that CaF2 has stronger interaction with CaS than CaCl2. The sulfur distribution ratio between carbon-saturated iron melts and the CaO-CaCl2 slag has been calculated to be about 10 000 at 1573 K (1300 °C) using the sulfide capacity obtained, which value is still large enough even with the replacement of CaF2 by CaCl2.

  6. CAED Document Repository

    EPA Pesticide Factsheets

    Compliance Assurance and Enforcement Division Document Repository (CAEDDOCRESP) provides internal and external access of Inspection Records, Enforcement Actions, and National Environmental Protection Act (NEPA) documents to all CAED staff. The respository will also include supporting documents, images, etc.

  7. CA-125 blood test

    MedlinePlus

    ... above 35 U/mL is considered abnormal. Normal value ranges may vary slightly among different laboratories. Some ... 125 usually does not mean ovarian cancer is present. Most healthy women with an elevated CA-125 ...

  8. Ag-Al-Ca

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 1 http://dx.doi.org/10.1007/97.etType="URL"/> 'Systems from Ag-Al-Ca to Au-Pd-Si' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter 'Ag-Al-Ca' with the content:

  9. Routes of Ca2+ Shuttling during Ca2+ Oscillations

    PubMed Central

    Pecze, László; Blum, Walter; Schwaller, Beat

    2015-01-01

    In some cell types, Ca2+ oscillations are strictly dependent on Ca2+ influx across the plasma membrane, whereas in others, oscillations also persist in the absence of Ca2+ influx. We observed that, in primary mesothelial cells, the plasmalemmal Ca2+ influx played a pivotal role. However, when the Ca2+ transport across the plasma membrane by the “lanthanum insulation method” was blocked prior to the induction of the serum-induced Ca2+ oscillations, mitochondrial Ca2+ transport was found to be able to substitute for the plasmalemmal Ca2+ exchange function, thus rendering the oscillations independent of extracellular Ca2+. However, in a physiological situation, the Ca2+-buffering capacity of mitochondria was found not to be essential for Ca2+ oscillations. Moreover, brief spontaneous Ca2+ changes were observed in the mitochondrial Ca2+ concentration without apparent changes in the cytosolic Ca2+ concentration, indicating the presence of a mitochondrial autonomous Ca2+ signaling mechanism. In the presence of calretinin, a Ca2+-buffering protein, the amplitude of cytosolic spikes during oscillations was decreased, and the amount of Ca2+ ions taken up by mitochondria was reduced. Thus, the increased calretinin expression observed in mesothelioma cells and in certain colon cancer might be correlated to the increased resistance of these tumor cells to proapoptotic/pronecrotic signals. We identified and characterized (experimentally and by modeling) three Ca2+ shuttling pathways in primary mesothelial cells during Ca2+ oscillations: Ca2+ shuttled between (i) the endoplasmic reticulum (ER) and mitochondria, (ii) the ER and the extracellular space, and (iii) the ER and cytoplasmic Ca2+ buffers. PMID:26396196

  10. Ca2+ signaling and intracellular Ca2+ binding proteins.

    PubMed

    Niki, I; Yokokura, H; Sudo, T; Kato, M; Hidaka, H

    1996-10-01

    Changes in cytosolic Ca2+ concentrations evoke a wide range of cellular responses and intracellular Ca(2+)-binding proteins are the key molecules to transduce Ca2+ signaling via enzymatic reactions or modulation of protein/protein interations (Fig.1). The EF hand proteins, like calmodulin and S100 proteins, are considered to exert Ca(2+)-dependent actions in the nucleus or the cytoplasm. The Ca2+/phospholipid binding proteins are classified into two groups, the annexins and the C2 region proteins. These proteins, distributed mainly in the cytoplasm, translocate to the plasma membrane in response to an increase in cytosolic Ca2+ and function in the vicinity of the membrane. Ca2+ storage proteins in the endoplasmic or sarcoplasmic reticulum provide the high Ca2+ capacity of the Ca2+ store sites, which regulate intracellular Ca2+ distribution. The variety and complexity of Ca2+ signaling result from the cooperative actions of specific Ca(2+)-binding proteins. This review describes biochemical properties of intracellular Ca(2+)-binding proteins and their proposed roles in mediating Ca2+ signaling.

  11. Ca2+ current vs. Ca2+ channel cooperativity of exocytosis

    PubMed Central

    Matveev, Victor; Bertram, Richard; Sherman, Arthur

    2009-01-01

    Recently there has been significant interest and progress in the study of spatio-temporal dynamics of Ca2+ that triggers exocytosis at a fast chemical synapse, which requires understanding the contribution of individual calcium channels to the release of a single vesicle. Experimental protocols provide insight into this question by probing the sensitivity of exocytosis to Ca2+ influx. While varying extracellular or intracellular Ca2+ concentration assesses the intrinsic biochemical Ca2+ cooperativity of neurotransmitter release, varying the number of open Ca2+ channels using pharmacological channel block or the tail current titration probes the cooperativity between individual Ca2+ channels in triggering exocytosis. Despite the wide use of these Ca2+ sensitivity measurements, their interpretation often relies on heuristic arguments. Here we provide a detailed analysis of the Ca2+ sensitivity measures probed by these experimental protocols, present simple expressions for special cases, and demonstrate the distinction between the Ca2+ current cooperativity, defined by the relationship between exocytosis rate and the whole-terminal Ca2+ current magnitude, and the underlying Ca2+ channel cooperativity, defined as the average number of channels involved in the release of a single vesicle. We find simple algebraic expressions that show that the two are different but linearly related. Further, we use 3D computational modeling of buffered Ca2+ diffusion to analyze these distinct Ca2+ cooperativity measures, and demonstrate the role of endogenous Ca2+ buffers on such measures. We show that buffers can either increase or decrease the Ca2+ current cooperativity of exocytosis, depending on their concentration and the single-channel Ca2+ current. PMID:19793978

  12. Los Angeles, CA, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This rare cloud and smog free view of Los Angeles, CA (34.0N, 118.5W) is a result of strong Santa Ana winds blowing from the east. Both cultural and natural features are well displayed and all of the major streets, highways and freeways can be traced in their entirety throughout the city as well as the major business and commercial sections. On the eastern edge of the scene, the San Andreas fault cuts across from southeast to northwest.

  13. Measurement of CA1P and CA in leaves

    SciTech Connect

    Moore, B.d.; Kobza, J.; Seemann, J.R. )

    1990-05-01

    Carboxyarabinitol-1-phosphate (CA1P) and carboxyarabinitol (CA) were assayed in leaves by isotope dilution. {sup 14}C-labeled standards were synthesized from (2-{sup 14}C) CABP using acid (CA1P) or alkaline (CA) phosphatase. Either was added to boiling 80% EtOH along with liquid N{sub 2}-killed leaves. Each was largely purified by anion exchange chromatography. CA1P samples were subjected to 2D-TLE/TLC. The specific activity of the {sup 14}C-containing spot was measured using alkaline phosphatase. CA samples were run on an HPLC and the specific activity was determined using a UV monitor and a flow-through radioisotope detector. In 3 of the tested species, light/dark amount of CA1P (nmol/mg Chl) were kidney bean, 0.7/67; sugar beet, 0.8/33; and Alocasia, 0/3.4. Light/dark CA levels (nmol/mg Chl) in these respective species were 897/653, 3.2/3.5, and 5.7/4.6. These results support the hypothesis that CA is a product of CA1P metabolism in vivo under high light, but also indicate that CA is not the only intermediate involved in CA1P synthesis under low light/dark conditions.

  14. Mitochondrial Ca(2+) uptake pathways.

    PubMed

    Elustondo, Pia A; Nichols, Matthew; Robertson, George S; Pavlov, Evgeny V

    2017-02-01

    Calcium (Ca(2+)) plays diverse roles in all living organisms ranging from bacteria to humans. It is a structural element for bones, an essential mediator of excitation-contraction coupling, and a universal second messenger in the regulation of ion channel, enzyme and gene expression activities. In mitochondria, Ca(2+) is crucial for the control of energy production and cellular responses to metabolic stress. Ca(2+) uptake by the mitochondria occurs by the uniporter mechanism. The Mitochondrial Ca2+ Uniporter (MCU) protein has recently been identified as a core component responsible for mitochondrial Ca(2+) uptake. MCU knockout (MCU KO) studies have identified a number of important roles played by this high capacity uptake pathway. Interestingly, this work has also shown that MCU-mediated Ca(2+) uptake is not essential for vital cell functions such as muscle contraction, energy metabolism and neurotransmission. Although mitochondrial Ca(2+) uptake was markedly reduced, MCU KO mitochondria still contained low but detectable levels of Ca(2+). In view of the fundamental importance of Ca(2+) for basic cell signalling, this finding suggests the existence of other currently unrecognized pathways for Ca(2+) entry. We review the experimental evidence for the existence of alternative Ca(2+) influx mechanisms and propose how these mechanisms may play an integral role in mitochondrial Ca(2+) signalling.

  15. Ca(2+) Binding and Transport Studied with Ca(2+)/EGTA Buffers and (45)Ca(2+).

    PubMed

    Sehgal, Pankaj; Olesen, Claus; Møller, Jesper V

    2016-01-01

    The chapter describes procedures useful for determination of Ca(2+) binding by membranous Ca(2+)-ATPase based on the correction for the removal of Ca(2+) present in a non-bound state in the suspension medium. This is done by a filtration procedure that retains the membranous material on the Millipore filters. With suitable sucking devices it is possible to gently remove without dehydration nearly all medium from the Ca(2+) containing membranes, except that required for wetting of the filters on which they are deposited. Correction for this effect can be done with a double-filter where the radioactive content of the lower (protein-free) filter is subtracted from that present in the upper filter for calculation of Ca(2+) binding. This methodology can be used to study the effect of inhibitors on Ca(2+) binding and -transport, and with Ca(2+)/EGTA buffers to explore the Ca(2+) binding affinities and cooperative aspects of the two transport sites.

  16. [Carbohydrate antigens CA 19-9, CA 242, CA 50 in liver diseases].

    PubMed

    Nowak, J; Jakubowska, D; Wiczkowski, A; Sprzaczkowska, K; Stechły, T; Zmudziński, W; Grzesik, P; Walas, R; Jarzab, B

    1998-01-01

    Serum concentrations of CA 19-9, CA 242, and CA 50 were determined in patients with hepatitis and liver cirrhosis without cholestasis. The study included 63 patients with chronic persistent hepatitis (group A), chronic active hepatitis (group B), and liver cirrhosis (group C). The control group (K) consisted of 82 patients with: peptic ulcer, colorectal polypi or diverticulosis of the colon. CA 19-9 level normal in the majority of patients with liver diseases, however, it was found to be increased in 4 (23%) of patients with liver cirrhosis. There was no statistically significant difference in the frequency of increased level of CA 19-9 between liver diseases and the control group. The rate of elevated serum level of CA 242 in patients with liver diseases and in control group was similar respectively 12%; 8.5%). The elevated CA 50 levels were most frequently found in patients with liver pathology (50% in liver cirrhosis and chronic active hepatitis; 36% in chronic persistent hepatitis). The elevation of CA 50 serum level occurs very often in liver diseases, even when they are going without cholestasis. Thus, the antigen is not useful for differentiating between benign and cancer diseases of gastrointestinal tract. Antigen CA 50 is to be taken into account only after exclusion of the pathology of liver, especially cirrhosis. Other investigated antigens: CA 19-9 and CA 242 are influenced by liver diseases to a minor and neglectable extent. Antigen CA 19-9 is the marker of choice in gastrointestinal cancers.

  17. Ca isotope variations in Allende

    NASA Technical Reports Server (NTRS)

    Jungck, M. H. A.; Shimamura, T.; Lugmair, G. W.

    1984-01-01

    Ca-isotope measurements of Allende Ca-Al-rich inclusions (CAIs), together with those on an apatite-enriched fraction from Orgueil, indicate the existence of widespread excesses on the neutron-rich isotope Ca-48. Isotopic anomalies are noted in 7 out of 11 CAIs analyzed. This abundance of isotopic excesses places Ca alongside Ti and O, although no clear correlation has yet been found between Ca-48 and Ti-50, which are thought to be coproduced by neutron-rich nucleosynthetic processes within stars. It is suggested that the higher volatility of Ca, by comparison with Ti compounds, led to a variable dilution with isotopically normal Ca in vaporization and recondensation processes in stellar envelopes, the interstellar medium, and/or the solar nebula.

  18. Subplasma membrane Ca2+ signals.

    PubMed

    McCarron, John G; Chalmers, Susan; Olson, Marnie L; Girkin, John M

    2012-07-01

    Ca(2+) may selectively activate various processes in part by the cell's ability to localize changes in the concentration of the ion to specific subcellular sites. Interestingly, these Ca(2+) signals begin most often at the plasma membrane space so that understanding subplasma membrane signals is central to an appreciation of local signaling. Several experimental procedures have been developed to study Ca(2+) signals near the plasma membrane, but probably the most prevalent involve the use of fluorescent Ca(2+) indicators and fall into two general approaches. In the first, the Ca(2+) indicators themselves are specifically targeted to the subplasma membrane space to measure Ca(2+) only there. Alternatively, the indicators are allowed to be dispersed throughout the cytoplasm, but the fluorescence emanating from the Ca(2+) signals at the subplasma membrane space is selectively measured using high resolution imaging procedures. Although the targeted indicators offer an immediate appeal because of selectivity and ease of use, their limited dynamic range and slow response to changes in Ca(2+) are a shortcoming. Use of targeted indicators is also largely restricted to cultured cells. High resolution imaging applied with rapidly responding small molecule Ca(2+) indicators can be used in all cells and offers significant improvements in dynamic range and speed of response of the indicator. The approach is technically difficult, however, and realistic calibration of signals is not possible. In this review, a brief overview of local subplasma membrane Ca(2+) signals and methods for their measurement is provided.

  19. Coachella Valley, CA

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These band composites, acquired on June 4, 2000, cover a 11 by 13.5 km sub-scene in the Coachella Valley, CA. The area is shown by the yellow box on the full scene in the LOWER RIGHT corner, northwest of the Salton Sea. This is a major agricultural region of California, growing fruit and produce throughout the year. Different combinations of ASTER bands help identify the different crop types. UPPER LEFT: bands 3, 2, 1 as red, green, and blue (RGB); UPPER RIGHT: bands 4, 2, 1 as RGB; LOWER LEFT: bands 4, 3, 2 as RGB. The image is centered at 33.6 degrees north latitude, 116.1 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  20. Coachella Valley, CA

    NASA Image and Video Library

    2001-10-22

    These band composites, acquired on June 4, 2000, cover a 11 by 13.5 km sub-scene in the Coachella Valley, CA. The area is shown by the yellow box on the full scene in the LOWER RIGHT corner, northwest of the Salton Sea. This is a major agricultural region of California, growing fruit and produce throughout the year. Different combinations of ASTER bands help identify the different crop types. UPPER LEFT: bands 3, 2, 1 as red, green, and blue (RGB); UPPER RIGHT: bands 4, 2, 1 as RGB; LOWER LEFT: bands 4, 3, 2 as RGB. The image is centered at 33.6 degrees north latitude, 116.1 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11161

  1. Radiochemical analysis of 41Ca and 45Ca.

    PubMed

    Suárez, J A; Rodríguez, M; Espartero, A G; Piña, G

    2000-03-01

    The radioactive isotopes of calcium, 41Ca (t1/2 = 1.03 x 10(5) yr) and 45Ca (t1/2 = 163 d), are produced by neutron capture in the stable isotopes 40Ca and 44Ca, respectively. These radionuclides are present in the environment due to the reactions between the galactic cosmic rays and the earth's surface, and in nuclear power plants by the activation of the structural components of nuclear reactor vessels. The aim of this paper is to propose a radiochemical separation method of 41Ca and 45Ca from the other beta gamma emitters present in radioactive materials, based on selective precipitation reactions. The activities were measured by liquid scintillation counting (LSC). The obtained decontamination factors are satisfactory for each radioactive component of the initial sample in that their activities in the final product were lower than the minimum detectable activity (MDA) due to the effectiveness of the radiochemical procedure. The sensitivity of the method allows the radiological characterization of 41Ca and 45Ca content in radioactive materials.

  2. Mitochondrial Ca2+ homeostasis during Ca2+ influx and Ca2+ release in gastric myocytes from Bufo marinus

    PubMed Central

    Drummond, Robert M; Mix, T Christian H; Tuft, Richard A; Walsh, John V; Fay, Fredric S

    2000-01-01

    The Ca2+-sensitive fluorescent indicator rhod-2 was used to monitor mitochondrial Ca2+ concentration ([Ca2+]m) in gastric smooth muscle cells from Bufo marinus. In some studies, fura-2 was used in combination with rhod-2, allowing simultaneous measurement of cytoplasmic Ca2+ concentration ([Ca2+]i) and [Ca2+]m, respectively. During a short train of depolarizations, which causes Ca2+ influx from the extracellular medium, there was an increase in both [Ca2+]i and [Ca2+]m. The half-time (t½) to peak for the increase in [Ca2+]m was considerably longer than the t½ to peak for the increase in [Ca2+]i. [Ca2+]m remained elevated for tens of seconds after [Ca2+]i had returned to its resting value. Stimulation with caffeine, which causes release of Ca2+ from the sarcoplasmic reticulum (SR), also produced increases in both [Ca2+]i and [Ca2+]m. The values of t½ to peak for the increase in [Ca2+] in both cytoplasm and mitochondria were similar; however, [Ca2+]i returned to baseline values much faster than [Ca2+]m. Using a wide-field digital imaging microscope, changes in [Ca2+]m were monitored within individual mitochondria in situ, during stimulation of Ca2+ influx or Ca2+ release from the SR. Mitochondrial Ca2+ uptake during depolarizing stimulation caused depolarization of the mitochondrial membrane potential. The mitochondrial membrane potential recovered considerably faster than the recovery of [Ca2+]m. This study shows that Ca2+ influx from the extracellular medium and Ca2+ release from the SR are capable of increasing [Ca2+]m in smooth muscle cells. The efflux of Ca2+ from the mitochondria is a slow process and appears to be dependent upon the amount of Ca2+ in the SR. PMID:10713963

  3. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression

    PubMed Central

    Ma, Huan; Groth, Rachel D.; Cohen, Samuel M.; Emery, John F.; Li, Bo-Xing; Hoedt, Esthelle; Zhang, Guo-An; Neubert, Thomas A.; Tsien, Richard W.

    2014-01-01

    SUMMARY Activity-dependent CREB phosphorylation and gene expression are critical for long-term neuronal plasticity. Local signaling at CaV1 channels triggers these events but how information is relayed onward to the nucleus remains unclear. Here we report a novel mechanism that mediates long-distance communication within cells: a shuttle that transports Ca2+/calmodulin from the surface membrane to the nucleus. We show that the shuttle protein is γCaMKII, that its phosphorylation at Thr287 by βCaMKII protects the Ca2+/CaM signal, and that CaN triggers its nuclear translocation. Both βCaMKII and CaN act in close proximity to CaV1 channels, supporting their dominance, while γCaMKII operates as a carrier, not as a kinase. Upon arrival within the nucleus, Ca2+/CaM activates CaMKK and its substrate CaMKIV, the CREB kinase. This mechanism resolves longstanding puzzles about CaM/CaMK-dependent signaling to the nucleus. The significance of the mechanism is emphasized by dysregulation of CaV1, γCaMKII, βCaMKII and CaN in multiple neuropsychiatric disorders. PMID:25303525

  4. The dynamics of mitochondrial Ca2+ fluxes.

    PubMed

    de la Fuente, Sergio; Montenegro, Pablo; Fonteriz, Rosalba I; Moreno, Alfredo; Lobatón, Carmen D; Montero, Mayte; Alvarez, Javier

    2010-10-01

    We have investigated the kinetics of mitochondrial Ca(2+) influx and efflux and their dependence on cytosolic [Ca(2+)] and [Na(+)] using low-Ca(2+)-affinity aequorin. The rate of Ca(2+) release from mitochondria increased linearly with mitochondrial [Ca(2+)] ([Ca(2+)](M)). Na(+)-dependent Ca(2+) release was predominant al low [Ca(2+)](M) but saturated at [Ca(2+)](M) around 400muM, while Na(+)-independent Ca(2+) release was very slow at [Ca(2+)](M) below 200muM, and then increased at higher [Ca(2+)](M), perhaps through the opening of a new pathway. Half-maximal activation of Na(+)-dependent Ca(2+) release occurred at 5-10mM [Na(+)], within the physiological range of cytosolic [Na(+)]. Ca(2+) entry rates were comparable in size to Ca(2+) exit rates at cytosolic [Ca(2+)] ([Ca(2+)](c)) below 7muM, but the rate of uptake was dramatically accelerated at higher [Ca(2+)](c). As a consequence, the presence of [Na(+)] considerably reduced the rate of [Ca(2+)](M) increase at [Ca(2+)](c) below 7muM, but its effect was hardly appreciable at 10muM [Ca(2+)](c). Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca(2+)](M) transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca(2+) buffering, and comparison of our results with data on total mitochondrial Ca(2+) fluxes indicate that the mitochondrial Ca(2+) bound/Ca(2+) free ratio is around 10- to 100-fold for most of the observed [Ca(2+)](M) range and suggest that massive phosphate precipitation can only occur when [Ca(2+)](M) reaches the millimolar range.

  5. CaPTC Biennial Meetings

    Cancer.gov

    CaPTC hosts the 'Biennial Science of Global Prostate Cancer Disparities in Black Men' conference to address the growing global public health problem of prostate cancer among Black men in industrialized and developing countries.

  6. CaMKII-dependent SR Ca leak contributes to doxorubicin-induced impaired Ca handling in isolated cardiac myocytes

    PubMed Central

    Sag, Can M.; Köhler, Anne C.; Anderson, Mark E.; Backs, Johannes; Maier, Lars S.

    2011-01-01

    Objective Doxorubicin (DOX) is one of the most effective chemotherapeutic agents, but cardiotoxicity limits DOX therapy. Although the mechanisms are not entirely understood, reactive oxygen species (ROS) appear to be involved in DOX cardiotoxicity. Ca/calmodulin dependent protein kinase II (CaMKII) can be activated by ROS through oxidation and is known to contribute to myocardial dysfunction through Ca leakage from the sarcoplasmic reticulum (SR). Rationale We hypothesized that CaMKII contributes to DOX-induced defects in intracellular Ca ([Ca]i) handling. Methods Cardiac myocytes were isolated from wild-type (WT) adult rat hearts and from mouse hearts lacking the predominant myocardial CaMKII isoform (CaMKIIδ−/−, KO) vs. WT. Isolated cardiomyocytes were investigated 30 min after DOX (10 µmol/L) superfusion, using epifluorescence and confocal microscopy. Intracellular ROS-generation ([ROS]i) and [Ca]i handling properties were assessed. In a subset of experiments, KN-93 or AIP (each 1 µmol/L) were used to inhibit CaMKII. Melatonin (Mel, 100 µmol/L) served as ROS-scavenger. Western blots were performed to determine the amount of CaMKII phosphorylation and oxidation. Results DOX increased [ROS]i and led to significant diastolic [Ca]i overload in rat myocytes. This was associated with reduced [Ca]i transients, a 5.8-fold increased diastolic SR Ca leak and diminished SR Ca content. ROS-scavenging partially rescued Ca handling. Western blots revealed increased CaMKII phosphorylation, but not CaMKII oxidation after DOX. Pharmacological CaMKII inhibition attenuated diastolic [Ca]i overload after DOX superfusion and led to partially restored [Ca]i transients and SR Ca content, presumably due to reduced Ca spark frequency. In line with this concept, isoform-specific CaMKIIδ-KO attenuated diastolic [Ca]i overload and Ca spark frequency. Conclusions DOX exposure induces CaMKII-dependent SR Ca leakage, which partially contributes to impaired cellular [Ca]i homeostasis

  7. Cathodic behavior of molten CaCl2-CaO and CaCl2-NaCl-CaO

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Lan; Wang, Wei; Li, Shi-Chao; Cao, Shan-Hui

    2010-12-01

    The cathodic behavior of molten CaCl2, CaCl2-CaO and equimolar CaCl2-NaCl-CaO was studied by cyclic voltammograms and constant potential polarization at temperatures of 1123 to 1173 K on molybdenum and titanium electrodes. The diffusion coefficient of Ca2+ (CaO) in molten CaCl2-CaO was calculated from the linear relationship between the square root of scan rate and the peak current density. The deposition potentials and the potential temperature coefficient of CaO in molten CaCl2-0.5mol%CaO and CaCl2-NaCl-0.5mol%CaO were also obtained from their cyclic voltammograms. The result shows that CaO is more easily reduced than CaCl2. The addition of NaCl in molten CaCl2-CaO induces the underpotential electrodeposition of CaO.

  8. Opposing Intermolecular Tuning of Ca(2+) Affinity for Calmodulin by Neurogranin and CaMKII Peptides.

    PubMed

    Zhang, Pengzhi; Tripathi, Swarnendu; Trinh, Hoa; Cheung, Margaret S

    2017-03-28

    We investigated the impact of bound calmodulin (CaM)-target compound structure on the affinity of calcium (Ca(2+)) by integrating coarse-grained models and all-atomistic simulations with nonequilibrium physics. We focused on binding between CaM and two specific targets, Ca(2+)/CaM-dependent protein kinase II (CaMKII) and neurogranin (Ng), as they both regulate CaM-dependent Ca(2+) signaling pathways in neurons. It was shown experimentally that Ca(2+)/CaM (holoCaM) binds to the CaMKII peptide with overwhelmingly higher affinity than Ca(2+)-free CaM (apoCaM); the binding of CaMKII peptide to CaM in return increases the Ca(2+) affinity for CaM. However, this reciprocal relation was not observed in the Ng peptide (Ng13-49), which binds to apoCaM or holoCaM with binding affinities of the same order of magnitude. Unlike the holoCaM-CaMKII peptide, whose structure can be determined by crystallography, the structural description of the apoCaM-Ng13-49 is unknown due to low binding affinity, therefore we computationally generated an ensemble of apoCaM-Ng13-49 structures by matching the changes in the chemical shifts of CaM upon Ng13-49 binding from nuclear magnetic resonance experiments. Next, we computed the changes in Ca(2+) affinity for CaM with and without binding targets in atomistic models using Jarzynski's equality. We discovered the molecular underpinnings of lowered affinity of Ca(2+) for CaM in the presence of Ng13-49 by showing that the N-terminal acidic region of Ng peptide pries open the β-sheet structure between the Ca(2+) binding loops particularly at C-domain of CaM, enabling Ca(2+) release. In contrast, CaMKII peptide increases Ca(2+) affinity for the C-domain of CaM by stabilizing the two Ca(2+) binding loops. We speculate that the distinctive structural difference in the bound complexes of apoCaM-Ng13-49 and holoCaM-CaMKII delineates the importance of CaM's progressive mechanism of target binding on its Ca(2+) binding affinities. Copyright © 2017

  9. The Influence of Ca2+ Buffers on Free [Ca2+] Fluctuations and the Effective Volume of Ca2+ Microdomains

    PubMed Central

    Weinberg, Seth H.; Smith, Gregory D.

    2014-01-01

    Intracellular calcium (Ca2+) plays a significant role in many cell signaling pathways, some of which are localized to spatially restricted microdomains. Ca2+ binding proteins (Ca2+ buffers) play an important role in regulating Ca2+ concentration ([Ca2+]). Buffers typically slow [Ca2+] temporal dynamics and increase the effective volume of Ca2+ domains. Because fluctuations in [Ca2+] decrease in proportion to the square-root of a domain’s physical volume, one might conjecture that buffers decrease [Ca2+] fluctuations and, consequently, mitigate the significance of small domain volume concerning Ca2+ signaling. We test this hypothesis through mathematical and computational analysis of idealized buffer-containing domains and their stochastic dynamics during free Ca2+ influx with passive exchange of both Ca2+ and buffer with bulk concentrations. We derive Langevin equations for the fluctuating dynamics of Ca2+ and buffer and use these stochastic differential equations to determine the magnitude of [Ca2+] fluctuations for different buffer parameters (e.g., dissociation constant and concentration). In marked contrast to expectations based on a naive application of the principle of effective volume as employed in deterministic models of Ca2+ signaling, we find that mobile and rapid buffers typically increase the magnitude of domain [Ca2+] fluctuations during periods of Ca2+ influx, whereas stationary (immobile) Ca2+ buffers do not. Also contrary to expectations, we find that in the absence of Ca2+ influx, buffers influence the temporal characteristics, but not the magnitude, of [Ca2+] fluctuations. We derive an analytical formula describing the influence of rapid Ca2+ buffers on [Ca2+] fluctuations and, importantly, identify the stochastic analog of (deterministic) effective domain volume. Our results demonstrate that Ca2+ buffers alter the dynamics of [Ca2+] fluctuations in a nonintuitive manner. The finding that Ca2+ buffers do not suppress intrinsic domain [Ca2

  10. The site of net absorption of Ca from the intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca digestibility.

    PubMed

    González-Vega, J Caroline; Walk, Carrie L; Liu, Yanhong; Stein, Hans H

    2014-01-01

    An experiment was conducted to test the hypothesis that the standardised digestibility of Ca in calcium carbonate and Lithothamnium calcareum Ca is not different regardless of the level of dietary Ca, and that phytic acid affects the digestibility of Ca in these two ingredients to the same degree. The objectives were to determine where in the intestinal tract Ca absorption takes place and if there are measurable quantities of basal endogenous Ca fluxes in the stomach, small intestine or large intestine. Diets contained calcium carbonate or L. calcareum Ca as the sole source of Ca, 0% or 1% phytic acid and 0.4% or 0.8% Ca. A Ca-free diet was also formulated and used to measure endogenous fluxes and losses of Ca. Nine growing pigs (initial body weight 23.8 ± 1.3 kg) were cannulated in the duodenum and in the distal ileum, and faecal, ileal and duodenal samples were collected. Duodenal endogenous fluxes of Ca were greater (p < 0.05) than ileal endogenous fluxes and total tract endogenous losses of Ca, but ileal endogenous fluxes were less (p < 0.05) than total tract endogenous losses. Standardised digestibility of Ca was not affected by the level of phytic acid, but decreased (p < 0.05) as Ca level increased in L. calcareum Ca diets, but that was not the case if calcium carbonate was the source of Ca (interaction, p < 0.05). The standardised duodenal digestibility (SDD), standardised ileal digestibility (SID) and standardised total tract digestibility (STTD) of Ca were not different if calcium carbonate was the source of dietary Ca. However, the STTD of Ca in L. calcareum Ca was greater (p < 0.05) than the SID and SDD of Ca. The SDD, SID and STTD of Ca in calcium carbonate were greater (p < 0.05) than those of L. calcareum Ca. In conclusion, under the conditions of this experiment, standardised digestibility of Ca is not affected by the level of phytic acid, but may be affected by dietary Ca level depending on the Ca source. Calcium from calcium carbonate is mostly

  11. Routes of Ca2+ Shuttling during Ca2+ Oscillations: FOCUS ON THE ROLE OF MITOCHONDRIAL Ca2+ HANDLING AND CYTOSOLIC Ca2+ BUFFERS.

    PubMed

    Pecze, László; Blum, Walter; Schwaller, Beat

    2015-11-20

    In some cell types, Ca(2+) oscillations are strictly dependent on Ca(2+) influx across the plasma membrane, whereas in others, oscillations also persist in the absence of Ca(2+) influx. We observed that, in primary mesothelial cells, the plasmalemmal Ca(2+) influx played a pivotal role. However, when the Ca(2+) transport across the plasma membrane by the "lanthanum insulation method" was blocked prior to the induction of the serum-induced Ca(2+) oscillations, mitochondrial Ca(2+) transport was found to be able to substitute for the plasmalemmal Ca(2+) exchange function, thus rendering the oscillations independent of extracellular Ca(2+). However, in a physiological situation, the Ca(2+)-buffering capacity of mitochondria was found not to be essential for Ca(2+) oscillations. Moreover, brief spontaneous Ca(2+) changes were observed in the mitochondrial Ca(2+) concentration without apparent changes in the cytosolic Ca(2+) concentration, indicating the presence of a mitochondrial autonomous Ca(2+) signaling mechanism. In the presence of calretinin, a Ca(2+)-buffering protein, the amplitude of cytosolic spikes during oscillations was decreased, and the amount of Ca(2+) ions taken up by mitochondria was reduced. Thus, the increased calretinin expression observed in mesothelioma cells and in certain colon cancer might be correlated to the increased resistance of these tumor cells to proapoptotic/pronecrotic signals. We identified and characterized (experimentally and by modeling) three Ca(2+) shuttling pathways in primary mesothelial cells during Ca(2+) oscillations: Ca(2+) shuttled between (i) the endoplasmic reticulum (ER) and mitochondria, (ii) the ER and the extracellular space, and (iii) the ER and cytoplasmic Ca(2+) buffers. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Ca2+ waves in the heart

    PubMed Central

    Izu, Leighton T.; Xie, Yuanfang; Sato, Daisuke; Bányász, Tamás; Chen-Izu, Ye

    2013-01-01

    Ca2+ waves were probably first observed in the early 1940s. Since then Ca2+ waves have captured the attention of an eclectic mixture of mathematicians, neuroscientists, muscle physiologists, developmental biologists, and clinical cardiologists. This review discusses the current state of mathematical models of Ca2+ waves, the normal physiological functions Ca2+ waves might serve in cardiac cells, as well as how the spatial arrangement of Ca2+ release channels shape Ca2+ waves, and we introduce the idea of Ca2+ phase waves that might provide a useful framework for understanding triggered arrhythmias. This article is part of a Special Issue entitled ‘Calcium Signaling in Heart’. PMID:23220129

  13. Large Ca2+-dependent facilitation of CaV2.1 channels revealed by Ca2+ photo-uncaging

    PubMed Central

    Lee, Shin-Rong; Adams, Paul J; Yue, David T

    2015-01-01

    Key points CaV2.1 channels constitute a dominant Ca2+ entry pathway into brain neurons, triggering downstream Ca2+-dependent processes such as neurotransmitter release. CaV2.1 is itself modulated by Ca2+, resulting in activity-dependent enhancement of channel opening termed Ca2+-dependent facilitation (CDF). Real-time Ca2+ imaging and Ca2+ uncaging here reveal that CDF turns out to be strikingly faster, more Ca2+ sensitive, and larger than anticipated on previous grounds. Robust resolution of the quantitative profile of CDF enables deduction of a realistic biophysical model for this process. These results suggest that CaV2.1 CDF would figure most prominently in short-term synaptic plasticity and cerebellar Purkinje cell rhythmicity. Abstract CaV2.1 (P-type) voltage-gated Ca2+ channels constitute a major source of neuronal Ca2+ current, strongly influencing rhythmicity and triggering neurotransmitter release throughout the central nervous system. Fitting with such stature among Ca2+ entry pathways, CaV2.1 is itself feedback regulated by intracellular Ca2+, acting through calmodulin to facilitate channel opening. The precise neurophysiological role of this calcium-dependent facilitation (CDF) remains uncertain, however, in large measure because the very magnitude, Ca2+ dependence and kinetics of CDF have resisted quantification by conventional means. Here, we utilize the photo-uncaging of Ca2+ with CaV2.1 channels fluxing Li+ currents, so that voltage-dependent activation of channel gating is no longer conflated with Ca2+ entry, and CDF is then driven solely by light-induced increases in Ca2+. By using this strategy, we now find that CDF can be unexpectedly large, enhancing currents by as much as twofold at physiological voltages. CDF is steeply Ca2+ dependent, with a Hill coefficient of approximately two, a half-maximal effect reached by nearly 500 nm Ca2+, and Ca2+ on/off kinetics in the order of milliseconds to tens of milliseconds. These properties were

  14. Multiple Ca2+ Binding Sites in the Extracellular Domain of Ca2+-Sensing Receptor Corresponding to Cooperative Ca2+ Response†

    PubMed Central

    Huang, Yun; Zhou, Yubin; Castiblanco, Adriana; Yang, Wei; Brown, Edward M.; Yang, Jenny J.

    2009-01-01

    A small change in the extracellular Ca2+ concentration ([Ca2+]o) integrates cell signaling responses in multiple cellular and tissue networks and functions via activation of Ca2+-sensing receptors (CaSR). Mainly through binding of Ca2+ to the large extracellular domain (ECD) of the dimeric CaSR, intracellular Ca2+ responses are highly cooperative with an apparent Hill coefficient ranging from 2 to 4. We have previously reported the identification of two continuous putative Ca2+-binding sites by grafting CaSR-derived, Ca2+-binding peptides to a scaffold protein, CD2, that does not bind Ca2+. In this paper, we predict more potential non-continuous Ca2+-binding sites in the ECD. We dissect the intact CaSR into three globular subdomains, each of which contains 2 to 3 predicted Ca2+-binding sites. This approach enables us to further understand the mechanisms underlying the binding of multiple metal ions to extended polypeptides derived from within the ECD of the CaSR, which would be anticipated to more closely mimic the structure of the native CaSR ECD. Tb3+-luminescence energy transfer, ANS fluorescence, and NMR studies show biphasic metal-binding components and Ca2+-dependent conformational changes in these subdomains. Removing the predicted Ca2+-binding ligands in site 1 and site 3 abolishes the first binding step and second binding step, respectively. Studies on these subdomains suggest the existence of multiple metal-binding sites and metal-induced conformational changes that might be responsible for switching on/off the CaSR by transition between its open inactive form and closed active form. PMID:19102677

  15. Solar Ca II K Observations

    NASA Astrophysics Data System (ADS)

    Bertello, Luca; Pevtsov, Alexei A.; Tlatov, Andrey; Singh, Jagdev

    2016-07-01

    Some of the most important archives of past and current long-term solar synoptic observations in the resonance line of Ca II K are described here. These observations are very important for understanding the state of the solar magnetism on time scales up to several decades. The first observations of this kind began in 1904 at the Kodaikanal Observatory (India), followed by similar programs at different other locations. Regular full-disk Ca II K monitoring programs started in 1915 at the Mount Wilson Observatory (USA) and in 1917 at the National Solar Observatory of Japan. Beginning in 1919 and in 1926 regular observations were taken also at the Paris-Meudon Observatory (France) and at the "Donati solar tower telescope of the Arcetri Astrophysical Observatory in Italy, respectively. In 1926 the the Astronomical Observatory of the Coimbra University in Portugal started its own program of Ca II K observations. Although some of these programs have been terminated over the years, their data archives constitute a unique resource for studies of solar variability. In the early 1970s, the National Solar Observatory (NSO) at Sacramento Peak (USA) started a new program of daily Sun-as-a-star observations in the Ca II K line. Today the NSO is continuing these observations through its Synoptic Optical Long-term Investigations of the Sun (SOLIS) facility.

  16. Regulation of synaptic facilitation by postsynaptic Ca2+/CaM pathways in hippocampal CA1 neurons.

    PubMed

    Wang, J H; Kelly, P T

    1996-07-01

    1. Current- and voltage-clamp recordings with simultaneous field potential recordings were used to study the cellular and molecular mechanisms that contribute to synaptic facilitation at CA1 synapses in rat hippocampal slices. Microelectrodes used for intracellular recordings were also used to inject modulators of intracellular signal pathways into postsynaptic CA1 neurons. 2. Paired-pulse stimulation at constant stimulus intensity was used to analyze the relationship between the first evoked response (R1) and the absolute value of paired-pulse synaptic facilitation (R2-R1). The magnitudes of these two measures were inversely correlated. Compared with synapses that control motor functions, the synapses of CA1 pyramidal neurons did not exhibit accumulative synaptic facilitation during repetitive stimulation, which is often believed to be mediated by presynaptic residual Ca2+. 3. During studies on the cellular location of mechanisms contributing to synaptic facilitation, we observed that postsynaptic injections of 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid or [Ala286]CaMKII281-302 [a Ca2+/calmodulin-dependent protein kinase II (CaM-KII) inhibitor peptide] prevented the decreases in paired-pulse facilitation (PPF) and synaptic potentiation induced by elevating extracellular Ca2+. These results show that raising extracellular Ca2+ enhances synaptic transmission in part by activating postsynaptic Ca2+ signal pathways. 4. The injection of Ca2+/calmodulin (CaM) into postsynaptic neurons significantly decreased PPF in 50 of 57 experiments while inducing synaptic potentiation; the Ca2+/CaM-induced synaptic potentiation and PPF attenuation occluded subsequent high Ca(2+)-induced enhancements of synaptic transmission. The changes in PPF induced by postsynaptic injections of Ca2+/CaM were inversely correlated with R1 potentiation. 5. The decreases in PPF induced by postsynaptic Ca2+/CaM injections were prevented by coinjecting pseudosubstrate inhibitors or

  17. Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations

    PubMed Central

    Ishii, Kiyoaki; Hirose, Kenzo; Iino, Masamitsu

    2006-01-01

    Although many cell functions are regulated by Ca2+ oscillations induced by a cyclic release of Ca2+ from intracellular Ca2+ stores, the pacemaker mechanism of Ca2+ oscillations remains to be explained. Using green fluorescent protein-based Ca2+ indicators that are targeted to intracellular Ca2+ stores, the endoplasmic reticulum (ER) and mitochondria, we found that Ca2+ shuttles between the ER and mitochondria in phase with Ca2+ oscillations. Following agonist stimulation, Ca2+ release from the ER generated the first Ca2+ oscillation and loaded mitochondria with Ca2+. Before the second Ca2+ oscillation, Ca2+ release from the mitochondria by means of the Na+/Ca2+ exchanger caused a gradual increase in cytoplasmic Ca2+ concentration, inducing a regenerative ER Ca2+ release, which generated the peak of Ca2+ oscillation and partially reloaded the mitochondria. This sequence of events was repeated until mitochondrial Ca2+ was depleted. Thus, Ca2+ shuttling between the ER and mitochondria may have a pacemaker role in the generation of Ca2+ oscillations. PMID:16415789

  18. Mitochondrial Ca2+ and neurodegeneration

    PubMed Central

    Calì, Tito; Ottolini, Denis; Brini, Marisa

    2012-01-01

    Mitochondria are essential for ensuring numerous fundamental physiological processes such as cellular energy, redox balance, modulation of Ca2+ signaling and important biosynthetic pathways. They also govern the cell fate by participating in the apoptosis pathway. The mitochondrial shape, volume, number and distribution within the cells are strictly controlled. The regulation of these parameters has an impact on mitochondrial function, especially in the central nervous system, where trafficking of mitochondria is critical to their strategic intracellular distribution, presumably according to local energy demands. Thus, the maintenance of a healthy mitochondrial population is essential to avoid the impairment of the processes they regulate: for this purpose, cells have developed mechanisms involving a complex system of quality control to remove damaged mitochondria, or to renew them. Defects of these processes impair mitochondrial function and lead to disordered cell function, i.e., to a disease condition. Given the standard role of mitochondria in all cells, it might be expected that their dysfunction would give rise to similar defects in all tissues. However, damaged mitochondrial function has pleiotropic effects in multicellular organisms, resulting in diverse pathological conditions, ranging from cardiac and brain ischemia, to skeletal muscle myopathies to neurodegenerative diseases. In this review, we will focus on the relationship between mitochondrial (and cellular) derangements and Ca2+ dysregulation in neurodegenerative diseases, emphasizing the evidence obtained in genetic models. Common patterns, that recognize the derangement of Ca2+ and energy control as a causative factor, have been identified: advances in the understanding of the molecular regulation of Ca2+ homeostasis, and on the ways in which it could become perturbed in neurological disorders, may lead to the development of therapeutic strategies that modulate neuronal Ca2+ signaling. PMID

  19. Decoding Ca2+ signals in plants

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Poovaiah, B. W.

    2004-01-01

    Different input signals create their own characteristic Ca2+ fingerprints. These fingerprints are distinguished by frequency, amplitude, duration, and number of Ca2+ oscillations. Ca(2+)-binding proteins and protein kinases decode these complex Ca2+ fingerprints through conformational coupling and covalent modifications of proteins. This decoding of signals can lead to a physiological response with or without changes in gene expression. In plants, Ca(2+)-dependent protein kinases and Ca2+/calmodulin-dependent protein kinases are involved in decoding Ca2+ signals into phosphorylation signals. This review summarizes the elements of conformational coupling and molecular mechanisms of regulation of the two groups of protein kinases by Ca2+ and Ca2+/calmodulin in plants.

  20. Decoding Ca2+ signals in plants

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Poovaiah, B. W.

    2004-01-01

    Different input signals create their own characteristic Ca2+ fingerprints. These fingerprints are distinguished by frequency, amplitude, duration, and number of Ca2+ oscillations. Ca(2+)-binding proteins and protein kinases decode these complex Ca2+ fingerprints through conformational coupling and covalent modifications of proteins. This decoding of signals can lead to a physiological response with or without changes in gene expression. In plants, Ca(2+)-dependent protein kinases and Ca2+/calmodulin-dependent protein kinases are involved in decoding Ca2+ signals into phosphorylation signals. This review summarizes the elements of conformational coupling and molecular mechanisms of regulation of the two groups of protein kinases by Ca2+ and Ca2+/calmodulin in plants.

  1. Ca2+ dynamics in zebrafish morphogenesis

    PubMed Central

    Tsutsui, Kenta; Ogawa, Tomohisa

    2017-01-01

    Intracellular calcium ion (Ca2+) signaling is heavily involved in development, as illustrated by the use of a number of Ca2+ indicators. However, continuous Ca2+ patterns during morphogenesis have not yet been studied using fluorescence resonance energy transfer to track the Ca2+ sensor. In the present study, we monitored Ca2+ levels during zebrafish morphogenesis and differentiation with yellow cameleon, YC2.12. Our results show not only clear changes in Ca2+ levels but also continuous Ca2+ patterns at 24 hpf and later periods for the first time. Serial Ca2+dynamics during early pharyngula period (Prim-5-20; 24–33 hpf) was successfully observed with cameleon, which have not reported anywhere yet. In fact, high Ca2+ level occurred concurrently with hindbrain development in segmentation and pharyngula periods. Ca2+ patterns in the late gastrula through segmentation periods which were obtained with cameleon, were similar to those obtained previously with other Ca2+sensor. Our results suggested that the use of various Ca2+ sensors may lead to novel findings in studies of Ca2+ dynamics. We hope that these results will prove valuable for further research in Ca2+ signaling. PMID:28133572

  2. Ca fluxes in single twitch muscle fibers.

    PubMed

    Curtis, B A

    1966-11-01

    Ca influx and efflux in single twitch muscle fibers were determined by the movement of 45Ca. The isotope was assayed by counting the center 1 cm of a fiber while it was in nonradioactive Rnger's solution. The average resting influx in 1.0 mM Ca Ringer's was 0.26 pM Ca/cm2. sec for 5 to 20 min influx periods. The average additional influx upon stimulation in 1.0 mM Ca was 0.73 pM Ca/cm2. twitch. The efflux after both resting and stimulated 45Ca influx can be described by a single exponential curve with an average time constant of 125 min. This relationship is an indication of Ca exchange with a single intracellular compartment. This compartment contains an estimated 47% of the total muscle Ca at 1.0 mM Ca. When the Ca in the Ringer was reduced to 0.5 mM Ca, both the resting and stimulated Ca fluxes decreased. When Ca was raised to 1.8 mM, the stimulated influxes increased but the resting influx did not.

  3. CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Kozak, M.; Gnaciński, P.; Galazutdinov, G. A.; Beletsky, Y.; Krełowski, J.

    2007-07-01

    A new kind of interstellar cloud is proposed. These are rare (just a few examples among ~300 lines of sight) objects with the CaI 4227-Å, FeI 3720-Å and 3860-Å lines stronger than those of KI (near 7699 Å) and NaI (near 3302 Å). We propose the name `CaFe' for these clouds. Apparently they occupy different volumes from the well-known interstellar HI clouds where the KI and ultraviolet NaI lines are dominant features. In the CaFe clouds we have not found either detectable molecular features (CH, CN) or diffuse interstellar bands which, as commonly believed, are carried by some complex, organic molecules. We have found the CaFe clouds only along sightlines toward hot, luminous (and thus distant) objects with high rates of mass loss. In principle, the observed gas-phase interstellar abundances reflect the combined effects of the nucleosynthetic history of the material, the depletion of heavy elements into dust grains and the ionization state of these elements which may depend on irradiation by neighbouring stars. Based on data collected using the Maestro spectrograph at the Terskol 2-m telescope, Russia; and on data collected using the ESO Feros spectrograph; and on data obtained from the ESO Science Archive Facility acquired with the UVES spectrograph, Chile. E-mail: `arctur'@rambler.ru (AB); marizak@astri.uni.torun.pl (MK); pg@iftia.univ.gda.pl (PG); gala@boao.re.kr (GAG); ybialets@eso.org (YB); jacek@astri.uni.torun.pl (JK)

  4. Carcinogenesis of PIK3CA

    PubMed Central

    2013-01-01

    PIK3CA is the most frequently mutated oncogene in human cancers. PIK3CA is phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha. It controls cell growth, proliferation, motility, survival, differentiation and intracellular trafficking. In most of human cancer alteration occurred frequently in the alpha isoform of phosphatidylinositol 3 kinase. PIK3CA mutations were most frequent in endometrial, ovarian, colorectal, breast, cervical, squamous cell cancer of the head and neck, chondroma, thyroid carcinoma and in cancer family syndrome. Inhibition of PI3K signaling can diminish cell proliferation, and in some circumstances, promote cell death. Consequently, components of this pathway present attractive targets for cancer therapeutics. A number of PI3K pathway inhibitors have been developed and used. PI3K inhibitors (both pan-PI3K and isoform-specific PI3K inhibitors), dual PI3K-mTOR inhibitors that are catalytic site inhibitors of the p110 isoforms and mTOR (the kinase component of both mTORC1 and mTORC2), mTOR catalytic site inhibitors, and AKT inhibitors are the most advanced in the clinic. They are approved for the treatment of several carcinomas. PMID:23768168

  5. Calmodulin Regulates Ca2+-sensing Receptor-mediated Ca2+ Signaling and Its Cell Surface Expression*

    PubMed Central

    Huang, Yun; Zhou, Yubin; Wong, Hing-Cheung; Castiblanco, Adriana; Chen, Yanyi; Brown, Edward M.; Yang, Jenny J.

    2010-01-01

    The Ca2+-sensing receptor (CaSR) is a member of family C of the GPCRs responsible for sensing extracellular Ca2+ ([Ca2+]o) levels, maintaining extracellular Ca2+ homeostasis, and transducing Ca2+ signaling from the extracellular milieu to the intracellular environment. In the present study, we have demonstrated a Ca2+-dependent, stoichiometric interaction between CaM and a CaM-binding domain (CaMBD) located within the C terminus of CaSR (residues 871–898). Our studies suggest a wrapping around 1–14-like mode of interaction that involves global conformational changes in both lobes of CaM with concomitant formation of a helical structure in the CaMBD. More importantly, the Ca2+-dependent association between CaM and the C terminus of CaSR is critical for maintaining proper responsiveness of intracellular Ca2+ responses to changes in extracellular Ca2+ and regulating cell surface expression of the receptor. PMID:20826781

  6. Increase in cytosolic Ca2+ induced by elevation of extracellular Ca2+ in skeletal myogenic cells.

    PubMed

    Naro, Fabio; De Arcangelis, Vania; Coletti, Dario; Molinaro, Mario; Zani, Bianca; Vassanelli, Stefano; Reggiani, Carlo; Teti, Anna; Adamo, Sergio

    2003-04-01

    Cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) variation is a key event in myoblast differentiation, but the mechanism by which it occurs is still debated. Here we show that increases of extracellular Ca(2+) concentration ([Ca(2+)](o)) produced membrane hyperpolarization and a concentration-dependent increase of [Ca(2+)](i) due to Ca(2+) influx across the plasma membrane. Responses were not related to inositol phosphate turnover and Ca(2+)-sensing receptor. [Ca(2+)](o)-induced [Ca(2+)](i) increase was inhibited by Ca(2+) channel inhibitors and appeared to be modulated by several kinase activities. [Ca(2+)](i) increase was potentiated by depletion of intracellular Ca(2+) stores and depressed by inactivation of the Na(+)/Ca(2+) exchanger. The response to arginine vasopressin (AVP), which induces inositol 1,4,5-trisphosphate-dependent [Ca(2+)](i) increase in L6-C5 cells, was not modified by high [Ca(2+)](o). On the contrary, AVP potentiated the [Ca(2+)](i) increase in the presence of elevated [Ca(2+)](o). Other clones of the L6 line as well as the rhabdomyosarcoma RD cell line and the satellite cell-derived C2-C12 line expressed similar responses to high [Ca(2+)](o), and the amplitude of the responses was correlated with the myogenic potential of the cells.

  7. Evolution of Seawater 44Ca/40Ca Through the Late Cretaceous and Cenozoic

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; Gopalan, K.; Norris, R. D.; MacIsaac, C.; Liu, X.; MacDougall, J. D.

    2009-12-01

    We analyzed the Ca concentrations and 44Ca/40Ca ratios of surface ocean planktonic (Morozovella, Acarinina, Dentoglobigerina) and benthic (Gavelinella) foraminifera of Late Cretaceous to Late Oligocene ages from DSDP and ODP sites in the Pacific, Atlantic and Indian oceans in order to fill a major gap in the Phanerozoic seawater 44Ca/40Ca curve (Farkass et al., Geochim. Cosmochim. Acta 71, 2007). Our new 44Ca/40Ca data indicate a general increase in foraminiferan-based seawater 44Ca/40Ca from ~-1.3 ‰ δ44Ca/40CaSW in Late Cretaceous to ~0.0 ‰ δ44Ca/40CaSW in Early Miocene (Heuser et al., Paleocean. 20, 2005; Sime et al., Geochim. Cosmochim. Acta 71, 2007). In detail, the 44Ca/40Ca ratio stepped abruptly from ~-1.3 ‰ δ44Ca/40CaSW to a slightly higher value of ~-1.1 ‰ δ44Ca/40CaSW across the Cretaceous-Tertiary (K/T) boundary. A slight positive excursion of ~0.2 ‰ above the background value occurred after the Paleocene Thermal Maximum (55 Ma) but otherwise, the Paleocene to Middle Eocene ratio is relatively stable at ~-1.0 ‰ δ44Ca/40CaSW. The most prominent increase in foraminiferan-based seawater 44Ca/40Ca occurred from Late Eocene to Late Oligocene, roughly coincident with the initial phase of the rapid and steady rise of marine carbonate 87Sr/86Sr ratio in the Tertiary (e.g., DePaolo and Ingram, Science 227, 1985).

  8. [Effect of polycarbophil Ca on IBS].

    PubMed

    Mine, Tetsuya

    2006-08-01

    In this chapter, I mentioned the effect of polycarbophil Ca on IBS. IBS is classified into 3 types; diarrhea type, constipation type and combined type. Polycarbophil Ca is effective for all types of IBS.

  9. Cell Biology of Ca2+-Triggered Exocytosis

    PubMed Central

    Pang, Zhiping P.; Südhof, Thomas C.

    2010-01-01

    Ca2+ triggers many forms of exocytosis in different types of eukaryotic cells, for example synaptic vesicle exocytosis in neurons, granule exocytosis in mast cells, and hormone exocytosis in endocrine cells. Work over the last two decades has shown that synaptotagmins function as the primary Ca2+-sensors for most of these forms of exocytosis, and that synaptotagmins act via Ca2+-dependent interactions with both the fusing phospholipid membranes and the membrane fusion machinery. However, some forms of Ca2+-induced exocytosis may utilize other, as yet unidentified Ca2+-sensors, for example, slow synaptic exocytosis mediating asynchronous neurotransmitter release. In the following overview, we will discuss the synaptotagmin-based mechanism of Ca2+-triggered exocytosis in neurons and neuroendocrine cells, and its potential extension to other types of Ca2+-stimulated exocytosis for which no synaptotagmin Ca2+-sensor has been identified. PMID:20561775

  10. Cell biology of Ca2+-triggered exocytosis.

    PubMed

    Pang, Zhiping P; Südhof, Thomas C

    2010-08-01

    Ca(2+) triggers many forms of exocytosis in different types of eukaryotic cells, for example synaptic vesicle exocytosis in neurons, granule exocytosis in mast cells, and hormone exocytosis in endocrine cells. Work over the past two decades has shown that synaptotagmins function as the primary Ca(2+)-sensors for most of these forms of exocytosis, and that synaptotagmins act via Ca(2+)-dependent interactions with both the fusing phospholipid membranes and the membrane fusion machinery. However, some forms of Ca(2+)-induced exocytosis may utilize other, as yet unidentified Ca(2+)-sensors, for example, slow synaptic exocytosis mediating asynchronous neurotransmitter release. In the following overview, we will discuss the synaptotagmin-based mechanism of Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells, and its potential extension to other types of Ca(2+)-stimulated exocytosis for which no synaptotagmin Ca(2+)-sensor has been identified.

  11. Fine tuning of cytosolic Ca 2+ oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent

    2016-01-01

    Ca 2+ oscillations, a widespread mode of cell signaling, were reported in non-excitable cells for the first time more than 25 years ago. Their fundamental mechanism, based on the periodic Ca 2+ exchange between the endoplasmic reticulum and the cytoplasm, has been well characterized. However, how the kinetics of cytosolic Ca 2+ changes are related to the extent of a physiological response remains poorly understood. Here, we review data suggesting that the downstream targets of Ca 2+ are controlled not only by the frequency of Ca 2+ oscillations but also by the detailed characteristics of the oscillations, such as their duration, shape, or baseline level. Involvement of non-endoplasmic reticulum Ca 2+ stores, mainly mitochondria and the extracellular medium, participates in this fine tuning of Ca 2+ oscillations. The main characteristics of the Ca 2+ exchange fluxes with these compartments are also reviewed. PMID:27630768

  12. Ca2+ chemotaxis in Dictyostelium discoideum.

    PubMed

    Scherer, Amanda; Kuhl, Spencer; Wessels, Deborah; Lusche, Daniel F; Raisley, Brent; Soll, David R

    2010-11-01

    Using a newly developed microfluidic chamber, we have demonstrated in vitro that Ca(2+) functions as a chemoattractant of aggregation-competent Dictyostelium discoideum amoebae, that parallel spatial gradients of cAMP and Ca(2+) are more effective than either alone, and that cAMP functions as a stronger chemoattractant than Ca(2+). Effective Ca(2+) gradients are extremely steep compared with effective cAMP gradients. This presents a paradox because there is no indication to date that steep Ca(2+) gradients are generated in aggregation territories. However, given that Ca(2+) chemotaxis is co-acquired with cAMP chemotaxis during development, we speculate on the role that Ca(2+) chemotaxis might have and the possibility that steep, transient Ca(2+) gradients are generated during natural aggregation in the interstitial regions between cells.

  13. CaMKII regulates intracellular Ca²⁺ dynamics in native endothelial cells.

    PubMed

    Toussaint, Fanny; Charbel, Chimène; Blanchette, Alexandre; Ledoux, Jonathan

    2015-09-01

    Localized endothelial Ca(2+) signalling, such as Ca(2+) pulsars, can modulate the contractile state of the underlying vascular smooth muscle cell through specific endothelial targets. In addition to K(Ca)3.1 as a target, Ca(2+) pulsars, an IP3R-dependent pulsatile Ca(2+) release from the endoplasmic reticulum (ER) could activate a frequency-sensitive Ca(2+)-dependent kinase such as CaMKII. In the absence of extracellular Ca(2+), acetylcholine increased endothelial CaMKII phosphorylation and activation, thereby suggesting CaMKII activation independently of Ca(2+) influx. Herein, a reciprocal relation where CaMKII controls endothelial Ca(2+) dynamics has been investigated in mesenteric arteries. Both CaMKIIα and β isoforms have been identified in endothelial cells and close proximity (<40 nm) suggests their association in heteromultimers. Intracellular Ca(2+) monitoring with high speed confocal microscopy then showed that inhibition of CaMKII with KN-93 significantly increased the population of Ca(2+) pulsars active sites (+89%), suggesting CaMKII as a major regulator of Ca(2+) pulsars in native endothelium. Mechanistic insights were then sought through the elucidation of the impact of CaMKII on ER Ca(2+) store. ER Ca(2+) emptying was accelerated by CaMKII inhibition and ER Ca(2+) content was assessed using ionomycin. Exposure to KN-93 strongly diminished ER Ca(2+) content (-61%) by relieving CaMKII-dependent inhibition of IP3 receptors (IP3R). Moreover, in situ proximity ligation assay suggested CaMKII-IP3R promiscuity, essential condition for a protein-protein interaction. Interestingly, segregation of IP3R within myoendothelial projection (MEP) appears to be isoform-specific. Hence, only IP3R type 1 and type 2 are detected within fenestrations of the internal elastic lamina, sites of MEP, whilst type 3 is absent from these structures. In summary, CaMKII seems to act as a Ca(2+)-sensitive switch of a negative feedback loop regulating endothelial Ca(2

  14. Mojave Toxin: A Selective Ca(++) Channel Antagonist

    DTIC Science & Technology

    1988-07-01

    other than maitotoxin, blocking 3H-nitrendipine binding to the high affinity dihydropyridine receptor associated with the Ca++ channel, as well as... dihydropyridine receptors in rat synaptic membranes suggests that this toxin may be a useful proble of the Ca++ channel complex. It is not certain whether MoTX has...increase in intracellular Ca++ resulting from the binding of the toxin to dihydropyridine receptors coupled to Ca++ channels. The resolution of this

  15. CA125 is superior to CA19-9 in predicting the resectability of pancreatic cancer.

    PubMed

    Luo, Guopei; Xiao, Zhiwen; Long, Jiang; Liu, Zuqiang; Liu, Liang; Liu, Chen; Xu, Jin; Ni, Quanxing; Yu, Xianjun

    2013-12-01

    Although carbohydrate antigen 19-9 (CA19-9) has been reported as a biomarker to predict the resectability of pancreatic cancer, several limitations have restricted its clinical use. The potential of several serum tumor markers (CA19-9, CA125, CA50, CA242, CA724, carcinoembryonic antigen (CEA), and alpha-fetoprotein (AFP)) to predict the resectability of pancreatic cancer was evaluated by receiver operating characteristic (ROC) analysis in a series of 212 patients with proven pancreatic cancer. Compared with other tumor markers including CA19-9, CA125 has a superior predictive value (CA19-9, ROC area 0.66, cutoff value 289.40 U/mL; CA125, ROC area 0.81, cutoff value 19.70 U/mL). In addition, for patients with unresectable diseases misjudged by CT as resectable, the percentage of CA125 over selected cutoff value was higher than that of CA19-9 (CA19-9, 70.27 %; CA125, 81.08 %). CA125 is superior to CA19-9 in predicting the resectability of pancreatic cancer. Aberrant high levels of CA125 may indicate unresectable pancreatic cancer.

  16. Altered Network Timing in the CA3-CA1 Circuit of Hippocampal Slices from Aged Mice

    PubMed Central

    Kanak, Daniel J.; Rose, Gregory M.; Zaveri, Hitten P.; Patrylo, Peter R.

    2013-01-01

    Network patterns are believed to provide unique temporal contexts for coordinating neuronal activity within and across different regions of the brain. Some of the characteristics of network patterns modeled in vitro are altered in the CA3 or CA1 subregions of hippocampal slices from aged mice. CA3–CA1 network interactions have not been examined previously. We used slices from aged and adult mice to model spontaneous sharp wave ripples and carbachol-induced gamma oscillations, and compared measures of CA3–CA1 network timing between age groups. Coherent sharp wave ripples and gamma oscillations were evident in the CA3–CA1 circuit in both age groups, but the relative timing of activity in CA1 stratum pyramidale was delayed in the aged. In another sample of aged slices, evoked Schaffer collateral responses were attenuated in CA3 (antidromic spike amplitude) and CA1 (orthodromic field EPSP slope). However, the amplitude and timing of spontaneous sharp waves recorded in CA1 stratum radiatum were similar to adults. In both age groups unit activity recorded juxtacellularly from unidentified neurons in CA1 stratum pyramidale and stratum oriens was temporally modulated by CA3 ripples. However, aged neurons exhibited reduced spike probability during the early cycles of the CA3 ripple oscillation. These findings suggest that aging disrupts the coordination of patterned activity in the CA3–CA1 circuit. PMID:23593474

  17. Controls on Sr/Ca in Scleractinian Corals: The Effects of Ca-ATPase and Ca channels on Skeletal Chemistry

    NASA Astrophysics Data System (ADS)

    Allison, N.; Cohen, I.; Finch, A. A.; Erez, J.

    2010-12-01

    Coral skeletal Sr/Ca is a commonly used palaeothermometer and has been used to estimate past sea surface temperatures. However the processes controlling Sr incorporation in coral aragonite are poorly understood. The Sr/Ca chemistry of the massive Porites spp. corals typically used for palaeoenvironmental reconstruction is dominated by short-term (weekly-monthly) oscillations of ~10% which do not reflect seawater temperature. This heterogeneity may reflect variations in the composition of the fluid used for calcification. Coral skeletons precipitate from an extracellular calcifying fluid enclosed in a semi-isolated space between the skeleton and the calicoblastic epithelium (the tissue layer at the base of the coral organism). Seawater diffuses directly to the calcification site and the calcification fluid has a composition derived from that of seawater but modified by other transport processes. In zooxanthellate corals, Ca2+ is transported transcellularly to the calcification site by both calcium channels and by the carrier protein Ca-ATPase. Sr2+ has a similar ionic radius to Ca2+, but it is not clear if Sr2+ can substitute for Ca2+ in these transport mechanisms. Variations in the relative contributions of each of the transport mechanisms to the calcification fluid and the efficiencies with which each process transports Sr2+ and Ca2+ could explain the Sr/Ca heterogeneity observed in coral skeletons. To test the impact of transcellular Ca transport processes on skeletal Sr/Ca and Mg/Ca we cultured Pocillopora damicornis corals in the presence of inhibitors of Ca-ATPase (ruthenium red) and Ca channels (verapamil). The photosynthesis, respiration and calcification rates of the colonies were monitored throughout the experiment. The skeleton subsequently deposited was identified (by 42Ca spike) and analysed by secondary ion mass spectrometry. The Sr/Ca and Mg/Ca of the aragonite deposited in the presence of either of the inhibitors was not significantly different from

  18. [Regulation of the Na/Ca exchanger].

    PubMed

    DiPolo, R; Rojas, H; Beaugé, L

    1993-01-01

    The introduction of the squid giant axon preparation to studies on Ca homeostasis has proven very useful in laying the foundations in the study of Ca regulation. In particular the Na/Ca exchange mechanism has been characterized in terms of its regulatory processes using the well define technique of intracellular dialysis and membrane potential control. The Na/Ca exchange countertransport system plays a critical role in physiological processes including cardiac contractility and photoreception. It has also been implicate in the etiology of essential hypertension, cardiac arrhythmias and cell death. The ability of the Na/Ca exchanger to regulate the intracellular ionized Ca concentration ([Ca2+i]) under physiological conditions, is determined by the direction (net Ca efflux or Ca influx), and magnitude of transport. The direction of Ca transport is decided by the chemical gradient of sodium and calcium. The magnitude of the exchange is regulated by kinetic factors. This kinetic factors are critical since they decide whether the exchanger will mediate a net Ca movement under certain conditions. Recently, a large effort has been put together to characterize the secondary modulation of the Na/Ca exchanger. In particular modulation by MgATP and intracellular Ca2+. In nerve cells we have discover that MgATP regulates the exchanger through as phosphorylation-dephosphorylation processes most probably relate to the action of a kinase-phosphatase system. The other important ligand that regulates the exchange activity is the level of [Ca2+i]. We have found the presence of a regulatory site in the cytoplasmic face of the exchanger different from the transport site and probably responsible for turning the carrier "on" or "off". In this article we will depict some of the processes involved in the metabolic and ionic regulation of the Na/Ca exchanger.

  19. Separate Ca2+ sources are buffered by distinct Ca2+ handling systems in aplysia neuroendocrine cells.

    PubMed

    Groten, Christopher J; Rebane, Jonathan T; Blohm, Gunnar; Magoski, Neil S

    2013-04-10

    Although the contribution of Ca(2+) buffering systems can vary between neuronal types and cellular compartments, it is unknown whether distinct Ca(2+) sources within a neuron have different buffers. As individual Ca(2+) sources can have separate functions, we propose that each is handled by unique systems. Using Aplysia californica bag cell neurons, which initiate reproduction through an afterdischarge involving multiple Ca(2+)-dependent processes, we investigated the role of endoplasmic reticulum (ER) and mitochondrial sequestration, as well as extrusion via the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, to the clearance of voltage-gated Ca(2+) influx, Ca(2+)-induced Ca(2+)-release (CICR), and store-operated Ca(2+) influx. Cultured bag cell neurons were filled with the Ca(2+) indicator, fura-PE3, to image Ca(2+) under whole-cell voltage clamp. A 5 Hz, 1 min train of depolarizing voltage steps elicited voltage-gated Ca(2+) influx followed by EGTA-sensitive CICR from the mitochondria. A compartment model of Ca(2+) indicated the effect of EGTA on CICR was due to buffering of released mitochondrial Ca(2+) rather than uptake competition. Removal of voltage-gated Ca(2+) influx was dominated by the mitochondria and PMCA, with no contribution from the Na(+)/Ca(2+) exchanger or sarcoplasmic/endoplasmic Ca(2+)-ATPase (SERCA). In contrast, CICR recovery was slowed by eliminating the Na(+)/Ca(2+) exchanger and PMCA. Last, store-operated influx, evoked by ER depletion, was removed by the SERCA and depended on the mitochondrial membrane potential. Our results demonstrate that distinct buffering systems are dedicated to particular Ca(2+) sources. In general, this may represent a means to differentially regulate Ca(2+)-dependent processes, and for Aplysia, influence how reproductive behavior is triggered.

  20. Distinct Roles for Dorsal CA3 and CA1 in Memory for Sequential Nonspatial Events

    ERIC Educational Resources Information Center

    Farovik, Anja; Dupont, Laura M.; Eichenbaum, Howard

    2010-01-01

    Previous studies have suggested that dorsal hippocampal areas CA3 and CA1 are both involved in representing sequences of events that compose unique episodes. However, it is uncertain whether the contribution of CA3 is restricted to spatial information, and it is unclear whether CA1 encodes order per se or contributes by an active maintenance of…

  1. 46 CFR 7.130 - Point Conception, CA to Point Sur, CA.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the...

  2. 46 CFR 7.125 - Point Vincente, CA to Point Conception, CA.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Point Vincente, CA to Point Conception, CA. 7.125 Section 7.125 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.125 Point Vincente, CA to Point Conception, CA. (a) A line drawn from...

  3. 46 CFR 7.130 - Point Conception, CA to Point Sur, CA.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the...

  4. 46 CFR 7.125 - Point Vincente, CA to Point Conception, CA.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Point Vincente, CA to Point Conception, CA. 7.125 Section 7.125 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.125 Point Vincente, CA to Point Conception, CA. (a) A line drawn from...

  5. 46 CFR 7.130 - Point Conception, CA to Point Sur, CA.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the...

  6. 46 CFR 7.125 - Point Vincente, CA to Point Conception, CA.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Point Vincente, CA to Point Conception, CA. 7.125 Section 7.125 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.125 Point Vincente, CA to Point Conception, CA. (a) A line drawn from...

  7. 46 CFR 7.130 - Point Conception, CA to Point Sur, CA.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the...

  8. 46 CFR 7.130 - Point Conception, CA to Point Sur, CA.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the...

  9. 46 CFR 7.125 - Point Vincente, CA to Point Conception, CA.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Point Vincente, CA to Point Conception, CA. 7.125 Section 7.125 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.125 Point Vincente, CA to Point Conception, CA. (a) A line drawn from...

  10. 46 CFR 7.125 - Point Vincente, CA to Point Conception, CA.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Point Vincente, CA to Point Conception, CA. 7.125 Section 7.125 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.125 Point Vincente, CA to Point Conception, CA. (a) A line drawn from...

  11. Ca2+ sensor proteins in dendritic spines: a race for Ca2+

    PubMed Central

    Raghuram, Vijeta; Sharma, Yogendra; Kreutz, Michael R.

    2012-01-01

    Dendritic spines are believed to be micro-compartments of Ca2+ regulation. In a recent study, it was suggested that the ubiquitous and evolutionarily conserved Ca2+ sensor, calmodulin (CaM), is the first to intercept Ca2+ entering the spine and might be responsible for the fast decay of Ca2+ transients in spines. Neuronal calcium sensor (NCS) and neuronal calcium-binding protein (nCaBP) families consist of Ca2+ sensors with largely unknown synaptic functions despite an increasing number of interaction partners. Particularly how these sensors operate in spines in the presence of CaM has not been discussed in detail before. The limited Ca2+ resources and the existence of common targets create a highly competitive environment where Ca2+ sensors compete with each other for Ca2+ and target binding. In this review, we take a simple numerical approach to put forth possible scenarios and their impact on signaling via Ca2+ sensors of the NCS and nCaBP families. We also discuss the ways in which spine geometry and properties of ion channels, their kinetics and distribution, alter the spatio-temporal aspects of Ca2+ transients in dendritic spines, whose interplay with Ca2+ sensors in turn influences the race for Ca2+. PMID:22586368

  12. Distinct Roles for Dorsal CA3 and CA1 in Memory for Sequential Nonspatial Events

    ERIC Educational Resources Information Center

    Farovik, Anja; Dupont, Laura M.; Eichenbaum, Howard

    2010-01-01

    Previous studies have suggested that dorsal hippocampal areas CA3 and CA1 are both involved in representing sequences of events that compose unique episodes. However, it is uncertain whether the contribution of CA3 is restricted to spatial information, and it is unclear whether CA1 encodes order per se or contributes by an active maintenance of…

  13. Ca2+ Cycling in Heart Failure

    PubMed Central

    Luo, Min; Anderson, Mark E.

    2013-01-01

    Ca2+ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca2+ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca2+ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca2+ homeostatic binding proteins, ion channels and enzymes. This review focuses on the molecular mechanisms of defective Ca2+ cycling in heart failure and consider how fundamental understanding of these pathways may translate into novel and innovative therapies. PMID:23989713

  14. CAPE for CaPE

    NASA Technical Reports Server (NTRS)

    Brooks, Joni

    1993-01-01

    In an effort to improve short-term forecasting for the Kennedy Space Center region, Holle et al. (1992) investigated the effects of low level wind regimes on the distribution of cloud-to-ground lightning in central Florida. With a study period of 455 days, Holle et al. (1992) found 'southwest flow contributed 66 percent of the total network flashes while also occurring on the most days (142).' Relationships among mesoscale thermodynamic variables and precipitation and/or lightning have been addressed in previous studies in Canada and the Tennessee valley. Zawadzki et al. (1981) found 'soundings, surface pressure, temperature and humidity obtained from a standard observation network were correlated with rain rates given by raingages and radar.' Buechler et al. (1990) found 'a fair relationship between CAPE (convective available potential energy) and daily cloud-to-ground activity' with a correlation coefficient of r = 0.68. The present research will investigate the relationships among rainfall, cloud-to-ground (CG) lightning, CAPE, and low level wind flow using data collected during the CaPE (Convection and Precipitation/Electrification Experiment) field program. The CaPE field program was conducted in east central Florida from July 8, 1991 to August 18, 1991.

  15. Levels of CEA, CA153, CA199, CA724 and AFP in nipple discharge of breast cancer patients

    PubMed Central

    Zhao, Song; Mei, Yu; Wang, Yongmei; Zhu, Jiang; Zheng, Guixi; Ma, Rong

    2015-01-01

    The distinction between breast cancer and benign breast diseases with nipple discharge remains an important diagnostic challenge. The purpose of this study was to predict the potential usefulness of tumor markers in nipple discharge and to investigate the relationship of tumor markers and clinical characteristics with breast cancer.One hundred and eleven patients with nipple discharge received breast surgery from November 2013 to December 2014 were included in the study. We evaluated levels of five tumor markers (CEA, CA153, CA199, CA724 and AFP) prior to treatment. Patients were divided into two groups according to postoperative pathological results: 30 cases in breast cancer group and 81 cases in benign group. The relationships of clinical characteristics with breast cancer were investigated by multivariate analysis with a logistic regression model.It showed significant differences in levels of nipple discharge CEA (P < 0.001) and CA153 (P = 0.014), but not CA199 (P = 0.856), CA724 (P = 0.171), AFP (P = 0.834) among two groups. Logistic regression analysis demonstrated complaint, age, menopause, abnormal palpable mass, CEA and CA153 were associated with breast cancer. In summary, measurements of CA199, CA724 and AFP in nipple discharge are not of great clinical value. Detecting CEA and CA153 in nipple dischargecould potentially be used for the early detection of breast cancer with in high-risk populations. PMID:26885008

  16. Levels of CEA, CA153, CA199, CA724 and AFP in nipple discharge of breast cancer patients.

    PubMed

    Zhao, Song; Mei, Yu; Wang, Yongmei; Zhu, Jiang; Zheng, Guixi; Ma, Rong

    2015-01-01

    The distinction between breast cancer and benign breast diseases with nipple discharge remains an important diagnostic challenge. The purpose of this study was to predict the potential usefulness of tumor markers in nipple discharge and to investigate the relationship of tumor markers and clinical characteristics with breast cancer.One hundred and eleven patients with nipple discharge received breast surgery from November 2013 to December 2014 were included in the study. We evaluated levels of five tumor markers (CEA, CA153, CA199, CA724 and AFP) prior to treatment. Patients were divided into two groups according to postoperative pathological results: 30 cases in breast cancer group and 81 cases in benign group. The relationships of clinical characteristics with breast cancer were investigated by multivariate analysis with a logistic regression model.It showed significant differences in levels of nipple discharge CEA (P < 0.001) and CA153 (P = 0.014), but not CA199 (P = 0.856), CA724 (P = 0.171), AFP (P = 0.834) among two groups. Logistic regression analysis demonstrated complaint, age, menopause, abnormal palpable mass, CEA and CA153 were associated with breast cancer. In summary, measurements of CA199, CA724 and AFP in nipple discharge are not of great clinical value. Detecting CEA and CA153 in nipple dischargecould potentially be used for the early detection of breast cancer with in high-risk populations.

  17. Autonomous CaMKII requires further stimulation by Ca2+/calmodulin for enhancing synaptic strength.

    PubMed

    Barcomb, Kelsey; Buard, Isabelle; Coultrap, Steven J; Kulbe, Jacqueline R; O'Leary, Heather; Benke, Timothy A; Bayer, K Ulrich

    2014-08-01

    A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is generation of autonomous (Ca(2+)-independent) activity by T286 autophosphorylation. Biochemical studies have shown that "autonomous" CaMKII is ∼5-fold further stimulated by Ca(2+)/CaM, but demonstration of a physiological function for such regulation within cells has remained elusive. In this study, CaMKII-induced enhancement of synaptic strength in rat hippocampal neurons required both autonomous activity and further stimulation. Synaptic strength was decreased by CaMKIIα knockdown and rescued by reexpression, but not by mutants impaired for autonomy (T286A) or binding to NMDA-type glutamate receptor subunit 2B (GluN2B; formerly NR2B; I205K). Full rescue was seen with constitutively autonomous mutants (T286D), but only if they could be further stimulated (additional T305/306A mutation), and not with two other mutations that additionally impair Ca(2+)/CaM binding. Compared to rescue with wild-type CaMKII, the CaM-binding-impaired mutants even had reduced synaptic strength. One of these mutants (T305/306D) mimicked an inhibitory autophosphorylation of CaMKII, whereas the other one (Δstim) abolished CaM binding without introducing charged residues. Inhibitory T305/306 autophosphorylation also reduced GluN2B binding, but this effect was independent of reduced Ca(2+)/CaM binding and was not mimicked by T305/306D mutation. Thus, even autonomous CaMKII activity must be further stimulated by Ca(2+)/CaM for enhancement of synaptic strength.

  18. Adenosine stimulates Ca2+ fluxes and increases cytosolic free Ca2+ in cultured rat mesangial cells.

    PubMed Central

    Olivera, A; López-Rivas, A; López-Novoa, J M

    1992-01-01

    Adenosine has been associated with cellular Ca2+ metabolism in some cell types. Since adenosine is able to contract glomerular mesangial cells in culture, and since Ca2+ is the main messenger mediating contractile responses, we studied the effect of adenosine on 45Ca2+ movements into and out of mesangial cells and on the cytosolic free Ca2+ concentration ([Ca2+]i). Adenosine at 0.1 mM increased 45Ca2+ uptake (basal, 9993 +/- 216; + adenosine, 14823 +/- 410 d.p.m./mg; P less than 0.01) through verapamil-sensitive Ca2+ channels. These channels seem to be of the A1-adenosine receptor subtype. Adenosine also stimulated 45Ca2+ efflux from 45Ca(2+)-loaded mesangial cells. This effect was accompanied by a net depletion of intracellular 45Ca2+ content under isotopic equilibrium conditions (basal, 24213 +/- 978; + adenosine, 18622 +/- 885 d.p.m./mg; P less than 0.05). The increase in 45Ca2+ efflux was inhibited by a Ca(2+)-free medium or in the presence of 10 microM-verapamil. However, the intracellular Ca(2+)-release blocker TMB-8 (10 microM) only partially inhibited the adenosine-stimulated 45Ca2+ efflux. In addition, adenosine induced an elevation in [Ca2+]i in mesangial cells with an initial transient peak within 15 s (basal, 113 +/- 7; adenosine, 345 +/- 46 nM), and a secondary increase which was slower (3-4 min) and of lower magnitude than the initial peak (250 +/- 21 nM). In summary, adenosine elevates [Ca2+]i and stimulates both Ca2+ uptake from the extracellular pool and Ca2+ efflux from intracellular pools in mesangial cells. The Ca2+ release from internal stores is produced by a combination of a TMB-8-inhibitable and a non-TMB-8-inhibitable mechanism, and seems to be dependent on Ca2+ influx. PMID:1554371

  19. When is high-Ca+ microdomain required for mitochondrial Ca+ uptake?

    PubMed

    Spät, A; Fülöp, L; Koncz, P; Szanda, G

    2009-01-01

    Ca(2+) release from IP(3)-sensitive stores in the endoplasmic reticulum (ER) induced by Ca(2+)-mobilizing agonists generates high-Ca(2+) microdomains between ER vesicles and neighbouring mitochondria. Here we present a model that describes when such microdomains are required and when submicromolar [Ca(2+)] is sufficient for mitochondrial Ca(2+) uptake. Mitochondrial Ca(2+) uptake rate in angiotensin II-stimulated H295R adrenocortical cells correlates with the proximity between ER vesicles and the mitochondrion, reflecting the uptake promoting effect of high-Ca(2+) peri-mitochondrial microdomains. Silencing or inhibition of p38 mitogen-activated protein kinase (MAPK) or inhibition of the novel isoforms of protein kinase C enhances mitochondrial Ca(2+) uptake and abolishes the positive correlation between Ca(2+) uptake and ER-mitochondrion proximity. Inhibition of protein phosphatases attenuates mitochondrial Ca(2+) uptake and also abolishes its positive correlation with ER-mitochondrion proximity. We postulate that during IP(3)-induced Ca(2+) release, Ca(2+) uptake is confined to ER-close mitochondria, because of the simultaneous activation of the protein kinases. Attenuation of Ca(2+) uptake prevents Ca(2+) overload of mitochondria and thus protects the cell against apoptosis. On the other hand, all the mitochondria accumulate Ca(2+) at a non-inhibited rate during physiological Ca(2+) influx through the plasma membrane. Membrane potential is higher in ER-distant mitochondria, providing a bigger driving force for Ca(2+) uptake. Our model explains why comparable mitochondrial Ca(2+) signals are formed in response to K(+) and angiotensin II (equipotent in respect to global cytosolic Ca(2+) signals), although only the latter generates high-Ca(2+) microdomains.

  20. Kinetic Study on Desulfurization of Hot Metal Using CaO and CaC2

    NASA Astrophysics Data System (ADS)

    Lindström, David; Sichen, Du

    2015-02-01

    The kinetics and reaction mechanisms of hot metal desulfurization using CaO and CaC2 were studied in a well-controlled atmosphere with a lab scale high temperature furnace. The growths of CaS around CaO and CaC2 were measured and compared at 1773 K (1500 °C). The parabolic rate constant was evaluated to be 5 × 10-7 (cm s-1) on CaO particles, and 2.4 × 10-7 (cm s-1) on CaC2. The bigger parabolic constant of CaO resulted in more efficient desulfurization. Agglomerates and big CaO particles led to 2CaO·SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO·SiO2 formation was favoured by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles.

  1. Kinetic Study on Desulfurization of Hot Metal Using CaO and CaC2

    NASA Astrophysics Data System (ADS)

    Lindström, David; Sichen, Du

    2014-09-01

    The kinetics and reaction mechanisms of hot metal desulfurization using CaO and CaC2 were studied in a well-controlled atmosphere with a lab scale high temperature furnace. The growths of CaS around CaO and CaC2 were measured and compared at 1773 K (1500 °C). The parabolic rate constant was evaluated to be 5 × 10-7 (cm s-1) on CaO particles, and 2.4 × 10-7 (cm s-1) on CaC2. The bigger parabolic constant of CaO resulted in more efficient desulfurization. Agglomerates and big CaO particles led to 2CaO·SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO·SiO2 formation was favoured by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles.

  2. Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.)

    PubMed Central

    Taneja, Mehak; Tyagi, Shivi; Sharma, Shailesh; Upadhyay, Santosh Kumar

    2016-01-01

    The Ca2+/cation antiporters (CaCA) superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL, and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B, and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about 10 transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However, the role of individual gene needs to be established. The present study unfolded the opportunity for detail functional

  3. Ca isotope cycling in a forested ecosystem

    NASA Astrophysics Data System (ADS)

    Holmden, Chris; Bélanger, Nicolas

    2010-02-01

    Reports of large Ca isotope fractionations between trees and soils prompted this study of a Boreal forest ecosystem near La Ronge, Saskatchewan, to improve understanding of this phenomenon. The results on five tree species (black spruce, trembling aspen, white spruce, jack pine, balsam poplar) confirm that nutrient Ca uptake by plants favors the light isotopes, thus driving residual Ca in plant available soil pools towards enrichment in the heavy isotopes. Substantial within-tree fraction occurs in tissues formed along the transpiration stream, with low δ 44Ca values in fine roots (2 mm), intermediate values in stemwood, and high values in foliage. Separation factors between different plant tissues are similar between species, but the initial fractionation step in the tips of the fine roots is species specific, and/or sensitive to the local soil environment. Soil water δ 44Ca values appear to increase with depth to at least 35 cm below the top of the forest floor, which is close to the deepest level of fine roots. The heavy plant fractionated signature of Ca in the finely rooted upper soils filters downward where it is retained on ion exchange sites, leached into groundwater, and discharged into surface waters. The relationship between Ca uptake by tree fine roots and the pattern of δ 44Ca enrichment with soil depth was modeled for two Ca pools: the forest floor (litter) and the underlying (upper B) mineral soil. Six study plots were investigated along two hillside toposequences trending upwards from a first order stream. We used allometric equations describing the Ca distribution in boreal tree species to calculate weighted average δ 44Ca values for the stands in each plot and estimate Ca uptake rates. The δ 44Ca value of precipitation was measured, and soil weathering signatures deduced, by acid leaching of lower B mineral soils. Steady state equations were used to derive a set of model Ca fluxes and fractionation factors for each plot. The model reproduces

  4. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak.

    PubMed

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J; Eisner, David A; Venetucci, Luigi

    2016-02-01

    Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay. In the presence of β-adrenergic stimulation, RyR-mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase. Two forms of Ca leak have been studied, Ca-sensitising (induced by caffeine) and non-sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient. Only Ca-sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine. Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca-sensitising and non-sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca(2+)]i with fluo-3 in voltage-clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non-sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca(2+)]i , increased diastolic [Ca(2+)]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l(-1)) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the biphasic decay was replaced by slow

  5. Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo

    PubMed Central

    Graidist, Potchanapond; Yazawa, Michio; Tonganunt, Moltira; Nakatomi, Akiko; Lin, Curtis Chun-Jen; Chang, Jui-Yoa; Phongdara, Amornrat; Fujise, Ken

    2007-01-01

    Fortilin, a 172-amino-acid polypeptide present both in the cytosol and nucleus, possesses potent anti-apoptotic activity. Although fortilin is known to bind Ca2+, the biochemistry and biological significance of such an interaction remains unknown. In the present study we report that fortilin must bind Ca2+ in order to protect cells against Ca2+-dependent apoptosis. Using a standard Ca2+-overlay assay, we first validated that full-length fortilin binds Ca2+ and showed that the N-terminus (amino acids 1–72) is required for its Ca2+-binding. We then used flow dialysis and CD spectropolarimetry assays to demonstrate that fortilin binds Ca2+ with a dissociation constant (Kd) of approx. 10 μM and that the binding of fortilin to Ca2+ induces a significant change in the secondary structure of fortilin. In order to evaluate the impact of the binding of fortilin to Ca2+ in vivo, we measured intracellular Ca2+ levels upon thapsigargin challenge and found that the lack of fortilin in the cell results in the exaggerated elevation of intracellular Ca2+ in the cell. We then tested various point mutants of fortilin for their Ca2+ binding and identified fortilin(E58A/E60A) to be a double-point mutant of fortilin lacking the ability of Ca2+-binding. We then found that wild-type fortilin, but not fortilin(E58A/E60A), protected cells against thapsigargin-induced apoptosis, suggesting that the binding of fortilin to Ca2+ is required for fortilin to protect cells against Ca2+-dependent apoptosis. Together, these results suggest that fortilin is an intracellular Ca2+ scavenger, protecting cells against Ca2+-dependent apoptosis by binding and sequestering Ca2+ from the downstream Ca2+-dependent apoptotic pathways. PMID:17705784

  6. In Situ Ca2+ Titration in the Fluorometric Study of Intracellular Ca2+ Binding

    PubMed Central

    McMahon, Shane M.; Jackson, Meyer B.

    2014-01-01

    Imaging with Ca2+-sensitive fluorescent dye has provided a wealth of insight into the dynamics of cellular Ca2+ signaling. The spatiotemporal evolution of intracellular free Ca2+ observed in imaging experiments is shaped by binding and unbinding to cytoplasmic Ca2+ buffers, as well as the fluorescent indicator used for imaging. These factors must be taken into account in the interpretation of Ca2+ imaging data, and can be exploited to investigate endogenous Ca2+ buffer properties. Here we extended the use of Ca2+ fluorometry in the characterization of Ca2+ binding molecules within cells, building on a method of titration of intracellular Ca2+ binding sites in situ with measured amounts of Ca2+ entering through voltage-gated Ca2+ channels. We developed a systematic procedure for fitting fluorescence data acquired during a series of voltage steps to models with multiple Ca2+ binding sites. The method was tested on simulated data, and then applied to 2-photon fluorescence imaging data from rat posterior pituitary nerve terminals patch clamp-loaded with the Ca2+ indicator fluo-8. Focusing on data sets well described by a single endogenous Ca2+ buffer and dye, this method yielded estimates of the endogenous buffer concentration and Kd, the dye Kd, and the fraction of Ca2+ inaccessible cellular volume. The in situ Kd of fluo-8 thus obtained was indistinguishable from that measured in vitro. This method of calibrating Ca2+-sensitive fluorescent dyes in situ has significant advantages over previous methods. Our analysis of Ca2+ titration fluorometric data makes more effective use of the experimental data, and provides a rigorous treatment of multivariate errors and multiple Ca2+ binding species. This method offers a versatile approach to the study of endogenous Ca2+ binding molecules in their physiological milieu. PMID:25465896

  7. Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids.

    PubMed

    Ekinci, Derya; Karagoz, Lutfi; Ekinci, Deniz; Senturk, Murat; Supuran, Claudiu T

    2013-04-01

    A series of flavonoids, such as quercetin, catechin, apigenin, luteolin, morin, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA). The compounds were tested against four α-CA isozymes purified from human and bovine (hCA I, hCA II, bCA III, hCA IV) tissues. The four isozymes showed quite diverse inhibition profiles with these compounds. The flavonoids inhibited hCA I with K(I)-s in the range of 2.2-12.8 μM, hCA II with K(I)-s in the range of 0.74-6.2 μM, bCA III with K(I)-s in the range of 2.2-21.3 μM, and hCA IV with inhibition constants in the range of 4.4-15.7, with an esterase assay using 4-nitrophenyl acetate as substrate. Some simple phenols/sulfonamides were also investigated as standard inhibitors. The flavonoids incorporate phenol moieties which inhibit these CAs through a diverse, not yet determined inhibition mechanism, compared to classic inhibitors such as the sulfonamide/sulfamate ones.

  8. Ca(2+)-induced Ca2+ release amplifies the Ca2+ response elicited by inositol trisphosphate in macrophages.

    PubMed Central

    Randriamampita, C; Bismuth, G; Trautmann, A

    1991-01-01

    We have studied the rise in intracellular calcium concentration ([Ca2+]i) elicited in macrophages stimulated by platelet-activating factor (PAF) by using fura-2 measurements in individual cells. The [Ca2+]i increase begins with a massive and rapid release of Ca2+ from intracellular stores. We have examined the mechanism of this Ca2+ release, which has been generally assumed to be triggered by inositol trisphosphate (IP3). First, we confirmed that IP3 plays an important role in the initiation of the PAF-induced [Ca2+]i rise. The arguments are 1) an increase in IP3 concentration is observed after PAF stimulation; 2) injection of IP3 mimics the response to PAF; and 3) after introduction of heparin in the cell with a patch-clamp electrode, the PAF response is abolished. Second, we investigated the possibility of an involvement of Ca(2+)-induced Ca2+ release (CICR) in the development of the Ca2+ response. Ionomycin was found to elicit a massive Ca2+ response that was inhibited by ruthenium red or octanol and potentiated by caffeine. The PAF response was also inhibited by ruthenium red or octanol and potentiated by caffeine, suggesting that CICR plays a physiological role in these cells. Because our results indicate that in this preparation IP3 production is not sensitive to [Ca2+]i, CICR appears as a primary mechanism of positive feedback in the Ca2+ response. Taken together, the results suggest that the response to PAF involves an IP3-induced [Ca2+]i rise followed by CICR. PMID:1782213

  9. Intracellular Ca(2+) oscillations generated via the extracellular Ca(2+)-sensing receptor (CaSR) in response to extracellular Ca(2+) or L-phenylalanine: Impact of the highly conservative mutation Ser170Thr.

    PubMed

    Young, Steven H; Rey, Osvaldo; Rozengurt, Enrique

    2015-11-06

    The extracellular Ca(2+)-sensing receptor (CaSR) is an allosteric protein that responds to changes in the extracellular concentration of Ca(2+) ([Ca(2+)]e) and aromatic amino acids with the production of different patterns of oscillations in intracellular Ca(2+) concentration ([Ca(2+)]i). An increase in [Ca(2+)]e stimulates sinusoidal oscillations in [Ca(2+)]i whereas aromatic amino acid-induced CaR activation in the presence of a threshold [Ca(2+)]e promotes transient oscillations in [Ca(2+)]i. Here, we examined spontaneous and ligand-evoked [Ca(2+)]i oscillations in single HEK-293 cells transfected with the wild type CaSR or with a mutant CaSR in which Ser170 was converted to Thr (CaSRS170T). Our analysis demonstrates that cells expressing CaSRS170T display [Ca(2+)]i oscillations in the presence of low concentrations of extracellular Ca(2+) and respond to L-Phe with robust transient [Ca(2+)]i oscillations. Our results indicate that the S170T mutation induces a marked increase in CaSR sensitivity to [Ca(2+)]e and imply that the allosteric regulation of the CaSR by aromatic amino acids is not only mediated by an heterotropic positive effect on Ca(2+) binding cooperativity but, as biased agonists, aromatic amino acids stabilize a CaSR conformation that couples to a different signaling pathway leading to transient [Ca(2+)]i oscillations. Published by Elsevier Inc.

  10. Topographic specificity of functional connections from hippocampal CA3 to CA1

    NASA Astrophysics Data System (ADS)

    Brivanlou, Iman H.; Dantzker, Jami L. M.; Stevens, Charles F.; Callaway, Edward M.

    2004-02-01

    The hippocampus is a cortical region thought to play an important role in learning and memory. Most of our knowledge about the detailed organization of hippocampal circuitry responsible for these functions is derived from anatomical studies. These studies present an incomplete picture, however, because the functional character and importance of connections are often not revealed by anatomy. Here, we used a physiological method (photostimulation with caged glutamate) to probe the fine pattern of functional connectivity between the CA3 and CA1 subfields in the mouse hippocampal slice preparation. We recorded intracellularly from CA1 and CA3 pyramidal neurons while scanning with photostimulation across the entire CA3 subfield with high spatial resolution. Our results show that, at a given septotemporal level, nearby CA1 neurons receive synaptic inputs from neighboring CA3 neurons. Thus, the CA3 to CA1 mapping preserves neighbor relations.

  11. Role of Ca2+, membrane excitability, and Ca2+ stores in failing muscle contraction with aging.

    PubMed

    Payne, Anthony Michael; Jimenez-Moreno, Ramón; Wang, Zhong-Ming; Messi, María Laura; Delbono, Osvaldo

    2009-04-01

    Excitation-contraction (EC) coupling in a population of skeletal muscle fibers of aged mice becomes dependent on the presence of external Ca(2+) ions (Payne, A.M., Zheng, Z., Gonzalez, E., Wang, Z.M., Messi, M.L., Delbono, O., 2004b. External Ca(2+)-dependent excitation - contraction coupling in a population of aging mouse skeletal muscle fibers. J. Physiol. 560, 137-155.). However, the mechanism(s) underlying this process remain unknown. In this work, we examined the role of (1) extracellular Ca(2+); (2) voltage-induced influx of external Ca(2+) ions; (3) sarcoplasmic reticulum (SR) Ca(2+) depletion during repeated contractions; (4) store-operated Ca(2+) entry (SOCE); (5) SR ultrastructure; (6) SR subdomain localization of the ryanodine receptor; and (7) sarcolemmal excitability in muscle force decline with aging. These experiments show that external Ca(2+), but not Ca(2+) influx, is needed to maintain force upon repetitive fiber electrical stimulation. Decline in fiber force is associated with depressed SR Ca(2+) release. SR Ca(2+) depletion, SOCE, and the putative segregated Ca(2+) release store do not play a significant role in external Ca(2+)-dependent contraction. More importantly, a significant number of action potentials fail in senescent mouse muscle fibers subjected to a stimulation frequency. These results indicate that failure to generate action potentials accounts for decreased intracellular Ca(2+) mobilization and tetanic force in aging muscle exposed to a Ca(2+)-free medium.

  12. TMCO1 Is an ER Ca(2+) Load-Activated Ca(2+) Channel.

    PubMed

    Wang, Qiao-Chu; Zheng, Qiaoxia; Tan, Haiyan; Zhang, Bing; Li, Xiaoling; Yang, Yuxiu; Yu, Jie; Liu, Yang; Chai, Hao; Wang, Xi; Sun, Zhongshuai; Wang, Jiu-Qiang; Zhu, Shu; Wang, Fengli; Yang, Maojun; Guo, Caixia; Wang, Heng; Zheng, Qingyin; Li, Yang; Chen, Quan; Zhou, Aimin; Tang, Tie-Shan

    2016-06-02

    Maintaining homeostasis of Ca(2+) stores in the endoplasmic reticulum (ER) is crucial for proper Ca(2+) signaling and key cellular functions. The Ca(2+)-release-activated Ca(2+) (CRAC) channel is responsible for Ca(2+) influx and refilling after store depletion, but how cells cope with excess Ca(2+) when ER stores are overloaded is unclear. We show that TMCO1 is an ER transmembrane protein that actively prevents Ca(2+) stores from overfilling, acting as what we term a "Ca(2+) load-activated Ca(2+) channel" or "CLAC" channel. TMCO1 undergoes reversible homotetramerization in response to ER Ca(2+) overloading and disassembly upon Ca(2+) depletion and forms a Ca(2+)-selective ion channel on giant liposomes. TMCO1 knockout mice reproduce the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, a developmental disorder linked to TMCO1 dysfunction, and exhibit severe mishandling of ER Ca(2+) in cells. Our findings indicate that TMCO1 provides a protective mechanism to prevent overfilling of ER stores with Ca(2+) ions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Impact of seawater [Ca2+] on the calcification and calciteMg / Ca of Amphistegina lessonii

    NASA Astrophysics Data System (ADS)

    Mewes, A.; Langer, G.; Thoms, S.; Nehrke, G.; Reichart, G.-J.; de Nooijer, L. J.; Bijma, J.

    2015-04-01

    Mg / Ca ratios in foraminiferal tests are routinely used as paleotemperature proxies, but on long timescales, they also hold the potential to reconstruct past seawater Mg / Ca. The impact of both temperature and seawater Mg / Ca on Mg incorporation in Foraminifera has been quantified by a number of studies. The underlying mechanism responsible for Mg incorporation in foraminiferal calcite and its sensitivity to environmental conditions, however, has not been fully identified. A recently published biomineralization model (Nehrke et al., 2013) proposes a combination of transmembrane transport and seawater leakage or vacuolization to link calcite Mg / Ca to seawater Mg / Ca and explains inter-species variability in Mg / Ca ratios. To test the assumptions of this model, we conducted a culture study in which seawater Mg / Ca was manipulated by varying [Ca2+] and keeping [Mg2+] constant. Foraminiferal growth rates, test thickness and calcite Mg / Ca of newly formed chambers were analyzed. Results showed optimum growth rates and test thickness at Mg / Ca closest to that of ambient seawater. Calcite Mg / Ca is positively correlated to seawater Mg / Ca, indicating that it is not absolute seawater [Ca2+] and [Mg2+] but their ratio that controls Mg / Ca in tests. These results demonstrate that the calcification process cannot be based only on seawater vacuolization, supporting the mixing model proposed by Nehrke et al. (2013). Here, however, we suggest transmembrane transport fractionation that is not as strong as suggested by Nehrke et al. (2013).

  14. Impact of seawater Ca2+ on the calcification and calcite Mg/Ca of Amphistegina lessonii

    NASA Astrophysics Data System (ADS)

    Mewes, A.; Langer, G.; Thoms, S.; Nehrke, G.; Reichart, G.-J.; de Nooijer, L. J.; Bijma, J.

    2014-12-01

    Mg/Ca ratios in foraminiferal tests are routinely used as paleo temperature proxy, but on long timescales, also hold the potential to reconstruct past seawater Mg/Ca. Impact of both temperature and seawater Mg/Ca on Mg incorporation in foraminifera have been quantified by a number of studies. The underlying mechanism responsible for Mg incorporation in foraminiferal calcite and its sensitivity to environmental conditions, however, is not fully identified. A recently published biomineralization model (Nehrke et al., 2013) proposes a combination of transmembrane transport and seawater leakage or vacuolization to link calcite Mg/Ca to seawater Mg/Ca and explains inter-species variability in Mg/Ca ratios. To test the assumptions of this model, we conducted a culture study in which seawater Mg/Ca was manipulated by varying [Ca2+] and keeping [Mg2+] constant. Foraminiferal growth rates, test thickness and calcite Mg/Ca of newly formed chambers were analyzed. Results showed optimum growth rates and test thickness at Mg/Ca closest to that of ambient seawater. Calcite Mg/Ca is positively correlated to seawater Mg/Ca, indicating that not absolute seawater [Ca2+] and [Mg2+], but the telative ratio controls Mg/Ca in tests. These results demonstrate that the calcification process cannot be based only on seawater vacuolization, supporting the mixing model proposed by Nehrke et al. (2013). Here we, however, suggest a transmembrane transport fractionation that is not as strong as suggested by Nehrke et al. (2013).

  15. Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+.

    PubMed

    Mori, Masayuki X; Vander Kooi, Craig W; Leahy, Daniel J; Yue, David T

    2008-04-01

    Calmodulin (CaM) regulation of Ca(2+) channels is central to Ca(2+) signaling. Ca(V)1 versus Ca(V)2 classes of these channels exhibit divergent forms of regulation, potentially relating to customized CaM/IQ interactions among different channels. Here we report the crystal structures for the Ca(2+)/CaM IQ domains of both Ca(V)2.1 and Ca(V)2.3 channels. These highly similar structures emphasize that major CaM contacts with the IQ domain extend well upstream of traditional consensus residues. Surprisingly, upstream mutations strongly diminished Ca(V)2.1 regulation, whereas downstream perturbations had limited effects. Furthermore, our Ca(V)2 structures closely resemble published Ca(2+)/CaM-Ca(V)1.2 IQ structures, arguing against Ca(V)1/2 regulatory differences based solely on contrasting CaM/IQ conformations. Instead, alanine scanning of the Ca(V)2.1 IQ domain, combined with structure-based molecular simulation of corresponding CaM/IQ binding energy perturbations, suggests that the C lobe of CaM partially dislodges from the IQ element during channel regulation, allowing exposed IQ residues to trigger regulation via isoform-specific interactions with alternative channel regions.

  16. Differential behavioral state-dependence in the burst properties of CA3 and CA1 neurons.

    PubMed

    Tropp Sneider, J; Chrobak, J J; Quirk, M C; Oler, J A; Markus, E J

    2006-09-15

    Brief bursts of fast high-frequency action potentials are a signature characteristic of CA3 and CA1 pyramidal neurons. Understanding the factors determining burst and single spiking is potentially significant for sensory representation, synaptic plasticity and epileptogenesis. A variety of models suggest distinct functional roles for burst discharge, and for specific characteristics of the burst in neural coding. However, little in vivo data demonstrate how often and under what conditions CA3 and CA1 actually exhibit burst and single spike discharges. The present study examined burst discharge and single spiking of CA3 and CA1 neurons across distinct behavioral states (awake-immobility and maze-running) in rats. In both CA3 and CA1 spike bursts accounted for less than 20% of all spike events. CA3 neurons exhibited more spikes per burst, greater spike frequency, larger amplitude spikes and more spike amplitude attenuation than CA1 neurons. A major finding of the present study is that the propensity of CA1 neurons to burst was affected by behavioral state, while the propensity of CA3 to burst was not. CA1 neurons exhibited fewer bursts during maze running compared with awake-immobility. In contrast, there were no differences in burst discharge of CA3 neurons. Neurons in both subregions exhibited smaller spike amplitude, fewer spikes per burst, longer inter-spike intervals and greater spike amplitude attenuation within a burst during awake-immobility compared with maze running. These findings demonstrate that the CA1 network is under greater behavioral state-dependent regulation than CA3. The present findings should inform both theoretic and computational models of CA3 and CA1 function.

  17. Role of Na+/Ca2+ exchanger in Ca2+ homeostasis in rat suprachiasmatic nucleus neurons

    PubMed Central

    Wang, Yi-Chi; Chen, Ya-Shuan; Cheng, Ruo-Ciao

    2015-01-01

    Intracellular Ca2+ is critical to the central clock of the suprachiasmatic nucleus (SCN). However, the role of Na+/Ca2+ exchanger (NCX) in intracellular Ca2+ concentration ([Ca2+]i) homeostasis in the SCN is unknown. Here we show that NCX is an important mechanism for somatic Ca2+ clearance in SCN neurons. In control conditions Na+-free solution lowered [Ca2+]i by inhibiting TTX-sensitive as well as nimodipine-sensitive Ca2+ influx. With use of the Na+ ionophore monensin to raise intracellular Na+ concentration ([Na+]i), Na+-free solution provoked rapid Ca2+ uptake via reverse NCX. The peak amplitude of 0 Na+-induced [Ca2+]i increase was larger during the day than at night, with no difference between dorsal and ventral SCN neurons. Ca2+ extrusion via forward NCX was studied by determining the effect of Na+ removal on Ca2+ clearance after high-K+-induced Ca2+ loads. The clearance of Ca2+ proceeded with two exponential decay phases, with the fast decay having total signal amplitude of ∼85% and a time constant of ∼7 s. Na+-free solution slowed the fast decay rate threefold, whereas mitochondrial protonophore prolonged mostly the slow decay. In contrast, blockade of plasmalemmal and sarco(endo)plasmic reticulum Ca2+ pumps had little effect on the kinetics of Ca2+ clearance. RT-PCR indicated the expression of NCX1 and NCX2 mRNAs. Immunohistochemical staining showed the presence of NCX1 immunoreactivity in the whole SCN but restricted distribution of NCX2 immunoreactivity in the ventrolateral SCN. Together our results demonstrate an important role of NCX, most likely NCX1, as well as mitochondrial Ca2+ uptake in clearing somatic Ca2+ after depolarization-induced Ca2+ influx in SCN neurons. PMID:25568156

  18. Dissection of local Ca(2+) signals inside cytosol by ER-targeted Ca(2+) indicator.

    PubMed

    Niwa, Fumihiro; Sakuragi, Shigeo; Kobayashi, Ayana; Takagi, Shin; Oda, Yoichi; Bannai, Hiroko; Mikoshiba, Katsuhiko

    2016-10-07

    Calcium (Ca(2+)) is a versatile intracellular second messenger that operates in various signaling pathways leading to multiple biological outputs. The diversity of spatiotemporal patterns of Ca(2+) signals, generated by the coordination of Ca(2+) influx from the extracellular space and Ca(2+) release from the intracellular Ca(2+) store the endoplasmic reticulum (ER), is considered to underlie the diversity of biological outputs caused by a single signaling molecule. However, such Ca(2+) signaling diversity has not been well described because of technical limitations. Here, we describe a new method to report Ca(2+) signals at subcellular resolution. We report that OER-GCaMP6f, a genetically encoded Ca(2+) indicator (GECI) targeted to the outer ER membrane, can monitor Ca(2+) release from the ER at higher spatiotemporal resolution than conventional GCaMP6f. OER-GCaMP6f was used for in vivo Ca(2+) imaging of C. elegans. We also found that the spontaneous Ca(2+) elevation in cultured astrocytes reported by OER-GCaMP6f showed a distinct spatiotemporal pattern from that monitored by plasma membrane-targeted GCaMP6f (Lck-GCaMP6f); less frequent Ca(2+) signal was detected by OER-GCaMP6f, in spite of the fact that Ca(2+) release from the ER plays important roles in astrocytes. These findings suggest that targeting of GECIs to the ER outer membrane enables sensitive detection of Ca(2+) release from the ER at subcellular resolution, avoiding the diffusion of GECI and Ca(2+). Our results indicate that Ca(2+) imaging with OER-GCaMP6f in combination with Lck-GCaMP6f can contribute to describing the diversity of Ca(2+) signals, by enabling dissection of Ca(2+) signals at subcellular resolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Ca isotope fractionation on the moon

    NASA Technical Reports Server (NTRS)

    Russell, W. A.; Papanastassiou, D. A.; Tombrello, T. A.; Epstein, S.

    1977-01-01

    Ca has been measured in a lunar soil in order to establish the presence of isotopically mass-fractionated components. Ca was extracted by a series of water leaches after the soils were 'activated' by brief exposures to fluorine gas. The O2 obtained by this fluorination is found to have delta (O-18) of +21 per mil and to be, therefore, significantly mass-fractionated. Ca obtained in the leaches was analyzed using the double-spike technique. Very small Ca isotope fractionation is found in the leaches of this soil of up to 1 per mil per mass unit difference. The small Ca effects are in marked contrast to the measured delta (O-18) for the same sample and to large effects observed in many soils for oxygen, silicon, sulfur, and potassium. The data on Ca provide stringent constraints on models which attempt to explain the isotope mass-fractionation effects in lunar soils.

  20. Ca2+ uptake by the endoplasmic reticulum Ca2+-ATPase in rat microvascular endothelial cells.

    PubMed Central

    Moccia, Francesco; Berra-Romani, Roberto; Baruffi, Silvana; Spaggiari, Santina; Signorelli, Silvia; Castelli, Loretta; Magistretti, Jacopo; Taglietti, Vanni; Tanzi, Franco

    2002-01-01

    In non-excitable cells, many agonists increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing an inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from the intracellular stores. Ca(2+) influx from the extracellular medium may then sustain the Ca(2+) signal. [Ca(2+)](i) recovers its resting level as a consequence of Ca(2+)-removing mechanisms, i.e. plasma-membrane Ca(2+)-ATPase (PMCA) pump, Na(+)/Ca(2+) exchanger (NCX) and sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump. In a study performed in pancreatic acinar cells, evidence has been provided suggesting that, during the decay phase of the agonist-evoked Ca(2+) transients, the Ca(2+) concentration within the intracellular stores remains essentially constant [Mogami, Tepikin and Petersen (1998) EMBO J. 17, 435-442]. It was therefore hypothesized that, in such a situation, intracellular Ca(2+) is not only picked up by the SERCA pump, but is also newly released through IP(3)-sensitive Ca(2+) channels, with the balance between these two processes being approximately null. The main aim of the present work was to test this hypothesis by a different experimental approach. Using cardiac microvascular endothelial cells, we found that inhibition of the SERCA pump has no effect on the time course of agonist-evoked Ca(2+) transients. This result was not due to a low capacity of the SERCA pump since, after agonist removal, this pump proved to be very powerful in clearing the excess of intracellular Ca(2+). We showed further that: (i) in order to avoid a rapid removal of Ca(2+) by the SERCA pump, continuous IP(3) production appears to be required throughout all of the decay phase of the Ca(2+) transient; and (ii) Ca(2+) picked up by the SERCA pump can be fully and immediately released by agonist application. All these results support the model of Mogami, Tepikin and Petersen [(1998) EMBO J. 17, 435-442]. Since the SERCA pump did not appear to be involved in shaping the decay phase of the

  1. Large Ca isotope effect in the CaC{sub 6} superconductor.

    SciTech Connect

    Hinks, D. G.; Rosenmann, D.; Claus, H.; Bailey, M. S.; Jorgensen, J. D.; Materials Science Division

    2007-01-01

    We have measured the Ca isotope effect coefficient, {alpha}(Ca), in the newly discovered superconductor CaC{sub 6} and find a value of 0.53(2). This result shows that the superconductivity is dominated by coupling of the electrons by Ca phonon modes. The C phonons contribute very little, assuming that this material is a conventional electron-phonon coupled superconductor. Thus, in contrast to another layered material MgB{sub 2}, where high-energy phonons in the B layers are responsible for the superconductivity, in layered CaC{sub 6} the phonons responsible for superconductivity are primarily low-energy modes of the intercalated Ca.

  2. Ca2+ Channels on the Move†

    PubMed Central

    2009-01-01

    The versatility of Ca2+ as an intracellular messenger derives largely from the spatial organization of cytosolic Ca2+ signals, most of which are generated by regulated openings of Ca2+-permeable channels. Most Ca2+ channels are expressed in the plasma membrane (PM). Others, including the almost ubiquitous inositol 1,4,5-trisphosphate receptors (IP3R) and their relatives, the ryanodine receptors (RyR), are predominantly expressed in membranes of the sarcoplasmic or endoplasmic reticulum (ER). Targeting of these channels to appropriate destinations underpins their ability to generate spatially organized Ca2+ signals. All Ca2+ channels begin life in the cytosol, and the vast majority are then functionally assembled in the ER, where they may either remain or be dispatched to other membranes. Here, by means of selective examples, we review two issues related to this trafficking of Ca2+ channels via the ER. How do cells avoid wayward activity of Ca2+ channels in transit as they pass from the ER via other membranes to their final destination? How and why do some cells express small numbers of the archetypal intracellular Ca2+ channels, IP3R and RyR, in the PM? PMID:19928968

  3. The initial 41Ca/40Ca ratios in two type A Ca-Al-rich inclusions: Implications for the origin of short-lived 41Ca

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chang

    2017-03-01

    This paper reports new 41Ca-41K isotopic data for two Type A CAIs, NWA 3118 #1Nb (Compact Type A) and Vigarano 3138 F8 (Fluffy Type A), from reduced CV3 chondrites. The NWA CAI is found to have carried live 41Ca at the level of (4.6 ± 1.9) ×10-9 , consistent with the proposed Solar System initial 41Ca /40Ca = 4.2 ×10-9 by Liu et al. (2012a). On the other hand, the Vigarano CAI does not have resolvable radiogenic 41K excesses that can be attributed to the decay of 41Ca. Combined with the 26Al data that have been reported for these two CAIs, we infer that the 41Ca distribution was not homogeneous when 26Al was widespread at the canonical level of 26Al /27Al = 5.2 ×10-5 . Such a 41Ca heterogeneity can be understood under two astrophysical contexts: in situ charged particle irradiation by the protoSun in the solar nebula that had inherited some baseline 10Be abundance from the molecular cloud, and Solar System formation in a molecular cloud enriched in 26Al and 41Ca contaminated by massive star winds. That said, more high quality 41Ca data are still needed to better understand the origin of this radionuclide.

  4. The State of the Ca Isotope Proxy

    NASA Astrophysics Data System (ADS)

    Fantle, M. S.; Tipper, E.

    2012-12-01

    At the Earth's surface, Ca is a critical element at a variety of scales. It is both a biological nutrient and water-soluble, and is a major constituent of the dominant mineral sink for carbon in the ocean. Additionally, the 5‰ range in the stable isotope ratios of Ca (44Ca/40Ca) suggests that Ca isotopes may be a promising tracer of the Ca cycle, specifically the oceanic budget over time. Despite ~15 years of concentrated effort on high-precision Ca isotope measurements, the utility of Ca isotopes as a proxy remains far from clear. A variety of basic questions have yet to be resolved, both in the marine and terrestrial realms. To provide perspective, the current work presents a data compilation of over 60 published Ca isotope studies. The compilation includes δ44/40CaSRM-915a measurements of the modern Ca cycle, including rivers and groundwater, dust, soils and soil pore fluids, vegetation, rainwater, silicate minerals/rocks, and marine carbonates. The focus of this work is to quantify the leverage of inputs to change the isotopic composition of the ocean. One of the tenets of the weathering proxy is that there is little isotopic leverage to change seawater. If this assumption is valid, then significant variations in the isotopic composition of seawater can be explained to some extent by mass flux imbalances between Ca inputs and outputs, requiring the Ca cycle to be out of steady state for significant periods of time. Despite evidence that Ca fractionates in the modern system during continental cycling, the δ44Ca range of riverine inputs to the ocean is very narrow (especially when compared to the spread in marine carbonates). Thus, there appears to be minimal isotopic leverage amongst inputs to shift the ocean δ44Ca. In order to develop our understanding of the Ca isotope proxy, we identify two probable mechanisms for shifting ocean δ44Ca and evaluate them using a series of simple box models. In the terrestrial realm, plants exhibit a wide range of

  5. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals.

    PubMed

    Ohkura, Masamichi; Sasaki, Takuya; Sadakari, Junko; Gengyo-Ando, Keiko; Kagawa-Nagamura, Yuko; Kobayashi, Chiaki; Ikegaya, Yuji; Nakai, Junichi

    2012-01-01

    Imaging the activities of individual neurons with genetically encoded Ca(2+) indicators (GECIs) is a promising method for understanding neuronal network functions. Here, we report GECIs with improved neuronal Ca(2+) signal detectability, termed G-CaMP6 and G-CaMP8. Compared to a series of existing G-CaMPs, G-CaMP6 showed fairly high sensitivity and rapid kinetics, both of which are suitable properties for detecting subtle and fast neuronal activities. G-CaMP8 showed a greater signal (F(max)/F(min) = 38) than G-CaMP6 and demonstrated kinetics similar to those of G-CaMP6. Both GECIs could detect individual spikes from pyramidal neurons of cultured hippocampal slices or acute cortical slices with 100% detection rates, demonstrating their superior performance to existing GECIs. Because G-CaMP6 showed a higher sensitivity and brighter baseline fluorescence than G-CaMP8 in a cellular environment, we applied G-CaMP6 for Ca(2+) imaging of dendritic spines, the putative postsynaptic sites. By expressing a G-CaMP6-actin fusion protein for the spines in hippocampal CA3 pyramidal neurons and electrically stimulating the granule cells of the dentate gyrus, which innervate CA3 pyramidal neurons, we found that sub-threshold stimulation triggered small Ca(2+) responses in a limited number of spines with a low response rate in active spines, whereas supra-threshold stimulation triggered large fluorescence responses in virtually all of the spines with a 100% activity rate.

  6. Genetically Encoded Green Fluorescent Ca2+ Indicators with Improved Detectability for Neuronal Ca2+ Signals

    PubMed Central

    Sadakari, Junko; Gengyo-Ando, Keiko; Kagawa-Nagamura, Yuko; Kobayashi, Chiaki; Ikegaya, Yuji; Nakai, Junichi

    2012-01-01

    Imaging the activities of individual neurons with genetically encoded Ca2+ indicators (GECIs) is a promising method for understanding neuronal network functions. Here, we report GECIs with improved neuronal Ca2+ signal detectability, termed G-CaMP6 and G-CaMP8. Compared to a series of existing G-CaMPs, G-CaMP6 showed fairly high sensitivity and rapid kinetics, both of which are suitable properties for detecting subtle and fast neuronal activities. G-CaMP8 showed a greater signal (Fmax/Fmin = 38) than G-CaMP6 and demonstrated kinetics similar to those of G-CaMP6. Both GECIs could detect individual spikes from pyramidal neurons of cultured hippocampal slices or acute cortical slices with 100% detection rates, demonstrating their superior performance to existing GECIs. Because G-CaMP6 showed a higher sensitivity and brighter baseline fluorescence than G-CaMP8 in a cellular environment, we applied G-CaMP6 for Ca2+ imaging of dendritic spines, the putative postsynaptic sites. By expressing a G-CaMP6-actin fusion protein for the spines in hippocampal CA3 pyramidal neurons and electrically stimulating the granule cells of the dentate gyrus, which innervate CA3 pyramidal neurons, we found that sub-threshold stimulation triggered small Ca2+ responses in a limited number of spines with a low response rate in active spines, whereas supra-threshold stimulation triggered large fluorescence responses in virtually all of the spines with a 100% activity rate. PMID:23240011

  7. Supralinear dendritic Ca2+ signalling in young developing CA1 pyramidal cells

    PubMed Central

    Pohle, Jörg; Bischofberger, Josef

    2014-01-01

    Although Ca2+ is critically important in activity-dependent neuronal development, not much is known about the regulation of dendritic Ca2+ signals in developing neurons. Here, we used ratiometric Ca2+ imaging to investigate dendritic Ca2+ signalling in rat hippocampal pyramidal cells during the first 1–4 weeks of postnatal development. We show that active dendritic backpropagation of Nav channel-dependent action potentials (APs) evoked already large dendritic Ca2+ transients in animals aged 1 week with amplitudes of ∼150 nm, similar to the amplitudes of ∼160 nM seen in animals aged 4 weeks. Although the AP-evoked dendritic Ca2+ load increased about four times during the first 4 weeks, the peak amplitude of free Ca2+ concentration was balanced by a four-fold increase in Ca2+ buffer capacity κs (∼70 vs. ∼280). Furthermore, Ca2+ extrusion rates increased with postnatal development, leading to a slower decay time course (∼0.2 s vs. ∼0.1 s) and more effective temporal summation of Ca2+ signals in young cells. Most importantly, during prolonged theta-burst stimulation dendritic Ca2+ signals were up to three times larger in cells at 1 week than at 4 weeks of age and much larger than predicted by linear summation, which is attributable to an activity-dependent slow-down of Ca2+ extrusion. As Ca2+ influx is four-fold smaller in young cells, the larger Ca2+ signals are generated using four times less ATP consumption. Taken together, the data suggest that active backpropagations regulate dendritic Ca2+ signals during early postnatal development. Remarkably, during prolonged AP firing, Ca2+ signals are several times larger in young than in mature cells as a result of activity-dependent regulation of Ca2+ extrusion rates. PMID:25239458

  8. CaV1.1: The atypical prototypical voltage-gated Ca2+ channel

    PubMed Central

    Bannister, Roger A.; Beam, Kurt G.

    2012-01-01

    CaV1.1 is the prototype for the other nine known CaV channel isoforms, yet it has functional properties that make it truly atypical of this group. Specifically, CaV1.1 is expressed solely in skeletal muscle where it serves multiple purposes; it is the voltage sensor for excitation-contraction (EC) coupling and it is an L-type Ca2+ channel which contributes to a form of activity-dependent Ca2+ entry that has been termed Excitation-Coupled Ca2+ Entry (ECCE). The ability of CaV1.1 to serve as voltage-sensor for EC coupling appears to be unique amongst CaV channels, whereas the physiological role of its more conventional function as a Ca2+ channel has been a matter of uncertainty for nearly 50 years. In this chapter, we discuss how CaV1.1 supports EC coupling, the possible relevance of Ca2+ entry through CaV1.1 and how alterations of CaV1.1 function can have pathophysiological consequences. PMID:22982493

  9. Conservation of Ca2+/Calmodulin Regulation across Na and Ca2+ channels

    PubMed Central

    Ben-Johny, Manu; Yang, Philemon S.; Niu, Jacqueline; Yang, Wanjun; Joshi-Mukherjee, Rosy; Yue, David T.

    2014-01-01

    SUMMARY Voltage-gated Na and Ca2+channels comprise distinct ion-channel superfamilies, yet the carboxy tails of these channels exhibit high homology hinting at a long-shared and purposeful module. For different Ca2+ channels, carboxyl-tail inter actions with calmodulin do elaborate robust and similar forms of Ca2+ regulation. However, Na channels have only shown subtler Ca2+modulation that differs among reports, challenging attempts at unified understanding. Here, by rapid Ca2+photoreleaseon to Na channels, we reset this view of Na channel regulation. For cardiac muscle channels (NaV1.5), reported effects from which most mechanistic proposals derive, we observe no Ca2+modulation. Conversely, for skeletal-muscle channels (NaV1.4), we uncover fast Ca2+ regulation eerily similar to that of Ca2+ channels. Channel opathic myotonia mutations halve NaV1.4 Ca2+ regulation, and transplanting the NaV1.4 carboxy tail onto Ca2+ channels recapitulates Ca2+ regulation. Thus we argue for the persistence and physiological relevance of an ancient Ca2+ regulatory module across Na and Ca2+ channels. PMID:24949975

  10. Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities

    PubMed Central

    Sugita, Shuzo; Shin, Ok-Ho; Han, Weiping; Lao, Ye; Südhof, Thomas C.

    2002-01-01

    Synaptotagmins constitute a large family of membrane proteins implicated in Ca2+-triggered exocytosis. Structurally similar synaptotagmins are differentially localized either to secretory vesicles or to plasma membranes, suggesting distinct functions. Using measurements of the Ca2+ affinities of synaptotagmin C2-domains in a complex with phospholipids, we now show that different synaptotagmins exhibit distinct Ca2+ affinities, with plasma membrane synaptotagmins binding Ca2+ with a 5- to 10-fold higher affinity than vesicular synaptotagmins. To test whether these differences in Ca2+ affinities are functionally important, we examined the effects of synaptotagmin C2-domains on Ca2+-triggered exocytosis in permeabilized PC12 cells. A precise correlation was observed between the apparent Ca2+ affinities of synaptotagmins in the presence of phospholipids and their action in PC12 cell exocytosis. This was extended to PC12 cell exocytosis triggered by Sr2+, which was also selectively affected by high-affinity C2-domains of synaptotagmins. Together, our results suggest that Ca2+ triggering of exocytosis involves tandem Ca2+ sensors provided by distinct plasma membrane and vesicular synaptotagmins. According to this hypothesis, plasma membrane synaptotagmins represent high-affinity Ca2+ sensors involved in slow Ca2+-dependent exocytosis, whereas vesicular synaptotagmins function as low-affinity Ca2+ sensors specialized for fast Ca2+-dependent exocytosis. PMID:11823420

  11. Extrapolating microdomain Ca(2+) dynamics using BK channels as a Ca(2+) sensor.

    PubMed

    Hou, Panpan; Xiao, Feng; Liu, Haowen; Yuchi, Ming; Zhang, Guohui; Wu, Ying; Wang, Wei; Zeng, Wenping; Ding, Mingyue; Cui, Jianming; Wu, Zhengxing; Wang, Lu-Yang; Ding, Jiuping

    2016-01-18

    Ca(2+) ions play crucial roles in mediating physiological and pathophysiological processes, yet Ca(2+) dynamics local to the Ca(2+) source, either from influx via calcium permeable ion channels on plasmic membrane or release from internal Ca(2+) stores, is difficult to delineate. Large-conductance calcium-activated K(+) (BK-type) channels, abundantly distribute in excitable cells and often localize to the proximity of voltage-gated Ca(2+) channels (VGCCs), spatially enabling the coupling of the intracellular Ca(2+) signal to the channel gating to regulate membrane excitability and spike firing patterns. Here we utilized the sensitivity and dynamic range of BK to explore non-uniform Ca(2+) local transients in the microdomain of VGCCs. Accordingly, we applied flash photolysis of caged Ca(2+) to activate BK channels and determine their intrinsic sensitivity to Ca(2+). We found that uncaging Ca(2+) activated biphasic BK currents with fast and slow components (time constants being τf ≈ 0.2 ms and τs ≈ 10 ms), which can be accounted for by biphasic Ca(2+) transients following light photolysis. We estimated the Ca(2+)-binding rate constant kb (≈1.8 × 10(8)  M(-1) s(-1)) for mSlo1 and further developed a model in which BK channels act as a calcium sensor capable of quantitatively predicting local microdomain Ca(2+) transients in the vicinity of VGCCs during action potentials.

  12. Neural Signals Related to Outcome Evaluation Are Stronger in CA1 than CA3.

    PubMed

    Lee, Sung-Hyun; Huh, Namjung; Lee, Jong Won; Ghim, Jeong-Wook; Lee, Inah; Jung, Min W

    2017-01-01

    We have shown previously that CA1 conveys significant neural signals necessary to update value of the chosen target, namely chosen value and reward signals. To better understand hippocampal neural processes related to valuation, we compared chosen value- and reward-related neural activity between the CA3 and CA1 regions. Single units were recorded with tetrodes from the dorsal CA3 and CA1 regions of rats performing a dynamic foraging task, and chosen value- and reward-related neural activity was estimated using a reinforcement learning model and multiple regression analyses. Neural signals for chosen value and reward converged in both CA3 and CA1 when a trial outcome was revealed. However, these neural signals were stronger in CA1 than CA3. Consequently, neural signals for reward prediction error and updated chosen value were stronger in CA1 than CA3. Together with our previous finding that CA1 conveys stronger value signals than the subiculum, our results raise the possibility that CA1 might play a particularly important role among hippocampal subregions in evaluating experienced events.

  13. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    PubMed Central

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the

  14. Time Cells in Hippocampal Area CA3

    PubMed Central

    Salz, Daniel M.; Tiganj, Zoran; Khasnabish, Srijesa; Kohley, Annalyse; Sheehan, Daniel; Howard, Marc W.

    2016-01-01

    Studies on time cells in the hippocampus have so far focused on area CA1 in animals performing memory tasks. Some studies have suggested that temporal processing within the hippocampus may be exclusive to CA1 and CA2, but not CA3, and may occur only under strong demands for memory. Here we examined the temporal and spatial coding properties of CA3 and CA1 neurons in rats performing a maze task that demanded working memory and a control task with no explicit working memory demand. In the memory demanding task, CA3 cells exhibited robust temporal modulation similar to the pattern of time cell activity in CA1, and the same populations of cells also exhibited typical place coding patterns in the same task. Furthermore, the temporal and spatial coding patterns of CA1 and CA3 were equivalently robust when animals performed a simplified version of the task that made no demands on working memory. However, time and place coding did differ in that the resolution of temporal coding decreased over time within the delay interval, whereas the resolution of place coding was not systematically affected by distance along the track. These findings support the view that CA1 and CA3 both participate in encoding the temporal and spatial organization of ongoing experience. SIGNIFICANCE STATEMENT Hippocampal “time cells” that fire at specific moments in a temporally structured memory task have so far been observed only in area CA1, and some studies have suggested that temporal coding within the hippocampus is exclusive to CA1. Here we describe time cells also in CA3, and time cells in both areas are observed even without working memory demands, similar to place cells in these areas. However, unlike equivalent spatial coding along a path, temporal coding is nonlinear, with greater temporal resolution earlier than later in temporally structured experiences. These observations reveal both similarities and differences in temporal and spatial coding within the hippocampus of importance to

  15. Enhanced late INa induces proarrhythmogenic SR Ca leak in a CaMKII-dependent manner.

    PubMed

    Sag, Can M; Mallwitz, Anika; Wagner, Stefan; Hartmann, Nico; Schotola, Hanna; Fischer, Thomas H; Ungeheuer, Nele; Herting, Jonas; Shah, Ajay M; Maier, Lars S; Sossalla, Samuel; Unsöld, Bernhard

    2014-11-01

    Enhanced late Na current (late INa) induces Na-dependent Ca overload as well as proarrhythmogenic events on the cellular level that include spatio-temporally uncoordinated diastolic Ca release from the sarcoplasmic reticulum (SR) and delayed afterdepolarizations (DADs). The Ca/calmodulin-dependent protein kinase II (CaMKII) gets activated upon increases in [Ca]i and mediates diastolic SR Ca leak as well as DADs. We hypothesized that increased late INa (in disease-comparable ranges) exerts proarrhythmogenic events in isolated ventricular mouse myocytes in a manner depending on CaMKII-dependent SR Ca leak. We further tested whether inhibition of disease-related late INa may reduce proarrhythmogenic SR Ca leak in myocytes from failing human hearts. Ventricular myocytes were isolated from healthy wildtype (WT), failing CaMKIIδC transgenic (TG) mouse, and failing human hearts. ATX-II (0.25-10 nmol/L) was used to enhance late INa. Spontaneous Ca loss from the SR during diastole (Ca sparks), DADs, non-triggered diastolic Ca transients in myocytes and premature beats of isometrically twitching papillary muscles were used as readouts for proarrhythmogenic events. CaMKII autophosphorylation was assessed by immunoblots. Late INa was inhibited using ranolazine (Ran, 10 μmol/L) or TTX (2 μmol/L), and CaMKII by KN-93 (1 μmol/L) or AIP (1 μmol/L). In WT myocytes, sub-nanomolar ATX-II exposure (0.5 nmol/L) enhanced late INa by ~60%, which resulted in increased diastolic SR Ca loss despite unaltered SR Ca content. In parallel, DADs and non-triggered diastolic Ca transients arose. Inhibition of enhanced late INa by RAN or TTX significantly attenuated diastolic SR Ca loss and suppressed DADs as well as mechanical alternans in mouse and diastolic SR Ca loss in failing human myocytes. ATX-II caused Ca-dependent CaMKII-activation without changes in protein expression, which was reversible by Ran or AIP. Conversely, CaMKII-inhibition decreased diastolic SR Ca loss, DADs and non

  16. Structures of Ca(V) Ca**2+/CaM-IQ Domain Complexes Reveal Binding Modes That Underlie Calcium-Dependent Inactivation And Facilitation

    SciTech Connect

    Kim, E.Y.; Rumpf, C.H.; Fujiwara, Y.; Cooley, E.S.; Petegem, F.Van; Minor, D.L., Jr.

    2009-05-20

    Calcium influx drives two opposing voltage-activated calcium channel (Ca{sub V}) self-modulatory processes: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Specific Ca{sup 2+}/calmodulin (Ca{sup 2+}/CaM) lobes produce CDI and CDF through interactions with the Ca{sub V}{alpha}{sub 1} subunit IQ domain. Curiously, Ca{sup 2+}/CaM lobe modulation polarity appears inverted between Ca{sub V}1s and Ca{sub V}2s. Here, we present crystal structures of Ca{sub V}2.1, Ca{sub V}2.2, and Ca{sub V}2.3 Ca{sup 2+}/CaM-IQ domain complexes. All display binding orientations opposite to Ca{sub V}1.2 with a physical reversal of the CaM lobe positions relative to the IQ {alpha}-helix. Titration calorimetry reveals lobe competition for a high-affinity site common to Ca{sub V}1 and Ca{sub V}2 IQ domains that is occupied by the CDI lobe in the structures. Electrophysiological experiments demonstrate that the N-terminal Ca{sub V}2 Ca{sup 2+}/C-lobe anchors affect CDF. Together, the data unveil the remarkable structural plasticity at the heart of Ca{sub V} feedback modulation and indicate that Ca{sub V}1 and Ca{sub V}2 IQ domains bear a dedicated CDF site that exchanges Ca{sup 2+}/CaM lobe occupants.

  17. Recruitment of Ca2+ release channels by calcium-induced Ca2+ release does not appear to occur in isolated Ca2+ release sites in frog skeletal muscle

    PubMed Central

    Fénelon, Karine; Pape, Paul C

    2002-01-01

    Ca2+ release from the sarcoplasmic reticulum (SR) in skeletal muscle in response to small depolarisations (e.g. to -60 mV) should be the sum of release from many isolated Ca2+ release sites. Each site has one SR Ca2+ release channel activated by its associated T-tubular voltage sensor. The aim of this study was to evaluate whether it also includes neighbouring Ca2+ release channels activated by Ca-induced Ca2+ release (CICR). Ca2+ release in frog cut muscle fibres was estimated with the EGTA/phenol red method. The fraction of SR Ca content ([CaSR]) released by a 400 ms pulse to -60 mV (denoted fCa) provided a measure of the average Ca2+ permeability of the SR associated with the pulse. In control experiments, fCa was approximately constant when [CaSR] was 1500-3000 μm (plateau region) and then increased as [CaSR] decreased, reaching a peak when [CaSR] was 300-500 μm that was 4.8 times larger on average than the plateau value. With 8 mm of the fast Ca2+ buffer BAPTA in the internal solution, fCa was 5.0-5.3 times larger on average than the plateau value obtained before adding BAPTA when [CaSR] was 300-500 μm. In support of earlier results, 8 mm BAPTA did not affect Ca2+ release in the plateau region. At intermediate values of [CaSR], BAPTA resulted in a small, if any, increase in fCa, presumably by decreasing Ca inactivation of Ca2+ release. Since BAPTA never decreased fCa, the results indicate that neighbouring channels are not activated by CICR with small depolarisations when [CaSR] is 300-3000 μm. PMID:12411523

  18. Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling.

    PubMed

    Swietach, Pawel; Youm, Jae-Boum; Saegusa, Noriko; Leem, Chae-Hun; Spitzer, Kenneth W; Vaughan-Jones, Richard D

    2013-05-28

    Ca(2+) signaling regulates cell function. This is subject to modulation by H(+) ions that are universal end-products of metabolism. Due to slow diffusion and common buffers, changes in cytoplasmic [Ca(2+)] ([Ca(2+)]i) or [H(+)] ([H(+)]i) can become compartmentalized, leading potentially to complex spatial Ca(2+)/H(+) coupling. This was studied by fluorescence imaging of cardiac myocytes. An increase in [H(+)]i, produced by superfusion of acetate (salt of membrane-permeant weak acid), evoked a [Ca(2+)]i rise, independent of sarcolemmal Ca(2+) influx or release from mitochondria, sarcoplasmic reticulum, or acidic stores. Photolytic H(+) uncaging from 2-nitrobenzaldehyde also raised [Ca(2+)]i, and the yield was reduced following inhibition of glycolysis or mitochondrial respiration. H(+) uncaging into buffer mixtures in vitro demonstrated that Ca(2+) unloading from proteins, histidyl dipeptides (HDPs; e.g., carnosine), and ATP can underlie the H(+)-evoked [Ca(2+)]i rise. Raising [H(+)]i tonically at one end of a myocyte evoked a local [Ca(2+)]i rise in the acidic microdomain, which did not dissipate. The result is consistent with uphill Ca(2+) transport into the acidic zone via Ca(2+)/H(+) exchange on diffusible HDPs and ATP molecules, energized by the [H(+)]i gradient. Ca(2+) recruitment to a localized acid microdomain was greatly reduced during intracellular Mg(2+) overload or by ATP depletion, maneuvers that reduce the Ca(2+)-carrying capacity of HDPs. Cytoplasmic HDPs and ATP underlie spatial Ca(2+)/H(+) coupling in the cardiac myocyte by providing ion exchange and transport on common buffer sites. Given the abundance of cellular HDPs and ATP, spatial Ca(2+)/H(+) coupling is likely to be of general importance in cell signaling.

  19. Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling

    PubMed Central

    Swietach, Pawel; Youm, Jae-Boum; Saegusa, Noriko; Leem, Chae-Hun; Spitzer, Kenneth W.; Vaughan-Jones, Richard D.

    2013-01-01

    Ca2+ signaling regulates cell function. This is subject to modulation by H+ ions that are universal end-products of metabolism. Due to slow diffusion and common buffers, changes in cytoplasmic [Ca2+] ([Ca2+]i) or [H+] ([H+]i) can become compartmentalized, leading potentially to complex spatial Ca2+/H+ coupling. This was studied by fluorescence imaging of cardiac myocytes. An increase in [H+]i, produced by superfusion of acetate (salt of membrane-permeant weak acid), evoked a [Ca2+]i rise, independent of sarcolemmal Ca2+ influx or release from mitochondria, sarcoplasmic reticulum, or acidic stores. Photolytic H+ uncaging from 2-nitrobenzaldehyde also raised [Ca2+]i, and the yield was reduced following inhibition of glycolysis or mitochondrial respiration. H+ uncaging into buffer mixtures in vitro demonstrated that Ca2+ unloading from proteins, histidyl dipeptides (HDPs; e.g., carnosine), and ATP can underlie the H+-evoked [Ca2+]i rise. Raising [H+]i tonically at one end of a myocyte evoked a local [Ca2+]i rise in the acidic microdomain, which did not dissipate. The result is consistent with uphill Ca2+ transport into the acidic zone via Ca2+/H+ exchange on diffusible HDPs and ATP molecules, energized by the [H+]i gradient. Ca2+ recruitment to a localized acid microdomain was greatly reduced during intracellular Mg2+ overload or by ATP depletion, maneuvers that reduce the Ca2+-carrying capacity of HDPs. Cytoplasmic HDPs and ATP underlie spatial Ca2+/H+ coupling in the cardiac myocyte by providing ion exchange and transport on common buffer sites. Given the abundance of cellular HDPs and ATP, spatial Ca2+/H+ coupling is likely to be of general importance in cell signaling. PMID:23676270

  20. Effect of Ca2+ Efflux Pathway Distribution and Exogenous Ca2+ Buffers on Intracellular Ca2+ Dynamics in the Rat Ventricular Myocyte: A Simulation Study

    PubMed Central

    Šimurda, Jiří; Orchard, Clive H.

    2014-01-01

    We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca2+ efflux pathways (SERCA, Na+/Ca2+ exchange, and sarcolemmal Ca2+ ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca2+ buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca2+ in the dyad and bulk cytoplasm, on cellular Ca2+ cycling. Increasing the dyadic fraction of a particular Ca2+ efflux pathway increases the amount of Ca2+ removed by that pathway, with corresponding changes in Ca2+ efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca2+ removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca2+-dependent inactivation of the L-type Ca2+ current, resulted from the buffers acting as slow and fast “shuttles,” respectively, removing Ca2+ from the dyadic space. The data suggest that complex changes in dyadic Ca2+ and cellular Ca2+ cycling occur as a result of changes in the location of Ca2+ removal pathways or the presence of exogenous Ca2+ buffers, although changing the distribution of Ca2+ efflux pathways has relatively small effects on the systolic Ca2+ transient. PMID:24971358

  1. Effect of Ca2+ efflux pathway distribution and exogenous Ca2+ buffers on intracellular Ca2+ dynamics in the rat ventricular myocyte: a simulation study.

    PubMed

    Pásek, Michal; Simurda, Jiří; Orchard, Clive H

    2014-01-01

    We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca(2+) efflux pathways (SERCA, Na(+)/Ca(2+) exchange, and sarcolemmal Ca(2+) ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca(2+) buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca(2+) in the dyad and bulk cytoplasm, on cellular Ca(2+) cycling. Increasing the dyadic fraction of a particular Ca(2+) efflux pathway increases the amount of Ca(2+) removed by that pathway, with corresponding changes in Ca(2+) efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca(2+) removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca(2+)-dependent inactivation of the L-type Ca(2+) current, resulted from the buffers acting as slow and fast "shuttles," respectively, removing Ca(2+) from the dyadic space. The data suggest that complex changes in dyadic Ca(2+) and cellular Ca(2+) cycling occur as a result of changes in the location of Ca(2+) removal pathways or the presence of exogenous Ca(2+) buffers, although changing the distribution of Ca(2+) efflux pathways has relatively small effects on the systolic Ca(2+) transient.

  2. AMP-activated protein kinase-mediated feedback phosphorylation controls the Ca(2+)/calmodulin (CaM) dependence of Ca(2+)/CaM-dependent protein kinase kinase β.

    PubMed

    Nakanishi, Akihiro; Hatano, Naoya; Fujiwara, Yuya; Bin Shari, Arian; Takabatake, Shota; Akano, Hiroki; Kanayama, Naoki; Magari, Masaki; Nozaki, Naohito; Tokumitsu, Hiroshi

    2017-10-03

    The Ca(2+)/calmodulin-dependent protein kinase kinase β(CaMKKβ)/5'AMP-activated protein kinase (AMPK) phosphorylation cascade affects various Ca(2+)-dependent metabolic pathways and cancer growth. Unlike recombinant CaMKKβ that exhibits higher basal activity (autonomous activity), activation of the CaMKKβ/AMPK signaling pathway requires increased intracellular Ca(2+) concentrations. Moreover, the Ca(2+)/CaM dependence of CaMKKβ appears to arise from multiple phosphorylation events, including autophosphorylation and activities furnished by other protein kinases. However, the effects of proximal downstream kinases on CaMKKβ activity have not yet been evaluated. Here, we demonstrate feedback phosphorylation of CaMKKβ at multiple residues by CaMKKβ-activated AMPK in addition to autophosphorylation in vitro, leading to reduced autonomous, but not Ca(2+)/CaM-activated, CaMKKβ activity. MS analysis and site-directed mutagenesis of AMPK phosphorylation sites in CaMKKβ indicated that Thr144 phosphorylation by activated AMPK converts CaMKKβ into a Ca(2+)/CaM-dependent enzyme, as shown by completely Ca(2+)/CaM-dependent CaMKK activity of a phosphomimetic Thr144Glu CaMKKβ mutant. CaMKKβ mutant analysis indicated that the C-terminal domain (residues 471-587) including the autoinhibitory region plays an important role in stabilizing an inactive conformation in a Thr144 phosphorylation-dependent manner. Furthermore, immunoblot analysis with antiphospho-Thr144 antibody revealed phosphorylation of Thr144 in CaMKKβ in transfected COS-7 cells that was further enhanced by exogenous expression of AMPKα. These results indicate that AMPK-mediated feedback phosphorylation of CaMKKβ regulates the CaMKKβ/AMPK signaling cascade and may be physiologically important for intracellular maintenance of Ca(2+)-dependent AMPK activation by CaMKKβ. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  3. Ca(2+) signalling in the Golgi apparatus.

    PubMed

    Pizzo, Paola; Lissandron, Valentina; Capitanio, Paola; Pozzan, Tullio

    2011-08-01

    The Golgi apparatus plays a central role in lipid and protein post-translational modification and sorting. Morphologically the organelle is heterogeneous and it is possible to distinguish stacks of flat cysternae (cis- and medial Golgi), tubular-reticular networks and vesicles (trans-Golgi). These morphological differences parallel a distinct functionality with a selective distribution and complementary roles of the enzymes found in the different compartments. The Golgi apparatus has been also shown to be involved in Ca(2+) signalling: it is indeed endowed with Ca(2+) pumps, Ca(2+) release channels and Ca(2+) binding proteins and is thought to participate in determining the spatio-temporal complexity of the Ca(2+) signal within the cell, though this role is still poorly understood. Recently, it has been demonstrated that the organelle is heterogeneous in terms of Ca(2+) handling and selective reduction of Ca(2+) concentration, both in vitro and in a genetic human disease, within one of its sub-compartment results in alterations of protein trafficking within the secretory pathway and of the entire Golgi morphology. In this paper we review the available information on the Ca(2+) toolkit within the Golgi, its heterogeneous distribution in the organelle sub-compartments and discuss the implications of these characteristics for the physiopathology of the Golgi apparatus.

  4. Literacy.CA. Issue #19, Winter 2006

    ERIC Educational Resources Information Center

    Murray, Fiona, Ed.

    2006-01-01

    The "literacy.ca" newsletter is a vehicle for literacy workers and supporters to share information, ideas, resources and research on emerging literacy issues. This issue of "literacy.ca" contains the following articles: (1) Riding The Wave: How will the federal election affect progress on a pan-Canadian literacy agenda?; (2)…

  5. Role of extracellular Ca2+ in gating of CaV1.2 channels

    PubMed Central

    Babich, Olga; Isaev, Dmytro; Shirokov, Roman

    2005-01-01

    We examined changes in ionic and gating currents in CaV1.2 channels when extracellular Ca2+ was reduced from 10 mm to 0.1 μm. Saturating gating currents decreased by two-thirds (KD≈ 40 μm) and ionic currents increased 5-fold (KD≈ 0.5 μm) due to increasing Na+ conductance. A biphasic time dependence for the activation of ionic currents was observed at low [Ca2+], which appeared to reflect the rapid activation of channels that were not blocked by Ca2+ and a slower reversal of Ca2+ blockade of the remaining channels. Removal of Ca2+ following inactivation of Ca2+ currents showed that Na+ currents were not affected by Ca2+-dependent inactivation. Ca2+-dependent inactivation also induced a negative shift of the reversal potential for ionic currents suggesting that inactivation alters channel selectivity. Our findings suggest that activation of Ca2+ conductance and Ca2+-dependent inactivation depend on extracellular Ca2+ and are linked to changes in selectivity. PMID:15845581

  6. CaMKII in the Cardiovascular System: Sensing Redox States

    PubMed Central

    Erickson, Jeffrey R.; He, B. Julie; Grumbach, Isabella M.; Anderson, Mark E

    2013-01-01

    The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca2+/CaM). Under conditions of sustained exposure to elevated Ca2+/CaM CaMKII transitions into a Ca2+/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine 287 in the CaMKII regulatory domain ‘traps’ CaMKII into an open configuration even after Ca2+/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca2+/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease. PMID:21742790

  7. CaMKII in the cardiovascular system: sensing redox states.

    PubMed

    Erickson, Jeffrey R; He, B Julie; Grumbach, Isabella M; Anderson, Mark E

    2011-07-01

    The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.

  8. Localized Calcineurin Confers Ca2+-Dependent Inactivation Upon Neuronal L-Type Ca2+ Channels

    PubMed Central

    Oliveria, Seth F.; Dittmer, Philip J.; Youn, Dong-ho; Dell’Acqua, Mark L.; Sather, William A.

    2012-01-01

    Excitation-driven entry of Ca2+ through L-type voltage-gated Ca2+ channels controls gene expression in neurons and a variety of fundamental activities in other kinds of excitable cells. The probability of opening of CaV1.2 L-type channels is subject to pronounced enhancement by cAMP-dependent protein kinase (PKA), which is scaffolded to CaV1.2 channels by A-kinase anchoring proteins (AKAPs). CaV1.2 channels also undergo negative autoregulation via Ca2+-dependent inactivation (CDI), which strongly limits Ca2+ entry. An abundance of evidence indicates that CDI relies upon binding of Ca2+/calmodulin (CaM) to an IQ motif in the carboxy tail of CaV1.2 L-type channels, a molecular mechanism seemingly unrelated to phosphorylation-mediated channel enhancement. But our work reveals, in cultured hippocampal neurons and a heterologous expression system, that the Ca2+/CaM-activated phosphatase calcineurin (CaN) is scaffolded to CaV1.2 channels by the neuronal anchoring protein AKAP79/150 and that over-expression of an AKAP79/150 mutant incapable of binding CaN (ΔPIX) impedes CDI. Interventions that suppress CaN activity—mutation in its catalytic site, antagonism with cyclosporine A or FK506, or intracellular perfusion with a peptide mimicking the sequence of the phosphatase’s autoinhibitory domain—interfere with normal CDI. In cultured hippocampal neurons from a ΔPIX knock-in mouse, CDI is absent. Results of experiments with the adenylyl cyclase stimulator forskolin and with the PKA inhibitor PKI suggest that Ca2+/CaM-activated CaN promotes CDI by reversing channel enhancement effectuated by kinases such as PKA. Hence our investigation of AKAP79/150-anchored CaN reconciles the CaM-based model of CDI with an earlier, seemingly contradictory model based on dephosphorylation signaling. PMID:23115171

  9. Dihydropyridine Ca2+ Channel Blockers Increase Cytosolic [Ca2+] by Activating Ca2+-sensing Receptors in Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Yamamura, Aya; Yamamura, Hisao; Guo, Qiang; Zimnicka, Adriana M.; Wan, Jun; Ko, Eun A.; Smith, Kimberly A.; Pohl, Nicole M.; Song, Shanshan; Zeifman, Amy; Makino, Ayako; Yuan, Jason X.J.

    2013-01-01

    Rationale An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC proliferation and pulmonary vascular remodeling. The dihydropyridine Ca2+ channel blockers, such as nifedipine, have been used for treatment of idiopathic pulmonary arterial hypertension (IPAH). Objective Our previous study demonstrated that the Ca2+-sensing receptor (CaSR) was upregulated and the extracellular Ca2+-induced increase in [Ca2+]cyt was enhanced in PASMC from patients with IPAH and animals with experimental pulmonary hypertension. Here, we report that the dihydropyridines (e.g., nifedipine) increase [Ca2+]cyt by activating CaSR in PASMC from IPAH patients (in which CaSR is upregulated), but not in normal PASMC. Methods and Results The nifedipine-mediated increase in [Ca2+]cyt in IPAH-PASMC was concentration dependent with an EC50 of 0.20 µM. Knockdown of CaSR with siRNA in IPAH-PASMC significantly inhibited the nifedipine-induced increase in [Ca2+]cyt, whereas overexpression of CaSR in normal PASMC conferred the nifedipine-induced rise in [Ca2+]cyt. Other dihydropyridines, nicardipine and Bay K8644, had similar augmenting effects on the CaSR-mediated increase in [Ca2+]cyt in IPAH-PASMC; however, the non-dihydropyridine blockers, such as diltiazem and verapamil, had no effect on the CaSR-mediated rise in [Ca2+]cyt. Conclusions The dihydropyridine derivatives increase [Ca2+]cyt by potentiating the activity of CaSR in PASMC independently of their blocking (or activating) effect on Ca2+ channels; therefore, it is possible that use the dihydropyridine Ca2+ channel blockers (e.g., nifedipine) to treat IPAH patients with upregulated CaSR in PASMC may exacerbate pulmonary hypertension. PMID:23300272

  10. Mission CaMKIIγ: shuttle calmodulin from membrane to nucleus.

    PubMed

    Malik, Zulfiqar A; Stein, Ivar S; Navedo, Manuel F; Hell, Johannes W

    2014-10-09

    Neuronal plasticity depends on plasma membrane Ca(2+) influx, resulting in activity-dependent gene transcription. Calmodulin (CaM) activated by Ca(2+) initiates the nuclear events, but how CaM makes its way to the nucleus has remained elusive. Ma et al. now show that CaMKIIγ transports CaM from cell surface Ca(2+) channels to the nucleus. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The stability of arsenic fixation on minerai traps

    NASA Astrophysics Data System (ADS)

    Garrido, F.; Dictor, M.-C.; Bodenan, F.; Morin, G.; Baranger, P.

    2003-05-01

    Metal mobility in soils and sediments is dependent not only on the well-known physico-chemical parameters, but also on much less well characterised biological parameters. Iron minerals, ubiquitous in the soil mineral matrix, provide preferential supports for trapping heavy metals and metalloids. Our work consisted in studying factors favouring the short-term mobility of arsenic by analogy with the biogeochemical reactions occurring in the soils. Incubation experiments with hydrated iron hydroxides spiked with arsenic (V) carried out in vitro in an anoxie environment in the presence of Fe-reducing bacteria (FR) revealed a chemical mechanism (phosphate/arsenic exchange) that causes rapid solution of the arsenic and a biological reducing mechanism in the solubilisation of the iron and arsenic. In the first instance, the bacteria develop and reduce the Fe (III) to Fe (II), which is solubilised; no solubilisation of arsenic was observed during this phase. Next, the concentration of dissolved iron diminishes and the As (V) is reduced to As (III). Some samples showed the presence of vivianite Fe3(PO4)2.8H20, which results from the precipitation of soluble iron with the phosphate ions present in the culture medium.

  12. Spontaneous and nicotine-induced Ca2+ oscillations mediated by Ca2+ influx in rat pinealocytes.

    PubMed

    Mizutani, Hiroya; Yamamura, Hisao; Muramatsu, Makoto; Kiyota, Keiko; Nishimura, Kaori; Suzuki, Yoshiaki; Ohya, Susumu; Imaizumi, Yuji

    2014-06-01

    The pineal gland regulates circadian rhythm through the synthesis and secretion of melatonin. The rise of intracellular Ca(2+) concentration ([Ca(2+)]i) following nicotinic acetylcholine receptor (nAChR) stimulation due to parasympathetic nerve activity downregulates melatonin production. Important characteristics and roles of Ca(2+) mobilization due to nAChR stimulation remain to be clarified. We report here that spontaneous Ca(2+) oscillations can be observed in ∼15% of the pinealocytes in slice preparations from rat pineal glands when this dissociation procedure is done within 6 h from a dark-to-light change. The frequency and half-life of [Ca(2+)]i rise were 0.86 min(-1) and 19 s, respectively. Similar spontaneous Ca(2+) oscillations were recorded in 17% of rat pinealocytes that were primary cultured for several days. Simultaneous measurement of [Ca(2+)]i and membrane potential revealed that spontaneous Ca(2+) oscillations were triggered by periodic membrane depolarizations. Spontaneous Ca(2+) oscillations in cultured pinealocytes were abolished by extracellular Ca(2+) removal or application of nifedipine, a blocker of voltage-dependent Ca(2+) channel (VDCC). In contrast, blockers of intracellular Ca(2+)-release channels, 2-aminoethoxydiphenylborate and ryanodine, have no effect. Our results also reveal that, in 23% quiescent pinealocytes, Ca(2+) oscillations were observed following the withdrawal of nicotine. Norepinephrine-induced melatonin secretion from whole pineal glands was significantly decreased by the coapplication of acetylcholine (ACh). This inhibitory effect of ACh was attenuated by nifedipine. In conclusion, both spontaneous and evoked Ca(2+) oscillations are due to membrane depolarization following activation of VDCCs. This consists of VDCC α1F subunit, and the associated Ca(2+) influx can strongly regulate melatonin secretion in pineal glands.

  13. Ca2+ entry via AMPA-type glutamate receptors triggers Ca2+-induced Ca2+ release from ryanodine receptors in rat spiral ganglion neurons.

    PubMed

    Morton-Jones, Rachel T; Cannell, Mark B; Housley, Gary D

    2008-04-01

    Ryanodine receptor (RyR)-gated Ca2+ stores have recently been identified in cochlear spiral ganglion neurons (SGN) and likely contribute to Ca2+ signalling associated with auditory neurotransmission. Here, we identify an ionotropic glutamate receptor signal transduction pathway which invokes RyR-gated Ca2+ stores in SGN via Ca2+-induced Ca2+ release (CICR). Ca2+ levels were recorded in SGN in situ within rat cochlear slices (postnatal day 0-17) using the Ca2+ indicator fluo-4. RyR-gated Ca2+ stores were confirmed by caffeine-induced increases in intracellular Ca2+ which were blocked by ryanodine (100 microM) and were independent of external Ca2+. Glutamate evoked comparable increases in intracellular Ca2+, but required the presence of external Ca2+. Ca2+ influx via the glutamate receptor was found to elicit CICR via RyR-gated Ca2+ stores, as shown by the inhibition of the response by prior depletion of the Ca2+ stores with caffeine, the SERCA inhibitor thapsigargin, or ryanodine. The glutamate analogue AMPA (alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid) elicited Ca2+ responses that could be inhibited by caffeine. Glutamate- and AMPA-mediated Ca2+ responses were eliminated with the AMPA/Kainate receptor antagonist DNQX (6,7-dinitroquinoxaline-2,3-dione). These data demonstrate functional coupling between somatic AMPA-type glutamate receptors and intracellular Ca(2+) stores via RyR-dependent CICR in primary auditory neurons.

  14. Role of sarcoplasmic reticulum Ca2+ content in Ca2+ entry of bovine airway smooth muscle cells.

    PubMed

    Bazán-Perkins, Blanca; Flores-Soto, Edgar; Barajas-López, Carlos; Montaño, Luis M

    2003-10-01

    Depletion of intracellular Ca(2+) stores induces the opening of an unknown Ca(2+ )entry pathway to the cell. We measured the intracellular free-Ca(2+) concentration ([Ca(2+)]i) at different sarcoplasmic reticulum (SR) Ca(2+) content in fura-2-loaded smooth muscle cells isolated from bovine tracheas. The absence of Ca(2+) in the extracellular medium generated a time-dependent decrement in [Ca(2+)]i which was proportional to the reduction in the SR-Ca(2+) content. This SR-Ca(2+) level was indirectly determined by measuring the amount of Ca(2+) released by caffeine. Ca(2+) restoration at different times after Ca(2+)-free incubation (2, 4, 6 and 10 min) induced an increment of [Ca(2+)]i. This increase in [Ca(2+)]i was considered as Ca(2+) entry to the cell. The rate of this entry was slow (~0.3 nM/s) when SR-Ca(2+) content was higher than 50% (2 and 4 min in Ca(2+)-free medium), and significantly ( p<0.01) accelerated (>1.0 nM/s) when SR-Ca(2+) content was lower than 50% (6 and 10 min in Ca(2+)-free medium). Thapsigargin significantly induced a higher rate of this Ca(2+) entry ( p<0.01). Variations in Ca(2+) influx after SR-Ca(2+) depletion were estimated more directly by a Mn(2+) quench approach. Ca(2+) restoration to the medium 4 min after Ca(2+) removal did not modify the Mn(2+) influx. However, when Ca(2+) was added after 10 min in Ca(2+)-free medium, an increment of Mn(2+) influx was observed, corroborating an increase in Ca(2+) entry. The fast Ca(2+) influx was Ni(2+) sensitive but was not affected by other known capacitative Ca(2+) entry blockers such as La(3+), Mg(2+), SKF 96365 and 2-APB. It was also not affected by the blockage of L-type Ca2(+) channels with methoxyverapamil or by the sustained K(+)-induced depolarisation. The slow Ca(2+) influx was only sensitive to SKF 96365. In conclusion, our results indicate that in bovine airway smooth muscle cells Ca(2+) influx after SR-Ca(2+) depletion has two rates: A) The slow Ca(2+) influx, which occurred in cells

  15. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport.

    PubMed

    Lytton, Jonathan

    2007-09-15

    Mammalian Na+/Ca2+ exchangers are members of three branches of a much larger family of transport proteins [the CaCA (Ca2+/cation antiporter) superfamily] whose main role is to provide control of Ca2+ flux across the plasma membranes or intracellular compartments. Since cytosolic levels of Ca2+ are much lower than those found extracellularly or in sequestered stores, the major function of Na+/Ca2+ exchangers is to extrude Ca2+ from the cytoplasm. The exchangers are, however, fully reversible and thus, under special conditions of subcellular localization and compartmentalized ion gradients, Na+/Ca2+ exchangers may allow Ca2+ entry and may play more specialized roles in Ca2+ movement between compartments. The NCX (Na+/Ca2+ exchanger) [SLC (solute carrier) 8] branch of Na+/Ca2+ exchangers comprises three members: NCX1 has been most extensively studied, and is broadly expressed with particular abundance in heart, brain and kidney, NCX2 is expressed in brain, and NCX3 is expressed in brain and skeletal muscle. The NCX proteins subserve a variety of roles, depending upon the site of expression. These include cardiac excitation-contraction coupling, neuronal signalling and Ca2+ reabsorption in the kidney. The NCKX (Na2+/Ca2+-K+ exchanger) (SLC24) branch of Na+/Ca2+ exchangers transport K+ and Ca2+ in exchange for Na+, and comprises five members: NCKX1 is expressed in retinal rod photoreceptors, NCKX2 is expressed in cone photoreceptors and in neurons throughout the brain, NCKX3 and NCKX4 are abundant in brain, but have a broader tissue distribution, and NCKX5 is expressed in skin, retinal epithelium and brain. The NCKX proteins probably play a particularly prominent role in regulating Ca2+ flux in environments which experience wide and frequent fluctuations in Na+ concentration. Until recently, the range of functions that NCKX proteins play was generally underappreciated. This situation is now changing rapidly as evidence emerges for roles including photoreceptor

  16. CaMKIIδ meditates phenylephrine induced cardiomyocyte hypertrophy through store-operated Ca(2+) entry.

    PubMed

    Ji, Yawei; Guo, Xin; Zhang, Zhe; Huang, Zhuyun; Zhu, Jianghua; Chen, Qing-Hui; Gui, Le

    Evidence suggests that store-operated Ca2+ entry (SOCE) is involved in the hypertrophy of cardiomyocytes. The signaling mechanisms of SOCE contributing to cardiac hypertrophy following phenylephrine (PE) stimulation are not fully understood. Ca(2+)/calmodulin-dependent protein kinase II δ (CaMKIIδ) plays an important role in regulating intracellular Ca(2+) hemostasis and function in the cardimyocytes. This study is aimed to determine the role of CaMKIIδ in regulating the PE-induced myocardial hypertrophy and the associated molecular signaling mechanisms. We used primary cultures of neonatal cardimyocytes isolated from the left ventricle of Sprague Dawley rats to investigate the effects of CaMKIIδ on myocardial hypertrophy and intracellular Ca(2+) mobilization. We found that the expression of CaMKIIδ was enhanced in PE-induced hypertrophic cardiomyocytes. CaMKIIδ siRNA, CaMKII inhibitor KN93, and SOCE blocker BTP2 attenuated the increase in the expression of CaMKIIδ and normalized the hypertrophic markers, atrial natriuretic peptide and brain natriuretic peptide, and size of cardiomyocytes induced by PE stimulation. The protein level of stromal interaction molecule 1 and Orai1, the essential components of the SOCE, is also enhanced in hypertrophic cardiomyocytes, which were normalized by CaMKIIδ siRNA and KN93 treatment. Hypertrophic cardiomyocytes showed an increase in the peak of Ca(2+) transient following store depletion, which was inhibited by SOCE blocker BTP2, CaMKIIδ siRNA, and KN93. The Ca(2+) currents through Ca(2+) release-activated Ca(2+) channels were increased in PE-treated cardiomyocytes and were attenuated by CaMKIIδ siRNA and KN93. These data indicate that PE-induced myocardial hypertrophy requires a complex signaling pathway that involves activation of both CaMKIIδ and SOCE. In conclusion, these studies reveal that up-regulation of CaMKIIδ may contribute to the PE-induced myocardial hypertrophy through the activation of SOCE expressed in

  17. Ca2+ removal by the plasma membrane Ca2+-ATPase influences the contribution of mitochondria to activity-dependent Ca2+ dynamics in Aplysia neuroendocrine cells

    PubMed Central

    Groten, Christopher J.; Rebane, Jonathan T.; Hodgson, Heather M.; Chauhan, Alamjeet K.; Blohm, Gunnar

    2016-01-01

    After Ca2+ influx, mitochondria can sequester Ca2+ and subsequently release it back into the cytosol. This form of Ca2+-induced Ca2+ release (CICR) prolongs Ca2+ signaling and can potentially mediate activity-dependent plasticity. As Ca2+ is required for its subsequent release, Ca2+ removal systems, like the plasma membrane Ca2+-ATPase (PMCA), could impact CICR. Here we examine such a role for the PMCA in the bag cell neurons of Aplysia californica. CICR is triggered in these neurons during an afterdischarge and is implicated in sustaining membrane excitability and peptide secretion. Somatic Ca2+ was measured from fura-PE3-loaded cultured bag cell neurons recorded under whole cell voltage clamp. Voltage-gated Ca2+ influx was elicited with a 5-Hz, 1-min train, which mimics the fast phase of the afterdischarge. PMCA inhibition with carboxyeosin or extracellular alkalization augmented the effectiveness of Ca2+ influx in eliciting mitochondrial CICR. A Ca2+ compartment model recapitulated these findings and indicated that disrupting PMCA-dependent Ca2+ removal increases CICR by enhancing mitochondrial Ca2+ loading. Indeed, carboxyeosin augmented train-evoked mitochondrial Ca2+ uptake. Consistent with their role on Ca2+ dynamics, cell labeling revealed that the PMCA and mitochondria overlap with Ca2+ entry sites. Finally, PMCA-dependent Ca2+ extrusion did not impact endoplasmic reticulum-dependent Ca2+ removal or release, despite the organelle residing near Ca2+ entry sites. Our results demonstrate that Ca2+ removal by the PMCA influences the propensity for stimulus-evoked CICR by adjusting the amount of Ca2+ available for mitochondrial Ca2+ uptake. This study highlights a mechanism by which the PMCA could impact activity-dependent plasticity in the bag cell neurons. PMID:26864756

  18. Store-Operated Ca2+ Entry Sustains the Fertilization Ca2+ Signal in Pig Eggs.

    PubMed

    Wang, Chunmin; Zhang, Lu; Jaeger, Laurie A; Machaty, Zoltan

    2015-07-01

    The role of store-operated Ca(2+) entry (SOCE) in the maintenance of sperm-induced Ca(2+) oscillations was investigated in porcine eggs. We found that 10 μM gadolinium (Gd(3+)), which is known to inhibit SOCE, blocked Ca(2+) entry that was triggered by thapsigargin-induced store depletion and also caused an abrupt cessation of the fertilization Ca(2+) signal. In a similar manner 3,5-bis(trifluoromethyl)pyrazole 2 (20 μM), and tetrapandin-2 (10 μM), potent SOCE inhibitors, also blocked thapsigargin-stimulated Ca(2+) entry and disrupted the Ca(2+) oscillations after sperm-egg fusion. The downregulation of Stim1 or Orai1 in the eggs did not alter the Ca(2+) content of the intracellular stores, whereas co-overexpression of these proteins led to the generation of irregular Ca(2+) transients after fertilization that stopped prematurely. We also found that thapsigargin completely emptied the endoplasmic reticulum, and that the series of Ca(2+) transients stopped abruptly after the addition of thapsigargin to the fertilized eggs, indicating that the proper reloading of the intracellular stores is a prerequisite for the maintenance of the Ca(2+) oscillations. These data strengthen our previous findings that in porcine eggs SOCE is a major signaling cascade that is responsible for sustaining the repetitive Ca(2+) signal at fertilization.

  19. A comparison of fluorescent Ca2+ indicators for imaging local Ca2+ signals in cultured cells

    PubMed Central

    Lock, Jeffrey T.; Parker, Ian

    2015-01-01

    Localized subcellular changes in Ca2+ serve as important cellular signaling elements, regulating processes as diverse as neuronal excitability and gene expression. Studies of cellular Ca2+ signaling have been greatly facilitated by the availability of fluorescent Ca2+ indicators. The respective merits of different indicators to monitor bulk changes in cellular Ca2+ levels have been widely evaluated, but a comprehensive comparison for their use in detecting and analyzing local, subcellular Ca2+ signals is lacking. Here, we evaluated several fluorescent Ca2+ indicators in the context of local Ca2+ signals (puffs) evoked by inositol 1,4,5-trisphosphate (IP3) in cultured human neuroblastoma SH-SY5Y cells, using high-speed video-microscopy. Altogether, nine synthetic Ca2+ dyes (Fluo-4, Fluo-8, Fluo-8 high affinity, Fluo-8 low affinity, Oregon Green BAPTA-1, Cal-520, Rhod-4, Asante Calcium Red, and X-Rhod-1) and three genetically-encoded Ca2+-indicators (GCaMP6-slow, -medium and -fast variants) were tested; criteria include the magnitude, kinetics, signal-to-noise ratio and detection efficiency of local Ca2+ puffs. Among these, we conclude that Cal-520 is the optimal indicator for detecting and faithfully tracking local events; that Rhod-4 is the red-emitting indicator of choice; and that none of the GCaMP6 variants are well suited for imaging subcellular Ca2+ signals. PMID:26572560

  20. Predicting Ca(2+)-binding sites in proteins.

    PubMed

    Nayal, M; Di Cera, E

    1994-01-18

    The coordination shell of Ca2+ ions in proteins contains almost exclusively oxygen atoms supported by an outer shell of carbon atoms. The bond-strength contribution of each ligating oxygen in the inner shell can be evaluated by using an empirical expression successfully applied in the analysis of crystals of metal oxides. The sum of such contributions closely approximates the valence of the bound cation. When a protein is embedded in a very fine grid of points and an algorithm is used to calculate the valence of each point representing a potential Ca(2+)-binding site, a typical distribution of valence values peaked around 0.4 is obtained. In 32 documented Ca(2+)-binding proteins, containing a total of 62 Ca(2+)-binding sites, a very small fraction of points in the distribution has a valence close to that of Ca2+. Only 0.06% of the points have a valence > or = 1.4. These points share the remarkable tendency to cluster around documented Ca2+ ions. A high enough value of the valence is both necessary (58 out of 62 Ca(2+)-binding sites have a valence > or = 1.4) and sufficient (87% of the grid points with a valence > or = 1.4 are within 1.0 A from a documented Ca2+ ion) to predict the location of bound Ca2+ ions. The algorithm can also be used for the analysis of other cations and predicts the location of Mg(2+)- and Na(+)-binding sites in a number of proteins. The valence is, therefore, a tool of pinpoint accuracy for locating cation-binding sites, which can also be exploited in engineering high-affinity binding sites and characterizing the linkage between structural components and functional energetics for molecular recognition of metal ions by proteins.

  1. Mediators of Ca2(+)-dependent secretion.

    PubMed Central

    Chaudhry, A; Rubin, R P

    1990-01-01

    Ca2+, an obligatory mediator of the secretory process, acts in concert with other second messengers that further amplify or inhibit the secretory response. In this overview, we will consider the relative roles of diacylglycerol (DAG), arachidonic acid, and cyclic AMP (cAMP) in modulating Ca2(+)-dependent secretion in nonexcitable cells. DAG, a product of phospholipase C (PLC)-catalyzed breakdown of phosphoinositides, stimulates protein kinase C. Ca2+ ionophores and phorbol esters (or DAG analogues) elicit a synergistic secretory response in the exocrine pancreas and parotid gland. These findings suggest that the complete activation of secretion requires stimulation of both Ca2(+)-dependent and protein kinase C-dependent pathways. Hydrolysis of phospholipids can also lead to the liberation of arachidonic acid in secretory cells. Endogenously generated arachidonic acid inhibits polyphosphoinositide synthesis in exocrine pancreas, leading to inhibition of agonist-induced IP3 formation, Ca2(+)-mobilization and amylase secretion. By contrast, arachidonic acid and its metabolites stimulate PLC in the rabbit peritoneal neutrophil, causing Ca2(+)-mobilization and lysosomal enzyme secretion. Arachidonic acid can thus serve as a positive or negative feedback regulator of secretion induced by Ca2(+)-mobilizing agonists. Finally, in the parotid gland, stimulation of amylase secretion by norepinephrine, the physiological mediator, which stimulates both the alpha and beta adrenoceptors, requires the interaction of both Ca2+ and cAMP pathways to produce a full secretory response. These studies, taken together, indicate that phosphoinositide and cAMP-dependent pathways play coordinate roles in signal transduction, leading to the Ca2(+)-mediated secretion. PMID:2161754

  2. Yeast as a tool for plant Ca(2+) transporter research

    USDA-ARS?s Scientific Manuscript database

    To maintain optimal cytosolic Ca(2+) concentrations, cells employ three distinct strategies: 1) tightly regulated influx of Ca(2+); 2) efficient efflux of Ca(2+) from the cell; and 3) sequestration of Ca(2+) in organelles. Ca(2+)efflux and influx are mediated by diverse transporter systems, such as ...

  3. Combining Ca2+ imaging with -glutamate photorelease

    PubMed Central

    Canepari, Marco; De Waard, Michel; Ogden, David

    2013-01-01

    We describe simple configurations and methods to measure optical Ca2+ signals in response to photorelease of L-glutamate. This photostimulation allows activation of postsynaptic glutamate receptors without activation of voltage-gated Ca2+ channels permitting the separation and the analysis of different Ca2+ components. We give details of basic microscopy configurations and of tools to efficiently illuminate the preparation while preserving the healthy conditions of the tissues. We also suggest methodological procedures and we discuss protocols of linear optics to achieve simultaneous imaging and uncaging in relation to protocols using two photon illumination. PMID:24298028

  4. β-Adrenergic stimulation increases the intra-sarcoplasmic reticulum Ca2+ threshold for Ca2+ wave generation

    PubMed Central

    Domeier, Timothy L; Maxwell, Joshua T; Blatter, Lothar A

    2012-01-01

    β-Adrenergic signalling induces positive inotropic effects on the heart that associate with pro-arrhythmic spontaneous Ca2+ waves. A threshold level of sarcoplasmic reticulum (SR) Ca2+ ([Ca2+]SR) is necessary to trigger Ca2+ waves, and whether the increased incidence of Ca2+ waves during β-adrenergic stimulation is due to an alteration in this threshold remains controversial. Using the low-affinity Ca2+ indicator fluo-5N entrapped within the SR of rabbit ventricular myocytes, we addressed this controversy by directly monitoring [Ca2+]SR and Ca2+ waves during β-adrenergic stimulation. Electrical pacing in elevated extracellular Ca2+ ([Ca2+]o= 7 mm) was used to increase [Ca2+]SR to the threshold where Ca2+ waves were consistently observed. The β-adrenergic agonist isoproterenol (ISO; 1 μm) increased [Ca2+]SR well above the control threshold and consistently triggered Ca2+ waves. However, when [Ca2+]SR was subsequently lowered in the presence of ISO (by lowering [Ca2+]o to 1 mm and partially inhibiting sarcoplasmic/endoplasmic reticulum calcium ATPase with cyclopiazonic acid or thapsigargin), Ca2+ waves ceased to occur at a [Ca2+]SR that was higher than the control threshold. Furthermore, for a set [Ca2+]SR level the refractoriness of wave occurrence (Ca2+ wave latency) was prolonged during β-adrenergic stimulation, and was highly dependent on the extent that [Ca]SR exceeded the wave threshold. These data show that acute β-adrenergic stimulation increases the [Ca2+]SR threshold for Ca2+ waves, and therefore the primary cause of Ca2+ waves is the robust increase in [Ca2+]SR above this higher threshold level. Elevation of the [Ca2+]SR wave threshold and prolongation of wave latency represent potentially protective mechanisms against pro-arrhythmogenic Ca2+ release during β-adrenergic stimulation. PMID:22988136

  5. Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes.

    PubMed

    Huang, Jingbo; Hove-Madsen, Leif; Tibbits, Glen F

    2008-02-01

    It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d

  6. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling

    PubMed Central

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-01-01

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca2+ signals, which are confined in their spatiotemporal extent by endogenous Ca2+ buffers. However, it remains elusive how rapid and reliable Ca2+ signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca2+ imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca2+-binding ratio (∼15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca2+ from the active zone during repetitive firing. Measuring Ca2+ signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca2+ buffering enables fast active zone Ca2+ signaling, suggesting that the strength of endogenous Ca2+ buffering limits the rate of synchronous synaptic transmission. PMID:26015575

  7. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport.

    PubMed

    Fiskum, G; Lehninger, A L

    1979-07-25

    Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.

  8. Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature.

    PubMed

    Greenberg, R M

    2005-01-01

    Transient changes in calcium (Ca2+) levels regulate a wide variety of cellular processes, and cells employ both intracellular and extracellular sources of Ca2+ for signalling. Praziquantel, the drug of choice against schistosomiasis, disrupts Ca2+ homeostasis in adult worms. This review will focus on voltage-gated Ca2+ channels, which regulate levels of intracellular Ca2+ by coupling membrane depolarization to entry of extracellular Ca2+. Ca2+ channels are members of the ion channel superfamily and represent essential components of neurons, muscles and other excitable cells. Ca2+ channels are membrane protein complexes in which the pore-forming alpha1 subunit is modulated by auxiliary subunits such as beta and alpha2delta. Schistosomes express two Ca2+ channel beta subunit subtypes: a conventional subtype similar to beta subunits found in other vertebrates and invertebrates and a novel variant subtype with unusual structural and functional properties. The variant schistosome beta subunit confers praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian Ca2+ channel, implicating it as a mediator of praziquantel action.

  9. Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca2+ influx, not Ca2+-exocytosis coupling

    PubMed Central

    Baumgart, Joel P.; Zhou, Zhen-Yu; Hara, Masato; Cook, Daniel C.; Hoppa, Michael B.; Ryan, Timothy A.; Hemmings, Hugh C.

    2015-01-01

    Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca2+ influx without significantly altering the Ca2+ sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca2+]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca2+ ([Ca2+]e). Lowering external Ca2+ to match the isoflurane-induced reduction in Ca2+ entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca2+ entry without significant direct effects on Ca2+-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca2+ influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neuronal interactions and network-selective effects observed in the anesthetized central nervous system. PMID:26351670

  10. Activation of Ca(2+) -activated Cl(-) channel ANO1 by localized Ca(2+) signals.

    PubMed

    Jin, Xin; Shah, Sihab; Du, Xiaona; Zhang, Hailin; Gamper, Nikita

    2016-01-01

    Ca(2+)-activated chloride channels (CaCCs) regulate numerous physiological processes including epithelial transport, smooth muscle contraction and sensory processing. Anoctamin-1 (ANO1, TMEM16A) is a principal CaCC subunit in many cell types, yet our understanding of the mechanisms of ANO1 activation and regulation are only beginning to emerge. Ca(2+) sensitivity of ANO1 is rather low and at negative membrane potentials the channel requires several micromoles of intracellular Ca(2+) for activation. However, global Ca(2+) levels in cells rarely reach such levels and, therefore, there must be mechanisms that focus intracellular Ca(2+) transients towards the ANO1 channels. Recent findings indeed indicate that ANO1 channels often co-localize with sources of intracellular Ca(2+) signals. Interestingly, it appears that in many cell types ANO1 is particularly tightly coupled to the Ca(2+) release sites of the intracellular Ca(2+) stores. Such preferential coupling may represent a general mechanism of ANO1 activation in native tissues.

  11. Aging and CaMKII Alter Intracellular Ca2+ Transients and Heart Rhythm in Drosophila melanogaster

    PubMed Central

    Santalla, Manuela; Valverde, Carlos A.; Harnichar, Ezequiel; Lacunza, Ezequiel; Aguilar-Fuentes, Javier; Mattiazzi, Alicia; Ferrero, Paola

    2014-01-01

    Aging is associated to disrupted contractility and rhythmicity, among other cardiovascular alterations. Drosophila melanogaster shows a pattern of aging similar to human beings and recapitulates the arrhythmogenic conditions found in the human heart. Moreover, the kinase CaMKII has been characterized as an important regulator of heart function and an arrhythmogenic molecule that participate in Ca2+ handling. Using a genetically engineered expressed Ca2+ indicator, we report changes in cardiac Ca2+ handling at two different ages. Aging prolonged relaxation, reduced spontaneous heart rate (HR) and increased the occurrence of arrhythmias, ectopic beats and asystoles. Alignment between Drosophila melanogaster and human CaMKII showed a high degree of conservation and indicates that relevant phosphorylation sites in humans are also present in the fruit fly. Inhibition of CaMKII by KN-93 (CaMKII-specific inhibitor), reduced HR without significant changes in other parameters. By contrast, overexpression of CaMKII increased HR and reduced arrhythmias. Moreover, it increased fluorescence amplitude, maximal rate of rise of fluorescence and reduced time to peak fluorescence. These results suggest that CaMKII in Drosophila melanogaster acts directly on heart function and that increasing CaMKII expression levels could be beneficial to improve contractility. PMID:25003749

  12. Aging and CaMKII alter intracellular Ca2+ transients and heart rhythm in Drosophila melanogaster.

    PubMed

    Santalla, Manuela; Valverde, Carlos A; Harnichar, Ezequiel; Lacunza, Ezequiel; Aguilar-Fuentes, Javier; Mattiazzi, Alicia; Ferrero, Paola

    2014-01-01

    Aging is associated to disrupted contractility and rhythmicity, among other cardiovascular alterations. Drosophila melanogaster shows a pattern of aging similar to human beings and recapitulates the arrhythmogenic conditions found in the human heart. Moreover, the kinase CaMKII has been characterized as an important regulator of heart function and an arrhythmogenic molecule that participate in Ca2+ handling. Using a genetically engineered expressed Ca2+ indicator, we report changes in cardiac Ca2+ handling at two different ages. Aging prolonged relaxation, reduced spontaneous heart rate (HR) and increased the occurrence of arrhythmias, ectopic beats and asystoles. Alignment between Drosophila melanogaster and human CaMKII showed a high degree of conservation and indicates that relevant phosphorylation sites in humans are also present in the fruit fly. Inhibition of CaMKII by KN-93 (CaMKII-specific inhibitor), reduced HR without significant changes in other parameters. By contrast, overexpression of CaMKII increased HR and reduced arrhythmias. Moreover, it increased fluorescence amplitude, maximal rate of rise of fluorescence and reduced time to peak fluorescence. These results suggest that CaMKII in Drosophila melanogaster acts directly on heart function and that increasing CaMKII expression levels could be beneficial to improve contractility.

  13. Selective Na+/Ca2+ exchanger inhibition prevents Ca2+ overload-induced triggered arrhythmias

    PubMed Central

    Nagy, Norbert; Kormos, Anita; Kohajda, Zsófia; Szebeni, Áron; Szepesi, Judit; Pollesello, Piero; Levijoki, Jouko; Acsai, Károly; Virág, László; Nánási, Péter P; Papp, Julius Gy; Varró, András; Tóth, András

    2014-01-01

    Background and Purpose Augmented Na+/Ca2+ exchanger (NCX) activity may play a crucial role in cardiac arrhythmogenesis; however, data regarding the anti-arrhythmic efficacy of NCX inhibition are debatable. Feasible explanations could be the unsatisfactory selectivity of NCX inhibitors and/or the dependence of the experimental model on the degree of Ca2+i overload. Hence, we used NCX inhibitors SEA0400 and the more selective ORM10103 to evaluate the efficacy of NCX inhibition against arrhythmogenic Ca2+i rise in conditions when [Ca2+]i was augmented via activation of the late sodium current (INaL) or inhibition of the Na+/K+ pump. Experimental Approach Action potentials (APs) were recorded from canine papillary muscles and Purkinje fibres by microelectrodes. NCX current (INCX) was determined in ventricular cardiomyocytes utilizing the whole-cell patch clamp technique. Ca2+i transients (CaTs) were monitored with a Ca2+-sensitive fluorescent dye, Fluo-4. Key Results Enhanced INaL increased the Ca2+ load and AP duration (APD). SEA0400 and ORM10103 suppressed INCX and prevented/reversed the anemone toxin II (ATX-II)-induced [Ca2+]i rise without influencing APD, CaT or cell shortening, or affecting the ATX-II-induced increased APD. ORM10103 significantly decreased the number of strophanthidin-induced spontaneous diastolic Ca2+ release events; however, SEA0400 failed to restrict the veratridine-induced augmentation in Purkinje-ventricle APD dispersion. Conclusions and Implications Selective NCX inhibition – presumably by blocking revINCX (reverse mode NCX current) – is effective against arrhythmogenesis caused by [Na+]i-induced [Ca2+]i elevation, without influencing the AP waveform. Therefore, selective INCX inhibition, by significantly reducing the arrhythmogenic trigger activity caused by the perturbed Ca2+i handling, should be considered as a promising anti-arrhythmic therapeutic strategy. PMID:25073832

  14. Calcium transport in bovine rumen epithelium as affected by luminal Ca concentrations and Ca sources

    PubMed Central

    Schröder, Bernd; Wilkens, Mirja R; Ricken, Gundula E; Leonhard-Marek, Sabine; Fraser, David R; Breves, Gerhard

    2015-01-01

    The quantitative role of different segments of the gastrointestinal tract for Ca absorption, the respective mechanisms, and their regulation are not fully identified for ruminants, that is, cattle. In different in vitro experiments the forestomach wall has been demonstrated to be a major site for active Ca absorption in sheep and goats. In order to further clarify the role of the bovine rumen for Ca transport with special attention to luminal Ca concentrations, its ionic form, and pH, electrophysiological and unidirectional flux rate measurements were performed with isolated bovine rumen epithelial tissues. For Ca flux studies (Jms, Jsm) in vitro Ussing chamber technique was applied. Standard RT-PCR method was used to characterize TRPV6 and PMCA1 as potential contributors to transepithelial active Ca transport. At Ca concentrations of 1.2 mmol L−1 on both sides of the tissues, Jms were higher than Jsm resulting under some conditions in significant Ca net flux rates (Jnet), indicating the presence of active Ca transport. In the absence of an electrical gradient, Jnet could significantly be stimulated in the presence of luminal short-chain fatty acids (SCFAs). Increasing the luminal Ca concentrations up to 11.2 mmol L−1 resulted in significant increases in Jms without influencing Jsm. Providing Ca in its form as respective chloride, formate, or propionate salts there was no significant effect on Jms. No transcripts specific for Ca channel TRPV6 could be demonstrated. Our results indicate different mechanisms for Ca absorption in bovine rumen as compared with those usually described for the small intestines. PMID:26564067

  15. Pericellular Ca2+ recycling potentiates thrombin-evoked Ca2+ signals in human platelets

    PubMed Central

    Sage, Stewart O; Pugh, Nicholas; Farndale, Richard W; Harper, Alan G S

    2013-01-01

    We have previously demonstrated that Na+/Ca2+ exchangers (NCXs) potentiate Ca2+ signaling evoked by thapsigargin in human platelets, via their ability to modulate the secretion of autocoids from dense granules. This link was confirmed in platelets stimulated with the physiological agonist, thrombin, and experiments were performed to examine how Ca2+ removal by the NCX modulates platelet dense granule secretion. In cells loaded with the near-membrane indicator FFP-18, thrombin stimulation was observed to elicit an NCX-dependent accumulation of Ca2+ in a pericellular region around the platelets. To test whether this pericellular Ca2+ accumulation might be responsible for the influence of NCXs over platelet function, platelets were exposed to fast Ca2+ chelators or had their glycocalyx removed. Both manipulations of the pericellular Ca2+ rise reduced thrombin-evoked Ca2+ signals and dense granule secretion. Blocking Ca2+-permeable ion channels had a similar effect, suggesting that Ca2+ exported into the pericellular region is able to recycle back into the platelet cytosol. Single cell imaging with extracellular Fluo-4 indicated that thrombin-evoked rises in extracellular [Ca2+] occurred within the boundary described by the cell surface, suggesting their presence within the open canalicular system (OCS). FFP-18 fluorescence was similarly distributed. These data suggest that upon thrombin stimulation, NCX activity creates a rise in [Ca2+] within the pericellular region of the platelet from where it recycles back into the platelet cytosol, acting to both accelerate dense granule secretion and maintain the initial rise in cytosolic [Ca2+]. PMID:24303163

  16. Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons.

    PubMed

    Müller, Andreas; Kukley, Maria; Stausberg, Pia; Beck, Heinz; Müller, Wolfgang; Dietrich, Dirk

    2005-01-19

    Ca2+-binding proteins are ubiquitously expressed throughout the CNS and serve as valuable immunohistochemical markers for certain types of neurons. However, the functional role of most Ca2+-binding proteins has to date remained obscure because their concentration in central neurons is not known. In this study, we investigate the intracellular concentration of the widely expressed Ca2+-binding protein calbindin-D28k in adult hippocampal slices using patch-clamp recordings and immunohistochemistry. First, we show that calbindin-D28k freely exchanges between patch pipette and cytoplasm during whole cell patch-clamp recordings with a time constant of approximately 10 min. Substituting known concentrations of recombinant calbindin-D28k in patch pipettes enabled us to determine the endogenous calbindin-D28k concentration by postrecording immunohistochemistry. Using this calibration procedure, we find that mature granule cells (doublecortin-) contain approximately 40 microm, and newborn granule cells (doublecortin+) contain 0-20 microm calbindin-D28k. CA3 stratum radiatum interneurons and CA1 pyramidal cells enclose approximately 47 and approximately 45 microm calbindin-D28k, respectively. Numerical simulations showed that 40 microm calbindin-D28k is capable of tuning Ca2+ microdomains associated with action potentials at the mouth of single or clustered Ca2+ channels: calbindin-D28k reduces the increment in free Ca2+ at a distance of 100 and 200 nm by 20 and 35%, respectively, and strongly accelerates the collapse of the Ca2+ gradient after cessation of Ca2+ influx. These data suggest that calbindin-D28k equips hippocampal neurons with approximately 160 microm mobile, high-affinity Ca2+-binding sites (kappa(S) approximately 200) that slow and reduce global Ca2+ signals while they enhance the spatiotemporal fidelity of submicroscopic Ca2+ signals.

  17. Pituitary Ca/sup 2 +/ channels: blockade by conventional and novel Ca/sup 2 +/ antagonists

    SciTech Connect

    Enyeart, J.J.; Sheu, S.S.; Hinkle, P.M.

    1987-07-01

    The authors have identified several new agents that block Ca/sup 2 +/ channels in the rat pituitary GH/sub 4/C/sub 1/ cell line. These drugs, which include the diphenylbutylpiperidine antipsychotic pimozide, the calmodulin antagonist calmidazolium, and the steroidal Na/sup +/ channel toxin veratridine, were compared with several conventional Ca/sup 2 +/ antagonists in /sup 45/Ca/sup 2 +/ uptake, prolactin secretion, and whole cell patch voltage-clamp experiments. Pimozide, the most potent of these novel Ca/sup 2 +/ antagonists, inhibited depolarization-dependent /sup 45/Ca/sup 2 +/ uptake and prolactin secretion half maximally at a concentration of 100 nM, whereas calmidazolium and veratridine produced 50% inhibition at concentrations of 500 nM and 1 ..mu..M. In comparison, the three organic Ca/sup 2 +/ antagonists nitrendipine, verapamil, and diltiazem blocked /sup 45/Ca/sup 2 +/ uptake half maximally at concentrations of 2.5 nM, 1 ..mu..M, and 2.5 ..mu..M, respectively. All of the antagonists inhibited Ca/sup 2 +/ uptake and prolactin secretion stimulated by the dihydropyridine Ca/sup 2 +/ agonist BAY-K 8644 less potently than KCl-stimulated responses. In patch-clamp experiments, pimozide, veratridine, and nitrendipine blocked Ca/sup 2 +/ current through the slowly inactivating Ca/sup 2 +/ channels of GH/sub 4/C/sub 1/ cells. These results demonstrate that Ca/sup 2 +/ channels in an endocrine cell line can be blocked by a variety of molecules including sodium channel toxins and calmodulin antagonists. The data extend the pharmacological similarity between Ca/sup 2 +/ channels in pituitary and other excitable cells and suggest a structural similarity among several cellular proteins.

  18. Role of Ca++ in Shoot Gravitropism. [avena

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.

    1985-01-01

    A cornerstone in the argument that Ca(2+) levels may regulate growth is the finding the EGTA promotes straight growth. The usual explanation for these results is that Ca(2+) chelation from cell walls results in wall loosening and thus accelerated straight growth. The ability of frozen-thawed Avena coleoptile tissue (subjected to 15g tension) to extend in response to EGTA and Quin II was examined. The EGTA when applied in weakly buffered (i.e., 0.1mM) neutral solutions initiates rapid extension. When the buffer strength is increased, similar concentrations of EGTA produce no growth response. This implies when EGTA liberated protons are released upon Ca(2+) chelation they can either initiate acid growth (low buffer conditions) or if consumed (high buffer conditions) have no effect. Thus Ca(2+) chelation in itself apparently does not result in straight growth.

  19. Motion of the Ca2+-pump captured.

    PubMed

    Yokokawa, Masatoshi; Takeyasu, Kunio

    2011-09-01

    Studies of ion pumps, such as ATP synthetase and Ca(2+)-ATPase, have a long history. The crystal structures of several kinds of ion pump have been resolved, and provide static pictures of mechanisms of ion transport. In this study, using fast-scanning atomic force microscopy, we have visualized conformational changes in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) in real time at the single-molecule level. The analyses of individual SERCA molecules in the presence of both ATP and free Ca(2+) revealed up-down structural changes corresponding to the Albers-Post scheme. This fluctuation was strongly affected by the ATP and Ca(2+) concentrations, and was prevented by an inhibitor, thapsigargin. Interestingly, at a physiological ATP concentrations, the up-down motion disappeared completely. These results indicate that SERCA does not transit through the shortest structure, and has a catalytic pathway different from the ordinary Albers-Post scheme under physiological conditions.

  20. Role of Ca++ in Shoot Gravitropism. [avena

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.

    1985-01-01

    A cornerstone in the argument that Ca(2+) levels may regulate growth is the finding the EGTA promotes straight growth. The usual explanation for these results is that Ca(2+) chelation from cell walls results in wall loosening and thus accelerated straight growth. The ability of frozen-thawed Avena coleoptile tissue (subjected to 15g tension) to extend in response to EGTA and Quin II was examined. The EGTA when applied in weakly buffered (i.e., 0.1mM) neutral solutions initiates rapid extension. When the buffer strength is increased, similar concentrations of EGTA produce no growth response. This implies when EGTA liberated protons are released upon Ca(2+) chelation they can either initiate acid growth (low buffer conditions) or if consumed (high buffer conditions) have no effect. Thus Ca(2+) chelation in itself apparently does not result in straight growth.

  1. CaMath user`s guide

    SciTech Connect

    Cha, Ben-chin; Daly, B.

    1994-07-13

    CaMath is an external Mathematica package which can be loaded into Mathematica by a user. CaMath consists of a special set of channel access functions which provides the Mathematica users with easy and flexible access of channel information across the IOC networks. It also provides a complete set of process variable event monitoring functions. The available functions for CaMath, their functionality, and their syntax are described herein. This document also gives examples how a Mathematica user can interface to channel access devices. It is assumed that the user is already familiar with using Mathematica. Few examples of Mathematica module of using CaMath functions are also given in this document.

  2. CaWave user`s guide

    SciTech Connect

    Cha, Ben-chin

    1993-09-01

    CaWave User`s Guide explains how to use the CaWave functions which were specifically written in PV-WAVE command language and C language for EPICS users. CaWave consists of a special set of external channel access functions which provides the PV-WAVE users with easy and flexible access of channel information across the IOC networks. It also provides a complete set of process variable event monitoring functions. This document also gives examples how a PV-WAVE user can interface to channel access devices. It is assumed that the user is already familiar with using PV-WAVE. Few simple example modules of using PV-WAVE command language with CaWave functions are also given in this document.

  3. Ca Isotope Fractionation in the Hawaiian Ecosystem

    NASA Astrophysics Data System (ADS)

    Wiegand, B. A.; Chadwick, O. A.; Vitousek, P. M.; Wooden, J. L.

    2003-12-01

    Investigations of the nutrient budgets in Hawaiian soils show the sources of major cations to be weathering of volcanic rock, marine aerosols, and Asian dust inputs. Especially at deeply weathered sites older than 150 ka, soils show strong depletion of the macronutrient calcium. Most of the calcium supply in these soils is of atmospheric origin (marine aerosols and continental dust). In contrast, younger soils are mainly supplied by calcium from weathering of volcanic bedrock. Based on the results of previous studies using strontium isotopic signatures and Sr/Ca ratios (e.g. Kennedy et al. 1998, Chadwick et al. 1999, Whipkey et al. 2000, Stewart et al. 2001) we have conducted research focusing on the isotope composition of calcium as a new tool for the investigation of sources of calcium and biogeochemical processes effecting Ca isotope fractionation in the plant-soil system. The study combines δ 44Ca with 87Sr/86Sr and Sr/Ca data of soils (bulk compositions and extractable Ca and Sr from soil exchange sites) and different plant species including native Ohia trees (Metrosideros polymorpha) from a soil chronosequence along the Hawaiian Island chain. The study sites differ in age of the underlying substrate from 0.3 ka to 4,100 ka, but show similar recent climate (mean annual temperature of 16 ° C) and amount of precipitation (about 2,500 mm/y). 44Ca/40Ca ratios were measured on a MAT262 at Stanford University, using a 42Ca-48Ca double spike, and are reported as δ 44Ca values relative to seawater (δ 44Ca = 0 ‰ ). Results of the extractable, plant available calcium from six soil sites show δ 44Ca values in the range of +1.2 ‰ to -1.3 ‰ with generally more negative values related to younger soil sites where calcium is mainly derived from weathering of volcanic rocks. Bulk soil samples, however, show δ 44Ca values between -0.1 ‰ and -2.5 ‰ , indicating differences in composition as a result of contributions from volcanic minerals, continental dust, and

  4. The caBIG Terminology Review Process

    PubMed Central

    Cimino, James J.; Hayamizu, Terry F.; Bodenreider, Olivier; Davis, Brian; Stafford, Grace A.; Ringwald, Martin

    2009-01-01

    The National Cancer Institute (NCI) is developing an integrated biomedical informatics infrastructure, the cancer Biomedical Informatics Grid (caBIG®), to support collaboration within the cancer research community. A key part of the caBIG architecture is the establishment of terminology standards for representing data. In order to evaluate the suitability of existing controlled terminologies, the caBIG Vocabulary and Data Elements Workspace (VCDE WS) working group has developed a set of criteria that serve to assess a terminology's structure, content, documentation, and editorial process. This paper describes the evolution of these criteria and the results of their use in evaluating four standard terminologies: the Gene Ontology (GO), the NCI Thesaurus (NCIt), the Common Terminology for Adverse Events (known as CTCAE), and the laboratory portion of the Logical Objects, Identifiers, Names and Codes (LOINC). The resulting caBIG criteria are presented as a matrix that may be applicable to any terminology standardization effort. PMID:19154797

  5. Visualization of Ca2+-Induced Phospholipid Domains

    NASA Astrophysics Data System (ADS)

    Haverstick, Doris M.; Glaser, Michael

    1987-07-01

    Large vesicles (5-15 μ m) were formed by hydrating a dried lipid film containing phospholipids labeled with a fluorophore in one fatty acid chain. By using a fluorescence microscope attached to a low-light-intensity charge-coupled-device camera and digital-image processor, the vesicles were easily viewed and initially showed uniform fluorescence intensity across the surface. The fluorescence pattern of vesicles made with a fluorophore attached to phosphatidylcholine or phosphatidylethanolamine was unaffected by the presence of divalent cations such as Ca2+, Mg2+, Mn2+, Zn2+, or Cd2+. The fluorescence pattern of vesicles containing a fluorophore attached to the acidic phospholipids phosphatidylserine or phosphatidic acid showed distinct differences when treated with Ca2+ or Cd2+, although they were unaffected by Mg2+, Mn2+, or Zn2+. Treatment with 2.0 mM Ca2+ or Cd2+ resulted in the movement of the fluorophore to a single large patch on the surface of the vesicle. When vesicles were formed in the presence of 33 mol% cholesterol, patching was seen at a slightly lower Ca2+ concentration (1.0 mM). The possibility of interactions between Ca2+ and acidic phospholipids in plasma membranes was investigated by labeling erythrocytes and erythrocyte ghosts with fluorescent phosphatidic acid. When Ca2+ was added, multiple (five or six) small patches were seen per individual cell. The same pattern was observed when vesicles formed from whole lipid extracts of erythrocytes were labeled with fluorescent phosphatidic acid and then treated with Ca2+. This shows that the size and distribution of the Ca2+-induced domains depend on phospholipid composition.

  6. The influence of Ca²⁺ buffers on free [Ca²⁺] fluctuations and the effective volume of Ca²⁺ microdomains.

    PubMed

    Weinberg, Seth H; Smith, Gregory D

    2014-06-17

    Intracellular calcium (Ca(2+)) plays a significant role in many cell signaling pathways, some of which are localized to spatially restricted microdomains. Ca(2+) binding proteins (Ca(2+) buffers) play an important role in regulating Ca(2+) concentration ([Ca(2+)]). Buffers typically slow [Ca(2+)] temporal dynamics and increase the effective volume of Ca(2+) domains. Because fluctuations in [Ca(2+)] decrease in proportion to the square-root of a domain's physical volume, one might conjecture that buffers decrease [Ca(2+)] fluctuations and, consequently, mitigate the significance of small domain volume concerning Ca(2+) signaling. We test this hypothesis through mathematical and computational analysis of idealized buffer-containing domains and their stochastic dynamics during free Ca(2+) influx with passive exchange of both Ca(2+) and buffer with bulk concentrations. We derive Langevin equations for the fluctuating dynamics of Ca(2+) and buffer and use these stochastic differential equations to determine the magnitude of [Ca(2+)] fluctuations for different buffer parameters (e.g., dissociation constant and concentration). In marked contrast to expectations based on a naive application of the principle of effective volume as employed in deterministic models of Ca(2+) signaling, we find that mobile and rapid buffers typically increase the magnitude of domain [Ca(2+)] fluctuations during periods of Ca(2+) influx, whereas stationary (immobile) Ca(2+) buffers do not. Also contrary to expectations, we find that in the absence of Ca(2+) influx, buffers influence the temporal characteristics, but not the magnitude, of [Ca(2+)] fluctuations. We derive an analytical formula describing the influence of rapid Ca(2+) buffers on [Ca(2+)] fluctuations and, importantly, identify the stochastic analog of (deterministic) effective domain volume. Our results demonstrate that Ca(2+) buffers alter the dynamics of [Ca(2+)] fluctuations in a nonintuitive manner. The finding that Ca(2

  7. Ca2+ transients in cardiac myocytes measured with high and low affinity Ca2+ indicators.

    PubMed Central

    Berlin, J R; Konishi, M

    1993-01-01

    Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2

  8. Increased Ca buffering underpins remodelling of Ca(2+) handling in old sheep atrial myocytes.

    PubMed

    Clarke, Jessica D; Caldwell, Jessica L; Pearman, Charles M; Eisner, David A; Trafford, Andrew W; Dibb, Katharine M

    2017-07-28

    Ageing is associated with an increased risk of cardiovascular disease and arrhythmias, with the most common arrhythmia being found in the atria of the heart. Little is known about how the normal atria of the heart remodel with age and thus why dysfunction might occur. We report alterations to the atrial systolic Ca(2+) transient that have implications for the function of the atrial in the elderly. We describe a novel mechanism by which increased Ca buffering can account for changes to systolic Ca(2+) in the old atria. The present study helps us to understand how the processes regulating atrial contraction are remodelled during ageing and provides a basis for future work aiming to understand why dysfunction develops. Many cardiovascular diseases, including those affecting the atria, are associated with advancing age. Arrhythmias, including those in the atria, can arise as a result of electrical remodelling or alterations in Ca(2+) homeostasis. In the atria, age-associated changes in the action potential have been documented. However, little is known about remodelling of intracellular Ca(2+) homeostasis in the healthy aged atria. Using single atrial myocytes from young and old Welsh Mountain sheep, we show the free Ca(2+) transient amplitude and rate of decay of systolic Ca(2+) decrease with age, whereas sarcoplasmic reticulum (SR) Ca content increases. An increase in intracellular Ca buffering explains both the decrease in Ca(2+) transient amplitude and decay kinetics in the absence of any change in sarcoendoplasmic reticulum calcium transport ATPase function. Ageing maintained the integrated Ca(2+) influx via ICa-L but decreased peak ICa-L . Decreased peak ICa-L was found to be responsible for the age-associated increase in SR Ca content but not the decrease in Ca(2+) transient amplitude. Instead, decreased peak ICa-L offsets increased SR load such that Ca(2+) release from the SR was maintained during ageing. The results of the present study highlight a novel

  9. Efficient 41Ca measurements for biomedical applications

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Schulze-König, T.; Synal, H.-A.; Aeberli, I.; Zimmermann, M. B.

    2015-10-01

    We present the performance of 41Ca measurements using low-energy Accelerator Mass Spectrometry (AMS) at the 500 kV facility TANDY at ETH Zurich. We optimized the measurement procedure for biomedical applications where reliability and high sample throughput is required. The main challenge for AMS measurements of 41Ca is the interfering stable isobar 41K. We use a simplified sample preparation procedure to produce calcium fluoride (CaF2) and extract calcium tri-fluoride ions (CaF3-) ions to suppress the stable isobar 41K. Although 41K is not completely suppressed we reach 41Ca/40Ca background level in the 10-12 range which is adequate for biomedical studies. With helium as a stripper gas we can use charge state 2+ at high transmission (∼50%). The new measurement procedure with the approximately 10 × improved efficiency and the higher accuracy due to 41K correction allowed us to measure more than 600 samples for a large biomedical study within only a few weeks of measurement time.

  10. Identification of the neighborhood and CA rules from spatio-temporal CA patterns.

    PubMed

    Billings, S A; Yang, Yingxu

    2003-01-01

    Extracting the rules from spatio-temporal patterns generated by the evolution of cellular automata (CA) usually produces a CA rule table without providing a clear understanding of the structure of the neighborhood or the CA rule. In this paper, a new identification method based on using a modified orthogonal least squares or CA-OLS algorithm to detect the neighborhood structure and the underlying polynomial form of the CA rules is proposed. The Quine-McCluskey method is then applied to extract minimum Boolean expressions from the polynomials. Spatio-temporal patterns produced by the evolution of 1D, 2D, and higher dimensional binary CAs are used to illustrate the new algorithm, and simulation results show that the CA-OLS algorithm can quickly select both the correct neighborhood structure and the corresponding rule.

  11. X-Ray Data on Extraterrestrial CA Dialuminate (CaAl4O7)

    NASA Astrophysics Data System (ADS)

    Weber, D.; Ross, C. R., II; Bischoff, A.

    1993-07-01

    After the first discovery of Ca-dialuminate (CaAl4O7) in Allende [1], in recent years this phase has been found in several carbonaceous chondrites. Ca- dialuminate is a major phase in Ca,Al-rich inclusions from ALH85085 (e.g., [2]) and a dominating phase in CAIs from Acfer 182 ([3,4]). X-ray data on Ca-dialuminate are known from synthetic (e.g., [5-8]; cell constants) and terrestrial CaAl4O7 ([9]; only d-spacings), but are not available from extraterrestrial Ca-dialuminate. We report here the results of the first X-ray study of extraterrestrial Ca- dialuminate. The data (Table 1) were obtained by microdiffraction using a Rigaku PSPC microdiffractometer at the Bayerisches Geoinstitut. Ni-filtered Cr radiation was used with a direct beam diameter of about 50 micrometers. This powder diffraction method allows in situ measurement of polycrystalline Ca- dialuminate in a thin section. The CaAl4O7-rich inclusion 022/9 described in [4], consisting of a ~200-micrometer-sized core of Ca-dialuminate surrounded by layers of melilite and Ca-pyroxene, was chosen for analysis. The polycrystalline core contains only a small number of tiny inclusions (especially perovskite) and is therefore an excellent candidate for an X-ray study. For determination of the d-spacings of Ca-dialuminate an external standard (Ag6Ge10P12) was used for detector calibration. A large number of reflections could be indexed based upon comparison with the X-ray pattern of synthetic CaAl4O7 available in the JCPDS compilation [7]. The comparison was simplified because of the high purity of CaAl4O7 in inclusion 022/9 [4], and suggests the same structure for synthetic and extraterrestrial Ca-dialuminate. For determination of lattice parameters (cell constants, cell volume) refinement calculations were made based on 14 reflections (Table 1). The data for extraterrestrial CaAl4O7 shown in Table 1 indicate a close similarity to those obtained for synthetic CaAl4O7. The cell constants a, b, and therefore the cell

  12. Sarcolemmal Ca(2+)-entry through L-type Ca(2+) channels controls the profile of Ca(2+)-activated Cl(-) current in canine ventricular myocytes.

    PubMed

    Horváth, Balázs; Váczi, Krisztina; Hegyi, Bence; Gönczi, Mónika; Dienes, Beatrix; Kistamás, Kornél; Bányász, Tamás; Magyar, János; Baczkó, István; Varró, András; Seprényi, György; Csernoch, László; Nánási, Péter P; Szentandrássy, Norbert

    2016-08-01

    Ca(2+)-activated Cl(-) current (ICl(Ca)) mediated by TMEM16A and/or Bestrophin-3 may contribute to cardiac arrhythmias. The true profile of ICl(Ca) during an actual ventricular action potential (AP), however, is poorly understood. We aimed to study the profile of ICl(Ca) systematically under physiological conditions (normal Ca(2+) cycling and AP voltage-clamp) as well as in conditions designed to change [Ca(2+)]i. The expression of TMEM16A and/or Bestrophin-3 in canine and human left ventricular myocytes was examined. The possible spatial distribution of these proteins and their co-localization with Cav1.2 was also studied. The profile of ICl(Ca), identified as a 9-anthracene carboxylic acid-sensitive current under AP voltage-clamp conditions, contained an early fast outward and a late inward component, overlapping early and terminal repolarizations, respectively. Both components were moderately reduced by ryanodine, while fully abolished by BAPTA, but not EGTA. [Ca(2+)]i was monitored using Fura-2-AM. Setting [Ca(2+)]i to the systolic level measured in the bulk cytoplasm (1.1μM) decreased ICl(Ca), while application of Bay K8644, isoproterenol, and faster stimulation rates increased the amplitude of ICl(Ca). Ca(2+)-entry through L-type Ca(2+) channels was essential for activation of ICl(Ca). TMEM16A and Bestrophin-3 showed strong co-localization with one another and also with Cav1.2 channels, when assessed using immunolabeling and confocal microscopy in both canine myocytes and human ventricular myocardium. Activation of ICl(Ca) in canine ventricular cells requires Ca(2+)-entry through neighboring L-type Ca(2+) channels and is only augmented by SR Ca(2+)-release. Substantial activation of ICl(Ca) requires high Ca(2+) concentration in the dyadic clefts which can be effectively buffered by BAPTA, but not EGTA.

  13. Autophosphorylation-based Calcium (Ca2+) Sensitivity Priming and Ca2+/Calmodulin Inhibition of Arabidopsis thaliana Ca2+-dependent Protein Kinase 28 (CPK28)*♦

    PubMed Central

    Blackburn, R. Kevin; Monaghan, Jacqueline; Derbyshire, Paul; Menke, Frank L. H.; Zipfel, Cyril; Goshe, Michael B.; Zielinski, Raymond E.; Huber, Steven C.

    2017-01-01

    Plant calcium (Ca2+)-dependent protein kinases (CPKs) represent the primary Ca2+-dependent protein kinase activities in plant systems. CPKs are composed of a dual specificity (Ser/Thr and Tyr) kinase domain tethered to a calmodulin-like domain (CLD) via an autoinhibitory junction (J). Although regulation of CPKs by Ca2+ has been extensively studied, the contribution of autophosphorylation in controlling CPK activity is less well understood. Furthermore, whether calmodulin (CaM) contributes to CPK regulation, as is the case for Ca2+/CaM-dependent protein kinases outside the plant lineage, remains an open question. We therefore screened a subset of plant CPKs for CaM binding and found that CPK28 is a high affinity Ca2+/CaM-binding protein. Using synthetic peptides and native gel electrophoresis, we coarsely mapped the CaM-binding domain to a site within the CPK28 J domain that overlaps with the known site of intramolecular interaction between the J domain and the CLD. Peptide kinase activity of fully dephosphorylated CPK28 was Ca2+-responsive and was inhibited by Ca2+/CaM. Using in situ autophosphorylated protein, we expand on the known set of CPK28 autophosphorylation sites, and we demonstrate that, unexpectedly, autophosphorylated CPK28 had enhanced kinase activity at physiological concentrations of Ca2+ compared with the dephosphorylated protein, suggesting that autophosphorylation functions to prime CPK28 for Ca2+ activation and might also allow CPK28 to remain active when Ca2+ levels are low. Furthermore, CPK28 autophosphorylation substantially reduced sensitivity of the kinase to Ca2+/CaM inhibition. Overall, our analyses uncover new complexities in the control of CPK28 and provide mechanistic support for Ca2+ signaling specificity through Ca2+ sensor priming. PMID:28154194

  14. Imperforate hymen with elevated serum CA 125 and CA 19-9 levels.

    PubMed

    Sak, Muhammet Erdal; Evsen, Mehmet Siddik; Soydinc, Hatice Ender; Sak, Sibel; Yalinkaya, Ahmet

    2013-01-01

    To report the clinical characteristics of 14 patients with imperforate hymen and their levels of tumor markers (CA 19-9 and CA 125). Fourteen patients with imperforate hymen who followed-up between September 2006 and September 2010 in the Department of Obstetrics and Gynecology, Dicle University School of Medicine, Diyarbakir, Turkey, were evaluated retrospectively. The clinical features and the management of the patients are discussed. The mean age of the patients was 13.8 years. All patients had primary amenorrhea and pelvic pain. The most common clinical symptoms were cryptomenorrhea in 14 patients, pelvic pain in 11, palpable abdominal mass in 6, voiding difficulties in 7, and defecation problems in 2. In 6 patients with palpable pelvic mass, the mean + standard deviation values of tumor markers were as follows: CA 125, 84.0 +/- 23.7 and CA 19-9, 162 +/- 189. One week after surgery we measured CA 125 and CA 19-9 levels once again. The postoperative mean CA 125 level was 13.8 +/- 3.6, and the mean postoperative CA 19-9 level was 17.5 +/- 3.5. Preoperative levels of CA 125 and CA 19-9 were significantly higher than those of the postoperative period (p < 0.001 for both comparisons). Six patients were treated by T-shaped incision and 8 patients by a central surgical incision through the hymenal membrane. Diagnosis of imperforate hymen is very important before undergoing surgery in a different clinic. Many patients have seen several doctors before receiving a clear diagnosis and have had tumor markers evaluated because the presence of pelvic mass in patients suggests the possibility of a gynecologic malignancy. Imperforate hymen is one of the benign conditions that increase serum CA 125 and CA 19-9 levels and which is not listed in the classical medical textbooks. These markers are not needed for the diagnosis.

  15. Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes.

    PubMed

    Tombes, Robert M; Faison, M Omar; Turbeville, J M

    2003-12-11

    The "multi-functional" Ca(2+) and calmodulin-dependent protein kinase, type II (CaMK-II) is an evolutionarily conserved protein. It has been found as a single gene in the horseshoe crab, marine sponge, sea urchin, nematode, and fruit fly, whereas most vertebrates possess four genes (alpha, beta, gamma, and delta). Species from fruit flies to humans encode alternative splice variants which are differentially targeted to phosphorylate diverse downstream targets of Ca(2+) signaling. By comparing known CaMK-II protein and nucleotide sequences, we have now provided evidence for the evolutionary relatedness of CaMK-IIs. Parsimony analyses unambiguously indicate that the four vertebrate CaMK-II genes arose via repeated duplications. Nucleotide phylogenies show consistent but moderate support for the placement of the vertebrate delta CaMK-II as the earliest diverging vertebrate gene. delta CaMK-II is the only gene with both central and C-terminal variable domains and has three to four times more intronic sequence than the other three genes. beta and gamma CaMK-II genes show strong sequence similarity and have comparable exon and intron organization and utilization. alpha CaMK-II is absent from amphibians (Xenopus laevis) and has the most restricted tissue specificity in mammals, whereas beta, gamma, and delta CaMK-IIs are expressed in most tissues. All 38 known mammalian CaMK-II splice variants were compiled with their tissue specificity and exon usage. Some of these variants use alternative 5' and 3' donors within a single exon as well as alternative promoters. These findings serve as an important benchmark for future phylogenetic, developmental, or biochemical studies on this important, conserved, and highly regulated gene family.

  16. Regulation of RYR1 activity by Ca(2+) and calmodulin

    NASA Technical Reports Server (NTRS)

    Rodney, G. G.; Williams, B. Y.; Strasburg, G. M.; Beckingham, K.; Hamilton, S. L.

    2000-01-01

    The skeletal muscle calcium release channel (RYR1) is a Ca(2+)-binding protein that is regulated by another Ca(2+)-binding protein, calmodulin. The functional consequences of calmodulin's interaction with RYR1 are dependent on Ca(2+) concentration. At nanomolar Ca(2+) concentrations, calmodulin is an activator, but at micromolar Ca(2+) concentrations, calmodulin is an inhibitor of RYR1. This raises the question of whether the Ca(2+)-dependent effects of calmodulin on RYR1 function are due to Ca(2+) binding to calmodulin, RYR1, or both. To distinguish the effects of Ca(2+) binding to calmodulin from those of Ca(2+) binding to RYR1, a mutant calmodulin that cannot bind Ca(2+) was used to evaluate the effects of Ca(2+)-free calmodulin on Ca(2+)-bound RYR1. We demonstrate that Ca(2+)-free calmodulin enhances the affinity of RYR1 for Ca(2+) while Ca(2+) binding to calmodulin converts calmodulin from an activator to an inhibitor. Furthermore, Ca(2+) binding to RYR1 enhances its affinity for both Ca(2+)-free and Ca(2+)-bound calmodulin.

  17. Regulation of RYR1 activity by Ca(2+) and calmodulin

    NASA Technical Reports Server (NTRS)

    Rodney, G. G.; Williams, B. Y.; Strasburg, G. M.; Beckingham, K.; Hamilton, S. L.

    2000-01-01

    The skeletal muscle calcium release channel (RYR1) is a Ca(2+)-binding protein that is regulated by another Ca(2+)-binding protein, calmodulin. The functional consequences of calmodulin's interaction with RYR1 are dependent on Ca(2+) concentration. At nanomolar Ca(2+) concentrations, calmodulin is an activator, but at micromolar Ca(2+) concentrations, calmodulin is an inhibitor of RYR1. This raises the question of whether the Ca(2+)-dependent effects of calmodulin on RYR1 function are due to Ca(2+) binding to calmodulin, RYR1, or both. To distinguish the effects of Ca(2+) binding to calmodulin from those of Ca(2+) binding to RYR1, a mutant calmodulin that cannot bind Ca(2+) was used to evaluate the effects of Ca(2+)-free calmodulin on Ca(2+)-bound RYR1. We demonstrate that Ca(2+)-free calmodulin enhances the affinity of RYR1 for Ca(2+) while Ca(2+) binding to calmodulin converts calmodulin from an activator to an inhibitor. Furthermore, Ca(2+) binding to RYR1 enhances its affinity for both Ca(2+)-free and Ca(2+)-bound calmodulin.

  18. Physical conditions in CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Krogulec, M.

    2008-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.

  19. Modulation of Ca(2+) release and Ca(2+) oscillations in HeLa cells and fibroblasts by mitochondrial Ca(2+) uniporter stimulation.

    PubMed

    Vay, Laura; Hernández-Sanmiguel, Esther; Santo-Domingo, Jaime; Lobatón, Carmen D; Moreno, Alfredo; Montero, Mayte; Alvarez, Javier

    2007-04-01

    The recent availability of activators of the mitochondrial Ca(2+) uniporter allows direct testing of the influence of mitochondrial Ca(2+) uptake on the overall Ca(2+) homeostasis of the cell. We show here that activation of mitochondrial Ca(2+) uptake by 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) or kaempferol stimulates histamine-induced Ca(2+) release from the endoplasmic reticulum (ER) and that this effect is enhanced if the mitochondrial Na(+)-Ca(2+) exchanger is simultaneously inhibited with CGP37157. This suggests that both Ca(2+) uptake and release from mitochondria control the ability of local Ca(2+) microdomains to produce feedback inhibition of inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). In addition, the ability of mitochondria to control Ca(2+) release from the ER allows them to modulate cytosolic Ca(2+) oscillations. In histamine stimulated HeLa cells and human fibroblasts, both PPT and kaempferol initially stimulated and later inhibited oscillations, although kaempferol usually induced a more prolonged period of stimulation. Both compounds were also able to induce the generation of Ca(2+) oscillations in previously silent fibroblasts. Our data suggest that cytosolic Ca(2+) oscillations are exquisitely sensitive to the rates of mitochondrial Ca(2+) uptake and release, which precisely control the size of the local Ca(2+) microdomains around InsP(3)Rs and thus the ability to produce feedback activation or inhibition of Ca(2+) release.

  20. Modulation of Ca2+ release and Ca2+ oscillations in HeLa cells and fibroblasts by mitochondrial Ca2+ uniporter stimulation

    PubMed Central

    Vay, Laura; Hernández-SanMiguel, Esther; Santo-Domingo, Jaime; Lobatón, Carmen D; Moreno, Alfredo; Montero, Mayte; Alvarez, Javier

    2007-01-01

    The recent availability of activators of the mitochondrial Ca2+ uniporter allows direct testing of the influence of mitochondrial Ca2+ uptake on the overall Ca2+ homeostasis of the cell. We show here that activation of mitochondrial Ca2+ uptake by 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) or kaempferol stimulates histamine-induced Ca2+ release from the endoplasmic reticulum (ER) and that this effect is enhanced if the mitochondrial Na+–Ca2+ exchanger is simultaneously inhibited with CGP37157. This suggests that both Ca2+ uptake and release from mitochondria control the ability of local Ca2+ microdomains to produce feedback inhibition of inositol 1,4,5-trisphosphate receptors (InsP3Rs). In addition, the ability of mitochondria to control Ca2+ release from the ER allows them to modulate cytosolic Ca2+ oscillations. In histamine stimulated HeLa cells and human fibroblasts, both PPT and kaempferol initially stimulated and later inhibited oscillations, although kaempferol usually induced a more prolonged period of stimulation. Both compounds were also able to induce the generation of Ca2+ oscillations in previously silent fibroblasts. Our data suggest that cytosolic Ca2+ oscillations are exquisitely sensitive to the rates of mitochondrial Ca2+ uptake and release, which precisely control the size of the local Ca2+ microdomains around InsP3Rs and thus the ability to produce feedback activation or inhibition of Ca2+ release. PMID:17234694

  1. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation.

    PubMed

    Samanta, Krishna; Douglas, Sophie; Parekh, Anant B

    2014-01-01

    Ca2+ flux into mitochondria is an important regulator of cytoplasmic Ca2+ signals, energy production and cell death pathways. Ca2+ uptake can occur through the recently discovered mitochondrial uniporter channel (MCU) but whether the MCU is involved in shaping Ca2+ signals and downstream responses to physiological levels of receptor stimulation is unknown. Here, we show that modest stimulation of leukotriene receptors with the pro-inflammatory signal LTC4 evokes a series of cytoplasmic Ca2+ oscillations that are rapidly and faithfully propagated into mitochondrial matrix. Knockdown of MCU or mitochondrial depolarisation, to reduce the driving force for Ca2+ entry into the matrix, prevents the mitochondrial Ca2+ rise and accelerates run down of the oscillations. The loss of cytoplasmic Ca2+ oscillations appeared to be a consequence of enhanced Ca2+-dependent inactivation of InsP3 receptors, which arose from the loss of mitochondrial Ca2+ buffering. Ca2+ dependent gene expression in response to leukotriene receptor activation was suppressed following knockdown of the MCU. In addition to buffering Ca2+ release, mitochondria also sequestrated Ca2+ entry through store-operated Ca2+ channels and this too was prevented following loss of MCU. MCU is therefore an important regulator of physiological pulses of cytoplasmic Ca2+.

  2. Role of [Ca2+]i in "Ca2+ stores depletion-Ca2+ entry coupling' in fibroblasts expressing the rat neurotensin receptor.

    PubMed Central

    Gailly, P; Hermans, E; Gillis, J M

    1996-01-01

    1. Transfected Chinese hamster ovary fibroblasts expressing the rat neurotensin receptor were used to study the 'Ca2+ stores depletion-Ca2+ entry coupling' which follows stimulation with neurotensin and liberation of InsP3. 2. This coupling could be dissociated in time. Firstly, stores depletion was produced by neurotensin or thapsigargin which caused a first [Ca2+]i transient in a Ca(2+)-free external medium. Secondly, readmission of external Ca2+ produced an influx of Ca2+ and a second [Ca2+]i transient. 3. Various concentrations of thapsigargin (20 nM to 1 microM) were used to produce complete stores depletion with small or large first peaks of [Ca2+]i. Upon return to external Ca2+, small or large second [Ca2+]i peaks were observed. The amplitudes of both peaks were positively correlated. 4. The Ca2+ entry which followed stores depletion could occur at very low basal values of [Ca2+]i, was accelerated by okadaic acid and inhibited by staurosporine and the calmodulin antagonist W-7. 5. It is concluded that the rise in [Ca2+]i during Ca2+ stores depletion is an essential parameter which determines the size of the subsequent Ca2+ entry. PMID:8815199

  3. Spatial Ca(2+) profiling: decrypting the universal cytosolic Ca(2+) oscillation.

    PubMed

    Samanta, Krishna; Parekh, Anant B

    2016-11-17

    Stimulation of cell-surface receptors that couple to phospholipase C to generate the second messenger inositol trisphosphate often evokes repetitive oscillations in cytosolic Ca(2+) . Signalling information is encoded in both the amplitude and frequency of the Ca(2+) spikes. Recent studies have revealed that the spatial profile of the oscillation also imparts signalling power; Ca(2+) microdomains near store-operated CRAC channels in the plasma membrane and inositol trisphosphate-gated channels in the endoplasmic reticulum both signal to distinct downstream targets. Spatial profiling therefore increases the transduction power of the universal oscillatory cytosolic Ca(2+) signal.

  4. Negative feedback from CaSR signaling to aquaporin-2 sensitizes vasopressin to extracellular Ca2.

    PubMed

    Ranieri, Marianna; Tamma, Grazia; Di Mise, Annarita; Russo, Annamaria; Centrone, Mariangela; Svelto, Maria; Calamita, Giuseppe; Valenti, Giovanna

    2015-07-01

    We previously described that high luminal Ca(2+) in the renal collecting duct attenuates short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through activation of the Ca(2+)-sensing receptor (CaSR). Here, we evaluated AQP2 phosphorylation and permeability, in both renal HEK-293 cells and in the dissected inner medullary collecting duct, in response to specific activation of CaSR with NPS-R568. In CaSR-transfected cells, CaSR activation drastically reduced the basal levels of AQP2 phosphorylation at S256 (AQP2-pS256), thus having an opposite effect to vasopressin action. When forskolin stimulation was performed in the presence of NPS-R568, the increase in AQP2-pS256 and in the osmotic water permeability were prevented. In the freshly isolated inner mouse medullar collecting duct, stimulation with forskolin in the presence of NPS-R568 prevented the increase in AQP2-pS256 and osmotic water permeability. Our data demonstrate that the activation of CaSR in the collecting duct prevents the cAMP-dependent increase in AQP2-pS256 and water permeability, counteracting the short-term vasopressin response. By extension, our results suggest the attractive concept that CaSR expressed in distinct nephron segments exerts a negative feedback on hormones acting through cAMP, conferring high sensitivity of hormone to extracellular Ca(2+).

  5. Radioisotope tracer studies of inorganic carbon and Ca in microbially derived CaCO3

    USGS Publications Warehouse

    Yates, Kimberly K.; Robbins, Lisa L.

    1999-01-01

    Microbial calcification significantly impacts the cycling and deposition of inorganic carbon. This research employs 45Ca and 14C techniques as radioisotopic tracers to examine the role of cellular cycling of Ca2+ and inorganic carbon in CaCO3 precipitation by the unicellular green alga Nannochloris atomus. Implications of the effects of these physiological aspects on CaCO3 precipitation and the effects of microbial calcification on CaCO3 δ13C ratios are discussed. Results from pulse/chase experiments indicate that intracellular Ca2+ is incorporated into extracellular CaCO3. Intracellular inorganic carbon leaks from cells within 10 to 12 s after injection of unlabelled NaHCO3, providing a source of inorganic carbon for extracellular CaCO3. Cellular expulsion of calcium plays a key role in increasing the CaCO3 saturation state at the site of calcification. The δ13C ratios of microbial carbonates may vary depending on the amount of photorespiratory CO2 incorporated.

  6. Mg/Ca of Continental Ostracode Shells

    NASA Astrophysics Data System (ADS)

    Ito, E.; Forester, R. M.; Marco-Barba, J.; Mezquita, F.

    2007-12-01

    Marine ionic chemistry is thought to remain constant. This, together with the belief that marine calcifiers partition Mg/Ca in a systematic manner as functions of temperature (and Mg/Ca) of water forms the basis of the Mg/Ca thermometer. In continental settings both of these assumptions are usually not true. Continental waters contain a wide variety of solutes in absolute and relative ion concentrations. Hence, waters with identical Mg/Ca may have very different concentrations of Mg and Ca and very different anions. Here we use two examples to focus on the effects of ion chemistry on Mg/Ca partitioning in continental ostracode shells and we ignore the complexities of solute evolution, which can change Mg/Ca over timescales of minutes to millennia. Palacios-Fest and Dettman (2001) conducted a monthly study of ,Cypridopsis vidua at El Yeso Lake in Sonora, Mexico. They established a relation between temperature and average shell Mg/Ca using regression analyses on averaged data. When their Mg/Ca-temperature relation is applied to monthly ,C. vidua data from Page Pond near Cleveland, Ohio, water temperatures of -8 to -1°C are obtained. The observed Mg/Ca ranges for El Yeso Lake (0.31 to 0.46) and Page Pond (0.33 to 0.46) are similar, as are their specific conductivities (700 to 850μS for El Yeso Lake; 400 to 600μS for Page Pond). However, [Ca] is 140-260 mg/L for El Yeso, but only 70-90 mg/L for Page Pond. Page Pond data, in fact, shows a good temperature shell Mg/Ca relation for .C. vidua, but the relation is different from that at El Yeso. Hence, shell Mg/Ca is a multi-valued, family of curves function of temperature and Mg/Ca of water that depends on the [Mg] and [Ca] values in water and perhaps other factors. Our second example comes from sites near Valencia, Spain and involves shell data for ,Cyprideis torosa, an estuarine ostracode that is tolerant of a wide range of salinity and can live in continental waters as long as the carbonate alkalinity to Ca ratio is

  7. The Phosphatase-Resistant Isoform of CaMKI, Ca²⁺/Calmodulin-Dependent Protein Kinase Iδ (CaMKIδ), Remains in Its "Primed" Form without Ca²⁺ Stimulation.

    PubMed

    Senga, Yukako; Ishida, Atsuhiko; Shigeri, Yasushi; Kameshita, Isamu; Sueyoshi, Noriyuki

    2015-06-16

    Ca²⁺/calmodulin-dependent protein kinase I (CaMKI) is known to play pivotal roles in Ca²⁺ signaling pathways. Four isoforms of CaMKI (α, β, γ, and δ) have been reported so far. CaMKI is activated through phosphorylation by the upstream kinase, CaMK kinase (CaMKK), and phosphorylates downstream targets. When CaMKI was transiently expressed in 293T cells, CaMKIα was not phosphorylated at all under low-Ca²⁺ conditions in the cells. In contrast, we found that CaMKIδ was significantly phosphorylated and activated to phosphorylate cAMP response element-binding protein (CREB) under the same conditions. Herein, we report that the sustained activation of CaMKIδ is ascribed to its phosphatase resistance resulting from the structure of its N-terminal region. First, we examined whether CaMKIδ is more readily phosphorylated by CaMKK than CaMKIα, but no significant difference was observed. Next, to compare the phosphatase resistance between CaMKIα and CaMKIδ, we assessed the dephosphorylation of the phosphorylated CaMKIs by CaMK phosphatase (CaMKP/PPM1F). Surprisingly, CaMKIδ was hardly dephosphorylated by CaMKP, whereas CaMKIα was significantly dephosphorylated under the same conditions. To date, there have been no detailed reports concerning dephosphorylation of CaMKI. Through extensive analysis of CaMKP-catalyzed dephosphorylation of various chimeric and point mutants of CaMKIδ and CaMKIα, we identified the amino acid residues responsible for the phosphatase resistance of CaMKIδ (Pro-57, Lys-62, Ser-66, Ile-68, and Arg-76). These results also indicate that the phosphatase resistance of CaMKI is largely affected by only several amino acids in its N-terminal region. The phosphatase-resistant CaMKI isoform may play a physiological role under low-Ca²⁺ conditions in the cells.

  8. Imperforate hymen: a new benign reason for highly elevated serum CA 19.9 and CA 125 levels.

    PubMed

    Buyukbayrak, Esra Esim; Ozyapi, Ayse Gul; Karsidag, Yasemin Karageyim; Pirimoglu, Zehra Meltem; Unal, Orhan; Turan, Cem

    2008-05-01

    Imperforate hymen is a urogenital tract anomaly that represents the most frequent congenital malformation of the female genital tract. CA 19-9 and CA 125 are widely used as tumor markers, however several benign conditions are also known to increase serum CA 19-9 and CA 125 levels. According to classical textbook knowledge, imperforate hymen is not listed under the benign conditions that increase serum CA 19-9 and CA 125 levels. In this case report we describe a relation between imperforate hymen and elevated serum CA 19-9 and CA 125 levels.

  9. Functional expression of Na-Ca exchanger clones measured with the fluorescent Ca(2+)-indicating dye fluo-3.

    PubMed

    Schnetkamp, P P

    1996-01-01

    The process of Ca2+ homeostasis is of prime importance to all cells because of the ubiquitous role of cytoplasmic Ca2+ as an intracellular messenger and the cytotoxicity of sustained elevated cytosolic Ca2+ concentrations. Two classes of plasma membrane proteins are responsible for maintaining cytosolic free Ca2+ in the submicromolar range against a very large electrochemical Ca2+ gradient across the plasma membrane, the ATP-driven Ca2+ pump and Na-Ca exchangers. Two types of Na-Ca exchangers are known, the 3Na:1Ca exchangers found in heart, brain, kidney, and most other tissues and the 4Na:1Ca+ 1K exchanger found in retinal rod and cone photoreceptors. Functional expression of Na-Ca(/K) exchangers is most often measured as 45Ca uptake in Na(+)-loaded cells or as Na-Ca exchange currents with the giant excised patch technique. In this study, two functional assays used to detect expression of the bovine heart Na-Ca exchanger in CHO cells are described. Both assays are based on measurements of cytosolic free Ca2+ with the fluorescent Ca(2+)-indicating dye fluo-3 and should be equally applicable in the study of functional expression of both Na-Ca and Na-Ca/K exchanger clones.

  10. Na/Ca exchange and contraction of the heart

    PubMed Central

    Ottolia, Michela; Torres, Natalia; Bridge, John H. B.; Philipson, Kenneth D.; Goldhaber, Joshua I.

    2013-01-01

    Sodium-calcium exchange (NCX) is the major calcium (Ca) efflux mechanism of ventricular cardiomyocytes. Consequently the exchanger plays a critical role in the regulation of cellular Ca content and hence contractility. Reductions in Ca efflux by the exchanger, such as those produced by elevated intracellular sodium (Na) in response to cardiac glycosides, raise sarcoplasmic reticulum (SR) Ca stores. The result is an increased Ca transient and cardiac contractility. Enhanced Ca efflux activity by the exchanger, for example during heart failure, may reduce diadic cleft Ca and excitation-contraction (EC) coupling gain. This aggravates the impaired contractility associated with SR Ca ATPase dysfunction and reduced SR Ca load in failing heart muscle. Recent data from our laboratories indicate that NCX can also impact the efficiency of EC coupling and contractility independent of SR Ca load through diadic cleft priming with Ca during the upstroke of the action potential. PMID:23770352

  11. Ionizing radiation regulates cardiac Ca handling via increased ROS and activated CaMKII.

    PubMed

    Sag, Can M; Wolff, Hendrik A; Neumann, Kay; Opiela, Marie-Kristin; Zhang, Juqian; Steuer, Felicia; Sowa, Thomas; Gupta, Shamindra; Schirmer, Markus; Hünlich, Mark; Rave-Fränk, Margret; Hess, Clemens F; Anderson, Mark E; Shah, Ajay M; Christiansen, Hans; Maier, Lars S

    2013-11-01

    Ionizing radiation (IR) is an integral part of modern multimodal anti-cancer therapies. IR involves the formation of reactive oxygen species (ROS) in targeted tissues. This is associated with subsequent cardiac dysfunction when applied during chest radiotherapy. We hypothesized that IR (i.e., ROS)-dependently impaired cardiac myocytes' Ca handling might contribute to IR-dependent cardiocellular dysfunction. Isolated ventricular mouse myocytes and the mediastinal area of anaesthetized mice (that included the heart) were exposed to graded doses of irradiation (sham 4 and 20 Gy) and investigated acutely (after ~1 h) as well as chronically (after ~1 week). IR induced a dose-dependent effect on myocytes' systolic function with acutely increased, but chronically decreased Ca transient amplitudes, which was associated with an acutely unaltered but chronically decreased sarcoplasmic reticulum (SR) Ca load. Likewise, in vivo echocardiography of anaesthetized mice revealed acutely enhanced left ventricular contractility (strain analysis) that declined after 1 week. Irradiated myocytes showed persistently increased diastolic SR Ca leakage, which was acutely compensated by an increase in SR Ca reuptake. This was reversed in the chronic setting in the face of slowed relaxation kinetics. As underlying cause, acutely increased ROS levels were identified to activate Ca/calmodulin-dependent protein kinase II (CaMKII). Accordingly, CaMKII-, but not PKA-dependent phosphorylation sites of the SR Ca release channels (RyR2, at Ser-2814) and phospholamban (at Thr-17) were found to be hyperphosphorylated following IR. Conversely, ROS-scavenging as well as CaMKII-inhibition significantly attenuated CaMKII-activation, disturbed Ca handling, and subsequent cellular dysfunction upon irradiation. Targeted cardiac irradiation induces a biphasic effect on cardiac myocytes Ca handling that is associated with chronic cardiocellular dysfunction. This appears to be mediated by increased oxidative

  12. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia.

    PubMed

    Alexander, R Todd; Beggs, Megan R; Zamani, Reza; Marcussen, Niels; Frische, Sebastian; Dimke, Henrik

    2015-10-01

    Plasma membrane Ca(2+)-ATPases (PMCAs) participate in epithelial Ca(2+) transport and intracellular Ca(2+) signaling. The Pmca4 isoform is enriched in distal nephron isolates and decreased in mice lacking the epithelial transient receptor potential vanilloid 5 Ca(2+) channel. We therefore hypothesized that Pmca4 plays a significant role in transcellular Ca(2+) flux and investigated the localization and regulation of Pmca4 in Ca(2+)-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestines, whereas pan-specific Pmca antibodies detected Pmca1 in lateral membranes of enterocytes. In the kidney, Pmca4 showed broad localization to the distal nephron. In the mouse, expression was most abundant in segments coexpressing the epithelial ransient receptor potential vanilloid 5 Ca(2+) channel. Significant, albeit lower, expression was also evident in the region encompassing the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In the human kidney, a similar pattern of distribution was observed, with the highest PMCA4 expression in Na(+)-Cl(-) cotransporter-positive tubules. Electron microscopy demonstrated Pmca4 localization in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca(2+) balance, pointing to a housekeeping function of the pump in Ca(2+)-transporting epithelia. In conclusion, Pmca4 shows a divergent expression pattern in Ca(2+)-transporting epithelia, inferring diverse roles for this isoform not limited to transepithelial Ca(2+) transport.

  13. Charge states of Ca atoms in {beta}-dicalcium silicate

    SciTech Connect

    Mori, Kazuhiro . E-mail: kmori@rri.kyoto-u.ac.jp; Kiyanagi, Ryoji; Yonemura, Masao; Iwase, Kenji; Sato, Takashi; Itoh, Keiji; Sugiyama, Masaaki; Kamiyama, Takashi; Fukunaga, Toshiharu

    2006-11-15

    In order to study the crystal structure of {beta}-bar Ca{sub 2}SiO{sub 4}, time-of-flight neutron powder diffraction experiments were carried out at temperatures between room temperature (RT) and 600 deg. C. Rietveld refinement at RT has shown that {beta}-bar Ca{sub 2}SiO{sub 4} is monoclinic based on P2{sub 1}/n symmetry and two different types of Ca sites, Ca(1) and Ca(2). All interatomic distances within 3A were calculated, with the valences of Ca(1) with seven Ca-O bonds and Ca(2) with eight were estimated to be 1.87+ and 2+ by the Zachariasen-Brown-Altermatt formula (bond valence sum). Applying charge neutrality the two charge states of Ca in {beta}-bar Ca{sub 2}SiO{sub 4} are [Ca(1)SiO{sub 4}]{sup 2-} and Ca(2){sup 2+}, respectively. Furthermore, the [Ca(1)SiO{sub 4}]{sup 2-} unit has the shortest Ca-O distance, and its length kept constant at 2.23A at all temperatures. In the short-range structure analysis at RT, the shortest Ca-O bond was also observed in a radial distribution function. These results imply that the [Ca(1)SiO{sub 4}]{sup 2-} unit has covalency on the shortest Ca-O in addition to Si-O.

  14. Control of ciliary motility by Ca sup 2+ : Integration of Ca sup 2+ -dependent functions and targets for Ca sup 2+ action

    SciTech Connect

    Evans, T.C.

    1988-01-01

    To identify functions that regulate Ca{sup 2+}-induced ciliary reversal in Paramecium, mutants defective in terminating depolarization-induced backward swimming were selected. Six independent recessive mutations (k-shy) comprising two complementation groups, k-shyA and k-shyB, were identified. All mutants exhibited prolonged backward swimming in depolarizing solutions. Voltage clamp studies revealed that mutant Ca{sup 2+} current amplitudes were reduced, but could be restored to wild type levels by EGTA injection. The recovery of the mutant Ca{sup 2+} current from Ca{sup 2+}-dependent inactivation, and the decay of the Ca{sup 2+}-dependent K{sup +} and Ca{sup 2+}-dependent Na{sup +} currents after depolarization were slow in k-shy compared to wild type. To identify protein targets of Ca{sup 2+} action, ciliary proteins that interact with calmodulin (CaM) were characterized. With a {sup 125}I-CaM blot assay, several CaM-binding proteins were identified including axonemal, soluble, and membrane-bound polypeptides. Competitive displacement studies with unlabeled Paramecium CaM, bovine CaM, and troponinC suggested that both protein types bind CaM with high affinity and specificity. To examine the presence of CaM-binding sites in intact axonemes, a filtration binding assay was developed.

  15. The bell-shaped Ca2+ dependence of the inositol 1,4, 5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin.

    PubMed

    Missiaen, L; Parys, J B; Weidema, A F; Sipma, H; Vanlingen, S; De Smet, P; Callewaert, G; De Smedt, H

    1999-05-14

    Calmodulin inhibits inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor in both a Ca2+-dependent and a Ca2+-independent way. Because there are no functional data on the modulation of the IP3-induced Ca2+ release by calmodulin at various Ca2+ concentrations, we have studied how cytosolic Ca2+ and Sr2+ interfere with the effects of calmodulin on the IP3-induced Ca2+ release in permeabilized A7r5 cells. We now report that calmodulin inhibited Ca2+ release through the IP3 receptor with an IC50 of 4.6 microM if the cytosolic Ca2+ concentration was 0.3 microM or higher. This inhibition was particularly pronounced at low IP3 concentrations. In contrast, calmodulin did not affect IP3-induced Ca2+ release if the cytosolic Ca2+ concentration was below 0.3 microM. Calmodulin also inhibited Ca2+ release through the IP3 receptor in the presence of at least 10 microM Sr2+. We conclude that cytosolic Ca2+ or Sr2+ are absolutely required for the calmodulin-induced inhibition of the IP3-induced Ca2+ release and that this dependence represents the formation of the Ca2+/calmodulin or Sr2+/calmodulin complex.

  16. Modeling the contributions of Ca2+ flows to spontaneous Ca2+ oscillations and cortical spreading depression-triggered Ca2+ waves in astrocyte networks.

    PubMed

    Li, Bing; Chen, Shangbin; Zeng, Shaoqun; Luo, Qingming; Li, Pengcheng

    2012-01-01

    Astrocytes participate in brain functions through Ca(2+) signals, including Ca(2+) waves and Ca(2+) oscillations. Currently the mechanisms of Ca(2+) signals in astrocytes are not fully clear. Here, we present a computational model to specify the relative contributions of different Ca(2+) flows between the extracellular space, the cytoplasm and the endoplasmic reticulum of astrocytes to the generation of spontaneous Ca(2+) oscillations (CASs) and cortical spreading depression (CSD)-triggered Ca(2+) waves (CSDCWs) in a one-dimensional astrocyte network. This model shows that CASs depend primarily on Ca(2+) released from internal stores of astrocytes, and CSDCWs depend mainly on voltage-gated Ca(2+) influx. It predicts that voltage-gated Ca(2+) influx is able to generate Ca(2+) waves during the process of CSD even after depleting internal Ca(2+) stores. Furthermore, the model investigates the interactions between CASs and CSDCWs and shows that the pass of CSDCWs suppresses CASs, whereas CASs do not prevent the generation of CSDCWs. This work quantitatively analyzes the generation of astrocytic Ca(2+) signals and indicates different mechanisms underlying CSDCWs and non-CSDCWs. Research on the different types of Ca(2+) signals might help to understand the ways by which astrocytes participate in information processing in brain functions.

  17. CaF2:Yb laser ceramics

    NASA Astrophysics Data System (ADS)

    Akchurin, M. Sh.; Basiev, T. T.; Demidenko, A. A.; Doroshenko, M. E.; Fedorov, P. P.; Garibin, E. A.; Gusev, P. E.; Kuznetsov, S. V.; Krutov, M. A.; Mironov, I. A.; Osiko, V. V.; Popov, P. A.

    2013-01-01

    CaF2:Yb fluoride laser ceramics, prepared by hot-forming, exhibit the same optical properties as starting single crystals. Slope efficiency of the Сa0.95Yb0.05F2.05 is equal to 35% in the pulsed mode of laser operation. Decrease of ytterbium concentration in CaF2:Yb samples down to 3 mol.% resulted in the essential improvement of Сa0.97Yb0.03F2.03 thermal conductivity from 3.5 to 4.5 W/m K, but slightly decreased (down to 30%) slope efficiency of the samples under both pulsed and CW mode of operation. Alternative hot-pressing synthesis of CaF2:Yb fluoride laser ceramics provided materials with superior mechanical properties (microhardness Н = 3.2 GPa and fracture toughness К1С = 0.65 МPа m1/2) in comparison with hot-formed and/or single crystal CaF2:Yb specimens. For the first time, lasing has been observed for the novel aforementioned hot-pressed CaF2:Yb ceramics.

  18. Analysing force-pCa curves.

    PubMed

    Walker, John S; Li, Xiaotao; Buttrick, Peter M

    2010-07-01

    We investigated three forms of the Hill equation used to fit force-calcium data from skinned muscle experiments; Two hyperbolic forms that relate force to calcium concentration directly, and a sigmoid form that relates force to the -log(10) of the calcium concentration (pCa). The equations were fit to force-calcium data from 39 cardiac myocytes (up to five myocytes from each of nine mice) and the Hill coefficient and the calcium required for half maximal activation, expressed as a concentration (EC(50)) and as a pCa value (pCa(50)) were obtained. The pCa(50) values were normally distributed and the EC(50) values were found to approximate a log-normal distribution. Monte Carlo simulations confirmed that these distributions were intrinsic to the Hill equation. Statistical tests such as the t-test are robust to moderate levels of departure from normality as seen here, and either EC(50) or pCa(50) may be used to test for significant differences so long as it is kept in mind that ΔEC₅₀ is an additive measure of change and that ΔpCa₅₀ is a ratiometric measure of change. The Hill coefficient was found to be sufficiently log-normally distributed that log-transformed values should be used to test for statistically significant differences.

  19. Diffusion of Ca and Mg in Calcite

    SciTech Connect

    Cygan, R.T.; Fisler, D.K.

    1999-02-10

    The self-diffusion of Ca and the tracer diffusion of Mg in calcite have been experimentally measured using isotopic tracers of {sup 25}Mg and {sup 44}Ca. Natural single crystals of calcite were coated with a thermally-sputtered oxide thin film and then annealed in a CO{sub 2} gas at one atmosphere total pressure and temperatures from 550 to 800 C. Diffusion coefficient values were derived from the depth profiles obtained by ion microprobe analysis. The resultant activation energies for Mg tracer diffusion and Ca self-diffusion are respectively: E{sub a}(Mg) = 284 {+-} 74 kJ/mol and E{sub a}(Ca) = 271 {+-} 80 kJ/mol. For the temperature ranges in these experiments, the diffusion of Mg is faster than Ca. The results are generally consistent in magnitude with divalent cation diffusion rates obtained in previous studies and provide a means of interpreting the thermal histories of carbonate minerals, the mechanism of dolomitization, and other diffusion-controlled processes. The results indicate that cation diffusion in calcite is relatively slow and cations are the rate-limiting diffusing species for the deformation of calcite and carbonate rocks. Application of the calcite-dolomite geothermometer to metamorphic assemblages will be constrained by cation diffusion and cooling rates. The direct measurement of Mg tracer diffusion in calcite indicates that dolomitization is unlikely to be accomplished by Mg diffusion in the solid state but by a recrystallization process.

  20. Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages.

    PubMed

    Gao, Ya-dong; Hanley, Peter J; Rinné, Susanne; Zuzarte, Marylou; Daut, Jurgen

    2010-07-01

    STIM1 'senses' decreases in endoplasmic reticular (ER) luminal Ca(2+) and induces store-operated Ca(2+) (SOC) entry through plasma membrane Orai channels. The Ca(2+)/calmodulin-activated K(+) channel K(Ca)3.1 (previously known as SK4) has been implicated as an 'amplifier' of the Ca(2+)-release activated Ca(2+) (CRAC) current, especially in T lymphocytes. We have previously shown that human macrophages express K(Ca)3.1, and here we used the whole-cell patch-clamp technique to investigate the activity of these channels during Ca(2+) store depletion and store-operated Ca(2+) influx. Using RT-PCR, we found that macrophages express the elementary CRAC channel components Orai1 and STIM1, as well as Orai2, Orai3 and STIM2, but not the putatively STIM1-activated channels TRPC1, TRPC3-7 or TRPV6. In whole-cell configuration, a robust Ca(2+)-induced outwardly rectifying K(+) current inhibited by clotrimazole and augmented by DC-EBIO could be detected, consistent with K(Ca)3.1 channel current (also known as intermediate-conductance IK1). Introduction of extracellular Ca(2+) following Ca(2+) store depletion via P2Y(2) receptors induced a robust charybdotoxin (CTX)- and 2-APB-sensitive outward K(+) current and hyperpolarization. We also found that SOC entry induced by thapsigargin treatment induced CTX-sensitive K(+) current in HEK293 cells transiently expressing K(Ca)3.1. Our data suggest that SOC and K(Ca)3.1 channels are tightly coupled, such that a small Ca(2+) influx current induces a much large K(Ca)3.1 channel current and hyperpolarization, providing the necessary electrochemical driving force for prolonged Ca(2+) signaling and store repletion.

  1. Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task

    PubMed Central

    Martig, Adria K; Mizumori, Sheri JY

    2010-01-01

    Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicates DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N=9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N=167) and CA3 (N=94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations “rescued” performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps specifically by maintaining place field stability selectively in CA1/CA2. PMID:20082295

  2. Cultivation of 'Candidatus Liberibacter asiaticus', 'Ca. L. africanus', and 'Ca. L. americanus' associated with huanglongbing.

    PubMed

    Sechler, A; Schuenzel, E L; Cooke, P; Donnua, S; Thaveechai, N; Postnikova, E; Stone, A L; Schneider, W L; Damsteegt, V D; Schaad, N W

    2009-05-01

    A new medium designated Liber A has been designed and used to successfully cultivate all three 'Candidatus Liberibacter spp.,' the suspect causative agents of huanglongbing (HLB) in citrus. The medium containing citrus vein extract and a growth factor sustained growth of 'Ca. Liberibacter spp.' for four or five single-colony transfers before viability declined. Colonies, positive for 'Ca. L. asiaticus' by a 16s-based rDNA real-time polymerase chain reaction (RT-PCR) assay and sequencing, were irregular-shaped, convex, and 0.1 to 0.3 mm after 3 to 4 days. Suspect 'Ca. L. asiaticus' and 'Ca. L. americanus' cells were observed in infected tissue and on agar culture by scanning electron microscopy. The cells were ovoid to rod shaped, 0.3 to 0.4 by 0.5 to 2.0 microm, often with fimbriae-like appendages. Two strains of 'Ca. L. asiaticus' and one of 'Ca. L. americanus' grown on Liber A medium were pathogenic on citrus and could be isolated from noninoculated tissues of inoculated trees and seedlings 9 and 2 months later, respectively. The identity was confirmed by RT-PCR and 16s rDNA sequencing. This is the first report of the cultivation and pathogenicity of 'Ca. L. asiaticus' and 'Ca. L. americanus' associated with symptoms of HLB.

  3. Low-Affinity Ca2+ Indicators Compared in Measurements of Skeletal Muscle Ca2+ Transients

    PubMed Central

    Hollingworth, Stephen; Gee, Kyle R.; Baylor, Stephen M.

    2009-01-01

    Abstract The low-affinity fluorescent Ca2+ indicators OGB-5N, Fluo-5N, fura-5N, Rhod-5N, and Mag-fluo-4 were evaluated for their ability to accurately track the kinetics of the spatially averaged free Ca2+ transient (Δ[Ca2+]) in skeletal muscle. Frog single fibers were injected with one of the above indicators and, usually, furaptra (previously shown to rapidly track Δ[Ca2+]). In response to an action potential, the full duration at half-maximum of the indicator's fluorescence change (ΔF) was found to be larger with OGB-5N, Fluo-5N, fura-5N, and Rhod-5N than with furaptra; thus, these indicators do not track Δ[Ca2+] with kinetic fidelity. In contrast, the ΔF time course of Mag-fluo-4 was identical to furaptra's; thus, Mag-fluo-4 also yields reliable kinetic information about Δ[Ca2+]. Mag-fluo-4's ΔF has a larger signal/noise ratio than furaptra's (for similar indicator concentrations), and should thus be more useful for tracking Δ[Ca2+] in small cell volumes. However, because the resting fluorescence of Mag-fluo-4 probably arises largely from indicator that is bound with Mg2+, the amplitude of the Mag-fluo-4 signal, and its calibration in Δ[Ca2+] units, is likely to be more sensitive to variations in [Mg2+] than furaptra's. PMID:19804716

  4. Low-affinity Ca2+ indicators compared in measurements of skeletal muscle Ca2+ transients.

    PubMed

    Hollingworth, Stephen; Gee, Kyle R; Baylor, Stephen M

    2009-10-07

    The low-affinity fluorescent Ca(2+) indicators OGB-5N, Fluo-5N, fura-5N, Rhod-5N, and Mag-fluo-4 were evaluated for their ability to accurately track the kinetics of the spatially averaged free Ca(2+) transient (Delta[Ca(2+)]) in skeletal muscle. Frog single fibers were injected with one of the above indicators and, usually, furaptra (previously shown to rapidly track Delta[Ca(2+)]). In response to an action potential, the full duration at half-maximum of the indicator's fluorescence change (DeltaF) was found to be larger with OGB-5N, Fluo-5N, fura-5N, and Rhod-5N than with furaptra; thus, these indicators do not track Delta[Ca(2+)] with kinetic fidelity. In contrast, the DeltaF time course of Mag-fluo-4 was identical to furaptra's; thus, Mag-fluo-4 also yields reliable kinetic information about Delta[Ca(2+)]. Mag-fluo-4's DeltaF has a larger signal/noise ratio than furaptra's (for similar indicator concentrations), and should thus be more useful for tracking Delta[Ca(2+)] in small cell volumes. However, because the resting fluorescence of Mag-fluo-4 probably arises largely from indicator that is bound with Mg(2+), the amplitude of the Mag-fluo-4 signal, and its calibration in Delta[Ca(2+)] units, is likely to be more sensitive to variations in [Mg(2+)] than furaptra's.

  5. Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer.

    PubMed

    Padányi, Rita; Pászty, Katalin; Hegedűs, Luca; Varga, Karolina; Papp, Béla; Penniston, John T; Enyedi, Ágnes

    2016-06-01

    Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Excitotoxicity through Ca2+-permeable AMPA receptors requires Ca2+-dependent JNK activation

    PubMed Central

    Vieira, M.; Fernandes, J.; Burgeiro, A.; Thomas, G.M.; Huganir, R.L.; Duarte, C.B.; Carvalho, A.L.; Santos, A.E.

    2010-01-01

    The GluA4-containing Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (Ca-AMPARs) were previously shown to mediate excitotoxicity through mechanisms involving the activator protein-1 (AP-1), a c-Jun N-terminal kinase (JNK) substrate. To further investigate JNK involvement in excitotoxic pathways coupled to Ca-AMPARs we used HEK293 cells expressing GluA4-containing Ca-AMPARs (HEK-GluA4). Cell death induced by overstimulation of Ca-AMPARs was mediated, at least in part, by JNK. Importantly, JNK activation downstream of these receptors was dependent on the extracellular Ca2+ concentration. In our quest for a molecular link between Ca-AMPARs and the JNK pathway we found that the JNK interacting protein-1 (JIP-1) interacts with the GluA4 subunit of AMPARs through the N-terminal domain. In vivo, the excitotoxin kainate promoted the association between GluA4 and JIP-1 in the rat hippocampus. Taken together, our results show that the JNK pathway is activated by Ca-AMPARs upon excitotoxic stimulation and suggest that JIP-1 may contribute to the propagation of the excitotoxic signal. PMID:20708684

  7. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons

    PubMed Central

    Stanika, Ruslan I.; Winters, Christine A.; Pivovarova, Natalia B.; Andrews, S. Brian

    2009-01-01

    Hippocampal CA1 pyramidal neurons are selectively vulnerable to ischemia, while adjacent CA3 neurons are relatively resistant. Although glutamate receptor-mediated mitochondrial Ca2+ overload and dysfunction is a major component of ischemia-induced neuronal death, no direct relationship between selective neuronal vulnerability and mitochondrial dysfunction has been demonstrated in intact brain preparations. Here, we show that in organotypic slice cultures NMDA induces much larger Ca2+ elevations in vulnerable CA1 neurons than in resistant CA3. Consequently, CA1 mitochondria exhibit stronger calcium accumulation, more extensive swelling and damage, stronger depolarization of their membrane potential, and a significant increase in ROS generation. NMDA-induced Ca2+ and ROS elevations were abolished in Ca2+-free medium or by NMDAR antagonists, but not by zinc chelation. We conclude that Ca2+-overload-dependent mitochondrial dysfunction is a determining factor in the selective vulnerability of CA1 neurons. PMID:19879359

  8. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons.

    PubMed

    Stanika, Ruslan I; Winters, Christine A; Pivovarova, Natalia B; Andrews, S Brian

    2010-02-01

    Hippocampal CA1 pyramidal neurons are selectively vulnerable to ischemia, while adjacent CA3 neurons are relatively resistant. Although glutamate receptor-mediated mitochondrial Ca(2+) overload and dysfunction is a major component of ischemia-induced neuronal death, no direct relationship between selective neuronal vulnerability and mitochondrial dysfunction has been demonstrated in intact brain preparations. Here, we show that in organotypic slice cultures NMDA induces much larger Ca(2+) elevations in vulnerable CA1 neurons than in resistant CA3. Consequently, CA1 mitochondria exhibit stronger calcium accumulation, more extensive swelling and damage, stronger depolarization of their membrane potential, and a significant increase in ROS generation. NMDA-induced Ca(2+) and ROS elevations were abolished in Ca(2+)-free medium or by NMDAR antagonists, but not by zinc chelation. We conclude that Ca(2)(+) overload-dependent mitochondrial dysfunction is a determining factor in the selective vulnerability of CA1 neurons.

  9. Acidic Ca2+ stores in neurodegeneration

    PubMed Central

    Lloyd-Evans, Emyr

    2017-01-01

    Lysosomes have emerged in the last decade as an immensely important intracellular site of Ca2+ storage and signalling. More recently there has been an increase in the number of new ion channels found to be functional on lysosomes and the potential roles that these signalling pathways might play in fundamental cellular processes are being uncovered. Defects in lysosomal function have been shown to result in changes in lysosomal Ca2+ homeostasis and ultimately can result in cell death. Several neurodegenerative diseases, from rare lysosomal storage diseases through to more common diseases of ageing, have recently been identified as having alterations in lysosomal Ca2+ homeostasis that may play an important role in neuronal excitotoxicity and ultimately cell death. This review will critically summarise these recent findings. PMID:28593104

  10. Intercellular Ca2+ Waves: Mechanisms and Function

    PubMed Central

    Sanderson, Michael J.

    2012-01-01

    Intercellular calcium (Ca2+) waves (ICWs) represent the propagation of increases in intracellular Ca2+ through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca2+ from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs. PMID:22811430

  11. CaWingz user`s guide

    SciTech Connect

    Cha, Ben-chin

    1994-04-25

    This document assumes that you have read and understood the Wingz user`s manuals. CaWingz is an external Wingz program which, when combined with a set of script files, provides easy-to-use EPICS channel access interface functions for Wingz users. The external function run allows Wingz user to invoke any Unix processor within caWingz. Few additional functions for accessing static database field and monitoring of value change event is available for EPICS users after release 3.11. The functions, script files, and usage are briefly described in this document. The script files supplied here serve as examples only. Users are responsible for generating their own spreadsheet and script files. CaWingz communicates with IOC through channel access function calls.

  12. Characterizing CA{sub 2} and CA{sub 6} using ELNES

    SciTech Connect

    Altay, A.; Carter, C.B.; Rulis, P.; Ching, W.-Y.; Arslan, I.; Guelguen, M.A.

    2010-08-15

    Calcium aluminates, compounds in the CaO-Al{sub 2}O{sub 3} phase system, are used in high-temperature cements and refractory oxides and have wide range of potential technological applications due to their interesting optical, electrical, thermal, and mechanical properties. They are used in both crystalline and glassy form; the glass is an isotropic material while the crystalline materials may be highly anisotropic. This paper will consider two particular crystalline materials, CA{sub 2} and CA{sub 6}, but the results should be applicable to all calcium aluminates. Although CA{sub 2} and CA{sub 6} crystals contain the same chemical species, Ca, Al, and O, the coordination and local environments of these species are different in the two structures and hence they show very different energy-loss near-edge structures (ELNES) when examined by electron energy-loss spectroscopy (EELS) in the TEM. The data obtained using ELNES can effectively provide a fingerprint for each compound and a map for their electronic structure. Once such fingerprints are obtained, they can be used to identify nano-sized particles/grains or material at interfaces and grain boundaries. In the present study, the local symmetry fingerprints for CA{sub 2} and CA{sub 6} structures are reported combining experimental spectra with electronic-structure calculations that allow the different features in the spectra to be interpreted. Al-L{sub 2,3} and O-K edge core-loss spectra from CA{sub 2} and CA{sub 6} were measured experimentally using electron energy-loss spectroscopy in a monochromated scanning transmission electron microscope. The near-edge structures were calculated for the different phases using the orthogonalized linear combination of atomic-orbitals method, and took account of core-hole interactions. It is shown that CA{sub 2} and CA{sub 6} structures exhibit distinctive experimental ELNES fingerprints so that these two phases can be separately identified even when present in small volumes

  13. Ca2+-induced Ca2+ Release in Chromaffin Cells Seen from inside the ER with Targeted Aequorin

    PubMed Central

    Alonso, Maria Teresa; Barrero, Maria José; Michelena, Pedro; Carnicero, Estela; Cuchillo, Inmaculada; García, Antonio G.; García-Sancho, Javier; Montero, Mayte; Alvarez, Javier

    1999-01-01

    The presence and physiological role of Ca2+-induced Ca2+ release (CICR) in nonmuscle excitable cells has been investigated only indirectly through measurements of cytosolic [Ca2+] ([Ca2+]c). Using targeted aequorin, we have directly monitored [Ca2+] changes inside the ER ([Ca2+]ER) in bovine adrenal chromaffin cells. Ca2+ entry induced by cell depolarization triggered a transient Ca2+ release from the ER that was highly dependent on [Ca2+]ER and sensitized by low concentrations of caffeine. Caffeine-induced Ca2+ release was quantal in nature due to modulation by [Ca2+]ER. Whereas caffeine released essentially all the Ca2+ from the ER, inositol 1,4,5-trisphosphate (InsP3)- producing agonists released only 60–80%. Both InsP3 and caffeine emptied completely the ER in digitonin-permeabilized cells whereas cyclic ADP-ribose had no effect. Ryanodine induced permanent emptying of the Ca2+ stores in a use-dependent manner after activation by caffeine. Fast confocal [Ca2+]c measurements showed that the wave of [Ca2+]c induced by 100-ms depolarizing pulses in voltage-clamped cells was delayed and reduced in intensity in ryanodine-treated cells. Our results indicate that the ER of chromaffin cells behaves mostly as a single homogeneous thapsigargin-sensitive Ca2+ pool that can release Ca2+ both via InsP3 receptors or CICR. PMID:9922451

  14. IP3R, store-operated Ca2+ entry and neuronal Ca2+ homoeostasis in Drosophila.

    PubMed

    Chakraborty, Sumita; Hasan, Gaiti

    2012-02-01

    The IP3R (inositol 1,4,5-trisphosphate receptor) releases Ca2+ from the ER (endoplasmic reticulum) store upon binding to its ligand InsP3, which is thought to be generated by activation of certain membrane-bound G-protein-coupled receptors in Drosophila. Depletion of Ca2+ in the ER store also activates SOCE (store-operated Ca2+ entry) from the extracellular milieu across the plasma membrane, leading to a second rise in cytosolic Ca2+, which is then pumped back into the ER. The role of the IP3R and SOCE in mediating Ca2+ homoeostasis in neurons, their requirement in neuronal function and effect on neuronal physiology and as a consequence behaviour, are reviewed in the present article.

  15. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    PubMed

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  16. Mitochondrial Ca(2+) uptake in skeletal muscle health and disease.

    PubMed

    Zhou, Jingsong; Dhakal, Kamal; Yi, Jianxun

    2016-08-01

    Muscle uses Ca(2+) as a messenger to control contraction and relies on ATP to maintain the intracellular Ca(2+) homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca(2+) from their surroundings, a process called mitochondrial Ca(2+) uptake. Under physiological conditions, Ca(2+) uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca(2+) overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca(2+) uptake could shape spatio-temporal patterns of intracellular Ca(2+) signaling. Malfunction of mitochondrial Ca(2+) uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca(2+) levels. Besides the sudden elevation of Ca(2+) level induced by action potentials, Ca(2+) transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as minutes during tetanic contraction, which raises the question whether mitochondrial Ca(2+) uptake is fast and big enough to shape intracellular Ca(2+) signaling during excitation-contraction coupling and creates technical challenges for quantification of the dynamic changes of Ca(2+) inside mitochondria. This review focuses on characterization of mitochondrial Ca(2+) uptake in skeletal muscle and its role in muscle physiology and diseases.

  17. Growth rate effects on Mg/Ca and Sr/Ca ratios constrained by belemnite calcite

    NASA Astrophysics Data System (ADS)

    Vinzenz Ullmann, Clemens

    2016-04-01

    Multiple temperature proxies from single species are important to achieve robust palaeotemperature estimates. Besides the commonly employed oxygen isotope thermometer, also Mg/Ca and Sr/Ca ratios perform well as proxies for calcification temperature in the shells of some species. While salinity changes affect the ratios of earth alkaline elements much less than the δ18O thermometer, metabolic effects may exert a strong control on the expression of element ratios. Such effects are hard to study because biomineralization experiments have to overcome large intraspecific variability and can hardly ever isolate the controls of a single parameter on shell geochemistry. The unique geometry of the belemnite rostrum constitutes an exception to this rule. Its shape, large size, and the visibility of growth increments as bands enable the analysis of multiple, correlatable, high resolution geochemical profiles in a single fossil. The effects of the growth rate variability amongst these profiles on Mg/Ca and Sr/Ca ratios has been tested here. Within a specimen of Passaloteuthis bisulcata (Early Toarcian, Cleveland Basin, UK), Mg/Ca and Sr/Ca data were obtained from four profiles. With respect to growth rate in the first profile, which was taken as a reference, the relative growth rates in the remaining three profiles varied by a factor of 0.9 to 2.7. Results suggest that relative growth rate is linearly correlated with Mg/Ca and Sr/Ca, with a decrease of Mg/Ca by 8 % and increase of Sr/Ca by 6 % per 100 % increase in relative growth rate. The observed trends are consistent with abiogenic precipitation experiments and suggest that crystal precipitation rate exerts a significant, predictable control on the element distribution in biogenic calcite.

  18. Novel antimigraineur dotarizine releases Ca2+ from caffeine-sensitive Ca2+ stores of chromaffin cells

    PubMed Central

    Novalbos, Jesús; Abad-Santos, Francisco; Zapater, Pedro; Alvarez, Javier; Alonso, María Teresa; Montero, Mayte; García, Antonio G

    1999-01-01

    The novel antimigraineur, dotarizine (30 μM), increased cytosolic Ca2+ concentration, [Ca2+]c, in fura-2-loaded bovine adrenal chromaffin cells. This increase was transient, reached a peak in about 2–5 min (0.53±0.07 μM; n=19) and then declined to basal levels over a further 5 min period.This transient rise of [Ca2+]c was mimicked by 1 μM thapsigargin and by 30 μM cyclopiazonic acid (CPA), but not by 30 μM flunarizine. Both thapsigargin and CPA occluded the effects of dotarizine and vice versa.All three compounds suppressed the transient [Ca2+]c rises induced by caffeine (10 mM, 10 s); blockade induced by thapsigargin was irreversible and that induced by CPA and dotarizine was reversible.Of the three compounds, only dotarizine blocked reversibly the [Ca2+]c spikes induced by short pulses of high K+ (70 mM, 5 s), suggesting that dotarizine blocks voltage-dependent Ca2+ channels but CPA and thapsigargin do not.Dotarizine caused a gradual and reversible depletion of endoplasmic reticulum (ER) Ca2+ in chromaffin cells transfected with ER-targeted aequorin. CPA had a similar effect.These data show that dotarizine shares with thapsigargin and CPA the ability to deplete Ca2+ in the ER; this novel action of dotarizine could be relevant to its prophylactic effects in migraine. Unlike thapsigargin and CPA, however, dotarizine additionally and reversibly blocks Ca2+ entry through voltage-dependent Ca2+ channels. PMID:10516641

  19. Ca2+ dependency of ‘Ca2+-independent’ exocytosis in SPOC1 airway goblet cells

    PubMed Central

    Rossi, Andrea H; Sears, Patrick R; Davis, C William

    2004-01-01

    SPOC1 airway goblet cells secrete mucin in response to P2Y2 receptor agonists and to secretagogues, phorbol 12-myristate 13-acetate (PMA) and ionomycin, which mobilize elements of the phospholipase C pathway, PKC and Ca2+, respectively. Previous studies demonstrated that mucin secretion from SLO-permeabilized, EGTA-buffered SPOC1 cells was stimulated by PMA at low Ca2+ levels (< 0.1 μm), consistent with the notion that regulated exocytosis may occur by Ca2+-independent pathways. We tested the alternative hypothesis that PMA-induced mucin secretion is, in fact, a Ca2+-dependent process under the conditions of low bulk Ca2+, one that is permitted in the typical SLO-permeabilized cell model by the slow binding kinetics of EGTA. Both IP3 and elevated bulk Ca2+ activated mucin secretion in SPOC1 cells buffered by EGTA, suggesting that IP3 generates a local Ca2+ gradient in the vicinity of the secretory granules to the degree necessary to trigger exocytosis. BAPTA, which binds Ca2+ approximately 100-fold faster than EGTA, diminished IP3-induced mucin release over a range of concentrations by ≥ 69%, yet maintained an essentially normal mucin secretory response to elevated bulk Ca2+ in permeabilized SPOC1 cells. BAPTA also diminished the mucin secretory response of permeabilized cells to PMA, relative to the EGTA-buffered control: at PMA below 30 nm, BAPTA abolished the secretory response, and at higher concentrations it was reduced significantly relative to the EGTA-buffered controls. PMA-induced secretion in EGTA was insensitive to heparin. These results suggest that Ca2+ is released locally during PMA-induced exocytosis, by an IP3-independent mechanism. PMID:15218074

  20. Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+-induced glucagon exocytosis in pancreas

    PubMed Central

    Gustavsson, Natalia; Wei, Shun-Hui; Hoang, Dong Nhut; Lao, Ye; Zhang, Quan; Radda, George K; Rorsman, Patrik; Südhof, Thomas C; Han, Weiping

    2009-01-01

    Hormones such as glucagon are secreted by Ca2+-induced exocytosis of large dense-core vesicles, but the mechanisms involved have only been partially elucidated. Studies of pancreatic β-cells secreting insulin revealed that synaptotagmin-7 alone is not sufficient to mediate Ca2+-dependent insulin granule exocytosis, and studies of chromaffin cells secreting neuropeptides and catecholamines showed that synaptotagmin-1 and -7 collaborate as Ca2+ sensors for exocytosis, and that both are equally involved. As no other peptide secretion was analysed, it remains unclear whether synaptotagmins generally act as Ca2+ sensors in large dense-core vesicle exocytosis in endocrine cells, and if so, whether synaptotagmin-7 always functions with a partner in that role. In particular, far less is known about the mechanisms underlying Ca2+-triggered glucagon release from α-cells than insulin secretion from β-cells, even though insulin and glucagon together regulate blood glucose levels. To address these issues, we analysed the role of synaptotagmins in Ca2+-triggered glucagon exocytosis. Surprisingly, we find that deletion of a single synaptotagmin isoform, synaptotagmin-7, nearly abolished Ca2+-triggered glucagon secretion. Moreover, single-cell capacitance measurements confirmed that pancreatic α-cells lacking synaptotagmin-7 exhibited little Ca2+-induced exocytosis, whereas all other physiological and morphological parameters of the α-cells were normal. Our data thus identify synaptotagmin-7 as a principal Ca2+ sensor for glucagon secretion, and support the notion that synaptotagmins perform a universal but selective function as individually acting Ca2+ sensors in neurotransmitter, neuropeptide, and hormone secretion. PMID:19171650

  1. Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+ -induced glucagon exocytosis in pancreas.

    PubMed

    Gustavsson, Natalia; Wei, Shun-Hui; Hoang, Dong Nhut; Lao, Ye; Zhang, Quan; Radda, George K; Rorsman, Patrik; Südhof, Thomas C; Han, Weiping

    2009-03-15

    Hormones such as glucagon are secreted by Ca(2+)-induced exocytosis of large dense-core vesicles, but the mechanisms involved have only been partially elucidated. Studies of pancreatic beta-cells secreting insulin revealed that synaptotagmin-7 alone is not sufficient to mediate Ca(2+)-dependent insulin granule exocytosis, and studies of chromaffin cells secreting neuropeptides and catecholamines showed that synaptotagmin-1 and -7 collaborate as Ca(2+) sensors for exocytosis, and that both are equally involved. As no other peptide secretion was analysed, it remains unclear whether synaptotagmins generally act as Ca(2+) sensors in large dense-core vesicle exocytosis in endocrine cells, and if so, whether synaptotagmin-7 always functions with a partner in that role. In particular, far less is known about the mechanisms underlying Ca(2+)-triggered glucagon release from alpha-cells than insulin secretion from beta-cells, even though insulin and glucagon together regulate blood glucose levels. To address these issues, we analysed the role of synaptotagmins in Ca(2+)-triggered glucagon exocytosis. Surprisingly, we find that deletion of a single synaptotagmin isoform, synaptotagmin-7, nearly abolished Ca(2+)-triggered glucagon secretion. Moreover, single-cell capacitance measurements confirmed that pancreatic alpha-cells lacking synaptotagmin-7 exhibited little Ca(2+)-induced exocytosis, whereas all other physiological and morphological parameters of the alpha-cells were normal. Our data thus identify synaptotagmin-7 as a principal Ca(2+) sensor for glucagon secretion, and support the notion that synaptotagmins perform a universal but selective function as individually acting Ca(2+) sensors in neurotransmitter, neuropeptide, and hormone secretion.

  2. Materials compatibility during the chlorination of molten CaCl/sub 2/. CaO salts. [CaCl/sub 2/. CaO salt

    SciTech Connect

    Rense, C.E.C.; Fife, K.W.; Bowersox, D.F.; Ferran, M.D.

    1987-01-01

    As part of our effort to develop a semicontinuous PuO/sub 2/ reduction process, we are investigating promising materials for containing a 900/sup 0/C molten CaCl/sub 2/ . CaO chlorination reaction. We want the material to contain this reaction and to be reusable. We tested candidate materials in a simulated salt (no plutonium) using anhydrous HCl as the chlorinating agent. Data are presented on the performance of 36 metals and alloys, 9 ceramics, and 3 coatings.

  3. Single-Channel Monitoring of Reversible L-Type Ca2+ Channel CaVα1-CaVβ Subunit Interaction

    PubMed Central

    Jangsangthong, Wanchana; Kuzmenkina, Elza; Böhnke, Ann Kristin; Herzig, Stefan

    2011-01-01

    Voltage-dependent Ca2+ channels are heteromultimers of CaVα1 (pore), CaVβ- and CaVα2δ-subunits. The stoichiometry of this complex, and whether it is dynamically regulated in intact cells, remains controversial. Fortunately, CaVβ-isoforms affect gating differentially, and we chose two extremes (CaVβ1a and CaVβ2b) regarding single-channel open probability to address this question. HEK293α1C cells expressing the CaV1.2 subunit were transiently transfected with CaVα2δ1 alone or with CaVβ1a, CaVβ2b, or (2:1 or 1:1 plasmid ratio) combinations. Both CaVβ-subunits increased whole-cell current and shifted the voltage dependence of activation and inactivation to hyperpolarization. Time-dependent inactivation was accelerated by CaVβ1a-subunits but not by CaVβ2b-subunits. Mixtures induced intermediate phenotypes. Single channels sometimes switched between periods of low and high open probability. To validate such slow gating behavior, data were segmented in clusters of statistically similar open probability. With CaVβ1a-subunits alone, channels mostly stayed in clusters (or regimes of alike clusters) of low open probability. Increasing CaVβ2b-subunits (co-)expressed (1:2, 1:1 ratio or alone) progressively enhanced the frequency and total duration of high open probability clusters and regimes. Our analysis was validated by the inactivation behavior of segmented ensemble averages. Hence, a phenotype consistent with mutually exclusive and dynamically competing binding of different CaVβ-subunits is demonstrated in intact cells. PMID:22261054

  4. Electrochemical formation of Mg-Li-Ca alloys by codeposition of Mg, Li and Ca from LiCl-KCl-MgCl2-CaCl2 melts.

    PubMed

    Yan, Yong De; Zhang, Mi Lin; Xue, Yun; Han, Wei; Cao, Dian Xue; Jing, Xiao Yan; He, Li Yi; Yuan, Yi

    2009-08-07

    This work presents electrochemical formation of Mg-Li-Ca alloys via codeposition of Mg, Li and Ca on a molybdenum electrode in KCl-LiCl-MgCl(2)-CaCl(2) melts at 943 K. Cyclic voltammograms (CVs) showed that the underpotential deposition (UPD) of calcium on pre-deposited magnesium leads to the formation of a liquid Mg-Ca alloy, and the succeeding underpotential deposition of lithium on pre-deposited Mg-Ca alloy leads to the formation of a liquid Mg-Li-Ca solution. Chronopotentiometric measurements indicated that the codepositon of Mg, Li and Ca occurs at current densities more negative than -0.31 A cm(-2) in LiCl-KCl-MgCl(2) (5 wt%) melts containing 1 wt% CaCl(2). Chronoamperograms demonstrated that the onset potential for the codeposition of Mg, Li and Ca is -2.200 V, and the codeposition of Mg, Li and Ca is formed when the applied potentials are more negative than -2.200 V. X-Ray diffraction (XRD) indicated that Mg-Li-Ca alloys with different phases were formed via galvanostatic electrolysis. The microstructures of typical alpha and beta phases of Mg-Li-Ca alloys were characterized by optical microscope (OM) and scanning electron microscopy (SEM). The analysis of energy dispersive spectrometry (EDS) showed that the element Ca mainly distributes along grain boundary in Mg-Li-Ca alloys. The results of inductively coupled plasma analysis determined that the chemical compositions of Mg-Li-Ca alloys correspond with the phase structures of XRD patterns, and the lithium and calcium contents of Mg-Li-Ca alloys depend on the concentrations of MgCl(2) and CaCl(2).

  5. Termination of cAMP signals by Ca2+ and G(alpha)i via extracellular Ca2+ sensors: a link to intracellular Ca2+ oscillations.

    PubMed

    Gerbino, Andrea; Ruder, Warren C; Curci, Silvana; Pozzan, Tullio; Zaccolo, Manuela; Hofer, Aldebaran M

    2005-10-24

    Termination of cyclic adenosine monophosphate (cAMP) signaling via the extracellular Ca(2+)-sensing receptor (CaR) was visualized in single CaR-expressing human embryonic kidney (HEK) 293 cells using ratiometric fluorescence resonance energy transfer-dependent cAMP sensors based on protein kinase A and Epac. Stimulation of CaR rapidly reversed or prevented agonist-stimulated elevation of cAMP through a dual mechanism involving pertussis toxin-sensitive Galpha(i) and the CaR-stimulated increase in intracellular [Ca2+]. In parallel measurements with fura-2, CaR activation elicited robust Ca2+ oscillations that increased in frequency in the presence of cAMP, eventually fusing into a sustained plateau. Considering the Ca2+ sensitivity of cAMP accumulation in these cells, lack of oscillations in [cAMP] during the initial phases of CaR stimulation was puzzling. Additional experiments showed that low-frequency, long-duration Ca2+ oscillations generated a dynamic staircase pattern in [cAMP], whereas higher frequency spiking had no effect. Our data suggest that the cAMP machinery in HEK cells acts as a low-pass filter disregarding the relatively rapid Ca2+ spiking stimulated by Ca(2+)-mobilizing agonists under physiological conditions.

  6. Inhibitors of the Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase family (CaMKP and CaMKP-N)

    SciTech Connect

    Sueyoshi, Noriyuki; Takao, Toshihiko; Nimura, Takaki; Sugiyama, Yasunori; Numano, Takamasa; Shigeri, Yasushi; Taniguchi, Takanobu; Kameshita, Isamu Ishida, Atsuhiko

    2007-11-23

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear isoform CaMKP-N are unique Ser/Thr protein phosphatases that negatively regulate the Ca{sup 2+}/calmodulin-dependent protein kinase (CaMK) cascade by dephosphorylating multifunctional CaMKI, II, and IV. However, the lack of specific inhibitors of these phosphatases has hampered studies on these enzymes in vivo. In an attempt to obtain specific inhibitors, we searched inhibitory compounds and found that Evans Blue and Chicago Sky Blue 6B served as effective inhibitors for CaMKP. These compounds also inhibited CaMKP-N, but inhibited neither protein phosphatase 2C, another member of PPM family phosphatase, nor calcineurin, a typical PPP family phosphatase. The minimum structure required for the inhibition was 1-amino-8-naphthol-4-sulfonic acid. When Neuro2a cells cotransfected with CaMKIV and CaMKP-N were treated with these compounds, the dephosphorylation of CaMKIV was strongly suppressed, suggesting that these compounds could be used as potent inhibitors of CaMKP and CaMKP-N in vivo as well as in vitro.

  7. Ca²⁺ waves in the heart.

    PubMed

    Izu, Leighton T; Xie, Yuanfang; Sato, Daisuke; Bányász, Tamás; Chen-Izu, Ye

    2013-05-01

    Ca(2+) waves were probably first observed in the early 1940s. Since then Ca(2+) waves have captured the attention of an eclectic mixture of mathematicians, neuroscientists, muscle physiologists, developmental biologists, and clinical cardiologists. This review discusses the current state of mathematical models of Ca(2+) waves, the normal physiological functions Ca(2+) waves might serve in cardiac cells, as well as how the spatial arrangement of Ca(2+) release channels shape Ca(2+) waves, and we introduce the idea of Ca(2+) phase waves that might provide a useful framework for understanding triggered arrhythmias.

  8. Stimulation of recombinant Ca(v)3.2, T-type, Ca(2+) channel currents by CaMKIIgamma(C).

    PubMed

    Wolfe, Joshua T; Wang, Hongge; Perez-Reyes, Edward; Barrett, Paula Q

    2002-01-15

    Molecular cloning of low-voltage activated (LVA) T-type calcium channels has enabled the study of their regulation in heterologous expression systems. Here we investigate the regulation of Ca(v)3.2 alpha(1)-subunits (alpha1H) by calcium- and/or calmodulin-dependent protein kinase II (CaMKII). 293 cells stably expressing alpha1H were transiently transfected with CaMKIIgamma(C). Using the whole-cell recording configuration, we observed that elevation of pipette free Ca(2+) (1 microM) in the presence of CaM (2 microM) increases T-type channel activity selectively at negative potentials, evoking an 11 mV hyperpolarizing shift in the half-maximal potential (V(1/2)) for activation. The V(1/2) of channel inactivation is not altered by Ca(2+)/CaM. These effects reproduced modulation observed in adrenal zona glomerulosa cells. The potentiation by Ca(2+)/CaM was dependent on the co-expression of CaMKIIgamma(C) and required Ca(2+)/CaM-dependent kinase activity. Peptide (AIP) and lipophilic (KN-62) protein kinase inhibitors prevented the Ca(2+)/CaM-induced changes in channel gating without altering basal Ca(v)3.2 channel activity (27 nM free Ca(2+)) as did replacing pipette ATP with adenylyl imidodiphosphate (AMP-PNP), a non-hydrolysable analogue. CaMKII-dependent potentiation of channel opening resulted in significant increases in apparent steady-state open probability (P(o)) and sustained channel current at negative voltages. Under identical conditions, CaMKII activation did not regulate the activity of Ca(v)3.1 channels, the first cloned member (alpha1G) of the T-type Ca(2+) channel family. Our results provide the first evidence for the differential regulation of two members of the Ca(v)3 family by protein kinase activation and the first report reconstituting CaMKII-dependent regulation of any cloned Ca(2+) channel.

  9. Ca2+-induced Ca2+ Release Phenomena in Mammalian Sympathetic Neurons Are Critically Dependent on the Rate of Rise of Trigger Ca2+

    PubMed Central

    Hernández-Cruz, Arturo; Escobar, Ariel L.; Jiménez, Nicolás

    1997-01-01

    The role of ryanodine-sensitive intracellular Ca2+ stores present in nonmuscular cells is not yet completely understood. Here we examine the physiological parameters determining the dynamics of caffeine-induced Ca2+ release in individual fura-2–loaded sympathetic neurons. Two ryanodine-sensitive release components were distinguished: an early, transient release (TR) and a delayed, persistent release (PR). The TR component shows refractoriness, depends on the filling status of the store, and requires caffeine concentrations ≥10 mM. Furthermore, it is selectively suppressed by tetracaine and intracellular BAPTA, which interfere with Ca2+-mediated feedback loops, suggesting that it constitutes a Ca2+-induced Ca2+-release phenomenon. The dynamics of release is markedly affected when Sr2+ substitutes for Ca2+, indicating that Sr2+ release may operate with lower feedback gain than Ca2+ release. Our data indicate that when the initial release occurs at an adequately fast rate, Ca2+ triggers further release, producing a regenerative response, which is interrupted by depletion of releasable Ca2+ and Ca2+-dependent inactivation. A compartmentalized linear diffusion model can reproduce caffeine responses: When the Ca2+ reservoir is full, the rapid initial Ca2+ rise determines a faster occupation of the ryanodine receptor Ca2+ activation site giving rise to a regenerative release. With the store only partially loaded, the slower initial Ca2+ rise allows the inactivating site of the release channel to become occupied nearly as quickly as the activating site, thereby suppressing the initial fast release. The PR component is less dependent on the store's Ca2+ content. This study suggests that transmembrane Ca2+ influx in rat sympathetic neurons does not evoke widespread amplification by CICR because of its inability to raise [Ca2+] near the Ca2+ release channels sufficiently fast to overcome their Ca2+-dependent inactivation. Conversely, caffeine-induced Ca2+ release can

  10. Prenatal morphine exposure reduces pyramidal neurons in CA1, CA2 and CA3 subfields of mice hippocampus

    PubMed Central

    Ghafari, Soraya; Golalipour, Mohammad Jafar

    2014-01-01

    Objective(s): This study was carried out to evaluate the effect of maternal morphine exposure during gestational and lactation period on pyramidal neurons of hippocampus in 18 and 32 day mice offspring. Materials and Methods: Thirty female mice were randomly allocated into cases and controls. In case group, animals received morphine sulfate 10 mg/kg.body weight intraperitoneally during 7 days before mating, gestational period (GD 0-21), 18 and 32 days after delivery in the experimental groups. The control animals received an equivalent volume of normal saline. Cerebrum of six offsprings in each group was removed and stained with cresyl violet and a monoclonal antibody NeuN for immunohistochemical detection of surviving pyramidal neurons. Quantitative computer-assisted morphometric study was done on hippocampus. Results: The number of pyramidal neurons in CA1, CA2 and CA3 in treated groups was significantly reduced in postnatal day 18 and 32 (P18, P32) compared to control groups (P<0.05). The mean thickness of the stratum pyramidal layer was decreased in the treated groups in comparison with controls (P<0.05), whereas the mean thickness of the stratum oriens, stratum radiatum and stratum lacunosum-moleculare in CA1 field and stratum oriens, stratum lucidum, stratum radiatum and stratum lacunosum-moleculare in CA3 were significantly increased in morphine treated group in comparison with controls (P<0.05). Conclusion: Morphine administration before and during pregnancy and during lactation period causes pyramidal neurons loss in 18 and 32 days old infant mice. PMID:24847417

  11. Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes.

    PubMed Central

    Litwin, S E; Li, J; Bridge, J H

    1998-01-01

    The importance of Na-Ca exchange as a trigger for sarcoplasmic reticulum (SR) Ca release remains controversial. Therefore, we measured whole-cell Ca currents (ICa), Na-Ca exchange currents (INaCa), cellular contractions, and intracellular Ca transients in adult rabbit cardiac myocytes. We found that changing pipette Na concentration markedly affected the relationship between cell shortening (or Ca transients) and voltage, but did not affect the Ca current-voltage relationship. We then inhibited Na-Ca exchange and varied SR content (by changing the number of conditioning pulses before each test pulse). Regardless of SR Ca content, the relationship between contraction and voltage was bell-shaped in the absence of Na-Ca exchange. Next, we rapidly and completely blocked ICa by applying nifedipine to cells. Cellular shortening was variably reduced in the presence of nifedipine. The component of shortening blocked by nifedipine had a bell-shaped relationship with voltage, whereas the "nifedipine-insensitive" component of contraction increased with voltage. With the SR disabled (ryanodine and thapsigargin pretreatment), ICa could initiate late-peaking contractions that were approximately 70% of control amplitude. In contrast, nifedipine-insensitive contractions could not be elicited in the presence of ryanodine and thapsigargin. Finally, we recorded reverse Na-Ca exchange currents that were activated by membrane depolarization. The estimated sarcolemmal Ca flux occurring by Na-Ca exchange (during voltage clamp steps to +30 mV) was approximately 10-fold less than that occurring by ICa. Therefore, Na-Ca exchange alone is unlikely to raise cytosolic Ca concentration enough to directly activate the myofilaments. We conclude that reverse Na-Ca exchange can trigger SR Ca release. Because of the sigmoidal relationship between the open probability of the SR Ca release channel and pCa, the effects of ICa and INaCa may not sum in a linear fashion. Rather, the two triggers may act

  12. Neurotransmitter release evoked by nerve impulses without Ca2+ entry through Ca2+ channels in frog motor nerve endings.

    PubMed Central

    Silinsky, E M; Watanabe, M; Redman, R S; Qiu, R; Hirsh, J K; Hunt, J M; Solsona, C S; Alford, S; MacDonald, R C

    1995-01-01

    1. The requirement for extracellular Ca2+ in the process of evoked acetylcholine (ACh) release by nerve impulses was tested at endplates in frog skeletal muscle. Ca(2+)-containing lipid vesicles (Ca2+ liposomes) were used to elevate cytoplasmic Ca2+ concentrations under conditions in which Ca2+ entry from the extracellular fluid was prevented. 2. In an extracellular solution containing no added Ca2+ and 1 mM Mg2+ ('Ca(2+)-free' solution), Ca2+ liposomes promoted the synchronous release of ACh quanta, reflected electrophysiologically as endplate potentials (EPPs), in response to temporally isolated nerve impulses. 3. Motor nerve stimulation generated EPPs during superfusion with Ca2+ liposomes in Ca(2+)-free solutions containing the Ca2+ channel blocker Co2+ (1 mM), and the Ca2+ chelator EGTA (2 mM). As a physiological control for Ca2+ leakage from the liposomes to the extracellular fluid, the effect of Ca2+ liposomes on asynchronous evoked ACh release mediated by Ba2+ was examined. In contrast to the effects of 0.2-0.3 mM extracellular Ca2+, which generated EPPs but antagonized Ba(2+)-mediated asynchronous ACh release, Ca2+ liposomes generated EPPs but did not reduce asynchronous release mediated by Ba2+. The effects of Ca2+ liposomes were thus not due to leakage of Ca2+ from the liposome to the extracellular fluid. 4. Morphological studies using fluorescently labelled liposomes in conjunction with a confocal microscope demonstrate that lipid is transferred from the liposomes to nerve endings and liposomal contents are delivered to the nerve terminal cytoplasm. 5. The results suggest that when intracellular Ca2+ is elevated using liposomes as a vehicle, evoked ACh release can occur in the absence of Ca2+ entry via Ca2+ channels. Images Figure 5 Figure 6 PMID:7738845

  13. Regulation of Ca2+ and electrical alternans in cardiac myocytes: Role of CaMKII and repolarizing currents

    PubMed Central

    Livshitz, Leonid M.; Rudy, Yoram

    2007-01-01

    Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca2+ transient (CaT). Because of experimental difficulty in independently controlling the Ca2+ and electrical subsystems, mathematical modelling provides additional insights into mechanisms and causality. Pacing protocols were conducted in a canine ventricular myocyte model with the following results: 1. (I) CaT alternans results from refractoriness of the SR Ca2+ release system; alternation of the L-type calcium current (ICa(L)) has a negligible effect; (II) CaT-AP coupling during late AP occurs through the sodium-calcium exchanger (INaCa) and underlies APD alternans; (III) Increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity extends the range of CaT and APD alternans to slower frequencies and increases alternans magnitude; its decrease suppresses CaT and APD alternans, exerting an antiarrhythmic effect; (IV). Increase of the rapid delayed rectifier current (IKr) also suppresses APD alternans, but without suppressing CaT alternans. Thus, CaMKII inhibition eliminates APD alternans by eliminating its cause (CaT alternans), while IKr enhancement does so by weakening CaT-APD coupling. The simulations identify combined CaMKII inhibition and IKr enhancement as a possible antiar-rhythmic intervention. PMID:17277017

  14. Detection of Ca(2+)-binding proteins by electrophoretic migration in the presence of Ca2+ combined with 45Ca2+ overlay of protein blots

    SciTech Connect

    Garrigos, M.; Deschamps, S.; Viel, A.; Lund, S.; Champeil, P.; Moller, J.V.; le Maire, M. , Gif-sur-Yvette )

    1991-04-01

    When high affinity Ca(2+)-binding proteins like calmodulin, or proteins with a high Ca(2+)-binding capacity like calsequestrin, underwent sodium dodecyl sulfate-gel electrophoresis in Laemmli systems, their electrophoretic migration rates were much higher in gels containing 1 mM Ca2+ than in gels containing ethylene glycol bis(beta-aminoethyl ether) N,N{prime}-tetraacetic acid (EGTA). Replacement of EGTA by Ca2+ in the gel, combined with the blotting of electrophoretically separated proteins on polyvinylidene difluoride membranes and subsequent 45Ca2+ overlay, proved a very effective means of detecting Ca(2+)-binding proteins. This combined approach is important since artifacts occur in both techniques when used separately. We found that the usual procedure of adding Ca2+ to the sample before electrophoresis without including it in the gel itself permitted the detection of only very high affinity Ca(2+)-binding proteins.

  15. Novel regulatory aspects of the extracellular Ca2+-sensing receptor, CaR.

    PubMed

    Riccardi, Daniela; Finney, Brenda A; Wilkinson, William J; Kemp, Paul J

    2009-10-01

    The capacity to sense and adapt to changes in environmental cues is of paramount importance for every living organism. From yeast to man, cells must be able to match cellular activities to growth environment and nutrient availability. Key to this process is the development of membrane-bound systems that can detect modifications in the extracellular environment and to translate these into biological responses. Evidence gathered over the last 15 years has demonstrated that many of these cell surface "sensors" belong to the G protein-coupled receptor superfamily. Crucial to our understanding of nutrient sensing in mammalian species has been the identification of the extracellular Ca(2+)/cation-sensing receptor, CaR. CaR was the first ion-sensing molecule identified in man and genetic studies in humans have revealed the importance of the CaR in mineral ion metabolism. Latter, it has become apparent that the CaR also plays an important role outside the Ca(2+) homeostatic system, as an integrator of multiple environmental signals for the regulation of many vital cellular processes, from cell-to-cell communication to secretion and cell survival/cell death. Recently, novel aspects of receptor function reveal an unexpected role for the CaR in the regulation of growth and development in utero.

  16. Mg-Ca Alloys Produced by Reduction of CaO: Understanding of ECO-Mg Alloy Production

    NASA Astrophysics Data System (ADS)

    Jung, In-Ho; Lee, Jin Kyu; Kim, Shae K.

    2017-04-01

    There have been long debates about the environment conscious (ECO) Mg technology which utilizes CaO to produce Ca-containing Mg alloys. Two key process technologies of the ECO-Mg process are the chemical reduction of CaO by liquid Mg and the maintenance of melt cleanliness during the alloying of Ca. Thermodynamic calculations using FactSage software were performed to explain these two key issues. In addition, an experimental study was performed to compare the melt cleanliness of the Ca-containing Mg alloys produced by the conventional route with metallic Ca and the ECO-Mg route with CaO.

  17. Mg-Ca Alloys Produced by Reduction of CaO: Understanding of ECO-Mg Alloy Production

    NASA Astrophysics Data System (ADS)

    Jung, In-Ho; Lee, Jin Kyu; Kim, Shae K.

    2016-12-01

    There have been long debates about the environment conscious (ECO) Mg technology which utilizes CaO to produce Ca-containing Mg alloys. Two key process technologies of the ECO-Mg process are the chemical reduction of CaO by liquid Mg and the maintenance of melt cleanliness during the alloying of Ca. Thermodynamic calculations using FactSage software were performed to explain these two key issues. In addition, an experimental study was performed to compare the melt cleanliness of the Ca-containing Mg alloys produced by the conventional route with metallic Ca and the ECO-Mg route with CaO.

  18. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    PubMed

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  19. Ca2+-permeable AMPA receptors in mouse olfactory bulb astrocytes

    PubMed Central

    Droste, Damian; Seifert, Gerald; Seddar, Laura; Jädtke, Oliver; Steinhäuser, Christian; Lohr, Christian

    2017-01-01

    Ca2+ signaling in astrocytes is considered to be mainly mediated by metabotropic receptors linked to intracellular Ca2+ release. However, recent studies demonstrate a significant contribution of Ca2+ influx to spontaneous and evoked Ca2+ signaling in astrocytes, suggesting that Ca2+ influx might account for astrocytic Ca2+ signaling to a greater extent than previously thought. Here, we investigated AMPA-evoked Ca2+ influx into olfactory bulb astrocytes in mouse brain slices using Fluo-4 and GCaMP6s, respectively. Bath application of AMPA evoked Ca2+ transients in periglomerular astrocytes that persisted after neuronal transmitter release was inhibited by tetrodotoxin and bafilomycin A1. Withdrawal of external Ca2+ suppressed AMPA-evoked Ca2+ transients, whereas depletion of Ca2+ stores had no effect. Both Ca2+ transients and inward currents induced by AMPA receptor activation were partly reduced by Naspm, a blocker of Ca2+-permeable AMPA receptors lacking the GluA2 subunit. Antibody staining revealed a strong expression of GluA1 and GluA4 and a weak expression of GluA2 in periglomerular astrocytes. Our results indicate that Naspm-sensitive, Ca2+-permeable AMPA receptors contribute to Ca2+ signaling in periglomerular astrocytes in the olfactory bulb. PMID:28322255

  20. literacy.ca EXPRESS. April 2010

    ERIC Educational Resources Information Center

    Movement for Canadian Literacy, 2010

    2010-01-01

    This issue of "literacy.ca EXPRESS" focuses on poverty. The articles included in this issue are: (1) Poverty Overview; (2) Tony's Story; (3) LAN (Learner Advisory Network) Member's Story (Dianne Smith); (4) Linking Adult Literacy to Poverty Reduction; (5) MCL (Movement for Canadian Literacy) Update; (6) Highlights from the LAN; (7) Good…

  1. SNL/CA Cultural Resources Management Plan.

    SciTech Connect

    Larsen, Barbara L.

    2005-11-01

    The SNL/CA Cultural Resources Management Plan satisfies the site's Environmental Management System requirement to promote long-term stewardship of cultural resources. The plan summarizes the cultural and historical setting of the site, identifies existing procedures and processes that support protection and preservation of resources, and outlines actions that would be initiated if cultural resources were discovered onsite in the future.3

  2. Hippocampal CA1 Ripples as Inhibitory Transients

    PubMed Central

    Krishnan, Giri P; Fellous, Jean-Marc; Bazhenov, Maxim

    2016-01-01

    Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network. PMID:27093059

  3. 78 FR 60366 - California Disaster #CA-00212

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION California Disaster CA-00212 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY...: 06/24/2014. ADDRESSES: Submit completed loan applications to: U.S. Small Business...

  4. 76 FR 24555 - California Disaster #CA-00171

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... ADMINISTRATION California Disaster CA-00171 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of CALIFORNIA dated 04/26...: California: Monterey, San Benito, San Mateo, Santa Clara. The Interest Rates are: Percent For Physical...

  5. 75 FR 22872 - California Disaster # CA-00154

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... ADMINISTRATION California Disaster CA-00154 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 04/21/2010. Incident: Northern Baja California Earthquake. Incident Period: 04/04/2010 and...

  6. 76 FR 38263 - California Disaster #CA-00172

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... From the Federal Register Online via the Government Publishing Office Small Business Administration California Disaster CA-00172 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of California (FEMA- 1968-DR), dated 06/20/2011. Incident: Tsunami Waves. Incident Period:...

  7. 77 FR 61815 - California Disaster #CA-00190

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... ADMINISTRATION California Disaster CA-00190 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY: This is an amendment of the Administrative declaration of a disaster for the State of California...'s disaster declaration for the State of California, dated 09/14/2012 I hereby amended to...

  8. 75 FR 17792 - California Disaster # CA-00150

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... ADMINISTRATION California Disaster CA-00150 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY: This is an amendment of the Administrative declaration of disaster for the State of California.... SUPPLEMENTARY INFORMATION: The notice of the Administrative disaster declaration for the State of...

  9. 76 FR 80446 - California Disaster #CA-00182

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...] California Disaster CA-00182 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 12/19/2011... adversely affected by the disaster: Primary Counties: Los Angeles. Contiguous Counties: California:...

  10. 75 FR 27846 - California Disaster # CA-00155

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... [Federal Register Volume 75, Number 95 (Tuesday, May 18, 2010)] [Notices] [Page 27846] [FR Doc No: 2010-11746] SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12166 and 12167] California Disaster CA... Presidential declaration of a major disaster for Public Assistance Only for the State of California (FEMA-...

  11. 75 FR 13144 - California Disaster #CA-00151

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION California Disaster CA-00151 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of California (FEMA- 1884-DR), dated 03/08/2010. Incident: Severe Winter Storms, Flooding,...

  12. 76 FR 11307 - California Disaster #CA-00162

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... ADMINISTRATION California Disaster CA-00162 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY: This is an amendment of the Administrative declaration of a disaster for the State of California... California, dated 02/02/2011 is hereby amended to include the following areas as adversely affected by...

  13. 75 FR 8414 - California Disaster # CA-00150

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... ADMINISTRATION California Disaster CA-00150 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 02/16... disaster: Primary Counties: Los Angeles. Contiguous Counties: California: Kern, Orange San...

  14. 76 FR 18614 - California Disaster #CA-00167

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... ADMINISTRATION California Disaster CA-00167 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 03/29... the disaster: Primary Counties: Del Norte. Contiguous Counties: California: Humboldt, Siskiyou....

  15. 76 FR 7622 - California Disaster #CA-00162

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... ADMINISTRATION California Disaster CA-00162 AGENCY: U.S. Small Business Administration. ] ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 02/02... Bernardino, San Luis Obispo. Contiguous Counties: California: Inyo, Kern, Kings, Los Angeles,...

  16. Inositol Trisphosphate Receptor Ca2+ Release Channels

    PubMed Central

    FOSKETT, J. KEVIN; WHITE, CARL; CHEUNG, KING-HO; MAK, DON-ON DANIEL

    2010-01-01

    The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R. PMID:17429043

  17. literacy.ca EXPRESS. December 2010

    ERIC Educational Resources Information Center

    Canadian Literacy and Learning Network, 2010

    2010-01-01

    This issue of "literacy.ca EXPRESS" features new and exciting developments, updates and exciting new resources. Articles included in this issue are: (1) Introducing CLLN (Canadian Literacy and Learning Network)!; (2) Supporting Learner Leadership; (3) Involving Learners by Patricia Ashie; (4) Catching Confidence; (5) CALL (Committee of…

  18. 78 FR 39821 - California Disaster #CA-00202

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION California Disaster CA-00202 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 06/25...

  19. 78 FR 77195 - California Disaster #CA-00214

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION California Disaster CA-00214 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for the...

  20. 76 FR 20433 - California Disaster #CA-00169

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION California Disaster CA-00169 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 04/05...

  1. 78 FR 55771 - California Disaster #CA-00207

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION California Disaster CA-00207 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of CALIFORNIA dated 08/26...

  2. 76 FR 16029 - CALIFORNIA Disaster #CA-00165

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION CALIFORNIA Disaster CA-00165 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of CALIFORNIA dated 03/16...

  3. 75 FR 69733 - California Disaster #CA-00161

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... [Federal Register Volume 75, Number 219 (Monday, November 15, 2010)] [Notices] [Page 69733] [FR Doc No: 2010-28587] SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12373 and 12374] California Disaster CA-00161 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of...

  4. 76 FR 62132 - California Disaster #CA-00176

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION California Disaster CA-00176 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 09/29...

  5. 76 FR 79751 - California Disaster #CA-00181

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION California Disaster CA-00181 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 12/14...

  6. 77 FR 1971 - California Disaster #CA-00183

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION California Disaster CA-00183 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of California dated 01/05...

  7. 75 FR 68848 - California Disaster #CA-00160

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... [Federal Register Volume 75, Number 216 (Tuesday, November 9, 2010)] [Notices] [Pages 68848-68849] [FR Doc No: 2010-28201] SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12370 and 12371] California Disaster CA-00160 AGENCY: U.S. Small Business Administration. [[Page 68849

  8. CA125 — EDRN Public Portal

    Cancer.gov

    MUC16 (CA125) is a highly glycosylated sialomucin that is expressed on epithelial cell surface, especially on ovarian cancer cells. MUC16 is anchored to the epithelium by a transmembrane domain and is released into the extracellular space by enzymatic cleavage. It is thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces.

  9. Hippocampal CA1 Ripples as Inhibitory Transients.

    PubMed

    Malerba, Paola; Krishnan, Giri P; Fellous, Jean-Marc; Bazhenov, Maxim

    2016-04-01

    Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  10. Voltage-gated Ca2+ influx and mitochondrial Ca2+ initiate secretion from Aplysia neuroendocrine cells.

    PubMed

    Hickey, C M; Groten, C J; Sham, L; Carter, C J; Magoski, N S

    2013-10-10

    Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. The response was similar for step durations of ≥ 50 ms, but fell off sharply with shorter stimuli. The capacitance change was attenuated by replacing external Ca(2+) with Ba(2+), blocking Ca(2+) channels, buffering intracellular Ca(2+) with EGTA, disrupting synaptic protein recycling, or genetic knock-down of ELH. Regarding intracellular stores, liberating mitochondrial Ca(2+) with the protonophore, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP), brought about an EGTA-sensitive elevation of capacitance. Conversely, no change was observed to Ca(2+) released from the endoplasmic reticulum or acidic stores. Prior exposure to FCCP lessened the train-induced capacitance increase, suggesting overlap in the pool of releasable vesicles. Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.

  11. Calculated and measured [Ca(2+)] in buffers used to calibrate Ca(2+) macroelectrodes.

    PubMed

    McGuigan, John A S; Stumpff, Friederike

    2013-05-01

    The ionized concentration of calcium in physiological buffers ([Ca(2+)]) is normally calculated using either tabulated constants or software programs. To investigate the accuracy of such calculations, the [Ca(2+)] in EGTA [ethylene glycol-bis(β-aminoethylether)-N,N,N|,N|-tetraacetic acid], BAPTA [1,2-bis(o-aminophenoxy) ethane-N,N,N|,N|-tetraacetic acid], HEDTA [N-(2-hydroxyethyl)-ethylenediamine-N,N|,N|-triacetic acid], and NTA [N,N-bis(carboxymethyl)glycine] buffers was estimated using the ligand optimization method, and these measured values were compared with calculated values. All measurements overlapped in the pCa range of 3.51 (NTA) to 8.12 (EGTA). In all four buffer solutions, there was no correlation between measured and calculated values; the calculated values differed among themselves by factors varying from 1.3 (NTA) to 6.9 (EGTA). Independent measurements of EGTA purity and the apparent dissociation constants for HEDTA and NTA were not significantly different from the values estimated by the ligand optimization method, further substantiating the method. Using two calibration solutions of pCa 2.0 and 3.01 and seven buffers in the pCa range of 4.0-7.5, calibration of a Ca(2+) electrode over the pCa range of 2.0-7.5 became a routine procedure. It is proposed that such Ca(2+) calibration/buffer solutions be internationally defined and made commercially available to allow the precise measurement of [Ca(2+)] in biology.

  12. Simultaneous measurement of Ca2+ in muscle with Ca electrodes and aequorin. Diffusible cytoplasmic constituent reduces Ca(2+)-independent luminescence of aequorin

    PubMed Central

    1991-01-01

    Estimates of cytoplasmic Ca2+ concentration ([Ca2+]i) were made essentially simultaneously in the same intact frog skeletal muscle fibers with aequorin and with Ca-selective microelectrodes. In healthy fibers under truly resting conditions [Ca2+]i was too low to be measured reliably with either technique. The calibration curves for both indicators were essentially flat in this range of [Ca2+], and the aequorin light signal was uniformly below the level to be expected in the total absence of Ca2+. When [Ca2+]i had been raised to a stable level below the threshold for contracture by increasing [K+]o to 12.5 mM, [Ca2+]i was 38 nM according to aequorin and 59 nM according to the Ca-selective microelectrodes. These values are not significantly different. Our estimates of [Ca2+]i are lower than most others obtained with microelectrodes, probably because the presence of aequorin in the cells allowed us to detect damaging microelectrode impalements that otherwise we would have had no reason to reject. The observation that the light emission from aequorin-injected fibers in normal Ringer solution was below the level expected from the Ca(2+)-independent luminescence of aequorin in vitro was investigated further, with the conclusion that the myoplasm contains a diffusible macromolecule (between 10 and 30 kD) that interacts with aequorin to reduce light emission in the absence of Ca2+. PMID:1783896

  13. Sensitivity and specificity of CA242 in gastro-intestinal cancer. A comparison with CEA, CA50 and CA 19-9.

    PubMed Central

    Nilsson, O.; Johansson, C.; Glimelius, B.; Persson, B.; Nørgaard-Pedersen, B.; Andrén-Sandberg, A.; Lindholm, L.

    1992-01-01

    A serological assay for the quantitative determination of the novel tumour-associated epitope CA242 was developed and used for determination of sensitivity and specificity of CA242 in gastrointestinal cancer. The CA242 assay showed a better tumour specificity than CA50 (and CA 19-9). This was most noticeable in benign hepatobiliary disease. The sensitivity at 90% specificity cut-off level was approximately three times higher for CA242 compared to CA50 in colo-rectal cancer Dukes A, B and C, while in pancreatic cancer the sensitivity of CA242 and CA50 was similar. CA242 was expressed independently of CEA, and the combination of CEA and CA242 gave in colo-rectal cancer considerably higher sensitivity than the use of only one of the markers. This was most pronounced in Dukes A and Dukes B patients. CA242 is a novel tumour marker of potential clinical use, particularly in colo-rectal cancer. PMID:1739620

  14. Cenozoic seawater Sr/Ca evolution

    NASA Astrophysics Data System (ADS)

    Sosdian, Sindia M.; Lear, Caroline H.; Tao, Kai; Grossman, Ethan L.; O'Dea, Aaron; Rosenthal, Yair

    2012-10-01

    Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth's history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotemperature record from the same samples, the gastropod record suggests that Sr/Caswwas slightly higher in the Eocene (˜11.4 ± 3 mmol/mol) than today (˜8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gastropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic precipitate (calcite veins) Sr/Caswrecords. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Caswrecords. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide.

  15. ASteCA: Automated Stellar Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Perren, G. I.; Vázquez, R. A.; Piatti, A. E.

    2015-04-01

    We present the Automated Stellar Cluster Analysis package (ASteCA), a suit of tools designed to fully automate the standard tests applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and photometric data to obtain precise and objective values for a given cluster's center coordinates, radius, luminosity function and integrated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide accurate estimates for a cluster's metallicity, age, extinction and distance values along with its uncertainties. To validate the code we applied it on a large set of over 400 synthetic MASSCLEAN clusters with varying degrees of field star contamination as well as a smaller set of 20 observed Milky Way open clusters (Berkeley 7, Bochum 11, Czernik 26, Czernik 30, Haffner 11, Haffner 19, NGC 133, NGC 2236, NGC 2264, NGC 2324, NGC 2421, NGC 2627, NGC 6231, NGC 6383, NGC 6705, Ruprecht 1, Tombaugh 1, Trumpler 1, Trumpler 5 and Trumpler 14) studied in the literature. The results show that ASteCA is able to recover cluster parameters with an acceptable precision even for those clusters affected by substantial field star contamination. ASteCA is written in Python and is made available as an open source code which can be downloaded ready to be used from its official site.

  16. Mg and Ca isotope fractionation during CaCO3 biomineralisation.

    PubMed

    Chang, Veronica T-C; Williams, R J P; Makishima, Akio; Belshawl, Nick S; O'Nions, R Keith

    2004-10-08

    The natural variation of Mg and Ca stable isotopes of carbonates has been determined in carbonate skeletons of perforate foraminifera and reef coral together with Mg/Ca ratios to assess the influence of biomineralisation processes. The results for coral aragonite suggest its formation, in terms of stable isotope behaviour, approximates to inorganic precipitation from a seawater reservoir. In contrast, results for foraminifera calcite suggest a marked biological control on Mg isotope ratios presumably related to its low Mg content compared with seawater. The bearing of these observations on the use of Mg and Ca isotopes as proxies in paleoceanography is considered. Copyright 2004 Elsevier Inc.

  17. Ca2+ currents in cerebral artery smooth muscle cells of rat at physiological Ca2+ concentrations

    PubMed Central

    1996-01-01

    Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4- 10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization. PMID:8722560

  18. The Electronic Spectra of CaN2(+) and Ca(N2)2(+)

    NASA Technical Reports Server (NTRS)

    Rodriguez-Santiago, Luis; Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)

    1998-01-01

    The ground and low-lying electronic states of CaN2(+) are studied at several levels of theory. The results for the X(sup 2)Sigma(+) state and the excited (2)(sup 2)Pi state, arising from occupying the Ca 4p orbital, are in good agreement with experiment. The analogous states of Ca(N2)2(+) are studied using the same theoretical approaches, and predictions are made as to the changes caused by the addition of the second N2 ligand.

  19. Modulation of Na/sup +/-Ca/sup 2 +/ exchange in sarcolemmal vesicles by intravesicular Ca/sup 2 +/

    SciTech Connect

    Reeves, J.P.; Poronnik, P.

    1987-01-01

    When cardiac sarcolemmal vesicles were incubated at 37/sup 0/C in 160 mM NaCl containing 0.5 mM CaCl/sub 2/ and subsequently assayed for Na-Ca exchange activity, they exhibited a threefold increase in the initial rate of /sup 45/Ca/sup 2 +/ uptake compared with vesicles incubated without added CaCl/sub 2/. Removal of endogenous Ca/sup 2 +/ by incubation of the vesicles with 0.1 mM ethylene-bis(..beta..-aminoethylether)-N,N'-tetraacetic acid (EGTA) resulted in a 35% inhibition in exchange activity. The pretreatment with CaCl/sub 2/ produced an acceleration of Na-Ca exchange activity rather than an increase in Ca/sup 2 +/ uptake due to Ca-Ca exchange. Pretreatment of the vesicles with CaCl/sub 2/ lowered the apparent K/sub m/ of the exchange system for Ca/sup 2 +/. The effects of the Ca treatment were reversed by subsequently incubating the vesicles with EGTA. In contrast to the effects of intravesicular Ca/sup 2 +/ on Na/sub i/-dependent Ca/sup 2 +/ uptake, external Ca/sup 2 +/ had no effect on Na/sub 0/-dependent Ca/sup 2 +/ efflux. The results suggest that an understanding of the kinetics of the Na-Ca exchange system may be hampered by the autoacceleration of exchange activity that occurs during initial rate measurements as Ca/sup 2 +/ accumulates within the vesicles. This phenomenon may contribute to the variability that exists among different vesicle preparations in their apparent K/sub m/ values for Ca/sup 2 +/.

  20. Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1.

    PubMed

    Zemankovics, Rita; Veres, Judit M; Oren, Iris; Hájos, Norbert

    2013-07-24

    Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input-output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions.

  1. Modeling Ca(2+) currents and buffered diffusion of Ca(2+) in human β-cells during voltage clamp experiments.

    PubMed

    Félix-Martínez, Gerardo J; Godínez-Fernández, J Rafael

    2015-12-01

    Macroscopic Ca(2+) currents of the human β-cells were characterized using the Hodgkin-Huxley formalism. Expressions describing the Ca(2+)-dependent inactivation process of the L-type Ca(2+) channels in terms of the concentration of Ca(2+) were obtained. By coupling the modeled Ca(2+) currents to a three-dimensional model of buffered diffusion of Ca(2+), we simulated the Ca(2+) transients formed in the immediate vicinity of the cell membrane during voltage clamp experiments performed in high buffering conditions. Our modeling approach allowed us to consider the distribution of the Ca(2+) sources over the cell membrane. The effect of exogenous (EGTA) and endogenous Ca(2+) buffers on the temporal course of the Ca(2+) transients was evaluated. We show that despite the high Ca(2+) buffering capacity, nanodomains are formed in the submembrane space, where a peak Ca(2+) concentration between ∼76 and 143 µM was estimated from our simulations. In addition, the contribution of each Ca(2+) current to the formation of the Ca(2+) nanodomains was also addressed. Here we provide a general framework to incorporate the spatial aspects to the models of the pancreatic β-cell, such as a more detailed and realistic description of Ca(2+) dynamics in response to electrical activity in physiological conditions can be provided by future models.

  2. Ca2+-binding protein-1 facilitates and forms a postsynaptic complex with Cav1.2 (L-type) Ca2+ channels.

    PubMed

    Zhou, Hong; Kim, Seong-Ah; Kirk, Elizabeth A; Tippens, Alyssa L; Sun, Hong; Haeseleer, Françoise; Lee, Amy

    2004-05-12

    Ca2+-binding protein-1 (CaBP1) is a Ca2+-binding protein that is closely related to calmodulin (CaM) and localized in somatodendritic regions of principal neurons throughout the brain, but how CaBP1 participates in postsynaptic Ca2+ signaling is not known. Here, we describe a novel role for CaBP1 in the regulation of Ca2+ influx through Ca(v)1.2 (L-type) Ca2+ channels. CaBP1 interacts directly with the alpha1 subunit of Ca(v)1.2 at sites that also bind CaM. CaBP1 binding to one of these sites, the IQ domain, is Ca2+ dependent and competitive with CaM binding. The physiological significance of this interaction is supported by the association of Ca(v)1.2 and CaBP1 in postsynaptic density fractions purified from rat brain. Moreover, in double-label immunofluorescence experiments, CaBP1 and Ca(v)1.2 colocalize in numerous cell bodies and dendrites of neurons, particularly in pyramidal cells in the CA3 region of the hippocampus and in the dorsal cortex. In electrophysiological recordings of cells transfected with Ca(v)1.2, CaBP1 greatly prolonged Ca2+ currents, prevented Ca2+-dependent inactivation, and caused Ca2+-dependent facilitation of currents evoked by step depolarizations and repetitive stimuli. These effects contrast with those of CaM, which promoted strong Ca2+-dependent inactivation of Ca(v)1.2 with these same voltage protocols. Our findings reveal how Ca2+-binding proteins, such as CaM and CaBP1, differentially adjust Ca2+ influx through Ca(v)1.2 channels, which may specify diverse modes of Ca2+ signaling in neurons.

  3. The alterations of Ca2+/calmodulin/CaMKII/CaV1.2 signaling in experimental models of Alzheimer's disease and vascular dementia.

    PubMed

    Min, Dongyu; Guo, Feng; Zhu, Shu; Xu, Xiaoxue; Mao, Xiaoyuan; Cao, Yonggang; Lv, Xintong; Gao, Qinghua; Wang, Lei; Chen, Tianbao; Shaw, Chris; Hao, Liying; Cai, Jiqun

    2013-03-22

    The two critical forms of dementia are Alzheimer's disease (AD) and vascular dementia (VD). The alterations of Ca(2+)/calmodulin/CaMKII/CaV1.2 signaling in AD and VD have not been well elucidated. Here we have demonstrated changes in the levels of CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF proteins by Western blot analysis and the co-localization of p-CaMKII/CaV1.2 by double-labeling immunofluorescence in the hippocampus of APP/PS1 mice and VD gerbils. Additionally, expression of these proteins and intracellular calcium levels were examined in cultured neurons treated with Aβ1-42. The expression of CaV1.2 protein was increased in VD gerbils and in cultured neurons but decreased in APP/PS1 mice; the expression of calmodulin protein was increased in APP/PS1 mice and VD gerbils; levels of p-CaMKII, p-CREB and BDNF proteins were decreased in AD and VD models. The number of neurons in which p-CaMKII and CaV1.2 were co-localized, was decreased in the CA1 and CA3 regions in two models. Intracellular calcium was increased in the cultured neurons treated with Aβ1-42. Collectively, our results suggest that the alterations in CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF can be reflective of an involvement in the impairment in memory and cognition in AD and VD models.

  4. Plasma membrane Ca2+ release-activated Ca2+ channels with a high selectivity for Ca2+ identified by patch-clamp recording in rat liver cells.

    PubMed

    Rychkov, G; Brereton, H M; Harland, M L; Barritt, G J

    2001-04-01

    Repetitive waves of increased cytoplasmic Ca2+ concentration play a central role in the process by which hormones regulate liver function. Maintenance of these Ca2+ waves requires Ca2+ inflow through store-operated Ca2+ channels. The properties and mechanism(s) of activation of these channels are not well understood. Store-operated Ca2+ channels (SOCs) in the H4-IIE rat liver cell line were studied by whole-cell patch clamping. Depletion of Ca2+ in intracellular stores by intracellular perfusion with either inositol 1,4,5-trisphosphate (InsP(3)) or thapsigargin in the presence of 10 mmol/L ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid (EGTA), or with 10 mmol/L EGTA alone, activated an inward current that reversed at a membrane potential above +40 mV. In physiologic extracellular medium, this inward current was carried exclusively by Ca2+ and was blocked by a variety of di- and trivalent cations. In the absence of extracellular Ca2+ and Mg2+, the inward current was carried by monovalent cations. This current was 10 to 30 times larger than that observed in the presence of extracellular Ca2+, and permitted the detection of single-channel events that corresponded to a single-channel conductance of about 40 pS. Both the Ca2+ and Na+ inward currents were blocked by the calmodulin antagonist, N-(6-amino hexyl)-5-chloro-1-naphthalenesulphonamide (W7), but not by calmidazolium or calmodulin-dependent protein kinase II fragment 290-309. It is concluded that liver cells possess plasma membrane Ca2+ channels that have a high selectivity for Ca2+, are activated by a decrease in the concentration of Ca2+ in intracellular stores through a mechanism that is unlikely to involve calmodulin, and are involved in re-filling intracellular Ca2+ stores during Ca2+ signaling.

  5. Phosphorylation and activation of nuclear Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) by Ca{sup 2+}/calmodulin-dependent protein kinase I (CaMKI)

    SciTech Connect

    Onouchi, Takashi; Sueyoshi, Noriyuki; Ishida, Atsuhiko; Kameshita, Isamu

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer CaMKP-N/PPM1E underwent proteolytic processing and translocated to cytosol. Black-Right-Pointing-Pointer The proteolysis was effectively inhibited by the proteasome inhibitors. Black-Right-Pointing-Pointer Ser-480 of zebrafish CaMKP-N was phosphorylated by cytosolic CaMKI. Black-Right-Pointing-Pointer Phosphorylation-mimic mutants of CaMKP-N showed enhanced activity. Black-Right-Pointing-Pointer These results suggest that CaMKP-N is regulated by CaMKI. -- Abstract: Nuclear Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) is an enzyme that dephosphorylates and downregulates multifunctional Ca{sup 2+}/calmodulin-dependent protein kinases (CaMKs) as well as AMP-dependent protein kinase. In our previous study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing and translocated to cytosol in a proteasome inhibitor-sensitive manner. In the present study, we found that zCaMKP-N is regulated by phosphorylation at Ser-480. When zCaMKP-N was incubated with the activated CaMKI, time-dependent phosphorylation of the enzyme was observed. This phosphorylation was significantly reduced when Ser-480 was replaced by Ala, suggesting that CaMKI phosphorylates Ser-480 of zCaMKP-N. Phosphorylation-mimic mutants, S480D and S480E, showed higher phosphatase activities than those of wild type and S480A mutant in solution-based phosphatase assay using various substrates. Furthermore, autophosphorylation of CaMKII after ionomycin treatment was more severely attenuated in Neuro2a cells when CaMKII was cotransfected with the phosphorylation-mimic mutant of zCaMKP-N than with the wild-type or non-phosphorylatable zCaMKP-N. These results strongly suggest that phosphorylation of zCaMKP-N at Ser-480 by CaMKI activates CaMKP-N catalytic activity and thereby downregulates multifunctional CaMKs in the cytosol.

  6. Mechanisms of CaMKII Activation in the Heart.

    PubMed

    Erickson, Jeffrey R

    2014-01-01

    Calcium/calmodulin (Ca(2+)/CaM) dependent protein kinase II (CaMKII) has emerged as a key nodal protein in the regulation of cardiac physiology and pathology. Due to the particularly elegant relationship between the structure and function of the kinase, CaMKII is able to translate a diverse set of signaling events into downstream physiological effects. While CaMKII is typically autoinhibited at basal conditions, prolonged rapid Ca(2+) cycling can activate the kinase and allow post-translational modifications that depend critically on the biochemical environment of the heart. These modifications result in sustained, autonomous CaMKII activation and have been associated with pathological cardiac signaling. Indeed, improved understanding of CaMKII activation mechanisms could potentially lead to new clinical therapies for the treatment or prevention of cardiovascular disease. Here we review the known mechanisms of CaMKII activation and discuss some of the pathological signaling pathways in which they play a role.

  7. Charge states of Ca atoms in β-dicalcium silicate

    NASA Astrophysics Data System (ADS)

    Mori, Kazuhiro; Kiyanagi, Ryoji; Yonemura, Masao; Iwase, Kenji; Sato, Takashi; Itoh, Keiji; Sugiyama, Masaaki; Kamiyama, Takashi; Fukunaga, Toshiharu

    2006-11-01

    In order to study the crystal structure of β-SiO, time-of-flight neutron powder diffraction experiments were carried out at temperatures between room temperature (RT) and 600 °C. Rietveld refinement at RT has shown that β-SiO is monoclinic based on P2 1/ n symmetry and two different types of Ca sites, Ca(1) and Ca(2). All interatomic distances within 3 Å were calculated, with the valences of Ca(1) with seven Ca sbnd O bonds and Ca(2) with eight were estimated to be 1.87+ and 2+ by the Zachariasen-Brown-Altermatt formula (bond valence sum). Applying charge neutrality the two charge states of Ca in β-SiO are [Ca(1)SiO 4] 2- and Ca(2) 2+, respectively. Furthermore, the [Ca(1)SiO 4] 2- unit has the shortest Ca-O distance, and its length kept constant at 2.23 Å at all temperatures. In the short-range structure analysis at RT, the shortest Ca-O bond was also observed in a radial distribution function. These results imply that the [Ca(1)SiO 4] 2- unit has covalency on the shortest Ca-O in addition to Si-O.

  8. Deep inelastic separated response functions from 40Ca and 48Ca

    NASA Astrophysics Data System (ADS)

    Deady, M.; Williamson, C. F.; Zimmerman, P. D.; Altemus, R.; Whitney, R. R.

    1986-06-01

    Deep inelastic scattering cross sections have been measured for 40Ca and 48Ca at electron energies between 100 and 375 MeV at scattering angles of 90° and 140°. Longitudinal and transverse response functions at three-momentum transfers between 250 and 410 MeV/c have been extracted using a Rosenbluth separation. The response functions are compared to calculations modeling the nucleus as a noninteracting relativistic Fermi gas. The model is found to agree with the observed transverse response function in the region of expected quasi-free nucleon knockout, but the model overestimates the observed longitudinal response. Comparisons of the response functions of the two isotopes are made, and differences between 40Ca and 48Ca are seen.

  9. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons.

    PubMed

    Frick, Andreas; Magee, Jeffrey; Koester, Helmut J; Migliore, Michele; Johnston, Daniel

    2003-04-15

    Oblique dendrites of CA1 pyramidal neurons predominate in stratum radiatum and receive approximately 80% of the synaptic input from Schaffer collaterals. Despite this fact, most of our understanding of dendritic signal processing in these neurons comes from studies of the main apical dendrite. Using a combination of Ca2+ imaging and whole-cell recording techniques in rat hippocampal slices, we found that the properties of the oblique dendrites differ markedly from those of the main dendrites. These different properties tend to equalize the Ca2+ rise from single action potentials as they backpropagate into the oblique dendrites from the main trunk. Evidence suggests that this normalization of Ca2+ signals results from a higher density of a transient, A-type K+ current [I(K(A))] in the oblique versus the main dendrites. The higher density of I(K(A)) may have important implications for our understanding of synaptic integration and plasticity in these structures.

  10. Microdomain [Ca(2+)] Fluctuations Alter Temporal Dynamics in Models of Ca(2+)-Dependent Signaling Cascades and Synaptic Vesicle Release.

    PubMed

    Weinberg, Seth H

    2016-03-01

    Ca(2+)-dependent signaling is often localized in spatially restricted microdomains and may involve only 1 to 100 Ca(2+) ions. Fluctuations in the microdomain Ca(2+) concentration (Ca(2+)) can arise from a wide range of elementary processes, including diffusion, Ca(2+) influx, and association/dissociation with Ca(2+) binding proteins or buffers. However, it is unclear to what extent these fluctuations alter Ca(2+)-dependent signaling. We construct Markov models of a general Ca(2+)-dependent signaling cascade and Ca(2+)-triggered synaptic vesicle release. We compare the hitting (release) time distribution and statistics for models that account for [Ca(2+)] fluctuations with the corresponding models that neglect these fluctuations. In general, when Ca(2+) fluctuations are much faster than the characteristic time for the signaling event, the hitting time distributions and statistics for the models with and without Ca(2+) fluctuation are similar. However, when the timescale of Ca(2+) fluctuations is on the same order as the signaling cascade or slower, the hitting time mean and variability are typically increased, in particular when the average number of microdomain Ca(2+) ions is small, a consequence of a long-tailed hitting time distribution. In a model of Ca(2+)-triggered synaptic vesicle release, we demonstrate the conditions for which [Ca(2+)] fluctuations do and do not alter the distribution, mean, and variability of release timing. We find that both the release time mean and variability can be increased, demonstrating that Ca(2+) fluctuations are an important aspect of microdomain Ca(2+) signaling and further suggesting that Ca(2+) fluctuations in the presynaptic terminal may contribute to variability in synaptic vesicle release and thus variability in neuronal spiking.

  11. Fatty acids induce release of Ca2+ from acidosomal stores and activate capacitative Ca2+ entry in Dictyostelium discoideum.

    PubMed Central

    Schaloske, R; Sonnemann, J; Malchow, D; Schlatterer, C

    1998-01-01

    cAMP-induced Ca2+ fluxes in Dictyostelium discoideum largely depend on phospholipase A2 activity generating non-esterified fatty acids [Schaloske and Malchow (1997) Biochem. J. 327, 233-238]. In the present study the effect of fatty acids on Ca2+ homoeostasis in D. discoideum was investigated. Cytosolic free Ca2+ concentration ([Ca2+]i) was analysed by digital imaging of single fura2-dextran-loaded cells. Arachidonic acid and linoleic acid induced a transient increase in [Ca2+]i. The concentration of arachidonic acid determined the percentage of responding cells, with the mean height of the increase being dose-independent. In nominally Ca2+-free medium or in the presence of bis-(o-aminophenoxy)ethane-N, N,N',N'-tetra-acetic acid (BAPTA), no [Ca2+]i transient was detectable. In spite of this, we found that (1) arachidonic acid induced Ca2+ release from permeabilized cells and from vesicular fractions at concentrations that elicited Ca2+ influx in intact cells and (2) Ca2+ entry was inhibited by inhibitors of Ca2+-transport ATPases and V-type H+-ATPase, indicating that intracellular Ca2+ release precedes Ca2+ entry. Inhibition studies and mutant analysis point to the acidosomal Ca2+ stores as a target of fatty acids. Although fatty acids can substitute fully for cAMP with respect to Ca2+ influx in wild-type cells, experiments with a mutant strain revealed that cAMP also sensitizes the Ca2+-entry mechanism: cAMP-induced Ca2+ influx was normal in a phospholipase C knockout mutant but influx was fairly insensitive to arachidonic acid in this strain. This defect could be overcome by higher doses of arachidonic acid which cause sufficient Ca2+ to be released from the stores to trigger extracellular Ca2+ entry. PMID:9601085

  12. Ankyrin-B reduction enhances Ca spark-mediated SR Ca release promoting cardiac myocyte arrhythmic activity

    PubMed Central

    Camors, Emmanuel; Mohler, Peter J.; Bers, Donald M.; Despa, Sanda

    2012-01-01

    Ankyrin-B (AnkB) loss-of-function may cause ventricular arrhythmias and sudden cardiac death in humans. Cardiac myocytes from AnkB heterozygous mice (AnkB+/−) show reduced expression and altered localization of Na/Ca exchanger (NCX) and Na/K-ATPase (NKA), key players in regulating [Na]i and [Ca]i. Here we investigate how AnkB reduction affects cardiac [Na]i, [Ca]i and SR Ca release. We found reduced NCX and NKA transport function but unaltered [Na]i and diastolic [Ca]i in myocytes from AnkB+/− vs. wild-type (WT) mice. Ca transients, SR Ca content and fractional SR Ca release were larger in AnkB+/− myocytes. The frequency of spontaneous, diastolic Ca sparks (CaSpF) was significantly higher in intact myocytes from AnkB+/− vs. WT myocytes (with and without isoproterenol), even when normalized for SR Ca load. However, total ryanodine receptor (RyR)-mediated SR Ca leak (tetracaine-sensitive) was not different between groups. Thus, in AnkB+/− mice SR Ca leak is biased towards more Ca sparks (vs. smaller release events), suggesting more coordinated openings of RyRs in a cluster. This is due to local cytosolic RyR regulation, rather than intrinsic RyR differences, since CaSpF was similar in saponin-permeabilized myocytes from WT and AnkB+/− mice. The more coordinated RyRs openings resulted in an increased propensity of pro-arrhythmic Ca waves in AnkB+/− myocytes. In conclusion, AnkB reduction alters cardiac Na and Ca transport and enhances the coupled RyR openings, resulting in more frequent Ca sparks and waves although the total SR Ca leak is unaffected. This could enhance the propensity for triggered arrhythmias in AnkB+/− mice. PMID:22406428

  13. Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics*

    PubMed Central

    Wei, An-Chi; Liu, Ting; O'Rourke, Brian

    2015-01-01

    The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner. PMID:25963147

  14. Intracellular Ca2+ buffers can dramatically affect Ca2+ conductances in hair cells.

    PubMed

    Martini, Marta; Rispoli, Giorgio; Farinelli, Federica; Fesce, Riccardo; Rossi, Maria Lisa

    2004-09-01

    The effects of endogenous and exogenous Ca(2+) buffers on Ca(2+) current kinetics have been investigated by patch clamp in hair cells mechanically isolated from frog semicircular canals. This preparation displays at least three different Ca(2+) channel types: transient currents flow through a drug-resistant channel ("R1"), while non-inactivating channels sustain a steady, plateau current comprised of a large L component and a small drug-resistant fraction ("R2"). In the perforated-patch condition a large and stable Ca(2+) current was recorded, with all three components. In whole-cell, a buffer-free pipette solution did not prevent a complete Ca(2+) response. The size of the transient and plateau current fractions were greatly reduced, but the ratio between the two fractions, as well as the activation, inactivation and deactivation kinetics, were substantially unmodified. Current amplitude partially recovered with 5 mM EGTA in the pipette solution. With 50 mM EGTA all the kinetic parameters were slowed down and the transient component, but not the plateau component, markedly increased in size. Response kinetics slowed down even more with 30 mM Cs-BAPTA and the Ca(2+) waveform was substantially modified. The transient component was very large and inactivated slowly; the remaining very small plateau fraction deactivated along a slow, single exponential time. Under this condition nifedipine (10 microM) produced a great reduction of the transient current, leaving plateau and deactivation phase unaltered. This suggests that only R2 channels were still active at the end of the test and that the minor remaining transient component flowed through slowly but completely inactivating R1 channels. These results confirm the presence of several channel types in semicircular canal receptors, at difference with cochlear hair cells, and highlight a dramatic alteration of L-type channel behavior when intracellular Ca(2+) buffers are sufficiently concentrated and fast to interfere

  15. Transverse response functions in deep inelastic electron scattering for 40Ca, 48Ca, and 56Fe

    NASA Astrophysics Data System (ADS)

    Meziani, Z. E.; Barreau, P.; Bernheim, M.; Morgenstern, J.; Turck-Chieze, S.; Altemus, R.; McCarthy, J.; Orphanos, L. J.; Whitney, R. R.; Capitani, G. P.; de Sanctis, E.; Frullani, S.; Garibaldi, F.

    1985-03-01

    Deep-inelastic inclusive electron-scattering cross sections from 40Ca, 48Ca, and 56Fe have been measured at 60°, 90°, and 140° and at energy transfers including the Δ(3,3) region. The transverse response function in the momentum interval 300 MeV/c<||q-->||<600 MeV/c was extracted by the Rosenbluth prescription. Different theoretical approaches to the quasielastic region are compared to the data. A mass-number scaling is observed.

  16. Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission.

    PubMed

    Tsuzuki, Kenzo; Xing, Hong; Ling, Jennifer; Gu, Jianguo G

    2004-01-21

    Menthol and many of its derivatives produce profound sensory and mental effects. The receptor for menthol has been cloned and named cold- and menthol-sensitive receptor-1 (CMR1) or transient receptor potential channel M8 (TRPM8) receptor. Using a dorsal root ganglion (DRG) and dorsal horn (DH) coculture system as a model for the first sensory synapse in the CNS, we studied menthol effects on sensory synaptic transmission and the underlying mechanisms. We found that menthol increased the frequency of miniature EPSCs (mEPSCs). The effects persisted under an extracellular Ca2+-free condition but were abolished by intracellular BAPTA and pretreatment with thapsigargin. Menthol-induced increases of mEPSC frequency were blocked by 2-aminoethoxydiphenylborane (2-APB) but not affected by the phospholipase C inhibitor U73122 [GenBank] or by the cADP receptor inhibitor 8-bromo-cADPR (8Br-cADPR). Double-patch recordings from DRG-DH pairs showed that menthol could potentiate evoked EPSCs (eEPSCs) and change the paired-pulse ratio of eEPSCs. A Ca2+ imaging study on DRG neurons demonstrated that menthol could directly release Ca2+ from intracellular Ca2+ stores. Menthol-induced Ca2+ release was abolished by 2-APB but not affected by U73122 [GenBank] or 8Br-cADPR. Taken together, our results indicate that menthol can act directly on presynaptic Ca2+ stores of sensory neurons to release Ca2+, resulting in a facilitation of glutamate release and a modulation of neuronal transmission at sensory synapses. Expression of TRPM8 receptor on presynaptic Ca2+ stores, a novel localization for this ligand-gated ion channel, is also strongly suggested.

  17. Maitotoxin converts the plasmalemmal Ca2+ pump into a Ca2+-permeable nonselective cation channel

    PubMed Central

    Sinkins, William G.; Estacion, Mark; Prasad, Vikram; Goel, Monu; Shull, Gary E.; Kunze, Diana L.

    2009-01-01

    Maitotoxin (MTX) activates Ca2+-permeable nonselective cation channels and causes a dramatic increase in cytosolic free Ca2+ concentration ([Ca2+]i) in every cell examined to date, but the molecular identity of the channels involved remains unknown. A clue came from studies of a structurally related marine toxin called palytoxin (PTX). PTX binds to the plasmalemmal Na+-K+-ATPase (NKA) and converts the Na+ pump into a nonselective cation channel. Given the high permeability of the MTX channel for Ca2+, we considered the possibility that MTX may bind to the plasmalemmal Ca2+-ATPase (PMCA) pump, and like PTX, convert the pump into a channel. To test this hypothesis, the PMCA was overexpressed in Spodoptera frugiperda (Sf9) insect cells and in human embryonic kidneys (HEK) 293 cells. In both cell types, enhanced expression of the PMCA was associated with a significant increase in MTX-induced whole cell membrane currents. The effect of MTX on whole cell currents in both wild-type and PMCA overexpressing HEK cells was sensitive to pump ligands including Ca2+ and ATP. MTX-induced currents were significantly reduced by knockdown of PMCA1 in HEK cells using small interfering RNA or in mouse embryonic fibroblasts from genetically modified mice with the PMCA1(+/−) PMCA4(−/−) genotype. Finally, PMCA catalytic activity (i.e., Ca2+-ATPase) in isolated membranes, or in purified PMCA preparations, was inhibited by MTX. Together, these results suggest that MTX binds to and converts the PMCA pump into a Ca2+-permeable nonselective cation channel. PMID:19794142

  18. Maitotoxin converts the plasmalemmal Ca(2+) pump into a Ca(2+)-permeable nonselective cation channel.

    PubMed

    Sinkins, William G; Estacion, Mark; Prasad, Vikram; Goel, Monu; Shull, Gary E; Kunze, Diana L; Schilling, William P

    2009-12-01

    Maitotoxin (MTX) activates Ca(2+)-permeable nonselective cation channels and causes a dramatic increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in every cell examined to date, but the molecular identity of the channels involved remains unknown. A clue came from studies of a structurally related marine toxin called palytoxin (PTX). PTX binds to the plasmalemmal Na(+)-K(+)-ATPase (NKA) and converts the Na(+) pump into a nonselective cation channel. Given the high permeability of the MTX channel for Ca(2+), we considered the possibility that MTX may bind to the plasmalemmal Ca(2+)-ATPase (PMCA) pump, and like PTX, convert the pump into a channel. To test this hypothesis, the PMCA was overexpressed in Spodoptera frugiperda (Sf9) insect cells and in human embryonic kidneys (HEK) 293 cells. In both cell types, enhanced expression of the PMCA was associated with a significant increase in MTX-induced whole cell membrane currents. The effect of MTX on whole cell currents in both wild-type and PMCA overexpressing HEK cells was sensitive to pump ligands including Ca(2+) and ATP. MTX-induced currents were significantly reduced by knockdown of PMCA1 in HEK cells using small interfering RNA or in mouse embryonic fibroblasts from genetically modified mice with the PMCA1(+/-) PMCA4(-/-) genotype. Finally, PMCA catalytic activity (i.e., Ca(2+)-ATPase) in isolated membranes, or in purified PMCA preparations, was inhibited by MTX. Together, these results suggest that MTX binds to and converts the PMCA pump into a Ca(2+)-permeable nonselective cation channel.

  19. Progressive alterations of hippocampal CA3-CA1 synapses in an animal model of depression.

    PubMed

    Qiao, Hui; An, Shu-Cheng; Ren, Wei; Ma, Xin-Ming

    2014-12-15

    Major depressive disorder is the most prevalent psychiatric condition, but the cellular and molecular mechanisms underlying this disorder are largely unknown, although multiple hypotheses have been proposed. The aim of this study was to characterize the progressive alteration of neuronal plasticity in the male rat hippocampus during depression induced by chronic unpredictable mild stress (CUMS), an established animal model of depression. The data in the hippocampus were collected on days 7, 14 and 21 after the onset of three-week CUMS. When analyzed on day 21, three-week CUMS induced typically depressive-like behaviors, impaired LTP induction, and decreased basal synaptic transmission at hippocampal CA3-CA1 synapses recorded in vivo, which was accompanied by decreased density of dendritic spines in CA1 and CA3 pyramidal neurons. The levels of both Kalirin-7 and brain-derived neurotrophic factor (BDNF) in the hippocampus were decreased at the same time. On day 14 (middle phase), some depressive-like behaviors were observed, which was accompanied by depressed basal synaptic transmission and enhanced LTP induction at the CA3-CA1 synapses. However, BDNF expression was decreased without alteration of Kalirin7 expression in comparison with no-stress control. Depressed basal synaptic transmission occurred in the middle phase of CUMS may contribute to decreased expression of BDNF. On day 7, depressive-like behaviors were not observed, and LTP induction, spine density, Kalirin-7 and BDNF expression were not altered by CUMS in comparison with no-stress control. These results showed that the functional changes at CA3-CA1synapses occurred earlier than the structural alteration during three-week CUMS as a strategy of neural adaptation, and rats required three weeks to develop depressive-like behaviors during CUMS. Our results suggest an important role of Kalirin-7 in CUMS-mediated alterations in spine density, synaptic function and overall depressive-like behaviors on day 21.

  20. Ca-α1T, a fly T-type Ca2+ channel, negatively modulates sleep

    PubMed Central

    Jeong, Kyunghwa; Lee, Soyoung; Seo, Haengsoo; Oh, Yangkyun; Jang, Donghoon; Choe, Joonho; Kim, Daesoo; Lee, Jung-Ha; Jones, Walton D.

    2015-01-01

    Mammalian T-type Ca2+ channels are encoded by three separate genes (Cav3.1, 3.2, 3.3). These channels are reported to be sleep stabilizers important in the generation of the delta rhythms of deep sleep, but controversy remains. The identification of precise physiological functions for the T-type channels has been hindered, at least in part, by the potential for compensation between the products of these three genes and a lack of specific pharmacological inhibitors. Invertebrates have only one T-type channel gene, but its functions are even less well-studied. We cloned Ca-α1T, the only Cav3 channel gene in Drosophila melanogaster, expressed it in Xenopus oocytes and HEK-293 cells, and confirmed it passes typical T-type currents. Voltage-clamp analysis revealed the biophysical properties of Ca-α1T show mixed similarity, sometimes falling closer to Cav3.1, sometimes to Cav3.2, and sometimes to Cav3.3. We found Ca-α1T is broadly expressed across the adult fly brain in a pattern vaguely reminiscent of mammalian T-type channels. In addition, flies lacking Ca-α1T show an abnormal increase in sleep duration most pronounced during subjective day under continuous dark conditions despite normal oscillations of the circadian clock. Thus, our study suggests invertebrate T-type Ca2+ channels promote wakefulness rather than stabilizing sleep. PMID:26647714

  1. Ionic Mechanisms Underlying Spontaneous CA1 Neuronal Firing in Ca2+-Free Solution

    PubMed Central

    Shuai, Jianwei; Bikson, Marom; Hahn, Philip J.; Lian, Jun; Durand, Dominique M.

    2003-01-01

    Hippocampal CA1 neurons exposed to zero-[Ca2+] solutions can generate periodic spontaneous synchronized activity in the absence of synaptic function. Experiments using hippocampal slices showed that, after exposure to zero-[Ca2+]0 solution, CA1 pyramidal cells depolarized 5–10 mV and started firing spontaneous action potentials. Spontaneous single neuron activity appeared in singlets or was grouped into bursts of two or three action potentials. A 16-compartment, 23-variable cable model of a CA1 pyramidal neuron was developed to study mechanisms of spontaneous neuronal bursting in a calcium-free extracellular solution. In the model, five active currents (a fast sodium current, a persistent sodium current, an A-type transient potassium current, a delayed rectifier potassium current, and a muscarinic potassium current) are included in the somatic compartment. The model simulates the spontaneous bursting behavior of neurons in calcium-free solutions. The mechanisms underlying several aspects of bursting are studied, including the generation of triplet bursts, spike duration, burst termination, after-depolarization behavior, and the prolonged inactive period between bursts. We show that the small persistent sodium current can play a key role in spontaneous CA1 activity in zero-calcium solutions. In particular, it is necessary for the generation of an after-depolarizing potential and prolongs both individual bursts and the interburst interval. PMID:12609911

  2. Ca isotopes in refractory inclusions. [from Allende and Leoville meteorites

    NASA Technical Reports Server (NTRS)

    Niederer, F. R.; Papanastassiou, D. A.

    1984-01-01

    The present absolute isotope abundance measurements of Ca in Ca-Al-rich inclusions from the Allende and Leoville meteorites show the extreme rarity of nonlinear isotope effects in Ca, in sharp contrast to the endemic effects in Ti. The Ca in the Ca-Al-rich inclusions shows mass-dependent isotope fractionation effects whose range is a factor of 20 wider than the range previously established for bulk meteorites and for terrestrial and lunar samples. A correlation is found between Ca and Mg isotope fractionation effects and inclusion type, and a possible correlation between isotope fractionation and rare earth element abundance patterns is discussed.

  3. Rediscovering area CA2: unique properties and functions

    PubMed Central

    Dudek, Serena M.; Alexander, Georgia M.; Farris, Shannon

    2016-01-01

    Hippocampal area CA2 has several features that distinguish it from CA1 and CA3, including a unique gene expression profile, failure to display long-term potentiation and relative resistance to cell death. A recent increase in interest in the CA2 region, combined with the development of new methods to define and manipulate its neurons, has led to some exciting new discoveries on the properties of CA2 neurons and their role in behaviour. Here, we review these findings and call attention to the idea that the definition of area CA2 ought to be revised in light of gene expression data. PMID:26806628

  4. Kinetics and stoichiometry of coupled Na efflux and Ca influx (Na/Ca exchange) in barnacle muscle cells

    PubMed Central

    1989-01-01

    Coupled Na+ exit/Ca2+ entry (Na/Ca exchange operating in the Ca2+ influx mode) was studied in giant barnacle muscle cells by measuring 22Na+ efflux and 45Ca2+ influx in internally perfused, ATP-fueled cells in which the Na+ pump was poisoned by 0.1 mM ouabain. Internal free Ca2+, [Ca2+]i, was controlled with a Ca-EGTA buffering system containing 8 mM EGTA and varying amounts of Ca2+. Ca2+ sequestration in internal stores was inhibited with caffeine and a mitochondrial uncoupler (FCCP). To maximize conditions for Ca2+ influx mode Na/Ca exchange, and to eliminate tracer Na/Na exchange, all of the external Na+ in the standard Na+ sea water (NaSW) was replaced by Tris or Li+ (Tris-SW or LiSW, respectively). In both Na-free solutions an external Ca2+ (Cao)-dependent Na+ efflux was observed when [Ca2+]i was increased above 10(-8) M; this efflux was half-maximally activated by [Ca2+]i = 0.3 microM (LiSW) to 0.7 microM (Tris-SW). The Cao-dependent Na+ efflux was half-maximally activated by [Ca2+]o = 2.0 mM in LiSW and 7.2 mM in Tris-SW; at saturating [Ca2+]o, [Ca2+]i, and [Na+]i the maximal (calculated) Cao-dependent Na+ efflux was approximately 75 pmol#cm2.s. This efflux was inhibited by external Na+ and La3+ with IC50's of approximately 125 and 0.4 mM, respectively. A Nai-dependent Ca2+ influx was also observed in Tris-SW. This Ca2+ influx also required [Ca2+]i greater than 10(-8) M. Internal Ca2+ activated a Nai-independent Ca2+ influx from LiSW (tracer Ca/Ca exchange), but in Tris-SW virtually all of the Cai-activated Ca2+ influx was Nai-dependent (Na/Ca exchange). Half-maximal activation was observed with [Na+]i = 30 mM. The fact that internal Ca2+ activates both a Cao-dependent Na+ efflux and a Nai- dependent Ca2+ influx in Tris-SW implies that these two fluxes are coupled; the activating (intracellular) Ca2+ does not appear to be transported by the exchanger. The maximal (calculated) Nai-dependent Ca2+ influx was -25 pmol/cm2.s. At various [Na+]i between 6 and 106 m

  5. Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx

    PubMed Central

    Kilpatrick, Bethan S.; Yates, Elizabeth; Grimm, Christian; Schapira, Anthony H.

    2016-01-01

    ABSTRACT Transient receptor potential (TRP) mucolipins (TRPMLs), encoded by the MCOLN genes, are patho-physiologically relevant endo-lysosomal ion channels crucial for membrane trafficking. Several lines of evidence suggest that TRPMLs mediate localised Ca2+ release but their role in Ca2+ signalling is not clear. Here, we show that activation of endogenous and recombinant TRPMLs with synthetic agonists evoked global Ca2+ signals in human cells. These signals were blocked by a dominant-negative TRPML1 construct and a TRPML antagonist. We further show that, despite a predominant lysosomal localisation, TRPML1 supports both Ca2+ release and Ca2+ entry. Ca2+ release required lysosomal and ER Ca2+ stores suggesting that TRPMLs, like other endo-lysosomal Ca2+ channels, are capable of ‘chatter’ with ER Ca2+ channels. Our data identify new modalities for TRPML1 action. PMID:27577094

  6. Honeybee locomotion is impaired by Am-CaV3 low voltage-activated Ca(2+) channel antagonist.

    PubMed

    Rousset, M; Collet, C; Cens, T; Bastin, F; Raymond, V; Massou, I; Menard, C; Thibaud, J-B; Charreton, M; Vignes, M; Chahine, M; Sandoz, J C; Charnet, P

    2017-02-01

    Voltage-gated Ca(2+) channels are key transducers of cellular excitability and participate in several crucial physiological responses. In vertebrates, 10 Ca(2+) channel genes, grouped in 3 families (CaV1, CaV2 and CaV3), have been described and characterized. Insects possess only one member of each family. These genes have been isolated in a limited number of species and very few have been characterized although, in addition to their crucial role, they may represent a collateral target for neurotoxic insecticides. We have isolated the 3 genes coding for the 3 Ca(2+) channels expressed in Apis mellifera. This work provides the first detailed characterization of the honeybee T-type CaV3 Ca(2+) channel and demonstrates the low toxicity of inhibiting this channel. Comparing Ca(2+) currents recorded in bee neurons and myocytes with Ca(2+) currents recorded in Xenopus oocytes expressing the honeybee CaV3 gene suggests native expression in bee muscle cells only. High-voltage activated Ca(2+) channels could be recorded in the somata of different cultured bee neurons. These functional data were confirmed by in situ hybridization, immunolocalization and in vivo analysis of the effects of a CaV3 inhibitor. The biophysical and pharmacological characterization and the tissue distribution of CaV3 suggest a role in honeybee muscle function.

  7. Importance of extracellular Ca2+ and intracellular Ca2+ release in ethanol-induced contraction of cerebral arterial smooth muscle.

    PubMed

    Yang, Z; Wang, J; Zheng, T; Altura, B T; Altura, B M

    2001-07-01

    The present study was designed to investigate the roles of extracellular Ca2+ ([Ca2+]0) influx and intracellular free Ca2+ ([Ca2+]i) release in ethanol-induced contractions of isolated canine cerebral arteries and primary cultured, cerebral vascular smooth muscle cells. Ethanol (20-200 mM) produced significant contractions in isolated canine basilar arterial rings in a concentration-dependent manner. Removal of [Ca2+]0 and pretreatment of canine basilar arterial rings with verapamil (an antagonist of voltage-gated Ca2+ channels), thapsigargin (a selective antagonist of the sarcoplasmic reticulum Ca2+ pump), caffeine plus ryanodine (a specific antagonist of ryanodine-sensitive Ca2+ release), or heparin (an inositol 1,4,5,-trisphosphate [InsP3]-mediated Ca2+ release antagonist) markedly attenuated (approximately 50%-80%) ethanol-induced contractions. The absence of [Ca2+]0 and preincubation of primary single smooth muscle cells obtained from canine basilar arteries with verapamil, thapsigargin, heparin, or caffeine plus ryanodine markedly attenuated (approximately 50%-80%) the transient and sustained elevations in [Ca2+]i induced by ethanol. Results of the present study suggest to us that both Ca2+ influx through voltage-gated Ca2+ channels and Ca2+ release from intracellular stores (both InsP3 sensitive and ryanodine sensitive) are required for ethanol-induced contractions of isolated canine basilar arteries.

  8. Phosphorylation of the Ca2+-Binding Protein CaBP4 by Protein Kinase C ζ in Photoreceptors

    PubMed Central

    Lee, Amy; Jimenez, Amber; Cui, Guiying; Haeseleer, Françoise

    2009-01-01

    CaBP4 is a calmodulin-like neuronal calcium-binding protein that is crucial for the development and/or maintenance of the cone and rod photoreceptor synapse. Previously, we showed that CaBP4 directly regulates Cav1 L-type Ca2+ channels, which are essential for normal photoreceptor synaptic transmission. Here, we show that the function of CaBP4 is regulated by phosphorylation. CaBP4 is phosphorylated by protein kinase C ζ (PKCζ) at serine 37 both in vitro and in the retina and colocalizes with PKCζ in photoreceptors. CaBP4 phosphorylation is greater in light-adapted than dark-adapted mouse retinas. In electrophysiological recordings of cells transfected with Cav1.3 and CaBP4, mutation of the serine 37 to alanine abolished the effect of CaBP4 in prolonging the Ca2+ current through Cav1.3 channel, whereas inactivating mutations in the CaBP4 Ca2+-binding sites strengthened Cav1.3 modulation. These findings demonstrate how light-stimulated changes in CaBP4 phosphorylation and Ca2+ binding may regulate presynaptic Ca2+ signals in photoreceptors. PMID:18003854

  9. Honeybee locomotion is impaired by Am-CaV3 low voltage-activated Ca2+ channel antagonist

    PubMed Central

    Rousset, M.; Collet, C.; Cens, T.; Bastin, F.; Raymond, V.; Massou, I.; Menard, C.; Thibaud, J.-B.; Charreton, M.; Vignes, M.; Chahine, M.; Sandoz, J. C.; Charnet, P.

    2017-01-01

    Voltage‐gated Ca2+ channels are key transducers of cellular excitability and participate in several crucial physiological responses. In vertebrates, 10 Ca2+ channel genes, grouped in 3 families (CaV1, CaV2 and CaV3), have been described and characterized. Insects possess only one member of each family. These genes have been isolated in a limited number of species and very few have been characterized although, in addition to their crucial role, they may represent a collateral target for neurotoxic insecticides. We have isolated the 3 genes coding for the 3 Ca2+ channels expressed in Apis mellifera. This work provides the first detailed characterization of the honeybee T-type CaV3 Ca2+ channel and demonstrates the low toxicity of inhibiting this channel. Comparing Ca2+ currents recorded in bee neurons and myocytes with Ca2+ currents recorded in Xenopus oocytes expressing the honeybee CaV3 gene suggests native expression in bee muscle cells only. High‐voltage activated Ca2+ channels could be recorded in the somata of different cultured bee neurons. These functional data were confirmed by in situ hybridization, immunolocalization and in vivo analysis of the effects of a CaV3 inhibitor. The biophysical and pharmacological characterization and the tissue distribution of CaV3 suggest a role in honeybee muscle function. PMID:28145504

  10. Effect of CaTiO(3)-CaCO(3) prepared by alkoxide method on cell response.

    PubMed

    Rodriguez, Andrea P; Inoue, Miho; Tanaka, Toshiyuki; Miyake, Michihiro; Sfer, Ana M; Kishimoto, Etsuo; Tsujigiwa, Hidetsugu; Rivera, Rosario S; Nagatsuka, Hitoshi

    2010-04-01

    In recent years, calcium titanate (CaTiO(3)) and carbon-containing materials have gained much attention in a number of biomedical material researches. To maximize the advantages of both materials, we developed a novel alkoxide method to get "calcium titanate with calcium carbonate" (CaTiO(3)-CaCO(3)). The objective was to evaluate the crystallinity and elemental composition of CaTiO(3)-CaCO(3) prepared by alkoxide method, CaTiO(3)-aC elaborated by modified thermal decomposition method, commercially-prepared CaTiO(3), and the effect of these materials on the bone marrow stromal cell. Hydroxyapatite was used as positive control material. We examined the cellular proliferation, osteoblastic differentiation, and mineralization of KUSA/A1 cells cultured with the materials. The results showed that CaTiO(3)-CaCO(3) and CaTiO(3)-aC contained evidence of calcium carbonate enhancing cell proliferation, osteoblastic differentiation, and mineralization. On the contrary, the commercially-prepared CaTiO(3) revealed absence of calcium carbonate with lower cell response than the other groups. The results indicated that calcium carbonate could play a key role in the cell response of CaTiO(3) material. In conclusion, our findings suggest that CaTiO(3)-CaCO(3) could be considered an important candidate as a biomaterial for medical and dental applications.

  11. Neuronal Ca(2+) dyshomeostasis in Huntington disease.

    PubMed

    Giacomello, Marta; Oliveros, Juan C; Naranjo, Jose R; Carafoli, Ernesto

    2013-01-01

    The expansion of the N-terminal poly-glutamine tract of the huntingtin (Htt) protein is responsible for Huntington disease (HD). A large number of studies have explored the neuronal phenotype of HD, but the molecular aethiology of the disease is still very poorly understood. This has hampered the development of an appropriate therapeutical strategy to at least alleviate its symptoms. In this short review, we have focused our attention on the alteration of a specific cellular mechanism common to all HD models, either genetic or induced by treatment with 3-NPA, i.e. the cellular dyshomeostasis of Ca(2+). We have highlighted the direct and indirect (i.e. transcriptionally mediated) effects of mutated Htt on the maintenance of the intracellular Ca(2+) balance, the correct modulation of which is fundamental to cell survival and the disturbance of which plays a key role in the death of the cell.

  12. Plant mechanosensing and Ca2+ transport.

    PubMed

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki; Nakano, Masataka; Nakayama, Yoshitaka; Iida, Hidetoshi

    2013-04-01

    Mechanical stimuli generate Ca(2+) signals and influence growth and development in plants. Recently, candidates for Ca(2+)-permeable mechanosensitive (MS) channels have been identified. These channels are thought to be responsible for sensing osmotic shock, touch, and gravity. One candidate is the MscS-like (MSL) protein family, a homolog of the typical bacterial MS channels. Some of the MSL proteins are localized to plastids to maintain their shape and size. Another candidate is the mid1-complementing activity (MCA) protein family, which is structurally unique to the plant kingdom. MCA proteins are localized in the plasma membrane and are suggested to be involved in mechanosensing and to be functionally related to reactive oxygen species (ROS) signaling. Here, we review their structural features and role in planta.

  13. Landing - STS-4 - Edwards AFB (EAFB), CA

    NASA Image and Video Library

    1982-07-06

    Views of the Columbia landing at EAFB ending the STS-4 Mission on 07/04/1982; of President and Mrs. Reagan greeting the crew out on the Lake bed Runway; and, the view of Roy Rogers with Astronauts Jerry Ross and Guy Gardner. 1. President Ronald Reagan & wife Nancy 2. Roy Rogers 3. Astronaut Jerry L. Ross 4. Astronaut Guy S. Gardner Edwards AFB, CA

  14. Apamin Boosting of Synaptic Potentials in CaV2.3 R-Type Ca2+ Channel Null Mice.

    PubMed

    Wang, Kang; Kelley, Melissa H; Wu, Wendy W; Adelman, John P; Maylie, James

    2015-01-01

    SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availability is increased by Ca2+ entry through SNX-482 (SNX) sensitive CaV2.3 R-type Ca2+ channels. Recent studies have challenged the functional coupling between NMDARs and SK2-containing channels, suggesting that synaptic SK2-containing channels are instead activated by Ca2+ entry through R-type Ca2+ channels. Furthermore, SNX has been implicated to have off target affects, which would challenge the proposed coupling between R-type Ca2+ channels and KV4.2-containing K+ channels. To reconcile these conflicting results, we evaluated the effect of SK channel blocker apamin and R-type Ca2+ channel blocker SNX on evoked excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal neurons from CaV2.3 null mice. The results show that in the absence of CaV2.3 channels, apamin application still boosted EPSPs. The boosting effect of CaV2.3 channel blockers on EPSPs observed in neurons from wild type mice was not observed in neurons from CaV2.3 null mice. These data are consistent with a model in which SK2-containing channels are functionally coupled to NMDARs and KV4.2-containing channels to CaV2.3 channels to provide negative feedback regulation of EPSPs in the spines of CA1 pyramidal neurons.

  15. Contribution of ryanodine receptor subtype 3 to ca2+ responses in Ca2+-overloaded cultured rat portal vein myocytes.

    PubMed

    Mironneau, J; Coussin, F; Jeyakumar, L H; Fleischer, S; Mironneau, C; Macrez, N

    2001-04-06

    Using an antisense strategy, we have previously shown that in vascular myocytes, subtypes 1 and 2 of ryanodine receptors (RYRs) are required for Ca(2+) release during Ca(2+) sparks and global Ca(2+) responses, evoked by activation of voltage-gated Ca(2+) channels, whereas RYR subtype 3 (RYR3) has no contribution. Here, we investigated the effects of increased Ca(2+) loading of the sarcoplasmic reticulum (SR) on the RYR-mediated Ca(2+) responses and the role of the RYR3 by injecting antisense oligonucleotides targeting the RYR subtypes. RYR3 expression was demonstrated by immunodetection in both freshly dissociated and cultured rat portal vein myocytes. Confocal Ca(2+) measurements revealed that the number of cells showing spontaneous Ca(2+) sparks was strongly increased by superfusing the vascular myocytes in 10 mm Ca(2+)-containing solution. These Ca(2+) sparks were blocked after inhibition of RYR1 or RYR2 by treatment with antisense oligolucleotides but not after inhibition of RYR3. In contrast, inhibition of RYR3 reduced the global Ca(2+) responses induced by caffeine and phenylephrine, indicating that RYR3 participated together with RYR1 and RYR2 to these Ca(2+) responses in Ca(2+)-overloaded myocytes. Ca(2+) transients evoked by photolysis of caged Ca(2+) with increasing flash intensities were also reduced after inhibition of RYR3 and revealed that the [Ca(2+)](i) sensitivity of RYR3 would be similar to that of RYR1 and RYR2. Our results show that, under conditions of increased SR Ca(2+) loading, the RYR3 becomes activable by caffeine and local increases in [Ca(2+)](i).

  16. Predicting Ca2+-binding Sites Using Refined Carbon Clusters

    PubMed Central

    Zhao, Kun; Wang, Xue; Wong, Hing C.; Wohlhueter, Robert; Kirberger, Michael P.; Chen, Guantao; Yang, Jenny J.

    2012-01-01

    Identifying Ca2+-binding sites in proteins is the first step towards understanding the molecular basis of diseases related to Ca2+-binding proteins. Currently, these sites are identified in structures either through X-ray crystallography or NMR analysis. However, Ca2+-binding sites are not always visible in X-ray structures due to flexibility in the binding region or low occupancy in a Ca2+-binding site. Similarly, both Ca2+ and its ligand oxygens are not directly observed in NMR structures. To improve our ability to predict Ca2+-binding sites in both X-ray and NMR structures, we report a new graph theory algorithm (MUGC) to predict Ca2+-binding sites. Using carbon atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-chain oxygen ligand coordinates, MUGC is able to achieve 94% sensitivity with 76% selectivity on a dataset of X-ray structures comprised of 43 Ca2+-binding proteins. Additionally, prediction of Ca2+-binding sites in NMR structures were obtained by MUGC using a different set of parameters determined by analysis of both Ca2+-constrained and unconstrained Ca2+-loaded structures derived from NMR data. MUGC identified 20 out of 21 Ca2+-binding sites in NMR structures inferred without the use of Ca2+ constraints. MUGC predictions are also highly-selective for Ca2+-binding sites as analyses of binding sites for Mg2+, Zn2+, and Pb2+ were not identified as Ca2+-binding sites. These results indicate that the geometric arrangement of the second-shell carbon cluster is sufficient for both accurate identification of Ca2+-binding sites in NMR and X-ray structures, and for selective differentiation between Ca2+ and other relevant divalent cations. PMID:22821762

  17. A practical guide to the preparation of Ca(2+) buffers.

    PubMed

    Bers, Donald M; Patton, Chris W; Nuccitelli, Richard

    2010-01-01

    Calcium (Ca(2+)) is a critical regulator of an immense array of biological processes, and the intracellular [Ca(2+)] that regulates these processes is ~ 10,000 lower than the extracellular [Ca(2+)]. To study and understand these myriad Ca(2+)-dependent functions requires control and measurement of [Ca(2+)] in the nano- to micromolar range (where contaminating Ca(2+) is a significant problem). As with pH, it is often essential to use Ca(2+) buffers to control free [Ca(2+)] at the desired biologically relevant concentrations. Fortunately, there are numerous available Ca(2+) buffers with different affinities that make this practical. However, there are numerous caveats with respect to making these solutions appropriately with known Ca(2+) buffers. These include pH dependence, selectivity for Ca(2+) (e.g., vs. Mg(2+)), ionic strength and temperature dependence, and complex multiple equilibria that occur in physiologically relevant solutions. Here we discuss some basic principles of Ca(2+) buffering with respect to some of these caveats and provide practical tools (including freely downloadable computer programs) to help in the making and calibration of Ca(2+)-buffered solutions for a wide array of biological applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Ca cycling and isotopic fluxes in forested ecosystems in Hawaii

    USGS Publications Warehouse

    Wiegand, B.A.; Chadwick, O.A.; Vitousek, P.M.; Wooden, J.L.

    2005-01-01

    Biogeochemical processes fractionate Ca isotopes in plants and soils along a 4 million year developmental sequence in the Hawaiian Islands. We observed that plants preferentially take up 40Ca relative to 44Ca, and that biological fractionation and changes in the relative contributions from volcanic and marine sources produce a significant increase in 44Ca in soil exchangeable pools. Our results imply moderate fluxes enriched in 44Ca from strongly nutrient-depleted old soils, in contrast with high 40Ca fluxes in young and little weathered environments. In addition, biological fractionation controls divergent geochemical pathways of Ca and Sr in the plant-soil system. While Ca depletes progressively with increasing soil age, Sr/Ca ratios increase systematically. Sr isotope ratios provide a valuable tracer for provenance studies of alkaline earth elements in forested ecosystems, but its usefulness is limited when deciphering biogeochemical processes involved in the terrestrial Ca cycle. Ca isotopes in combination with Sr/ Ca ratios reveal more complex processes involved in the biogeochemistry of Ca and Sr. Copyright 2005 by the American Geophysical Union.

  19. Conserved properties of individual Ca2+-binding sites in calmodulin

    PubMed Central

    Halling, D. Brent; Liebeskind, Benjamin J.; Hall, Amelia W.; Aldrich, Richard W.

    2016-01-01

    Calmodulin (CaM) is a Ca2+-sensing protein that is highly conserved and ubiquitous in eukaryotes. In humans it is a locus of life-threatening cardiomyopathies. The primary function of CaM is to transduce Ca2+ concentration into cellular signals by binding to a wide range of target proteins in a Ca2+-dependent manner. We do not fully understand how CaM performs its role as a high-fidelity signal transducer for more than 300 target proteins, but diversity among its four Ca2+-binding sites, called EF-hands, may contribute to CaM’s functional versatility. We therefore looked at the conservation of CaM sequences over deep evolutionary time, focusing primarily on the four EF-hand motifs. Expanding on previous work, we found that CaM evolves slowly but that its evolutionary rate is substantially faster in fungi. We also found that the four EF-hands have distinguishing biophysical and structural properties that span eukaryotes. These results suggest that all eukaryotes require CaM to decode Ca2+ signals using four specialized EF-hands, each with specific, conserved traits. In addition, we provide an extensive map of sites associated with target proteins and with human disease and correlate these with evolutionary sequence diversity. Our comprehensive evolutionary analysis provides a basis for understanding the sequence space associated with CaM function and should help guide future work on the relationship between structure, function, and disease. PMID:26884197

  20. CaMKII: linking heart failure and arrhythmias

    PubMed Central

    Swaminathan, Paari Dominic; Purohit, Anil; Hund, Thomas J; Anderson, Mark E

    2013-01-01

    Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the last decade supports a view that activation of the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca2+ or oxidation, upstream signals with the capacity to transition CaMKII into a Ca2+ and calmodulin-independeant, constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca2+ homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof of concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and reducing arrhythmias. Here we review the molecular physiology of CaMKII, discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias. PMID:22679140

  1. Ca cycling and isotopic fluxes in forested ecosystems in Hawaii

    NASA Astrophysics Data System (ADS)

    Wiegand, B. A.; Chadwick, O. A.; Vitousek, P. M.; Wooden, J. L.

    2005-06-01

    Biogeochemical processes fractionate Ca isotopes in plants and soils along a 4 million year developmental sequence in the Hawaiian Islands. We observed that plants preferentially take up 40Ca relative to 44Ca, and that biological fractionation and changes in the relative contributions from volcanic and marine sources produce a significant increase in 44Ca in soil exchangeable pools. Our results imply moderate fluxes enriched in 44Ca from strongly nutrient-depleted old soils, in contrast with high 40Ca fluxes in young and little weathered environments. In addition, biological fractionation controls divergent geochemical pathways of Ca and Sr in the plant-soil system. While Ca depletes progressively with increasing soil age, Sr/Ca ratios increase systematically. Sr isotope ratios provide a valuable tracer for provenance studies of alkaline earth elements in forested ecosystems, but its usefulness is limited when deciphering biogeochemical processes involved in the terrestrial Ca cycle. Ca isotopes in combination with Sr/Ca ratios reveal more complex processes involved in the biogeochemistry of Ca and Sr.

  2. Superconductivity in Ca-doped graphene laminates

    PubMed Central

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-01-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  3. Toward Laser Cooling of CaF

    NASA Astrophysics Data System (ADS)

    Hemmerling, Boerge; Drayna, Garrett; Chae, Eunmi; Ravi, Aakash; Lu, Hsin-I.; Yeo, Mark; Hummon, Matthew; Collopy, Alejandra; Stuhl, Benjamin; Ye, Jun; Doyle, John

    2013-05-01

    The prospects of novel physics employing polar cold molecules encompass quantum computing and simulations, controlled ultra-cold chemistry and precision measurements. However, a method liable to bring a general class of chemically diverse molecules to the ultracold regime still needs to be developed. We report on the progress of experiments to laser cool CaF molecules, including the implementation of a magneto-optical trap (MOT). We use a 2-stage buffer-gas cooled beam source to produce a cold and slow beam of particles. In this experiment, we plan to load the trap from this buffer-gas source. As a precursor to working with CaF, we successfully implemented the first buffer-gas loaded MOT of Yb, without the use of a Zeeman slower, but using only a non-chirped slowing laser. The lifetime of the MOT was measured to be > 100 ms, with the distance between the source and the MOT ~ 30 cm. We describe a scheme for the laser cooling and magneto-optical confinement of CaF molecules, following an approach similar to those used in the cooling of SrF and YO.

  4. Ca sup + emission in the sunlit ionosphere

    SciTech Connect

    Torr, M.R. ); Torr, D.G.; Bhatt, P.; Swift, W.; Dougani, H. )

    1990-03-01

    In the course of a program of twilight airglow observations from the McDonald Observatory in southwest Texas, the resonance fluorescence emissions from calcium ions were measured. In particular, twilight sequences were obtained during the period of December 19-22, 1987, which coincided with the Ursids meteorite shower. During this meteorite event the intensities of the Ca{sup +} emission lines at 3,934 {angstrom} increased to the point that the surface brightness profiles could be inverted to volume emission rate profiles. These profiles show evidence for strong spatial redistribution of the Ca{sup +} over the course of three days. Prior to the onset of the meteorite activity, emissions from the Ca{sup +} originate from below 100 km, on the occasions when the emissions are visible. By the evening of December 19 a peak is measurable at 108 km. On the morning of December 22, a high-altitude peak was observed above 250 km, with a larger peak down at approximately 85 km. By the evening of December 22, the emission had substantially intensified, with the peak of the layer being at 80 km or below, but with emission being produced all the way up to at least 160 km. Observations of these emissions during meteor shower periods could provide a valuable tracer for the processes responsible for the transport of ions in the D, E, and F region, allowing the full altitude and latitude extent of the distribution to be determined.

  5. Superconductivity in CaBi2.

    PubMed

    Winiarski, M J; Wiendlocha, B; Gołąb, S; Kushwaha, S K; Wiśniewski, P; Kaczorowski, D; Thompson, J D; Cava, R J; Klimczuk, T

    2016-08-03

    Superconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is ΔC/γTc = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol(-1) K(-2) and the Debye temperature ΘD = 157 K. The electron-phonon coupling strength is λel-ph = 0.59, and the thermodynamic critical field Hc is low, between 111 and 124 Oe CaBi2 is a moderate coupling type-I superconductor. Results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin-orbit coupling and electronic property anisotropy. We find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.

  6. Quantitative 45Ca autoradiography of human bone

    PubMed Central

    Riggs, B. Lawrence; Marshall, John H.; Jowsey, Jenifer; Heaney, Robert P.; Bassingthwaighte, James B.

    2010-01-01

    Bone from 7 terminally ill men who received 45Ca ½ to 23 days before death was studied by quantitative autoradiography. Short-term exchangeable calcium was located on bone surfaces, and had an apparent mass of 3.4 Gm. The time of maximal surface 45Ca activity was 2.5 days. Diffuse activity of low intensity from long-term exchange accounted for 16.9 ± 3.3 per cent (mean ± S.E.) of total uptake; in the 2 patients having plasma 45Ca measurements; the rate of diffuse uptake ranged from 10 to 25 per cent of the normal accretion rate. However, focal activity of intermediate intensity accounted for 49.8 to 68.4 per cent of uptake and was believed to be due to both long-term exchange and secondary mineralization. An unexpected finding was that 7.5 ± 1.6 per cent of activity was associated with bone resorption surfaces. Because of the terminal illness, bone formation was suppressed, and only 5.9 ± 2.4 per cent of activity was associated with hot spots. PMID:5286527

  7. Superconductivity in Ca-doped graphene laminates.

    PubMed

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-03-16

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  8. Positive magnetoresistance in Ca-doped cobaltites

    SciTech Connect

    Zhou, S. M. Li, Y.; Guo, Y. Q.; Zhao, J. Y.; Shi, L.

    2014-12-08

    Transport properties of polycrystalline La{sub 1−x}Ca{sub x}CoO{sub 3} (0.10 ≤ x ≤ 0.25) are systemically studied in this work. Three types of magnetoresistance (MR) effects are found in the Ca-doped cobaltites. Two negative MRs appear around high-temperature ferromagnetic transition and at low temperatures, which correspond to the conventional MR due to the field-induced suppression of spin-disorder scattering and the intergranular giant-MR due to spin-dependent transport between the ferromagnetic clusters, respectively. More interestingly, another exotic positive MR emerges at intermediate temperature region, which had not been previously reported in Sr- and Ba-doped cobaltites. It is found that this positive MR is associated with an abnormally magnetic transition and increases with the increase of x. For x = 0.25, the MR at low temperatures is dominated by the positive one, which is isotropic and nearly linear with the magnetic field. The possible origin of the positive MR in the Ca-doped cobaltites is discussed.

  9. Superconductivity in CaBi 2

    DOE PAGES

    Winiarski, M. J.; Wiendlocha, B.; Golba, S.; ...

    2016-07-12

    We observed superconductivity with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is ΔC/γTc = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol-1 K-2 and the Debye temperature ΘD = 157 K. The electron–phonon coupling strength is λel–ph = 0.59, and the thermodynamic critical field Hcmore » is low, between 111 and 124 Oe CaBi2 is a moderate coupling type-I superconductor. Our results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin–orbit coupling and electronic property anisotropy. Furthermore, we find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.« less

  10. Superconductivity in Ca-doped graphene laminates

    NASA Astrophysics Data System (ADS)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-03-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  11. Dissociation of Ca-bearing Molecules as a Source of Mercury's Ca Exosphere

    NASA Astrophysics Data System (ADS)

    Burger, Matthew H.; Killen, Rosemary M.

    2015-11-01

    Observations of Mercury's calcium exosphere by MESSENGER have revealed three key features: (1) The Ca is extremely energetic, with a temperature ~70,000 K if the source is thermal, (2) the source region is located in the dawn hemisphere, and (3) there is a strong annual variation in the Ca source rate (Burger et al. 2014). Killen and Hahn (2015) have shown that the source rate is consistent with impact vaporization by interplanetary dust and the intersection of Mercury with a cometary dust stream (likely associated with Comet Encke, Christou et al., submitted).Killen et al. (2005) suggested that energetic calcium could be produced by the dissociation of Ca-bearing molecules produced in impact vaporization plumes. We test this hypothesis with a Monte Carlo model that follows the evolution of atomic and molecular calcium produced in impact plumes. Ca-bearing molecules such as CaO, CaOH, and Ca(OH)2 are more likely to be are produced in vapor plumes than atomic Ca (Berezhnoy and Klumov 2008); these molecules quickly break apart either through vibrational dissociation or photodissociation. The excess energy associated with dissociation gives the atomic Ca an extra energy boost above the temperature of the impact plumes (~5000 K). We determine impact vaporization rates and excess energies required by the dissociation process to reproduce the scale height and spatial morphology of the Ca exosphere as observed by the MESSENGER Ultraviolet and Visible Spectrometer (UVVS).ReferencesBerezhnoy, A.A. and Klumov, B.A., Impacts as sources of the exosphere on Mercury, Icarus, 195, 511-522, 2008, doi:10.1016/j.icarus.2008.01.005.Burger, M.H., et al., Seasonal variations in Mercury's dayside calcium exosphere, Icarus, 238, 51-58, 2014, doi:10.1016/j.icarus.2014.04.049.Killen, R.M., et al., The calcium exosphere of Mercury, Icarus, 173, 300-311, 2005, doi:10.1016/j.icarus.2004.08.022.Killen, R.M. and Hahn, J.M., Impact vaporization as a possible source ofMercury's calcium exosphere

  12. Ca2+ influx in resting rat sensory neurones that regulates and is regulated by ryanodine-sensitive Ca2+ stores

    PubMed Central

    Usachev, Yuriy M; Thayer, Stanley A

    1999-01-01

    Store-operated, voltage-independent Ca2+ channels are activated by depletion of intracellular Ca2+ stores and mediate Ca2+ influx into non-excitable cells at resting membrane potential. We used microfluorimetry, patch-clamp and Mn2+-quench techniques to explore the possibility that a similar mechanism exists in rat dorsal root ganglion (DRG) neurones in primary culture. Following caffeine-induced depletion, ryanodine-sensitive Ca2+ stores refilled with Ca2+ at resting membrane potential. The refilling process required extracellular Ca2+, was blocked by 2 mM Ni2+, and was facilitated by membrane hyperpolarization from −55 to −80 mV, indicating a key role for Ca2+ influx. This influx of Ca2+ was not affected by the voltage-operated Ca2+ channel (VOCC) antagonists nicardipine (10 μM), nimodipine (10 μm) or ω-grammotoxin SIA (1 μm). When ryanodine-sensitive Ca2+ stores were depleted in Ca2+-free media, a return to 2 mM external Ca2+ resulted in a pronounced [Ca2+]i overshoot, indicating an increased permeability to Ca2+. Depletion of Ca2+ stores also produced a 2-fold increase in the rate of Mn2+ influx. The [Ca2+]i overshoot and Mn2+ entry were both inhibited by Ni2+, but not by VOCC antagonists. Caffeine induced periodic Ca2+ release from, and reuptake into, ryanodine-sensitive stores. The [Ca2+]i oscillations were arrested by removal of extracellular Ca2+ or by addition of Ni2+, but they were not affected by VOCC antagonists. Hyperpolarization increased the frequency of this rhythmic activity. These data suggest the presence of a Ca2+ entry pathway in mammalian sensory neurones that is distinct from VOCCs and is regulated by ryanodine-sensitive Ca2+ stores. This pathway participates in refilling intracellular Ca2+ stores and maintaining [Ca2+]i oscillations and thus controls the balance between intra- and extracellular Ca2+ reservoirs in resting DRG neurones. PMID:10432343

  13. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.

    PubMed

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-05-01

    Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra

  14. Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain

    PubMed Central

    Shonesy, Brian C.; Rose, Kristie L.

    2015-01-01

    Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) autophosphorylation at Thr286 and Thr305/Thr306 regulates kinase activity, modulates subcellular targeting, and is critical for normal synaptic plasticity and learning and memory. Here, a mass spectrometry-based approach was used to identify Ca2+-dependent and -independent in vitro autophosphorylation sites in recombinant CaMKIIα and CaMKIIβ. CaMKII holoenzymes were then immunoprecipitated from subcellular fractions of forebrains isolated from either wildtype (WT) mice or mice with a Thr286 to Ala knock-in mutation of CaMKIIα (T286A-KI mice) and analyzed using the same approach in order to characterize in vivo phosphorylation sites in both CaMKII isoforms and identify CaMKII associated proteins (CaMKAPs). A total of 6 and 7 autophosphorylation sites in CaMKIIα and CaMKIIβ, respectively, were detected in WT mice. Thr286-phosphorylated CaMKIIα and Thr287-phosphorylated CaMKIIβ were selectively enriched in WT Triton-insoluble (synaptic) fractions compared to Triton-soluble (membrane) and cytosolic fractions. In contrast, Thr306-phosphorylated CaMKIIα and Ser315- and Thr320/Thr321-phosphorylated CaMKIIβ were selectively enriched in WT cytosolic fractions. The T286A-KI mutation significantly reduced levels of phosphorylation of CaMKIIα at Ser275 across all subcellular fractions, and of cytosolic CaMKIIβ at Ser315 and Thr320/Thr321. Significantly more CaMKAPs co-precipitated with WT CaMKII holoenzymes in the synaptic fraction compared to the membrane fraction, with functions including scaffolding, microtubule organization, actin organization, ribosomal function, vesicle trafficking, and others. The T286A-KI mutation altered the interactions of multiple CaMKAPs with CaMKII, including several proteins linked to autism spectrum disorders. These data identify CaMKII isoform phosphorylation sites and a network of synaptic protein interactions that are sensitive to the abrogation of Thr286 autophosphorylation

  15. Differential time-course of slow afterhyperpolarizations and associated Ca2+ transients in rat CA1 pyramidal neurons: further dissociation by Ca2+ buffer.

    PubMed

    Jahromi, B S; Zhang, L; Carlen, P L; Pennefather, P

    1999-01-01

    Hippocampal neurons exhibit a slow afterhyperpolarization following membrane depolarization; this is thought to reflect an underlying Ca2+-dependent K+ current. This current is potentiated by intermediate concentrations (0.1-1.0 mM) of exogenous Ca2+ buffer [Schwindt P. C. et al. (1992) Neuroscience 47, 571-578; Zhang L. et al. (1995) J. Neurophysiol. 74, 2225-2241]. The relationship between the slow afterhyperpolarization and associated Ca2+ transients was investigated in the presence and absence of added exogenous Ca2+ buffer. Slow afterhyperpolarizations and underlying K+ currents were measured using whole-cell patch-clamp recordings from hippocampal CA1 neurons in acute rat brain slices. Inclusion of fluorescent Ca2+ indicators in the patch pipette solution allowed simultaneous measurement of the evoked subcellular Ca2+ transients using a confocal microscope. The peak Ca2+ signal exhibited an incremental increase with each action potential. This increase eventually reached a plateau with increasing numbers of action potentials, suggesting dye saturation with peak Ca2+ concentrations. As the K(D) for Ca2+ of the indicator dyes used was between 200 and 300 nM, it is predicted that saturation will occur when the peak Ca2+ signal exceeds 1 microM. This occurred with fewer action potentials in dendritic vs somatic compartments. Neither compartment exhibited averaged Ca2+ transients matching the slow afterhyperpolarization time-course, dendritic Ca2+ transients being most divergent. Intracellular accumulation of exogenous Ca2+ buffer, either by inclusion in the patch pipette or by incubation of the brain slice with its membrane-permeable form, caused a prolongation of the slow afterhyperpolarization but not of the somatic Ca2+ transient. The initial rate of decline of the dendritic Ca2+ transient was diminished, but remained faster than that of the slow afterhyperpolarization. We conclude that neither dendritic nor somatic Ca2+ signals match the slow

  16. Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells

    PubMed Central

    Fierro, Leonardo; Parekh, Anant B

    2000-01-01

    Tight-seal whole-cell patch clamp experiments were performed to examine the ability of different intracellular Ca2+ mobilising agents to activate the Ca2+ release-activated Ca2+ current (ICRAC) in rat basophilic leukaemia (RBL-1) cells under conditions of weak cytoplasmic Ca2+ buffering. Dialysis with a maximal concentration of inositol 1,4,5-trisphosphate (IP3) routinely failed to activate macroscopic ICRAC in low buffer (0.1 mM EGTA, BAPTA or dimethyl BAPTA), whereas it activated the current to its maximal extent in high buffer (10 mM EGTA). Dialysis with a poorly metabolisable analogue of IP3, with ionomycin, or with IP3 and ionomycin all failed to generate macroscopic ICRAC in low Ca2+ buffering conditions. Dialysis with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump blocker thapsigargin was able to activate ICRAC even in the presence of low cytoplasmic Ca2+ buffering, albeit at a slow rate. Exposure to IP3 together with the SERCA blockers thapsigargin, thapsigargicin or cyclopiazonic acid rapidly activated ICRAC in low buffer. Following activation of ICRAC by intracellular dialysis with IP3 and thapsigargin in low buffer, the current was very selective for Ca2+ (apparent KD of 1 mM). Sr2+ and Ba2+ were less effective charge carriers and Na+ was not conducted to any appreciable extent. The ionic selectivity of ICRAC was very similar in low or high intracellular Ca2+ buffer. Fast Ca2+-dependent inactivation of ICRAC occurred at a similar rate and to a similar extent in low or high Ca2+ buffer. Ca2+-dependent inactivation is not the reason why macroscopic ICRAC cannot be seen under conditions of low cytoplasmic Ca2+ buffering. ICRAC could be activated by combining IP3 with thapsigargin, even in the presence of 100 μM Ca2+ and the absence of any exogenous Ca2+ chelator, where ATP and glutamate represented the only Ca2+ buffers in the pipette solution. Our results suggest that a threshold exists within the IP3-sensitive Ca2+ store, below which

  17. Two-step internalization of Ca/sup 2 +/ from a single E approx. P x Ca/sub 2/ species by the Ca/sup 2 +/-ATPase

    SciTech Connect

    Khananshvili, D.; Jencks, W.P.

    1988-04-19

    Phosphorylation by ATP of E x *Ca/sub 2/ (sarcoplasmic reticulum vesicles (SRV) with bound /sup 45/Ca/sup 2 +/) during 5-10 ms leads to the occlusion of 2 *Ca/sup 2 +/EP/sub tot/ (quench by ethylene glycol bis(..beta..-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) alone) in both empty (10 ..mu..M free Ca/sup 2 +//sub in/) or loaded SRV (20-40 mM free Ca/sup 2 +//sub in/). The rate of Ca/sup 2 +/ internalization from the occluded E approx. P x *Ca/sub 2/ was measured by using ADP + EGTA quench; a Ca/sup 2 +/ ion that is not removed by this quench is defined as internalized. These data show that the two Ca/sup 2 +/ ions are internalized sequentially, presumably from separate sequential sites in the channel. (/sup 32/P)EP x Ca/sub 2/ obtained by rapid mixing of E x Ca/sub 2/ with (..gamma..-/sup 32/P)ATP and EGTA disappears in a biphasic time course with a lag corresponding to approx. 34 s/sup -1/, followed by EP* decay with a rate constant of approx. 17 s/sup -1/. This shows that both Ca/sup 2 +/ ions must be internalized before the enzyme changes its specificity for catalysis of phosphoryl transfer to water instead of to ADP. Increasing the concentration of ATP from 0.25 to 3 mM accelerates the rate of /sup 45/Ca/sup 2 +/ internalization from 34 to 69 s/sup -1/ for the first Ca/sup 2 +/ and from 17 to 34 s/sup -1/ for the second Ca/sup 2 +/. High (ATP) also accelerates both phases of (/sup 32/P)EP x Ca/sub 2/ disappearance by the same factor. The data are consistent with a single form of ADP-sensitive E approx.P x Ca/sub 2/ that sequentially internalizes two ions. The intravesicular volume was estimated to be 2.0 ..mu..Lmg, so that one turnover of the enzyme gives 4 mM internal (Ca/sup 2 +/).

  18. Pressure-induced structural transformation of CaC2

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Huang, Xiaoli; Li, Da; Huang, Yanping; Bao, Kuo; Li, Fangfei; Wu, Gang; Liu, Bingbing; Cui, Tian

    2016-05-01

    The high pressure structural changes of calcium carbide CaC2 have been investigated with Raman spectroscopy and synchrotron X-ray diffraction (XRD) techniques in a diamond anvil cell at room temperature. At ambient conditions, two forms of CaC2 co-exist. Above 4.9 GPa, monoclinic CaC2-ii diminished indicating the structural phase transition from CaC2-ii to CaC2-i. At about 7.0 GPa, both XRD patterns and Raman spectra confirmed that CaC2-i transforms into a metallic Cmcm structure which contains polymeric carbon chains. Along with the phase transition, the isolated C2 dumbbells are polymerized into zigzag chains resulting in a large volume collapse with 22.4%. Above 30.0 GPa, the XRD patterns of CaC2 become featureless and remain featureless upon decompression, suggesting an irreversible amorphization of CaC2.

  19. The emerging role of CaMKII in cancer.

    PubMed

    Wang, Yan-yang; Zhao, Ren; Zhe, Hong

    2015-05-20

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinases best known for its critical role in learning and memory. Recent studies suggested that high levels of CaMKII also expressed in variety of malignant diseases. In this review, we focus on the structure and biology properties of CaMKII, including the role of CaMKII in the regulation of cancer progression and therapy response. We also describe the role of CaMKII in the diagnosis of different kinds of cancer and recent progress in the development of CaMKII inhibitors. These data establishes CaMKII as a novel target whose modulation presents new opportunities for cancer diagnosis and treatment.

  20. Pressure-induced structural transformation of CaC2.

    PubMed

    Wang, Lu; Huang, Xiaoli; Li, Da; Huang, Yanping; Bao, Kuo; Li, Fangfei; Wu, Gang; Liu, Bingbing; Cui, Tian

    2016-05-21

    The high pressure structural changes of calcium carbide CaC2 have been investigated with Raman spectroscopy and synchrotron X-ray diffraction (XRD) techniques in a diamond anvil cell at room temperature. At ambient conditions, two forms of CaC2 co-exist. Above 4.9 GPa, monoclinic CaC2-ii diminished indicating the structural phase transition from CaC2-ii to CaC2-i. At about 7.0 GPa, both XRD patterns and Raman spectra confirmed that CaC2-i transforms into a metallic Cmcm structure which contains polymeric carbon chains. Along with the phase transition, the isolated C2 dumbbells are polymerized into zigzag chains resulting in a large volume collapse with 22.4%. Above 30.0 GPa, the XRD patterns of CaC2 become featureless and remain featureless upon decompression, suggesting an irreversible amorphization of CaC2.

  1. Ca2+ Signaling in Cerebellar Purkinje Neurons - EDITORIAL

    PubMed Central

    Gruol, Donna; Manto, Mario; Haines, Duane

    2012-01-01

    Tight regulation of calcium (Ca2+) dynamics is critical for all neurons. Ca2+ is a major mediator of cellular excitability, synaptic plasticity, regulation of transcription, amongst others. Recent years have seen major developments in terms of understanding the roles of Ca2+ signals in the cerebellar circuitry, especially for Purkinje neurons and granule cells. The unique morphology of Purkinje neurons serves as a platform to unravel the secrets of Ca2+ homeostasis in cerebellar microcircuits. This special issue covers recent advances in Ca2+ signaling and imaging, and highlights the importance of spatio-temporal compartmentalization underlying Ca2+ dynamics. Sorting out the pieces of the puzzle of homeostatic regulation of Ca2+ remains an instrumental step to start rational therapies of Ca2+ deregulation. PMID:22806980

  2. 1. Photocopy of book illustration, undated ca. 1898; LIGHTHOUSE CONSTRUCTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of book illustration, undated ca. 1898; LIGHTHOUSE CONSTRUCTED CA. 1876, DESTROYED 1898 - Castillo de San Felipe del Morro Lighthouse, Summit of Castillo de San Felipe del Morro, San Juan Antiguo (subdivision), San Juan Municipio, PR

  3. 90. VIEW SHOWING STEEL ERECTION, EAST TOWER, LOOKING EASTSOUTHEAST, ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. VIEW SHOWING STEEL ERECTION, EAST TOWER, LOOKING EAST-SOUTHEAST, ca. May 1935 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  4. Phosphate Capacities of CaF2-MgO and CaF2-CaO-MgO Slags

    NASA Astrophysics Data System (ADS)

    Akbari, F.; Pickles, C. A.

    2015-02-01

    Previously published sulphide capacity data and thermodynamic arguments have been employed to calculate the phosphate capacities and the phosphorus partition ratios between a molten carbon saturated iron alloy and binary CaF2-MgO slags and also ternary CaF2 -CaO-MgO slags at 1450 °C. For the CaF2-MgO binary system, a linear relationship was found between the phosphate and the sulphide capacities as follows: log ? = 1.2 log Cs + 25.2. For the ternary CaF2-CaO-MgO system at 1450 °C, the logarithm of the calculated phosphate capacities ranged from 19.47 to 20.15. With the addition of CaO, the phosphate capacities initially increased, reached a maximum and then decreased slightly. The addition of MgO to the CaF2-CaO system resulted in a decrease in the phosphate capacity. The calculated phosphorus partition ratios increased slightly with increasing mole fraction of CaO in the ternary system.

  5. Capacitative Ca2+ Entry Is Closely Linked to the Filling State of Internal Ca2+ Stores: A Study Using Simultaneous Measurements of ICRAC and Intraluminal [Ca2+

    PubMed Central

    Hofer, Aldebaran M.; Fasolato, Cristina; Pozzan, Tullio

    1998-01-01

    ICRAC (the best characterized Ca2+ current activated by store depletion) was monitored concurrently for the first time with [Ca2+] changes in internal stores. To establish the quantitative and kinetic relationship between these two parameters, we have developed a novel means to clamp [Ca2+] within stores of intact cells at any level. The advantage of this approach, which is based on the membrane-permeant low-affinity Ca2+ chelator N,N,N′,N′-tetrakis (2-pyridylmethyl)ethylene diamine (TPEN), is that [Ca2+] within the ER can be lowered and restored to its original level within 10–15 s without modifications of Ca2+ pumps or release channels. Using these new tools, we demonstrate here that Ca2+ release–activated Ca2+ current (ICRAC) is activated (a) solely by reduction of free [Ca2+] within the ER and (b) by any measurable decrease in [Ca2+]ER. We also demonstrate that the intrinsic kinetics of inactivation are relatively slow and possibly dependent on soluble factors that are lost during the whole-cell recording. PMID:9442108

  6. Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: a possible mechanism for oscillatory release of Ca2+.

    PubMed Central

    Parker, I; Ivorra, I

    1990-01-01

    Light-flash photolysis of caged inositol 1,4,5-trisphosphate (InsP3) was used to generate reproducible transients of free InsP3 in Xenopus oocytes, and the resulting liberation of Ca2+ from intracellular stores was monitored by recording Ca2+-activated membrane currents and by use of the fluorescent Ca2+ indicator fluo-3. InsP3-mediated Ca2+ release was inhibited by elevating the intracellular free Ca2+ level, either by microinjecting Ca2+ into the cell or by applying conditioning light flashes to liberate Ca2+. This inhibition followed a slow time course, being maximal after about 2 s and subsequently declining over several seconds. Negative feedback of Ca2+ ions on InsP3-mediated Ca2+ liberation may explain the oscillatory release of Ca2+ seen during activation of inositol phospholipid signaling in the oocyte, and the time course of the inhibition is consistent with the period of the oscillations. PMID:2296584

  7. Lysophosphatidylcholine augments Ca(v)3.2 but not Ca(v)3.1 T-type Ca(2+) channel current expressed in HEK-293 cells.

    PubMed

    Zheng, Mingqi; Uchino, Tomoko; Kaku, Toshihiko; Kang, Lin; Wang, Yan; Takebayashi, Satoshi; Ono, Katsushige

    2006-01-01

    Lysophosphatidylcholine (LPC) has been shown to induce electrophysiological disturbances to arrhythmogenesis. However, the effects of LPC on the low-voltage-activated T-type Ca(2+) channels in the heart are not understood yet. We found that LPC increases the T-type Ca(2+) channel current (I(Ca.T)) in neonatal rat cardiomyocytes. To further investigate the underlying modulatory mechanism of LPC on T-type Ca(2+) channels, we utilized HEK-293 cells stably expressing alpha1G and alpha1H subunits (HEK-293/alpha1G and HEK-293/alpha1H), by use of patch-clamp techniques. A low concentration of LPC (10 micromol/l) significantly increased Ca(v)3.2 I(Ca.T) (alpha1H) that were similar to those observed in neonatal rat cardiomyocytes. Activation and steady-state inactivation curves were shifted in the hyperpolarized direction by 5.1 +/- 0.2 and 4.6 +/- 0.4 mV, respectively, by application of 10 micromol/l LPC. The pretreatment of cells with a protein kinase C inhibitor (chelerythrine) attenuated the effects of LPC on I(Ca.T) (alpha1H). However, the application of LPC failed to modify Ca(v)3.1 (alpha1G) I(Ca.T) at concentrations of 10-50 micromol/l. In conclusion, these data demonstrate that extracellularly applied LPC augments Ca(v)3.2 I(Ca.T) (alpha1H) but not Ca(v)3.1 I(Ca.T) (alpha1G) in a heterologous expression system, possibly by modulating protein kinase C signaling.

  8. Stimulation-Evoked Ca2+ Signals in Astrocytic Processes at Hippocampal CA3–CA1 Synapses of Adult Mice Are Modulated by Glutamate and ATP

    PubMed Central

    Szokol, Karolina; Jensen, Vidar; Enger, Rune; Trivedi, Chintan A.; Hvalby, Øivind; Helm, P. Johannes; Looger, Loren L.; Sprengel, Rolf

    2015-01-01

    To date, it has been difficult to reveal physiological Ca2+ events occurring within the fine astrocytic processes of mature animals. The objective of the study was to explore whether neuronal activity evokes astrocytic Ca2+ signals at glutamatergic synapses of adult mice. We stimulated the Schaffer collateral/commissural fibers in acute hippocampal slices from adult mice transduced with the genetically encoded Ca2+ indicator GCaMP5E driven by the glial fibrillary acidic protein promoter. Two-photon imaging revealed global stimulation-evoked astrocytic Ca2+ signals with distinct latencies, rise rates, and amplitudes in fine processes and somata. Specifically, the Ca2+ signals in the processes were faster and of higher amplitude than those in the somata. A combination of P2 purinergic and group I/II metabotropic glutamate receptor (mGluR) antagonists reduced the amplitude of the Ca2+ transients by 30–40% in both astrocytic compartments. Blockage of the mGluRs alone only modestly reduced the magnitude of the stimulation-evoked Ca2+ signals in processes and failed to affect the somatic Ca2+ response. Local application of group I or I/II mGluR agonists or adenosine triphosphate (ATP) elicited global astrocytic Ca2+ signals that mimicked the stimulation-evoked astrocytic Ca2+ responses. We conclude that stimulation-evoked Ca2+ signals in astrocytic processes at CA3–CA1 synapses of adult mice (1) differ from those in astrocytic somata and (2) are modulated by glutamate and ATP. PMID:25698739

  9. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.

    PubMed

    Ben-Hail, Danya; Palty, Raz; Shoshan-Barmatz, Varda

    2014-02-01

    Ca(2+) is a ubiquitous cellular signal, with changes in intracellular Ca(2+) concentration not only stimulating a number of intercellular events but also triggering cell death pathways, including apoptosis. Mitochondrial Ca(2+) uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca(2+) signaling, energy metabolism and cell death. Ca(2+) transport across the inner and outer mitochondrial membranes is mediated by several proteins, including channels, antiporters, and a uniporter. In this article, we present the background to several methods now established for assaying mitochondrial Ca(2+) transport activity across both mitochondrial membranes. The first of these is Ca(2+) transport mediated by the outer mitochondrial protein, the voltage-dependent anion-selective channel protein 1 (VDAC1, also known as porin 1), both as a purified protein reconstituted into a planar lipid bilayer (PLB) or into liposomes and as a mitochondrial membrane-embedded protein. The second method involves isolated mitochondria for assaying the activity of an inner mitochondrial membrane transport protein, the mitochondrial Ca(2+) uniporter (MCU) that transports Ca(2+) and is powered by the steep mitochondrial membrane potential. In the event of Ca(2+) overload, this leads to opening of the mitochondrial permeability transition pore (MPTP) and cell death. The third method describes how Na(+)-dependent mitochondrial Ca(2+) efflux mediated by mitochondrial NCLX, a member of the Na(+)/Ca(2+) exchanger superfamily, can be assayed in digitonin-permeabilized HEK-293 cells. The Ca(2+)-transport assays can be performed under various conditions and in combination with inhibitors, allowing detailed characterization of the transport activity of interest.

  10. A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic β cells

    PubMed Central

    Kang, Guoxin; Chepurny, Oleg G; Rindler, Michael J; Collis, Leon; Chepurny, Zina; Li, Wen-hong; Harbeck, Mark; Roe, Michael W; Holz, George G

    2005-01-01

    The blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1) stimulates cAMP production, promotes Ca2+ influx, and mobilizes an intracellular source of Ca2+ in pancreatic β cells. Here we provide evidence that these actions of GLP-1 are functionally related: they reflect a process of Ca2+-induced Ca2+ release (CICR) that requires activation of protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). In rat insulin-secreting INS-1 cells or mouse β cells loaded with caged Ca2+ (NP-EGTA), a GLP-1 receptor agonist (exendin-4) is demonstrated to sensitize intracellular Ca2+ release channels to stimulatory effects of cytosolic Ca2+, thereby allowing CICR to be generated by the uncaging of Ca2+ (UV flash photolysis). This sensitizing action of exendin-4 is diminished by an inhibitor of PKA (H-89) or by overexpression of dominant negative Epac. It is reproduced by cell-permeant cAMP analogues that activate PKA (6-Bnz-cAMP) or Epac (8-pCPT-2′-O-Me-cAMP) selectively. Depletion of Ca2+ stores with thapsigargin abolishes CICR, while inhibitors of Ca2+ release channels (ryanodine and heparin) attenuate CICR in an additive manner. Because the uncaging of Ca2+ fails to stimulate CICR in the absence of cAMP-elevating agents, it is concluded that there exists in β cells a process of second messenger coincidence detection, whereby intracellular Ca2+ release channels (ryanodine receptors, inositol 1,4,5-trisphosphate (IP3) receptors) monitor a simultaneous increase of cAMP and Ca2+ concentrations. We propose that second messenger coincidence detection of this type may explain how GLP-1 interacts with β cell glucose metabolism to stimulate insulin secretion. PMID:15860526

  11. Stimulation-evoked Ca2+ signals in astrocytic processes at hippocampal CA3-CA1 synapses of adult mice are modulated by glutamate and ATP.

    PubMed

    Tang, Wannan; Szokol, Karolina; Jensen, Vidar; Enger, Rune; Trivedi, Chintan A; Hvalby, Øivind; Helm, P Johannes; Looger, Loren L; Sprengel, Rolf; Nagelhus, Erlend A

    2015-02-18

    To date, it has been difficult to reveal physiological Ca(2+) events occurring within the fine astrocytic processes of mature animals. The objective of the study was to explore whether neuronal activity evokes astrocytic Ca(2+) signals at glutamatergic synapses of adult mice. We stimulated the Schaffer collateral/commissural fibers in acute hippocampal slices from adult mice transduced with the genetically encoded Ca(2+) indicator GCaMP5E driven by the glial fibrillary acidic protein promoter. Two-photon imaging revealed global stimulation-evoked astrocytic Ca(2+) signals with distinct latencies, rise rates, and amplitudes in fine processes and somata. Specifically, the Ca(2+) signals in the processes were faster and of higher amplitude than those in the somata. A combination of P2 purinergic and group I/II metabotropic glutamate receptor (mGluR) antagonists reduced the amplitude of the Ca(2+) transients by 30-40% in both astrocytic compartments. Blockage of the mGluRs alone only modestly reduced the magnitude of the stimulation-evoked Ca(2+) signals in processes and failed to affect the somatic Ca(2+) response. Local application of group I or I/II mGluR agonists or adenosine triphosphate (ATP) elicited global astrocytic Ca(2+) signals that mimicked the stimulation-evoked astrocytic Ca(2+) responses. We conclude that stimulation-evoked Ca(2+) signals in astrocytic processes at CA3-CA1 synapses of adult mice (1) differ from those in astrocytic somata and (2) are modulated by glutamate and ATP.

  12. Caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release from the endoplasmic reticulum in honeybee photoreceptors

    PubMed Central

    1995-01-01

    Light stimulation of invertebrate microvillar photoreceptors causes a large rapid elevation in Cai, shown previously to modulate the adaptational state of the cells. Cai rises, at least in part, as a result of Ins(1,4,5)P3-induced Ca2+ release from the submicrovillar endoplasmic reticulum (ER). Here, we provide evidence for Ca(2+)- induced Ca2+ release (CICR) in an insect photoreceptor. In situ microphotometric measurements of Ca2+ fluxes across the ER membrane in permeabilized slices of drone bee retina show that (a) caffeine induces Ca2+ release from the ER; (b) caffeine and Ins(1,4,5)P3 open distinct Ca2+ release pathways because only caffeine-induced Ca2+ release is ryanodine sensitive and heparin insensitive, and because caffeine and Ins(1,4,5)P3 have additive effects on the rate of Ca2+ release; (c) Ca2+ itself stimulates release of Ca2+ via a ryanodine-sensitive pathway; and (d) cADPR is ineffective in releasing Ca2+. Microfluorometric intracellular Ca2+ measurements with fluo-3 indicate that caffeine induces a persistent elevation in Cai. Electrophysiological recordings demonstrate that caffeine mimics all aspects of Ca(2+)-mediated facilitation and adaptation in drone photoreceptors. We conclude that the ER in drone photoreceptors contains, in addition to the Ins(1,4,5)P3-sensitive release pathway, a CICR pathway that meets key pharmacological criteria for a ryanodine receptor. Coexpression of both release mechanisms could be required for the production of rapid light-induced Ca2+ elevations, because Ca2+ amplifies its own release through both pathways by a positive feedback. CICR may also mediate the spatial spread of Ca2+ release from the submicrovillar ER toward more remote ER subregions, thereby activating Ca(2+)-sensitive cell processes that are not directly involved in phototransduction. PMID:7608657

  13. MicroRNA-145 suppresses ROS-induced Ca{sup 2+} overload of cardiomyocytes by targeting CaMKIIδ

    SciTech Connect

    Cha, Min-Ji; Jang, Jin-Kyung; Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon; Lee, Chang Yeon; Park, Jun-Hee; Lee, Jiyun; Seo, Hyang-Hee; Choi, Eunhyun; Jeon, Woo-min; Hwang, Hye Jin; Shin, Hyun-Taek; and others

    2013-06-14

    Highlights: •CaMKIIδ mediates H{sub 2}O{sub 2}-induced Ca{sup 2+} overload in cardiomyocytes. •miR-145 can inhibit Ca{sup 2+} overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca{sup 2+}) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca{sup 2+} signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca{sup 2+}-mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H{sub 2}O{sub 2}-mediated Ca{sup 2+} overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca{sup 2+} overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca{sup 2+}-related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca{sup 2+} overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses.

  14. Sr/Ca and Ba/Ca variations in environmental and biological sources: A survey of marine and terrestrial systems

    NASA Astrophysics Data System (ADS)

    Peek, Stephanie; Clementz, Mark T.

    2012-10-01

    The relative concentrations of strontium to calcium (Sr/Ca) and barium to calcium (Ba/Ca) in mammalian bioapatite are common biogeochemical indicators for trophic level and/or dietary preferences in terrestrial foodwebs; however, similar research in marine foodwebs is lacking. This study combined environmental and biological Sr/Ca and Ba/Ca data from both terrestrial and marine settings from 62 published books, reports, and studies along with original data collected from 149 marine mammals (30 species) and 83 prey items (18 species) and found that variations in Sr/Ca and Ba/Ca ratios of biological and environmental samples are appreciably different in terrestrial and marine systems. In terrestrial systems, environmental sources account for most of the variations in Sr/Ca and Ba/Ca ratios. In contrast, environmental sources in marine systems (i.e., seawater) are comparatively invariant, meaning most of the variations in Sr/Ca and Ba/Ca ratios originate from biological processes. Marine consumers, particularly non-mammalian and mammalian vertebrates, show evidence of biopurification of Ca relative to Sr and Ba, similar to what is observed in terrestrial systems; however, unlike terrestrial systems, variations in Sr/Ca and Ba/Ca ratios of environmental sources are overprinted by bioaccumulation of Sr and Ba at the base of marine foodwebs. This demonstrates that in marine systems, spatial or temporal differences may have little to no effect on Sr/Ca and Ba/Ca ratios of marine vertebrates, making Sr/Ca, and to a lesser extent Ba/Ca, potentially useful global proxies for trophic level and dietary preferences of marine vertebrates.

  15. Application of Ca stable isotopes to long-term changes in the Ca cycle of a Northern Hardwood forest

    NASA Astrophysics Data System (ADS)

    Kurtz, A. C.; Takagi, K.; Bailey, S. W.; Bullen, T. D.

    2015-12-01

    The Hubbard Brook Ecosystem Study (New Hampshire, USA) presents an unusual opportunity for the application of innovative isotope methods in forest biogeochemistry. Changes in biogeochemical cycling resulting from decades of acid deposition, subsequent reductions in acid deposition, and a series of experimental treatments (harvesting, Ca amendment) have been studied continuously for 60 years at this site. Importantly, researchers have archived soil, water, and vegetation samples for much of the site's history. Our work seeks to complement earlier mass balance studies of Ca cycling by measuring Ca isotope ratios on archived samples. In the first component of our study, we examined the Ca isotopic response to an experimental clearcut in the early 1980's. Earlier work showed that the clearcut promoted dramatic loss of Ca from the watershed, indicated by a 5-fold increase in streamwater Ca concentrations. The mechanism for this loss was unclear as no resolvable changes in soil Ca pools were observed. Our work shows that streamwater dissolved Ca becomes isotopically lighter as Ca concentrations increase. These data are best accounted for by an increase in Ca loss from the soil cation exchange complex. Soil exchangeable δ44Ca itself evolves towards lighter values in the years following the experimental harvest. We interpret this as replenishment of the soil exchange complex by release of isotopically light Ca from root biomass. In the second component of our study, we examine decadal-scale changes in streamwater and soil Ca in an un-manipulated biogeochemical reference watershed. Historical data from Hubbard Brook show that streamwater Ca concentrations began decreasing sharply in the early 1970's, attributed to decreased deposition of both acidity and Ca with the passage of the Clean Air Act. Preliminary data indicate no resolvable change in the average δ44Ca of streamwater, with variability mostly attributable to discharge (flowpath control). Preliminary data

  16. Termination of cAMP signals by Ca2+ and Gαi via extracellular Ca2+ sensors

    PubMed Central

    Gerbino, Andrea; Ruder, Warren C.; Curci, Silvana; Pozzan, Tullio; Zaccolo, Manuela; Hofer, Aldebaran M.

    2005-01-01

    Termination of cyclic adenosine monophosphate (cAMP) signaling via the extracellular Ca2+-sensing receptor (CaR) was visualized in single CaR-expressing human embryonic kidney (HEK) 293 cells using ratiometric fluorescence resonance energy transfer–dependent cAMP sensors based on protein kinase A and Epac. Stimulation of CaR rapidly reversed or prevented agonist-stimulated elevation of cAMP through a dual mechanism involving pertussis toxin–sensitive Gαi and the CaR-stimulated increase in intracellular [Ca2+]. In parallel measurements with fura-2, CaR activation elicited robust Ca2+ oscillations that increased in frequency in the presence of cAMP, eventually fusing into a sustained plateau. Considering the Ca2+ sensitivity of cAMP accumulation in these cells, lack of oscillations in [cAMP] during the initial phases of CaR stimulation was puzzling. Additional experiments showed that low-frequency, long-duration Ca2+ oscillations generated a dynamic staircase pattern in [cAMP], whereas higher frequency spiking had no effect. Our data suggest that the cAMP machinery in HEK cells acts as a low-pass filter disregarding the relatively rapid Ca2+ spiking stimulated by Ca2+-mobilizing agonists under physiological conditions. PMID:16247029

  17. Graded Ca2+/calmodulin-dependent coupling of voltage-gated CaV1.2 channels

    PubMed Central

    Dixon, Rose E; Moreno, Claudia M; Yuan, Can; Opitz-Araya, Ximena; Binder, Marc D; Navedo, Manuel F; Santana, Luis F

    2015-01-01

    In the heart, reliable activation of Ca2+ release from the sarcoplasmic reticulum during the plateau of the ventricular action potential requires synchronous opening of multiple CaV1.2 channels. Yet the mechanisms that coordinate this simultaneous opening during every heartbeat are unclear. Here, we demonstrate that CaV1.2 channels form clusters that undergo dynamic, reciprocal, allosteric interactions. This ‘functional coupling’ facilitates Ca2+ influx by increasing activation of adjoined channels and occurs through C-terminal-to-C-terminal interactions. These interactions are initiated by binding of incoming Ca2+ to calmodulin (CaM) and proceed through Ca2+/CaM binding to the CaV1.2 pre-IQ domain. Coupling fades as [Ca2+]i decreases, but persists longer than the current that evoked it, providing evidence for ‘molecular memory’. Our findings suggest a model for CaV1.2 channel gating and Ca2+-influx amplification that unifies diverse observations about Ca2+ signaling in the heart, and challenges the long-held view that voltage-gated channels open and close independently. DOI: http://dx.doi.org/10.7554/eLife.05608.001 PMID:25714924

  18. The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis[OPEN

    PubMed Central

    Carraretto, Luca; Teardo, Enrico; Cendron, Laura; Füßl, Magdalena; Doccula, Fabrizio G.; Szabò, Ildikò

    2015-01-01

    Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants. PMID:26530087

  19. Roles of three Fusarium oxysporum calcium ion (Ca(2+)) channels in generating Ca(2+) signatures and controlling growth.

    PubMed

    Kim, Hye-Seon; Kim, Jung-Eun; Frailey, Daniel; Nohe, Anja; Duncan, Randall; Czymmek, Kirk J; Kang, Seogchan

    2015-09-01

    Spatial and temporal changes of cytoplasmic calcium ions ([Ca(2+)]c), caused by external stimuli, are known as the Ca(2+) signature and presumably control cellular and developmental responses. Multiple types of ion channels, pumps, and transporters on plasma and organellar membranes modulate influx and efflux of Ca(2+) to and from the extracellular environment and internal Ca(2+) stores to form Ca(2+) signatures. Expression of a fluorescent protein-based Ca(2+) probe, Cameleon YC3.60, in Fusarium oxysporum enabled us to study how disruption of three Ca(2+) channel genes, including FoCCH1, FoMID1 and FoYVC1, affects Ca(2+) signature formation at polarized hyphal tips and whether specific changes in the Ca(2+) signature caused by these mutations are related to growth-related phenotypes. Resulting mutants displayed altered amplitude, interval, and duration of Ca(2+) pulses under various external Ca(2+) concentrations as well as changes in sporulation and growth. Loss of FoMID1 and FoCCH1, genes encoding putative plasma membrane channel proteins, had a major impact on Ca(2+) signatures and growth, while disruption of FoYVC1, which encodes a vacuolar channel, only subtly affected both traits. Results from our study provide new insights into the underpinning of Ca(2+) signaling in fungi and its role in controlling growth and also raise several new questions.

  20. Single-prolonged stress induce changes of CaM/CaMKIIα in the rats of dorsal raphe nucleus.

    PubMed

    Xie, Huaju; Han, Fang; Shi, Xiuyu

    2012-05-01

    Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) is identified as a Ca2+-dependent kinase in brain involved in the activation of Tryptophan hydroxylase (TPH) acting through direct phosphorylation of TPH, and playing key roles in the signaling pathways initiated by various G protein-coupled 5-HT receptors. The goal of this study is to detect whether there are changes of CaM and CaMKIIα in dorsal raphe nucleus in the rats exposed to single-prolonged stress (SPS), which is a model employed in post-traumatic stress disorder (PTSD) study extensively. A total of 90 male Wistar rats were randomly divided into a normal control group and SPS groups of 7d, 14d. The changes of CaM/CaMKIIα were detected by immunohistochemistry, reverse transcription-polymerase chain reaction and western blot. Our results demonstrate that both expressions of CaM and CaMKIIα significantly increase (P < 0.001) in the SPS 7d group than that in the control group, and then decreased dramatically (P < 0.001) 14 days after SPS. Our results confirm that SPS induce changes of CaM/CaMKIIα in the dorsal raphe nucleus. Changes of CaM/CaMKIIα may be associated with the activation of 5-HT1A receptor, and may contribute to the progress of molecular mechanism of PTSD.

  1. Fluorescence emission of Ca-atom from photodissociated Ca2 in Ar-doped helium droplets. I. Experimental.

    PubMed

    Masson, A; Briant, M; Hernando, A; Halberstadt, N; Mestdagh, J-M; Gaveau, M-A

    2012-11-14

    The Ca(2) → Ca(4s4p(1)P) + Ca(4s(2)(1)S) photodissociation was investigated in a He droplet isolation experiment where the droplets are doped by Ar atoms. Fluorescence spectra associated with the Ca(4s4p(1)P → 4s(2)(1)S) emission were recorded as a function of the average number of Ar atoms per droplet. Three contributions were observed depending on whether the emitting Ca atoms are free, bound to helium atoms or bound to argon atoms. Moreover, the full Ca(4s4p(1)P → 4s(2)(1)S) fluorescence emission was recorded as a function of the wavelength of the photodissociation laser, hence providing the action spectrum of the Ca(2) → Ca(4s4p(1)P) + Ca(4s(2)(1)S) process. The latter spectrum suggests that in He droplets doped by argon, Ca atoms are attracted inside the droplet where they associate as Ca(2). Full analysis of the spectra indicate that the emission of Ca bound to a single Ar atom is redshifted by 94 cm(-1) with respect to the emission of free Ca.

  2. Critical determinants of Ca(2+)-dependent inactivation within an EF-hand motif of L-type Ca(2+) channels.

    PubMed Central

    Peterson, B Z; Lee, J S; Mulle, J G; Wang, Y; de Leon, M; Yue, D T

    2000-01-01

    L-type (alpha(1C)) calcium channels inactivate rapidly in response to localized elevation of intracellular Ca(2+), providing negative Ca(2+) feedback in a diverse array of biological contexts. The dominant Ca(2+) sensor for such Ca(2+)-dependent inactivation has recently been identified as calmodulin, which appears to be constitutively tethered to the channel complex. This Ca(2+) sensor induces channel inactivation by Ca(2+)-dependent CaM binding to an IQ-like motif situated on the carboxyl tail of alpha(1C). Apart from the IQ region, another crucial site for Ca(2+) inactivation appears to be a consensus Ca(2+)-binding, EF-hand motif, located approximately 100 amino acids upstream on the carboxyl terminus. However, the importance of this EF-hand motif for channel inactivation has become controversial since the original report from our lab implicating a critical role for this domain. Here, we demonstrate not only that the consensus EF hand is essential for Ca(2+) inactivation, but that a four-amino acid cluster (VVTL) within the F helix of the EF-hand motif is itself essential for Ca(2+) inactivation. Mutating these amino acids to their counterparts in non-inactivating alpha(1E) calcium channels (MYEM) almost completely ablates Ca(2+) inactivation. In fact, only a single amino acid change of the second valine within this cluster to tyrosine (V1548Y) supports much of the functional knockout. However, mutations of presumed Ca(2+)-coordinating residues in the consensus EF hand reduce Ca(2+) inactivation by only approximately 2-fold, fitting poorly with the EF hand serving as a contributory inactivation Ca(2+) sensor, in which Ca(2+) binds according to a classic mechanism. We therefore suggest that while CaM serves as Ca(2+) sensor for inactivation, the EF-hand motif of alpha(1C) may support the transduction of Ca(2+)-CaM binding into channel inactivation. The proposed transduction role for the consensus EF hand is compatible with the detailed Ca(2+)-inactivation

  3. CaMeL: Learning Method Preconditions for HTN Planning

    DTIC Science & Technology

    2006-01-01

    CaMeL : Learning Method Preconditions for HTN Planning Okhtay Ilghami and Dana S. Nau Department of Computer Science University of Maryland College...algorithm, named CaMeL , based on this formalism. We present theo- retical results about CaMeL’s soundness, completeness, and convergence properties...We also report experimental results about its speed of convergence under different conditions. The experimental results suggest that CaMeL has the

  4. T-type Ca2+ channel modulation by otilonium bromide

    PubMed Central

    Strege, Peter R.; Sha, Lei; Beyder, Arthur; Bernard, Cheryl E.; Perez-Reyes, Edward; Evangelista, Stefano; Gibbons, Simon J.; Szurszewski, Joseph H.

    2010-01-01

    Antispasmodics are used clinically to treat a variety of gastrointestinal disorders by inhibition of smooth muscle contraction. The main pathway for smooth muscle Ca2+ entry is through L-type channels; however, there is increasing evidence that T-type Ca2+ channels also play a role in regulating contractility. Otilonium bromide, an antispasmodic, has previously been shown to inhibit L-type Ca2+ channels and colonic contractile activity. The objective of this study was to determine whether otilonium bromide also inhibits T-type Ca2+ channels. Whole cell currents were recorded by patch-clamp technique from HEK293 cells transfected with cDNAs encoding the T-type Ca2+ channels, CaV3.1 (α1G), CaV3.2 (α1H), or CaV3.3 (α1I) alpha subunits. Extracellular solution was exchanged with otilonium bromide (10−8 to 10−5 M). Otilonium bromide reversibly blocked all T-type Ca2+ channels with a significantly greater affinity for CaV3.3 than CaV3.1 or CaV3.2. Additionally, the drug slowed inactivation in CaV3.1 and CaV3.3. Inhibition of T-type Ca2+ channels may contribute to inhibition of contractility by otilonium bromide. This may represent a new mechanism of action for antispasmodics and may contribute to the observed increased clinical effectiveness of antispasmodics compared with selective L-type Ca2+ channel blockers. PMID:20203058

  5. T-type Ca(2+) channel modulation by otilonium bromide.

    PubMed

    Strege, Peter R; Sha, Lei; Beyder, Arthur; Bernard, Cheryl E; Perez-Reyes, Edward; Evangelista, Stefano; Gibbons, Simon J; Szurszewski, Joseph H; Farrugia, Gianrico

    2010-05-01

    Antispasmodics are used clinically to treat a variety of gastrointestinal disorders by inhibition of smooth muscle contraction. The main pathway for smooth muscle Ca(2+) entry is through L-type channels; however, there is increasing evidence that T-type Ca(2+) channels also play a role in regulating contractility. Otilonium bromide, an antispasmodic, has previously been shown to inhibit L-type Ca(2+) channels and colonic contractile activity. The objective of this study was to determine whether otilonium bromide also inhibits T-type Ca(2+) channels. Whole cell currents were recorded by patch-clamp technique from HEK293 cells transfected with cDNAs encoding the T-type Ca(2+) channels, Ca(V)3.1 (alpha1G), Ca(V)3.2 (alpha1H), or Ca(V)3.3 (alpha1I) alpha subunits. Extracellular solution was exchanged with otilonium bromide (10(-8) to 10(-5) M). Otilonium bromide reversibly blocked all T-type Ca(2+) channels with a significantly greater affinity for Ca(V)3.3 than Ca(V)3.1 or Ca(V)3.2. Additionally, the drug slowed inactivation in Ca(V)3.1 and Ca(V)3.3. Inhibition of T-type Ca(2+) channels may contribute to inhibition of contractility by otilonium bromide. This may represent a new mechanism of action for antispasmodics and may contribute to the observed increased clinical effectiveness of antispasmodics compared with selective L-type Ca(2+) channel blockers.

  6. Oxidant stress promotes disease by activating CaMKII.

    PubMed

    Anderson, Mark E

    2015-12-01

    CaMKII is activated by oxidation of methionine residues residing in the regulatory domain. Oxidized CaMKII (ox-CaMKII) is now thought to participate in cardiovascular and pulmonary diseases and cancer. This invited review summarizes current evidence for the role of ox-CaMKII in disease, considers critical knowledge gaps and suggests new areas for inquiry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Mitochondrial Ca2+ Uniporter: Structure, Function and Pharmacology

    PubMed Central

    Mishra, Jyotsna; Jhun, Bong Sook; Hurst, Stephen; O-Uchi, Jin; Csordás, György; Sheu, Shey-Shing

    2017-01-01

    Mitochondrial Ca2+ uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca2+ uptake and our current understanding of mitochondrial Ca2+ homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca2+ uniporter complex. PMID:28194521

  8. Ca++ induced hypothermia in a hibernator /Citellus beechyi/

    NASA Technical Reports Server (NTRS)

    Hanegan, J. L.; Williams, B. A.

    1975-01-01

    Results of perfusion of excess Ca++ and Na+ into the hypothalamus of the hibernating ground squirrel Citellus beechyi are presented. The significant finding is that perfused excess Ca++ causes a reduction in core temperature when ambient temperature is low (12 C). Ca++ also causes a rise in rectal temperature at high ambient temperature (33 C). Thus hypothalamic Ca++ perfusion apparently causes a nonspecific depression of thermoregulatory control.

  9. Ca++ induced hypothermia in a hibernator /Citellus beechyi/

    NASA Technical Reports Server (NTRS)

    Hanegan, J. L.; Williams, B. A.

    1975-01-01

    Results of perfusion of excess Ca++ and Na+ into the hypothalamus of the hibernating ground squirrel Citellus beechyi are presented. The significant finding is that perfused excess Ca++ causes a reduction in core temperature when ambient temperature is low (12 C). Ca++ also causes a rise in rectal temperature at high ambient temperature (33 C). Thus hypothalamic Ca++ perfusion apparently causes a nonspecific depression of thermoregulatory control.

  10. High precision calcium isotope analysis using 42Ca-48Ca double-spike TIMS technique

    NASA Astrophysics Data System (ADS)

    Feng, L.; Zhou, L.; Gao, S.; Tong, S. Y.; Zhou, M. L.

    2014-12-01

    Double spike techniques are widely used for determining calcium isotopic compositions of natural samples. The most important factor controlling precision of the double spike technique is the choice of appropriate spike isotope pair, the composition of double spikes and the ratio of spike to sample(CSp/CN). We propose an optimal 42Ca-48Ca double spike protocol which yields the best internal precision for calcium isotopic composition determinations among all kinds of spike pairs and various spike compositions and ratios of spike to sample, as predicted by linear error propagation method. It is suggested to use spike composition of 42Ca/(42Ca+48Ca) = 0.44 mol/mol and CSp/(CN+ CSp)= 0.12mol/mol because it takes both advantages of the largest mass dispersion between 42Ca and 48Ca (14%) and lowest spike cost. Spiked samples were purified by pass through homemade micro-column filled with Ca special resin. K, Ti and other interference elements were completely separated, while 100% calcium was recovered with negligible blank. Data collection includes integration time, idle time, focus and peakcenter frequency, which were all carefully designed for the highest internal precision and lowest analysis time. All beams were automatically measured in a sequence by Triton TIMS so as to eliminate difference of analytical conditions between samples and standards, and also to increase the analytical throughputs. The typical internal precision of 100 duty cycles for one beam is 0.012‒0.015 ‰ (2δSEM), which agrees well with the predicted internal precision of 0.0124 ‰ (2δSEM). Our methods improve internal precisions by a factor of 2‒10 compared to previous methods of determination of calcium isotopic compositions by double spike TIMS. We analyzed NIST SRM 915a, NIST SRM 915b and Pacific Seawater as well as interspersed geological samples during two months. The obtained average δ44/40Ca (all relative to NIST SRM 915a) is 0.02 ± 0.02 ‰ (n=28), 0.72±0.04 ‰ (n=10) and 1

  11. Nitroxyl enhances myocyte Ca2+ transients by exclusively targeting SR Ca2+-cycling

    PubMed Central

    Kohr, Mark J; Kaludercic, Nina; Tocchetti, Carlo G; Gao, Wei Dong; Kass, David A; Janssen, Paul ML; Paolocci, Nazareno; Ziolo, Mark T

    2011-01-01

    Nitroxyl (HNO), the 1-electron reduction product of nitric oxide, improves myocardial contraction in normal and failing hearts. Here we test whether the HNO donor Angeli’s salt (AS) will change myocyte action potential (AP) waveform by altering the L-type Ca2+ current (ICa) and contrast the contractile effects of HNO with that of the hydroxyl radical (·OH) and nitrite (NO2-), two potential breakdown products of AS. We confirmed the positive effect of AS/HNO on basal cardiomyocyte function, as opposed to the detrimental effect of ·OH and the negligible effect of NO2-. Upon examination of the myocyte AP, we observed no change in resting membrane potential or AP duration to 20% repolarization with AS/HNO, whereas AP duration to 90% repolarization was slightly prolonged. However, perfusion with AS/HNO did not elicit a change in basal ICa, but did hasten ICa inactivation. Upon further examination of the SR, the AS/HNO-induced increase in cardiomyocyte Ca2+ transients was abolished with inhibition of SR Ca2+-cycling. Therefore, the HNO-induced increase in Ca2+ transients results exclusively from changes in SR Ca2+-cycling, and not from ICa. PMID:20036906

  12. Registration of CA0469C025C chickpea germplasm

    USDA-ARS?s Scientific Manuscript database

    Chickpea (Cicer arientinum L.) germplasm CA0469C025C (Reg. No. XXX; PI XXX), was released by the USDA-ARS in 2010. CA0469C025C was released based on its improved yield and reaction to Ascochyta blight relative to the popular commercial cultivars ‘Dwelley’, ‘Sierra’, and ‘Sawyer’. CA0490C025C is deri...

  13. Electronic structure of Ca, Sr, and Ba under pressure.

    NASA Technical Reports Server (NTRS)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  14. Ca2+ Binding and Conformational Switch of the Photoprotein Mnemiopsin.

    PubMed

    Tarahomi, Shima; Sajedi, Reza H; Rahmani, Hossein; Ranjbar, Bijan; Taghdir, Majid

    2017-08-09

    Bioluminescence in Ca2+-binding photoproteins is an intramolecular reaction triggered by the addition of Ca2+. A comparative study has been done on Ca2+-depleted and Ca2+-loaded apo-mnemiopsin to understand the structural transition of the photoprotein by Ca2+ binding. Ca2+ is removed by TCA (trichloroacetic acid) precipitation to obtain Ca2+-depleted apomnemiopsin. UV-visible, CD and fluorescence spectroscopic studies demonstrate that the addition of Ca2+ is brought about by the overall structure of apo-mnemiopsin becomes more open in a concentration- dependent manner without significantly influencing the secondary structure and indicate that the Ca2+-depleted form of apo-mnemiopsin, in contrast to most other EF-hand calcium binding proteins, adopt a closed conformation when compared to the Ca2+-loaded form. On the other hand, dynamic quenching and limited proteolysis analysis revealed that Ca2+-loaded apo-mnemiopsin became much more flexible than Ca2+ free apo-mnemiopsin. It seems that increased flexibility of the protein, which occurs due to calcium binding, is a critical factor in oxidative decarboxylation reaction on coelenterazine and consequently light emission. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. 78 FR 36655 - Drawbridge Operation Regulation; Carquinez Strait, Martinez, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Carquinez Strait, Martinez, CA AGENCY... Drawbridge across the Carquinez Strait, mile 7.0 at Martinez, CA. The deviation is necessary to perform a..., at Martinez, CA. The drawbridge navigation span provides 135 feet vertical clearance above Mean High...

  16. Ca2 Receptor, Prostate Cancer, and Bone Metastases

    DTIC Science & Technology

    2006-03-01

    of the same size as the major transcript in human parathyroid gland (2). With regard to documenting the presence of CaSR protein...controls--bovine parathyroid gland and CaSR-transfected human embryonic kidney (HEK293) cells (1). Thus we have demonstrated that LnCaP as

  17. Integrated mechanisms of CaMKII-dependent ventricular remodeling

    PubMed Central

    Kreusser, Michael M.; Backs, Johannes

    2014-01-01

    CaMKII has been shown to be activated during different cardiac pathological processes, and CaMKII-dependent mechanisms contribute to pathological cardiac remodeling, cardiac arrhythmias, and contractile dysfunction during heart failure. Activation of CaMKII during cardiac stress results in a broad number of biological effects such as, on the one hand, acute effects due to phosphorylation of distinct cellular proteins as ion channels and calcium handling proteins and, on the other hand, integrative mechanisms by changing gene expression. This review focuses on transcriptional and epigenetic effects of CaMKII activation during chronic cardiac remodeling. Multiple mechanisms have been described how CaMKII mediates changes in cardiac gene expression. CaMKII has been shown to directly phosphorylate components of the cardiac gene regulation machinery. CaMKII phosphorylates several transcription factors such as CREB that induces the activation of specific gene programs. CaMKII activates transcriptional regulators also indirectly by phosphorylating histone deacetylases, especially HDAC4, which in turn inhibits transcription factors that drive cardiac hypertrophy, fibrosis, and dysfunction. Recent studies demonstrate that CaMKII also phosphorylate directly histones, which may contribute to changes in gene expression. These findings of CaMKII-dependent gene regulation during cardiac remodeling processes suggest novel strategies for CaMKII-dependent “transcriptional or epigenetic therapies” to control cardiac gene expression and function. Manipulation of CaMKII-dependent signaling pathways in the settings of pathological cardiac growth, remodeling, and heart failure represents an auspicious therapeutic approach. PMID:24659967

  18. 78 FR 50025 - Humboldt County (CA) Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Forest Service Humboldt County (CA) Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION... Rivers National Forest Supervisor's Office, 1330 Bayshore Way, Eureka, CA. Please call ahead to 707-442... comments must be sent to Lynn Wright, RAC Committee Coordinator, 1330 Bayshore Way, Eureka, CA 95501; Email...

  19. 77 FR 38473 - Amendment of Class E Airspace; Fairfield, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Fairfield, CA AGENCY... airspace at Travis Air Force Base (AFB), Fairfield, CA. The projected decommissioning of the Travis VHF... rulemaking (NPRM) to amend controlled airspace at Fairfield, CA (77 FR 23171). Interested parties were...

  20. 77 FR 52599 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Sacramento River, Sacramento, CA... across Sacramento River, mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community... Tower Drawbridge, mile 59.0, over Sacramento River, at Sacramento, CA. The drawbridge navigation span...

  1. 77 FR 38475 - Amendment of Class E Airspace; Woodland, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Woodland, CA AGENCY: Federal... Watts-Woodland Airport, Woodland, CA. The projected decommissioning of the Travis VHF Omni- Directional... amend controlled airspace at Woodland, CA (77 FR 23172). Interested parties were invited to participate...

  2. 75 FR 22100 - Sierra County, CA, Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... Forest Service Sierra County, CA, Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION... Ranger Station, 317 S. Lincoln, Sierraville, CA. FOR FURTHER INFORMATION CONTACT: Aim Westling, Committee Coordinator, USDA, Tahoe National Forest, 631 Coyote St., Nevada City, CA 95959, (530) 478-6205, e-mail...

  3. 75 FR 17896 - Sierra County, CA, Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... Forest Service Sierra County, CA, Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION... Sierraville Ranger Station, 317 S. Lincoln, Sierraville, CA. ] FOR FURTHER INFORMATION CONTACT: Ann Westling, Committee Coordinator, USDA, Tahoe National Forest, 631 Coyote St., Nevada City, CA 95959, (530) 478-6205, e...

  4. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis.

    PubMed

    Rasola, Andrea; Bernardi, Paolo

    2011-09-01

    A variety of stimuli utilize an increase of cytosolic free Ca(2+) concentration as a second messenger to transmit signals, through Ca(2+) release from the endoplasmic reticulum or opening of plasma membrane Ca(2+) channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca(2+), thus shaping the return of cytosolic Ca(2+) to resting levels. The rise of mitochondrial matrix free Ca(2+) concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca(2+) increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca(2+) release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca(2+), termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca(2+) can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca(2+) concentration, their interplay with Ca(2+) signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis.

  5. Theoretical analysis of the Ca2+ spark amplitude distribution.

    PubMed Central

    Izu, L T; Wier, W G; Balke, C W

    1998-01-01

    A difficulty of using confocal microscopy to study Ca2+ sparks is the uncertainty of the linescan position with respect to the source of Ca2+ release. Random placement of the linescan is expected to result in a broad distribution of measured Ca2+ spark amplitudes (a) even if all Ca2+ sparks were generated identically. Thus variations in Ca2+ spark amplitude due to positional differences between confocal linescans and Ca2+ release site are intertwined with variations due to intrinsic differences in Ca2+ release properties. To separate these two sources of variations on the Ca2+ spark amplitude, we determined the effect changes of channel current or channel open time--collectively called the source strength, alpha--had on the measured Ca2+ spark amplitude histogram, N(a). This was done by 1) simulating Ca2+ release, Ca2+ and fluo-3 diffusion, and Ca2+ binding reactions; 2) simulation of image formation of the Ca2+ spark by a confocal microscope; and 3) using a novel automatic Ca2+ spark detector. From these results we derived an integral equation relating the probability density function of source strengths, f alpha (alpha), to N(a), which takes into account random positional variations between the source and linescan. In the special, but important, case that the spatial distribution of Ca(2+)-bound fluo-3 is Gaussian, we show the following: 1) variations of Ca2+ spark amplitude due to positional or intrinsic differences can be separated, and 2) f alpha (alpha) can, in principle, be calculated from the Ca2+ spark amplitude histogram since N(a) is the sum of shifted hyperbolas, where the magnitudes of the shifts and weights depend on f alpha (alpha). In particular, if all Ca2+ sparks were generated identically, then the plot of 1/N(a) against a will be a straight line. Multiple populations of channels carrying distinct currents are revealed by discontinuities in the 1/N(a) plot. 3) Although the inverse relationship between Ca2+ spark amplitude and decay time might be

  6. Mitochondrial Ca2+ uptake and release influence metabotropic and ionotropic cytosolic Ca2+ responses in rat oligodendrocyte progenitors

    PubMed Central

    Simpson, Peter B; Russell, James T

    1998-01-01

    Many physiologically important activities of oligodendrocyte progenitor cells (O-2A cells), including proliferation, migration and differentiation, are regulated by cytosolic Ca2+ signals. However, little is known concerning the mechanisms of Ca2+ signalling in this cell type. We have studied the interactions between Ca2+ entry, Ca2+ release from endoplasmic reticulum and Ca2+ regulation by mitochondria in influencing cytosolic Ca2+ responses in O-2A cells. Methacholine (MCh; 100 μM) activated Ca2+ waves that propagated from several initiation sites along O-2A processes. During a Ca2+ wave evoked by MCh, mitochondrial membrane potential was often either depolarized (21% of mitochondria) or hyperpolarized (20% of mitochondria), as measured by changes in the fluorescence of 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazole carbocyanine iodide (JC-1). Stimulation with kainate (100 μM) evoked a slowly rising, sustained cytosolic Ca2+ elevation in O-2A cells. This also, in some cases, resulted in either a depolarization (15% of mitochondria) or hyperpolarization (12% of mitochondria) of mitochondrial membrane potential. Simultaneous measurement of cytosolic (fluo-3 AM) and mitochondrial (rhod-2 AM) Ca2+ responses revealed that Ca2+ elevations in the cytosol evoked by either MCh or kainate were translated into long-lasting Ca2+ elevations in subpopulations of mitochondria. In some mitochondria, Ca2+ signals appeared to activate Ca2+ release into the cytosol. Inhibition of the mitochondrial Na+-Ca2+ exchanger by CGP-37157 (25 μM) decreased kainate Ca2+ response amplitude and increased the rate of return of the response to basal Ca2+ levels. Thus, both ionotropic and metabotropic stimulation evoke changes in mitochondrial membrane potential and Ca2+ levels in O-2A cells. Ca2+ uptake into some mitochondria is activated by Ca2+ entry into cells or release from stores. Mitochondrial Ca2+ release appears to play a key role in shaping kainate-evoked Ca2

  7. Late INa increases diastolic SR-Ca2+-leak in atrial myocardium by activating PKA and CaMKII

    PubMed Central

    Fischer, Thomas H.; Herting, Jonas; Mason, Fleur E.; Hartmann, Nico; Watanabe, Saera; Nikolaev, Viacheslav O.; Sprenger, Julia U.; Fan, Peidong; Yao, Lina; Popov, Aron-Frederik; Danner, Bernhard C.; Schöndube, Friedrich; Belardinelli, Luiz; Hasenfuss, Gerd; Maier, Lars S.; Sossalla, Samuel

    2015-01-01

    Aims Enhanced cardiac late Na current (late INa) and increased sarcoplasmic reticulum (SR)-Ca2+-leak are both highly arrhythmogenic. This study seeks to identify signalling pathways interconnecting late INa and SR-Ca2+-leak in atrial cardiomyocytes (CMs). Methods and results In murine atrial CMs, SR-Ca2+-leak was increased by the late INa enhancer Anemonia sulcata toxin II (ATX-II). An inhibition of Ca2+/calmodulin-dependent protein kinase II (Autocamide-2-related inhibitory peptide), protein kinase A (H89), or late INa (Ranolazine or Tetrodotoxin) all prevented ATX-II-dependent SR-Ca2+-leak. The SR-Ca2+-leak induction by ATX-II was not detected when either the Na+/Ca2+ exchanger was inhibited (KBR) or in CaMKIIδc-knockout mice. FRET measurements revealed increased cAMP levels upon ATX-II stimulation, which could be prevented by inhibition of adenylyl cyclases (ACs) 5 and 6 (NKY 80) but not by inhibition of phosphodiesterases (IBMX), suggesting PKA activation via an AC-dependent increase of cAMP levels. Western blots showed late INa-dependent hyperphosphorylation of CaMKII as well as PKA target sites at ryanodine receptor type-2 (-S2814 and -S2808) and phospholamban (-Thr17, -S16). Enhancement of late INa did not alter Ca2+-transient amplitude or SR-Ca2+-load. However, upon late INa activation and simultaneous CaMKII inhibition, Ca2+-transient amplitude and SR-Ca2+-load were increased, whereas PKA inhibition reduced Ca2+-transient amplitude and load and additionally slowed Ca2+ elimination. In atrial CMs from patients with atrial fibrillation, inhibition of late INa, CaMKII, or PKA reduced the SR-Ca2+-leak. Conclusion Late INa exerts distinct effects on Ca2+ homeostasis in atrial myocardium through activation of CaMKII and PKA. Inhibition of late INa represents a potential approach to attenuate CaMKII activation and decreases SR-Ca2+-leak in atrial rhythm disorders. The interconnection with the cAMP/PKA system further increases the antiarrhythmic potential of late

  8. A mathematical model of cardiocyte Ca(2+) dynamics with a novel representation of sarcoplasmic reticular Ca(2+) control.

    PubMed Central

    Snyder, S M; Palmer, B M; Moore, R L

    2000-01-01

    Cardiac contraction and relaxation dynamics result from a set of simultaneously interacting Ca(2+) regulatory mechanisms. In this study, cardiocyte Ca(2+) dynamics were modeled using a set of six differential equations that were based on theories, equations, and parameters described in previous studies. Among the unique features of the model was the inclusion of bidirectional modulatory interplay between the sarcoplasmic reticular Ca(2+) release channel (SRRC) and calsequestrin (CSQ) in the SR lumen, where CSQ acted as a dynamic rather than simple Ca(2+) buffer, and acted as a Ca(2+) sensor in the SR lumen as well. The inclusion of this control mechanism was central in overcoming a number of assumptions that would otherwise have to be made about SRRC kinetics, SR Ca(2+) release rates, and SR Ca(2+) release termination when the SR lumen is assumed to act as a simple, buffered Ca(2+) sink. The model was sufficient to reproduce a graded Ca(2+)-induced Ca(2+) release (CICR) response, CICR with high gain, and a system with reasonable stability. As constructed, the model successfully replicated the results of several previously published experiments that dealt with the Ca(2+) dependence of the SRRC (, J. Gen. Physiol. 85:247-289), the refractoriness of the SRRC (, Am. J. Physiol. 270:C148-C159), the SR Ca(2+) load dependence of SR Ca(2+) release (, Am. J. Physiol. 268:C1313-C1329;, J. Biol. Chem. 267:20850-20856), SR Ca(2+) leak (, J. Physiol. (Lond.). 474:463-471;, Biophys. J. 68:2015-2022), SR Ca(2+) load regulation by leak and uptake (, J. Gen. Physiol. 111:491-504), the effect of Ca(2+) trigger duration on SR Ca(2+) release (, Am. J. Physiol. 258:C944-C954), the apparent relationship that exists between sarcoplasmic and sarcoplasmic reticular calcium concentrations (, Biophys. J. 73:1524-1531), and a variety of contraction frequency-dependent alterations in sarcoplasmic [Ca(2+)] dynamics that are normally observed in the laboratory, including rest potentiation, a

  9. Using Ca isotopes to constrain source of streamwater Ca following clear-cutting of a New England watershed

    NASA Astrophysics Data System (ADS)

    Takagi, K.; Kurtz, A. C.; Bailey, S. W.

    2011-12-01

    Stable Ca isotopes have been used in applications ranging from use as a paleooceanographic temperature proxy to tracing continental weathering fluxes to the oceans. One of the most important applications has been in understanding Ca cycling in terrestrial ecosystems. Major land use disturbance such as forest harvesting results in increased hydrologic export of cations but the mechanisms that lead to increased Ca export and the sources of streamwater Ca following disturbance remain uncertain. Ca isotope ratios may allow us to determine the internal Ca pools that contribute to increased export. We measured stable Ca isotopes on archived streamwater samples from Hubbard Brook Watershed 5 before and after a 1983 whole-watershed harvest experiment to test the following hypothesis: following harvest, the Ca isotopic value of streamwater will shift towards an isotopically light composition reflecting loss of biologically cycled Ca from soil pools. Ca concentrations measured on archived samples correspond exactly to values measured at the time of collection indicating adequate sample preservation over several decades of storage. Preliminary stable Ca isotopic results on these streamwater samples indicate a robust shift in δ40Ca from a pre-harvest value of -0.95% (vs. seawater) to a post-harvest value of -1.45%. We developed a box model of Ca cycling in forested ecosystems that includes Ca isotopes as tracer in order to model the δ40Ca of the various soil and vegetation pools. Steady-state model results indicate that vegetation is isotopically light relative to the B-horizon and forest floor soil pools and the forest floor soil pool is isotopically light relative to the B-horizon soil pool. We used modeled δ40Ca values of B-horizon and forest floor soil pools in a two end-member mixing analysis to evaluate changes in streamwater δ40Ca following harvesting. Our mixing analysis indicates that the observed decrease in the δ40Ca of streamwater following harvest requires an

  10. LFA-1-dependent Ca2+ entry following suboptimal T cell receptor triggering proceeds without mobilization of intracellular Ca2+.

    PubMed

    Kim, Kwangmi; Wang, Lin; Hwang, Inkyu

    2009-08-14

    A surge in cytosolic calcium ion concentration by entry of extracellular Ca2+ is a hallmark of T cell activation. According to store-operated Ca2+ entry mechanism, the Ca2+ entry is preceded by activation of phospholipase C-gamma1 (PLC-gamma1) and the consequent mobilization of intracellular Ca2+. Using membrane vesicles expressing the mouse class I major histocompatibility complex, i.e. Ld plus costimulatory ligands, i.e. B7-1 and intercellular adhesion molecule-1 along with 2C T cell receptor transgenic T cells, we investigated the roles of CD28 and LFA-1 (lymphocyte function-associated antigen-1) in the activation of PLC-gamma1 and Ca2+ signaling. Both CD28 and LFA-1 made significant and comparable contributions to the activation of PLC-gamma1 as gauged by the level of its phosphorylation at tyrosine 783. In contrast, their roles in Ca2+ signaling were quite distinct so that LFA-1/intercellular adhesion molecule-1 interaction exerted a determining role, whereas CD28/B7-1 interaction played only a minimal role. In particular, when the T cells were activated by suboptimal T cell receptor stimulation, LFA-1 played an indispensable role in the Ca2+ signaling. Further experiments using Ca2+-free medium demonstrated that the entry of extracellular Ca2+ was not always accompanied by mobilization of intracellular Ca2+. Thus, intracellular Ca2+ mobilization was hardly detected under the condition that LFA-1 played the indispensable role in the entry of extracellular Ca2+, while a distinct level of intracellular Ca2+ mobilization was readily detected under the condition that LFA-1 played only the supporting role. These results ensure the unique role of LFA-1 in T cell Ca2+ signaling and reveal that LFA-1-dependent Ca2+ entry proceeds via a mechanism separate from store-operated Ca2+ entry.

  11. Biological fractionation of stable Ca isotopes in Göttingen minipigs as a physiological model for Ca homeostasis in humans.

    PubMed

    Heuser, Alexander; Eisenhauer, Anton; Scholz-Ahrens, Katharina E; Schrezenmeir, Jürgen

    2016-12-01

    In order to investigate fractionation of calcium (Ca) isotopes in vertebrates as a diagnostic tool to detect Ca metabolism dysfunction we analyzed the Ca isotopic composition (δ(44/40)Ca = [((44)Ca/(40)Ca)sample/((44)Ca/(40)Ca)reference]-1) of diet, faeces, blood, bones and urine from Göttingen minipigs, an animal model for human physiology. Samples of three groups were investigated: 1. control group (Con), 2. group with glucocorticosteroid induced osteoporosis (GIO) and 3. group with Ca and vitamin D deficiency induced osteomalacia (-CaD). In contrast to Con and GIO whose average δ(44/40)Cafaeces values (0.39 ± 0.13‰ and 0.28 ± 0.08‰, respectively) tend to be lower than their diet (0.47 ± 0.02‰), δ(44/40)Cafaeces of -CaD (-0.27 ± 0.21‰) was significantly lower than their δ(44/40)Cadiet (0.37 ± 0.03‰), but also lower than δ(44/40)Cafaeces of Con and GIO. We suggest that the low δ(44/40)Cafaeces of -CaD might be due to the contribution of isotopically light Ca from gastrointestinal fluids during gut passage. Assuming that this endogenous Ca source is a common physiologic feature, a fractionation during Ca absorption is also required for explaining δ(44/40)Cafaeces of Con and GIO. The δ(44/40)Caurine of all groups are high (>2.0‰) reflecting preferential renal reabsorption of light Ca isotopes. In Göttingen minipigs we found a Ca isotope fractionation between blood and bones (Δ(44/40)Cablood-bone) of 0.68 ± 0.15‰.

  12. Role of Ca(2+) in the rapid cooling-induced Ca(2+) release from sarcoplasmic reticulum in ferret cardiac muscles.

    PubMed

    Tanaka, Etsuko; Konishi, Masato; Kurihara, Satoshi

    2012-05-01

    Rapid lowering of the solution temperature (rapid cooling, RC) from 24 to 3°C within 3 s releases considerable amounts of Ca(2+) from the sarcoplasmic reticulum (SR) in mammalian cardiac muscles. In this study, we investigated the intracellular mechanism of RC-induced Ca(2+) release, especially the role of Ca(2+), in ferret ventricular muscle. Saponin-treated skinned trabeculae were placed in a glass capillary, and the amount of Ca(2+) released from the SR by RC and caffeine (50 mM) was measured with fluo-3. It was estimated that in the presence of ATP about 45% of the Ca(2+) content in the SR was released by RC. The amount of SR Ca(2+) released by RC was unchanged by the replacement of ATP by AMP-PCP (a non-hydrolysable ATP analogue and agonist for the ryanodine receptor but not for the Ca(2+) pump of SR), suggesting that the suppression of the Ca(2+) pump of SR at low temperature might not be a major mechanism in RC-induced Ca(2+) release. The free Ca(2+) concentration of the solution used for triggering RC-induced Ca(2+) release was estimated to be only about 20 nM with fluo-3 or aequorin. When this solution was applied to the preparation at 3°C, only a small amount of Ca(2+) was released from SR presumably by the Ca(2+)-induced Ca(2+) release (CICR) mechanism. Thus, in mammalian cardiac muscles, RC releases a part of the (<50%) stored Ca(2+) contained in the SR, and the mechanism of RC-induced Ca(2+) release may differ from that of CICR, which is thought to play a role in frog skeletal muscle fibres that express ryanodine receptors of different types.

  13. Reorientable dipolar CuCa antisite and anomalous screening in CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Delugas, Pietro; Alippi, Paola; Fiorentini, Vincenzo; Raineri, Vito

    2010-02-01

    Based on first-principles calculations, we show that the abundant CuCa antisite defect contributes sizably to dielectric screening in single-crystal CaCu3Ti4O12 . CuCa has a multi-minimum off-center equilibrium configuration, whereby it possesses a large and easily reorientable dipole moment. The low-temperature and frequency cut-off behavior of CuCa -induced response is consistent with experiment.

  14. Ontogenetic variations in Sr/Ca and Ba/Ca ratios of dental bioapatites from Bos taurus and Odocoileus virginianus.

    PubMed

    Peek, Stephanie; Clementz, Mark T

    2012-10-01

    Sr/Ca and Ba/Ca ratios of bone are commonly used as biochemical indicators of trophic level in modern and fossil mammals. Concerns over the effects of diagenesis on Sr/Ca and Ba/Ca ratios of bone led archaeologists and paleontologists to favor tooth enamel, which is less prone to alteration. Sr/Ca and Ba/Ca ratios of bone, enamel, and dentin from three farm-raised steers (Bos taurus) and five wild white-tailed deer (Odocoileus virginianus) from central Missouri were compared. Our results show that changes in diet, discrimination, and growth rate during ontogeny can lead to significant differences in Sr/Ca and Ba/Ca ratios of different bioapatite types as well as significant differences within the same bioapatite forming at different times. Early- and late-forming tooth enamel can have significant differences in Sr/Ca and Ba/Ca ratios equivalent to almost one full trophic step. Although differences between early- and late-forming dentin are typically not significant, dentin Sr/Ca and Ba/Ca ratios are significantly greater than enamel values. This difference in Sr/Ca or Ba/Ca ratios between enamel and dentin from the same tooth can be greater than one full trophic step. These results have profound implications for the use of dental bioapatites in trophic level reconstructions. They highlight the importance of consistency in bioapatite selection, tooth selection, and relative location of sampling within the enamel cap. Furthermore, this expected difference in Sr/Ca and Ba/Ca ratios could be used as another means of checking for diagenetic alteration in ancient samples. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Modulation of histamine-induced Ca2+ release by protein kinase C. Effects on cytosolic and mitochondrial [Ca2+] peaks.

    PubMed

    Montero, Mayte; Lobatón, Carmen D; Gutierrez-Fernández, Silvia; Moreno, Alfredo; Alvarez, Javier

    2003-12-12

    In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation.

  16. Subcellular Ca2+ alternans represents a novel mechanism for the generation of arrhythmogenic Ca2+ waves in cat atrial myocytes

    PubMed Central

    Kockskämper, Jens; Blatter, Lothar A

    2002-01-01

    Ca2+ alternans is a potentially arrhythmogenic beat-to-beat alternation of the amplitude of the action potential-induced [Ca2+]i transient in cardiac myocytes. Despite its pathophysiological significance the cellular mechanisms underlying Ca2+ alternans are poorly understood. Recent evidence, however, points to the modulation of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) by localized alterations in energy metabolism as an important determinant of Ca2+ alternans. We therefore studied the subcellular properties of Ca2+ alternans in field-stimulated cat atrial myocytes employing fast two-dimensional fluorescence confocal microscopy. Ca2+ alternans was elicited by an increase in stimulation frequency or by metabolic interventions targeting glycolysis. Marked subcellular variations in the time of onset, the magnitude, and the phase of alternans were observed. Longitudinal and transverse gradients of Ca2+ alternans were found as well as neighbouring subcellular regions alternating out-of-phase. Moreover, focal inhibition of glycolysis resulted in spatially restricted Ca2+ alternans. When two adjacent regions within a myocyte alternated out-of-phase, steep [Ca2+]i gradients developed at their border giving rise to delayed propagating Ca2+ waves. The results demonstrate that Ca2+ alternans is a subcellular phenomenon caused by modulation of SR Ca2+ release, which is mediated, at least in part, by local inhibition of energy metabolism. The generation of arrhythmogenic Ca2+ waves by subcellular variations in the phase of Ca2+ alternans represents a novel mechanism for the development of atrial disrhythmias. PMID:12433950

  17. An ID-like current that is downregulated by Ca2+ modulates information coding at CA3-CA3 synapses in the rat hippocampus.

    PubMed

    Saviane, Chiara; Mohajerani, Majid H; Cherubini, Enrico

    2003-10-15

    Voltage-gated K+ channels localised on presynaptic nerve terminals control information coding by modulating presynaptic firing and synaptic efficacy in target neurones. We found that at CA3-CA3 connections in hippocampal slice cultures, a fast-activating, slowly inactivating K+ conductance similar to the so-called delay current (ID) is responsible for the delayed appearance of the first spike upon membrane depolarisation, for action potential repolarisation and for modulation of transmitter release. The ID-like current was downregulated by intracellular Ca2+, as indicated by the increased delay in the appearance of the first action potential following either the block of Ca2+ flux through voltage-dependent Ca2+ channels with Cd2+ or replacement of the bathing solution with one devoid of Ca2+. In both cases, this effect was reversed by blocking this conductance with a low concentration of 4-aminopyridine (4-AP, 10-50 muM). Application of 4-AP shortened the delay to the first spike generation, prevented the effect of Cd2+ and increased the spike duration. The earlier appearance of the first action potential was also observed in the presence of dendrotoxin-1 (100 nM). In voltage-clamp experiments larger currents were recorded in the absence of extracellular Ca2+, thus confirming the downregulation of the ID-like current by Ca2+ due to the positive shift of its inactivation. Spike broadening was associated with an enhancement of synaptic efficacy in target neurones, as assessed by the increase in EPSC amplitude and in the percentage of successes. Moreover, in the presence of 4-AP, EPSCs appeared with a longer latency and were more scattered. This conductance is therefore crucial for setting the timing and strength of synaptic transmission at CA3-CA3 connections. It is conceivable that switching off ID by increasing intracellular Ca2+ following activity-dependent processes may facilitate network synchronisation and crosstalk between CA3 pyramidal cells, leading to

  18. Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls

    NASA Astrophysics Data System (ADS)

    Gussone, Nikolaus; Filipsson, Helena L.; Kuhnert, Henning

    2016-01-01

    We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3-4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4‰ lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, δ44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal δ44/40Ca and Sr/Ca proxy signals.

  19. The other side of cardiac Ca2+ signaling: transcriptional control

    PubMed Central

    Domínguez-Rodríguez, Alejandro; Ruiz-Hurtado, Gema; Benitah, Jean-Pierre; Gómez, Ana M.

    2012-01-01

    Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling), but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling). ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII) and phosphatase calcineurin, both of which are activated by the complex Ca2+/Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n) or cytoplasmic ([Ca2+]c), and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs) in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs) in [Ca2+]c, needed to activate calcineurin (Cn). PMID:23226134

  20. Gulf of Alaska and California bamboo corals: Ba/Ca and Sr/Ca records

    NASA Astrophysics Data System (ADS)

    Sauthoff, W.; LaVigne, M.; Hill, T. M.; Roark, E.; Dunbar, R. B.; Guilderson, T. P.; Spero, H. J.

    2012-12-01

    Deep-sea bamboo coral communities form on seamounts and along continental margins with near global distribution. Bamboo [Isididae] corals record surrounding ocean geochemistry presenting reliable proxy records of changes in seawater conditions, including productivity and nutrient content. Here we investigate bamboo coral specimens from the California margin and Gulf of Alaska (634-1288 m water depth; ~37oN-48oN), to provide insight into latitudinal and temporal differences in eastern Pacific Ocean climate processes. Past oceanic conditions were reconstructed in this investigation by trace element analyses (Ba/Ca, Sr/Ca) using laser ablation ICP-MS, using a 85 μm spot size at 10 μm/s, 4.45 J/cm2 fluence, and 10 Hz repetition rate. Two California specimens show differences in mean Ba/Ca content: 13.73 compared to 18.55 μmol/mol, which we attribute to differences in collection depth (T1104 A10: 833 m and T1100 A04: 1288 m, respectively). Gulf of Alaska corals show a more subdued nutrient signal with lower mean Ba/Ca values of 10.56 and 10.05 μmol/mol across a narrower depth range (ALV3803 #3: 720 m; ALV3803 #5: 634 m, respectively). This trend of increasing Ba/Ca with depth is in consensus with eastern Pacific dissolved barium and California margin bamboo coral depth transects. Sr/Ca content was uniform between four coral specimens with values ranging from 3.01 to 3.06 mmol/mol. Coral chronologies were compared against indices of climate oscillations, including El Niño Southern Oscillation and Pacific Decadal Oscillation, using time series based upon radiocarbon dating. The corals investigated here show a limited connection with El Niño Southern Oscillation; longer-term changes related Pacific Decadal Oscillation may be evidenced in this climate archive.

  1. Superdeformed and Triaxial States in ^{42}Ca.

    PubMed

    Hadyńska-Klȩk, K; Napiorkowski, P J; Zielińska, M; Srebrny, J; Maj, A; Azaiez, F; Valiente Dobón, J J; Kicińska-Habior, M; Nowacki, F; Naïdja, H; Bounthong, B; Rodríguez, T R; de Angelis, G; Abraham, T; Anil Kumar, G; Bazzacco, D; Bellato, M; Bortolato, D; Bednarczyk, P; Benzoni, G; Berti, L; Birkenbach, B; Bruyneel, B; Brambilla, S; Camera, F; Chavas, J; Cederwall, B; Charles, L; Ciemała, M; Cocconi, P; Coleman-Smith, P; Colombo, A; Corsi, A; Crespi, F C L; Cullen, D M; Czermak, A; Désesquelles, P; Doherty, D T; Dulny, B; Eberth, J; Farnea, E; Fornal, B; Franchoo, S; Gadea, A; Giaz, A; Gottardo, A; Grave, X; Grȩbosz, J; Görgen, A; Gulmini, M; Habermann, T; Hess, H; Isocrate, R; Iwanicki, J; Jaworski, G; Judson, D S; Jungclaus, A; Karkour, N; Kmiecik, M; Karpiński, D; Kisieliński, M; Kondratyev, N; Korichi, A; Komorowska, M; Kowalczyk, M; Korten, W; Krzysiek, M; Lehaut, G; Leoni, S; Ljungvall, J; Lopez-Martens, A; Lunardi, S; Maron, G; Mazurek, K; Menegazzo, R; Mengoni, D; Merchán, E; Mȩczyński, W; Michelagnoli, C; Mierzejewski, J; Million, B; Myalski, S; Napoli, D R; Nicolini, R; Niikura, M; Obertelli, A; Özmen, S F; Palacz, M; Próchniak, L; Pullia, A; Quintana, B; Rampazzo, G; Recchia, F; Redon, N; Reiter, P; Rosso, D; Rusek, K; Sahin, E; Salsac, M-D; Söderström, P-A; Stefan, I; Stézowski, O; Styczeń, J; Theisen, Ch; Toniolo, N; Ur, C A; Vandone, V; Wadsworth, R; Wasilewska, B; Wiens, A; Wood, J L; Wrzosek-Lipska, K; Ziȩbliński, M

    2016-08-05

    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time.

  2. Superdeformed and Triaxial States in 42Ca

    NASA Astrophysics Data System (ADS)

    Hadyńska-KlÈ©k, K.; Napiorkowski, P. J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J. J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; Bounthong, B.; Rodríguez, T. R.; de Angelis, G.; Abraham, T.; Anil Kumar, G.; Bazzacco, D.; Bellato, M.; Bortolato, D.; Bednarczyk, P.; Benzoni, G.; Berti, L.; Birkenbach, B.; Bruyneel, B.; Brambilla, S.; Camera, F.; Chavas, J.; Cederwall, B.; Charles, L.; Ciemała, M.; Cocconi, P.; Coleman-Smith, P.; Colombo, A.; Corsi, A.; Crespi, F. C. L.; Cullen, D. M.; Czermak, A.; Désesquelles, P.; Doherty, D. T.; Dulny, B.; Eberth, J.; Farnea, E.; Fornal, B.; Franchoo, S.; Gadea, A.; Giaz, A.; Gottardo, A.; Grave, X.; GrÈ©bosz, J.; Görgen, A.; Gulmini, M.; Habermann, T.; Hess, H.; Isocrate, R.; Iwanicki, J.; Jaworski, G.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Kmiecik, M.; Karpiński, D.; Kisieliński, M.; Kondratyev, N.; Korichi, A.; Komorowska, M.; Kowalczyk, M.; Korten, W.; Krzysiek, M.; Lehaut, G.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lunardi, S.; Maron, G.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Merchán, E.; MÈ©czyński, W.; Michelagnoli, C.; Mierzejewski, J.; Million, B.; Myalski, S.; Napoli, D. R.; Nicolini, R.; Niikura, M.; Obertelli, A.; Özmen, S. F.; Palacz, M.; Próchniak, L.; Pullia, A.; Quintana, B.; Rampazzo, G.; Recchia, F.; Redon, N.; Reiter, P.; Rosso, D.; Rusek, K.; Sahin, E.; Salsac, M.-D.; Söderström, P.-A.; Stefan, I.; Stézowski, O.; Styczeń, J.; Theisen, Ch.; Toniolo, N.; Ur, C. A.; Vandone, V.; Wadsworth, R.; Wasilewska, B.; Wiens, A.; Wood, J. L.; Wrzosek-Lipska, K.; ZiÈ©bliński, M.

    2016-08-01

    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42Ca were determined from E 2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 02+ has been obtained and the role of triaxiality in the A ˜40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time.

  3. Mechanics of Old Faithful Geyser, Calistoga, CA

    USGS Publications Warehouse

    Rudolph, M.L.; Manga, M.; Hurwitz, Shaul; Johnston, Malcolm J.; Karlstrom, L.; Wang, Chun-Yong

    2012-01-01

    In order to probe the subsurface dynamics associated with geyser eruptions, we measured ground deformation at Old Faithful Geyser of Calistoga, CA. We present a physical model in which recharge during the period preceding an eruption is driven by pressure differences relative to the aquifer supplying the geyser. The model predicts that pressure and ground deformation are characterized by an exponential function of time, consistent with our observations. The geyser's conduit is connected to a reservoir at a depth of at least 42 m, and pressure changes in the reservoir can produce the observed ground deformations through either a poroelastic or elastic mechanical model.

  4. San Francisco and Bay Area, CA, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This cloud free color infrared view of San Francisco and Bay Area, CA (38.0N, 122.5W) is unusual because the city is normally concealed from view by clouds and fog. Gray tones represent urban areas and the red toned areas are vegetated. Within the city, parks easily stand out from the well-developed parts of the city as enclaves of color. The trace of the San Andreas fault shows as a straight valley running across the San Francisco peninsula.

  5. Proteus DSA control room in Mojave, CA

    NASA Image and Video Library

    2003-04-03

    Proteus DSA control room in Mojave, CA (L to R) Jean-Pierre Soucy; Amphitech International Software engineer Craig Bomben; NASA Dryden Test Pilot Pete Siebold; (with headset, at computer controls) Scaled Composites pilot Bob Roehm; New Mexico State University (NMSU) UAV Technical Analysis Application Center (TAAC) Chuck Coleman; Scaled Composites Pilot Kari Sortland; NMSU TAAC Russell Wolfe; Modern Technology Solutions, Inc. Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.

  6. Isoscalar giant resonances in {sup 48}Ca

    SciTech Connect

    Lui, Y.-W.; Youngblood, D. H.; Shlomo, S.; Chen, X.; Tokimoto, Y.; Krishichayan,; Anders, M.; Button, J.

    2011-04-15

    The giant resonance region from 9.5 MeV < E{sub x} < 40 MeV in {sup 48}Ca has been studied with inelastic scattering of 240-MeV {alpha} particles at small angles, including 0 deg. 95{sub -15}{sup +11}% of E0 energy-weighted sum rule (EWSR), 83{sub -16}{sup +10}% of E2 EWSR, and 137 {+-} 20% of E1 EWSR were located below E{sub x}=40 MeV. A comparison of the experimental data with calculated results for the isoscalar giant monopole resonance, obtained within the mean-field-based random-phase approximation, is also given.

  7. Encoding, consolidation, and retrieval of contextual memory: Differential involvement of dorsal CA3 and CA1 hippocampal subregions

    PubMed Central

    Daumas, Stéphanie; Halley, Hélène; Francés, Bernard; Lassalle, Jean-Michel

    2005-01-01

    Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting as an autoassociative memory network and the CA1 area as a critical output structure. In order to understand the respective roles of the CA3- and CA1-hippocampal areas in the formation of contextual memory, we studied the effects of the reversible inactivation by lidocaine of the CA3 or CA1 areas of the dorsal hippocampus on acquisition, consolidation, and retrieval of a contextual fear conditioning. Whereas infusions of lidocaine never impaired elementary tone conditioning, their effects on contextual conditioning provided interesting clues about the role of these two hippocampal regions. They demonstrated first that the CA3 area is necessary for the rapid elaboration of a unified representation of the context. Secondly, they suggested that the CA1 area is rather involved in the consolidation process of contextual memory. Third, they showed that CA1 or CA3 inactivation during retention test has no effect on contextual fear retrieval when a recognition memory procedure is used. In conclusion, our findings point as evidence that CA1 and CA3 subregions of the dorsal hippocampus play important and different roles in the acquisition and consolidation of contextual fear memory, whereas they are not required for context recognition. PMID:16027176

  8. Ca2+ entry into neurons is facilitated by cooperative gating of clustered CaV1.3 channels

    PubMed Central

    Moreno, Claudia M; Dixon, Rose E; Tajada, Sendoa; Yuan, Can; Opitz-Araya, Ximena; Binder, Marc D; Santana, Luis F

    2016-01-01

    CaV1.3 channels regulate excitability in many neurons. As is the case for all voltage-gated channels, it is widely assumed that individual CaV1.3 channels behave independently with respect to voltage-activation, open probability, and facilitation. Here, we report the results of super-resolution imaging, optogenetic, and electrophysiological measurements that refute this long-held view. We found that the short channel isoform (CaV1.3S), but not the long (CaV1.3L), associates in functional clusters of two or more channels that open cooperatively, facilitating Ca2+ influx. CaV1.3S channels are coupled via a C-terminus-to-C-terminus interaction that requires binding of the incoming Ca2+ to calmodulin (CaM) and subsequent binding of CaM to the pre-IQ domain of the channels. Physically-coupled channels facilitate Ca2+ currents as a consequence of their higher open probabilities, leading to increased firing rates in rat hippocampal neurons. We propose that cooperative gating of CaV1.3S channels represents a mechanism for the regulation of Ca2+ signaling and electrical activity. DOI: http://dx.doi.org/10.7554/eLife.15744.001 PMID:27187148

  9. P2Y2 receptor-mediated Ca2+ signaling and spontaneous Ca2+ releases in human valvular myofibroblasts.

    PubMed

    Liang, Willmann; McDonald, Paul; McManus, Bruce; van Breemen, Cornelis; Wang, Xiaodong

    2008-03-01

    Valvular myofibroblasts (VMFs), being the most predominant cells in the cardiac valve, perform a variety of functions to maintain normal valvular physiology. These functions, such as contraction, proliferation, and wound repair, are all directly or indirectly mediated by intracellular Ca(2+) concentrations ([Ca (2+)](i)). Knowing how [Ca(2+)](i) is regulated by vasoactive agents in VMFs enriches the understanding of valvular biology in both health and diseases. In this study we examined the characteristics of purinergic agonist-induced [Ca(2+)] (i) responses and observed spontaneous Ca(2+) releases in cultured human VMFs. Secondary cultures of human mitral VMFs were incubated with the Ca(2+)-sensitive fluorescent indicator fura-2 or fluo-4 and visualized with fluorescence microscopy. Both ATP and UTP activated P(2Y2) receptors and induced endoplasmic reticulum (ER) Ca(2+) release and Ca(2+) influx. The lack of [Ca(2+)](i) responses in VMFs challenged with the selective P(2Y1) agonists ADPbetaS and 2-Me-S-ATP further supported that functional P(2Y2) receptors are responsible for the Ca(2+) signals. Finally, in a small number of VMFs spontaneous Ca(2+) releases in localized areas were observed. Blockade of the RyR elongated the latency period between each Ca(2+) releasing event, demonstrating the presence of functional RyRs in VMFs.

  10. The mitochondrial Na+/Ca2+ exchanger plays a key role in the control of cytosolic Ca2+ oscillations.

    PubMed

    Hernández-SanMiguel, Esther; Vay, Laura; Santo-Domingo, Jaime; Lobatón, Carmen D; Moreno, Alfredo; Montero, Mayte; Alvarez, Javier

    2006-07-01

    There is increasing evidence that mitochondria play an important role in the control of cytosolic Ca2+ signaling. We show here that the main mitochondrial Ca2+-exit pathway, the mitochondrial Na+/Ca2+ exchanger, controls the pattern of cytosolic Ca2+ oscillations in non-excitable cells. In HeLa cells, the inhibitor of the mitochondrial Na+/Ca2+ exchanger CGP37157 changed the pattern of the oscillations induced by histamine from a high-frequency irregular one to a lower frequency baseline spike type, surprisingly with little changes in the average Ca2+ values of a large cell population. In human fibroblasts, CGP37157 increased the frequency of the baseline oscillations in cells having spontaneous activity and induced the generation of oscillations in cells without spontaneous activity. This effect was dose-dependent, disappeared when the inhibitor was washed out and was not mimicked by mitochondrial depolarization. CGP37157 increased mitochondrial [Ca2+] and ATP production in histamine-stimulated HeLa cells, but the effect on ATP production was only transient. CGP37157 also activated histamine-induced Ca2+ release from the endoplasmic reticulum and increased the size of the cytosolic Ca2+ peak induced by histamine in HeLa cells. Our results suggest that the mitochondrial Na+/Ca2+ exchanger directly modulates inositol 1,4,5-trisphosphate-induced Ca2+ release and in that way controls cytosolic Ca2+ oscillations.

  11. Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations.

    PubMed

    Sugita, Yuji; Ikeguchi, Mitsunori; Toyoshima, Chikashi

    2010-12-14

    The sarcoplasmic reticulum Ca(2+)-ATPase transports two Ca(2+) per ATP hydrolyzed from the cytoplasm to the lumen against a large concentration gradient. During transport, the pump alters the affinity and accessibility for Ca(2+) by rearrangements of transmembrane helices. In this study, all-atom molecular dynamics simulations were performed for wild-type Ca(2+)-ATPase in the Ca(2+)-bound form and the Gln mutants of Glu771 and Glu908. Both of them contribute only one carboxyl oxygen to site I Ca(2+), but only Glu771Gln completely looses the Ca(2+)-binding ability. The simulations show that: (i) For Glu771Gln, but not Glu908Gln, coordination of Ca(2+) was critically disrupted. (ii) Coordination broke at site II first, although Glu771 and Glu908 only contribute to site I. (iii) A water molecule bound to site I Ca(2+) and hydrogen bonded to Glu771 in wild-type, drastically changed the coordination of Ca(2+) in the mutant. (iv) Water molecules flooded the binding sites from the lumenal side. (v) The side chain conformation of Ile775, located at the head of a hydrophobic cluster near the lumenal surface, appears critical for keeping out bulk water. Thus the simulations highlight the importance of the water molecule bound to site I Ca(2+) and point to a strong relationship between Ca(2+)-coordination and shielding of bulk water, providing insights into the mechanism of gating of ion pathways in cation pumps.

  12. Synaptotagmin C2A Loop 2 Mediates Ca2+-dependent SNARE Interactions Essential for Ca2+-triggered Vesicle Exocytosis

    PubMed Central

    Lynch, K. L.; Gerona, R.R.L.; Larsen, E. C.; Marcia, R. F.; Mitchell, J. C.

    2007-01-01

    Synaptotagmins contain tandem C2 domains and function as Ca2+ sensors for vesicle exocytosis but the mechanism for coupling Ca2+ rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca2+-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin−1 that mediate Ca2+-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca2+-dependent synaptotagmin−1 binding to SNAREs without affecting Ca2+-dependent membrane binding. The mutants failed to confer Ca2+ regulation on SNARE-dependent liposome fusion and failed to restore Ca2+-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca2+-dependent SNARE binding by synaptotagmin is essential for Ca2+-triggered vesicle exocytosis and that Ca2+-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca2+-dependent SNARE and membrane binding occur simultaneously. PMID:17914059

  13. Synaptotagmin C2A loop 2 mediates Ca2+-dependent SNARE interactions essential for Ca2+-triggered vesicle exocytosis.

    PubMed

    Lynch, K L; Gerona, R R L; Larsen, E C; Marcia, R F; Mitchell, J C; Martin, T F J

    2007-12-01

    Synaptotagmins contain tandem C2 domains and function as Ca(2+) sensors for vesicle exocytosis but the mechanism for coupling Ca(2+) rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca(2+)-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin-1 that mediate Ca(2+)-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca(2+)-dependent synaptotagmin-1 binding to SNAREs without affecting Ca(2+)-dependent membrane binding. The mutants failed to confer Ca(2+) regulation on SNARE-dependent liposome fusion and failed to restore Ca(2+)-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca(2+)-dependent SNARE binding by synaptotagmin is essential for Ca(2+)-triggered vesicle exocytosis and that Ca(2+)-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca(2+)-dependent SNARE and membrane binding occur simultaneously.

  14. Morphometric Parameters of Pyramidal Cells in CA1-CA4 Fields in the Hippocampus of Arctic Fox (Vulpes lagopus).

    PubMed

    Łuszczewska-Sierakowska, Iwona; Wawrzyniak-Gacek, Agata; Guz, Tomasz; Tatara, Marcin R; Charuta, Anna

    2015-01-01

    The aim of the study was a quantitative examination of neurons of hippocampal subfields (CA1-CA4) in mature male Arctic fox (Vulpes lagopus; syn. Alopex lagopus). The preparations were dyed using cresyl violet. Histological preparations were used to morphometricaly analyze the neurons of hippocampus. This analysis included the following parameters: average size of cells in μm, periphery of cells in μm, average cell area in μm2, percentage of cells in area and size of the largest and smallest cells in μm in CA1-CA4 fields. Morphometric observations show that the cells involved in hippocampal formation in polar fox in all layers CA1 -CA4 differ in size, shape, cell area and nucleus area. The size of the cell area in CA3 is the largest and fluctuates around 249.4 μm2, whereas in CA2 the cell area is 184.1 μm2. The cells of the CA2 field are densely arranged, pyramidal and contain a small amount of cytoplasm; their size fluctuates. Cells of CA2 and CA4 had the largest diameter of about 23.6 μm, whereas cells of the CA3 field had the smallest diameter of about 8.3 μm.

  15. Ca(2+) homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca(2+) storage.

    PubMed

    D'hooge, Petra; Coun, Catherina; Van Eyck, Vincent; Faes, Liesbeth; Ghillebert, Ruben; Mariën, Lore; Winderickx, Joris; Callewaert, Geert

    2015-08-01

    Yeast has proven to be a powerful tool to elucidate the molecular aspects of several biological processes in higher eukaryotes. As in mammalian cells, yeast intracellular Ca(2+) signalling is crucial for a myriad of biological processes. Yeast cells also bear homologs of the major components of the Ca(2+) signalling toolkit in mammalian cells, including channels, co-transporters and pumps. Using yeast single- and multiple-gene deletion strains of various plasma membrane and organellar Ca(2+) transporters, combined with manipulations to estimate intracellular Ca(2+) storage, we evaluated the contribution of individual transport systems to intracellular Ca(2+) homeostasis. Yeast strains lacking Pmr1 and/or Cod1, two ion pumps implicated in ER/Golgi Ca(2+) homeostasis, displayed a fragmented vacuolar phenotype and showed increased vacuolar Ca(2+) uptake and Ca(2+) influx across the plasma membrane. In the pmr1Δ strain, these effects were insensitive to calcineurin activity, independent of Cch1/Mid1 Ca(2+) channels and Pmc1 but required Vcx1. By contrast, in the cod1Δ strain increased vacuolar Ca(2+) uptake was not affected by Vcx1 deletion but was largely dependent on Pmc1 activity. Our analysis further corroborates the distinct roles of Vcx1 and Pmc1 in vacuolar Ca(2+) uptake and point to the existence of not-yet identified Ca(2+) influx pathways.

  16. A Panel of CA19-9, Ca125, and Ca15-3 as the Enhanced Test for the Differential Diagnosis of the Pancreatic Lesion

    PubMed Central

    Skulimowski, Aleksander; Durczyński, Adam; Kumor, Anna; Poznańska, Grażyna; Oleśna, Aleksandra; Rut, Joanna

    2017-01-01

    Background. Proper diagnosis of pancreatic lesion etiology is a challenging clinical dilemma. Studies suggest that surgery for suspected pancreatic ductal adenocarcinoma (PDAC) reveals a benign lesion in 5% to 13% of cases. The aim of our study was to assess whether routinely used biomarkers such as CA19-9, Ca125, Ca15-3, and CEA, when combined, can potentially yield an accurate test predicting pancreatic lesion etiology. Methods. We retrospectively analyzed data of 326 patients who underwent a diagnostic process due to pancreatic lesions of unknown etiology. Results. We found statistically significant differences in mean levels of all biomarkers. In logistic regression model, we applied levels CA19-9, Ca125, and Ca15-3 as variables. Two validation methods were used, namely, random data split into training and validation groups and bootstrapping. Afterward, we built ROC curve using the model that we had created, reaching AUC = 0,801. With an optimal cut-off point, it achieved specificity of 81,2% and sensitivity of 63,10%. Our proposed model has superior diagnostic accuracy to both CA19-9 (p = 0,0194) and CA125 (p = 0,0026). Conclusion. We propose a test that is superior to CA19-9 in a differential diagnosis of pancreatic lesion etiology. Although our test fails to reach exceptionally high accuracy, its feasibility and cost-effectiveness make it clinically useful. PMID:28356610

  17. Ca2+ Sparks and Ca2+ Waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts

    PubMed Central

    Alicia, Mattiazzi; Mariana, Argenziano; Yuriana, Aguilar-Sanchez; Gabriela, Mazzocchi; Escobar Ariel, L.

    2014-01-01

    Abnormal intracellular Ca2+ cycling plays a key role in cardiac dysfunction, particularly during the setting of ischemia/reperfusion (I/R). During ischemia there is an increase in cytosolic and sarcoplasmic reticulum (SR) Ca2+. At the onset of reperfusion there is a transient and abrupt increase in cytosolic Ca2+ which occurs timely associated with reperfusion arrhythmias. However, little is known about the subcellular dynamics of Ca2+ increase during I/R and a possible role of the SR as a mechanism underlying this increase has been previously overlooked. The aim of the present work is to test two main hypotheses: 1. An increase in the frequency of diastolic Ca2+ sparks (cspf) constitutes a mayor substrate for the ischemia-induced diastolic Ca2+ increase; 2. An increase in cytosolic Ca2+ pro-arrhythmogenic events (Ca2+ waves), mediates the abrupt diastolic Ca2+ rise at the onset of reperfusion. We used confocal microscopy on mouse intact hearts loaded with Fluo-4. Hearts were submitted to global I/R (12/30 min) to assess epicardial Ca2+ sparks in the whole heart. Intact heart sparks were faster than in isolated myocytes whereas cspf was not different. During ischemia, cspf significantly increased relative to preischemia (2.07±0.33 vs. 1.13±0.20 sp/sec/100μm, n=29/34, 7 hearts). Reperfusion significantly changed Ca2+ sparks kinetics, by prolonging Ca2+ sparks rise time and decreased cspf. However it significantly increased Ca2+ wave frequency relative to ischemia (0.71±0.14 vs. 0.38±0.06 w/sec/100μm, n=32/33, 7 hearts). The results show for the first time the assessment of intact perfused heart Ca2+ sparks and provides direct evidence of increased Ca2+ sparks in ischemia that transform into Ca2+ waves during reperfusion. These waves may constitute a main trigger of reperfusion arrhythmias. PMID:25451173

  18. Increased Myofilament Ca2+-Sensitivity and Arrhythmia Susceptibility

    PubMed Central

    Huke, Sabine; Knollmann, Bjorn C.

    2010-01-01

    Increased myofilament Ca2+ sensitivity, a common attribute of inherited and acquired cardiomyopathies, is often associated with cardiac arrhythmias. Accumulating evidence supports that increased myofilament Ca2+ sensitivity is an independent risk factor for arrhythmias, but the underlying molecular mechanism remains unclear. This review focuses on potential mechanisms how myofilament Ca2+ sensitivity may affect cardiac excitation and leads to the generation of arrhythmias. We discuss in detail the downstream effects of increased myofilament Ca2+ sensitivity, i.e. altered Ca2+ buffering/handling, impaired energy metabolism and increased mechanical stretch, and how they may contribute to the proarrhythmic effect. PMID:20097204

  19. Homer proteins in Ca²⁺ entry.

    PubMed

    Jardin, Isaac; López, José J; Berna-Erro, Alejandro; Salido, Ginés M; Rosado, Juan A

    2013-06-01

    The Homer family of proteins consists of three adaptor proteins, Homer1, Homer2 and Homer3, each with various isoforms. Homer1 family presents an EVH1 domain, a coiled coil domain and two leucine zipper domains. Homer proteins regulate a number of Ca2+-handling proteins, including transient receptor potential channels and other Ca2+-permeable channels, ionotropic and metabotropic glutamate receptors, shank scaffolding proteins or endoplasmic reticulum Ca2+ release channels. This review article focuses on the association of Homer 1 proteins with Ca2+-handling proteins and their role on intracellular Ca2+-homeostasis. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  20. Struma ovarii with elevated ca-125 levels and ascites mimicking advanced ca ovary.

    PubMed

    Sinha, Navin Kumar

    2014-03-01

    Struma ovarii is uncommon tumor of ovary which can mimic as advanced carcinoma of ovary. Thyroid tissue is relatively frequent constituent of mature ovarian teratoma. Case of struma ovarii masquerading as cancer of ovary in a female aged 63 yrs showing complex large unilateral multilocular adnexal mass with elevated CA 125 (more than 1721 IU/L) and massive ascites mislead treating surgeons for long time. Clinicians were virtually clueless about preoperative diagnosis. Combination of ascites has been seen in one third cases but association with raised CA 125 is rare(only 8-10 cases so far). This case developed hypothyroidism one week after surgery.

  1. Struma Ovarii with Elevated Ca-125 Levels and Ascites Mimicking Advanced Ca Ovary

    PubMed Central

    Sinha, Navin Kumar

    2014-01-01

    Struma ovarii is uncommon tumor of ovary which can mimic as advanced carcinoma of ovary. Thyroid tissue is relatively frequent constituent of mature ovarian teratoma. Case of struma ovarii masquerading as cancer of ovary in a female aged 63 yrs showing complex large unilateral multilocular adnexal mass with elevated CA 125 (more than 1721 IU/L) and massive ascites mislead treating surgeons for long time. Clinicians were virtually clueless about preoperative diagnosis. Combination of ascites has been seen in one third cases but association with raised CA 125 is rare(only 8-10 cases so far). This case developed hypothyroidism one week after surgery. PMID:24783110

  2. Ca2+ efflux from platelets. Control by protein kinase C and the filling state of the intracellular Ca2+ stores.

    PubMed

    Cavallini, L; Alexandre, A

    1994-06-01

    Large amounts of Ca2+ (almost 20 nmol/10(8) cells) are released from platelets by exocytosis. This secretory-granule-associated Ca2+ does not contribute to the cytosolic free Ca2+ ([Ca2+]i), which is controlled by the much smaller agonist-sensitive Ca2+ pool, unless high (1 microM), but not low (0.04 microM) concentrations of ionomycin are present. Low concentrations of ionomycin release Ca2+ almost exclusively from the agonist-sensitive stores. In aspirinated platelets incubated in the presence of 0.5 mM EGTA the extensive depletion of the agonist-sensitive stores is obtained by the combined action of low ionomycin and the endomembrane Ca(2+)-ATPase inhibitor thapsigargin (which individually promote only a partial depletion). The subsequent decay of [Ca2+]i is increased by phorbol-myristate acetate, confirming that Ca2+ efflux from platelets is potentiated by the activation of protein kinase C [Pollock, W. K., Sage, S. O. & Rink, T. J. (1987) FEBS Lett. 210, 132-140]. A novel type of control of Ca2+ efflux appears to be exerted by the filling state of the stores. Treatment with low ionomycin or thapsigargin determines the release of a fraction of the stores-associated Ca2+; the subsequent decay of [Ca2+]i is slow. The decay rate of [Ca2+]i accelerates after extensive depletion of the stores following the addition of thapsigargin or ionomycin. If the depletion of the stores is induced by thrombin, added alone or in combination with thapsigargin, the increases of [Ca2+]i are the same and the subsequent decay rates are largely superimposable; however a large fraction of [Ca2+]i is reaccumulated into the stores in the absence, but not in the presence of thapsigargin, indicating that Ca2+ efflux is activated when the stores are empty. Ca2+ efflux can proceed against a concentration gradient. In 45Ca-loaded platelets, the thrombin-promoted 45Ca efflux is potentiated by thapsigargin. The protein-kinase-C-dependent and store-depletion-dependent stimulations of 45Ca efflux

  3. Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons

    PubMed Central

    Shutov, Leonid P; Kim, Man-Su; Houlihan, Patrick R; Medvedeva, Yuliya V; Usachev, Yuriy M

    2013-01-01

    The central processes of primary nociceptors form synaptic connections with the second-order nociceptive neurons located in the dorsal horn of the spinal cord. These synapses gate the flow of nociceptive information from the periphery to the CNS, and plasticity at these synapses contributes to centrally mediated hyperalgesia and allodynia. Although exocytosis and synaptic plasticity are controlled by Ca2+ at the release sites, the mechanisms underlying presynaptic Ca2+ signalling at the nociceptive synapses are not well characterized. We examined the presynaptic mechanisms regulating Ca2+ clearance following electrical stimulation in capsaicin-sensitive nociceptors using a dorsal root ganglion (DRG)/spinal cord neuron co-culture system. Cytosolic Ca2+ concentration ([Ca2+]i) recovery following electrical stimulation was well approximated by a monoexponential function with a τ∼2 s. Inhibition of sarco-endoplasmic reticulum Ca2+-ATPase did not affect presynaptic [Ca2+]i recovery, and blocking plasmalemmal Na+/Ca2+ exchange produced only a small reduction in the rate of [Ca2+]i recovery (∼12%) that was independent of intracellular K+. However, [Ca2+]i recovery in presynaptic boutons strongly depended on the plasma membrane Ca2+-ATPase (PMCA) and mitochondria that accounted for ∼47 and 40%, respectively, of presynaptic Ca2+ clearance. Measurements using a mitochondria-targeted Ca2+ indicator, mtPericam, demonstrated that presynaptic mitochondria accumulated Ca2+ in response to electrical stimulation. Quantitative analysis revealed that the mitochondrial Ca2+ uptake is highly sensitive to presynaptic [Ca2+]i elevations, and occurs at [Ca2+]i levels as low as ∼200–300 nm. Using RT-PCR, we detected expression of several putative mitochondrial Ca2+ transporters in DRG, such as MCU, Letm1 and NCLX. Collectively, this work identifies PMCA and mitochondria as the major regulators of presynaptic Ca2+ signalling at the first sensory synapse, and underlines the high

  4. Effects of the removal of extracellular Ca2+ on [Ca2+]i responses to FCCP and acetate in carotid body glomus cells of adult rabbits.

    PubMed

    Sato, M

    1997-09-12

    The effects of the removal of extracellular Ca2+ on the responses of cytosolic concentrations of Ca2+ ([Ca2+]i) to acidic stimuli, a protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and an organic acid acetate, were examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2 microfluorometry. Application of FCCP (1 microM) induced an increase in [Ca2+]i (mean +/- S.E.M., 108 +/- 14%). After withdrawal of the protonophore the increased [Ca2+]i returned slowly to a resting level. The [Ca2+]i response was attenuated by an inorganic Ca2+ channel antagonist Ni2+ (2 mM) by 81 +/- 4%, and by an L-type voltage-gated Ca2+ channel antagonist D600 (10 microM) by 53 +/- 13%. The removal of extracellular Ca2+ eliminated the [Ca2+]i response in 71% of the tested cells (n = 17), and depressed it by 68 +/- 6% in the rest. Recovery following stimulation with FCCP in the absence of Ca2+ reversibly produced a rapid and large rise in [Ca2+]i, referred to as a [Ca2+]i rise after Ca2+-free/FCCP. The magnitude of a [Ca2+]i rise after Ca2+-free/FCCP (285 +/- 28%, P < 0.05) was larger than that of an increase in [Ca2+]i induced by FCCP in the presence of Ca2+ and had a correlation with the intensity of the suppression of the [Ca2+]i response by Ca2+ removal. A [Ca2+]i rise after Ca2+-free/FCCP was inhibited mostly by D600. Similarly, recovery following exposure to acetate in the absence of Ca2+ caused a rise in [Ca2+]i, referred to as a [Ca2+]i rise after Ca2+-free/acetate which was sensitive to D600. The magnitude of the [Ca2+]i rise was larger than that of a change in [Ca2+]i caused by acetate in the presence of Ca2+. These results suggest that FCCP-induced increase in [Ca2+]i was, in most cells, due to Ca2+ influx via L-type voltage-gated Ca2+ channels and, in some cells, due to both Ca2+ influx and Ca2+ release from internal Ca2+ pool. The removal of extracellular Ca2+ might modify [Ca2+]i responses to acidic stimuli, causing [Ca2+]i

  5. The hippocampal CA2 region is essential for social memory

    PubMed Central

    Hitti, Frederick L.; Siegelbaum, Steven A.

    2014-01-01

    Summary The hippocampus is critical for encoding declarative memory, our repository of knowledge of who, what, where, and when1. Mnemonic information is processed in the hippocampus through several parallel routes involving distinct subregions. In the classic trisynaptic pathway, information proceeds from entorhinal cortex (EC) to dentate gyrus (DG) to CA3 and then to CA1, the main hippocampal output2. Genetic lesions of EC3 and hippocampal DG4, CA35, and CA16 regions have revealed their distinct functions in learning and memory. In contrast, little is known about the role of CA2, a relatively small area interposed between CA3 and CA1 that forms the nexus of a powerful disynaptic circuit linking EC input with CA1 output7. Here, we report a novel transgenic mouse line that enabled us to selectively examine the synaptic connections and behavioral role of the CA2 region in adult mice. Genetically targeted inactivation of CA2 pyramidal neurons caused a pronounced loss of social memory, the ability of an animal to remember a conspecific, with no change in sociability or several other hippocampal-dependent behaviors, including spatial and contextual memory. These behavioral and anatomical results thus reveal CA2 as a critical hub of sociocognitive memory processing. PMID:24572357

  6. The hippocampal CA2 region is essential for social memory.

    PubMed

    Hitti, Frederick L; Siegelbaum, Steven A

    2014-04-03

    The hippocampus is critical for encoding declarative memory, our repository of knowledge of who, what, where and when. Mnemonic information is processed in the hippocampus through several parallel routes involving distinct subregions. In the classic trisynaptic pathway, information proceeds from entorhinal cortex (EC) to dentate gyrus to CA3 and then to CA1, the main hippocampal output. Genetic lesions of EC (ref. 3) and hippocampal dentate gyrus (ref. 4), CA3 (ref. 5) and CA1 (ref. 6) regions have revealed their distinct functions in learning and memory. In contrast, little is known about the role of CA2, a relatively small area interposed between CA3 and CA1 that forms the nexus of a powerful disynaptic circuit linking EC input with CA1 output. Here we report a novel transgenic mouse line that enabled us to selectively examine the synaptic connections and behavioural role of the CA2 region in adult mice. Genetically targeted inactivation of CA2 pyramidal neurons caused a pronounced loss of social memory--the ability of an animal to remember a conspecific--with no change in sociability or several other hippocampus-dependent behaviours, including spatial and contextual memory. These behavioural and anatomical results thus reveal CA2 as a critical hub of sociocognitive memory processing.

  7. An integrated mechanism of cardiomyocyte nuclear Ca(2+) signaling.

    PubMed

    Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A; Uhlén, Per; Hill, Joseph A; Lavandero, Sergio

    2014-10-01

    In cardiomyocytes, Ca(2+) plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca(2+) within subcellular microdomains: transcription is regulated by Ca(2+) release within nuclear microdomains, and excitation-contraction coupling is regulated by cytosolic Ca(2+). Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca(2+) signals. However, signaling pathways coupling surface receptor activation to nuclear Ca(2+) release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca(2+) signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca(2+) release from perinuclear Ca(2+) stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca(2+) release. In this review, we discuss mechanisms for the selective control of nuclear Ca(2+) signals with special focus on emerging models of agonist receptor activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Altered Ca2+ sparks in aging skeletal and cardiac muscle

    PubMed Central

    Weisleder, Noah; Ma, Jianjie

    2008-01-01

    Ca2+ sparks are the fundamental units that comprise Ca2+-induced Ca2+ release (CICR) in striated muscle cells. In cardiac muscle, spontaneous Ca2+ sparks underlie the rhythmic CICR activity during heart contraction. In skeletal muscle, Ca2+ sparks remain quiescent during the resting state and are activated in a plastic fashion to accommodate various levels of stress. With aging, the plastic Ca2+ spark signal becomes static in skeletal muscle, whereas loss of CICR control leads to leaky Ca2+ spark activity in aged cardiomyocytes. Ca2+ spark responses reflect the integrated function of the intracellular Ca2+ regulatory machinery centered around the triad or dyad junctional complexes of striated muscles, which harbor the principal molecular players of excitation-contraction coupling. This review highlights the contribution of age-related modification of the Ca2+ release machinery and the effect of membrane structure and membrane cross-talk on the altered Ca2+ spark signaling during aging of striated muscles. PMID:18272434

  9. Ca handling during Excitation-Contraction Coupling in Heart Failure

    PubMed Central

    Zima, Aleksey V.; Bovo, Elisa; Mazurek, Stefan R.; Rochira, Jennifer A.; Li, Weiyan; Terentyev, Dmitry

    2017-01-01

    In the heart, coupling between excitation of the surface membrane and activation of contractile apparatus is mediated by Ca released from the sarcoplasmic reticulum (SR). Several components of Ca machinery are perfectly arranged within the SR network and the T-tubular system to generate a regular Ca cycling and thereby rhythmic beating activity of the heart. Among these components, ryanodine receptor (RyR) and SR Ca ATPase (SERCA) complexes play a particularly important role and their dysfunction largely underlies abnormal Ca homeostasis in diseased hearts such as in heart failure. The abnormalities in Ca regulation occur at practically all main steps of Ca cycling in the failing heart, including activation and termination of SR Ca release, diastolic SR Ca leak, and SR Ca uptake. The contributions of these different mechanisms to depressed contractile function and enhanced arrhythmogenesis may vary in different HF models. This brief review will therefore focus on modifications in RyR and SERCA structure that occur in the failing heart and how these molecular modifications affect SR Ca regulation and excitation-contraction coupling. PMID:24515294

  10. CA-125 in Disease Progression and Treatment of Lymphangioleiomyomatosis.

    PubMed

    Glasgow, Connie G; Pacheco-Rodriguez, Gustavo; Steagall, Wendy K; Haughey, Mary E; Julien-Williams, Patricia A; Stylianou, Mario P; Gochuico, Bernadette R; Moss, Joel

    2017-05-30

    Lymphangioleiomyomatosis (LAM) is a destructive lung disease of women caused by proliferation of neoplastic-like LAM cells, with mutations in the TSC1/2 tumor suppressor genes. Based on case reports, levels of cancer antigen 125 (CA-125), an ovarian cancer biomarker, can be elevated in patients with LAM. We hypothesized that elevated serum CA-125 levels seen in some patients with LAM were due to LAM, not other malignancies, and might respond to sirolimus treatment. Serum CA-125 levels were measured for 241 patients at each visit. Medical records were reviewed for co-morbidities, disease progression, and response to sirolimus treatment. CA-125 expression in LAM cells was determined by using immunohistochemical analysis. Almost 25% of patients with LAM had at least one elevated serum CA-125 measurement. Higher serum CA-125 levels correlated with lower FEV1, premenopausal status, and pleural effusion in a multivariate model (each P < .001). Serum CA-125 levels decreased following sirolimus treatment (P = .002). CA-125 and α-smooth muscle actin were co-expressed in LAM lung nodules. Higher serum CA-125 levels were associated with pleural effusions and reduced pulmonary function and were decreased with sirolimus therapy. LAM cells express CA-125. Some elevated serum CA-125 levels may reflect serosal membrane involvement. Copyright © 2017. Published by Elsevier Inc.

  11. Ca2+ signaling, genes and the cell cycle

    PubMed Central

    Machaca, Khaled

    2013-01-01

    Changes in the concentration and spatial distribution of Ca2+ ions in the cytoplasm constitute a ubiquitous intracellular signaling module in cellular physiology. With the advent of Ca2+ dyes that allow direct visualization of Ca2+ transients, combined with powerful experimental tools such as electrophysiological recordings, intracellular Ca2+ transients have been implicated in practically every aspect of cellular physiology, including cellular proliferation. Ca2+ signals are associated with different phases of the cell cycle and interfering with Ca2+ signaling or downstream pathways often disrupts progression of the cell cycle. Although there exists a dependence between Ca2+ signals and the cell cycle the mechanisms involved are not well defined and given the cross-talk between Ca2+ and other signaling modules, it is difficult to assess the exact role of Ca2+ signals in cell cycle progression. Two exceptions however, include fertilization and T-cell activation, where well-defined roles for Ca2+ signals in mediating progression through specific stages of the cell cycle have been clearly established. In the case of T-cell activation Ca2+ regulates entry into the cell cycle through the induction of gene transcription. PMID:21084120

  12. Analysis of CaM-kinase signaling in cells.

    PubMed

    Wayman, Gary A; Tokumitsu, Hiroshi; Davare, Monika A; Soderling, Thomas R

    2011-07-01

    A change in intracellular free calcium is a common signaling mechanism that modulates a wide array of physiological processes in most cells. Responses to increased intracellular Ca(2+) are often mediated by the ubiquitous protein calmodulin (CaM) that upon binding Ca(2+) can interact with and alter the functionality of numerous proteins including a family of protein kinases referred to as CaM-kinases (CaMKs). Of particular interest are multifunctional CaMKs, such as CaMKI, CaMKII, CaMKIV and CaMKK, that can phosphorylate multiple downstream targets. This review will outline several protocols we have used to identify which members and/or isoforms of this CaMK family mediate specific cellular responses with a focus on studies in neurons. Many previous studies have relied on a single approach such as pharmacological inhibitors or transfected dominant-negative kinase constructs. Since each of these protocols has its limitations, that will be discussed, we emphasize the necessity to use multiple, independent approaches in mapping out cellular signaling pathways. Published by Elsevier India Pvt Ltd.

  13. Neurogranin regulates CaM dynamics at dendritic spines

    PubMed Central

    Petersen, Amber; Gerges, Nashaat Z.

    2015-01-01

    Calmodulin (CaM) plays a key role in synaptic function and plasticity due to its ability to mediate Ca2+ signaling. Therefore, it is essential to understand the dynamics of CaM at dendritic spines. In this study we have explored CaM dynamics using live-cell confocal microscopy and fluorescence recovery after photobleaching (FRAP) to study CaM diffusion. We find that only a small fraction of CaM in dendritic spines is immobile. Furthermore, the diffusion rate of CaM was regulated by neurogranin (Ng), a CaM-binding protein enriched at dendritic spines. Interestingly, Ng did not influence the immobile fraction of CaM at recovery plateau. We have previously shown that Ng enhances synaptic strength in a CaM-dependent manner. Taken together, these data indicate that Ng-mediated enhancement of synaptic strength is due to its ability to target, rather than sequester, CaM within dendritic spines. PMID:26084473

  14. Accretion rate of extraterrestrial 41Ca in Antarctic snow samples

    NASA Astrophysics Data System (ADS)

    Gómez-Guzmán, J. M.; Bishop, S.; Faestermann, T.; Famulok, N.; Fimiani, L.; Hain, K.; Jahn, S.; Korschinek, G.; Ludwig, P.; Rodrigues, D.

    2015-10-01

    Interplanetary Dust Particles (IDPs) are small grains, generally less than a few hundred micrometers in size. Their main source is the Asteroid Belt, located at 3 AU from the Sun, between Mars and Jupiter. During their flight from the Asteroid Belt to the Earth they are irradiated by galactic and solar cosmic rays (GCR and SCR), thus radionuclides are formed, like 41Ca and 53Mn. Therefore, 41Ca (T1/2 = 1.03 × 105 yr) can be used as a key tracer to determine the accretion rate of IDPs onto the Earth because there are no significant terrestrial sources for this radionuclide. The first step of this study consisted to calculate the production rate of 41Ca in IDPs accreted by the Earth during their travel from the Asteroid Belt. This production rate, used in accordance with the 41Ca/40Ca ratios that will be measured in snow samples from the Antarctica will be used to calculate the amount of extraterrestrial material accreted by the Earth per year. There challenges for this project are, at first, the much longer time for the flight needed by the IDPs to travel from the Asteroid Belt to the Earth in comparison with the 41Ca half-life yields an early saturation for the 41Ca/40Ca ratio, and second, the importance of selecting the correct sampling site to avoid a high influx of natural 40Ca, preventing dilution of the 41Ca/40Ca ratio, the quantity measured by AMS.

  15. Leptin triggers Ca(2+) imbalance in monocytes of overweight subjects.

    PubMed

    Padra, János Tamás; Seres, Ildikó; Fóris, Gabriella; Paragh, György; Kónya, Gabriella; Paragh, György

    2012-10-01

    Obesity is a major risk factor in numerous diseases, in which elevated intracellular Ca(2+) plays a major role in increased adiposity. We examined the difference between Ca(2+) signals in monocytes of lean and overweight subjects and the relationship between leptin induced NADPH oxidase activation and intracellular calcium concentration [Ca(2+)](i) homeostasis. Our results are as follows: (1) The basal level of [Ca(2+)](i) in resting monocytes of overweight subjects (OW monocytes) was higher than that in control cells, whereas the leptin-induced peak of the Ca(2+) signal was lower and the return to basal level was delayed. (2) Ca(2+) signals were more pronounced in OW monocytes than in control cells. (3) Using different inhibitors of cellular signaling, we found that in control cells the Ca(2+) signals originated from intracellular pools, whereas in OW cells they were generated predominantly by Ca(2+)-influx from medium. Finally, we found correlation between leptin induced superoxide anion generation and Ca(2+) signals. The disturbed [Ca(2+)](i) homeostasis in OW monocytes was fully restored in the presence of fluvastatin. Statins have pleiotropic effects involving the inhibition of free radical generation that may account for its beneficial effect on elevated [Ca(2+)](i) and consequently on the pathomechanism of obesity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. An integrated mechanism of cardiomyocyte nuclear Ca2+ signaling

    PubMed Central

    Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A.; Uhlén, Per; Hill, Joseph A.; Lavandero, Sergio

    2015-01-01

    In cardiomyocytes, Ca2+ plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca2+ within subcellular microdomains: transcription is regulated by Ca2+ release within nuclear microdomains, and excitation–contraction coupling is regulated by cytosolic Ca2+. Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca2+ signals. However, signaling pathways coupling surface receptor activation to nuclear Ca2+ release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca2+ signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca2+ release from perinuclear Ca2+ stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca2+ release. In this review, we discuss mechanisms for the selective control of nuclear Ca2+ signals with special focus on emerging models of agonist receptor activation. PMID:24997440

  17. The molecular identity of the mitochondrial Ca2+ sequestration system

    PubMed Central

    Starkov, Anatoly A.

    2013-01-01

    There is ample evidence to suggest that a dramatic decrease in mitochondrial Ca2+ retention may contribute to the cell death associated with stroke, excitotoxicity, ischemia and reperfusion, and neurodegenerative diseases. Mitochondria from all studied tissues can accumulate and store Ca2+, but the maximum Ca2+ storage capacity varies widely and exhibits striking tissue specificity. There is currently no explanation for this fact. Precipitation of Ca2+ and phosphate in the mitochondrial matrix has been suggested to be the major form of storage of accumulated Ca2+ in mitochondria. How this precipitate is formed is not known. The molecular identity of almost all proteins involved in Ca2+ transport, storage and formation of the permeability transition pore is also unknown. This review summarizes studies aimed at identifying these proteins, and describes the properties of a known mitochondrial protein that may be involved in Ca2+ transport and the structure of the permeability transition pore. PMID:20659159

  18. Inhibitory Gating of Input Comparison in the CA1 Microcircuit.

    PubMed

    Milstein, Aaron D; Bloss, Erik B; Apostolides, Pierre F; Vaidya, Sachin P; Dilly, Geoffrey A; Zemelman, Boris V; Magee, Jeffrey C

    2015-09-23

    Spatial and temporal features of synaptic inputs engage integration mechanisms on multiple scales, including presynaptic release sites, postsynaptic dendrites, and networks of inhibitory interneurons. Here we investigate how these mechanisms cooperate to filter synaptic input in hippocampal area CA1. Dendritic recordings from CA1 pyramidal neurons reveal that proximal inputs from CA3 as well as distal inputs from entorhinal cortex layer III (ECIII) sum sublinearly or linearly at low firing rates due to feedforward inhibition, but sum supralinearly at high firing rates due to synaptic facilitation, producing a high-pass filter. However, during ECIII and CA3 input comparison, supralinear dendritic integration is dynamically balanced by feedforward and feedback inhibition, resulting in suppression of dendritic complex spiking. We find that a particular subpopulation of CA1 interneurons expressing neuropeptide Y (NPY) contributes prominently to this dynamic filter by integrating both ECIII and CA3 input pathways and potently inhibiting CA1 pyramidal neuron dendrites.

  19. Preparation of Heterogeneous CaO Catalysts for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Darmawan, T.; Hadiyanto, H.; Rosyid, R. Ar

    2017-07-01

    The objective of this research was to develop heterogeneous catalysts from three CaO sources for biodiesel synthesis. The CaO catalyst were prepared from limestone, calcium hydroxide and calciun carbonate with thermal processing in a muffle furnace at 900°C.. The results showed that CaO catalyst from limestone has better characteristic than catalyst from Calcium Hydroxide and Calcium Carbonate. From morphology testing, the CaO catalyst derived from limestone formed a crystal, while The X-ray difraction analysis showed that the amount of CaO contained in limestone was the highest among the others. The yield of biodiesel obtained from the experiment was 89.98% for the catalyst from limestone; 85.15% for the catalyst Ca (OH)2; and 78.71% for CaCO3 catalyst.

  20. TMBIM-mediated Ca2+ homeostasis and cell death

    DOE PAGES

    Liu, Qun

    2017-01-05

    Ca2+ is a ubiquitous intracellular messenger that regulates numerous physiological activities in humans, animals, plants, and bacteria. Cytosolic Ca2+ is kept at a low level, but subcellular organelles such as the endoplasmic reticulum (ER) and Golgi Apparatus maintain high-concentration Ca2+ stores. Under resting conditions, store Ca2+ homeostasis is dynamically regulated to equilibrate between active Ca2+ uptake and passive Ca2+ leak processes. The evolutionarily conserved Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) proteins mediate Ca2+ homeostasis and cell death. This review focuses on recent advances in functional and structural analysis of TMBIM proteins in regulation of the two related functions. The roles ofmore » TMBIM proteins in pathogen infection and cancer are also discussed with prospects for treatment.« less

  1. Spectroscopy of neutron-deficient nuclei around 36Ca

    SciTech Connect

    Buerger, A.; Azaiez, F.; Bourgeois, Ch.; Franchoo, S.; Ibrahim, F.; Verney, D.; Dombradi, Zs.; Algora, A.; Fueloep, Zs.; Sohler, D.; Al-Khatib, A.; Bringel, P.; Engelhardt, C.; Huebel, H.; Bastin, B.; Benzoni, G.; Borcea, R.; Rotaru, F.; Sorlin, O.

    2006-04-26

    An experiment was performed to extend the knowledge of excited states in neutron-deficient Ca isotopes. In particular, excited states in 36Ca were searched for to allow for a comparison with its stable mirror nucleus, 36S. Secondary beams of 37Ca and 36Ca were produced by fragmentation of a primary 40Ca beam with an energy of 95 {center_dot} A MeV on the SISSI target at GANIL. A variety of nuclei around 36Ca has been produced in a secondary Be target by neutron and proton-removal at beam energies around 61 {center_dot} A MeV. The produced nuclei were identified using the spectrometer SPEG, and prompt {gamma} rays were measured with the Chateau de Cristal. A preliminary value for the energy of the first 2+ state of 36Ca has been determined.

  2. Boron deficiency increases the levels of cytosolic Ca(2+) and expression of Ca(2+)-related genes in Arabidopsis thaliana roots.

    PubMed

    Quiles-Pando, Carlos; Rexach, Jesús; Navarro-Gochicoa, M Teresa; Camacho-Cristóbal, Juan J; Herrera-Rodríguez, M Begoña; González-Fontes, Agustín

    2013-04-01

    Boron (B) deficiency affects the expressions of genes involved in major physiological processes. However, signal transduction pathway through which plants are able to sense and transmit B-deprivation signal to the nucleus is unknown. The aim of this work was to research in Arabidopsis thaliana roots whether the short-term B deficiency affects cytosolic Ca(2+) levels ([Ca(2+)]cyt) as well as expression of genes involved in Ca(2+) signaling. To visualize in vivo changes in root [Ca(2+)]cyt, Arabidopsis seedlings expressing Yellow Cameleon (YC) 3.6 were grown in a nutrient solution supplemented with 2 μM B and then transferred to a B-free medium for 24 h. Root [Ca(2+)]cyt was clearly higher in B-deficient seedlings upon 6 and 24 h of B treatments when compared to controls. Transcriptome analyses showed that transcript levels of Ca(2+) signaling-related genes were affected by B deprivation. Interestingly, Ca(2+) channel (CNGC19, cyclic nucleotide-gated ion channel) gene was strongly upregulated as early as 6 h after B deficiency. Expression levels of Ca(2+) transporter (ACA, autoinhibited Ca(2+)-ATPase; CAX, cation exchanger) genes increased when seedlings were subjected to B deficiency. Gene expressions of calmodulin-like proteins (CMLs) and Ca(2+)-dependent protein kinases (CPKs) were also overexpressed upon exposure to B starvation. Our results suggest that B deficiency causes early responses in the expression of CNGC19 Ca(2+)-influx channel, ACA- and CAX-efflux, and Ca(2+) sensor genes to regulate Ca(2+) homeostasis. It is the first time that changes in the levels of in vivo cytosolic Ca(2+) and expression of Ca(2+) channel/transporter genes are related with short-term B deficiency in Arabidopsis roots. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. The Ca2+-Transport ATPase of Plant Plasma Membrane Catalyzes a nH+/Ca2+ Exchange 1

    PubMed Central

    Rasi-Caldogno, Franca; Pugliarello, Maria C.; De Michelis, Maria I.

    1987-01-01

    Microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings accumulate Ca2+ upon addition of MgATP. MgATP-dependent Ca2+ uptake co-migrates with the plasma membrane H+-ATPase on a sucrose gradient. Ca2+ uptake is insensitive to oligomycin, inhibited by vanadate (IC50 40 micromolar) and erythrosin B (IC50 0.2 micromolar) and displays a pH optimum between pH 6.6 and 6.9. MgATP-dependent Ca2+ uptake is insensitive to protonophores. These results indicate that Ca2+ transport in these microsomal vesicles is catalyzed by a Mg2+-dependent ATPase localized on the plasma membrane. Ca2+ strongly reduces ΔpH generation by the plasma membrane H+-ATPase and increases MgATP-dependent membrane potential difference (Δψ) generation. These effects of Ca2+ on ΔpH and Δψ generation are drastically reduced by micromolar erythrosin B, indicating that they are primarily a consequence of Ca2+ uptake into plasma membrane vesicles. The Ca2+-induced increase of Δψ is collapsed by permeant anions, which do not affect Ca2+-induced decrease of ΔpH generation by the plasma membrane H+-ATPase. The rate of decay of MgATP-dependent ΔpH, upon inhibition of the plasma membrane H+-ATPase, is accelerated by MgATP-dependent Ca2+ uptake, indicating that the decrease of ΔpH generation induced by Ca2+ reflects the efflux of H+ coupled to Ca2+ uptake into plasma membrane vesicles. It is therefore proposed that Ca2+ transport at the plasma membrane is mediated by a Mg2+-dependent ATPase which catalyzes a nH+/Ca2+ exchange. PMID:16665378

  4. Protective effects of Ca2+ handling drugs against abnormal Ca2+ homeostasis and cell damage in myopathic skeletal muscle cells.

    PubMed

    Iwata, Yuko; Katanosaka, Yuki; Shijun, Zhu; Kobayashi, Yuko; Hanada, Hironori; Shigekawa, Munekazu; Wakabayashi, Shigeo

    2005-09-01

    Deficiency of delta-sarcoglycan (delta-SG), a component of the dystrophin-glycoprotein complex (DGC), causes skeletal muscular dystrophy and cardiomyopathy in BIO14.6 hamsters. Here, we studied the involvement of abnormal Ca2+ homeostasis in muscle degeneration and the protective effect of drugs against Ca2+ handling proteins in vivo as well as in vitro. First, we characterized the properties of cultured myotubes from muscles of normal and BIO14.6 hamsters (30-60 days old). While there were no apparent differences in the levels of expression of various Ca2+ handling proteins (L-type Ca2+ channel, ryanodine receptor, SR-Ca2+ ATPase, and Na+/Ca2+ exchanger), muscle-specific proteins (contractile actin and acetylcholine receptor), or DGC member proteins except SGs, BIO14.6 myotubes showed a high degree of susceptibility to mechanical stressors, such as cyclic stretching and hypo-osmotic stress as compared to normal myotubes, as evidenced by marked increases in creatine phosphokinase (CK) release and bleb formation. BIO14.6 myotubes showed abnormal Ca2+ homeostasis characterized by elevated cytosolic Ca2+ concentration, frequent Ca2+ oscillation, and increased 45Ca2+ uptake. These abnormal Ca2+ events and CK release were significantly prevented by Ca2+ handling drugs, tranilast, diltiazem, and FK506. The calpain inhibitor E64 prevented CK release, but not 45Ca2+ uptake. Some of these drugs (tranilast, diltiazem, and FK506) also exerted a significant protective effect for muscle degeneration in BIO14.6 hamsters and mdx mice in vivo. These observations suggest that elevated Ca2+ entry through sarcolemmal Ca2+ channels predominantly contributes to muscle degeneration and that the drugs tested here may have novel therapeutic potential against muscular dystrophy.

  5. Handling Historical Ca II K Spectroheliogram Observation

    NASA Astrophysics Data System (ADS)

    Solanki, S. K.; Chatzistergos, T.; Ermolli, I.; Krivova, N.

    2016-12-01

    The total solar irradiance has been continuously monitored since 1978, but climate studies require time-series extending further back in time. Models assuming that the irradiance variations are due to the evolution of the solar surface magnetic field manifesting itself as bright faculae and dark sunspots have been quite successful in reproducing the measured changes. Unfortunately full-disk observations of the magnetic field exist only for the last four decades. Sunspot observations (areas or numbers) have been employed to reconstruct past irradiance changes, however they provide information about the plage regions only indirectly. Information about the evolution of the plage regions can potentially be obtained from Ca II K spectroheliograms that are available for the last century. Such observational programs have been carried out at several observatories and some of these photographic archives have been digitised. However, analysis of such data is plagued by numerous problems affecting the images and the lack of photometric calibration. Here we present a new method to process historical Ca II K spectroheliograms in order to perform the photometric calibration and compensate for the centre-to-limb variations and artefacts affecting the data. The method is tested on synthetic images with known artefacts and a sample of images from various historical archives.

  6. Structural insight into Ca2+ specificity in tetrameric cation channels

    PubMed Central

    Alam, Amer; Shi, Ning; Jiang, Youxing

    2007-01-01

    Apparent blockage of monovalent cation currents by the permeating blocker Ca2+ is a physiologically essential phenomenon relevant to cyclic nucleotide-gated (CNG) channels. The recently determined crystal structure of a bacterial homolog of CNG channel pores, the NaK channel, revealed a Ca2+ binding site at the extracellular entrance to the selectivity filter. This site is not formed by the side-chain carboxylate groups from the conserved acidic residue, Asp-66 in NaK, conventionally thought to directly chelate Ca2+ in CNG channels, but rather by the backbone carbonyl groups of residue Gly-67. Here we present a detailed structural analysis of the NaK channel with a focus on Ca2+ permeability and blockage. Our results confirm that the Asp-66 residue, although not involved in direct chelation of Ca2+, plays an essential role in external Ca2+ binding. Furthermore, we give evidence for the presence of a second Ca2+ binding site within the NaK selectivity filter where monovalent cations also bind, providing a structural basis for Ca2+ permeation through the NaK pore. Compared with other Ca2+-binding proteins, both sites in NaK present a novel mode of Ca2+ chelation, using only backbone carbonyl oxygen atoms from residues in the selectivity filter. The external site is under indirect control by an acidic residue (Asp-66), making it Ca2+-specific. These findings give us a glimpse of the possible underlying mechanisms allowing Ca2+ to act both as a permeating ion and blocker of CNG channels and raise the possibility of a similar chemistry governing Ca2+ chelation in Ca2+ channels. PMID:17878296

  7. Mitochondria Maintain Distinct Ca(2+) Pools in Cone Photoreceptors.

    PubMed

    Giarmarco, Michelle M; Cleghorn, Whitney M; Sloat, Stephanie R; Hurley, James B; Brockerhoff, Susan E

    2017-02-22

    Ca(2+) ions have distinct roles in the outer segment, cell body, and synaptic terminal of photoreceptors. We tested the hypothesis that distinct Ca(2+) domains are maintained by Ca(2+) uptake into mitochondria. Serial block face scanning electron microscopy of zebrafish cones revealed that nearly 100 mitochondria cluster at the apical side of the inner segment, directly below the outer segment. The endoplasmic reticulum surrounds the basal and lateral surfaces of this cluster, but does not reach the apical surface or penetrate into the cluster. Using genetically encoded Ca(2+) sensors, we found that mitochondria take up Ca(2+) when it accumulates either in the cone cell body or outer segment. Blocking mitochondrial Ca(2+) uniporter activity compromises the ability of mitochondria to maintain distinct Ca(2+) domains. Together, our findings indicate that mitochondria can modulate subcellular functional specialization in photoreceptors.SIGNIFICANCE STATEMENT Ca(2+) homeostasis is essential for the survival and function of retinal photoreceptors. Separate pools of Ca(2+) regulate phototransduction in the outer segment, metabolism in the cell body, and neurotransmitter release at the synaptic terminal. We investigated the role of mitochondria in compartmentalization of Ca(2+) We found that mitochondria form a dense cluster that acts as a diffusion barrier between the outer segment and cell body. The cluster is surprisingly only partially surrounded by the endoplasmic reticulum, a key mediator of mitochondrial Ca(2+) uptake. Blocking the uptake of Ca(2+) by mitochondria causes redistribution of Ca(2+) throughout the cell. Our results show that mitochondrial Ca(2+) uptake in photoreceptors is complex and plays an essential role in normal function. Copyright © 2017 the authors 0270-6474/17/372061-12$15.00/0.

  8. Expression of cell surface transmembrane carbonic anhydrase genes CA9 and CA12 in the human eye: overexpression of CA12 (CAXII) in glaucoma

    PubMed Central

    Liao, S; Ivanov, S; Ivanova, A; Ghosh, S; Cote, M; Keefe, K; Coca-Prados, M; Stanbridge, E; Lerman, M

    2003-01-01

    Purpose: Carbonic anhydrase enzymes (CAs) are universally involved in many fundamental physiological processes, including acid base regulation and fluid formation and movement. In glaucoma patients, CA inhibitors are very effective in lowering intraocular pressure by reducing the rate of aqueous humour secretion mediated by the CAs in the ciliary epithelium. In this work, we investigated the expression and tissue distribution of two recently discovered CA genes CA9 (CAIX) and CA12 (CAXII) in fetal, neonatal, and adult human eyes with and without glaucoma. Methods: CAIX and CAXII expression in 16 normal and 10 glaucomatous eyes, and in cultured non-pigmented ciliary epithelial cells (NPE) from normal and glaucoma eye donors was assessed by immunostaining. In addition, northern blot hybridisation was performed to assess expression of CA4, CA9, and CA12 mRNA in cultured NPE cells from normal and glaucoma donors. Results: CAXII was localised primarily to the NPE with its expression prominent during embryonic eye development but which decreased significantly in adults. CAIX expression in the NPE was very low. The epithelium of cornea and lens occasionally expressed both enzymes at low levels during development and in adult eye, and no expression was detected in the retina. The NPE from glaucoma eyes expressed higher levels of CAXII, but not CAIX, in comparison with normal eyes. This expression pattern was retained in cultured NPE cell lines. NPE cells from a glaucoma patient showed a five-fold increase in the CA12 mRNA level with no detectable expression of CA9 mRNA. Also, no expression of the CA4 gene encoding a GPI anchored plasma membrane protein was detected on these northern blots. Conclusions: Transmembrane CAIX and CAXII enzymes are expressed in the ciliary cells and, thus, may be involved in aqueous humour production. CA12 may be a targeted gene in glaucoma. PMID:12676895

  9. Interpreting the Ca isotope record of marine biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Sime, Neil G.; De La Rocha, Christina L.; Tipper, Edward T.; Tripati, Aradhna; Galy, Albert; Bickle, Michael J.

    2007-08-01

    An 18 million year record of the Ca isotopic composition (δ 44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. δ 44/42Ca in this record averages +0.37 ± 0.05 (1 σ SD) and ranges from +0.21‰ to +0.52‰. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25‰ lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their δ 44/42Ca (i.e., by 0.06 ± 0.06‰ ( n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in δ 44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (δ 44/42Ca w) and for isotope fractionation associated with the production of carbonate sediments (Δ sed) results in unrealistically large variations in the total mass of Ca 2+ in the oceans over the Neogene. Alternatively, variations of ±0.05‰ in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in δ 44/42Ca w of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in Δ sed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in δ 44/42Ca w and Δ sed have been established, modeling the Ca 2+ content

  10. Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease.

    PubMed

    Colomer, J; Means, A R

    2007-01-01

    Numerous hormones, growth factors and physiological processes cause a rise in cytosolic Ca2+, which is translated into meaningful cellular responses by interacting with a large number of Ca2(+)-binding proteins. The Ca2(+)-binding protein that is most pervasive in mediating these responses is calmodulin (CaM), which acts as a primary receptor for Ca2+ in all eukaryotic cells. In turn, Ca2+/CaM functions as an allosteric activator of a host of enzymatic proteins including a considerable number of protein kinases. The topic of this review is to discuss the physiological roles of a sub-set of these protein kinases which can function in cells as a Ca2+/CaM-dependent kinase signaling cascade. The cascade was originally believed to consist of a CaM kinase kinase that phosphorylates and activates one of two CaM kinases, CaMKI or CaMKIV. The unusual aspect of this cascade is that both the kinase kinase and the kinase require the binding of Ca2+/CaM for activation. More recently, one of the CaM kinase kinases has been found to activate another important enzyme, the AMP-dependent protein kinase so the concept of the CaM kinase cascade must be expanded. A CaM kinase cascade is important for many normal physiological processes that when misregulated can lead to a variety of disease states. These processes include: cell proliferation and apoptosis that may conspire in the genesis of cancer; neuronal growth and function related to brain development, synaptic plasticity as well as memory formation and maintenance; proper function of the immune system including the inflammatory response, activation of T lymphocytes and hematopoietic stem cell maintenance; and the central control of energy balance that, when altered, can lead to obesity and diabetes. Although the study of the CaM-dependent kinase cascades is still in its infancy continued analysis of the pathways regulated by these Ca2(+)-initiated signaling cascades holds considerable promise for the future of disease

  11. Pycnogenol protects CA3-CA1 synaptic function in a rat model of traumatic brain injury.

    PubMed

    Norris, Christopher M; Sompol, Pradoldej; Roberts, Kelly N; Ansari, Mubeen; Scheff, Stephen W

    2016-02-01

    Pycnogenol (PYC) is a patented mix of bioflavonoids with potent anti-oxidant and anti-inflammatory properties. Previously, we showed that PYC administration to rats within hours after a controlled cortical impact (CCI) injury significantly protects against the loss of several synaptic proteins in the hippocampus. Here, we investigated the effects of PYC on CA3-CA1 synaptic function following CCI. Adult Sprague-Dawley