Sumiya, Y U; Inoue, Takahiro; Ishikawa, Mami; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito
2016-07-01
Macrophages are important components of human defense systems and consequently key to antitumor immunity. Human-serum macrophage activation factor (serum MAF) can activate macrophages, making it a promising reagent for anticancer therapy. We established four different macrophage subtypes through introduction of different culture conditions to THP-1- and U937-derived macrophages. We assessed phagocytic activity to understand subtype responses to typical macrophage activation factors (MAFs) and the activation mechanisms of serum MAF. All four macrophage subtypes differed in their response to all MAFs. Moreover, serum MAF had two different activation mechanisms: N-acetylgalactosamine (GalNAc)-dependent and GalNAc-independent. Macrophage activation states and mechanisms are heterogeneous. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleary, S.F.; Marciano-Cabral, F.
1986-03-01
Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNAmore » or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.« less
ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research
Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated, or M1, macrophages have immune-stimulatory properties and cytotoxic function against tumor cells. Alternatively activated, or M2, macrophages have low cytotoxic function but high tissue-remodeling activity. There are also M2-like cells called tumor-associated macrophages (TAMs) that are responsible for many tumor-promoting activities. Blocking the function of TAMs inhibits tumorigenesis.
ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research
Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated,
Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline
2017-05-01
Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.
Isolation and Differentiation of Murine Macrophages.
Rios, Francisco J; Touyz, Rhian M; Montezano, Augusto C
2017-01-01
Macrophages play a major role in inflammation, wound healing, and tissue repair. Infiltrated monocytes differentiate into different macrophage subtypes with protective or pathogenic activities in vascular lesions. In the heart and vascular tissues, pathological activation promotes cardiovascular inflammation and remodeling and there is increasing evidence that macrophages play important mechanisms in this environment. Primary murine macrophages can be obtained from: bone marrow by different treatments (granulocyte-macrophage colony-stimulating factor-GM-CSF, macrophage colony-stimulating factor-M-CSF or supernatant of murine fibroblast L929), peritoneal cavity (resident or thioglycolate elicit macrophages), from the lung (alveolar macrophages) or from adipose tissue. In this chapter we describe some protocols to obtain primary murine macrophages and how to identify a pure macrophage population or activation phenotypes using different markers.
A novel assay system for macrophage-activating factor activity using a human U937 cell line.
Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito
2014-08-01
Macrophages play important roles in antitumor immunity, and immunotherapy with the group-specific component protein-derived macrophage-activating factor (GcMAF) has been reported to be effective in patients with various types of cancers. However, in macrophage research, it is important to properly evaluate macrophage activity. U937 macrophages were induced by 12-O-tetradecanoyl-13-phorbolacetate (TPA). The phagocytic activity of macrophages was evaluated as the internalized beads ratio. The MAF activity was assessed at 30 min after MAF addition as the activation ratio. We established a novel assay for phagocytic activities using differentiated U937 macrophages. The novel protocol was simple and rapid and was sensitive for GcMAF. This protocol should be useful not only for basic studies, such as those on molecular mechanisms underlying macrophage activation, but also for clinical studies, such as assessment of GcMAF activity prior to clinical use. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra
2012-09-01
This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.
2013-01-01
Background Macrophages and fibroblasts are two major players in tissue repair and fibrosis. Despite the relevance of macrophages and fibroblasts in tissue homeostasis, remarkably little is known whether macrophages are able to influence the properties of fibroblasts. Here we investigated the role of paracrine factors secreted by classically activated (M1) and alternatively activated (M2) human macrophages on human dermal fibroblasts (HDFs). Results HDFs stimulated with paracrine factors from M1 macrophages showed a 10 to > 100-fold increase in the expression of the inflammatory cytokines IL6, CCL2 and CCL7 and the matrix metalloproteinases MMP1 and MMP3. This indicates that factors produced by M1 macrophages induce a fibroblast phenotype with pro-inflammatory and extracellular matrix (ECM) degrading properties. HDFs stimulated with paracrine factors secreted by M2 macrophages displayed an increased proliferation rate. Interestingly, the M1-activated pro-inflammatory fibroblasts downregulated, after exposure to paracrine factors produced by M2 macrophages or non-conditioned media, the inflammatory markers as well as MMPs and upregulated their collagen production. Conclusions Paracrine factors of M1 or M2 polarized macrophages induced different phenotypes of HDFs and the HDF phenotypes can in turn be reversed, pointing to a high dynamic plasticity of fibroblasts in the different phases of tissue repair. PMID:23601247
Inui, Toshio; Kubo, Kentaro; Kuchiike, Daisuke; Uto, Yoshihiro; Nishikata, Takahito; Sakamoto, Norihiro; Mette, Martin
2015-08-01
Gc protein-derived macrophage-activating factor (GcMAF) immunotherapy has been steadily advancing over the last two decades. Oral colostrum macrophage-activating factor (MAF) produced from bovine colostrum has shown high macrophage phagocytic activity. GcMAF-based immunotherapy has a wide application for use in treating many diseases via macrophage activation or for use as supportive therapy. Three case studies demonstrate that oral colostrum MAF can be used for serious infection and chronic fatigue syndrome (CFS) without adverse effects. We demonstrate that colostrum MAF shows promising clinical results in patients with infectious diseases and for symptoms of fatigue, which is common in many chronic diseases. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Gumen, A V; Kozinets, I A; Shanin, S N; Malinin, V V; Rybakina, E G
2006-09-01
Age-specific characteristics of production of lymphocyte-activating factor by mouse peritoneal macrophages and modulation of this production by short synthetic peptides (Vilon, Epithalon, and Cortagen) were studied. The production of lymphocyte-activating factors by macrophages stimulated with lipopolysaccharides in vitro was lower in old animals. The opposite modulating effects of short peptides on the production of lymphocyte-activating factors by resident and lipopolysaccharide-stimulated macrophages in young and old mice were demonstrated for the first time. This is a possible mechanism of immune system dysfunction during aging, which opens new vistas for its correction with short synthetic peptides.
Yamamoto, N
1996-10-01
Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days.
Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis.
Ren, Jiafa; Li, Jianzhong; Feng, Ye; Shu, Bingyan; Gui, Yuan; Wei, Wei; He, Weichun; Yang, Junwei; Dai, Chunsun
2017-08-01
Mammalian target of rapamycin (mTOR) signalling controls many essential cellular functions. However, the role of Rictor/mTOR complex 2 (mTORC2) in regulating macrophage activation and kidney fibrosis remains largely unknown. We report here that Rictor/mTORC2 was activated in macrophages from the fibrotic kidneys of mice. Ablation of Rictor in macrophages reduced kidney fibrosis, inflammatory cell accumulation, macrophage proliferation and polarization after unilateral ureter obstruction or ischaemia/reperfusion injury. In bone marrow-derived macrophages (BMMs), deletion of Rictor or blockade of protein kinase Cα inhibited cell migration. Additionally, deletion of Rictor or blockade of Akt abolished interleukin-4-stimulated or transforming growth factor (TGF)-β1-stimulated macrophage M2 polarization. Furthermore, deletion of Rictor downregulated TGF-β1-stimulated upregulation of multiple profibrotic cytokines, including platelet-derived growth factor, vascular endothelial growth factor and connective tissue growth factor, in BMMs. Conditioned medium from TGF-β1-pretreated Rictor -/- macrophages stimulated fibroblast activation less efficiently than that from TGF-β1-pretreated Rictor +/+ macrophages. These results demonstrate that Rictor/mTORC2 signalling can promote macrophage activation and kidney fibrosis. Targeting this signalling pathway in macrophages may shine light on ways to protect against kidney fibrosis in patients with chronic kidney diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya
2016-07-01
We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.
Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J
2016-07-01
A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.
Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T
2018-02-01
Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yamamoto, N; Naraparaju, V R
1998-06-01
Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.
Transcription factor NFAT5 promotes macrophage survival in rheumatoid arthritis
Choi, Susanna; Choi, Soo Youn; Kwon, H. Moo; Hwang, Daehee; Park, Yune-Jung; Cho, Chul-Soo
2017-01-01
Defective apoptotic death of activated macrophages has been implicated in the pathogenesis of rheumatoid arthritis (RA). However, the molecular signatures defining apoptotic resistance of RA macrophages are not fully understood. Here, global transcriptome profiling of RA macrophages revealed that the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) critically regulates diverse pathologic processes in synovial macrophages including the cell cycle, apoptosis, and proliferation. Transcriptomic analysis of NFAT5-deficient macrophages revealed the molecular networks defining cell survival and proliferation. Proinflammatory M1-polarizing stimuli and hypoxic conditions were responsible for enhanced NFAT5 expression in RA macrophages. An in vitro functional study demonstrated that NFAT5-deficient macrophages were more susceptible to apoptotic death. Specifically, CCL2 secretion in an NFAT5-dependent fashion bestowed apoptotic resistance to RA macrophages in vitro. Injection of recombinant CCL2 into one of the affected joints of Nfat5+/– mice increased joint destruction and macrophage infiltration, demonstrating the essential role of the NFAT5/CCL2 axis in arthritis progression in vivo. Moreover, after intra-articular injection, NFAT5-deficient macrophages were more susceptible to apoptosis and less efficient at promoting joint destruction than were NFAT5-sufficient macrophages. Thus, NFAT5 regulates macrophage survival by inducing CCL2 secretion. Our results provide evidence that NFAT5 expression in macrophages enhances chronic arthritis by conferring apoptotic resistance to activated macrophages. PMID:28192374
Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages.
Duhamel, Marie; Rodet, Franck; Murgoci, Adriana; Wisztorski, Maxence; Day, Robert; Fournier, Isabelle; Salzet, Michel
2016-06-01
We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.
Freidl, Raphaela; Fernández, Carmen
2014-01-01
Tissue-resident macrophages are heterogeneous with tissue-specific and niche-specific functions. Thus, simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo. We focus here on the respiratory tract and ask whether factors secreted by alveolar epithelial cells (AEC) can influence the functionality of resident pulmonary macrophages (PuM). We have previously reported that factors secreted by AEC increase control of intracellular growth of BCG in macrophages. In the current study, we also aimed to investigate possible mechanisms by which AEC-derived factors increase intracellular control of BCG in both primary murine interstitial macrophages, and bone marrow-derived macrophages and characterize further the effect of these factors on macrophage differentiation. We show that; a) in contrast to other macrophage types, IFN-γ did not increase intracellular growth control of Mycobacterium bovis, Bacillus Calmette-Guérin (BCG) by interstitial pulmonary macrophages although the same macrophages could be activated by factors secreted by AEC; b) the lack of response of pulmonary macrophages to IFN-γ was apparently regulated by suppressor of cytokine signaling (SOCS)1; c) AEC-derived factors did not induce pro-inflammatory pathways induced by IFN-γ e.g. expression of inducible nitric oxide synthase (iNOS), secretion of nitric oxide (NO), or IL-12, d) in contrast to IFN-γ, intracellular bacterial destruction induced by AEC-derived factors was not dependent on iNOS transcription and NO production. Collectively, our data show that PuM were restricted in inflammatory responses mediated by IFN-γ through SOCS1 and that factors secreted by AEC- enhanced the microbicidal capacities of macrophages by iNOS independent mechanisms. PMID:25089618
Yamamoto, N; Naraparaju, V R; Moore, M; Brent, L H
1997-03-01
A serum glycoprotein, Gc protein (vitamin D3-binding protein), can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor for MAF. Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates a remarkably high titered macrophage-activating factor (GcMAF). When peripheral blood monocytes/ macrophages (designated macrophages) of 33 systemic lupus erythematosus patients were incubated with GcMAF (100 pg/ml), the macrophages of all patients were activated as determined by superoxide generation. However, the precursor activity of patient plasma Gc protein was lost or reduced in these patients. Loss of the precursor activity was the result of deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase activity found in the patient plasma. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Deglycosylated Gc protein cannot be converted to macro-phage-activating factor. The resulting defect in macro-phage activation may lead to an inability to clear pathogenic immune complexes. Thus, elevated plasma alpha-N-acetylgalactosaminidase activity resulting in the loss of MAF precursor activity and reduced macro-phage activity may play a role in the pathogenesis of systemic lupus erythematosus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu
2011-06-15
Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of themore » proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce macrophage ROS production and expression of COX-2, chemokines, and RAGE. > Hepatocyte-mediated macrophage activation involves p44/42 MAP kinase signaling. > HMGB1 is released from acetaminophen-injured hepatocytes and contributes to macrophage activation.« less
Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar
2014-01-01
Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.
Wu, Lijun; Zhang, Xu; Zhang, Bin; Shi, Hui; Yuan, Xiao; Sun, Yaoxiang; Pan, Zhaoji; Qian, Hui; Xu, Wenrong
2016-09-01
Exosomes are nano-sized membrane vesicles secreted by both normal and cancer cells. Emerging evidence indicates that cancer cells derived exosomes contribute to cancer progression through the modulation of tumor microenvironment. However, the effects of exosomes derived from gastric cancer cells on macrophages are not well understood. In this study, we investigated the biological role of gastric cancer cells derived exosomes in the activation of macrophages. We demonstrated that gastric cancer cells derived exosomes activated macrophages to express increased levels of proinflammatory factors, which in turn promoted tumor cell proliferation and migration. In addition, gastric cancer cells derived exosomes remarkably upregulated the phosphorylation of NF-κB in macrophages. Inhibiting the activation of NF-κB reversed the upregulation of proinflammatory factors in macrophages and blocked their promoting effects on gastric cancer cells. Moreover, we found that gastric cancer cells derived exosomes could also activate macrophages from human peripheral blood monocytes through the activation of NF-κB. In conclusion, our results suggest that gastric cancer cells derived exosomes stimulate the activation of NF-κB pathway in macrophages to promote cancer progression, which provides a potential therapeutic approach for gastric cancer by interfering with the interaction between exosomes and macrophages in tumor microenvironment.
Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang
2016-08-01
Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels.
Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang
2016-01-01
Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156
Bullers, Samuel J; Baker, Simon C; Ingham, Eileen; Southgate, Jennifer
2014-09-01
In vivo studies of implanted acellular biological scaffolds in experimental animals have shown constructive remodeling mediated by anti-inflammatory macrophages. Little is known about the human macrophage response to such biomaterials, or the nature of the signaling mechanisms that govern the macrophage phenotype in this environment. The cellular events at the interface of a tissue and implanted decellularized biomaterial were examined by establishing a novel ex vivo tissue culture model in which surgically excised human urinary tract tissue was combined with porcine acellular bladder matrix (PABM). Evaluation of the tissue-biomaterial interface showed a time-dependent infiltration of the biomaterial by CD68(+) CD80(-) macrophages. The migration of CD68(+) cells from the tissue to the interface was accompanied by maturation to a CD163(hi) phenotype, suggesting that factor(s) associated with the biomaterial or the wound edge was/were responsible for the active recruitment and polarization of local macrophages. Glucocorticoid receptor (GR) and peroxisome proliferator activated receptor gamma (PPARγ) signaling was investigated as candidate pathways for integrating inflammatory responses; both showed intense nuclear labeling in interface macrophages. GR and PPARγ activation polarized peripheral blood-derived macrophages from a default M1 (CD80(+)) toward an M2 (CD163(+)) phenotype, but PPARγ signaling predominated, as its antagonism blocked any GR-mediated effect. Seeding on PABM was effective at polarizing peripheral blood-derived macrophages from a default CD80(+) phenotype on glass to a CD80(-) phenotype, with intense nuclear localization of PPARγ. These results endorse in vivo observations that the infiltration of decellularized biological scaffolds, exemplified here by PABM, is pioneered by macrophages. Thus, it appears that natural factors present in PABM are involved in the active recruitment and polarization of macrophages to a CD163(+) phenotype, with activation of PPARγ identified as the candidate pathway. The harnessing of these natural matrix-associated factors may be useful in enhancing the integration of synthetic and other natural biomaterials by polarizing macrophage activation toward an M2 regulatory phenotype.
Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.
Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito
2015-08-01
Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Kinetics of tumor necrosis factor production by photodynamic-therapy-activated macrophages
NASA Astrophysics Data System (ADS)
Pass, Harvey I.; Evans, Steven; Perry, Roger; Matthews, Wilbert
1990-07-01
The ability of photodynamic therapy (PDT) to activate macrophages and produce cytokines, specifically tumor necrosis factor (TNF), is unknown. Three day thioglycolate elicited macrophages were incubated with 25 ug/mi Photofrin II (P11) for 2 hour, after which they were subjected to 630 nm light with fluences of 0-1800 J/m. The amount of TNF produced in the system as well as macrophage viability was measured 1, 3, 6, and 18 hours after POT. The level of TNF produced by the macrophages was significantly elevated over control levels 6 hours after POT and the absolute level of tumor necrosis factor production was influenced by the treatment energy and the resulting macrophage cytotoxicity. These data suggest that POT therapy induced cytotoxicity in vivo may be amplified by macrophage stimulation to secrete cytokines and these cytokines may also participate in other direct/indirect photodynamic therapy effects, i.e. immunosuppression, vascular effects.
Zhang, Mengxia; Zhang, Hailiang; Tang, Fan; Wang, Yuhua; Mo, Zhongcheng; Lei, Xiaoyong
2016-01-01
Macrophage colony-stimulating factor is a vital factor in maintaining the biological function of monocyte–macrophage lineage. It is expressed in many tumor tissues and cancer cells. Recent findings indicate that macrophage colony-stimulating factor might contribute to chemoresistance, but the precise mechanisms are unclear. This study was to explore the effect of macrophage colony-stimulating factor on doxorubicin resistance in MCF-7 breast cancer cells and the possible mechanism. In the study, the human breast cancer cells, MCF-7, were transfected with macrophage colony-stimulating factor. We document that cytoplasmic macrophage colony-stimulating factor induces doxorubicin resistance and inhibits apoptosis in MCF-7 cells. Further studies demonstrated that cytoplasmic macrophage colony-stimulating factor-mediated apoptosis inhibition was dependent on the activation of PI3K/Akt/Survivin pathway. More importantly, we found that macrophage colony-stimulating factor-induced autophagic cell death in doxorubicin-treated MCF-7 cells. Taken together, we show for the first time that macrophage colony-stimulating factor-induced doxorubicin resistance is associated with the changes in cell death response with defective apoptosis and promotion of autophagic cell death. PMID:27439542
Kawakami, Tomoya; Koike, Atsushi; Amano, Fumio
2017-08-01
The role of activated macrophages in the host defense against pathogens or tumor cells has been investigated extensively. Many researchers have been using various culture media in in vitro experiments using macrophages. We previously reported that J774.1/JA-4 macrophage-like cells showed great differences in their activated macrophage phenotypes, such as production of reactive oxygen, nitric oxide (NO) or cytokines depending on the culture medium used, either F-12 (Ham's F-12 nutrient mixture) or Dulbecco modified Eagle's medium (DMEM). To examine whether a difference in the culture medium would influence the functions of primary macrophages, we used BALB/c mouse peritoneal macrophages in this study. Among the activated macrophage phenotypes, the expression of inducible NO synthase in LPS- and/or IFN-γ-treated peritoneal macrophages showed the most remarkable differences between F-12 and DMEM; i.e., NO production by LPS- and/or IFN-γ-treated cells was far lower in DMEM than in F-12. Similar results were obtained with C57BL mouse peritoneal macrophages. Besides, dilution of F-12 medium with saline resulted in a slight decrease in NO production, whereas that of DMEM with saline resulted in a significant increase, suggesting the possibility that DMEM contained some inhibitory factor(s) for NO production. However, such a difference in NO production was not observed when macrophage-like cell lines were examined. These results suggest that phenotypes of primary macrophages could be changed significantly with respect to host inflammatory responses by the surrounding environment including nutritional factors and that these altered macrophage phenotypes might influence the biological host defense.
Wilson, Heather M.; Chettibi, Salah; Jobin, Christian; Walbaum, David; Rees, Andrew J.; Kluth, David C.
2005-01-01
Infiltrating macrophages (mφ) can cause injury or facilitate repair, depending on how they are activated by the microenvironment. Studies in vitro have defined the roles of individual cytokines and signaling pathways in activation, but little is known about how macrophages integrate the multiple signals they receive in vivo. We inhibited nuclear factor-κB in bone marrow-derived macrophages (BMDMs) by using a recombinant adenovirus expressing dominant-negative IκB (Ad-IκB). This re-orientated macrophage activation so they became profoundly anti-inflammatory in settings where they would normally be classically activated. In vitro, the lipopolysaccharide-induced nitric oxide, interleukin-12, and tumor necrosis factor-α synthesis was abrogated while interleukin-10 synthesis increased. In vivo, fluorescently labeled BMDMs transduced with Ad-IκB and injected into the renal artery significantly reduced inducible nitric oxide synthase and MHC class II expression when activated naturally in glomeruli of rats with nephrotoxic nephritis. Furthermore, although they only comprised 15% of glomerular macrophages, their presence significantly reduced glomerular infiltration and activation of host macrophages. Injury in nephrotoxic nephritis was also decreased when assessed morphologically and by severity of albuminuria. The results demonstrate the power of Ad-IκB-transduced BMDMs to inhibit injury when activated by acute immune-mediated inflammation within the glomerulus. PMID:15972949
Kimura, Yoshiyuki; Sumiyoshi, Maho
2016-01-01
Antitumor and antimetastatic effects of resveratrol on tumor-induced lymphangiogenesis through the regulation of M2 macrophages in tumor-associated macrophages currently remain unknown. Therefore, we herein examined the effects of resveratrol on M2 macrophage activation and differentiation, and those of resveratrol-treated condition medium (CM) in M2 macrophages on vascular endothelial cell growth factor (VEGF)-C-induced migration, invasion, and tube formation by human lymphatic endothelial cells (HLECs). Resveratrol (50 μM or 5-50 μM) inhibited the production of interleukin-10 and monocyte chemoattractant protein-1 in M2 macrophages, whereas it promoted that of transforming growth factor-β1. Resveratrol (25 and 50 μM) inhibited the phosphorylation of signal transducer and activator of transcript 3 without affecting its expression in the differentiation process of M2 macrophages. Furthermore, resveratrol-treated CM of M2 macrophages inhibited VEGF-C-induced HLEC migration, invasion, and lymphangiogenesis. Resveratrol (25 mg/kg, twice daily) inhibited tumor growth and metastasis to the lung and also reduced the area of lymphatic endothelial cells in tumors (in vivo). These results suggest that the antitumor and antimetastatic effects of resveratrol were partly due to antilymphangiogenesis through the regulation of M2 macrophage activation and differentiation.
Avian macrophage: effector functions in health and disease.
Qureshi, M A; Heggen, C L; Hussain, I
2000-01-01
Monocytes-macrophages, cells belonging to the mononuclear phagocytic system, are considered as the first line of immunological defense. Being mobile scavenger cells, macrophages participate in innate immunity by serving as phagocytic cells. These cells arise in the bone marrow and subsequently enter the blood circulation as blood monocytes. Upon migration to various tissues, monocytes mature and differentiate into tissue macrophages. Macrophages then initiate the 'acquired' immune response in their capacity as antigen processing and presenting cells. While responding to their tissue microenvironment or exogenous antigenic challenge, macrophages may secrete several immunoregulatory cytokines or metabolites. Being the first line of immunological defense, macrophages therefore represent an important step during interaction with infectious agents. The outcome of the macrophage-pathogen interaction depends upon several factors including the stage of macrophage activation, the nature of the infectious agent, the level of genetic control on macrophage function as well as environmental and nutritional factors that may modulate macrophage activation and functions. Research in avian macrophages has lagged behind that in mammals. This has been largely due to the lack of harvestable resident macrophages from the chicken peritoneal cavity. However, the development of elicitation protocols to harvest inflammatory abdominal macrophages and the availability of transformed chicken macrophage cell lines, has enabled researchers to address several questions related to chicken macrophage biology and function in health and disease. In this manuscript the basic profiles of several macrophage effector functions are described. In addition, the interaction of macrophages with various pathogens as well as the effect of genetic and environmental factors on macrophage functional modulation is described.
Macrophage activation by glycoprotein isolated from Dioscorea batatas
Huong, Pham Thi Thu
2011-01-01
We demonstrate that glycoprotein isolated from Dioscorea batatas (GDB) activates macrophage function. Analysis of the infiltration of macrophages into peritoneal cavity showed GDB treatment significantly increased the recruitment of macrophages into the peritoneal cavity. In order to further confirm and investigate the mechanism of GDB on macrophage activation, we analyzed the effects of GDB on the cytokine expression including IL-1β, TNF-α, and IL-6 in mouse peritoneal macrophages. GDB increased the expression of IL-1β, TNF-α, and IL-6. Cytokine induction by GDB was further confirmed by RT-PCR and ELISA in mouse macrophage cell line, RAW264.7 cells. Treatment of RAW264.7 cells with GDB produced strong induction of NF-κB DNA binding and MAPK phosphorylation, markers for macrophage activation and important factors for cytokine gene expression. Collectively, this series of experiments indicates that GDB stimulates macrophage activation. PMID:24278568
Palizgir, Mohammad Taghi; Akhtari, Maryam; Mahmoudi, Mahdi; Mostafaei, Shayan; Rezaeimanesh, Alireza; Akhlaghi, Massoomeh; Shahram, Farhad
2017-10-01
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, connecting environmental stimulators with the immune system. M1 macrophages are a part of immune system that contribute to the inflammatory events in the pathogenesis of Behcet's disease (BD). The effect of AHR on the macrophages in BD patients is still unclear. In this study, we investigated the mRNA expression of AHR in the monocyte-derived and M1 macrophages in active BD patients in comparison to healthy controls. Isolated monocytes from 10 healthy controls and 10 active BD patients were differentiated to macrophages by macrophage-colony stimulating factor (M-CSF) for 7 days. Cells were then polarized to M1 macrophages by lipopolysaccharide (LPS) and interferon-γ (IFNγ) for 24h. Monocyte purity and macrophage markers expression were analyzed by flow cytometry. Analysis of AHR mRNA expression was performed by SYBR Green real-time PCR. Our results showed that AHR expression is significantly down-regulated in M1 macrophages compare to monocyte-derived macrophages. It was shown that both monocyte-derived macrophages and M1 macrophages from BD patients significantly express lower level of AHR mRNA compared to healthy individuals. Our results demonstrate an anti-inflammatory role for AHR in macrophages, which suggest that decreased AHR expression is associated with pro-inflammatory M1 macrophage and BD susceptibility.
Uto, Yoshihiro; Kawai, Tomohito; Sasaki, Toshihide; Hamada, Ken; Yamada, Hisatsugu; Kuchiike, Daisuke; Kubo, Kentaro; Inui, Toshio; Mette, Martin; Tokunaga, Ken; Hayakawa, Akio; Go, Akiteru; Oosaki, Tomohiro
2015-08-01
Colostrum contains antibodies, such as immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM), and, therefore, has potent immunomodulating activity. In particular, IgA has an O-linked sugar chain similar to that in the group-specific component (Gc) protein, a precursor of the Gc protein-derived macrophage-activating factor (GcMAF). In the present study, we investigated the macrophage-activating effects of degalactosylated/desialylated bovine colostrum. We detected the positive band in degalactosylated/ desialylated bovine colostrum by western blotting using Helix pomatia agglutinin lectin. We also found that degalactosylated/ desialylated bovine colostrum could significantly enhance the phagocytic activity of mouse peritoneal macrophages in vitro and of intestinal macrophages in vivo. Besides, degalactosylated/desialylated bovine colostrum did not mediate the production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Similar to the use of GcMAF, degalactosylated/desialylated bovine colostrum can be used as a potential macrophage activator for various immunotherapies. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Blich, Miry; Golan, Amnon; Arvatz, Gil; Sebbag, Anat; Shafat, Itay; Sabo, Edmond; Cohen-Kaplan, Victoria; Petcherski, Sirouch; Avniel-Polak, Shani; Eitan, Amnon; Hammerman, Haim; Aronson, Doron; Axelman, Elena; Ilan, Neta; Nussbaum, Gabriel; Vlodavsky, Israel
2013-02-01
Factors and mechanisms that activate macrophages in atherosclerotic plaques are incompletely understood. We examined the capacity of heparanase to activate macrophages. Highly purified heparanase was added to mouse peritoneal macrophages and macrophage-like J774 cells, and the levels of tumor necrosis factor-α, matrix metalloproteinase-9, interlukin-1, and monocyte chemotactic protein-1 were evaluated by ELISA. Gene expression was determined by RT-PCR. Cells collected from Toll-like receptor-2 and Toll-like receptor-4 knockout mice were evaluated similarly. Heparanase levels in the plasma of patients with acute myocardial infarction, stable angina, and healthy subjects were determined by ELISA. Immunohistochemistry was applied to detect the expression of heparanase in control specimens and specimens of patients with stable angina or acute myocardial infarction. Addition or overexpression of heparanase variants resulted in marked increase in tumor necrosis factor-α, matrix metalloproteinase-9, interlukin-1, and monocyte chemotactic protein-1 levels. Mouse peritoneal macrophages harvested from Toll-like receptor-2 or Toll-like receptor-4 knockout mice were not activated by heparanase. Plasma heparanase level was higher in patients with acute myocardial infarction, compared with patients with stable angina and healthy subjects. Pathologic coronary specimens obtained from vulnerable plaques showed increased heparanase staining compared with specimens of stable plaque and controls. Heparanase activates macrophages, resulting in marked induction of cytokine expression associated with plaque progression toward vulnerability.
Ricote, Mercedes; Huang, Jannet; Fajas, Luis; Li, Andrew; Welch, John; Najib, Jamila; Witztum, Joseph L.; Auwerx, Johan; Palinski, Wulf; Glass, Christopher K.
1998-01-01
The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis. PMID:9636198
Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.
Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta
2017-07-04
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.
Functional characterization of the turkey macrophage migration inhibitory factor
USDA-ARS?s Scientific Manuscript database
Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characte...
Uto, Yoshihiro; Yamamoto, Syota; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Nakata, Eiji; Hori, Hitoshi
2011-07-01
The 1f1f subtype of the Gc protein (Gc(1f1f) protein) was converted into Gc-derived macrophage-activating factor (GcMAF) by enzymatic processing in the presence of β-galactosidase of an activated B-cell and sialidase of a T-cell. We hypothesized that preGc(1f1f)MAF, the only Gc(1f1f) protein lacking galactose, can be converted to GcMAF in vivo because sialic acid is cleaved by residual sialidase. Hence, we investigated the effect of preGc(1f1f)MAF on the phagocytic activation of mouse peritoneal macrophages. We examined the sugar moiety of preGc(1f1f)MAF with a Western blot using peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA) lectin. We also found that preGc(1f1f)MAF significantly enhanced phagocytic activity in mouse peritoneal macrophages but only in the presence of the mouse peritoneal fluid; the level of phagocytic activity was the same as that observed for GcMAF. PreGc(1f1f)MAF can be used as an effective macrophage activator in vivo.
Higashi-Kuwata, Nobuyo; Makino, Takamitsu; Inoue, Yuji; Takeya, Motohiro; Ihn, Hironobu
2009-08-01
Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis-inducing cytokines, such as transforming growth factor beta. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis-inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Abdalrahman, Akram
2014-02-21
Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promisesmore » in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation of Nrf2 independently of Keap1 and NF-κB, suggesting a unique therapeutic potential of dh404 for specific targeting a Nrf2-mediated resolution of inflammation.« less
Jang, Hyo-Min; Kang, Geum-Dan; Van Le, Thi Kim; Lim, Su-Min; Jang, Dae-Sik; Kim, Dong-Hyun
2017-04-01
The roots of Abrus precatorius (AP, Fabaceae) have traditionally been used in Vietnam and China for the treatment of inflammatory diseases such as stomatitis, asthma, bronchitis, and hepatitis. Therefore, in this study, we isolated 4-methoxylonchocarpin (ML), an anti-inflammatory compound present in AP, and studied its anti-inflammatory effects in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. In lipopolysaccharide (LPS)-stimulated macrophages, ML was found to inhibit nuclear factor (NF)-κB activation and tumor necrosis factor (TNF) and interleukin (IL)-6 expression by inhibiting LPS binding to Toll-like receptor 4 (TLR4) in vitro. Oral administration of ML in mice with TNBS-induced colitis suppressed colon shortening and colonic myeloperoxidase activity. ML treatment significantly inhibited the activation of nuclear factor (NF)-κB and phosphorylation of transforming growth factor β-activated kinase 1 in the colon. Treatment with ML also inhibited TNBS-induced expression of IL-1β, IL-17A, and TNF. While ML reduced the TNBS-induced expression of M1 macrophage markers such as arginase-2 and TNF, it was found to increase the expression of M2 macrophage markers such as arginase-1 and IL-10. In conclusion, oral administration of ML attenuated colitis in mice by inhibiting the binding of LPS to TLR4 on immune cells and increasing the polarization of M1 macrophages to M2 macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.
A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.
Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N
1994-05-15
Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages.
Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi
2003-01-01
Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.
Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing
2014-01-01
Aim: To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Methods: Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Results: Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Conclusion: Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway. PMID:24335838
Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing
2014-02-01
To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway.
Recent Advances in Obesity-Induced Inflammation and Insulin Resistance
Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu
2013-01-01
It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268
Li, Zhanrong; Li, Jingguo; Zhu, Lei; Zhang, Ying; Zhang, Junjie; Yao, Lin; Liang, Dan; Wang, Liya
The aim of the present study was to investigate the inhibitory effects of celastrol-loaded nanomicelles (CNMs) on activated macrophage-induced corneal neovascularization (CNV) in rats and cytokine secretion in macrophages. Using an angiogenesis assay in vitro, we detected the effects of CNMs on human umbilical vein endothelial cell (HUVEC) migration and invasion. In addition, the expression levels of cytokines secreted from hypoxia-induced macrophages were assessed through cytokine array analysis. The expression of hypoxia-inducible factors-1α (HIF-1α), nuclear factor-kappa B p65 (NF-κB p65), phospho-nuclear factor-kappa B p65 (phospho-NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-ERK1/2 was analyzed by western blotting. Activated macrophages were elicited through mineral oil lumbar injection, labeled with 1,19-dioctadecyl-3-3-39,39-tetramethylindocarbocyanine (DiI) and implanted into the corneal micro-pocket to induce CNV and to assess the antiangiogenic effect in rats. CNV was morphometrically analyzed using ImageJ software. Histopathological features were evaluated by immunofluorescence immunostaining for vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) on day 2 after surgery. In the present study, the results indicated that CNMs significantly inhibited the migration and invasion of HUVECs; remarkably attenuated the expression of VEGF, tumor necrosis factor-α, interleukin-1α, monocyte chemoattractant protein 1, cytokine-induced neutrophil chemoattractant 3, and MMP-9 protein; and downregulated ERK1/2, p38 MAPK, NF-κB activation, and HIF-1α expression in macrophages. The peritoneal cells elicited using mineral oil were highly purified macrophages, and the length and area of CNV were significantly decreased in the CNMs group compared with the control group. There was a significant reduction in the expression of VEGF and MMP-9 in activated macrophages and corneal tissue after pretreatment with CNMs in this model. In conclusion, CNMs potently suppressed macrophage-induced CNV via the inhibition of VEGF and MMP-9 expression. This effect might be mediated through attenuating macrophages via HIF-1α, MAPK, and NF-κB signaling pathways.
Kuchiike, Daisuke; Uto, Yoshihiro; Mukai, Hirotaka; Ishiyama, Noriko; Abe, Chiaki; Tanaka, Daichi; Kawai, Tomohito; Kubo, Kentaro; Mette, Martin; Inui, Toshio; Endo, Yoshio; Hori, Hitoshi
2013-07-01
The group-specific component protein-derived macrophage-activating factor (GcMAF) has various biological activities, such as macrophage activation and antitumor activity. Clinical trials of GcMAF have been carried out for metastatic breast cancer, prostate cancer, and metastatic colorectal cancer. In this study, despite the complicated purification process of GcMAF, we used enzymatically-treated human serum containing GcMAF with a considerable macrophage-stimulating activity and antitumor activity. We detected GcMAF in degalactosylated/desialylated human serum by western blotting using an anti-human Gc globulin antibody, and Helix pomatia agglutinin lectin. We also found that GcMAF-containing human serum significantly enhanced the phagocytic activity of mouse peritoneal macrophages and extended the survival time of mice bearing Ehrlich ascites tumors. We demonstrated that GcMAF-containing human serum can be used as a potential macrophage activator for cancer immunotherapy.
Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages.
Lechner, F; Machado, J; Bertoni, G; Seow, H F; Dobbelaere, D A; Peterhans, E
1997-01-01
Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of expression of cytokines in macrophages. This finding suggests that CAEV may modulate the accessory functions of infected macrophages and the antiviral immune response in vivo. PMID:9311828
Lok, Hiu Chuen; Sahni, Sumit; Jansson, Patric J.; Kovacevic, Zaklina; Hawkins, Clare L.; Richardson, Des R.
2016-01-01
Nitric oxide (NO) is integral to macrophage cytotoxicity against tumors due to its ability to induce iron release from cancer cells. However, the mechanism for how activated macrophages protect themselves from endogenous NO remains unknown. We previously demonstrated by using tumor cells that glutathione S-transferase P1 (GSTP1) sequesters NO as dinitrosyl-dithiol iron complexes (DNICs) and inhibits NO-mediated iron release from cells via the transporter multidrug resistance protein 1 (MRP1/ABCC1). These prior studies also showed that MRP1 and GSTP1 protect tumor cells against NO cytotoxicity, which parallels their roles in defending cancer cells from cytotoxic drugs. Considering this, and because GSTP1 and MRP1 are up-regulated during macrophage activation, this investigation examined whether this NO storage/transport system protects macrophages against endogenous NO cytotoxicity in two well characterized macrophage cell types (J774 and RAW 264.7). MRP1 expression markedly increased upon macrophage activation, and the role of MRP1 in NO-induced 59Fe release was demonstrated by Mrp1 siRNA and the MRP1 inhibitor, MK571, which inhibited NO-mediated iron efflux. Furthermore, Mrp1 silencing increased DNIC accumulation in macrophages, indicating a role for MRP1 in transporting DNICs out of cells. In addition, macrophage 59Fe release was enhanced by silencing Gstp1, suggesting GSTP1 was responsible for DNIC binding/storage. Viability studies demonstrated that GSTP1 and MRP1 protect activated macrophages from NO cytotoxicity. This was confirmed by silencing nuclear factor-erythroid 2-related factor 2 (Nrf2), which decreased MRP1 and GSTP1 expression, concomitant with reduced 59Fe release and macrophage survival. Together, these results demonstrate a mechanism by which macrophages protect themselves against NO cytotoxicity. PMID:27866158
Adipocyte-Macrophage Cross-Talk in Obesity.
Engin, Ayse Basak
2017-01-01
Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and adipocytes are the sites for active lipid metabolism and signaling.
Li, Xuesong; Zhang, Xin; Zheng, Longbin; Kou, Jiayuan; Zhong, Zhaoyu; Jiang, Yueqing; Wang, Wei; Dong, Zengxiang; Liu, Zhongni; Han, Xiaobo; Li, Jing; Tian, Ye; Zhao, Yajun; Yang, Liming
2016-12-22
Lipid catabolism disorder is the primary cause of atherosclerosis. Transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy to promote lipid degradation. Hypericin-mediated sonodynamic therapy (HY-SDT) has been proved non-invasively inducing THP-1-derived macrophage apoptosis; however, it is unknown whether macrophage autophagy could be triggered by HY-SDT to influence cellular lipid catabolism via regulating TFEB. Here, we report that HY-SDT resulted in the time-dependent THP-1-derived macrophage autophagy activation through AMPK/AKT/mTOR pathway. Besides, TFEB nuclear translocation in macrophage was triggered by HY-SDT to promote autophagy activation and lysosome regeneration which enhanced lipid degradation in response to atherogenic lipid stressors. Moreover, following HY-SDT, the ABCA1 expression level was increased to promote lipid efflux in macrophage, and the expression levels of CD36 and SR-A were decreased to inhibit lipid uptake, both of which were prevented by TFEB knockdown. These results indicated that TFEB nuclear translocation activated by HY-SDT was not only the key regulator of autophagy activation and lysosome regeneration in macrophage to promote lipolysis, but also had a crucial role in reverse cholesterol transporters to decrease lipid uptake and increase lipid efflux. Reactive oxygen species (ROS) were adequately generated in macrophage by HY-SDT. Further, ROS scavenger N-acetyl-l-cysteine abolished HY-SDT-induced TFEB nuclear translocation and autophagy activation, implying that ROS were the primary upstream factors responsible for these effects during HY-SDT. In summary, our data indicate that HY-SDT decreases lipid content in macrophage by promoting ROS-dependent nuclear translocation of TFEB to influence consequent autophagy activation and cholesterol transporters. Thus, HY-SDT may be beneficial for atherosclerosis via TFEB regulation to ameliorate lipid overload in atherosclerotic plaques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umikawa, Masato, E-mail: umikawa@med.u-ryukyu.ac.jp; Umikawa, Asako; Asato, Tsuyoshi
Monocytes and macrophages are important effectors and regulators of inflammation, and both their differentiation and activation are regulated strictly in response to environmental cues. Angiopoietin-like protein 2 (Angptl2) is a multifaceted protein, displaying many physiological and pathological functions in inflammation, angiogenesis, hematopoiesis, and tumor development. Although recent studies implicate Angptl2 in chronic inflammation, the mechanisms of inflammation caused by Angptl2 remain unclear. The purpose of the present study was to elucidate the role of Angptl2 in inflammation by understanding the effects of Angptl2 on monocytes/macrophages. We showed that Angptl2 directly activates resident murine peritoneal monocytes and macrophages and induces amore » drastic upregulation of the transcription of several inflammatory genes including nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, and several proinflammatory cytokine genes such as interleukin (IL)-1β, IL-6, TNFα, and CSF2, along with activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. Concordantly, proinflammatory cytokines IL-1β, IL-6, TNFα, and GM-CSF, were rapidly elevated from murine peritoneal monocytes and macrophages. These results demonstrate a novel role for Angptl2 in inflammation via the direct activation of peritoneal monocytes and macrophages. - Highlights: • Angptl2 directly activates resident murine peritoneal monocytes and macrophages. • Angptl2 induces a drastic upregulation of expression of inflammatory genes. • Angptl2 induces activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. • Angptl2 does not activate bone marrow derived macrophages or macrophage cell lines.« less
Neutralization of B. anthracis toxins during ex vivo phagocytosis.
Tarasenko, Olga; Scott, Ashley; Jones, April; Soderberg, Lee; Alusta, Pierre
2013-07-01
Glycoconjugates (GCs) are recognized as stimulation and signaling agents, affecting cell adhesion, activation, and growth of living organisms. Among GC targets, macrophages are considered ideal since they play a central role in inflammation and immune responses against foreign agents. In this context, we studied the effects of highly selective GCs in neutralizing toxin factors produced by B. anthracis during phagocytosis using murine macrophages. The effects of GCs were studied under three conditions: A) prior to, B) during, and C) following exposure of macrophages to B. anthracis individual toxin (protective antigen [PA], edema factor [EF], lethal factor [LF] or toxin complexes (PA-EF-LF, PA-EF, and PA-LF). We employed ex vivo phagocytosis and post-phagocytosis analysis including direct microscopic observation of macrophage viability, and macrophage activation. Our results demonstrated that macrophages are more prone to adhere to GC-altered PA-EF-LF, PA-EF, and PA-LF toxin complexes. This adhesion results in a higher phagocytosis rate and toxin complex neutralization during phagocytosis. In addition, GCs enhance macrophage viability, activate macrophages, and stimulate nitric oxide (NO) production. The present study may be helpful in identifying GC ligands with toxin-neutralizing and/or immunomodulating properties. In addition, our study could suggest GCs as new targets for existing vaccines and the prospective development of vaccines and immunomodulators used to combat the effects of B. anthracis.
[The effect of the intratracheal administration of americium-241 on rat alveolar macrophages].
Shopova, V; Sŭlovski, P; Dancheva, V
1996-01-01
In experiments in rats it was found that 241Am transitory decreases the total cell number and alveolar macrophage's percentage in bronchoalveolar lavage fluid (BALF): increases the macrophages size and nuclear size; and increases acid phosphatase and lactate dehydrogenase activities in BALF. It was suggested that 241Am causes and activation in the alveolar macrophages which probably appears as one of factors provoking lung injuries.
Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S.; Tian, Xingsong; Cui, Taixing
2015-01-01
Ethnopharmacological relevance American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. Results A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC–UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. Conclusions These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. PMID:25882312
Redox Control of Inflammation in Macrophages
Dehne, Nathalie; Grossmann, Nina; Jung, Michaela; Namgaladze, Dmitry; Schmid, Tobias; von Knethen, Andreas; Weigert, Andreas
2013-01-01
Abstract Macrophages are present throughout the human body, constitute important immune effector cells, and have variable roles in a great number of pathological, but also physiological, settings. It is apparent that macrophages need to adjust their activation profile toward a steadily changing environment that requires altering their phenotype, a process known as macrophage polarization. Formation of reactive oxygen species (ROS), derived from NADPH-oxidases, mitochondria, or NO-producing enzymes, are not necessarily toxic, but rather compose a network signaling system, known as redox regulation. Formation of redox signals in classically versus alternatively activated macrophages, their action and interaction at the level of key targets, and the resulting physiology still are insufficiently understood. We review the identity, source, and biological activities of ROS produced during macrophage activation, and discuss how they shape the key transcriptional responses evoked by hypoxia-inducible transcription factors, nuclear-erythroid 2-p45-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor-γ. We summarize the mechanisms how redox signals add to the process of macrophage polarization and reprogramming, how this is controlled by the interaction of macrophages with their environment, and addresses the outcome of the polarization process in health and disease. Future studies need to tackle the option whether we can use the knowledge of redox biology in macrophages to shape their mediator profile in pathophysiology, to accelerate healing in injured tissue, to fight the invading pathogens, or to eliminate settings of altered self in tumors. Antioxid. Redox Signal. 19, 595–637. PMID:23311665
Döring, Axinia; Sloka, Scott; Lau, Lorraine; Mishra, Manoj; van Minnen, Jan; Zhang, Xu; Kinniburgh, David; Rivest, Serge; Yong, V Wee
2015-01-21
Approaches to stimulate remyelination may lead to recovery from demyelinating injuries and protect axons. One such strategy is the activation of immune cells with clinically used medications, since a properly directed inflammatory response can have healing properties through mechanisms such as the provision of growth factors and the removal of cellular debris. We previously reported that the antifungal medication amphotericin B is an activator of circulating monocytes, and their tissue-infiltrated counterparts and macrophages, and of microglia within the CNS. Here, we describe that amphotericin B activates these cells through engaging MyD88/TRIF signaling. When mice were subjected to lysolecithin-induced demyelination of the spinal cord, systemic injections of nontoxic doses of amphotericin B and another activator, macrophage colony-stimulating factor (MCSF), further elevated the representation of microglia/macrophages at the site of injury. Treatment with amphotericin B, particularly in combination with MCSF, increased the number of oligodendrocyte precursor cells and promoted remyelination within lesions; these pro-regenerative effects were mitigated in mice treated with clodronate liposomes to reduce circulating monocytes and tissue-infiltrated macrophages. Our results have identified candidates among currently used medications as potential therapies for the repair of myelin. Copyright © 2015 the authors 0270-6474/15/351136-13$15.00/0.
Gray, Andrea; Maguire, Timothy; Schloss, Rene; Yarmush, Martin L
2015-01-01
Induction of therapeutic mesenchymal stromal cell (MSC) function is dependent upon activating factors present in diseased or injured tissue microenvironments. These functions include modulation of macrophage phenotype via secreted molecules including prostaglandin E2 (PGE2). Many approaches aim to optimize MSC-based therapies, including preconditioning using soluble factors and cell immobilization in biomaterials. However, optimization of MSC function is usually inefficient as only a few factors are manipulated in parallel. We utilized fractional factorial design of experiments to screen a panel of 6 molecules (lipopolysaccharide [LPS], polyinosinic-polycytidylic acid [poly(I:C)], interleukin [IL]-6, IL-1β, interferon [IFN]-β, and IFN-γ), individually and in combinations, for the upregulation of MSC PGE2 secretion and attenuation of macrophage secretion of tumor necrosis factor (TNF)-α, a pro-inflammatory molecule, by activated-MSC conditioned medium (CM). We used multivariable linear regression (MLR) and analysis of covariance to determine differences in functions of optimal factors on monolayer MSCs and alginate-encapsulated MSCs (eMSCs). The screen revealed that LPS and IL-1β potently activated monolayer MSCs to enhance PGE2 production and attenuate macrophage TNF-α. Activation by LPS and IL-1β together synergistically increased MSC PGE2, but did not synergistically reduce macrophage TNF-α. MLR and covariate analysis revealed that macrophage TNF-α was strongly dependent on the MSC activation factor, PGE2 level, and macrophage donor but not MSC culture format (monolayer versus encapsulated). The results demonstrate the feasibility and utility of using statistical approaches for higher throughput cell analysis. This approach can be extended to develop activation schemes to maximize MSC and MSC-biomaterial functions prior to transplantation to improve MSC therapies. © 2015 American Institute of Chemical Engineers.
Verma, D S; Johnston, D A; McCredie, K B
1983-11-01
We investigated the interaction of monocyte/macrophages and autologous T lymphocytes in the methanol extraction residue (MER) of BCG-induced production of granulocyte-macrophage colony-stimulating activity (CSA). Coincubation of monocyte/macrophages and T lymphocytes at a 1:3 ratio produces an optimum collaboration; a change to a 1:9 ratio diminished this collaboration. Coincubation of monocyte/macrophages and T lymphocytes primed with lithium carbonate (2 meq/liter) for 40 hr synergistically increased CSA elaboration and prevented the decline in CSA noted for the 1:9 monocyte/macrophage: T lymphocyte ratio. In contrast, concanavalin-A-primed T lymphocytes did not enhance CSA elaboration at any monocyte/macrophage:T lymphocyte ratio except, occasionally, at 1:9. However, this was overcome if the T lymphocytes were primed with both concanavalin-A and lithium carbonate before their coincubation with monocyte/macrophages. Further cell-mixing experiments revealed that concanavalin-A-primed T lymphocytes contained a subpopulation that suppressed monocyte/macrophage and T-lymphocyte collaboration. Activation of suppressor T lymphocytes could be effectively prevented by lithium carbonate and, in a dose-dependent manner, by irradiation. Also, suppressor T lymphocytes not only diminished the elaboration of colony-stimulating factor(s), but also elaborated an inhibitor of granulocyte-macrophage colony-forming cells. We further demonstrated that the respective hemopoietic helper and suppressor T-lymphocyte activities could be enriched with OKT8- (or OKT4+) and OKT8+ subpopulations.
Staphylococcus aureus Biofilms Induce Macrophage Dysfunction Through Leukocidin AB and Alpha-Toxin
Scherr, Tyler D.; Hanke, Mark L.; Huang, Ouwen; James, David B. A.; Horswill, Alexander R.; Bayles, Kenneth W.; Fey, Paul D.; Torres, Victor J.
2015-01-01
ABSTRACT The macrophage response to planktonic Staphylococcus aureus involves the induction of proinflammatory microbicidal activity. However, S. aureus biofilms can interfere with these responses in part by polarizing macrophages toward an anti-inflammatory profibrotic phenotype. Here we demonstrate that conditioned medium from mature S. aureus biofilms inhibited macrophage phagocytosis and induced cytotoxicity, suggesting the involvement of a secreted factor(s). Iterative testing found the active factor(s) to be proteinaceous and partially agr-dependent. Quantitative mass spectrometry identified alpha-toxin (Hla) and leukocidin AB (LukAB) as critical molecules secreted by S. aureus biofilms that inhibit murine macrophage phagocytosis and promote cytotoxicity. A role for Hla and LukAB was confirmed by using hla and lukAB mutants, and synergy between the two toxins was demonstrated with a lukAB hla double mutant and verified by complementation. Independent confirmation of the effects of Hla and LukAB on macrophage dysfunction was demonstrated by using an isogenic strain in which Hla was constitutively expressed, an Hla antibody to block toxin activity, and purified LukAB peptide. The importance of Hla and LukAB during S. aureus biofilm formation in vivo was assessed by using a murine orthopedic implant biofilm infection model in which the lukAB hla double mutant displayed significantly lower bacterial burdens and more macrophage infiltrates than each single mutant. Collectively, these findings reveal a critical synergistic role for Hla and LukAB in promoting macrophage dysfunction and facilitating S. aureus biofilm development in vivo. PMID:26307164
Gregory, Kalvin J; Zhao, Bing; Bielenberg, Diane R; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael
2010-10-18
Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation.
Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael
2010-01-01
Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141
Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo
2015-06-01
Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.
Silva, J S; Vespa, G N; Cardoso, M A; Aliberti, J C; Cunha, F Q
1995-01-01
Cell invasion by Trypanosoma cruzi and its intracellular replication are essential for continuation of the parasite life cycle and for production of Chagas' disease. T. cruzi is able to replicate in nucleated cells and can be killed by activated macrophages. Gamma interferon (IFN-gamma) is one of the major stimuli for the activation of macrophages and has been shown to be a key activation factor for the killing of intracellular parasites through a mechanism dependent upon nitric oxide (NO) biosynthesis. We show that although the addition of exogenous tumor necrosis factor alpha (TNF-alpha) does not potentiate the trypanocidal activity of IFN-gamma in vitro, treatment of resistant C57BI/6 mice with an anti-TNF-alpha monoclonal antibody increased parasitemia and mortality. In addition, the anti-TNF-alpha-treated animals had decreased NO production, both in vivo and in vitro, suggesting an important role for TNF-alpha in controlling infection. In order to better understand the role of TNF-alpha in the macrophage-mediating killing of parasites, cultures of T. cruzi-infected macrophages were treated with an anti-TNF-alpha monoclonal antibody. IFN-gamma-activated macrophages failed to kill intracellular parasites following treatment with 100 micrograms of anti-TNF-alpha. In these cultures, the number of parasites released at various time points after infection was significantly increased while NO production was significantly reduced. We conclude that IFN-gamma-activated macrophages produce TNF-alpha after infection by T. cruzi and suggest that this cytokine plays a role in amplifying NO production and parasite killing. PMID:7591147
Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo
2014-03-01
Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi
2004-03-01
The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients.
SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ae Sin; Jung, Yu Jin; Kim, Dal
2014-08-08
Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophagesmore » isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that deficiency of SIRT2 ameliorates iNOS, NO expression and reactive oxygen species production with suppressing LPS-induced activation of NFκB in macrophages.« less
Ji, Guang-Quan; Chen, Ren-Qiong; Zheng, Jian-Xian
2015-04-01
Atractylodes macrocephala Koidz is a traditional herb. Atractylodes macrocephalaon polysaccharides (AMP) have been found to enhance immunity and improve heart function. However, the mechanisms of the immunomodulatory effect have not been investigated. We examined whether AMP activated macrophages and explored the mechanisms of activation. AMP was prepared and evaluated its immunomodulatory activity (25, 50, 100, and 200 μg/mL) by detecting the phagocytosis and the production of tumor necrosis factor-α (TNF-α), IFN-γ, and nitric oxide (NO) in RAW264.7 macrophages. Furthermore, the role of nuclear factor-κB (NF-κB) pathway was examined in regulating TNF-α and NO production. The phagocytosis of macrophages was enhanced by AMP in a dose-dependent manner and the maximal phagocytosis of macrophages occurred at concentrations of 100 and 200 μg/mL. NO, TNF-α, and IFN-γ release was also found to be dose dependent by increasing concentrations of AMP and reached the peak at a concentration of 200 μg/mL. In addition, AMP induced inhibitor kappaB (IκB) degradation and the activation of NF-κB by p65 nuclear translocation, and then the activation of NF-κB in nucleus peaked at a concentration of 200 μg/mL. Besides, NF-κB-specific inhibitor pyrrolidine dithiocarbamate (PDTC) decreased AMP-induced NO and TNF-α production. These data suggest that AMP may modulate macrophage activities by stimulating NF-κB or activating NF-κB-dependent mechanisms.
Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).
Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko
2009-01-01
Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.
Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko
2008-07-01
Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients.
Cell Elasticity Determines Macrophage Function
Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry
2012-01-01
Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423
Jin, Xian; Yao, Tongqing; Zhou, Zhong'e; Zhu, Jian; Zhang, Song; Hu, Wei; Shen, Chengxing
2015-01-01
Atherosclerotic lesions are accelerated in patients with diabetes. M1 (classically activated in contrast to M2 alternatively activated) macrophages play key roles in the progression of atherosclerosis. Since advanced glycation end products (AGEs) are major pathogenic factors and active inflammation inducers in diabetes mellitus, this study assessed the effects of AGEs on macrophage polarization. The present study showed that AGEs significantly promoted macrophages to express IL-6 and TNF-α. M1 macrophage markers such as iNOS and surface markers including CD11c and CD86 were significantly upregulated while M2 macrophage markers such as Arg1 and CD206 remained unchanged after AGEs stimulation. AGEs significantly increased RAGE expression in macrophages and activated NF-κB pathway, and the aforementioned effects were partly abolished by administration of anti-RAGE antibody or NF-κB inhibitor PDTC. In conclusion, our results suggest that AGEs enhance macrophage differentiation into proinflammatory M1 phenotype at least partly via RAGE/NF-κB pathway activation. PMID:26114112
Arya, Subhash B; Kumar, Gaurav; Kaur, Harmeet; Kaur, Amandeep; Tuli, Amit
2018-06-22
A DP- r ibosylation factor- l ike GTPase 11 ( ARL11 ) is a cancer-predisposing gene that has remained functionally uncharacterized to date. In this study, we report that ARL11 is endogenously expressed in mouse and human macrophages and regulates their activation in response to lipopolysaccharide (LPS) stimulation. Accordingly, depletion of ARL11 impaired both LPS-stimulated pro-inflammatory cytokine production by macrophages and their ability to control intracellular replication of Salmonella. LPS-stimulated activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) was substantially compromised in Arl11 -silenced macrophages. In contrast, increased expression of ARL11 led to constitutive ERK1/2 phosphorylation, resulting in macrophage exhaustion. Finally, we found that ARL11 forms a complex with phospho-ERK in macrophages within minutes of LPS stimulation. Taken together, our findings establish ARL11 as a novel regulator of ERK signaling in macrophages, required for macrophage activation and immune function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Maeda, H; Tsuru, S; Shiraishi, A
1994-11-01
An experimental therapy for improvement of macrophage dysfunction caused by transforming growth factor-beta (TGF-beta) was tried in EL4 tumor-bearing mice. TGF-beta was detected in cell-free ascitic fluid from EL4-bearers, but not in that from normal mice, by western blot analysis. The ascites also showed growth-suppressive activity against Mv1Lu cells, and the suppressive activity was potentiated by transient acidification. To investigate whether the functions of peritoneal macrophages were suppressed in EL4-bearers, the abilities to produce nitric oxide and tumor necrosis factor-alpha (TNF-alpha) upon lipopolysaccharide (LPS) stimulation were measured. Both abilities of macrophages in EL4-bearing mice were suppressed remarkably on day 9, and decreased further by day 14, compared with non-tumor-bearing controls. TGF-beta activity was abrogated by administration of anti-TGF-beta antibody to EL4-bearing mice. While a large amount of TGF-beta was detected in ascitic fluid from control EL4-bearers, little TGF-beta was detectable in ascites from EL4-bearers given anti-TGF-beta antibody. Furthermore, while control macrophages exhibited little or no production of nitric oxide and TNF-alpha on LPS stimulation in vitro, macrophages from EL4-bearers administered with anti-TGF-beta antibody showed the same ability as normal macrophages. These results clearly indicate that TGF-beta contributes to macrophage dysfunction and that the administration of specific antibody for TGF-beta reverses macrophage dysfunction in EL4-bearing hosts.
Pan, M H; Lin-Shiau, S Y; Ho, C T; Lin, J H; Lin, J K
2000-02-15
We investigated the inhibition of IkappaB kinase (IKK) activity in lipopolysaccharide (LPS)-activated murine macrophages (RAW 264.7 cell line) by various polyphenols including (-)-epigallocatechin-3-gallate, theaflavin, a mixture of theaflavin-3 gallate and theaflavin-3'-gallate, theaflavin-3,3'-digallate (TF-3), pyrocyanidin B-3, casuarinin, geraniin, and penta-O-galloyl-beta-D-glucose (5GG). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other polyphenols. TF-3 strongly inhibited both IKK1 and IKK2 activity and prevented the degradation of IkappaBalpha and IkappaBbeta in activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. Furthermore, geraniin, 5GG, and TF-3 all blocked phosphorylation of IKB from the cytosolic fraction, inhibited nuclear factor-kappaB (NFkappaB) activity, and inhibited increases in inducible nitric oxide synthase levels in activated macrophages. These results suggest that TF-3 may exert its anti-inflammatory and cancer chemopreventive actions by suppressing the activation of NFkappaB through inhibition of IKK activity.
Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S
2013-02-01
Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.
Schwartzkopff, Franziska; Grimm, Tobias A; Lankford, Carla S R; Fields, Karen; Wang, Jiun; Brandt, Ernst; Clouse, Kathleen A
2009-12-01
Platelet factor 4 (CXCL4), a member of the CXC chemokine subfamily released in high amounts by activated platelets, has been identified as a monocyte survival factor that induces monocyte differentiation into macrophages. Although CXCL4 has been shown to have biological effects unique to chemokines, nothing is known about the role of CXCL4-derived human macrophages or CXCL4 in human immunodeficiency virus (HIV) disease. In this study, CXCL4-derived macrophages are compared with macrophage-colony stimulating factor (M-CSF)-derived macrophages for their ability to support HIV-1 replication. We show that CXCL4-derived macrophages can be infected with macrophage-tropic HIV-1 that uses either CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4) as a co-receptor for viral entry. We also find that M-CSF and the chemokines, monocyte chemoattractant protein 1 (MCP-1; CCL2) and macrophage-inflammatory-protein-1-alpha (MIP-1alpha; CCL3) are produced upon R5- and X4-tropic HIV-1 replication in both M-CSF- and CXCL4-derived human macrophages. In addition, CXCL4 added to M-CSF-derived macrophages after virus adsorption and maintained throughout the infection enhances HIV-1 replication. We thus propose a novel role for CXCL4 in HIV disease.
NASA Technical Reports Server (NTRS)
Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)
1999-01-01
Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.
Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.
2013-01-01
Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218
Wilden, Holger; Schirrmacher, Volker; Fournier, Philippe
2011-08-01
Newcastle disease virus (NDV) is an interesting agent for activating innate immune activity in macrophages including secretion of TNF-α and IFN-α, upregulation of TRAIL and activation of NF-κB and iNOS. However, the molecular mechanism of such cellular activities remains largely unknown. Tumor selectivity of replication of NDV has been described to be linked to deviations in tumor cells of the type I interferon response. We therefore focused on the interferon response to NDV of macrophages as part of innate anti-viral and anti-tumor activity. In particular, we investigated the functional significance of the interferon regulatory factor genes (IRF)-3 and IRF-7. Deletion of the IRF-3 or IRF-7 gene was found to increase susceptibility of mouse macrophages to virus infection. Surprisingly, NDV replicated better in IRF-3 KO than in IRF-7 KO macrophages. Further analysis showed that IRF-3 KO macrophages have a lower basal and NDV-induced RIG-I expression in comparison to IRF-7 KO macrophages. This might explain why, in IRF-3 KO macrophages, the secretion of type I interferons after NDV infection is delayed, when compared to IRF-7 KO and wild-type macrophages. In addition, IRF-3 KO cells showed reduced NDV-induced levels of IRF-7. This effect could be prevented by priming the cells first by interferon-α. Further results indicated that an early production of type I interferon rather than high maximal levels at later time points are important for resistance to infection by NDV. In conclusion, these results demonstrate an important role of IRF-3 for the innate anti-viral response to NDV of mouse macrophages.
Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi
2002-01-01
Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.
Roger, Thierry; Delaloye, Julie; Chanson, Anne-Laure; Giddey, Marlyse; Le Roy, Didier; Calandra, Thierry
2013-01-15
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Ritesh K.; Li, Changzhao
Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4{sup +/+} wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4{sup +/−} heterozygous mice. To confirm thesemore » observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca{sup ++} homeostasis. ATO induces Ca{sup ++}-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca{sup ++} homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4{sup +/−} mice. • Changes in macrophage functions can be attenuated by Ca{sup ++} homeostasis regulators.« less
Kanda, Shigeru; Mochizuki, Yasushi; Miyata, Yasuyoshi; Kanetake, Hiroshi; Yamamoto, Nobuto
2002-09-04
The vitamin D(3)-binding protein (Gc protein)-derived macrophage activating factor (GcMAF) activates tumoricidal macrophages against a variety of cancers indiscriminately. We investigated whether GcMAF also acts as an antiangiogenic factor on endothelial cells. The effects of GcMAF on angiogenic growth factor-induced cell proliferation, chemotaxis, and tube formation were examined in vitro by using cultured endothelial cells (murine IBE cells, porcine PAE cells, and human umbilical vein endothelial cells [HUVECs]) and in vivo by using a mouse cornea micropocket assay. Blocking monoclonal antibodies to CD36, a receptor for the antiangiogenic factor thrombospondin-1, which is also a possible receptor for GcMAF, were used to investigate the mechanism of GcMAF action. GcMAF inhibited the endothelial cell proliferation, chemotaxis, and tube formation that were all stimulated by fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor-A, or angiopoietin 2. FGF-2-induced neovascularization in murine cornea was also inhibited by GcMAF. Monoclonal antibodies against murine and human CD36 receptor blocked the antiangiogenic action of GcMAF on the angiogenic factor stimulation of endothelial cell chemotaxis. In addition to its ability to activate tumoricidal macrophages, GcMAF has direct antiangiogenic effects on endothelial cells independent of tissue origin. The antiangiogenic effects of GcMAF may be mediated through the CD36 receptor.
Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages.
Salari, Samira; Seibert, Tara; Chen, Yong-Xiang; Hu, Tieqiang; Shi, Chunhua; Zhao, Xiaoling; Cuerrier, Charles M; Raizman, Joshua E; O'Brien, Edward R
2013-01-01
Heat shock protein 27 (HSP27) shows attenuated expression in human coronary arteries as the extent of atherosclerosis progresses. In mice, overexpression of HSP27 reduces atherogenesis, yet the precise mechanism(s) are incompletely understood. Inflammation plays a central role in atherogenesis, and of particular interest is the balance of pro- and anti-inflammatory factors produced by macrophages. As nuclear factor-kappa B (NF-κB) is a key immune signaling modulator in atherogenesis, and macrophages are known to secrete HSP27, we sought to determine if recombinant HSP27 (rHSP27) alters NF-κB signaling in macrophages. Treatment of THP-1 macrophages with rHSP27 resulted in the degradation of an inhibitor of NF-κB, IκBα, nuclear translocation of the NF-κB p65 subunit, and increased NF-κB transcriptional activity. Treatment of THP-1 macrophages with rHSP27 yielded increased expression of a variety of genes, including the pro-inflammatory factors, IL-1β, and TNF-α. However, rHSP27 also increased the expression of the anti-inflammatory factors IL-10 and GM-CSF both at the mRNA and protein levels. Our study suggests that in macrophages, activation of NF-κB signaling by rHSP27 is associated with upregulated expression and secretion of key pro- and anti-inflammatory cytokines. Moreover, we surmise that it is the balance in expression of these mediators and antagonists of inflammation, and hence atherogenesis, that yields a favorable net effect of HSP27 on the vessel wall.
Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei
2006-01-01
Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609
Vitamin D binding protein-macrophage activating factor inhibits HCC in SCID mice.
Nonaka, Koichi; Onizuka, Shinya; Ishibashi, Hiromi; Uto, Yoshihiro; Hori, Hitoshi; Nakayama, Toshiyuki; Matsuura, Nariaki; Kanematsu, Takashi; Fujioka, Hikaru
2012-01-01
A high incidence of recurrence after treatment is the most serious problem in hepatocellular carcinoma (HCC). Therefore, a new strategy for the treatment of the disease is needed. The aim of the present study was to investigate whether vitamin D binding protein-macrophage activating factor (DBP-maf) is able to inhibit the growth of HCC. The effects of DBP-maf on endothelial cells and macrophage were evaluated by WST-1 assay and phagocytosis assay, respectively. Human HCC cells (HepG2) were implanted into the dorsum of severe combined immunodeficiency (SCID) mice. These mice were divided into control and DBP-maf treatment groups (n = 10/group). The mice in the treatment group received 40 ng/kg/d of DBP-maf for 21 d. DBP-maf showed anti-proliferative activity against endothelial cells and also activated phagocytosis by macrophages. DBP-maf inhibited the growth of HCC cells (treatment group: 126 ± 18mm(3), untreated group: 1691.5 ± 546.9mm(3), P = 0.0077). Histologic examinations of the tumors revealed the microvessel density was reduced and more macrophage infiltration was demonstrated in the tumor of mice in the treatment group. DBP-maf has at least two novel functions, namely, an anti-angiogenic activity and tumor killing activity through the activation of macrophages. DBP-maf may therefore represent a new strategy for the treatment of HCC. Copyright © 2012 Elsevier Inc. All rights reserved.
Requirement for STAT1 in LPS-induced gene expression in macrophages.
Ohmori, Y; Hamilton, T A
2001-04-01
This study examines the role of the signal transducer and activator of transcription 1 (STAT1) in induction of lipopolysaccharide (LPS)-stimulated gene expression both in vitro and in vivo. LPS-induced expression of an interferon (IFN)-inducible 10-kDa protein (IP-10), IFN regulatory factor-1 (IRF-1), and inducible nitric oxide synthase (iNOS) mRNAs was severely impaired in macrophages prepared from Stat1-/- mice, whereas levels of tumor necrosis factor alpha and KC (a C-X-C chemokine) mRNA in LPS-treated cell cultures were unaffected. A similar deficiency in LPS-induced gene expression was observed in livers and spleens from Stat1-/- mice. The reduced LPS-stimulated gene expression seen in Stat1-/- macrophages was not the result of reduced activation of nuclear factor kappaB. LPS stimulated the delayed activation of both IFN-stimulated response element and IFN-gamma-activated sequence binding activity in macrophages from wild-type mice. Activation of these STAT1-containing transcription factors was mediated by the intermediate induction of type I IFNs, since the LPS-induced IP-10, IRF-1, and iNOS mRNA expression was markedly reduced in macrophages from IFN-alpha/betaR-/- mice and blocked by cotreatment with antibodies against type I IFN. These results indicate that indirect activation of STAT1 by LPS-induced type I IFN participates in promoting optimal expression of LPS-inducible genes, and they suggest that STAT1 may play a critical role in innate immunity against gram-negative bacterial infection.
Deng, Song-Yun; Zhang, Le-Meng; Ai, Yu-hang; Pan, Pin-Hua; Zhao, Shuang-Ping; Su, Xiao-Li; Wu, Dong-Dong; Tan, Hong-Yi; Zhang, Li-Na; Tsung, Allan
2017-01-01
Sepsis causes many early deaths; both macrophage mitochondrial damage and oxidative stress responses are key factors in its pathogenesis. Although the exact mechanisms responsible for sepsis-induced mitochondrial damage are unknown, the nuclear transcription factor, interferon regulatory factor-1 (IRF-1) has been reported to cause mitochondrial damage in several diseases. Previously, we reported that in addition to promoting systemic inflammation, IRF-1 promoted the apoptosis of and inhibited autophagy in macrophages. In the present study, we hypothesized that lipopolysaccharide (LPS)-induced IRF-1 activation in macrophages may promote mitochondrial damage and oxidative stress. In vitro, LPS was found to promote IRF-1 activation, reactive oxygen species (ROS) production, adenosine triphosphate (ATP) depletion, superoxide dismutase (SOD) consumption, malondialdehyde (MDA) accumulation and mitochondrial depolarization in macrophages in a time- and dose-dependent manner. These effects were abrogated in cells in which IRF-1 was knocked down. Furthermore, IRF-1 overexpression increased LPS-induced oxidative stress responses and mitochondrial damage. In vivo, peritoneal macrophages obtained from IRF-1 knockout (KO) mice produced less ROS and had less mitochondrial depolarization and damage following the administration of LPS, when compared to their wild-type (WT) counterparts. In addition, IRF-1 KO mice exhibited a decreased release of mitochondrial DNA (mtDNA) following the administration of LPS. Thus, IRF-1 may be a critical factor in augmenting LPS-induced oxidative stress and mitochondrial damage in macrophages. PMID:28849179
Li, Bin; Choi, Hee-Jin; Lee, Dong-Sung; Oh, Hyuncheol; Kim, Youn-Chul; Moon, Jin-Young; Park, Won-Hwan; Park, Sun-Dong; Kim, Jai-Eun
2014-01-01
Amomum tsao-ko Crevost et Lemaire, used as a spice in Asia, is an important source of Chinese cuisine and traditional Chinese medicines. A. tsao-ko is reported to exert a variety of biological and pharmacological activities, including anti-proliferative, anti-oxidative and neuroprotective effects. In this study, NNMBS227, consisting of the ethanol extract of A. tsao-ko, exhibited potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS227 in the suppression of pro-inflammatory mediators, including pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) and cytokines (tumor necrosis factor-α and interleukin-1β) in LPS stimulated macrophages. NNMBS227 also inhibited the phosphorylation and degradation of IκB-α, as well as the nuclear translocation of nuclear factor kappa B (NF-κB) p65 caused by stimulation with LPS. In addition, NNMBS227 induced heme oxygenase (HO)-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. Using tin protoporphyrin (SnPP), an HO activity inhibitor, we confirmed an association between the anti-inflammatory effects of NNMBS227 and the up-regulation of HO-1. These findings suggest that Nrf2-dependent increases in the expression of HO-1 induced by NNMBS227 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.
A defect in inducible beta-galactosidase of B lymphocytes in the osteopetrotic (mi/mi) mouse.
Yamamoto, N; Naraparaju, V R
1996-01-01
Macrophages were activated by administration of an inflammatory lipid metabolite, lysophosphatidylcholine (lyso-Pc), to wild type mice but not murine (microphthalmic) osteopetrotic (mi/mi) mutant mice. In vitro treatment of wild type mouse peritoneal cells with lyso-Pc efficiently activated macrophages whereas lyso-Pc-treatment of mi mutant mouse peritoneal cells resulted in no activation of macrophages. Generation of macrophage activating factor requires a precursor protein, serum vitamin D binding protein (DBP), and participation of lyso-Pc-inducible beta-galactosidase of B lymphocytes. Lyso-Pc-inducible beta-galactosidase of B lymphocytes was found to be defective in mi mutant mice. PMID:8881764
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xiu-Li; Ding, Fan; Li, Hui
2015-05-29
The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect wasmore » abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation.« less
Koga, Y; Naraparaju, V R; Yamamoto, N
1999-01-01
Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor.
Dinasarapu, Ashok Reddy; Gupta, Shakti; Ram Maurya, Mano; Fahy, Eoin; Min, Jun; Sud, Manish; Gersten, Merril J; Glass, Christopher K; Subramaniam, Shankar
2013-11-01
Macrophage activation by lipopolysaccharide and adenosine triphosphate (ATP) has been studied extensively because this model system mimics the physiological context of bacterial infection and subsequent inflammatory responses. Previous studies on macrophages elucidated the biological roles of caspase-1 in post-translational activation of interleukin-1β and interleukin-18 in inflammation and apoptosis. However, the results from these studies focused only on a small number of factors. To better understand the host response, we have performed a high-throughput study of Kdo2-lipid A (KLA)-primed macrophages stimulated with ATP. The study suggests that treating mouse bone marrow-derived macrophages with KLA and ATP produces 'synergistic' effects that are not seen with treatment of KLA or ATP alone. The synergistic regulation of genes related to immunity, apoptosis and lipid metabolism is observed in a time-dependent manner. The synergistic effects are produced by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and activator protein (AP)-1 through regulation of their target cytokines. The synergistically regulated cytokines then activate signal transducer and activator of transcription (STAT) factors that result in enhanced immunity, apoptosis and lipid metabolism; STAT1 enhances immunity by promoting anti-microbial factors; and STAT3 contributes to downregulation of cell cycle and upregulation of apoptosis. STAT1 and STAT3 also regulate glycerolipid and eicosanoid metabolism, respectively. Further, western blot analysis for STAT1 and STAT3 showed that the changes in transcriptomic levels were consistent with their proteomic levels. In summary, this study shows the synergistic interaction between the toll-like receptor and purinergic receptor signaling during macrophage activation on bacterial infection. Time-course data of transcriptomics and lipidomics can be queried or downloaded from http://www.lipidmaps.org. shankar@ucsd.edu. Supplementary data are available at Bioinformatics online.
Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha.
Leibovich, S J; Polverini, P J; Shepard, H M; Wiseman, D M; Shively, V; Nuseir, N
Macrophages are important in the induction of new blood vessel growth during wound repair, inflammation and tumour growth. We show here that tumour necrosis factor-alpha (TNF-alpha), a secretory product of activated macrophages that is believed to mediate tumour cytotoxicity, is a potent inducer of new blood vessel growth (angiogenesis). In vivo, TNF-alpha induces capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membrane at very low doses. In vitro, TNF-alpha stimulates chemotaxis of bovine adrenal capillary endothelial cells and induces cultures of these cells grown on type-1 collagen gels to form capillary-tube-like structures. The angiogenic activity produced by activated murine peritoneal macrophages is completely neutralized by a polyclonal antibody to TNF-alpha, suggesting immunological features are common to TNF-alpha and the protein responsible for macrophage-derived angiogenic activity. In inflammation and wound repair, TNF-alpha could augment repair by stimulating new blood vessel growth; in tumours, TNF-alpha might both stimulate tumour development by promoting vessel growth and participate in tumour destruction by direct cytotoxicity.
NASA Astrophysics Data System (ADS)
Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha
2016-03-01
The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.
Blockade by fenspiride of endotoxin-induced neutrophil migration in the rat.
Cunha, F Q; Boukili, M A; da Motta, J I; Vargaftig, B B; Ferreira, S H
1993-07-06
Fenspiride, an antiinflammatory drug with low anti-cyclooxygenase activity, administered orally at 60-200 mg/kg inhibited neutrophil migration into peritoneal and air pouches cavities as well as exudation into peritoneal cavities induced by endotoxin but not induced by carrageenin. Up to 100 microM, fenspiride failed to inhibit the in vitro release of a neutrophil chemotactic activity by endotoxin-stimulated macrophages and the in vivo migration into the peritoneal cavities induced by the supernatant of those macrophages. The release of tumour necrosis factor by stimulated macrophages was inhibited by fenspiride in a dose-dependent manner. These results suggest that the antiinflammatory effects of fenspiride are associated with the inhibition of the tumour necrosis factor release by resident macrophages.
Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François
2017-09-01
Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W
2014-03-10
In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our observation that the induction of macrophage anti-tumor activity by L-MTP-PE required IFN-γ may be of relevance for the optimization of L-MTP-PE therapy in osteosarcoma patients.
NF-kappaB Activity in Macrophages Determines Metastatic Potential of Breast Tumor Cells
2011-08-01
Cheng DS, Chodosh LA, Blackwell TS, Yull FE: Activation of nuclear factor kappa B in mammary epithelium promotes milk loss during mammary... microbial products (15, 16). To date, the potential role of macrophages in the fetal lung innate immune response has not been closely examined. Studies...In this model, microbial products initially activate NF-kB in lung macrophages. The release of inflammatory mediators, particularly IL-1b and/or TNF-a
Theodos, C M; Povinelli, L; Molina, R; Sherry, B; Titus, R G
1991-01-01
Recombinant human tumor necrosis factor (TNF) and purified murine TNF were both able to activate macrophages to destroy intracellular Leishmania major in vitro. In addition, parasitizing macrophages with L. major markedly increased the ability of the cells to produce TNF. Finally, when mice were vaccinated with an avirulent form of L. major, the animals produced large amounts of TNF but no gamma interferon in response to infection with virulent L. major. Treating these mice with a neutralizing anti-TNF antibody led to partial but not complete inhibition of the resistant state, which suggests that factors other than TNF and gamma interferon contribute to resistance to L. major. PMID:1906844
BK channels in innate immune functions of neutrophils and macrophages
Essin, Kirill; Gollasch, Maik; Rolle, Susanne; Weissgerber, Patrick; Sausbier, Matthias; Bohn, Erwin; Autenrieth, Ingo B.; Ruth, Peter; Luft, Friedrich C.; Kettritz, Ralph
2009-01-01
Oxygen-dependent antimicrobial activity of human polymorphonuclear leukocytes (PMNs) relies on the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate oxidants. As the oxidase transfers electrons from NADPH the membrane will depolarize and concomitantly terminate oxidase activity, unless there is charge translocation to compensate. Most experimental data implicate proton channels as the effectors of this charge compensation, although large-conductance Ca2+-activated K+ (BK) channels have been suggested to be essential for normal PMN antimicrobial activity. To test this latter notion, we directly assessed the role of BK channels in phagocyte function, including the NADPH oxidase. PMNs genetically lacking BK channels (BK−/−) had normal intracellular and extracellular NADPH oxidase activity in response to both receptor-independent and phagocytic challenges. Furthermore, NADPH oxidase activity of human PMNs and macrophages was normal after treatment with BK channel inhibitors. Although BK channel inhibitors suppressed endotoxin-mediated tumor necrosis factor-α secretion by bone marrow-derived macrophages (BMDMs), BMDMs of BK−/− and wild-type mice responded identically and exhibited the same ERK, PI3K/Akt, and nuclear factor-κB activation. Based on these data, we conclude that the BK channel is not required for NADPH oxidase activity in PMNs or macrophages or for endotoxin-triggered tumor necrosis factor-α release and signal transduction BMDMs. PMID:19074007
Mantovani, Alberto; Locati, Massimo
2013-07-01
Macrophages are present in all body compartments, including cancerous tissues, and their functions are profoundly affected by signals from the microenvironment under homeostatic and pathological conditions. Tumor-associated macrophages are a major cellular component of cancer-related inflammation and have served as a paradigm for the plasticity and functional polarization of mononuclear phagocytes. Tumor-associated macrophages can exert dual influence of cancer depending on the activation state, with classically activated (M1) and alternatively activated (M2) cells generally exerting antitumoral and protumoral functions, respectively. These are extremes in a continuum of polarization states in a universe of diversity. Tumor-associated macrophages affect virtually all aspects of tumor tissues, including stem cells, metabolism, angiogenesis, invasion, and metastasis. Progress has been made in defining signaling molecules, transcription factors, epigenetic changes, and repertoire of microRNAs underlying macrophage polarization. Preclinical and early clinical data suggest that macrophages may serve as tools for the development of innovative diagnostic and therapeutic strategies in cancer and chronic nonresolving inflammatory diseases.
ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds
Osaka, Nao; Takahashi, Takumi; Murakami, Shiori; Matsuzawa, Atsushi; Noguchi, Takuya; Fujiwara, Takeshi; Aburatani, Hiroyuki; Moriyama, Keiji; Takeda, Kohsuke; Ichijo, Hidenori
2007-01-01
Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein 3-kinase family that activates both c-Jun NH2-terminal kinase and p38 pathways in response to inflammatory cytokines and physicochemical stress. We report that ASK1 deficiency in mice results in dramatic retardation of wounding-induced hair regrowth in skin. Oligonucleotide microarray analysis revealed that expression of several chemotactic and activating factors for macrophages, as well as several macrophage-specific marker genes, was reduced in the skin wound area of ASK1-deficient mice. Intracutaneous transplantation of cytokine-activated bone marrow-derived macrophages strongly induced hair growth in both wild-type and ASK1-deficient mice. These findings indicate that ASK1 is required for wounding-induced infiltration and activation of macrophages, which play central roles in inflammation-dependent hair regrowth in skin. PMID:17389227
Cutrullis, Romina A; Petray, Patricia B; Corral, Ricardo S
2017-02-01
The proinflammatory cytokine macrophage migration inhibitory factor (MIF) is a key player in innate immunity. MIF has been considered critical for controlling acute infection by the protozoan Trypanosoma cruzi, but the underlying mechanisms are poorly understood. Our study aimed to analyze whether MIF could favor microbicidal activity of the macrophage, a site where T. cruzi grows and the initial effector cell against this parasite. Using murine macrophages infected in vitro, we examined the effect of MIF on their parasiticidal ability and attempted to identify inflammatory agents involved in MIF-induced protection. Our findings show that MIF is readily secreted from peritoneal macrophages upon T. cruzi infection. MIF activates both primary and J774 phagocytes boosting the endogenous production of tumor necrosis factor-alpha via mitogen-activated protein kinase p38 signaling, as well as the release of nitric oxide and reactive oxygen species, leading to enhanced pathogen elimination. MIF can also potentiate the effect of interferon-gamma on T. cruzi killing by J774 and mouse peritoneal macrophages, rendering these cells more competent in reducing intracellular parasite burden. The present results unveil a novel innate immune pathway that contributes to host defense and broaden our understanding of the regulation of inflammatory mediators implicated in early parasite containment that is decisive for resistance to T. cruzi infection. Copyright © 2016 Elsevier GmbH. All rights reserved.
Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo
2016-03-01
Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of age on marrow macrophage number and function.
Wang, C Q; Udupa, K B; Xiao, H; Lipschitz, D A
1995-10-01
Employing flow cytometry and a monoclonal antibody against the murine macrophage antigen, Mac-1, we found a significant increase in the number of marrow macrophages in aged mice. This was reflected as significant increase with age in the number of alpha-naphthyl acetate esterase positive cells, as well as in colony forming unit-macrophage (CFU-M) progenitor cells. Macrophages from the marrow of old mice generated significantly less tumor necrosis factor alpha (TNF alpha) than did macrophages from young mice, either spontaneously or when activated by granulocyte-macrophage colony stimulating factor (GM-CSF). Furthermore, conditioned medium (CM) derived from either marrow or peritoneal macrophages of old mice caused less suppression of burst forming unit-erythroid (BFU-E) colony growth than did CM obtained from young mice. Aging, therefore, is associated with an increase in the number of marrow macrophages that have an impaired ability to generate or release cytokines. The increase in macrophage number may reflect a compensation for their reduced function. Altered macrophage number and function may contribute to the age-related decline in hematopoietic reserve capacity.
Promising landscape for regulating macrophage polarization: epigenetic viewpoint
Chen, Lu; Zhang, Wen; Xu, Zhenyu; Zuo, Jian; Jiang, Hui; Luan, Jiajie
2017-01-01
Macrophages are critical myeloid cells with the hallmark of phenotypic heterogeneity and functional plasticity. Macrophages phenotypes are commonly described as classically-activated M1 and alternatively-activated M2 macrophages which play an essential role in the tissues homeostasis and diseases pathogenesis. Alternations of macrophage polarization and function states require precise regulation of target-gene expression. Emerging data demonstrate that epigenetic mechanisms and transcriptional factors are becoming increasingly appreciated in the orchestration of macrophage polarization in response to local environmental signals. This review is to focus on the advanced concepts of epigenetics changes involved with the macrophage polarization, including microRNAs, DNA methylation and histone modification, which are responsible for the altered cellular signaling and signature genes expression during M1 or M2 polarization. Eventually, the persistent investigation and understanding of epigenetic mechanisms in tissue macrophage polarization and function will enhance the potential to develop novel therapeutic targets for various diseases. PMID:28915705
Kozicky, Lisa; Sly, Laura M
2017-12-26
Macrophages are phagocytic innate immune cells, which initiate immune responses to pathogens and contribute to healing and tissue restitution. Macrophages are equally important in turning off inflammatory responses. We have shown that macrophages stimulated with intravenous immunoglobulin (IVIg) can produce high amounts of the anti-inflammatory cytokine, interleukin 10 (IL-10), and low levels of pro-inflammatory cytokines in response to bacterial lipopolysaccharides (LPS). IVIg is a polyvalent antibody, primarily immunoglobulin Gs (IgGs), pooled from the plasma of more than 1,000 blood donors. It is used to supplement antibodies in patients with immune deficiencies or to suppress immune responses in patients with autoimmune or inflammatory conditions. Infliximab, a therapeutic anti-tumor necrosis factor alpha (TNFα) antibody, has also been shown to activate macrophages to produce IL-10 in response to inflammatory stimuli. IVIg and other antibody-based biologics can be tested to determine their effects on macrophage activation. This paper describes methods for derivation, stimulation, and assessment of murine bone marrow macrophages activated by antibodies in vitro and murine peritoneal macrophages activated with antibodies in vivo. Finally, we demonstrate the use of western blotting to determine the contribution of specific cell signaling pathways to anti-inflammatory macrophage activity. These protocols can be used with genetically modified mice, to determine the effect of a specific protein(s) on anti-inflammatory macrophage activation. These techniques can also be used to assess whether specific biologics may act by changing macrophages to an IL-10-producing anti-inflammatory activation state that reduces inflammatory responses in vivo. This can provide information on the role of macrophage activation in the efficacy of biologics during disease models in mice, and provide insight into a potential new mechanism of action in people. Conversely, this may caution against the use of specific antibody-based biologics to treat infectious disease, particularly if macrophages play an important role in host defense against that infection.
Wang, Chongzhen; Luo, Haiying; Zhu, Linnan; Yang, Fan; Chu, Zhulang; Tian, Hongling; Feng, Meifu; Zhao, Yong; Shang, Peng
2014-01-01
Microgravity environments in space can cause major abnormalities in human physiology, including decreased immunity. The underlying mechanisms of microgravity-induced inflammatory defects in macrophages are unclear. RAW264.7 cells and primary mouse macrophages were used in the present study. Lipopolysaccharide (LPS)-induced cytokine expression in mouse macrophages was detected under either simulated microgravity or 1g control. Freshly isolated primary mouse macrophages and RAW264.7 cells were cultured in a standard simulated microgravity situation using a rotary cell culture system (RCCS-1) and 1g control conditions. The cytokine expression was determined by real-time PCR and ELISA assays. Western blots were used to investigate the related intracellular signals. LPS-induced tumor necrosis factor-α (TNF-α) expression, but not interleukin-1β expression, in mouse macrophages was significantly suppressed under simulated microgravity. The molecular mechanism studies showed that LPS-induced intracellular signal transduction including phosphorylation of IKK and JNK and nuclear translocation of NF-κB in macrophages was identical under normal gravity and simulated microgravity. Furthermore, TNF-α mRNA stability did not decrease under simulated microgravity. Finally, we found that heat shock factor-1 (HSF1), a known repressor of TNF-α promoter, was markedly activated under simulated microgravity. Short-term treatment with microgravity caused significantly decreased TNF-α production. Microgravity-activated HSF1 may contribute to the decreased TNF-α expression in macrophages directly caused by microgravity, while the LPS-induced NF-κB pathway is resistant to microgravity.
The function of cancer-shed gangliosides in macrophage phenotype: involvement with angiogenesis.
Chung, Tae-Wook; Choi, Hee-Jung; Park, Mi-Ju; Choi, Hee-Jin; Lee, Syng-Ook; Kim, Keuk-Jun; Kim, Cheorl-Ho; Hong, Changwan; Kim, Kyun-Ha; Joo, Myungsoo; Ha, Ki-Tae
2017-01-17
Tumor-derived gangliosides in the tumor microenvironment are involved in the malignant progression of cancer. However, the molecular mechanisms underlying the effects of gangliosides shed from tumors on macrophage phenotype remain unknown. Here, we showed that ganglioside GM1 highly induced the activity and expression of arginase-1 (Arg-1), a major M2 macrophage marker, compared to various gangliosides in bone marrow-derived macrophages (BMDM), peritoneal macrophages and Raw264.7 macrophage cells. We found that GM1 bound to macrophage mannose receptor (MMR/CD206) and common gamma chain (γc). In addition, GM1 increased Arg-1 expression through CD206 and γc-mediated activation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription- 6 (STAT-6). Interestingly, GM1-stimulated macrophages secreted monocyte chemoattractant protein-1 (MCP-1/CCL2) through a CD206/γc/STAT6-mediated signaling pathway and induced angiogenesis. Moreover, the angiogenic effect of GM1-treated macrophages was diminished by RS102895, an MCP-1 receptor (CCR2) antagonist. From these results we suggest that tumor-shed ganglioside is a secretory factor regulating the phenotype of macrophages and consequently enhancing angiogenesis.
Liu, Qiang; Zheng, Jin; Yin, Dan-Dan; Xiang, Jie; He, Fei; Wang, Yao-Chun; Liang, Liang; Qin, Hong-Yan; Liu, Li; Liang, Ying-Min; Han, Hua
2012-05-01
Macrophage activation is modulated by both environmental cues and endogenous programs. In the present study, we investigated the role of a PAQR family protein, monocyte to macrophage differentiation-associated (MMD), in macrophage activation and unveiled its underlying molecular mechanism. Our results showed that while MMD expression could be detected in all tissues examined, its expression level is significantly up-regulated upon monocyte differentiation. Within cells, EGFP-MMD fusion protein could be co-localized to endoplasmic reticulum, mitochondria, Golgi apparatus, but not lysosomes and cytoplasm. MMD expression is up-regulated in macrophages after LPS stimulation, and this might be modulated by RBP-J, the critical transcription factor of Notch signaling. Overexpression of MMD in macrophages increased the production of TNF-α and NO upon LPS stimulation. We found that MMD overexpression enhanced ERK1/2 and Akt phosphorylation in macrophages after LPS stimulation. Blocking Erk or Akt by pharmacological agent reduced TNF-α or NO production in MMD-overexpressing macrophages, respectively. These results suggested that MMD modulates TNF-α and NO production in macrophages, and this process might involves Erk or Akt.
Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo
2015-04-01
Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.
Deng, Tingting; Zhang, Yue; Chen, Qiaoyuan; Yan, Keqin; Han, Daishu
2012-01-01
Activation of Toll-like receptors (TLRs) triggers rapid inflammatory cytokine production in various cell types. The exogenous product of growth-arrest-specific gene 6 (Gas6) and Protein S (ProS) inhibit the TLR-triggered inflammatory responses through the activation of Tyro3, Axl and Mer (TAM) receptors. However, regulation of the Gas6/ProS-TAM system remains largely unknown. In the current study, mouse macrophages are shown to constitutively express Gas6 and ProS, which synergistically suppress the basal and TLR-triggered production of inflammatory cytokines, including those of tumour necrosis factor-α, interleukin-6 and interleukin-1β, by the macrophages in an autocrine manner. Notably, TLR signalling markedly decreases Gas6 and ProS expression in macrophages through the activation of the nuclear factor-κB. Further, the down-regulation of Gas6 and ProS by TLR signalling facilitates the TLR-mediated inflammatory cytokine production in mouse macrophages. These results describe a self-regulatory mechanism of TLR signalling through the suppression of Gas6 and ProS expression. PMID:22043818
Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi
2008-01-15
Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. Copyright 2007 Wiley-Liss, Inc.
Benis, K A; Schneider, G B
1996-10-15
Osteopetrosis is a heterogeneous group of bone disorders characterized by the failure of osteoclasts to resorb bone and by several immunological defects including macrophage dysfunction. Two compounds, colony-stimulating factor-1 (CSF-1) and vitamin D-binding protein-macrophage activating factor (DBP-MAF) were used in the present study to evaluate their effects on the peritoneal population of cells and on cells within the bone marrow microenvironment in normal and incisors absent (ia) osteopetrotic rats. Previous studies in this laboratory have demonstrated that administration of DBP-MAF to newborn ia animals results in a substantial increase in bone marrow cavity size due to upregulated osteoclast function. To study the effects of these compounds on the macrophage/osteoclast precursors, DBP-MAF, CSF-1, and the combination of these compounds were given to newborn ia and normal littermate animals. Both the normal and mutant phenotypes responded similarly when treated with these compounds. Rats exhibited a profound shift toward the macrophage lineage from the neutrophil lineage when compared with vehicle-treated control animals after treatment with these compounds. In the in vivo peritoneal lavage study, animals received injections of CSF-1, DBP-MAF or DBP-MAF/CSF-1 over a 4-week period. The various types of cells in the peritoneal cavity were then enumerated. The in vitro study consisted of cells isolated from the bone marrow microenvironment and cultured on feeder layers of CSF-1, DBP-MAF, or DBP-MAF/CSF-1 for colony enumeration. The increase in macrophage numbers at the expense of neutrophil numbers could be seen in both the in vivo and in vitro experiments. The macrophage/osteoclast and neutrophil lineages have a common precursor, the granulocyte/macrophage colony-forming cell (GM-CFC). With the addition of CSF-1, the GM-CFC precursor may be induced into the macrophage/osteoclast lineage rather than the granulocyte lineage. This increased pool of cells in the macrophage/osteoclast lineage can be functionally upregulated with the subsequent addition of DBP-MAF to perform the activities of phagocytosis and bone resorption. The in vitro data also showed that DBP-MAF did not support colony development as in CSF-1 or the combination treatment. The recruitment and activation of cells into the macrophage/ osteoclast lineage may help to correct the bone and immune defects found in diseases demonstrating a significant lack of myeloid cells, as well as neutrophilia disorders and the disease, osteopetrosis.
Effects of a pyrrole-based, microtubule-depolymerizing compound on RAW 264.7 macrophages.
Ciemniecki, John A; Lewis, Clarke P; Gupton, John T; Fischer-Stenger, Krista
2016-02-25
RAW 264.7 murine macrophages were exposed to the pyrrole-based compound 3,5-Dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester (JG-03-14), which is a known microtubule depolymerizing agent with antitumor activity [1,2,3]. In this study exposure to JG-03-14 reduced the production of pro-inflammatory molecules by macrophages activated with lipopolysaccharide (LPS). Treatment with the pyrrole-based compound decreased the concentration of tumor necrosis factor-α (TNF-α) and nitric oxide (NO) released from the macrophages. Exposure to JG-03-14 also decreased TNF-α mRNA expression levels and the protein expression levels of inducible nitric oxide synthase (iNOS), the enzyme responsible for NO production in the activated macrophages. Furthermore, JG-03-14 treatment significantly changed the degradation profile of IκB-β, an inhibitor of the NF-κB transcription factor, which suggests that JG-03-14 may attenuate the activation of the LPS-induced NF-κB signaling pathway needed to produce the pro-inflammatory mediators. We conclude that JG-03-14 possesses anti-inflammatory properties. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liu, Chun-Ping; Zhang, Xian; Tan, Qing-Long; Xu, Wen-Xing; Zhou, Chang-Yuan; Luo, Min; Li, Xiong; Zeng, Xing
2017-01-01
Bladder cancer is one of the most malignant tumors closely associated with macrophages. Polyporus polysaccharide (PPS) has shown excellent efficacy in treating bladder cancer with minimal side effects. However, the molecular mechanisms underlying the effects of PPS in inhibiting bladder cancer remain unclear. In this study, we used macrophages cultured alone or with T24 human bladder cancer cell culture supernatant as study models. We found that PPS enhanced the activities of IFN-γ-stimulated RAW 264.7 macrophages, as shown by the release of inducible nitric oxide synthase (INOS), secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-6, phagocytosis activity, as well as expression of M1 phenotype indicators, such as CD40, CD284 and CD86. PPS acted upstream in activation cascade of nuclear factor (NF)-κB signaling pathways by interfering with IκB phosphorylation. In addition, PPS regulated NF-κB (P65) signaling by interfering with Toll-like receptor (TLR)-4, INOS and cyclooxygenase (COX)-2. Our results indicate that PPS activates macrophages through TLR4/NF-κB signaling pathways. PMID:29155869
PDT-treated apoptotic cells induce macrophage synthesis NO
NASA Astrophysics Data System (ADS)
Song, S.; Xing, D.; Zhou, F. F.; Chen, W. R.
2009-11-01
Nitric oxide (NO) is a biologically active molecule which has multi-functional in different species. As a second messenger and neurotransmitter, NO is not only an important regulatory factor between cells' information transmission, but also an important messenger in cell-mediated immunity and cytotoxicity. On the other side, NO is involving in some diseases' pathological process. In pathological conditions, the macrophages are activated to produce a large quantity of nitric oxide synthase (iNOS), which can use L-arginine to produce an excessive amount of NO, thereby killing bacteria, viruses, parasites, fungi, tumor cells, as well as in other series of the immune process. In this paper, photofrin-based photodynamic therapy (PDT) was used to treat EMT6 mammary tumors in vitro to induce apoptotic cells, and then co-incubation both apoptotic cells and macrophages, which could activate macrophage to induce a series of cytotoxic factors, especially NO. This, in turn, utilizes macrophages to activate a cytotoxic response towards neighboring tumor cells. These results provided a new idea for us to further study the immunological mechanism involved in damaging effects of PDT, also revealed the important function of the immune effect of apoptotic cells in PDT.
Pulliam, L; Herndier, B G; Tang, N M; McGrath, M S
1991-01-01
We wanted to establish an in vitro human model for AIDS-associated dementia and pursue the hypothesis that this disease process may be a result of soluble factors produced by HIV-infected macrophages. Human brain aggregates were prepared from nine different brain specimens, and were treated with supernatants from in vitro HIV-infected macrophages (SI), uninfected macrophages (SU), infected T cells, or macrophage-conditioned media from four AIDS patients. Seven of nine treated brains exposed to SI showed peripheral rarefaction after 1 wk of incubation that by ultrastructural analysis showed cytoplasmic vacuolation. Aggregates from two of three brain cultures treated with SI for 3 wk became smaller, an approximately 50% decrease in size. The degree of apparent toxicity in brains exposed to patient-derived macrophage supernatants paralleled the proportion of macrophages found to be expressing HIV p24. Ultrastructural abnormalities were not observed in brains treated with supernatants from HIV-infected T cells, uninfected macrophages, or LPS-activated macrophages. Levels of five neurotransmitter amino acids were decreased in comparison to the structural amino acid leucine. These findings suggest that HIV-infected macrophages, infected both in vitro as well as derived from AIDS patients' peripheral blood, produce factors that cause reproducible histochemical, ultrastructural, and functional abnormalities in human brain aggregates. Images PMID:1671392
Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms
Rőszer, Tamás
2015-01-01
The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604
Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity
1984-01-01
Gamma-interferon (IFN-gamma) is the macrophage-activating factor (MAF) produced by normal murine splenic cells and the murine T cell hybridoma 24/G1 that induces nonspecific tumoricidal activity in macrophages. Incubation of 24/G1 supernatants diluted to 8.3 IRU IFN-gamma/ml with 6 X 10(6) elicited peritoneal macrophages or bone marrow-derived macrophages for 4 h at 37 degrees C, resulted in removal of 80% of the MAF activity from the lymphokine preparation. Loss of activity appeared to result from absorption and not consumption because (a) 40% of the activity was removed after exposure to macrophage for 30 min at 4 degrees C, (b) no reduction of MAF activity was detected when the 24/G1 supernatant was incubated with macrophage culture supernatants, and (c) macrophage-treated supernatants showed a selective loss of MAF activity but not interleukin 2 (IL-2) activity. Absorption was dependent on the input of either IFN-gamma or macrophages and was time dependent at 37 degrees C but not at 4 degrees C. With four rodent species tested, absorption of murine IFN-gamma displayed species specificity. However, cultured human peripheral blood monocytes and the human histiocytic lymphoma cell line U937 were able to absorb the murine lymphokine. Although the majority of murine cell lines tested absorbed 24/G1 MAF activity, two murine macrophage cell lines, P388D1 and J774, were identified which absorbed significantly reduced amounts of natural IFN- gamma. Purified murine recombinant IFN-gamma was absorbed by elicited macrophages but not by P388D1. Normal macrophages but not P388D1 bound fluoresceinated microspheres coated with recombinant IFN-gamma and binding was inhibited by pretreatment of the normal cells with 24/G1 supernatants. Scatchard plot analysis showed that 12,000 molecules of soluble 125I-recombinant IFN-gamma bound per bone marrow macrophage with a Ka of 0.9 X 10(8) M-1. Binding was quantitatively inhibitable by natural IFN-gamma but not by murine IFN alpha. IFN-beta competed only weakly. Monoclonal antibodies against IFN-gamma either inhibited or enhanced MAF activity by blocking or increasing IFN-gamma binding to macrophages, respectively. These results indicate that IFN-gamma reacts with a receptor on macrophage in a specific and saturable manner and this interaction initiates macrophage activation. PMID:6330272
Formica, S; Roach, T I; Blackwell, J M
1994-05-01
The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic proline/serine-rich putative SH3 binding domain.
Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression.
Gurevich, David B; Severn, Charlotte E; Twomey, Catherine; Greenhough, Alexander; Cash, Jenna; Toye, Ashley M; Mellor, Harry; Martin, Paul
2018-06-04
Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti-angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor-α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Regulation of macrophage migration by products of the complement system.
Bianco, C; Götze, O; Cohn, Z A
1979-01-01
Agents formerly shown to induce rapid macrophage spreading were examined for their ability to modify the migration of macrophages in the capillary tube assay. Products of the activation of the contact phase of blood coagulation as well as the purified component Bb, the large cleavage fragment of factor B of the alternative complement pathway produced a dose-dependent inhibition of migration. In addition, inflammatory macrophages elicited with either a lipopolysaccharide endotoxin or thioglycollate medium exhibited rapid spreading and inhibited migration, whereas resident cells did not. A close correlation existed, therefore, between enhanced spreading and inhibited migration under both in vitro induced and in vivo situations. Cleavage products of component C5 of the classical complement pathway enhanced macrophage migration and did not alter spreading. In mixtures of C5 cleavage products and Bb, the predominant peptide determined the outcome of the reaction. Factor B, a normal secretory product of macrophages, may represent a common substrate for several of the proteases that induce spreading, inhibit migration, and lead to the generation of the enzymatically active fragment Bb. PMID:284412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhlel, Mohamed Amine; Inserm U545, F-59000 Lille; UDSL, F-59000 Lille
2009-08-28
Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expressionmore » of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.« less
Embryonic Stem Cells Promoting Macrophage Survival and Function are Crucial for Teratoma Development
Chen, Tianxiang; Wang, Xi; Guo, Lei; Wu, Mingmei; Duan, Zhaoxia; Lv, Jing; Tai, Wenjiao; Renganathan, Hemamalini; Didier, Ruth; Li, Jinhua; Sun, Dongming; Chen, Xiaoming; He, Xijing; Fan, Jianqing; Young, Wise; Ren, Yi
2014-01-01
Stem cell therapies have had tremendous potential application for many diseases in recent years. However, the tumorigenic properties of stem cells restrict their potential clinical application; therefore, strategies for reducing the tumorigenic potential of stem cells must be established prior to transplantation. We have demonstrated that syngeneic transplantation of embryonic stem cells (ESCs) provokes an inflammatory response that involves the rapid recruitment of bone marrow-derived macrophages (BMDMs). ESCs are able to prevent mature macrophages from macrophage colony-stimulating factor (M-CSF) withdrawal-induced apoptosis, and thus prolong macrophage lifespan significantly by blocking various apoptotic pathways in an M-CSF-independent manner. ESCs express and secrete IL-34, which may be responsible for ESC-promoted macrophage survival. This anti-apoptotic effect of ESCs involves activation of extracellular signal-regulated kinase (ERK)1/2 and PI3K/Akt pathways and thus, inhibition of ERK1/2 and PI3K/AKT activation decreases ESC-induced macrophage survival. Functionally, ESC-treated macrophages also showed a higher level of phagocytic activity. ESCs further serve to polarize BMDMs into M2-like macrophages that exhibit most tumor-associated macrophage phenotypic and functional features. ESC-educated macrophages produce high levels of arginase-1, Tie-2, and TNF-α, which participate in angiogenesis and contribute to teratoma progression. Our study suggests that induction of M2-like macrophage activation is an important mechanism for teratoma development. Strategies targeting macrophages to inhibit teratoma development would increase the safety of ESC-based therapies, inasmuch as the depletion of macrophages completely inhibits ESC-induced angiogenesis and teratoma development. PMID:25071759
Kim, Eun-Kyung; Tang, Yujiao; Cha, Kwang-Suk; Choi, Heeri; Lee, Chun Bok; Yoon, Jin-Hwan; Kim, Sang Bae; Kim, Jong-Shik; Kim, Jong Moon; Han, Weon Cheol; Choi, Suck-Jun; Lee, Sangmin; Choi, Eun-Ju; Kim, Sang-Hyun
2015-01-01
Abstract The present study aimed to examine the anti-inflammatory effects and potential mechanism of action of Artemisia asiatica Nakai (A. asiatica Nakai) extract in activated murine macrophages. A. asiatica Nakai extract showed dose-dependent suppression of lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 activity. It also showed dose-dependent inhibition of nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus and as an inhibitor of NF-κB-alpha phosphorylation. The extract's inhibitory effects were found to be mediated through NF-κB inhibition and phosphorylation of extracellular signal-regulated kinase 1/2 and p38 in LPS-stimulated J774A.1 murine macrophages, suggesting a potential mechanism for the anti-inflammatory activity of A. asiatica Nakai. To our knowledge, this is the first report of the anti-inflammatory effects of A. asiatica Nakai on J774A.1 murine macrophages; these results may help develop functional foods possessing an anti-inflammatory activity. PMID:26061361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maul, J.R.; Ransijn, A.; Buchmueller-Rouiller, Y.
1991-01-01
The experiments described in this report were aimed at determining whether L-arginine (L-arg)-derived nitrogen oxidation products (nitric oxide, nitrous acid, nitrites) are involved in the intracellular killing of Leishmania parasites by activated murine macrophages in vitro. Peritoneal or bone marrow-derived macrophages were infected with L. enriettii or L. major, then activated by exposure to recombinant murine interferon-gamma or to macrophage activating factor (MAF)-rich media in the presence of lipopolysaccharide. Activation of macrophages in regular (i.e., arginine-containing) culture medium led to complete destruction of the microorganisms within 24 h (L. enriettii) or 48 h (L. major), concomitant with accumulation of nitritesmore » (NO2-) in the culture fluids. When macrophage activation was carried out in L-arg-free medium, however, neither parasite killing nor NO2- production was obtained. A similar inhibition of macrophage leishmanicidal activity and of NO2- release was observed using media treated with arginase (which converts L-arg to urea and ornithine), or supplemented with NG-monomethyl-L-arg or guanidine (which inhibit the conversion of L-arg to nitrogen oxidation products). In all these situations, an excellent correlation between the levels of NO2- production by macrophages and intracellular killing of Leishmania was observed, whereas no strict correlation was detectable between leishmanicidal activity and superoxide production. Intracellular parasite killing by activated macrophages could be prevented by addition of iron salts to the incubation fluids. Incubation of free parasites with NaNO2 at acid pH led to immobilisation, multiplication arrest, and morphological degeneration of the microorganisms. Similarly, exposure of infected cells to NaNO2 led to killing of the intracellular parasite without affecting macrophage viability.« less
Serum from aged F344 rats conditions the activation of young macrophages.
Gómez, Christian R; Acuña-Castillo, Claudio; Nishimura, Sumiyo; Pérez, Viviana; Escobar, Alejandro; Salazar-Onfray, Flavio; Sabaj, Valeria; Torres, Claudio; Walter, Robin; Sierra, Felipe
2006-03-01
There is considerable controversy about the molecular mechanisms responsible for the variations in innate immunity associated with age. While in vivo, aged animals and humans react to an inflammatory signal with an excessive production of pro-inflammatory cytokines, studies in vitro generally show that this response is attenuated in macrophages from old individuals. In an effort to examine possible extrinsic factors that might affect the response of macrophages to lipopolysaccharide (LPS), we have challenged peritoneal macrophages obtained from young rats with sera obtained from rats of different ages. Our results indicate that the serum from aged rats significantly impairs the capacity of young macrophages to induce tumor necrosis factor-alpha (TNF-alpha) production, while at the same time it increases the basal levels of interleukin-6 (IL-6). The effect of serum from aged donors on TNF-alpha secretion requires pre-incubation and is sensitive to heat inactivation. In contrast, the stimulating effect on IL-6 is resistant to heat, and thus should not be due to a protein factor. Therefore, our results indicate that the age-related changes in macrophage activity are not only the consequence of intrinsic changes, but there also appears to be a modulatory effect imparted by the external milieu.
Effects of Thalidomide on Intracellular Mycobacterium leprae in Normal and Activated Macrophages
Tadesse, A.; Shannon, E. J.
2005-01-01
Thalidomide is an effective drug for the treatment of erythema nodosum leprosum (ENL). ENL is an inflammatory reaction that may occur in multibacillary leprosy patients. Its cause(s) as well as the mechanism of thalidomide in arresting this condition are not fully understood. It has been suggested that ENL is an immune complex-mediated hypersensitivity precipitated by the release of Mycobacterium leprae from macrophages. The released antigen may complex with precipitating antibodies, initiating complement fixation and the production of inflammatory cytokines like tumor necrosis factor alpha (TNF-α). Thalidomide has been shown in vitro to reduce antigen- or mitogen-activated macrophage production of TNF-α. We investigated if thalidomide could also influence the viability of intracellular M. leprae. Mouse peritoneal macrophages were infected with M. leprae, activated with gamma interferon and endotoxin, or nonactivated, and treated with thalidomide. Intracellular bacilli were recovered, and metabolic activity was assessed by a radiorespirometric procedure. Thalidomide did not possess antimicrobial action against M. leprae in normal and activated host macrophages. This suggests that thalidomide does not retard the release of mycobacterial antigens, a possible prelude or precipitating factor for ENL. A distinct sequence of events explaining the mechanism of action for thalidomide's successful treatment of ENL has yet to be established. PMID:15642997
Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation.
Marwick, John A; Mills, Ross; Kay, Oliver; Michail, Kyriakos; Stephen, Jillian; Rossi, Adriano G; Dransfield, Ian; Hirani, Nikhil
2018-06-04
Apoptotic cells modulate the function of macrophages to control and resolve inflammation. Here, we show that neutrophils induce a rapid and sustained suppression of NF-κB signalling in the macrophage through a unique regulatory relationship which is independent of apoptosis. The reduction of macrophage NF-κB activation occurs through a blockade in transforming growth factor β-activated kinase 1 (TAK1) and IKKβ activation. As a consequence, NF-κB (p65) phosphorylation is reduced, its translocation to the nucleus is inhibited and NF-κB-mediated inflammatory cytokine transcription is suppressed. Gene Set Enrichment Analysis reveals that this suppression of NF-κB activation is not restricted to post-translational modifications of the canonical NF-κB pathway, but is also imprinted at the transcriptional level. Thus neutrophils exert a sustained anti-inflammatory phenotypic reprogramming of the macrophage, which is reflected by the sustained reduction in the release of pro- but not anti- inflammatory cytokines from the macrophage. Together, our findings identify a novel apoptosis-independent mechanism by which neutrophils regulate the mediator profile and reprogramming of monocytes/macrophages, representing an important nodal point for inflammatory control.
Hao, Ming-xiu; Jiang, Li-sheng; Fang, Ning-yuan; Pu, Jun; Hu, Liu-hua; Shen, Ling-Hong; Song, Wei; He, Ben
2010-01-01
The endocannabinoid system has recently been attracted interest for its anti-inflammatory and anti-oxidative properties. In this study, we investigated the role of the endocannabinoid system in regulating the oxidized low-density lipoprotein (oxLDL)-induced inflammatory response in macrophages. RAW264.7 mouse macrophages and peritoneal macrophages isolated from Sprague-Dawley (SD) rats were exposed to oxLDL with or without the synthetic cannabinoid WIN55,212-2. To assess the inflammatory response, reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF- α) levels were determined, and activation of the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappa B signaling pathways were assessed. We observed that: i) oxLDL strongly induced ROS generation and TNF- α secretion in murine macrophages; ii) oxLDL-induced TNF- α and ROS levels could be lowered considerably by WIN55,212-2 via inhibition of MAPK (ERK1/2) signaling and NF-kappa B activity; and iii) the effects of WIN55212-2 were attenuated by the selective CB2 receptor antagonist AM630. These results demonstrate the involvement of the endocannabinoid system in regulating the oxLDL-induced inflammatory response in macrophages, and indicate that the CB2 receptor may offer a novel pharmaceutical target for treating atherosclerosis. PMID:20305287
Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2.
Cui, Guimei; Wei, Pan; Zhao, Yuxi; Guan, Zhenhong; Yang, Li; Sun, Wanchun; Wang, Shuangxi; Peng, Qisheng
2014-11-07
The calcium-dependent protease calpain2 is involved in macrophages apoptosis. Brucella infection-induced up-regulation of intracellular calcium level is an essential factor for the intracellular survival of Brucella within macrophages. Here, we hypothesize that calcium-dependent E3 ubiquitin ligase Nedd4 ubiquitinates calpain2 and inhibits Brucella infection-induced macrophage apoptosis via degradation of calpain2.Our results reveal that Brucella infection induces increases in Nedd4 activity in an intracellular calcium dependent manner. Furthermore, Brucella infection-induced degradation of calpain2 is mediated by Nedd4 ubiquitination of calpain2. Brucella infection-induced calpain2 degradation inhibited macrophages apoptosis. Treatment of Brucella infected macrophages with calcium chelator BAPTA or Nedd4 knock-down decreased Nedd4 activity, prevented calpain2 degradation, and resulted in macrophages apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.
He, Hongliang; Yuan, Quan; Bie, Jinghua; Wallace, Ryan L; Yannie, Paul J; Wang, Jing; Lancina, Michael G; Zolotarskaya, Olga Yu; Korzun, William; Yang, Hu; Ghosh, Shobha
2018-03-01
Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque burden. Copyright © 2017 Elsevier Inc. All rights reserved.
Farias, L H S; Rodrigues, A P D; Coêlho, E C; Santos, M F; Sampaio, S C; Silva, E O
2017-09-01
American tegumentary leishmaniasis is caused by different species of Leishmania. This protozoan employs several mechanisms to subvert the microbicidal activity of macrophages and, given the limited efficacy of current therapies, the development of alternative treatments is essential. Animal venoms are known to exhibit a variety of pharmacological activities, including antiparasitic effects. Crotoxin (CTX) is the main component of Crotalus durissus terrificus venom, and it has several biological effects. Nevertheless, there is no report of CTX activity during macrophage - Leishmania interactions. Thus, the main objective of this study was to evaluate whether CTX has a role in macrophage M1 polarization during Leishmania infection murine macrophages, Leishmania amazonensis promastigotes and L. amazonensis-infected macrophages were challenged with CTX. MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] toxicity assays were performed on murine macrophages, and no damage was observed in these cells. Promastigotes, however, were affected by treatment with CTX (IC50 = 22·86 µg mL-1) as were intracellular amastigotes. Macrophages treated with CTX also demonstrated increased reactive oxygen species production. After they were infected with Leishmania, macrophages exhibited an increase in nitric oxide production that converged into an M1 activation profile, as suggested by their elevated production of the cytokines interleukin-6 and tumour necrosis factor-α and changes in their morphology. CTX was able to reverse the L. amazonensis-mediated inhibition of macrophage immune responses and is capable of polarizing macrophages to the M1 profile, which is associated with a better prognosis for cutaneous leishmaniasis treatment.
López-Pelaéz, Marta; Fumagalli, Stefano; Sanz, Carlos; Herrero, Clara; Guerra, Susana; Fernandez, Margarita; Alemany, Susana
2012-01-01
Cot/tpl2 is the only MAP3K that activates MKK1/2-Erk1/2 in Toll-like receptor–activated macrophages. Here we show that Cot/tpl2 regulates RSK, S6 ribosomal protein, and 4E-BP phosphorylation after stimulation of bone marrow–derived macrophages with lipopolysaccharide (LPS), poly I:C, or zymosan. The dissociation of the 4E-BP–eIF4E complex, a key event in the cap-dependent mRNA translation initiation, is dramatically reduced in LPS-stimulated Cot/tpl2-knockout (KO) macrophages versus LPS-stimulated wild-type (Wt) macrophages. Accordingly, after LPS activation, increased cap-dependent translation is observed in Wt macrophages but not in Cot/tpl2 KO macrophages. In agreement with these data, Cot/tpl2 increases the polysomal recruitment of the 5´ TOP eEF1α and eEF2 mRNAs, as well as of inflammatory mediator gene–encoding mRNAs, such as tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and KC in LPS-stimulated macrophages. In addition, Cot/tpl2 deficiency also reduces total TNFα, IL-6, and KC mRNA expression in LPS-stimulated macrophages, which is concomitant with a decrease in their mRNA half-lives. Macrophages require rapid fine control of translation to provide an accurate and not self-damaging response to host infection, and our data show that Cot/tpl2 controls inflammatory mediator gene–encoding mRNA translation in Toll-like receptor–activated macrophages. PMID:22675026
López-Pelaéz, Marta; Fumagalli, Stefano; Sanz, Carlos; Herrero, Clara; Guerra, Susana; Fernandez, Margarita; Alemany, Susana
2012-08-01
Cot/tpl2 is the only MAP3K that activates MKK1/2-Erk1/2 in Toll-like receptor-activated macrophages. Here we show that Cot/tpl2 regulates RSK, S6 ribosomal protein, and 4E-BP phosphorylation after stimulation of bone marrow-derived macrophages with lipopolysaccharide (LPS), poly I:C, or zymosan. The dissociation of the 4E-BP-eIF4E complex, a key event in the cap-dependent mRNA translation initiation, is dramatically reduced in LPS-stimulated Cot/tpl2-knockout (KO) macrophages versus LPS-stimulated wild-type (Wt) macrophages. Accordingly, after LPS activation, increased cap-dependent translation is observed in Wt macrophages but not in Cot/tpl2 KO macrophages. In agreement with these data, Cot/tpl2 increases the polysomal recruitment of the 5´ TOP eEF1α and eEF2 mRNAs, as well as of inflammatory mediator gene-encoding mRNAs, such as tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and KC in LPS-stimulated macrophages. In addition, Cot/tpl2 deficiency also reduces total TNFα, IL-6, and KC mRNA expression in LPS-stimulated macrophages, which is concomitant with a decrease in their mRNA half-lives. Macrophages require rapid fine control of translation to provide an accurate and not self-damaging response to host infection, and our data show that Cot/tpl2 controls inflammatory mediator gene-encoding mRNA translation in Toll-like receptor-activated macrophages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlberg, Angela; Auble, Mark R.; Petro, Thomas M.
2006-09-30
Macrophages responding to viral infections may contribute to autoimmune demyelinating diseases (ADD). Macrophages from ADD-susceptible SJL/J mice responding to Theiler's Virus (TMEV) infection, the TLR7 agonist loxoribine, or the TLR4 agonist-LPS expressed less IL-12 p35 but more IL-12/23 p40 and IFN-{beta} than macrophages from ADD-resistant B10.S mice. While expression of IRF-1 and -7 was similar between B10.S and SJL/J TMEV-infected macrophages, SJL/J but not B10.S macrophages exhibited constitutively active IRF-3. In contrast to overexpressed IRF-1, IRF-5, and IRF-7, which stimulated p35 promoter reporter activity, overexpressed IRF-3 repressed p35 promoter activity in response to TMEV infection, loxoribine, IFN-{gamma}/LPS, but not IFN-{gamma}more » alone. IRF-3 lessened but did not eliminate IRF-1-stimulated p35 promoter activity. Repression by IRF-3 required bp -172 to -122 of the p35 promoter. The data suggest that pre-activated IRF-3 is a major factor in the differences in IL-12 production between B10.S and SJL/J macrophages responding to TMEV.« less
Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen.
Hsieh, Jessica Y; Smith, Tim D; Meli, Vijaykumar S; Tran, Thi N; Botvinick, Elliot L; Liu, Wendy F
2017-01-01
Fibrin is a major component of the provisional extracellular matrix formed during tissue repair following injury, and enables cell infiltration and anchoring at the wound site. Macrophages are dynamic regulators of this process, advancing and resolving inflammation in response to cues in their microenvironment. Although much is known about how soluble factors such as cytokines and chemokines regulate macrophage polarization, less is understood about how insoluble and adhesive cues, specifically the blood coagulation matrix fibrin, influence macrophage behavior. In this study, we observed that fibrin and its precursor fibrinogen elicit distinct macrophage functions. Culturing macrophages on fibrin gels fabricated by combining fibrinogen with thrombin stimulated secretion of the anti-inflammatory cytokine, interleukin-10 (IL-10). In contrast, exposure of macrophages to soluble fibrinogen stimulated high levels of inflammatory cytokine tumor necrosis factor alpha (TNF-α). Macrophages maintained their anti-inflammatory behavior when cultured on fibrin gels in the presence of soluble fibrinogen. In addition, adhesion to fibrin matrices inhibited TNF-α production in response to stimulation with LPS and IFN-γ, cytokines known to promote inflammatory macrophage polarization. Our data demonstrate that fibrin exerts a protective effect on macrophages, preventing inflammatory activation by stimuli including fibrinogen, LPS, and IFN-γ. Together, our study suggests that the presentation of fibrin(ogen) may be a key switch in regulating macrophage phenotype behavior, and this feature may provide a valuable immunomodulatory strategy for tissue healing and regeneration. Fibrin is a fibrous protein resulting from blood clotting and provides a provisional matrix into which cells migrate and to which they adhere during wound healing. Macrophages play an important role in this process, and are needed for both advancing and resolving inflammation. We demonstrate that culture of macrophages on fibrin matrices exerts an anti-inflammatory effect, whereas the soluble precursor fibrinogen stimulates inflammatory activation. Moreover, culture on fibrin completely abrogates inflammatory signaling caused by fibrinogen or known inflammatory stimuli including LPS and IFN-γ. Together, these studies show that the presentation of fibrin(ogen) is important for regulating a switch between macrophage pro- and anti-inflammatory behavior. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kimura, Yoshiyuki; Sumiyoshi, Maho; Baba, Kimiye
2016-01-01
An increase in tumor-associated macrophages (TAMs) around the tumor microenvironment has been closely associated with a poor prognosis in patients with cancer, and M2 TAMs promote tumor growth and tumor metastasis by stimulating angiogenesis or lymphangiogenesis in tumors. We herein examined the effects of nine synthetic hydroxystilbenes on M2 macrophage activation and differentiation, and three selected dihydroxystilbenes on vascular endothelial cell growth factor (VEGF)-C-induced tube formation in human lymphatic endothelial cells (HLECs) (in vitro). We also investigated the antitumor and antimetastatic effects of three synthetic dihydroxystilbenes in LM8-bearing mice in vivo. The three selected synthetic stilbenes (at concentrations of 5, 10, 25, and 50 μM) inhibited the production of interleukin-10 and monocyte chemoattractant protein-1 in M2 macrophages, but promoted that of transforming growth factor-β1. The three dihydroxystilbenes (at concentrations of 10-50 μM) inhibited the phosphorylation of signal transducer and activator of transcript 3 without affecting its expression in the differentiation of M2 macrophages. Furthermore, the 2,3- and 4,4'-dihydroxystilbene inhibited VEGF-C-induced lymphangiogenesis in HLECs. Both 2,3- and 4,4'-dihydroxystilbene (at 10 and 25 mg/kg, twice daily) inhibited tumor growth and metastasis to the lung in mice. These results suggested that the antitumor and antimetastatic effects of 2,3- and 4,4'-dihydroxystilbene were partly due to anti-lymphangiogenesis, and the regulation of M2 macrophage activation and differentiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Therapeutic potential of carbohydrates as regulators of macrophage activation.
Lundahl, Mimmi L E; Scanlan, Eoin M; Lavelle, Ed C
2017-12-15
It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential. Copyright © 2017 Elsevier Inc. All rights reserved.
Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1
Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki
2008-01-01
Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461
Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.
Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki
2008-07-01
Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.
Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon
2015-10-13
Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.
Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon
2015-01-01
Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent. PMID:26473845
CD74-Downregulation of Placental Macrophage-Trophoblastic Interactions in Preeclampsia.
Przybyl, Lukasz; Haase, Nadine; Golic, Michaela; Rugor, Julianna; Solano, Maria Emilia; Arck, Petra Clara; Gauster, Martin; Huppertz, Berthold; Emontzpohl, Christoph; Stoppe, Christian; Bernhagen, Jürgen; Leng, Lin; Bucala, Richard; Schulz, Herbert; Heuser, Arnd; Weedon-Fekjær, M Susanne; Johnsen, Guro M; Peetz, Dirk; Luft, Friedrich C; Staff, Anne Cathrine; Müller, Dominik N; Dechend, Ralf; Herse, Florian
2016-06-24
We hypothesized that cluster of differentiation 74 (CD74) downregulation on placental macrophages, leading to altered macrophage-trophoblast interaction, is involved in preeclampsia. Preeclamptic pregnancies feature hypertension, proteinuria, and placental anomalies. Feto-placental macrophages regulate villous trophoblast differentiation during placental development. Disturbance of this well-balanced regulation can lead to pathological pregnancies. We performed whole-genome expression analysis of placental tissue. CD74 was one of the most downregulated genes in placentas from preeclamptic women. By reverse transcriptase-polymerase chain reaction, we confirmed this finding in early-onset (<34 gestational week, n=26) and late-onset (≥34 gestational week, n=24) samples from preeclamptic women, compared with healthy pregnant controls (n=28). CD74 protein levels were analyzed by Western blot and flow cytometry. We identified placental macrophages to express CD74 by immunofluorescence, flow cytometry, and RT-PCR. CD74-positive macrophages were significantly reduced in preeclamptic placentas compared with controls. CD74-silenced macrophages showed that the adhesion molecules ALCAM, ICAM4, and Syndecan-2, as well as macrophage adhesion to trophoblasts were diminished. Naive and activated macrophages lacking CD74 showed a shift toward a proinflammatory signature with an increased secretion of tumor necrosis factor-α, chemokine (C-C motif) ligand 5, and monocyte chemotactic protein-1, when cocultured with trophoblasts compared with control macrophages. Trophoblasts stimulated by these factors express more CYP2J2, sFlt1, TNFα, and IL-8. CD74-knockout mice showed disturbed placental morphology, reduced junctional zone, smaller placentas, and impaired spiral artery remodeling with fetal growth restriction. CD74 downregulation in placental macrophages is present in preeclampsia. CD74 downregulation leads to altered macrophage activation toward a proinflammatory signature and a disturbed crosstalk with trophoblasts. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi xi; Zhang, Man; Cai, Yuehua
Activation of the silent mating type information regulation 2 homolog 1 (SIRT1) has been shown consistent antiinflammatory function. However, little information is available on the function of SIRT1 during Angiotensin II (AngII)-induced atherosclerosis. Here we report atheroprotective effects of sirt1 activation in a model of AngII-accelerated atherosclerosis, characterized by suppression pro-inflammatory transcription factors Nuclear transcription factor (NF)-κB and Signal Transducers and Activators of Transcription. (STAT) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the SIRT1 agonist SRT1720 substantially attenuated AngII-accelerated atherosclerosis with decreasing blood pressure and inhibited NF-κB and STAT3 activation, which was associated with suppressionmore » of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in AngII-treated VSMCs and macrophages: SIRT1 activation inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of AngII and highlight actions of SIRT1 activation to inhibit AngII signaling, which is atheroprotective. - Highlights: • SRT1720 reduced atherosclerotic lesion size in aortic arches and atherosclerotic lesion macrophage content. • SRT1720 could inhibit the phosphorylation of STAT3 and p65 phosphorylation and translocation. • SRT1720 could inhibit the expression of proinflammatory factor.« less
Kim, Jin; Park, Chang-Shin; Lim, Yunsook; Kim, Hyun-Sook
2009-04-01
Natural products are increasingly recognized as potential targets for drug discovery and development. We previously reported that Paeonia japonica, Houttuynia cordata, and Aster scaber enhanced macrophage activation both in vitro and in vivo. In the present study we investigated the immunomodulating effects of these plants on lipopolysacharide (LPS)-stimulated macrophages. An aqueous extract of each plant was administered to female BALB/c mice every other day for 4 weeks. Peritoneal macrophages were then collected and incubated to examine the immunoreactivity of macrophages against LPS at different time points. The expression levels of inducible nitric oxide (NO) synthetase (iNOS), cyclooxygenase (COX)-2, and inhibitory factor kappaB alpha (IkappaBalpha) proteins and the production of NO metabolite (nitrite), prostaglandin (PG) E(2), and the pro-inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha were determined in the activated macrophages treated with extracts from each plant individually or combined. High levels of pro-inflammatory cytokines were produced by A. scaber-, P. japonica-, and H. cordata-treated macrophages following 24 hours of LPS stimulation. P. japonica, H. cordata, and A. scaber treatment also induced the production of nitrate by LPS-treated macrophages. Induction of iNOS mRNA and protein was also different in each group. PGE(2) secretion was up-regulated by all extract-treated macrophages at early time points; however, no significant differences were observed between the groups by 8 hours post-LPS stimulation. Treatment with A. scaber extract resulted in the highest levels of IkappaBalpha degradation. Our findings illustrate that the natural plant products P. japonica, H. cordata, and A. scaber may enhance immune function by modulating ex vivo pro-inflammatory cytokine and NO production as well as the expression of iNOS and COX-2.
Yu, Tao; Yang, Yanyan; Kwak, Yi-Seong; Song, Gwan Gyu; Kim, Mi-Yeon; Rhee, Man Hee; Cho, Jae Youl
2017-04-01
Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng , a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis factor-α/interferon-γ-treated synovial cells, and HEK293 cells transfected with various inducers of inflammation. G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis factor-α and interleukin-1β. G-Rc also markedly suppressed the activation of TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling.
Anticryptococcal effect of amphotericin B is mediated through macrophage production of nitric oxide.
Tohyama, M; Kawakami, K; Saito, A
1996-01-01
Amphotericin B (AmB) is a classical antifungal drug and one of the most effective antifungal drugs for the treatment of systemic fungal infection. It is also known to have various immunomodulating activities other than its direct antifungal effect. In the present study, we demonstrated that AmB augmented gamma interferon (IFN-gamma)-induced killing potentials of murine peritoneal macrophages against Cryptococcus neoformans in a dose-dependent manner. This effect was strongly blocked by NG-monomethyl-L-arginine, a competitive inhibitor of nitric oxide (NO) synthesis. In addition, AmB markedly augmented macrophage NO production induced by IFN-gamma with a dose-response curve similar to that seen with its effect on the anticryptococcal activity. These effects were partially mediated by either tumor necrosis factor alpha or interleukin-1, because AmB enhanced IFN-gamma-induced production of these cytokines by macrophages and their specific antibodies partially inhibited the AmB-induced enhancement of NO generation when they were used separately. Our results indicate that AmB induces the production of tumor necrosis factor alpha and IL-1 by macrophages and augments their anticryptococcal activity through triggering the NO-dependent pathway. PMID:8843304
Characterization of the receptors for mycobacterial cord factor in Guinea pig.
Toyonaga, Kenji; Miyake, Yasunobu; Yamasaki, Sho
2014-01-01
Guinea pig is a widely used animal for research and development of tuberculosis vaccines, since its pathological disease process is similar to that present in humans. We have previously reported that two C-type lectin receptors, Mincle (macrophage inducible C-type lectin, also called Clec4e) and MCL (macrophage C-type lectin, also called Clec4d), recognize the mycobacterial cord factor, trehalose-6,6'-dimycolate (TDM). Here, we characterized the function of the guinea pig homologue of Mincle (gpMincle) and MCL (gpMCL). gpMincle directly bound to TDM and transduced an activating signal through ITAM-bearing adaptor molecule, FcRγ. Whereas, gpMCL lacked C-terminus and failed to bind to TDM. mRNA expression of gpMincle was detected in the spleen, lymph nodes and peritoneal macrophages and it was strongly up-regulated upon stimulation of zymosan and TDM. The surface expression of gpMincle was detected on activated macrophages by a newly established monoclonal antibody that also possesses a blocking activity. This antibody potently suppressed TNF production in BCG-infected macrophages. Collectively, gpMincle is the TDM receptor in the guinea pig and TDM-Mincle axis is involved in host immune responses against mycobacteria.
Withers, Sarah B; Agabiti-Rosei, Claudia; Livingstone, Daniel M; Little, Matthew C; Aslam, Rehima; Malik, Rayaz A; Heagerty, Anthony M
2011-04-01
The aim of this study was to determine whether macrophages dispersed throughout perivascular fat are crucial to the loss of anticontractile function when healthy adipose tissue becomes inflamed and to gain an understanding of the mechanisms involved. Pharmacological studies on in vitro small arterial segments from a mouse model of inducible macrophage ablation and on wild-type animals were carried out with and without perivascular fat using 2 physiological stimuli of inflammation: aldosterone and hypoxia. Both inflammatory insults caused a similar loss of anticontractile capacity of perivascular fat and increased macrophage activation. Aldosterone receptor antagonism and free radical scavengers were able to restore this capacity and reduce macrophage activation. However, in a mouse deficient of macrophages CD11b-diptheria toxin receptor (CD11b-DTR), there was no increase in contractility of arteries following aldosterone incubation or hypoxia. The presence and activation of macrophages in adipose tissue is the key modulator of the increase in contractility in arteries with perivascular fat following induction of inflammation. Despite multiple factors that may be involved in bringing about the vascular consequences of obesity, the ability of eplerenone to ameliorate the inflammatory effects of both aldosterone and hypoxia may be of potential therapeutic interest.
Dzik, J M; Zieliński, Z; Cieśla, J; Wałajtys-Rode, E
2010-03-01
To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having 'lung phase' during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes beta and delta of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis-infected guinea pig nor in platelet-activating factor (PAF)-stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.
Evans, C E; Mylchreest, S; Mee, A P; Berry, J L; Andrew, J G
2006-01-01
1,25-Dihydroxyvitamin D(3) has a pivotal role in bone resorption and osteoclast activity. As activated macrophages are known to synthesise 1,25-dihydroxyvitamin D(3), this study examined whether pressure modulated its synthesis. Pressure and particles have been shown to increase synthesis of pro-resorptive cytokines and other factors by cultured macrophages. Human peripheral blood macrophages were isolated, cultured and exposed to pressure (similar to that found in the human joint) and/or particles. Synthesis of 1,25-dihydroxyvitamin D(3) by macrophages was assayed using high pressure liquid chromatography and in situ hybridization. Synthesis of 1,25-dihydroxyvitamin D(3) but not 24,25-dihydroxyvitamin D(3) was increased in macrophages under pressure. In situ hybridization demonstrated an increase in 1alpha-hydroxylase expression in response to pressure or particles and simultaneous exposure to both stimuli generated higher expression of 1alpha-hydroxylase. In conclusion, this is the first study to demonstrate that mechanical loading, in the form of pressure, stimulates 1,25-dihydroxyvitamin D(3) synthesis in human macrophages. These findings have implications for the in vivo situation, as they suggest that 1,25-dihydroxyvitamin D(3) could be one factor stimulating osteoclastic bone resorption in pathologies, such as arthritis or implant loosening, where intra-articular or intra-osseous pressure is raised or where wear particles interact with macrophages.
Dai, Xiaoying; Mao, Congzheng; Lan, Xiuwan; Chen, Huan; Li, Meihua; Bai, Jing; Deng, Jingmin; Liang, Qiuli; Zhang, Jianquan; Zhong, Xiaoning; Liang, Yi; Fan, Jiangtao; Luo, Honglin; He, Zhiyi
2017-08-18
Penicillium marneffei (P. marneffei) is a thermally dimorphic fungus pathogen that causes fatal infection. Alveolar macrophages are innate immune cells that have critical roles in protection against pulmonary fungal pathogens and the macrophage polarization state has the potential to be a deciding factor in disease progression or resolution. The aim of this study was to investigate mouse alveolar macrophage polarization states during P. marneffei infection. We used enzyme-linked immunosorbent (ELISA) assays, quantitative real-time PCR (qRT-PCR), and Griess, arginase activity to evaluate the phenotypic markers of alveolar macrophages from BALB/C mice infected with P. marneffei. We then treated alveolar macrophages from infected mice with P. marneffei cytoplasmic yeast antigen (CYA) and investigated alveolar macrophage phenotypic markers in order to identify macrophage polarization in response to P. marneffei antigens. Our results showed: i) P. marneffei infection significantly enhanced the expression of classically activated macrophage (M1)-phenotypic markers (inducible nitric oxide synthase [iNOS] mRNA, nitric oxide [NO], interleukin-12 [IL-12], tumor necrosis factor-alpha [TNF-α]) and alternatively activated macrophage (M2a)-phenotypic markers (arginase1 [Arg1] mRNA, urea) during the second week post-infection. This significantly decreased during the fourth week post-infection. ii) During P. marneffei infection, CYA stimulation also significantly enhanced the expression of M1 and M2a-phenotypic markers, consistent with the results for P. marneffei infection and CYA stimulation preferentially induced M1 subtype. The data from the current study demonstrated that alveolar macrophage M1/M2a subtypes were present in host defense against acute P. marneffei infection and that CYA could mimic P. marneffei to induce a host immune response with enhanced M1 subtype. This could be useful for investigating the enhancement of host anti-P. marneffei immune responses and to provide novel ideas for prevention of P. marneffei-infection.
Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.
Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia
2017-10-01
Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.
Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization.
Lu, Hong; Wu, Lianfeng; Liu, Leping; Ruan, Qingqing; Zhang, Xing; Hong, Weilong; Wu, Shijia; Jin, Guihua; Bai, Yongheng
2018-05-15
Interstitial inflammation is the main pathological feature in kidneys following injury, and the polarization of macrophages is involved in the process of inflammatory injury. Previous studies have shown that quercetin has a renal anti-inflammatory activity, but the potential molecular mechanism remains unknown. In obstructive kidneys, administration of quercetin inhibited tubulointerstitial injury and reduced the synthesis and release of inflammatory factors. Further study revealed that quercetin inhibited the infiltration of CD68+ macrophages in renal interstitium. Moreover, the decrease in levels of iNOS and IL-12, as well as the proportion of F4/80+/CD11b+/CD86+ macrophages, indicated quercetin-mediated inhibition of M1 macrophage polarization in the injured kidneys. In cultured macrophages, lipopolysaccharide-induced inflammatory polarization was suppressed by quercetin treatment, resulting in the reduction of the release of inflammatory factors. Notably, quercetin-induced inhibitory effects on inflammatory macrophage polarization were associated with down-regulated activities of NF-κB p65 and IRF5, and thus led to the inactivation of upstream signaling TLR4/Myd88. Interestingly, quercetin also inhibited the polarization of F4/80+/CD11b+/CD206+ M2 macrophages, and reduced excessive accumulation of extracellular matrix and interstitial fibrosis by antagonizing the TGF-β1/Smad2/3 signaling. Thus, quercetin ameliorates kidney injury via modulating macrophage polarization, and may have therapeutic potential for patients with kidney injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis
Behar, SM; Martin, CJ; Booty, MG; Nishimura, T; Zhao, X; Gan, H; Divangahi, M; Remold, HG
2011-01-01
Two different forms of death are commonly observed when Mycobacterium tuberculosis (Mtb)-infected macrophages die: (i) necrosis, a death modality defined by cell lysis and (ii) apoptosis, a form of death that maintains an intact plasma membrane. Necrosis is a mechanism used by bacteria to exit the macrophage, evade host defenses, and spread. In contrast, apoptosis of infected macrophages is associated with diminished pathogen viability. Apoptosis occurs when tumor necrosis factor activates the extrinsic death domain pathway, leading to caspase-8 activation. In addition, mitochondrial outer membrane permeabilization leading to activation of the intrinsic apoptotic pathway is required. Both pathways lead to caspase-3 activation, which results in apoptosis. We have recently demonstrated that during mycobacterial infection, cell death is regulated by the eicosanoids, prostaglandin E2 (proapoptotic) and lipoxin (LX)A4 (pronecrotic). Although PGE2 protects against necrosis, virulent Mtb induces LXA4 and inhibits PGE2 production. Under such conditions, mitochondrial inner membrane damage leads to macrophage necrosis. Thus, virulent Mtb subverts eicosanoid regulation of cell death to foil innate defense mechanisms of the macrophage. PMID:21307848
Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis.
Behar, S M; Martin, C J; Booty, M G; Nishimura, T; Zhao, X; Gan, H-X; Divangahi, M; Remold, H G
2011-05-01
Two different forms of death are commonly observed when Mycobacterium tuberculosis (Mtb)-infected macrophages die: (i) necrosis, a death modality defined by cell lysis and (ii) apoptosis, a form of death that maintains an intact plasma membrane. Necrosis is a mechanism used by bacteria to exit the macrophage, evade host defenses, and spread. In contrast, apoptosis of infected macrophages is associated with diminished pathogen viability. Apoptosis occurs when tumor necrosis factor activates the extrinsic death domain pathway, leading to caspase-8 activation. In addition, mitochondrial outer membrane permeabilization leading to activation of the intrinsic apoptotic pathway is required. Both pathways lead to caspase-3 activation, which results in apoptosis. We have recently demonstrated that during mycobacterial infection, cell death is regulated by the eicosanoids, prostaglandin E(2) (proapoptotic) and lipoxin (LX)A(4) (pronecrotic). Although PGE(2) protects against necrosis, virulent Mtb induces LXA(4) and inhibits PGE(2) production. Under such conditions, mitochondrial inner membrane damage leads to macrophage necrosis. Thus, virulent Mtb subverts eicosanoid regulation of cell death to foil innate defense mechanisms of the macrophage.
Lu, Zheng; Chang, Lingling; Du, Qian; Huang, Yong; Zhang, Xiujuan; Wu, Xingchen; Zhang, Jie; Li, Ruizhen; Zhang, Zelin; Zhang, Wenlong; Zhao, Xiaomin; Tong, Dewen
2018-01-01
Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L. , has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.
Lu, Zheng; Chang, Lingling; Du, Qian; Huang, Yong; Zhang, Xiujuan; Wu, Xingchen; Zhang, Jie; Li, Ruizhen; Zhang, Zelin; Zhang, Wenlong; Zhao, Xiaomin; Tong, Dewen
2018-01-01
Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway. PMID:29867481
Beirão, Breno C B; Raposo, Teresa; Pang, Lisa Y; Argyle, David J
2015-07-15
Canine mammary carcinoma is the most common cancer in female dogs and is often fatal due to the development of distance metastasis. The microenvironment of a tumour often contains abundant infiltrates of macrophages called tumour-associated macrophages (TAMs). TAMs express an activated phenotype, termed M2, which sustains proliferation of cancer cells, and has been correlated with poor clinical outcomes in human cancer patients. Cancer cells themselves have been implicated in stimulating the conversion of macrophages to a TAM with an M2 phenotype. This process has yet to be fully elucidated. Here we investigate the interplay between cancer cells and macrophages in the context of canine mammary carcinoma. We show that cancer cells inhibit lipopolysaccharide (LPS)-induced macrophage activation. Further, we show that macrophage associated proteins, colony-stimulating factor (CSF)-1 and C-C motif ligand (CCL)-2, stimulate macrophages and are responsible for the effects of cancer cells on macrophages. We suggest the existence of a feedback loop between macrophages and cancer cells; while cancer cells influence the phenotype of the TAMs through CSF-1 and CCL2, the macrophages induce canine mammary cancer cells to upregulate their own expression of the receptors for CSF-1 and CCL2 and increase the cancer cellular metabolic activity. However, these cytokines in isolation induce a phenotypic state in macrophages that is between M1 and M2 phenotypes. Overall, our results demonstrate the extent to which canine mammary carcinoma cells influence the macrophage phenotype and the relevance of a feedback loop between these cells, involving CSF-1 and CCL2 as important mediators.
Guo, Yinfeng; Song, Zhixia; Zhou, Min; Yang, Ying; Zhao, Yu; Liu, Bicheng; Zhang, Xiaoliang
2017-01-01
Macrophage infiltration has been linked to the pathogenesis of diabetic nephropathy (DN). However, how infiltrating macrophages affect the progression of DN is unknown. Although infiltrating macrophages produce pro-inflammatory mediators and induce apoptosis in a variety of target cells, there are no studies in podocytes. Therefore, we tested the contribution of macrophages to podocytes apoptosis in DN. in vivo experiments showed that apoptosis in podocytes was increased in streptozocin (STZ)-induced diabetic rats compared with control rats and that this apoptosis was accompanied by increased macrophages infiltration in the kidney. Then, we established a co-culture system to study the interaction between macrophages and podocytes in the absence or presence of high glucose. Macrophages did not trigger podocytes apoptosis when they were co-cultured in the absence of high glucose in a transwell co-culture system. Additionally, although podocyte apoptosis was increased after high glucose stimulation, there was a further enhancement of podocyte apoptosis when podocytes were co-cultured with macrophages in the presence of high glucose compared with podocytes cultured alone in high glucose. Mechanistically, we found that macrophages were activated when they were exposed to high glucose, displaying pro-inflammatory M1 polarization. Furthermore, conditioned media (CM) from such high glucose-activated M1 macrophages (HG-CM) trigged podocytes apoptosis in a reactive oxygen species (ROS)-p38mitogen-activated protein kinases (p38MAPK) dependent manner, which was abolished by either a ROS inhibitor (Tempo) or a p38MAPK inhibitor (SB203580). Finally, we identified tumor necrosis factor (TNF-α) as a key mediator of high glucose-activated macrophages to induce podocytes apoptosis because an anti-TNF-α neutralizing antibody blunted the apoptotic response, excess ROS generation and p38MPAK activation in podocytes induced by HG-CM. Moreover, addition of recombinant TNF-α similarly resulted in podocytes apoptosis. In summary, the TNF-α that was released by high glucose-activated macrophages promoted podocytes apoptosis via ROS-p38MAPK pathway. Blockade of TNF-α secretion from high glucose activated macrophages and ROS-p38MAPK pathway might be effective therapeutic options to limit podocytes apoptosis and delay the progression of diabetic nephropathy. PMID:28881810
Xu, Rende; Li, Chenguang; Wu, Yizhe; Shen, Li; Ma, Jianying; Qian, Juying; Ge, Junbo
2017-02-01
Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability. Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions. These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype. © 2016 American Heart Association, Inc.
Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin
2018-03-07
Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.
Xiao, Yong-Tao; Wang, Jun; Lu, Wei; Cao, Yi; Cai, Wei
2016-01-01
Intestinal inflammation plays a critical role in the pathogenesis of intestinal failure (IF). The macrophages are essential to maintain the intestinal homeostasis. However, the underlying mechanisms of intestinal macrophages activation remain poorly understood. Since microRNAs (miRNAs) have pivotal roles in regulation of immune responses, here we aimed to investigate the role of miR-124 in the activation of intestinal macrophages. In this study, we showed that the intestinal macrophages increased in pediatric IF patients and resulted in the induction of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The miRNA fluorescence in situ hybridization analysis showed that the expression of miR-124 significantly reduced in intestinal macrophages in IF patients. Overexpression of miR-124 was sufficient to inhibit intestinal macrophages activation by attenuating production of IL-6 and TNF-α. Further studies showed that miR-124 could directly target the 3′-untranslated region of both signal transducer and activator of transcription 3 (STAT3) and acetylcholinesterase (AChE) mRNAs, and suppress their protein expressions. The AChE potentially negates the cholinergic anti-inflammatory signal by hydrolyzing the acetylcholine. We here showed that intestinal macrophages increasingly expressed the AChE and STAT3 in IF patients when compared with controls. The inhibitors against to STAT3 and AChE significantly suppressed the lipopolysaccharides-induced IL-6 and TNF-α production in macrophages. Taken together, these findings highlight an important role for miR-124 in the regulation of intestinal macrophages activation, and suggest a potential application of miR-124 in pediatric IF treatment regarding as suppressing intestinal inflammation. PMID:27977009
Vignesh, Kavitha Subramanian; Landero Figueroa, Julio A.; Porollo, Aleksey; Caruso, Joseph A.; Deepe, George S.
2013-01-01
SUMMARY Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like Zn. The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7 and the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H+ channel function and triggered reactive oxygen species (ROS) generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function. PMID:24138881
Dinesh, Palani; Rasool, MahaboobKhan
2017-03-01
The current study was designed to investigate the therapeutic potential of berberine on monosodium urate (MSU) crystal stimulated RAW 264.7 macrophages and in MSU crystal induced rats. Our results indicate that berberine (25, 50 and 75μM) suppressed the levels of pro-inflammatory cytokines (interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNFα)) and intracellular reactive oxygen species in MSU crystal stimulated RAW 264.7 macrophages. The mRNA expression levels of IL-1β, caspase 1, nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3), thioredoxin interacting protein (TXNIP) and kelch-like ECH-associated protein 1 (Keap1) were found downregulated with the upregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) transcription factor and its associated anti-oxidant enzymes: Heme oxygenase I (HO-1), superoxide dismutase (SOD1), glutathione peroxidase (GPx), NADPH quinone oxidoreductase-1 (NQO1) and catalase (CAT) in MSU crystal stimulated RAW 264.7 macrophages upon berberine treatment. Subsequently, western blot analysis revealed that berberine decreased the protein expression of IL-1β and caspase 1 and increased Nrf2 expression in RAW 264.7 macrophages. Immunofluorescence analysis also explored increased expression of Nrf2 in MSU crystal stimulated RAW 264.7 macrophages by berberine treatment. In addition, the paw edema, pain score, pro-inflammatory cytokines (IL-1β and TNFα) and articular elastase activity were found significantly reduced in berberine (50mg/kgb·wt) administered MSU crystal-induced rats. Conclusively, our current findings suggest that berberine may represent as a potential candidate for the treatment of gouty arthritis by suppressing inflammatory mediators and activating Nrf2 anti-oxidant pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
Oxysterol Restraint of Cholesterol Synthesis Prevents AIM2 Inflammasome Activation.
Dang, Eric V; McDonald, Jeffrey G; Russell, David W; Cyster, Jason G
2017-11-16
Type I interferon restrains interleukin-1β (IL-1β)-driven inflammation in macrophages by upregulating cholesterol-25-hydroxylase (Ch25h) and repressing SREBP transcription factors. However, the molecular links between lipid metabolism and IL-1β production remain obscure. Here, we demonstrate that production of 25-hydroxycholesterol (25-HC) by macrophages is required to prevent inflammasome activation by the DNA sensor protein absent in melanoma 2 (AIM2). We find that in response to bacterial infection or lipopolysaccharide (LPS) stimulation, macrophages upregulate Ch25h to maintain repression of SREBP2 activation and cholesterol synthesis. Increasing macrophage cholesterol content is sufficient to trigger IL-1β release in a crystal-independent but AIM2-dependent manner. Ch25h deficiency results in cholesterol-dependent reduced mitochondrial respiratory capacity and release of mitochondrial DNA into the cytosol. AIM2 deficiency rescues the increased inflammasome activity observed in Ch25h -/- . Therefore, activated macrophages utilize 25-HC in an anti-inflammatory circuit that maintains mitochondrial integrity and prevents spurious AIM2 inflammasome activation. Copyright © 2017 Elsevier Inc. All rights reserved.
Alveolar macrophage development in mice requires L-plastin for cellular localization in alveoli.
Todd, Elizabeth M; Zhou, Julie Y; Szasz, Taylor P; Deady, Lauren E; D'Angelo, June A; Cheung, Matthew D; Kim, Alfred H J; Morley, Sharon Celeste
2016-12-15
Alveolar macrophages are lung-resident sentinel cells that develop perinatally and protect against pulmonary infection. Molecular mechanisms controlling alveolar macrophage generation have not been fully defined. Here, we show that the actin-bundling protein L-plastin (LPL) is required for the perinatal development of alveolar macrophages. Mice expressing a conditional allele of LPL (CD11c.Cre pos -LPL fl/fl ) exhibited significant reductions in alveolar macrophages and failed to effectively clear pulmonary pneumococcal infection, showing that immunodeficiency results from reduced alveolar macrophage numbers. We next identified the phase of alveolar macrophage development requiring LPL. In mice, fetal monocytes arrive in the lungs during a late fetal stage, maturing to alveolar macrophages through a prealveolar macrophage intermediate. LPL was required for the transition from prealveolar macrophages to mature alveolar macrophages. The transition from prealveolar macrophage to alveolar macrophage requires the upregulation of the transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ), which is induced by exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF). Despite abundant lung GM-CSF and intact GM-CSF receptor signaling, PPAR-γ was not sufficiently upregulated in developing alveolar macrophages in LPL -/- pups, suggesting that precursor cells were not correctly localized to the alveoli, where GM-CSF is produced. We found that LPL supports 2 actin-based processes essential for correct localization of alveolar macrophage precursors: (1) transmigration into the alveoli, and (2) engraftment in the alveoli. We thus identify a molecular pathway governing neonatal alveolar macrophage development and show that genetic disruption of alveolar macrophage development results in immunodeficiency. © 2016 by The American Society of Hematology.
Duan, Junchao; Hu, Hejing; Feng, Lin; Yang, Xiaozhe; Sun, Zhiwei
2017-09-01
The safety evaluation of silica nanoparticles (SiNPs) are getting great attention due to its widely-used in food sciences, chemical industry and biomedicine. However, the adverse effect and underlying mechanisms of SiNPs on cardiovascular system, especially on angiogenesis is still unclear. This study was aimed to illuminate the possible mechanisms of SiNPs on angiogenesis in zebrafish transgenic lines, Tg(fli-1:EGFP) and Albino. SiNPs caused the cardiovascular malformations in a dose-dependent manner via intravenous microinjection. The incidences of cardiovascular malformations were observed as: Pericardial edema > Bradycardia > Blood deficiency. The area of subintestinal vessels (SIVs) was significant reduced in SiNPs-treated groups, accompanied with the weaken expression of vascular endothelial cells in zebrafish embryos. Using neutral red staining, the quantitative number of macrophage was declined; whereas macrophage inhibition rate was elevated in a dose-dependent way. Furthermore, SiNPs significantly decreased the mRNA expression of macrophage activity related gene, macrophage migration inhibitory factor (MIF) and the angiogenesis related gene, vascular endothelial growth factor receptor 2 (VEGFR2). The protein levels of p-Erk1/2 and p-p38 MAPK were markedly decreased in zebrafish exposed to SiNPs. Our results implicate that SiNPs inhibited the macrophage activity and angiogenesis via the downregulation of MAPK singaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nieto, Concha; Bragado, Rafael; Municio, Cristina; Sierra-Filardi, Elena; Alonso, Bárbara; Escribese, María M; Domínguez-Andrés, Jorge; Ardavín, Carlos; Castrillo, Antonio; Vega, Miguel A; Puig-Kröger, Amaya; Corbí, Angel L
2018-01-01
GM-CSF promotes the functional maturation of lung alveolar macrophages (A-MØ), whose differentiation is dependent on the peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor. In fact, blockade of GM-CSF-initiated signaling or deletion of the PPARγ-encoding gene PPARG leads to functionally defective A-MØ and the onset of pulmonary alveolar proteinosis. In vitro , macrophages generated in the presence of GM-CSF display potent proinflammatory, immunogenic and tumor growth-limiting activities. Since GM-CSF upregulates PPARγ expression, we hypothesized that PPARγ might contribute to the gene signature and functional profile of human GM-CSF-conditioned macrophages. To verify this hypothesis, PPARγ expression and activity was assessed in human monocyte-derived macrophages generated in the presence of GM-CSF [proinflammatory GM-CSF-conditioned human monocyte-derived macrophages (GM-MØ)] or M-CSF (anti-inflammatory M-MØ), as well as in ex vivo isolated human A-MØ. GM-MØ showed higher PPARγ expression than M-MØ, and the expression of PPARγ in GM-MØ was found to largely depend on activin A. Ligand-induced activation of PPARγ also resulted in distinct transcriptional and functional outcomes in GM-MØ and M-MØ. Moreover, and in the absence of exogenous activating ligands, PPARγ knockdown significantly altered the GM-MØ transcriptome, causing a global upregulation of proinflammatory genes and significantly modulating the expression of genes involved in cell proliferation and migration. Similar effects were observed in ex vivo isolated human A-MØ, where PPARγ silencing led to enhanced expression of genes coding for growth factors and chemokines and downregulation of cell surface pathogen receptors. Therefore, PPARγ shapes the transcriptome of GM-CSF-dependent human macrophages ( in vitro derived GM-MØ and ex vivo isolated A-MØ) in the absence of exogenous activating ligands, and its expression is primarily regulated by activin A. These results suggest that activin A, through enhancement of PPARγ expression, help macrophages to switch from a proinflammatory to an anti-inflammatory polarization state, thus contributing to limit tissue damage and restore homeostasis.
Chen, Lu; Li, Qian; Zhou, Xiang-dong; Shi, Yu; Yang, Lang; Xu, Sen-lin; Chen, Cong; Cui, You-hong; Zhang, Xia; Bian, Xiu-wu
2014-05-01
Infiltration of inflammatory cells and production of pro-angiogenic factors are important in lung cancer immunity. The distributions of those cells and their contributions to the production of pro-angiogenic factors and the activation phenotype of macrophages in bronchoalveolar lavage fluid (BALF) from lung cancer patients remain unclear. We analyzed the presence of distinct inflammatory cells and the macrophage activation phenotype together with the levels of vascular endothelial growth factor (VEGF) and interleukin 8 (IL-8) within BALF from 54 smoking lung cancer patients including 36 squamous cell carcinoma (SCC), 9 adenocarcinoma (AC), and 9 small cell lung cancer (SCLC) in comparison with those from 13 non-smoking and 7 smoking patients with nonspecific chronic inflammation and 8 non-smoking normal controls. We found a significantly lower percentage of total macrophages and a much higher percentage of neutrophils among all inflammatory cells in BALF from lung cancer and non-specific chronic inflammation patients. BALF from AC patients had a significantly higher percentage of lymphocytes. CD163(+)) macrophages predominantly existed in BALF from SCLC patients. BALF of lung cancer patients had markedly higher levels of IL-8 and VEGF. Interestingly, IL-8 level was positively correlated to the numbers of neutrophils and lymphocytes. VEGF level was inversely correlated to the number of lymphocytes but positively to cancer cells in SCC cases, whereas no correlation existed between CD163(+)) macrophages and the levels of IL-8 and VEGF. Our results suggest that the detection of infiltrating inflammatory cells and pro-angiogenic factors in BALF will be helpful for diagnosis of cancerous inflammation in lungs. Copyright © 2014 Elsevier B.V. All rights reserved.
Qi, Fangfang; Zuo, Zejie; Yang, Junhua; Hu, Saisai; Yang, Yang; Yuan, Qunfang; Zou, Juntao; Guo, Kaihua; Yao, Zhibin
2017-02-10
The spatial learning abilities of developing mice benefit from extrinsic cues, such as an enriched environment, with concomitant enhancement in cognitive functions. Interestingly, such enhancements can be further increased through intrinsic Bacillus Calmette-Guérin (BCG) vaccination. Here, we first report that combined neonatal BCG vaccination and exposure to an enriched environment (Enr) induced combined neurobeneficial effects, including hippocampal long-term potentiation, and increased neurogenesis and spatial learning and memory, in mice exposed to the Enr and vaccinated with BCG relative to those in the Enr that did not receive BCG vaccination. Neonatal BCG vaccination markedly induced anti-inflammatory meningeal macrophage polarization both in regular and Enr breeding mice. The meninges are composed of the pia mater, dura mater, and choroid plexus. Alternatively, this anti-inflammatory activity of the meninges occurred simultaneously with increased expression of the neurotrophic factors BDNF/IGF-1 and the M2 microglial phenotype in the hippocampus. Our results reveal a critical role for BCG vaccination in the regulation of neurogenesis and spatial cognition through meningeal macrophage M2 polarization and neurotrophic factor expression; these effects were completely or partially prevented by minocycline or anti-IL-10 antibody treatment, respectively. Together, we first claim that immunological factor and environmental factor induce a combined effect on neurogenesis and cognition via a common pathway-meningeal macrophage M2 polarization. We also present a novel functional association between peripheral T lymphocytes and meningeal macrophages after evoking adaptive immune responses in the periphery whereby T lymphocytes are recruited to the meninges in response to systemic IFN-γ signaling. This leads to meningeal macrophage M2 polarization, subsequent to microglial M2 activation and neurotrophic factor expression, and eventually promotes a positive behavior.
Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients.
Yamamoto, N; Naraparaju, V R; Asbell, S O
1996-06-15
Serum vitamin D3-binding protein (Gc protein) can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor of the macrophage activating factor (MAF). Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high titered MAF, Gc-MAF. When peripheral blood monocytes/macrophages of 52 patients bearing various types of cancer were incubated with 100 pg/ml of GcMAF, the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of patient plasma Gc protein was found to be severely reduced in about 25% of this patient population. About 45% of the patients had moderately reduced MAF precursor activities. Loss of the precursor activity was found to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase detected in the patient's bloodstream. The source of the enzyme appeared to be cancerous cells. Radiation therapy decreased plasma alpha-N-acetylgalactosaminidase activity with concomitant increase of precursor activity. This implies that radiation therapy decreases the number of cancerous cells capable of secreting alpha-N-acetylgalactosaminidase. Both alpha-N-acetylgalactosaminidase activity and MAF precursor activity of Gc protein in patient bloodstream can serve as diagnostic and prognostic indices.
Xin, Hongqi; Chopp, Michael; Shen, Li Hong; Zhang, Rui Lan; Zhang, Li; Zhang, Zheng Gang; Li, Yi
2013-05-10
Multipotent mesenchymal stromal cells (MSCs) decrease the expression of transforming growth factor β1 (TGFβ1) in astrocytes and subsequently decrease astrocytic plasminogen activator inhibitor 1 (PAI-1) level in an autocrine manner. Since activated microglia/macrophages are also a source of TGFβ1 after stroke, we therefore tested whether MSCs regulate TGFβ1 expression in microglia/macrophages and subsequently alters PAI-1 expression after ischemia. TGFβ1 and its downstream effector phosphorylated SMAD 2/3 (p-SMAD 2/3) were measured in mice subjected to middle cerebral artery occlusion (MCAo). MSC treatment significantly decreased TGFβ1 protein expression in both astrocytes and microglia/macrophages in the ischemic boundary zone (IBZ) at day 14 after stroke. However, the p-SMAD 2/3 was only detected in astrocytes and decreased after MSC treatment. In vitro, RT-PCR results showed that the TGFβ1 mRNA level was increased in both astrocytes and microglia/macrophages in an astrocyte-microglia/macrophage co-culture system after oxygen-glucose deprived (OGD) treatment. MSCs treatment significantly decreased the above TGFβ1 mRNA level under OGD conditions, respectively. OGD increased the PAI-1 mRNA in astrocytes in the astrocyte-microglia/macrophage co-culture system, and MSC administration significantly decreased this level. PAI-1 mRNA was very low in microglia/macrophages compared with that in astrocytes under different conditions. Western blot results also verified that MSC administration significantly decreased p-SMAD 2/3 and PAI-1 level in astrocytes in astrocyte-microglia/macrophage co-culture system under OGD conditions. Our in vivo and in vitro data, in concert, suggest that MSCs decrease TGFβ1 expression in microglia/macrophages in the IBZ which contribute to the down-regulation of PAI-1 level in astrocytes. Published by Elsevier Ireland Ltd.
Wang, Yun; Jiang, Qing
2012-01-01
Cytokines generated from macrophages contributes to pathogenesis of inflammation-associated diseases. Here we show that gamma-tocotrienol (γ-TE), a natural vitamin E form, inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) production without affecting TNFα, IL-10 or cyclooxygenase-2 (COX-2) up-regulation in murine RAW267.4 macrophages. Mechanistic studies indicate that nuclear factor (NF)-κB, but not JNK, p38 or ERK MAP kinases, is important to IL-6 production and γ-TE treatment blocks NF-κB activation. In contrast, COX-2 appears to be regulated by p38 MAPK in RAW cells, but γ-TE has no effect on LPS-stimulated p38 phosphorylation. Despite necessary for IL-6, NF-κB activation by TNFα or other cytokines is not sufficient for IL-6 induction with exception of LPS. CCAAT-enhancer binding protein β (C/EBPβ) appears to be involved in IL-6 formation, because LPS induces C/EBPβ up-regulation, which parallels IL-6 production, and knockdown of C/EBPβ with siRNA results in diminished IL-6. LPS but not individual cytokines is capable of stimulating C/EBPβ and IL-6 in macrophages. Consistent with its dampening effect on IL-6, γ-TE blunts LPS-induced up-regulation of C/EBPβ without affecting C/EBPδ. γ-TE also decreases LPS-stimulated granulocyte-colony stimulating factor (G-CSF), a C/EBPβ target gene. Compared with RAW267.4 cells, γ-TE shows similar or stronger inhibitory effects on LPS-triggered activation of NF-κB, C/EPBβ and C/EBPδ, and more potently suppresses IL-6 and G-CSF in bone marrow-derived macrophages. Our study demonstrates that γ-TE has anti-inflammatory activities by inhibition of NF-κB and C/EBPs activation in macrophages. PMID:23246159
Factors involved in the cytotoxicity of kaolinite towards macrophages in vitro.
Davies, R
1983-01-01
The cytotoxicity of a high purity Cornish kaolinite toward mouse peritoneal macrophages in vitro was examined. The material was cytotoxic towards these cells, the activity could be decreased substantially by pretreating the dust with poly(2-vinylpyridine N-oxide). Pretreatment of the dusts with poly(acrylic acid) had a small effect on cytotoxicity, but combinations of the polymer treatments virtually abolished the material's biological activity towards macrophages. These studies indicated that the cytotoxicity of kaolinite is not due to its flakelike morphology. Images FIGURE 1. PMID:6641658
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, G.-J.; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
2008-04-01
Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha}more » and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.« less
Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming
2008-04-01
Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.
Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu
The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sproutingmore » blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.« less
McPeek, Matthew; Malur, Anagha; Tokarz, Debra A; Murray, Gina; Barna, Barbara P; Thomassen, Mary Jane
2018-06-15
Peroxisome proliferator activated receptor gamma (PPARγ), a ligand activated nuclear transcription factor, is constitutively expressed in alveolar macrophages of healthy individuals. PPARγ deficiencies have been noted in several lung diseases including the alveolar macrophages of pulmonary sarcoidosis patients. We have previously described a murine model of multiwall carbon nanotubes (MWCNT) induced pulmonary granulomatous inflammation which bears striking similarities to pulmonary sarcoidosis, including the deficiency of alveolar macrophage PPARγ. Further studies demonstrate alveolar macrophage PPARγ deficiency exacerbates MWCNT-induced pulmonary granulomas. Based on these observations we hypothesized that activation of PPARγ via administration of the PPARγ-specific ligand rosiglitazone would limit MWCNT-induced granuloma formation and promote PPARγ-dependent pathways. Results presented here show that rosiglitazone significantly limits the frequency and severity of MWCNT-induced pulmonary granulomas. Furthermore, rosiglitazone attenuates alveolar macrophage NF-κB activity and downregulates the expression of the pro-inflammatory mediators, CCL2 and osteopontin. PPARγ activation via rosiglitazone also prevents the MWCNT-induced deficiency of PPARγ-regulated ATP-binding cassette lipid transporter-G1 (ABCG1) expression. ABCG1 is crucial to pulmonary lipid homeostasis. ABCG1 deficiency results in lipid accumulation which promotes pro-inflammatory macrophage activation. Our results indicate that restoration of homeostatic ABCG1 levels by rosiglitazone correlates with both reduced pulmonary lipid accumulation, and decreased alveolar macrophage activation. These data confirm and further support our previous observations that PPARγ pathways are critical in regulating MWCNT-induced pulmonary granulomatous inflammation. Copyright © 2018 Elsevier Inc. All rights reserved.
Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis
Siegmund, Daniela; Kums, Juliane; Ehrenschwender, Martin; Wajant, Harald
2016-01-01
Macrophages express TNFR1 as well as TNFR2 and are also major producers of tumor necrosis factor (TNF), especially upon contact with pathogen-associated molecular patterns. Consequently, TNF not only acts as a macrophage-derived effector molecule but also regulates the activity and viability of macrophages. Here, we investigated the individual contribution of TNFR1 and TNFR2 to TNF-induced cell death in macrophages. Exclusive stimulation of TNFR1 showed no cytotoxic effect whereas selective stimulation of TNFR2 displayed mild cytotoxicity. Intriguingly, the latter was strongly enhanced by the caspase inhibitor zVAD-fmk. The strong cytotoxic activity of TNFR2 in the presence of zVAD-fmk was reversed by necrostatin-1, indicating necroptotic cell death. TNFR1- and TNF-deficient macrophages turned out to be resistant against TNFR2-induced cell death. In addition, the cIAP-depleting SMAC mimetic BV6 also enforced TNF/TNFR1-mediated necroptotic cell death in the presence of zVAD-fmk. In sum, our data suggest a model in which TNFR2 sensitizes macrophages for endogenous TNF-induced TNFR1-mediated necroptosis by the known ability of TNFR2 to interfere with the survival activity of TRAF2-cIAP1/2 complexes. PMID:27899821
Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis.
Siegmund, Daniela; Kums, Juliane; Ehrenschwender, Martin; Wajant, Harald
2016-09-22
Macrophages express TNFR1 as well as TNFR2 and are also major producers of tumor necrosis factor (TNF), especially upon contact with pathogen-associated molecular patterns. Consequently, TNF not only acts as a macrophage-derived effector molecule but also regulates the activity and viability of macrophages. Here, we investigated the individual contribution of TNFR1 and TNFR2 to TNF-induced cell death in macrophages. Exclusive stimulation of TNFR1 showed no cytotoxic effect whereas selective stimulation of TNFR2 displayed mild cytotoxicity. Intriguingly, the latter was strongly enhanced by the caspase inhibitor zVAD-fmk. The strong cytotoxic activity of TNFR2 in the presence of zVAD-fmk was reversed by necrostatin-1, indicating necroptotic cell death. TNFR1- and TNF-deficient macrophages turned out to be resistant against TNFR2-induced cell death. In addition, the cIAP-depleting SMAC mimetic BV6 also enforced TNF/TNFR1-mediated necroptotic cell death in the presence of zVAD-fmk. In sum, our data suggest a model in which TNFR2 sensitizes macrophages for endogenous TNF-induced TNFR1-mediated necroptosis by the known ability of TNFR2 to interfere with the survival activity of TRAF2-cIAP1/2 complexes.
Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages.
Ma, Tong-Cui; Zhou, Run-Hong; Wang, Xu; Li, Jie-Liang; Sang, Ming; Zhou, Li; Zhuang, Ke; Hou, Wei; Guo, De-Yin; Ho, Wen-Zhe
2016-10-13
The Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, is known to have anti-inflammatory effect in both in vitro and in vivo systems. Macrophages play a key role in inflammation and immune activation, which is implicated in HIV disease progression. Here, we investigated the effect of BBI on HIV infection of peripheral blood monocyte-derived macrophages. We demonstrated that BBI could potently inhibit HIV replication in macrophages without cytotoxicity. Investigation of the mechanism(s) of BBI action on HIV showed that BBI induced the expression of IFN-β and multiple IFN stimulated genes (ISGs), including Myxovirus resistance protein 2 (Mx2), 2',5'-oligoadenylate synthetase (OAS-1), Virus inhibitory protein (viperin), ISG15 and ISG56. BBI treatment of macrophages also increased the expression of several known HIV restriction factors, including APOBEC3F, APOBEC3G and tetherin. Furthermore, BBI enhanced the phosphorylation of IRF3, a key regulator of IFN-β. The inhibition of IFN-β pathway by the neutralization antibody to type I IFN receptor (Anti-IFNAR) abolished BBI-mediated induction of the anti-HIV factors and inhibition of HIV in macrophages. These findings that BBI could activate IFN-β-mediated signaling pathway, initialize the intracellular innate immunity in macrophages and potently inhibit HIV at multiple steps of viral replication cycle indicate the necessity to further investigate BBI as an alternative and cost-effective anti-HIV natural product.
Huang, Wen-Chung; Chang, Wei-Tien; Wu, Shu-Ju; Xu, Pei-Yin; Ting, Nai-Chun; Liou, Chian-Jiun
2013-10-01
Previous studies found that phloretin (PT) and phlorizin (PZ) could inhibit glucose transport, with PT being a better inhibitor of lipid peroxidation. This study aimed to evaluate the antiobesity effects of PT and PZ in 3T3-L1 cells and if they can modulate the relationship between adipocytes and macrophages. Differentiated 3T3-L1 cells were treated with PT or PZ. Subsequently, transcription factors of adipogenesis and lipolysis proteins were measured. In addition, RAW 264.7 macrophages treated with PT or PZ were cultured in differentiated media from 3T3-L1 cells to analyze inflammatory mediators and signaling pathways. PT significantly enhanced glycerol release and inhibited the adipogenesis-related transcription factors. PT also promoted phosphorylation of AMP-activated protein kinase and increased activity of adipose triglyceride lipase and hormone-sensitive lipase. PT suppressed the nuclear transcription factor kappa-B and mitogen-activated protein kinase pathways when RAW 264.7 cells were cultured in differentiated media from 3T3-L1 cells. PZ improved lipolysis and inhibited the macrophage inflammatory response less effectively than PT. This study suggests that PT is more effective than PZ at increasing lipolysis in adipocytes. In addition, PT also suppresses inflammatory response in macrophage that is stimulated by differentiated media from 3T3-L1 cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Qiang; Imamura, Ryu; Motani, Kou; Kushiyama, Hiroko; Nagata, Shigekazu; Suda, Takashi
2013-06-01
Pathogenic intracellular bacteria often hijack macrophages for their propagation. The infected macrophages release IL-1β and IL-18 and simultaneously commit suicide, which is called pyroptosis; both responses require caspase-1. Here, we found that pyroptotic cells induced by microbial infection were efficiently engulfed by human monocytic THP-1-cell-derived macrophages or mouse peritoneal macrophages. This engulfment was inhibited by the D89E mutant of milk fat globule (MFG) epidermal growth factor (EGF) factor 8 (MFG-E8; a phosphatidylserine-binding protein) that has been shown previously to inhibit phosphatidylserine-dependent engulfment of apoptotic cells by macrophages, suggesting that the engulfment of pyroptotic cells by macrophages was also phosphatidylserine dependent. Using a pair of cell lines that respectively exhibited pyroptosis or apoptosis after muramyl dipeptide treatment, we showed that both pyroptotic and apoptotic cells bound to a T-cell immunoglobulin and mucin domain-containing 4 (Tim4; another phosphatidylserine-binding protein)-coated plate, whereas heat-killed necrotic cells did not, indicating that phosphatidylserine was externalized in pyroptosis and apoptosis but not in accidental necrosis. Macrophages engulfed apoptotic cells most efficiently, followed by pyroptotic and then heat-killed necrotic cells. Pyroptotic cells also released a macrophage attractant(s), 'find-me' signal, whose activity was diminished by apyrase that degrades nucleoside triphosphate to nucleoside monophosphate. Heat-killed necrotic cells and pyroptotic cells released ATP much more efficiently than apoptotic cells. These results suggest that pyroptotic cells, like apoptotic cells, actively induce phagocytosis by macrophages using 'eat-me' and find-me signals. Based on these results, a possible role of coordinated induction of pyroptosis and inflammatory cytokine production is discussed.
Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation.
Prockop, Darwin J; Oh, Joo Youn
2012-01-01
Recent observations have demonstrated that one of the functions of mesenchymal stem/stromal cells (MSCs) is to serve as guardians against excessive inflammatory responses. One mode of action of the cells is that they are activated to express the interleukin (IL)-1 receptor antagonist. A second mode of action is to create a negative feedback loop in which tumor necrosis factor-α (TNF-α) and other proinflammatory cytokines from resident macrophages activate MSCs to secrete the multifunctional anti-inflammatory protein TNF-α stimulated gene/protein 6 (TSG-6). The TSG-6 then reduces nuclear factor-κB (NF-κB) signaling in the resident macrophages and thereby modulates the cascade of proinflammatory cytokines. A third mode of action is to create a second negative feedback loop whereby lipopolysaccharide, TNF-α, nitric oxide, and perhaps other damage-associated molecular patterns (DAMPs) from injured tissues and macrophages activate MSCs to secrete prostaglandin E(2) (PGE(2)). The PGE(2) converts macrophages to the phenotype that secretes IL-10. There are also suggestions that MSCs may produce anti-inflammatory effects through additional modes of action including activation to express the antireactive oxygen species protein stanniocalcin-1.
Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.
Kim, Eun-Min; Kwak, You Shine; Yi, Myung-Hee; Kim, Ju Yeong; Sohn, Woon-Mok; Yong, Tai-Soon
2017-05-01
Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.
Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo
Kim, Eun-Min; Kwak, You Shine; YI, Myung-Hee; Kim, Ju Yeong; Sohn, Woon-Mok
2017-01-01
Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection. PMID:28542159
Huber, Alexandra; Kallerup, Rie S; Korsholm, Karen S; Franzyk, Henrik; Lepenies, Bernd; Christensen, Dennis; Foged, Camilla; Lang, Roland
2016-08-01
The T-cell adjuvanticity of mycobacterial cord factor trehalose 6,6'-dimycolate (TDM) is well established. The identification of the C-type lectin Mincle on innate immune cells as the receptor for TDM and its synthetic analogue trehalose 6,6'-dibehenate (TDB) has raised interest in development of synthetic Mincle ligands as novel adjuvants. Trehalose mono- (TMXs) and diesters (TDXs) with symmetrically shortened acyl chains [denoted by X: arachidate (A), stearate (S), palmitate (P), and myristate (M)] were tested. Upon stimulation of murine macrophages, G-CSF secretion and NO production were strongly augmented by all TDXs tested, in a wide concentration range. In contrast, the TMXs triggered macrophage activation only at high concentrations. Macrophage activation by all TDXs required Mincle, but was independent of MyD88. The superior capacity of TDXs for activating macrophages was paralleled by direct binding of TDXs, but not of TMXs, to a Mincle-Fc fusion protein. Insertion of a short polyethylene glycol between the sugar and acyl chain in TDS reduced Mincle-binding and macrophage activation. Immunization of mice with cationic liposomes containing the analogues demonstrated the superior adjuvant activity of trehalose diesters. Overall, immune activation in vitro and in vivo by trehalose esters of simple fatty acids requires two acyl chains of length and involves Mincle. © The Author(s) 2016.
Effect of low extracellular pH on NF-κB activation in macrophages.
Gerry, A B; Leake, D S
2014-04-01
Many diseases, including atherosclerosis, involve chronic inflammation. The master transcription factor for inflammation is NF-κB. Inflammatory sites have a low extracellular pH. Our objective was to demonstrate the effect of pH on NF-κB activation and cytokine secretion. Mouse J774 macrophages or human THP-1 or monocyte-derived macrophages were incubated at pH 7.0-7.4 and inflammatory cytokine secretion and NF-κB activity were measured. A pH of 7.0 greatly decreased pro-inflammatory cytokine secretion (TNF or IL-6) by J774 macrophages, but not THP-1 or human monocyte-derived macrophages. Upon stimulation of mouse macrophages, the levels of IκBα, which inhibits NF-κB, fell but low pH prevented its later increase, which normally restores the baseline activity of NF-κB, even though the levels of mRNA for IκBα were increased. pH 7.0 greatly increased and prolonged NF-κB binding to its consensus promoter sequence, especially the anti-inflammatory p50:p50 homodimers. Human p50 was overexpressed using adenovirus in THP-1 macrophages and monocyte-derived macrophages to see if it would confer pH sensitivity to NF-κB activity in human cells. Overexpression of p50 increased p50:p50 DNA-binding and in THP-1 macrophages inhibited considerably TNF and IL-6 secretion, but there was still no effect of pH on p50:p50 DNA binding or cytokine secretion. A modest decrease in pH can sometimes have marked effects on NF-κB activation and cytokine secretion and might be one reason to explain why mice normally develop less atherosclerosis than do humans. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Dual Roles for Ikaros in Regulation of Macrophage Chromatin State and Inflammatory Gene Expression.
Oh, Kyu-Seon; Gottschalk, Rachel A; Lounsbury, Nicolas W; Sun, Jing; Dorrington, Michael G; Baek, Songjoon; Sun, Guangping; Wang, Ze; Krauss, Kathleen S; Milner, Joshua D; Dutta, Bhaskar; Hager, Gordon L; Sung, Myong-Hee; Fraser, Iain D C
2018-06-13
Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1 -/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1 +/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.
Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo
2008-11-01
Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp; Ohnou, Tetsuya; Godai, Kohei
Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functionsmore » linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas M1-macrophage-related molecules such as integrin {alpha}X, IL-1{beta}, MIP2{alpha} and leptin were decreased at rosiglitazone-treated incisional sites. Moreover, transplantation of rosiglitazone-treated peritoneal macrophages into the incisional sites significantly attenuated hyperalgesia. We speculate that local administration of rosiglitazone significantly alleviated the development of postincisional pain, possibly through regulating macrophage polarity at the inflamed site. PPAR{gamma} signaling in macrophages may be a potential therapeutic target for the treatment of acute pain development.« less
Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R
2015-01-01
Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. Published by Elsevier Ltd.
Christophi, George P; Panos, Michael; Hudson, Chad A; Christophi, Rebecca L; Gruber, Ross C; Mersich, Akos T; Blystone, Scott D; Jubelt, Burk; Massa, Paul T
2009-07-01
Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that may be important in controlling macrophage-mediated demyelination in MS.
Tavakoli, Sina; Short, John D.; Downs, Kevin; Nguyen, Huynh Nga; Lai, Yanlai; Zhang, Wei; Jerabek, Paul; Goins, Beth; Sadeghi, Mehran M.
2017-01-01
Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. 18F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of 18F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. © RSNA, 2016 Online supplemental material is available for this article. PMID:27849433
Huang, Wen-Nan; Tso, Tim K; Wu, Hsiao-Chih; Yang, Hsiu-Fen; Tsay, Gregory J
2016-12-01
Serologically active clinically quiescent (SACQ) patients with systemic lupus erythematosus (SLE) account for 8-12% of all patients with SLE, but there is disagreement about whether such patients are indeed clinically stable. Patients with clinically active SLE have decreased macrophage function, although the status of SACQ patients with SLE is unclear. This study compared 18 patients who met the diagnostic criteria for SACQ SLE with 18 healthy volunteers with regard to the capability of macrophages to clear apoptotic bodies by use of a modified serum-free phagocytosis test. Macrophages that naturally differentiated from monocytes were used to engulf apoptotic cells developed from polymorphonuclear neutrophils. The results showed that macrophages from SACQ patients with SLE had less phagocytotic capability than those from healthy controls. The significant reduction of macrophage phagocytotic capability in these patients suggests the potential for disease recurrence. The use of a serum-free method confirmed the presence of intrinsic factors that modulate the decrease of macrophage function in SLE. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Malhotra, Deepti; Thimmulappa, Rajesh K.; Mercado, Nicolas; Ito, Kazuhiro; Kombairaju, Ponvijay; Kumar, Sarvesh; Ma, Jinfang; Feller-Kopman, David; Wise, Robert; Barnes, Peter; Biswal, Shyam
2011-01-01
Chronic obstructive pulmonary disease (COPD), which is caused primarily by cigarette smoking, is a major health problem worldwide. The progressive decline in lung function that occurs in COPD is a result of persistent inflammation of the airways and destruction of the lung parenchyma. Despite the key role of inflammation in the pathogenesis of COPD, treatment with corticosteroids — normally highly effective antiinflammatory drugs — has little therapeutic benefit. This corticosteroid resistance is largely caused by inactivation of histone deacetylase 2 (HDAC2), which is critical for the transrepressive activity of the glucocorticoid receptor (GR) that mediates the antiinflammatory effect of corticosteroids. Here, we show that in alveolar macrophages from patients with COPD, S-nitrosylation of HDAC2 is increased and that this abolishes its GR-transrepression activity and promotes corticosteroid insensitivity. Cys-262 and Cys-274 of HDAC2 were found to be the targets of S-nitrosylation, and exogenous glutathione treatment of macrophages from individuals with COPD restored HDAC2 activity. Treatment with sulforaphane, a small-molecule activator of the transcription factor nuclear factor erythroid 2–related factor 2 (NRF2), was also able to denitrosylate HDAC2, restoring dexamethasone sensitivity in alveolar macrophages from patients with COPD. These effects of sulforaphane were glutathione dependent. We conclude that NRF2 is a novel drug target for reversing corticosteroid resistance in COPD and other corticosteroid-resistant inflammatory diseases. PMID:22005302
Karpurapu, Manjula; Lee, Yong Gyu; Qian, Ziqing; Wen, Jin; Ballinger, Megan N.; Rusu, Luiza; Chung, Sangwoon; Deng, Jing; Qian, Feng; Reader, Brenda F.; Nirujogi, Teja Srinivas; Park, Gye Young; Pei, Dehua; Christman, John W.
2018-01-01
Specific therapies targeting cellular and molecular events of sepsis induced Acute Lung Injury (ALI) pathogenesis are lacking. We have reported a pivotal role for Nuclear Factors of Activated T cells (NFATc3) in regulating macrophage phenotype during sepsis induced ALI and subsequent studies demonstrate that NFATc3 transcriptionally regulates macrophage CCR2 and TNFα gene expression. Mouse pulmonary microvascular endothelial cell monolayer maintained a tighter barrier function when co-cultured with LPS stimulated NFATc3 deficient macrophages whereas wild type macrophages caused leaky monolayer barrier. More importantly, NFATc3 deficient mice showed decreased neutrophilic lung inflammation, improved alveolar capillary barrier function, arterial oxygen saturation and survival benefit in lethal CLP sepsis mouse models. In addition, survival of wild type mice subjected to the lethal CLP sepsis was not improved with broad-spectrum antibiotics, whereas the survival of NFATc3 deficient mice was improved to 40–60% when treated with imipenem. Passive adoptive transfer of NFATc3 deficient macrophages conferred protection against LPS induced ALI in wild type mice. Furthermore, CP9-ZIZIT, a highly potent, cell-permeable peptide inhibitor of Calcineurin inhibited NFATc3 activation. CP9-ZIZIT effectively reduced sepsis induced inflammatory cytokines and pulmonary edema in mice. Thus, this study demonstrates that inhibition of NFATc3 activation by CP9-ZIZIT provides a potential therapeutic option for attenuating sepsis induced ALI/pulmonary edema. PMID:29535830
Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A
2018-03-01
In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.
Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry
2015-01-01
AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.
Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry
2015-01-01
AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload. PMID:26098914
Rehman, Jalees; Li, Jingling; Orschell, Christie M; March, Keith L
2003-03-04
Endothelial progenitor cells (EPCs) have been isolated from peripheral blood and can enhance angiogenesis after infusion into host animals. It is not known whether the proangiogenic effects are a result of such events as endothelial differentiation and subsequent proliferation of EPCs or secondary to secretion of angiogenic growth factors. Human EPCs were isolated as previously described, and their phenotypes were confirmed by uptake of acetylated LDL and binding of ulex-lectin. EPC proliferation and surface marker expression were analyzed by flow cytometry, and conditioned medium was assayed for growth factors. The majority of EPCs expressed monocyte/macrophage markers such as CD14 (95.7+/-0.3%), Mac-1 (57.6+/-13.5%), and CD11c (90.8+/-4.9%). A much lower percentage of cells expressed the specific endothelial marker VE-cadherin (5.2+/-0.7%) or stem/progenitor-cell markers AC133 (0.16+/-0.05%) and c-kit (1.3+/-0.7%). Compared with circulating monocytes, cultured EPCs showed upregulation of monocyte activation and macrophage differentiation markers. EPCs did not demonstrate any significant proliferation but did secrete the angiogenic growth factors vascular endothelial growth factor, hepatocyte growth factor, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor. Our findings suggest that acetylated LDL(+)ulex-lectin(+) cells, commonly referred to as EPCs, do not proliferate but release potent proangiogenic growth factors. The majority of acetylated LDL(+)ulex-lectin(+) cells are derived from monocyte/macrophages. The findings of low proliferation and endothelial differentiation suggest that their angiogenic effects are most likely mediated by growth factor secretion. These findings may allow for development of novel angiogenic therapies relying on secreted growth factors or on recruitment of endogenous monocytes/macrophages to sites of ischemia.
Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Gu, Min-Jung; Ma, Jin Yeul
2014-01-01
Palmultang (PM) is an herbal decoction that has been used to treat anorexia, anemia, general prostration, and weakness due to chronic illness since medieval times in Korea, China, and Japan. The present study focused on the inhibitory effects of PM on the production of inflammatory factors and on the activation of mechanisms in murine macrophages. PM suppressed the expression of nitric oxide (NO), inflammatory cytokines and inflammatory proteins by inhibiting nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways and by inducing heme oxygenase (HO)-1 expression. Collectively, our results explain the anti-inflammatory effect and inhibitory mechanism of PM in macrophages stimulated with lipopolysaccharide (LPS). PMID:24828204
NASA Astrophysics Data System (ADS)
Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn
1998-10-01
We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.
Genoula, Melanie; Marín Franco, José Luis; Dupont, Maeva; Kviatcovsky, Denise; Milillo, Ayelén; Schierloh, Pablo; Moraña, Eduardo Jose; Poggi, Susana; Palmero, Domingo; Mata-Espinosa, Dulce; González-Domínguez, Erika; León Contreras, Juan Carlos; Barrionuevo, Paula; Rearte, Bárbara; Córdoba Moreno, Marlina Olyissa; Fontanals, Adriana; Crotta Asis, Agostina; Gago, Gabriela; Cougoule, Céline; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Sánchez-Torres, Carmen; Hernández-Pando, Rogelio; Vérollet, Christel; Lugo-Villarino, Geanncarlo; Sasiain, María del Carmen; Balboa, Luciana
2018-01-01
The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10−/− mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence. PMID:29593722
Genoula, Melanie; Marín Franco, José Luis; Dupont, Maeva; Kviatcovsky, Denise; Milillo, Ayelén; Schierloh, Pablo; Moraña, Eduardo Jose; Poggi, Susana; Palmero, Domingo; Mata-Espinosa, Dulce; González-Domínguez, Erika; León Contreras, Juan Carlos; Barrionuevo, Paula; Rearte, Bárbara; Córdoba Moreno, Marlina Olyissa; Fontanals, Adriana; Crotta Asis, Agostina; Gago, Gabriela; Cougoule, Céline; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Sánchez-Torres, Carmen; Hernández-Pando, Rogelio; Vérollet, Christel; Lugo-Villarino, Geanncarlo; Sasiain, María Del Carmen; Balboa, Luciana
2018-01-01
The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14 + cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10 -/- mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence.
p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibold, Kristina; Ehrenschwender, Martin, E-mail: martin.ehrenschwender@ukr.de
CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified themore » multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies. - Highlights: • CD40 activation triggers interaction of the adapter protein TRAF6 with p62. • TRAF6-p62 interaction regulates CD40-mediated NFκB signaling in macrophages. • Defective TRAF6-p62 interaction reduces CD40-mediated NFκB activation in macrophages.« less
Gelderblom, Mathias; Leypoldt, Frank; Lewerenz, Jan; Birkenmayer, Gabriel; Orozco, Denise; Ludewig, Peter; Thundyil, John; Arumugam, Thiruma V; Gerloff, Christian; Tolosa, Eva; Maher, Pamela; Magnus, Tim
2012-01-01
The development of the brain tissue damage in ischemic stroke is composed of an immediate component followed by an inflammatory response with secondary tissue damage after reperfusion. Fisetin, a flavonoid, has multiple biological effects, including neuroprotective and antiinflammatory properties. We analyzed the effects of fisetin on infarct size and the inflammatory response in a mouse model of stroke, temporary middle cerebral artery occlusion, and on the activation of immune cells, murine primary and N9 microglial and Raw264.7 macrophage cells and human macrophages, in an in vitro model of inflammatory immune cell activation by lipopolysaccharide (LPS). Fisetin not only protected brain tissue against ischemic reperfusion injury when given before ischemia but also when applied 3 hours after ischemia. Fisetin also prominently inhibited the infiltration of macrophages and dendritic cells into the ischemic hemisphere and suppressed the intracerebral immune cell activation as measured by intracellular tumor necrosis factor α (TNFα) production. Fisetin also inhibited LPS-induced TNFα production and neurotoxicity of macrophages and microglia in vitro by suppressing nuclear factor κB activation and JNK/Jun phosphorylation. Our findings strongly suggest that the fisetin-mediated inhibition of the inflammatory response after stroke is part of the mechanism through which fisetin is neuroprotective in cerebral ischemia. PMID:22234339
The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells
Badia, Roger; Pujantell, Maria; Riveira-Muñoz, Eva; Puig, Teresa; Torres-Torronteras, Javier; Martí, Ramón; Clotet, Bonaventura; Ampudia, Rosa M.; Ballana, Ester
2016-01-01
Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages. PMID:27541004
Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul
2014-01-01
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982
Moon, Eun-Yi; Lee, Yu-Sun; Choi, Wahn Soo; Lee, Mi-Hee
2011-10-15
B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Odgren, P R; Popoff, S N; Safadi, F F; MacKay, C A; Mason-Savas, A; Seifert, M F; Marks, S C
1999-08-01
The osteopetrotic rat mutation toothless (tl) is characterized by little or no bone resorption, few osteoclasts and macrophages, and chondrodysplasia at the growth plates. Short-term treatment of tl rats with colony-stimulating factor-1 (CSF-1) has been shown to increase the number of osteoclasts and macrophages, producing dramatic resolution of skeletal sclerosis at some, but not all, sites. Defects in production of vitamin D-binding protein-macrophage activating factor (DBP-MAF) have been identified in two other independent osteopetrotic mutations of the rat (op and ia), and two in the mouse (op and mi), in which macrophages and osteoclasts can be activated by the administration of exogenous DBP-MAF. The present studies were undertaken to examine the histology and residual growth defects in tl rats following longer CSF-1 treatments, to investigate the possibility that exogenous DBP-MAF might act synergistically with CSF-1 to improve the tl phenotype, and to assess the integrity of the endogenous DBP-MAF pathway in this mutation. CSF-1 treatment-with or without DBP-MAF-induced resorption of metaphyseal bone to the growth plate on the marrow side, improved slightly but did not normalize long bone growth, and caused no improvement in the abnormal histology of the growth plate. Injections of lysophosphatidylcholine (lyso-Pc) to prime macrophage activation via the DBP-MAF pathway raised superoxide production to similar levels in peritoneal macrophages from both normal and mutant animals, indicating no defect in the DBP-MAF pathway in tl rats. Interestingly, pretreatments with CSF-1 alone also increased superoxide production, although the mechanism for this remains unknown. In summary, we find that, unlike other osteopetrotic mutations investigated to date, the DBP-MAF pathway does not appear to be defective in the tl rat; that additional DBP-MAF does not augment the beneficial skeletal effects seen with CSF-1 alone; and that the growth plate chondrodystrophy seen in this mutation is unaffected by either molecule. Thus, the tl mutation intercepts the function of a gene required for both normal endochondral ossification and bone resorption, thereby uncoupling the coordination of skeletal metabolism required for normal long bone growth.
Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth
Zorro Manrique, Soraya; Duque Correa, Maria Adelaida; Hoelzinger, Dominique B.; Dominguez, Ana Lucia; Mirza, Noweeda; Lin, Hsi-Hsien; Stein-Streilein, Joan; Gordon, Siamon
2011-01-01
Regulatory T cells (T reg cells) are characterized by the expression of the forkhead lineage-specific transcription factor Foxp3, and their main function is to suppress T cells. While evaluating T reg cells, we identified a population of Foxp3-positive cells that were CD11b+F4/80+CD68+, indicating macrophage origin. These cells were observed in spleen, lymph nodes, bone marrow, thymus, liver, and other tissues of naive animals. To characterize this subpopulation of macrophages, we devised a strategy to purify CD11b+F4/80+Foxp3+ macrophages using Foxp3-GFP mice. Analysis of CD11b+F4/80+Foxp3+ macrophage function indicated that these cells inhibited the proliferation of T cells, whereas Foxp3− macrophages did not. Suppression of T cell proliferation was mediated through soluble factors. Foxp3− macrophages acquired Foxp3 expression after activation, which conferred inhibitory properties that were indistinguishable from natural Foxp3+ macrophages. The cytokine and transcriptional profiles of Foxp3+ macrophages were distinct from those of Foxp3− macrophages, indicating that these cells have different biological functions. Functional in vivo analyses indicated that CD11b+F4/80+Foxp3+ macrophages are important in tumor promotion and the induction of T reg cell conversion. For the first time, these studies demonstrate the existence of a distinct subpopulation of naturally occurring macrophage regulatory cells in which expression of Foxp3 correlates with suppressive function. PMID:21670203
Bewley, Martin A; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M; Read, Robert C; Mitchell, Timothy J; Whyte, Moira K B; Dockrell, David H
2014-10-07
Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY's ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. Importance: Streptococcus pneumoniae, the commonest cause of bacterial pneumonia, expresses the toxin pneumolysin, which can make holes in cell surfaces, causing tissue damage. Macrophages, resident immune cells essential for responses to bacteria in tissues, activate a program of cell suicide called apoptosis, maximizing bacterial clearance and limiting harmful inflammation. We examined pneumolysin's role in activating this response. We demonstrate that pneumolysin did not directly form holes in cells to trigger apoptosis and show that pneumolysin has two distinct roles which require only part of the molecule. Pneumolysin and other bacterial factors released by bacteria that have not been eaten by macrophages activate macrophages to release inflammatory factors but also make the cell compartment containing ingested bacteria leaky. Once inside the cell, pneumolysin ensures that the bacteria activate macrophage apoptosis, rather than necrosis, enhancing bacterial killing and limiting inflammation. This dual response to pneumolysin is critical for an effective immune response to S. pneumoniae. Copyright © 2014 Bewley et al.
Holzmuller, Philippe; Geiger, Anne; Nzoumbou-Boko, Romaric; Pissarra, Joana; Hamrouni, Sarra; Rodrigues, Valérie; Dauchy, Frédéric-Antoine; Lemesre, Jean-Loup; Vincendeau, Philippe; Bras-Gonçalves, Rachel
2018-01-01
Mononuclear phagocytes (monocytes, dendritic cells, and macrophages) are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO) synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted–secreted (ES) molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage’s inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the development of vaccines or immunotherapeutic approaches. PMID:29731753
Macrophage Functions in Early Dissemination and Dormancy of Breast Cancer
2016-09-01
mammary gland development 17,18, 69 arguing that normal mammary epithelial cells cooperate with these innate immune cells 70 for invasive... cells lacking 218 11 lymphoid and granulocytic markers (Supplementary Fig.3B). viSNE plots 30 of myelo-219 monocytic cells (Fig.5A...macrophages are actively recruited by pre-malignant ErbB2 overexpressing cancer cells and that these intra-epithelial macrophages then produce factors
Decreased inducibility of TNF expression in lipid-loaded macrophages
Ares, Mikko PS; Stollenwerk, Maria; Olsson, Anneli; Kallin, Bengt; Jovinge, Stefan; Nilsson, Jan
2002-01-01
Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL) for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages. PMID:12366867
van der Does, Anne M; Bogaards, Sylvia J P; Ravensbergen, Bep; Beekhuizen, Henry; van Dissel, Jaap T; Nibbering, Peter H
2010-02-01
The human lactoferrin-derived peptide hLF1-11 displays antimicrobial activities in vitro and is effective against infections with antibiotic-resistant bacteria and fluconazole-resistant Candida albicans in animals. However, the mechanisms underlying these activities remain largely unclear. Since hLF1-11 is ineffective in vitro at physiological salt concentrations, we suggested modulation of the immune system as an additional mechanism of action of the peptide. We investigated whether hLF1-11 affects human monocyte-macrophage differentiation and determined the antimicrobial activities of the resulting macrophages. Monocytes were cultured for 7 days with GM-CSF in the presence of hLF1-11, control peptide, or saline for various intervals. At day 6, the cells were stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or heat-killed C. albicans for 24 h. Thereafter, the levels of cytokines in the culture supernatants, the expression of pathogen recognition receptors, and the antimicrobial activities of these macrophages were determined. The results showed that a short exposure of monocytes to hLF1-11 during GM-CSF-driven differentiation is sufficient to direct differentiation of monocytes toward a macrophage subset characterized by both pro- and anti-inflammatory cytokine production and increased responsiveness to microbial structures. Moreover, these macrophages are highly effective against C. albicans and Staphylococcus aureus. In conclusion, hLF1-11 directs GM-CSF-driven differentiation of monocytes toward macrophages with enhanced effector functions.
Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph
2006-03-01
Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.
Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells
Soucie, Erinn L.; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J.-C.; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H.
2016-01-01
Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. PMID:26797145
Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jirina; Streitová, Denisa
2007-10-01
A low-molecular-weight (<12 kDa) ultrafiltered pig leukocyte extract, IMUNOR, was tested in experiments in vitro on non-stimulated and lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages in order to assess modulation of nitric oxide (NO) production (measured indirectly as the concentration of nitrites), hematopoiesis-stimulating activity of the supernatant of the macrophage cells (ascertained by counting cell colonies growing from progenitor cells for granulocytes and macrophages (GM-CFC) in vitro), and the release of hematopoiesis-stimulating cytokines. No hematopoiesis-stimulating activity and cytokine or NO production were found in the supernatant of non-stimulated macrophages. It was found that IMUNOR does not influence this status. Supernatant of LPS-stimulated macrophages was characterized by hematopoiesis-stimulating activity, as well as by the presence of nitrites, interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). A key role in the hematopoiesis-stimulating activity of the supernatant of LPS-stimulated macrophages could be ascribed to G-CSF since the formation of the colonies could be abrogated nearly completely by monoclonal antibodies against G-CSF. IMUNOR was found to suppress all the mentioned manifestations of the LPS-activated macrophages. When considering these results together with those from our previous in vivo study revealing stimulatory effects of IMUNOR on radiation-suppressed hematopoiesis, a hypothesis may be formulated which postulates a homeostatic role of IMUNOR, consisting in stimulation of impaired immune and hematopoietic systems but also in cutting back the production of proinflammatory mediators in cases of overstimulation which threats with undesirable consequences.
The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis
Coppo, Maddalena; Chinenov, Yurii; Sacta, Maria A.; Rogatsky, Inez
2016-01-01
Diet-induced obesity causes chronic macrophage-driven inflammation in white adipose tissue (WAT) leading to insulin resistance. WAT macrophages, however, differ in their origin, gene expression and activities: unlike infiltrating monocyte-derived inflammatory macrophages, WAT-resident macrophages counteract inflammation and insulin resistance, yet, the mechanisms underlying their transcriptional programming remain poorly understood. We recently reported that a nuclear receptor cofactor—glucocorticoid receptor (GR)-interacting protein (GRIP)1—cooperates with GR to repress inflammatory genes. Here, we show that GRIP1 facilitates macrophage programming in response to IL4 via a GR-independent pathway by serving as a coactivator for Kruppel-like factor (KLF)4—a driver of tissue-resident macrophage differentiation. Moreover, obese mice conditionally lacking GRIP1 in macrophages develop massive macrophage infiltration and inflammation in metabolic tissues, fatty livers, hyperglycaemia and insulin resistance recapitulating metabolic disease. Thus, GRIP1 is a critical regulator of immunometabolism, which engages distinct transcriptional mechanisms to coordinate the balance between macrophage populations and ultimately promote metabolic homeostasis. PMID:27464507
Capote, Joana; Martinez, Leonel; Vetrone, Sylvia; Barton, Elisabeth R.; Sweeney, H. Lee; Miceli, M. Carrie
2016-01-01
In the degenerative disease Duchenne muscular dystrophy, inflammatory cells enter muscles in response to repetitive muscle damage. Immune factors are required for muscle regeneration, but chronic inflammation creates a profibrotic milieu that exacerbates disease progression. Osteopontin (OPN) is an immunomodulator highly expressed in dystrophic muscles. Ablation of OPN correlates with reduced fibrosis and improved muscle strength as well as reduced natural killer T (NKT) cell counts. Here, we demonstrate that the improved dystrophic phenotype observed with OPN ablation does not result from reductions in NKT cells. OPN ablation skews macrophage polarization toward a pro-regenerative phenotype by reducing M1 and M2a and increasing M2c subsets. These changes are associated with increased expression of pro-regenerative factors insulin-like growth factor 1, leukemia inhibitory factor, and urokinase-type plasminogen activator. Furthermore, altered macrophage polarization correlated with increases in muscle weight and muscle fiber diameter, resulting in long-term improvements in muscle strength and function in mdx mice. These findings suggest that OPN ablation promotes muscle repair via macrophage secretion of pro-myogenic growth factors. PMID:27091452
Ushach, Irina; Zlotnik, Albert
2016-01-01
M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413
Macrophages in tissue repair, regeneration, and fibrosis
Wynn, Thomas A.; Vannella, Kevin M.
2016-01-01
Inflammatory monocytes and resident tissue macrophages are key regulators of tissue repair, regeneration, and fibrosis. Following tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, with uncontrolled inflammatory mediator and growth factor production, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contributing to a state of persistent injury, which may lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue regenerating phenotypes following injury, and highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically. PMID:26982353
Ufimtseva, Elena
2016-01-01
The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells. PMID:27066505
Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression
Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun
2016-01-01
Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. PMID:27226602
Noh, Hyunjin; Yu, Mi Ra; Kim, Hyun Joo; Lee, Ji Hye; Park, Byoung-Won; Wu, I-Hsien; Matsumoto, Motonobu; King, George L
2017-07-01
Macrophage activation is increased in diabetes and correlated with the onset and progression of vascular complications. To identify drugs that could inhibit macrophage activation, we developed a cell-based assay and screened a 1,040 compound library for anti-inflammatory effects. Beta2-adrenergic receptor (β2AR) agonists were identified as the most potent inhibitors of phorbol myristate acetate-induced tumor necrosis factor-α production in rat bone marrow macrophages. In peripheral blood mononuclear cells isolated from streptozotocin-induced diabetic rats, β2AR agonists inhibited diabetes-induced tumor necrosis factor-α production, which was prevented by co-treatment with a selective β2AR blocker. To clarify the underlying mechanisms, THP-1 cells and bone marrow macrophages were exposed to high glucose. High glucose reduced β-arrestin2, a negative regulator of NF-κB activation, and its interaction with IκBα. This subsequently enhanced phosphorylation of IκBα and activation of NF-κB. The β2AR agonists enhanced β-arrestin2 and its interaction with IκBα, leading to downregulation of NF-κB. A siRNA specific for β-arrestin2 reversed β2AR agonist-mediated inhibition of NF-κB activation and inflammatory cytokine production. Treatment of Zucker diabetic fatty rats with a β2AR agonist for 12 weeks attenuated monocyte activation as well as pro-inflammatory and pro-fibrotic responses in the kidneys and heart. Thus, β2AR agonists might have protective effects against diabetic renal and cardiovascular complications. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Nakamura, Yukihiko; Sugita, Yasuo; Nakashima, Shinji; Okada, Yousuke; Yoshitomi, Munetake; Kimura, Yoshizou; Miyoshi, Hiroaki; Morioka, Motohiro; Ohshima, Koichi
2016-03-01
Angiogenic and immunoactive lesions in brain arteriovenous malformation (BAVM) contribute to hemorrhagic events and the growth of BAVMs. However, the detailed mechanism is unclear. Our objective is to clarify the relationship between hemorrhagic events of BAVM and alternatively activated macrophages in the perinidal dilated capillary network (PDCN). We examined microsurgical specimens of BVMs (n = 29) and focused on the PDCN area. Ten autopsied brains without intracranial disease were the controls. We performed immunostaining of the inflammatory and endothelial cell markers, macrophage markers (CD163 and CD68), and vascular endothelial growth factor A (VEGF-A). We evaluated each cell's density and the vessel density in the PDCN and analyzed the relationship to hemorrhagic events of BAVM. The PDCN was involved in all the resected arteriovenous malformations, and these vessels showed a high rate of CD105 expression (72.0 ± 10.64%), indicating newly proliferating vessels. Alternatively activated macrophages were found, with a high rate (85.6%) for all macrophages (controls, 56.6%). In the hemorrhagic cases, the cell density was significantly higher than that in the nonhemorrhagic cases and controls (hemorrhagic group, 290 ± 44 cells/mm(2); nonhemorrhagic group, 180 ± 59 cells/mm(2); and control, 19 ± 8 cells/mm(2)). The cell density of alternatively activated macrophages showed a positive correlation with the vessel density of the PDCN. Double immunostaining showed that VEGF-A was secreted by alternatively activated macrophages. Our data suggest that alternatively activated macrophages may have some relationships with angiogenesis of PDCN and hemorrhagic event of BAVM. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania
2013-07-08
The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects.
Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong
2016-10-01
F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.
In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris
Thomas, Vinoy; Halloran, Brian A.; Ambalavanan, Namasivayam; Catledge, Shane A.; Vohra, Yogesh K.
2012-01-01
Nanostructured diamond coatings improve the smoothness and wear characteristics of the metallic component of total hip replacements and increase the longevity of these implants, but the effect of nanodiamond wear debris on macrophages needs to be determined to estimate the long-term inflammatory effects of wear debris. The objective was to investigate the effect of the size of synthetic nanodiamond particles on macrophage proliferation (BrdU incorporation), apoptosis (Annexin-V flow cytometry), metabolic activity (WST-1 assay) and inflammatory cytokine production (qPCR). RAW 264.7 macrophages were exposed to varying sizes (6, 60, 100, 250 and 500 nm) and concentrations (0, 10, 50, 100 and 200 μg ml−1) of synthetic nanodiamonds. We observed that cell proliferation but not metabolic activity was decreased with nanoparticle sizes of 6–100 nm at lower concentrations (50 μg ml−1), and both cell proliferation and metabolic activity were significantly reduced with nanodiamond concentrations of 200 μg ml−1. Flow cytometry indicated a significant reduction in cell viability due to necrosis irrespective of particle size. Nanodiamond exposure significantly reduced gene expression of tumor necrosis factor-α, interleukin-1β, chemokine Ccl2 and platelet-derived growth factor compared to serum-only controls or titanium oxide (anatase 8 nm) nanoparticles, with variable effects on chemokine Cxcl2 and vascular endothelial growth factor. In general, our study demonstrates a size and concentration dependence of macrophage responses in vitro to nanodiamond particles as possible wear debris from diamond-coated orthopedic joint implants. PMID:22342422
Masuda, Yuki; Ohta, Hiroya; Morita, Yumiko; Nakayama, Yoshiaki; Miyake, Ayumi; Itoh, Nobuyuki; Konishi, Morichika
2015-01-01
Fibroblast growth factors (Fgfs) are polypeptide growth factors with diverse biological activities. While several studies have revealed that Fgf23 plays important roles in the regulation of phosphate and vitamin D metabolism, the additional physiological roles of Fgf23 remain unclear. Although it is believed that osteoblasts/osteocytes are the main sources of Fgf23, we previously found that Fgf23 mRNA is also expressed in the mouse thymus, suggesting that it might be involved in the immune system. In this study we examined the potential roles of Fgf23 in immunological responses. Mouse serum Fgf23 levels were significantly increased following inoculation with Escherichia coli or Staphylococcus aureus or intraperitoneal injection of lipopolysaccharide. We also identified activated dendritic cells and macrophages that potentially contributed to increased serum Fgf23 levels. Nuclear factor-kappa B (NF-κB) signaling was essential for the induction of Fgf23 expression in dendritic cells in response to immunological stimuli. Moreover, we examined the effects of recombinant Fgf23 protein on immune cells in vitro. Fgfr1c, a potential receptor for Fgf23, was abundantly expressed in macrophages, suggesting that Fgf23 might be involved in signal transduction in these cells. Our data suggest that Fgf23 potentially increases the number in macrophages and induces expression of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine. Collectively, these data suggest that Fgf23 might be intimately involved in inflammatory processes.
Zhang, Pei; Liu, Weizhi; Peng, Yanfei; Han, Baoqin; Yang, Yan
2014-11-01
The in vivo and in vitro immunostimulating properties of chitosan oligosaccharide (COS) prepared by enzymatic hydrolysis of chitosan and the mechanisms mediating the effects were investigated. Our data showed that the highly active chitosanase isolated could hydrolyze chitosan to the polymerization degree of 3-8. The resulting COS was an efficient immunostimulator. COS markedly enhanced the proliferation and neutral red phagocytosis by RAW 264.7 macrophages. The production of nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) by macrophages was significantly increased after incubation with COS. Oral administration of COS in mice could increase spleen index and serum immunoglobin G (IgG) contents. COS was labeled with FITC to study the pinocytosis by macrophages. Results showed that FITC-COS was phagocyted by macrophages and anti-murine TLR4 antibody completely blocked FITC-COS pinocytosis. RT-PCR indicated that COS treatment of macrophages significantly increased TLR4 and inducible nitric oxide synthase (iNOS) mRNA levels. When cells were pretreated with anti-murine TLR4 antibody, the effect of COS on TLR4 and iNOS mRNA induction was decreased. COS-induced NO secretion by macrophages was also markedly decreased by anti-murine TLR4 antibody pretreatment. In conclusion, the present study revealed that COS possesses potent immune-stimulating properties by activating TLR4 on macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan
2016-06-20
Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%-8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.
Marinković, Goran; Hamers, Anouk A J; de Vries, Carlie J M; de Waard, Vivian
2014-09-01
Inflammatory bowel disease is characterized by chronic intestinal inflammation. Azathioprine and its metabolite 6-mercaptopurine (6-MP) are effective immunosuppressive drugs that are widely used in patients with inflammatory bowel disease. However, established understanding of their immunosuppressive mechanism is limited. Azathioprine and 6-MP have been shown to affect small GTPase Rac1 in T cells and endothelial cells, whereas the effect on macrophages and gut epithelial cells is unknown. Macrophages (RAW cells) and gut epithelial cells (Caco-2 cells) were activated by cytokines and the effect on Rac1 signaling was assessed in the presence or absence of 6-MP. Rac1 is activated in macrophages and epithelial cells, and treatment with 6-MP resulted in Rac1 inhibition. In macrophages, interferon-γ induced downstream signaling through c-Jun-N-terminal Kinase (JNK) resulting in inducible nitric oxide synthase (iNOS) expression. iNOS expression was reduced by 6-MP in a Rac1-dependent manner. In epithelial cells, 6-MP efficiently inhibited tumor necrosis factor-α-induced expression of the chemokines CCL2 and interleukin-8, although only interleukin-8 expression was inhibited in a Rac1-dependent manner. In addition, activation of the transcription factor STAT3 was suppressed in a Rac1-dependent fashion by 6-MP, resulting in reduced proliferation of the epithelial cells due to diminished cyclin D1 expression. These data demonstrate that 6-MP affects macrophages and gut epithelial cells beneficially, in addition to T cells and endothelial cells. Furthermore, mechanistic insight is provided to support development of Rac1-specific inhibitors for clinical use in inflammatory bowel disease.
Li, Kang; Ching, Daniel; Luk, Fu Sang; Raffai, Robert L.
2015-01-01
Rationale Apolipoprotein E (apoE) exerts anti-inflammatory properties that protect against atherosclerosis and other inflammatory diseases. However, mechanisms by which apoE suppresses the cellular activation of leukocytes commonly associated with atherosclerosis remain incompletely understood. Objective To test the hypothesis that apoE suppresses inflammation and atherosclerosis by regulating cellular microRNA levels in these leukocytes. Methods and Results An assessment of apoE expression among such leukocyte subsets in wild-type mice revealed that only macrophages and monocytes express apoE abundantly. An absence of apoE expression in macrophages and monocytes resulted in enhanced nuclear factor-κB (NF-κB) signaling and an exaggerated inflammatory response upon stimulation with lipopolysaccharide. This correlated with reduced levels of microRNA-146a, a critical negative regulator of NF-κB signaling. Ectopic apoE expression in Apoe−/− macrophages and monocytes raised miR-146a levels, while its silencing in wild-type cells had an opposite effect. Mechanistically, apoE increased the expression of transcription factor PU.1, which raised levels of pri-miR-146 transcripts, demonstrating that apoE exerts transcriptional control over miR-146a. In vivo, even a small amount of apoE expression in macrophages and monocytes of hypomorphic apoE mice led to increased miR-146a levels, and inhibited macrophage pro-inflammatory responses, Ly-6Chigh monocytosis, and atherosclerosis in the settings of hyperlipidemia. Accordingly, cellular enrichment of miR-146a through the systemic delivery of miR-146a mimetics in Apoe−/−Ldlr−/− and Ldlr−/− mice attenuated monocyte/macrophage activation and atherosclerosis in the absence of plasma lipid reduction. Conclusions Our data demonstrate that cellular apoE expression suppresses NF-κB–mediated inflammation and atherosclerosis by enhancing miR-146a levels in monocytes and macrophages. PMID:25904598
Green, Richard R.; Brown, Rachel R.; Wood, Matthew P.; Hensley-McBain, Tiffany; Chang, Jean; Miller, Andrew D.; Lifson, Jeffrey D.; Mavigner, Maud; Gale, Michael; Silvestri, Guido; Chahroudi, Ann; Klatt, Nichole R.
2018-01-01
Liver disease is a leading contributor to morbidity and mortality during HIV infection, despite the use of combination antiretroviral therapy (cART). The precise mechanisms of liver disease during HIV infection are poorly understood partially due to the difficulty in obtaining human liver samples as well as the presence of confounding factors (e.g. hepatitis co-infection, alcohol use). Utilizing the simian immunodeficiency virus (SIV) macaque model, a controlled study was conducted to evaluate the factors associated with liver inflammation and the impact of cART. We observed an increase in hepatic macrophages during untreated SIV infection that was associated with a number of inflammatory and fibrosis mediators (TNFα, CCL3, TGFβ). Moreover, an upregulation in the macrophage chemoattractant factor CCL2 was detected in the livers of SIV-infected macaques that coincided with an increase in the number of activated CD16+ monocyte/macrophages and T cells expressing the cognate receptor CCR2. Expression of Mac387 on monocyte/macrophages further indicated that these cells recently migrated to the liver. The hepatic macrophage and T cell levels strongly correlated with liver SIV DNA levels, and were not associated with the levels of 16S bacterial DNA. Utilizing in situ hybridization, SIV-infected cells were found primarily within portal triads, and were identified as T cells. Microarray analysis identified a strong antiviral transcriptomic signature in the liver during SIV infection. In contrast, macaques treated with cART exhibited lower levels of liver macrophages and had a substantial, but not complete, reduction in their inflammatory profile. In addition, residual SIV DNA and bacteria 16S DNA were detected in the livers during cART, implicating the liver as a site on-going immune activation during antiretroviral therapy. These findings provide mechanistic insights regarding how SIV infection promotes liver inflammation through macrophage recruitment, with implications for in HIV-infected individuals. PMID:29466439
Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer.
Korbelik, M; Naraparaju, V R; Yamamoto, N
1997-01-01
The effect of Photofrin-based photodynamic therapy (PDT) and adjuvant treatment with serum vitamin D3-binding protein-derived macrophage-activating factor (DBPMAF) was examined using a mouse SCCVII tumour model (squamous cell carcinoma). The results show that DBPMAF can markedly enhance the curative effect of PDT. The most effective DBPMAF therapy consisted of a combination of intraperitoneal and peritumoral injections (50 and 0.5 ng kg-1 respectively) administered on days 0, 4, 8 and 12 after PDT. Used with a PDT treatment curative to 25% of the treated tumours, this DBPMAF regimen boosted the cures to 100%. The DBPMAF therapy alone showed no notable effect on the growth of SCCVII tumour. The PDT-induced immunosuppression, assessed by the evaluation of delayed-type contact hypersensitivity response in treated mice, was greatly reduced with the combined DBPMAF treatment. These observations suggest that the activation of macrophages in PDT-treated mice by adjuvant immunotherapy has a synergistic effect on tumour cures. As PDT not only reduces tumour burden but also induces inflammation, it is proposed that recruitment of the activated macrophages to the inflamed tumour lesions is the major factor for the complete eradication of tumours.
Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer.
Korbelik, M.; Naraparaju, V. R.; Yamamoto, N.
1997-01-01
The effect of Photofrin-based photodynamic therapy (PDT) and adjuvant treatment with serum vitamin D3-binding protein-derived macrophage-activating factor (DBPMAF) was examined using a mouse SCCVII tumour model (squamous cell carcinoma). The results show that DBPMAF can markedly enhance the curative effect of PDT. The most effective DBPMAF therapy consisted of a combination of intraperitoneal and peritumoral injections (50 and 0.5 ng kg-1 respectively) administered on days 0, 4, 8 and 12 after PDT. Used with a PDT treatment curative to 25% of the treated tumours, this DBPMAF regimen boosted the cures to 100%. The DBPMAF therapy alone showed no notable effect on the growth of SCCVII tumour. The PDT-induced immunosuppression, assessed by the evaluation of delayed-type contact hypersensitivity response in treated mice, was greatly reduced with the combined DBPMAF treatment. These observations suggest that the activation of macrophages in PDT-treated mice by adjuvant immunotherapy has a synergistic effect on tumour cures. As PDT not only reduces tumour burden but also induces inflammation, it is proposed that recruitment of the activated macrophages to the inflamed tumour lesions is the major factor for the complete eradication of tumours. PMID:9010027
Hong, Sang Bum; Lee, Kyung Jin
2016-01-01
Naringin, a flavanone glycoside extracted from various plants, has a wide range of pharmacological effects. In the present study, we investigated naringin’s mechanism of action and its inhibitory effect on lipopolysaccharide-induced tumor necrosis factor-alpha and high-mobility group box 1 expression in macrophages, and on death in a cecal ligation and puncture induced mouse model of sepsis. Naringin increased heme oxygenase 1 expression in peritoneal macrophage cells through the activation of adenosine monophosphate-activated protein kinase, p38, and NF-E2-related factor 2. Inhibition of heme oxygenase 1 abrogated the naringin’s inhibitory effect on high-mobility group box 1 expression and NF-kB activation in lipopolysaccharide-stimulated macrophages. Moreover, mice pretreated with naringin (200 mg/kg) exhibited decreased sepsis-induced mortality and lung injury, and alleviated lung pathological changes. However, the naringin’s protective effects on sepsis-induced lung injury were eliminated by zinc protoporphyrin, a heme oxygenase 1 competitive inhibitor. These results revealed the mechanism underlying naringin’s protective effect in inflammation and may be beneficial for the treatment of sepsis. PMID:27716835
Zhou, Zhong'e; Tang, Yong; Chen, Chengjun; Lu, Yi; Liu, Liang
2016-01-01
Advanced glycation end products (AGEs) are major inflammatory mediators in diabetes, affecting atherosclerosis progression via macrophages. Metformin slows diabetic atherosclerosis progression through mechanisms that remain to be fully elucidated. The present study of murine bone marrow derived macrophages showed that (1) AGEs enhanced proinflammatory cytokines (interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)) mRNA expression, RAGE expression, and NFκB activation; (2) metformin pretreatment inhibited AGEs effects and AGEs-induced cluster designation 86 (CD86) (M1 marker) expression, while promoting CD206 (M2 marker) surface expression and anti-inflammatory cytokine (IL-10) mRNA expression; and (3) the AMPK inhibitor, Compound C, attenuated metformin effects. In conclusion, metformin inhibits AGEs-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression. PMID:27761470
Xu, Yiming; Liu, Ling
2017-09-01
Influenza A viruses (IAV) result in severe public health problems with worldwide each year. Overresponse of immune system to IAV infection leads to complications, and ultimately causing morbidity and mortality. Curcumin has been reported to have anti-inflammatory ability. However, its molecular mechanism in immune responses remains unclear. We detected the pro-inflammatory cytokine secretion and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-related protein expression in human macrophages or mice infected by IAV with or without curcumin treatment. We found that the IAV infection caused a dramatic enhancement of pro-inflammatory cytokine productions of human macrophages and mice immune cells. However, curcumin treatment after IAV infection downregulated these cytokines production in a dose-dependent manner. Moreover, the NF-κB has been activated in human macrophages after IAV infection, while administration of curcumin inhibited NF-κB signaling pathway via promoting the expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and inhibiting the translocation of p65 from cytoplasm to nucleus. In summary, IAV infection could result in the inflammatory responses of immune cells, especially macrophages. Curcumin has the therapeutic potentials to relieve these inflammatory responses through inhibiting the NF-κB signaling pathway. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
Macrophage Fusion Is Controlled by the Cytoplasmic Protein Tyrosine Phosphatase PTP-PEST/PTPN12
Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean
2013-01-01
Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading. PMID:23589331
Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.
Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André
2013-06-01
Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.
Hennuyer, Nathalie; Duplan, Isabelle; Paquet, Charlotte; Vanhoutte, Jonathan; Woitrain, Eloise; Touche, Véronique; Colin, Sophie; Vallez, Emmanuelle; Lestavel, Sophie; Lefebvre, Philippe; Staels, Bart
2016-06-01
Atherosclerosis is characterized by lipid accumulation and chronic inflammation in the arterial wall. Elevated levels of apolipoprotein (apo) B-containing lipoproteins are a risk factor for cardiovascular disease (CVD). By contrast, plasma levels of functional high-density lipoprotein (HDL) and apoA-I are protective against CVD by enhancing reverse cholesterol transport (RCT). Activation of peroxisome proliferator-activated receptor-α (PPARα), a ligand-activated transcription factor, controls lipid metabolism, cellular cholesterol trafficking in macrophages and influences inflammation. To study whether pharmacological activation of PPARα with a novel highly potent and selective PPARα modulator, pemafibrate, improves lipid metabolism, macrophage cholesterol efflux, inflammation and consequently atherosclerosis development in vitro and in vivo using human apolipoprotein E2 Knock-In (apoE2KI) and human apoA-I transgenic (hapoA-I tg) mice. Pemafibrate treatment decreases apoB secretion in chylomicrons by polarized Caco-2/TC7 intestinal epithelium cells and reduces triglyceride levels in apoE2KI mice. Pemafibrate treatment of hapoA-I tg mice increases plasma HDL cholesterol, apoA-I and stimulates RCT to feces. In primary human macrophages, pemafibrate promotes macrophage cholesterol efflux to HDL and exerts anti-inflammatory activities. Pemafibrate also reduces markers of inflammation and macrophages in the aortic crosses as well as aortic atherosclerotic lesion burden in western diet-fed apoE2KI mice. These results demonstrate that the novel selective PPARα modulator pemafibrate exerts beneficial effects on lipid metabolism, RCT and inflammation resulting in anti-atherogenic properties. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
We Can Still Be Friends: IFN-γ Breaks Up Macrophage Enhancers.
Novakovic, Boris; Wang, Cheng; Logie, Colin
2017-08-15
Interferon (IFN)-γ can prime macrophages for inflammatory responses by several mechanisms, including enhancer establishment and gene activation. In this issue of Immunity, Kang et al. (2017) provide insight into the mechanisms of IFN-γ-mediated gene repression as they show that IFN-γ promotes the disassembly of select active enhancers by interfering with enhancer-binding transcription factor MAF. Copyright © 2017 Elsevier Inc. All rights reserved.
Regulation of the macrophage oxytocin receptor in response to inflammation
Szeto, Angela; Sun-Suslow, Ni; Mendez, Armando J.; Hernandez, Rosa I.; Wagner, Klaus V.
2017-01-01
It has been demonstrated that the neuropeptide oxytocin (OT) attenuates oxidative stress and inflammation in macrophages. In the current study, we examined the role of inflammation on the expression of the oxytocin receptor (OXTR). We hypothesized that OXTR expression is increased during the inflammation through a nuclear factor-κB (NF-κB)-mediated pathway, thus responding as an acute-phase protein. Inflammation was induced by treating macrophages (human primary, THP-1, and murine) with lipopolysaccharide (LPS) and monitored by expression of IL-6. Expression of OXTR and vasopressin receptors was assessed by qPCR, and OXTR expression was confirmed by immunoblotting. Inflammation upregulated OXTR transcription 10- to 250-fold relative to control in THP-1 and human primary macrophages and increased OXTR protein expression. In contrast, vasopressin receptor-2 mRNA expression was reduced following LPS treatment. Blocking NF-κB activation prevented the increase in OXTR transcription. OT treatment of control cells and LPS-treated cells increased ERK1/2 phosphorylation, demonstrating activation of the OXTR/Gαq/11 signaling pathway. OT activation of OXTR reduced secretion of IL-6 in LPS-activated macrophages. Collectively, these findings suggest that OXTR is an acute-phase protein and that its increased expression is regulated by NF-κB and functions to attenuate cellular inflammatory responses in macrophages. PMID:28049625
Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio
2003-01-01
The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960
Frangogiannis, Nikolaos G; Mendoza, Leonardo H; Ren, Guofeng; Akrivakis, Spyridon; Jackson, Peggy L; Michael, Lloyd H; Smith, C Wayne; Entman, Mark L
2003-08-01
Myocardial infarction is associated with the rapid induction of mononuclear cell chemoattractants that promote monocyte infiltration into the injured area. Monocyte-to-macrophage differentiation and macrophage proliferation allow a long survival of monocytic cells, critical for effective healing of the infarct. In a canine infarction-reperfusion model, newly recruited myeloid leukocytes were markedly augmented during early reperfusion (5-72 h). By 7 days, the number of newly recruited myeloid cells was reduced, and the majority of the inflammatory cells remaining in the infarct were mature macrophages. Macrophage colony-stimulating factor (MCSF) is known to facilitate monocyte survival, monocyte-to-macrophage conversion, and macrophage proliferation. We demonstrated marked induction of MCSF mRNA in ischemic segments persisting for at least 5 days after reperfusion. MCSF expression was predominantly localized to mature macrophages infiltrating the infarcted myocardium; the expression of the MCSF receptor, c-Fms, a protein with tyrosine kinase activity, was found in these macrophages but was also observed in a subset of microvessels within the infarct. Many infarct macrophages expressed proliferating cell nuclear antigen, a marker of proliferative activity. In vitro MCSF induced monocyte chemoattractant protein-1 synthesis in canine venous endothelial cells. MCSF-induced endothelial monocyte chemoattractant protein-1 upregulation was inhibited by herbimycin A, a tyrosine kinase inhibitor, and by LY-294002, a phosphatidylinositol 3'-kinase inhibitor. We suggest that upregulation of MCSF in the infarcted myocardium may have an active role in healing not only through its effects on cells of monocyte/macrophage lineage, but also by regulating endothelial cell chemokine expression.
Jang, Mi; Lim, Tae-Gyu; Ahn, Sungeun; Hong, Hee-Do; Rhee, Young Kyoung; Kim, Kyung-Tack; Lee, Eunjung; Lee, Jeong Hoon; Lee, Yun Ji; Jung, Chan Sik; Lee, Dae Young; Cho, Chang-Won
2016-01-01
The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract. PMID:27690089
Jang, Mi; Lim, Tae-Gyu; Ahn, Sungeun; Hong, Hee-Do; Rhee, Young Kyoung; Kim, Kyung-Tack; Lee, Eunjung; Lee, Jeong Hoon; Lee, Yun Ji; Jung, Chan Sik; Lee, Dae Young; Cho, Chang-Won
2016-09-27
The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract.
Kim, Ji-Hee; Bae, Chang Hwan; Park, Sun Young; Lee, Sang Joon; Kim, YoungHee
2010-10-01
The stems with hook of Uncaria rhynchophylla have been used in traditional medicine as an antipyretic, antihypertensive, and anticonvulsant in China and Korea. In this study, we investigated the mechanism responsible for anti-inflammatory effects of U. rhynchophylla in RAW 264.7 macrophages. The aqueous extract of U. rhynchophylla inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin (IL)-1β secretion as well as inducible NO synthase (iNOS) expression, without affecting cell viability. Furthermore, U. rhynchophylla suppressed LPS-induced nuclear factor κB (NF-κB) activation, phosphorylation, and degradation of inhibitory protein IκB (IκB)-α, phosphorylation of Akt, extracellular signal-regulated kinase 1/2, p38 kinase, and c-Jun N-terminal kinase. These results suggest that U. rhynchophylla has the inhibitory effects on LPS-induced NO and IL-1β production in macrophages through blockade in the phosphorylation of Akt and mitogen-activated protein kinases, following IκB-α degradation and NF-κB activation.
Saito, Takeyuki; Hara, Masamitsu; Kumamaru, Hiromi; Kobayakawa, Kazu; Yokota, Kazuya; Kijima, Ken; Yoshizaki, Shingo; Harimaya, Katsumi; Matsumoto, Yoshihiro; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Inagaki, Yutaka; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji
2017-12-01
Ligamentum flavum (LF) hypertrophy causes lumbar spinal canal stenosis, leading to leg pain and disability in activities of daily living in elderly individuals. Although previous studies have been performed on LF hypertrophy, its pathomechanisms have not been fully elucidated. In this study, we demonstrated that infiltrating macrophages were a causative factor for LF hypertrophy. Induction of macrophages into the mouse LF by applying a microinjury resulted in LF hypertrophy along with collagen accumulation and fibroblasts proliferation at the injured site, which were very similar to the characteristics observed in the severely hypertrophied LF of human. However, we found that macrophage depletion by injecting clodronate-containing liposomes counteracted LF hypertrophy even with microinjury. For identification of fibroblasts in the LF, we used collagen type I α 2 linked to green fluorescent protein transgenic mice and selectively isolated green fluorescent protein-positive fibroblasts from the microinjured LF using laser microdissection. A quantitative RT-PCR on laser microdissection samples revealed that the gene expression of collagen markedly increased in the fibroblasts at the injured site with infiltrating macrophages compared with the uninjured location. These results suggested that macrophage infiltration was crucial for LF hypertrophy by stimulating collagen production in fibroblasts, providing better understanding of the pathophysiology of LF hypertrophy. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro
2011-07-01
This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.
TOYOHARA, YUKIYO; HASHITANI, SUSUMU; KISHIMOTO, HIROMITSU; NOGUCHI, KAZUMA; YAMAMOTO, NOBUTO; URADE, MASAHIRO
2011-01-01
This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250
Gómez, María Adelaida; Olivier, Martin
2010-01-01
The outcome of Leishmania infection depends both on host and pathogen factors. Macrophages, the specialized host cells for uptake and intracellular development of Leishmania, play a central role in the control of infection. Leishmania has evolved strategies to downregulate host cell functions, largely mediated by the parasite-induced activation of macrophage protein tyrosine phosphatases (PTPs). We have recently identified PTP1B and TCPTP as two additional PTPs engaged upon Leishmania infection and have unraveled an intimate interaction between the Leishmania surface protease GP63 and host PTPs, which mediates a mechanism of cleavage-dependent PTP activation. Here we discuss new perspectives for GP63-mediated parasite virulence and propose putative mechanisms of GP63 internalization into host macrophages and access to intracellular substrates.
Chen, Haimin; Wang, Feng; Mao, Haihua; Yan, Xiaojun
2014-07-01
Carrageenan (CGN), a high molecular weight sulfated polysaccharide, is a traditional ingredient used in food industry. Its degraded forms have been identified as potential carcinogens, although the mechanism remains unclear. The effects of degraded λ-carrageenan (λ-dCGN) on murine RAW264.7 cells and human THP-1-derived macrophage cells were investigated by studying its actions on tumor necrosis factor alpha (TNF-α) secretion, Toll-like receptor 4 (TLR4) expression, and activation of nuclear factor-κb (NF-κB) and activation protein-1 (AP-1) pathways. We found that λ-dCGN was much stronger than native λ-CGN in the activation of macrophages to secrete TNF-α. Treatment of RAW264.7 cells with λ-dCGN resulted in the upregulation of TLR4, CD14 and MD-2 expressions, but it did not increase the binding of lipopolysacchride (LPS) with macrophages. Meanwhile, λ-dCGN treatment activated NF-κB via B-cell lymphoma/leukemia 10 (Bcl10) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation. In addition, λ-dCGN induced extracellular signal-regulated kinases/1/2/mitogen-activated protein kinases (ERK1/2/MAPK) and AP-1 activation. Interestingly, pretreatment of RAW264.7 cells with λ-dCGN markedly enhanced LPS-stimulated TNF-α secretion. This pretreatment resulted in the enhanced phosphorylation of ERK1/2 and c-Jun N-terminal kinase (JNK) and intensified activation of AP-1. λ-dCGN induced an inflammatory reaction via both NF-κB and AP-1, and enhanced the inflammatory effect of LPS through AP-1 activation. The study demonstrated the role of λ-dCGN to induce the inflammatory reaction and to aggravate the effect of LPS on macrophages, suggesting that λ-dCGN produced during food processing and gastric digestion may be a safety concern. Copyright © 2014 Elsevier B.V. All rights reserved.
Spratt, Heidi; Travi, Bruno L.; Luxon, Bruce A.
2017-01-01
Visceral Leishmaniasis (VL), caused by the intracellular protozoan Leishmania donovani, is characterized by relentlessly increasing visceral parasite replication, cachexia, massive splenomegaly, pancytopenia and ultimately death. Progressive disease is considered to be due to impaired effector T cell function and/or failure of macrophages to be activated to kill the intracellular parasite. In previous studies, we used the Syrian hamster (Mesocricetus auratus) as a model because it mimics the progressive nature of active human VL. We demonstrated previously that mixed expression of macrophage-activating (IFN-γ) and regulatory (IL-4, IL-10, IL-21) cytokines, parasite-induced expression of macrophage arginase 1 (Arg1), and decreased production of nitric oxide are key immunopathologic factors. Here we examined global changes in gene expression to define the splenic environment and phenotype of splenic macrophages during progressive VL. We used RNA sequencing coupled with de novo transcriptome assembly, because the Syrian hamster does not have a fully sequenced and annotated reference genome. Differentially expressed transcripts identified a highly inflammatory spleen environment with abundant expression of type I and type II interferon response genes. However, high IFN-γ expression was ineffective in directing exclusive M1 macrophage polarization, suppressing M2-associated gene expression, and restraining parasite replication and disease. While many IFN-inducible transcripts were upregulated in the infected spleen, fewer were induced in splenic macrophages in VL. Paradoxically, IFN-γ enhanced parasite growth and induced the counter-regulatory molecules Arg1, Ido1 and Irg1 in splenic macrophages. This was mediated, at least in part, through IFN-γ-induced activation of STAT3 and expression of IL-10, which suggests that splenic macrophages in VL are conditioned to respond to macrophage activation signals with a counter-regulatory response that is ineffective and even disease-promoting. Accordingly, inhibition of STAT3 activation led to a reduced parasite load in infected macrophages. Thus, the STAT3 pathway offers a rational target for adjunctive host-directed therapy to interrupt the pathogenesis of VL. PMID:28141856
Sun, Jian-Yong; Li, Chao; Shen, Zhu-Xia; Zhang, Wu-Chang; Ai, Tang-Jun; Du, Lin-Juan; Zhang, Yu-Yao; Yao, Gao-Feng; Liu, Yan; Sun, Shuyang; Naray-Fejes-Toth, Aniko; Fejes-Toth, Geza; Peng, Yong; Chen, Mao; Liu, Xiaojing; Tao, Jun; Zhou, Bin; Yu, Ying; Guo, Feifan; Du, Jie; Duan, Sheng-Zhong
2016-05-01
Restenosis after percutaneous coronary intervention remains to be a serious medical problem. Although mineralocorticoid receptor (MR) has been implicated as a potential target for treating restenosis, the cellular and molecular mechanisms are largely unknown. This study aims to explore the functions of macrophage MR in neointimal hyperplasia and to delineate the molecular mechanisms. Myeloid MR knockout (MMRKO) mice and controls were subjected to femoral artery injury. MMRKO reduced intima area and intima/media ratio, Ki67- and BrdU-positive vascular smooth muscle cells, expression of proinflammatory molecules, and macrophage accumulation in injured arteries. MMRKO macrophages migrated less in culture. MMRKO decreased Ki67- and BrdU-positive macrophages in injured arteries. MMRKO macrophages were less Ki67-positive in culture. Conditioned media from MMRKO macrophages induced less migration, Ki67 positivity, and proinflammatory gene expression of vascular smooth muscle cells. After lipopolysaccharide treatment, MMRKO macrophages had decreased p-cFos and p-cJun compared with control macrophages, suggesting suppressed activation of activator protein-1 (AP1). Nuclear factor-κB (NF-κB) pathway was also inhibited by MMRKO, manifested by decreased p-IκB kinase-β and p-IκBα, increased IκBα expression, decreased nuclear translocation of p65 and p50, as welll as decreased phosphorylation and expression of p65. Finally, overexpression of serum-and-glucocorticoid-inducible-kinase-1 (SGK1) attenuated the effects of MR deficiency in macrophages. Selective deletion of MR in myeloid cells limits macrophage accumulation and vascular inflammation and, therefore, inhibits neointimal hyperplasia and vascular remodeling. Mechanistically, MR deficiency suppresses migration and proliferation of macrophages and leads to less vascular smooth muscle cell activation. At the molecular level, MR deficiency suppresses macrophage inflammatory response via SGK1-AP1/NF-κB pathways. © 2016 American Heart Association, Inc.
Nguyen, Hoang-Yen T; Vo, Bach-Hue T; Nguyen, Lac-Thuy H; Bernad, Jose; Alaeddine, Mohamad; Coste, Agnes; Reybier, Karine; Pipy, Bernard; Nepveu, Françoise
2013-08-26
Crinum latifolium L. (CL) leaf extracts have been traditionally used in Vietnam and are now used all over the world for the treatment of prostate cancer. However, the precise cellular mechanisms of the action of CL extracts remain unclear. To examine the effects of CL samples on the anti-tumour activity of peritoneal murine macrophages. The properties of three extracts (aqueous, flavonoid, alkaloid), one fraction (alkaloid), and one pure compound (6-hydroxycrinamidine) obtained from CL, were studied (i) for redox capacities (DPPH and bleaching beta-carotene assays), (ii) on murine peritoneal macrophages (MTT assay) and on lymphoma EL4-luc2 cells (luciferine assay) for cytotoxicity, (iii) on macrophage polarization (production of ROS and gene expression by PCR), and (iv) on the tumoricidal functions of murine peritoneal macrophages (lymphoma cytotoxicity by co-culture with syngeneic macrophages). The total flavonoid extract with a high antioxidant activity (IC50=107.36 mg/L, DPPH assay) showed an inhibitory action on cancer cells. Alkaloid extracts inhibited the proliferation of lymphoma cells either by directly acting on tumour cells or by activating of the tumoricidal functions of syngeneic macrophages. The aqueous extract induced mRNA expression of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6) indicating differentiation of macrophages into pro-inflammatory M1 polarized macrophages. The total flavonoid, alkaloid extracts and an alkaloid fraction induced the expression of the formyl peptide receptor (FPR) on the surface of the polarized macrophages that could lead to the activation of macrophages towards the M1 phenotype. Aqueous and flavonoid extracts enhanced NADPH quinine oxido-reductase 1 (NQO1) mRNA expression in polarized macrophages which could play an important role in cancer chemoprevention. All the samples studied were non-toxic to normal living cells and the pure alkaloid tested, 6-hydroxycrinamidine, was not active in any of the models investigated. Our results indicate that CL extracts and alkaloid fraction (but not pure 6-hydroxycrinamidine) inhibit the proliferation of lymphoma cells in multiple pathways. Our results are in accordance with traditional usage and encourage further studies and in vivo assays. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Razali, Faizan Naeem; Ismail, Amirah; Abidin, Nurhayati Zainal; Shuib, Adawiyah Suriza
2014-01-01
The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth. PMID:25299340
Cuevas, Víctor D; Anta, Laura; Samaniego, Rafael; Orta-Zavalza, Emmanuel; Vladimir de la Rosa, Juan; Baujat, Geneviève; Domínguez-Soto, Ángeles; Sánchez-Mateos, Paloma; Escribese, María M; Castrillo, Antonio; Cormier-Daire, Valérie; Vega, Miguel A; Corbí, Ángel L
2017-03-01
Macrophage phenotypic and functional heterogeneity derives from tissue-specific transcriptional signatures shaped by the local microenvironment. Most studies addressing the molecular basis for macrophage heterogeneity have focused on murine cells, whereas the factors controlling the functional specialization of human macrophages are less known. M-CSF drives the generation of human monocyte-derived macrophages with a potent anti-inflammatory activity upon stimulation. We now report that knockdown of MAFB impairs the acquisition of the anti-inflammatory profile of human macrophages, identify the MAFB-dependent gene signature in human macrophages and illustrate the coexpression of MAFB and MAFB-target genes in CD163 + tissue-resident and tumor-associated macrophages. The contribution of MAFB to the homeostatic/anti-inflammatory macrophage profile is further supported by the skewed polarization of monocyte-derived macrophages from multicentric carpotarsal osteolysis (Online Mendelian Inheritance in Man #166300), a pathology caused by mutations in the MAFB gene. Our results demonstrate that MAFB critically determines the acquisition of the anti-inflammatory transcriptional and functional profiles of human macrophages. Copyright © 2017 by The American Association of Immunologists, Inc.
Shin, Kwang-Soon
2017-06-01
To elucidate new biological ingredients in cold-brew coffee extracted with cold water, crude polysaccharide (CCP-0) was isolated by ethanol precipitation, and its immune-stimulating activities were assayed. CCP-0 mainly comprised galactose (53.6%), mannose (15.7%), arabinose (11.9%), and uronic acid (12.4%), suggesting that it might exist as a mixture of galactomannan and arabinogalactan. CCP-0 significantly increased cell proliferation on both murine peritoneal macrophages and splenocytes in a dose dependent manner. CCP-0 also significantly augmented nitric oxide and reactive oxygen species production by murine peritoneal macrophages. In addition, macrophages stimulated by CCP-0 enhanced production of various cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-12. In an in vitro assay for intestinal immune-modulating activity, CCP-0 showed higher bone-marrow cell-proliferation activity through Peyer's patch cells at 100 μg/mL than the negative control. These results suggest that CCP-0 may potentially enhance macrophage functions and the intestinal immune system.
Xu, Fen; Burk, David; Gao, Zhanguo; Yin, Jun; Zhang, Xia
2012-01-01
The histone deacetylase sirtuin 1 (SIRT1) inhibits adipocyte differentiation and suppresses inflammation by targeting the transcription factors peroxisome proliferator-activated receptor γ and nuclear factor κB. Although this suggests that adiposity and inflammation should be enhanced when SIRT1 activity is inactivated in the body, this hypothesis has not been tested in SIRT1 null (SIRT1−/−) mice. In this study, we addressed this issue by investigating the adipose tissue in SIRT1−/− mice. Compared with their wild-type littermates, SIRT1 null mice exhibited a significant reduction in body weight. In adipose tissue, the average size of adipocytes was smaller, the content of extracellular matrix was lower, adiponectin and leptin were expressed at 60% of normal level, and adipocyte differentiation was reduced. All of these changes were observed with a 50% reduction in capillary density that was determined using a three-dimensional imaging technique. Except for vascular endothelial growth factor, the expression of several angiogenic factors (Pdgf, Hgf, endothelin, apelin, and Tgf-β) was reduced by about 50%. Macrophage infiltration and inflammatory cytokine expression were 70% less in the adipose tissue of null mice and macrophage differentiation was significantly inhibited in SIRT1−/− mouse embryonic fibroblasts in vitro. In wild-type mice, macrophage deletion led to a reduction in vascular density. These data suggest that SIRT1 controls adipose tissue function through regulation of angiogenesis, whose deficiency is associated with macrophage malfunction in SIRT1−/− mice. The study supports the concept that inflammation regulates angiogenesis in the adipose tissue. PMID:22315447
Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells.
Soucie, Erinn L; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J-C; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H
2016-02-12
Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. Copyright © 2016, American Association for the Advancement of Science.
Lee, Sang-Soo; Sharma, Ashish R; Choi, Byung-Soo; Jung, Jun-Sub; Chang, Jun-Dong; Park, Seonghun; Salvati, Eduardo A; Purdue, Edward P; Song, Dong-Keun; Nam, Ju-Suk
2012-06-01
Wear particles are the major cause of osteolysis associated with failure of implant following total joint replacement. During this pathologic process, activated macrophages mediate inflammatory responses to increase osteoclastogenesis, leading to enhanced bone resorption. In osteolysis caused by wear particles, osteoprogenitors present along with macrophages at the implant interface may play significant roles in bone regeneration and implant osteointegration. Although the direct effects of wear particles on osteoblasts have been addressed recently, the role of activated macrophages in regulation of osteogenic activity of osteoblasts has scarcely been studied. In the present study, we examined the molecular communication between macrophages and osteoprogenitor cells that may explain the effect of wear particles on impaired bone forming activity in inflammatory bone diseases. It has been demonstrated that conditioned medium of macrophages challenged with titanium particles (Ti CM) suppresses early and late differentiation markers of osteoprogenitors, including alkaline phosphatase (ALP) activity, collagen synthesis, matrix mineralization and expression of osteocalcin and Runx2. Moreover, bone forming signals such as WNT and BMP signaling pathways were inhibited by Ti CM. Interestingly, TNFα was identified as a predominant factor in Ti CM to suppress osteogenic activity as well as WNT and BMP signaling activity. Furthermore, Ti CM or TNFα induces the expression of sclerostin (SOST) which is able to inhibit WNT and BMP signaling pathways. It was determined that over-expression of SOST suppressed ALP activity, whereas the inhibition of SOST by siRNA partially restored the effect of Ti CM on ALP activity. This study highlights the role of activated macrophages in regulation of impaired osteogenic activity seen in inflammatory conditions and provides a potential mechanism for autocrine regulation of WNT and BMP signaling mediated by TNFα via induction of SOST in osteprogenitor cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tan, H-Y; Wang, N; Man, K; Tsao, S-W; Che, C-M; Feng, Y
2015-01-01
The plasticity of tumour-associated macrophages (TAMs) has implicated an influential role in hepatocellular carcinoma (HCC). Repolarisation of TAM towards M1 phenotype characterises an immune-competent microenvironment that favours tumour regression. To investigate the role and mechanism of TAM repolarisation in suppression of HCC by a natural compound baicalin, Orthotopic HCC implantation model was used to investigate the effect of baicalin on HCC; liposome-clodronate was introduced to suppress macrophage populations in mice; bone marrow-derived monocytes (BMDMs) were induced to unpolarised, M1-like, M2-like macrophages and TAM using different conditioned medium. We observed that oral administration of baicalin (50 mg/kg) completely blocked orthotopic growth of implanted HCC. Suppression of HCC by baicalin was diminished when mice macrophage was removed by clodronate treatment. Baicalin induced repolarisation of TAM to M1-like phenotype without specific toxicity to either phenotype of macrophages. Baicalin initiated TAM reprogramming to M1-like macrophage, and promoted pro-inflammatory cytokines production. Co-culturing of HCC cells with baicalin-treated TAMs resulted in reduced proliferation and motility in HCC. Baicalin had minimal effect on derivation of macrophage polarisation factors by HCC cells, while directly induced repolarisation of TAM and M2-like macrophage. This effect was associated with elevated autophagy, and transcriptional activation of RelB/p52 pathway. Suppression of autophagy or RelB abolished skewing of baicalin-treated TAM. Autophagic degradation of TRAF2 in baicalin-treated TAM might be responsible for RelB/p52 activation. Our findings unveil the essential role of TAM repolarisation in suppressive effect of baicalin on HCC, which requires autophagy-associated activation of RelB/p52. PMID:26492375
Hua, Kuo-Feng; Yang, Tzu-Jung; Chiu, Huan-Wen; Ho, Chen-Lung
2014-06-01
The essential oil from Liquidambar formosana leaves (EOLF) was demonstrated to exhibit anti-inflammatory activity in mouse macrophages. EOLF reduced nitrite oxide generation, secretion levels of tumor necrosis factor-alpha and interleukin-6, and expression levels of prointerleukin-beta, inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide (LPS)-activated mouse macrophages. EOLF also reduced NLRP3 inflammasome-derived interleukin-1beta secretion. The underlying mechanisms for the EOLF-mediated anti-inflammatory activity were (1) reduction of LPS-induced reactive oxygen species generation; (2) reduction of LPS-induced activation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 MAP kinase; (3) reduction of LPS-induced nuclear factor-kappaBeta activation. Furthermore, 25 compounds were identified in the EOLF using GC-FID and GC-MS and the major compounds were terpinen-4-ol (32.0%), beta-pinene (18.0%), gamma-terpinene (13.8%), and alpha-terpinene (9.7%). We found that LPS-induced nitrite oxide generation was inhibited significantly by terpinen-4-ol. Our results indicated that EOLF has anti-inflammatory activity and may provide a molecular rationale for future therapeutic interventions in immune modulation.
Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won
2012-04-01
Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways ledmore » to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.« less
Liu, Chang; Gao, Jing; Chen, Bing; Chen, Lin; Belguise, Karine; Yu, Weifeng; Lu, Kaizhi; Wang, Xiaobo; Yi, Bin
2017-08-15
One central factor in hepatopulmonary syndrome (HPS) pathogenesis is intravascular accumulation of activated macrophages in small pulmonary arteries. However, molecular mechanism underlying the macrophage accumulation in HPS is unknown. In this study, we aimed to explore whether elevated COX-2 induces the Bone morphogenic protein-2 (BMP-2)/Crossveinless-2 (CV-2) imbalance and then activation of BMP signaling pathway promotes the macrophage accumulation in Common Bile Duct Ligation (CBDL) rat lung. The COX-2/PGE2 signaling activation, the BMP-2/CV-2 imbalance and the activation of Smad1 were evaluated in CBDL rat lung and in cultured pulmonary microvascular endothelial cells (PMVECs) under the HPS serum stimulation. The effects of Parecoxib (COX-2 inhibitor), BMP-2 and CV-2 recombinant proteins on 4-week CBDL rat lung were determined, respectively. The COX-2/PGE2 signaling pathway was activated in CBDL rat lung in vivo and PMVECs in vitro, which was due to the activation of NF-κB P65. The inhibition of COX-2 by Parecoxib reduced macrophage accumulation, decreased lung angiogenesis and improved HPS. Meanwhile, the CBDL rat lung secreted more BMP-2 but less CV-2, and the imbalance between BMP-2 and CV-2 exacerbated the BMP signaling activation thus promoting the macrophage accumulation and lung angiogenesis. The BMP-2/CV-2 imbalance is dependent on the COX-2/PGE2 signaling pathway, and thus the effects of this imbalance can be reversed by adminstration of Parecoxib. Our findings indicate that inhibition of COX-2 by parecoxib can improve the HPS through the repression of BMP signaling and macrophage accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Compound C inhibits macrophage chemotaxis through an AMPK-independent mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Youngyi; Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896; Park, Byung-Hyun, E-mail: bhpark@jbnu.ac.kr
Macrophage infiltration in adipose tissue is a well-established cause of obesity-linked insulin resistance. AMP-activated protein kinase (AMPK) activation in peripheral tissues such as adipose tissue has beneficial effects on the protection against obesity-induced insulin resistance, which is mainly mediated by prevention of adipose tissue macrophage infiltration and inflammation. In examining the role of AMPK on adipose tissue inflammation, we unexpectedly found that compound C (CC), despite its inhibition of AMPK, robustly inhibited macrophage chemotaxis in RAW 264.7 cells when adipocyte conditioned medium (CM) was used as a chemoattractant. Here, we report that CC inhibition of macrophage migration occurred independently ofmore » AMPK. Mechanistically, this inhibitory effect of cell migration by CC was mediated by inhibition of the focal adhesion kinase, AKT, nuclear factor κB pathways. Moreover, the expression of chemokine monocyte chemoattractant protein-1 and pro-inflammatory genes such as tumor necrosis factor α and inducible nitric oxide synthase were prevented by CC treatment in RAW 264.7 cells stimulated with either adipocyte CM or lipopolysaccharide. Lastly, in accord with the findings of the anti-inflammatory effect of CC, we demonstrated that CC functioned as a repressor of macrophage CM-mediated insulin resistance in adipocytes. Taken together, our results suggest that CC serves as a useful inhibitory molecule against macrophage chemotaxis into adipose tissue and thus might have therapeutic potential for the treatment of obesity-linked adipose inflammation. - Highlights: • Compound C (CC) inhibits macrophage chemotaxis regardless of AMPK suppression. • CC enhances insulin sensitivity in adipocytes. • CC inhibits focal adhesion kinase, AKT, and NF-κB signaling in RAW 264.7 cells.« less
Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun
2016-07-15
Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Activation of Murine Macrophages by Lipoprotein and Lipooligosaccharide of Treponema denticola
Rosen, Graciela; Sela, Michael N.; Naor, Ronit; Halabi, Amal; Barak, Vivian; Shapira, Lior
1999-01-01
We have recently demonstrated that the periodontopathogenic oral spirochete Treponema denticola possesses membrane-associated lipoproteins in addition to lipooligosaccharide (LOS). The aim of the present study was to test the potential of these oral spirochetal components to induce the production of inflammatory mediators by human macrophages, which in turn may stimulate tissue breakdown as observed in periodontal diseases. An enriched lipoprotein fraction (dLPP) from T. denticola ATCC 35404 obtained upon extraction of the treponemes with Triton X-114 was found to stimulate the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and interleukin-1 (IL-1) by mouse macrophages in a dose-dependent manner. Induction of NO by dLPP was at 25% of the levels obtained by Salmonella typhosa lipopolysaccharide (LPS) at similar concentrations, while IL-1 was produced at similar levels by both inducers. dLPP-mediated macrophage activation was unaffected by amounts of polymyxin B that neutralized the induction produced by S. typhosa LPS. dLPP also induced NO and TNF-α secretion from macrophages isolated from endotoxin-unresponsive C3H/HeJ mice to an extent similar to the stimulation produced in endotoxin-responsive mice. Purified T. denticola LOS also produced a concentration-dependent activation of NO and TNF-α in LPS-responsive and -nonresponsive mouse macrophages. However, macrophage activation by LOS was inhibited by polymyxin B. These results suggest that T. denticola lipoproteins and LOS may play a role in the inflammatory processes that characterize periodontal diseases. PMID:10024558
Activation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola.
Rosen, G; Sela, M N; Naor, R; Halabi, A; Barak, V; Shapira, L
1999-03-01
We have recently demonstrated that the periodontopathogenic oral spirochete Treponema denticola possesses membrane-associated lipoproteins in addition to lipooligosaccharide (LOS). The aim of the present study was to test the potential of these oral spirochetal components to induce the production of inflammatory mediators by human macrophages, which in turn may stimulate tissue breakdown as observed in periodontal diseases. An enriched lipoprotein fraction (dLPP) from T. denticola ATCC 35404 obtained upon extraction of the treponemes with Triton X-114 was found to stimulate the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), and interleukin-1 (IL-1) by mouse macrophages in a dose-dependent manner. Induction of NO by dLPP was at 25% of the levels obtained by Salmonella typhosa lipopolysaccharide (LPS) at similar concentrations, while IL-1 was produced at similar levels by both inducers. dLPP-mediated macrophage activation was unaffected by amounts of polymyxin B that neutralized the induction produced by S. typhosa LPS. dLPP also induced NO and TNF-alpha secretion from macrophages isolated from endotoxin-unresponsive C3H/HeJ mice to an extent similar to the stimulation produced in endotoxin-responsive mice. Purified T. denticola LOS also produced a concentration-dependent activation of NO and TNF-alpha in LPS-responsive and -nonresponsive mouse macrophages. However, macrophage activation by LOS was inhibited by polymyxin B. These results suggest that T. denticola lipoproteins and LOS may play a role in the inflammatory processes that characterize periodontal diseases.
Marzocco, Stefania; Calabrone, Luana; Adesso, Simona; Larocca, Marilena; Franceschelli, Silvia; Autore, Giuseppina; Martelli, Giuseppe; Rossano, Rocco
2015-12-01
Horseradish (Armoracia rusticana) is a perennial crop belonging to the Brassicaceae family. Horseradish root is used as a condiment due to its extremely pungent flavour, deriving from the high content of glucosinolates and their breakdown products such as isothiocyanates and other sulfur compounds. Horseradish also has a long history in ethnomedicine. In this study the anti-inflammatory potential of three accessions of Armoracia rusticana on lipopolysaccharide from E. coli treated J774A.1 murine macrophages was evaluated. Our results demonstrate that Armoracia rusticana reduced nitric oxide, tumor necrosis factor-α and interleukin-6 release and nitric oxide synthase and cyclooxygenase-2 expression in macrophages, acting on nuclear transcription factor NF-κB p65 activation. Moreover Armoracia rusticana reduced reactive oxygen species release and increased heme-oxygenase-1 expression, thus contributing to the cytoprotective cellular effect during inflammation.
Pan, Qingjun; Liu, Yuan; Zhu, Xuezhi; Liu, Huafeng
2014-05-01
The aim of this study was to investigate the effect and mechanism of action of chloral hydrate on the peptidoglycan (PGN)-induced inflammatory macrophage response. The effect of chloral hydrate on the production of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) by murine peritoneal macrophages with PGN-stimulation was investigated. In addition, RAW264.7 cells transfected with a nuclear factor-κB (NF-κB) luciferase reporter plasmid stimulated by PGN were used to study the effect of chloral hydrate on the levels NF-κB activity. Flow cytometry and western blotting were performed to investigate the expression levels of toll-like receptor 2 (TLR2) in the treated RAW264.7 cells. It was identified that chloral hydrate reduced the levels of IL-6 and TNF-α produced by the peritoneal macrophages stimulated with PGN. The levels of NF-κB activity of the RAW264.7 cells stimulated by PGN decreased following treatment with chloral hydrate, which was associated with a reduction in the expression levels of TLR2 and reduced levels of TLR2 signal transduction. These data demonstrate that chloral hydrate reduced the magnitude of the PGN-induced inflammatory macrophage response associated with lower expression levels of TLR2.
Gumireddy, Kiranmai; Reddy, C Damodar; Swamy, Narasimha
2003-09-01
Vitamin D-binding protein-macrophage-activating factor (DBP-maf) is derived from serum vitamin D binding protein (DBP) by selective deglycosylation during inflammation. In the present study, we investigated the effect of DBP-maf on RAW 264.7 macrophages and the underlying intracellular signal transduction pathways. DBP-maf increased proapoptotic caspase-3, -8, and -9 activities and induced apoptosis in RAW 264.7 cells. However, DBP, the precursor to DBP-maf did not induce apoptosis in these cells. Cell cycle analysis of DBP-maf-treated RAW 264.7 cells revealed growth arrest with accumulation of cells in sub-G(0)/G(1) phase. We also investigated the role of mitogen-activated protein kinase (MAPK) pathways in the DBP-maf-induced apoptosis of RAW264.7 cells. DBP-maf increased the phosphorylation of p38 and JNK1/2, while it decreased the ERK1/2 phosphorylation. Treatment with the p38 MAPK inhibitor, SB202190, attenuated DBP-maf-induced apoptosis. PD98059, a MEK specific inhibitor, did not show a significant inhibition of apoptosis induced by DBP-maf. Taken together, these results suggest that the p38 MAPK pathway plays a crucial role in DBP-maf-mediated apoptosis of macrophages. Our studies indicate that, during inflammation DBP-maf may function positively by causing death of the macrophages when activated macrophages are no longer needed at the site of inflammation. In summary, we report for the first time that DBP-maf induces apoptosis in macrophages via p38 and JNK1/2 pathway. Copyright 2003 Wiley-Liss, Inc.
Pham, Tho X; Lee, Ji-Young
2016-06-01
We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions.
Legarda, Diana; Justus, Scott J; Ang, Rosalind L; Rikhi, Nimisha; Li, Wenjing; Moran, Thomas M; Zhang, Jianke; Mizoguchi, Emiko; Zelic, Matija; Kelliher, Michelle A; Blander, J Magarian; Ting, Adrian T
2016-06-14
Tumor necrosis factor (TNF) induces necroptosis, a RIPK3/MLKL-dependent form of inflammatory cell death. In response to infection by Gram-negative bacteria, multiple receptors on macrophages, including TLR4, TNF, and type I IFN receptors, are concurrently activated, but it is unclear how they crosstalk to regulate necroptosis. We report that TLR4 activates CASPASE-8 to cleave and remove the deubiquitinase cylindromatosis (CYLD) in a TRIF- and RIPK1-dependent manner to disable necroptosis in macrophages. Inhibiting CASPASE-8 leads to CYLD-dependent necroptosis caused by the TNF produced in response to TLR4 ligation. While lipopolysaccharides (LPS)-induced necroptosis was abrogated in Tnf(-/-) macrophages, a soluble TNF antagonist was not able to do so in Tnf(+/+) macrophages, indicating that necroptosis occurs in a cell-autonomous manner. Surprisingly, TNF-mediated auto-necroptosis of macrophages requires type I IFN, which primes the expression of key necroptosis-signaling molecules, including TNFR2 and MLKL. Thus, the TNF necroptosis pathway is regulated by both negative and positive crosstalk. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Legumain is activated in macrophages during pancreatitis
Wartmann, Thomas; Fleming, Alicia K.; Gocheva, Vasilena; van der Linden, Wouter A.; Withana, Nimali P.; Verdoes, Martijn; Aurelio, Luigi; Edgington-Mitchell, Daniel; Lieu, TinaMarie; Parker, Belinda S.; Graham, Bim; Reinheckel, Thomas; Furness, John B.; Joyce, Johanna A.; Storz, Peter; Halangk, Walter; Bogyo, Matthew; Bunnett, Nigel W.
2016-01-01
Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked to inflammatory diseases such as atherosclerosis, stroke, and cancer. Until now, legumain activation has not been studied during pancreatitis. We used a fluorescently quenched activity-based probe to assess legumain activation during caerulein-induced pancreatitis in mice. We detected activated legumain by ex vivo imaging, confocal microscopy, and gel electrophoresis. Compared with healthy controls, legumain activity in the pancreas of caerulein-treated mice was increased in a time-dependent manner. Legumain was localized to CD68+ macrophages and was not active in pancreatic acinar cells. Using a small-molecule inhibitor of legumain, we found that this protease is not essential for the initiation of pancreatitis. However, it may serve as a biomarker of disease, since patients with chronic pancreatitis show strongly increased legumain expression in macrophages. Moreover, the occurrence of legumain-expressing macrophages in regions of acinar-to-ductal metaplasia suggests that this protease may influence reprogramming events that lead to inflammation-induced pancreatic cancer. PMID:27514475
Kim, Won-Jung; Kang, Yoon-Joong; Koh, Eun-Mi; Ahn, Kwang-Sung; Cha, Hoon-Suk; Lee, Won-Ha
2005-01-01
Macrophages play a crucial role in the perpetuation of inflammation and irreversible cartilage damage during the development of rheumatoid arthritis (RA). LIGHT (TNFSF14) and its receptor TR2 (TNFRSF14) are known to have pro-inflammatory activities in foam cells of atherosclerotic plaques. We tested a hypothesis that LIGHT and TR2 are involved in activation of monocyte/macrophages in RA synovium. Immunohistochemical analysis of RA synovial tissue samples revealed that both LIGHT and TR2 are expressed in CD68 positive macrophages. In contrast, synovial tissue samples from osteoarthritis (OA) patients failed to reveal the expression of LIGHT. Expression of TR2 in RA synovial macrophages was also detected using flow cytometry analysis. To identify the role of LIGHT in the functioning of macrophages in RA, we isolated macrophage enriched cells from RA synovial fluid and stimulated them with LIGHT. LIGHT induced expression of matrix metalloproteinase-9 and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8. These data indicate that LIGHT and TR2 expressed in macrophages are involved in the pathogenesis of RA by inducing the expression pro-inflammatory cytokines and matrix degrading enzymes. PMID:15667572
Stimulation of phagocytosis by sulforaphane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu; Fahey, Jed W., E-mail: jfahey@jhmi.edu; Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu
2011-02-04
Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatorymore » and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.« less
Bertling, Anne; Brodde, Martin F; Visser, Mayken; Treffon, Janina; Fennen, Michelle; Fender, Anke C; Kelsch, Reinhard; Kehrel, Beate E
2017-09-01
Hemarthrosis, or bleeding into the joints, is a hallmark of hemophilia. Heme triggers oxidative stress, inflammation, and destruction of cartilage and bone. The haptoglobin-CD163-heme oxygenase-1 (HO-1) pathway circumvents heme toxicity through enzymatic degradation of heme and transcription of antioxidant genes. Plasma-derived factor concentrates contain many proteins that might impact on cellular pathways in joints, blood, and vessels. Activation of platelets from healthy volunteers was assessed by flow cytometry analysis of fibrinogen binding and CD62P expression. Platelet CXCL4 release was measured by ELISA. Human peripheral blood mononuclear cells were exposed to CXCL4 or platelet supernatants (untreated or pre-stimulated with factor VIII (FVIII) products) during their differentiation to macrophages and analyzed for CD163 expression. Some macrophage cultures were additionally incubated with autologous hemoglobin for 18 h for analysis of HO-1 expression. Platelet CXCL4 release was increased by all 8 tested plasma-derived FVIII products but not the 3 recombinant products. Macrophages exposed to supernatant from platelets treated with some plasma-derived FVIII products downregulated CD163 surface expression and failed to upregulate the athero- and joint protective enzyme HO-1 in response to hemoglobin. Plasma-derived FVIII products might promote bleeding-induced joint injury via generation of macrophages that are unable to counteract redox stress.
Yang, Yuyu; Li, Xueyan; Peng, Liying; An, Lin; Sun, Ningyuan; Hu, Xuewen; Zhou, Ping; Xu, Yong; Li, Ping; Chen, Jun
2018-03-01
NF-E2-related factor 2 (Nrf2) has been shown to be protective in atherosclerosis. The loss of Nrf2 in macrophages enhances foam cell formation and promotes early atherogenesis. Tanshindiol C (Tan C) is isolated from the root of Salvia miltiorrhiza Bge., a traditional Chinese medicine that has been used for the treatment of several cardiovascular diseases for many years. This study was aimed to test the potential role of Tan C against macrophage foam cell formation and to explore the underlying mechanism. Firstly, we observed that Tan C markedly suppressed oxidized low-density lipoprotein (oxLDL) induced macrophage foam cell formation. Then, we found that Tan C was an activator of both Nrf2 and Sirtuin 1 (Sirt1) in macrophages. Nrf2 and Sirt1 synergistically activated the transcription of anti-oxidant peroxiredoxin 1 (Prdx1) after Tan C treatment. More important, we demonstrated that silencing of Prdx1 promoted oxLDL-induced macrophage foam cell formation. Prdx1 upregulated adenosine triphosphate-binding cassette (ABC) transporter A1 (ABCA1) expression and decreased intracellular lipid accumulation. Furthermore, Tan C ameliorated oxLDL induced macrophage foam cell formation in a Prdx1-dependent manner. These observations suggest that Tan C protects macrophages from oxLDL induced foam cell formation via activation of Prdx1/ABCA1 signaling and that Prdx1 may be a novel target for therapeutic intervention of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Yunxin; Liu, Xiang; Hua, Weiwei; Wei, Qingyan; Fang, Xianjun; Zhao, Zheng; Ge, Chun; Liu, Chao; Chen, Chen; Tao, Yifu; Zhu, Yubing
2018-04-01
Berberine has been reported to have protective effects in colitis treatment. However, the detailed mechanisms remain unclear. Herein, we demonstrated that berberine could protect against dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization. In the colitis mouse model, berberine ameliorated DSS-induced colon shortening and colon tissue injury. Moreover, berberine-treated mice showed significant reduction in the disease activity index (DAI), pro-inflammatory cytokines expression and macrophages infiltration compared with the DSS-treated mice. Notably, berberine significantly reduced the percentage of M1 macrophages. In vitro analysis also confirmed the inhibitory effects of berberine on macrophages M1 polarization in RAW267.4 cells. Further investigation showed that berberine promoted AKT1 expression in mRNA and protein level. Silence of AKT1 abolished the inhibitory effect of berberine on macrophages M1 polarization. The berberine-induced AKT1 expression promoted suppressers of cytokine signaling (SOCS1) activation, which inhibited nuclear factor-kappa B (NF-κB) phosphorylation. In addition, we also found that berberine activated AKT1/SOCS1 signaling pathway but inhibited p65 phosphorylation in macrophages in vivo. Therefore, we concluded that berberine played a regulatory role in macrophages M1 polarization in DSS-induced colitis via AKT1/SOCS1/NF-κB signaling pathway. This unexpected property of berberine may provide a potential explanation for its protective effects in colitis treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Hirai, Takayuki; Uchida, Kenzo; Nakajima, Hideaki; Guerrero, Alexander Rodriguez; Takeura, Naoto; Watanabe, Shuji; Sugita, Daisuke; Yoshida, Ai; Johnson, William E. B.; Baba, Hisatoshi
2013-01-01
Background Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease. Methods Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass. Results The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) −2 progressively increased. Conclusions Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. PMID:23717624
Kim, Joungmin; Jeong, Seong-Wook; Quan, Hui; Jeong, Cheol-Won; Choi, Jeong-Il; Bae, Hong-Beom
2016-02-01
Curcumin, a biphenolic compound extracted from turmeric (Curcuma longa), possesses potent anti-inflammatory activity. The present study investigated whether curcumin could increase 5' adenosine monophosphate-activated protein kinase (AMPK) activity in macrophages and modulate the severity of lipopolysaccharide (LPS)-induced acute lung injury. Macrophages were treated with curcumin and then exposed (or not) to LPS. Acute lung injury was induced by intratracheal administration of LPS in BALB/c mice. Curcumin increased phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a downstream target of AMPK, in a time- and concentration-dependent manner. Curcumin did not increase phosphorylation of liver kinase B1, a primary kinase upstream of AMPK. STO-609, an inhibitor of calcium(2+)/calmodulin-dependent protein kinase kinase, diminished curcumin-induced AMPK phosphorylation, but transforming growth factor-beta-activated kinase 1 inhibitor did not. Curcumin also diminished the LPS-induced increase in phosphorylation of inhibitory κB-alpha and the production of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein (MIP)-2, and interleukin (IL)-6 by macrophages. Systemic administration of curcumin significantly decreased the production of TNF-α, MIP-2, and IL-6 as well as neutrophil accumulation in bronchoalveolar lavage fluid, and also decreased pulmonary myeloperoxidase levels and the wet/dry weight ratio in mice subjected to LPS treatment. These results suggest that the protective effect of curcumin on LPS-induced acute lung injury is associated with AMPK activation.
Leishmania and the macrophage: a multifaceted interaction.
Podinovskaia, Maria; Descoteaux, Albert
2015-01-01
Leishmania, the causative agent of leishmaniases, is an intracellular parasite of macrophages, transmitted to humans via the bite of its sand fly vector. This protozoan organism has evolved strategies for efficient uptake into macrophages and is able to regulate phagosome maturation in order to make the phagosome more hospitable for parasite growth and to avoid destruction. As a result, macrophage defenses such as oxidative damage, antigen presentation, immune activation and apoptosis are compromised whereas nutrient availability is improved. Many Leishmania survival factors are involved in shaping the phagosome and reprogramming the macrophage to promote infection. This review details the complexity of the host-parasite interactions and summarizes our latest understanding of key events that make Leishmania such a successful intracellular parasite.
Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J. V.; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania
2013-01-01
The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This al1ows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228
Crosby, Lynn; Casey, Warren; Morgan, Kevin; Ni, Hong; Yoon, Lawrence; Easton, Marilyn; Misukonis, Mary; Burleson, Gary; Ghosh, Dipak K.
2010-01-01
Specific bacterial lipopolysaccharides (LPS), IFN-γ, and unmethylated cytosine or guanosine-phosphorothioate containing DNAs (CpG) activate host immunity, influencing infectious responses. Macrophages detect, inactivate and destroy infectious particles, and synthetic CpG sequences invoke similar responses of the innate immune system. Previously, murine macrophage J774 cells treated with CpG induced the expression of nitric oxide synthase 2 (NOS2) and cyclo-oxygenase 2 (COX2) mRNA and protein. In this study murine J774 macrophages were exposed to vehicle, interferon γ + lipopolysaccharide (IFN-g/LPS), non-CpG (SAK1), or two-CpG sequence-containing DNA (SAK2) for 0–18 hr and gene expression changes measured. A large number of immunostimulatory and inflammatory changes were observed. SAK2 was a stronger activator of TNFα- and chemokine expression-related changes than LPS/IFN-g. Up regulation included tumor necrosis factor receptor superfamily genes (TNFRSF’s), IL-1 receptor signaling via stress-activated protein kinase (SAPK), NF-κB activation, hemopoietic maturation factors and sonic hedgehog/wingless integration site (SHH/Wnt) pathway genes. Genes of the TGF-β pathway were down regulated. In contrast, LPS/IFN-g -treated cells showed increased levels for TGF-β signaling genes, which may be linked to the observed up regulation of numerous collagens and down regulation of Wnt pathway genes. SAK1 produced distinct changes from LPS/IFN-g or SAK2. Therefore, J774 macrophages recognize LPS/IFN-g, non-CpG DNA or two-CpG DNA-containing sequences as immunologically distinct. PMID:20097302
Broug-Holub, E; Persoons, J H; Schornagel, K; Kraal, G
1995-01-01
Oral administration of the bacterial immunomodulator Broncho-Vaxom (OM-85), a lysate of eight bacteria strains commonly causing respiratory disease, has been shown to enhance the host defence of the respiratory tract. In this study we examined the effect of orally administered (in vivo) OM-85 on stimulus-induced cytokine and nitric oxide secretion by rat alveolar macrophages in vitro. The results show that alveolar macrophages isolated from OM-85-treated rats secreted significantly more nitric oxide, tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta upon in vitro stimulation with lipopolysaccharide (LPS), whereas, in contrast, LPS-induced IL-6 secretion was significantly lower. The observed effects of in vivo OM-85 treatment on stimulus-induced cytokine secretion in vitro are not due to a direct effect of OM-85 on the cells, because in vitro incubation of alveolar macrophages with OM-85 did not result in altered activity, nor did direct intratracheal instillation of OM-85 in the lungs of rats result in altered alveolar macrophage activity in vitro. It is hypothesized that oral administration of OM-85 leads to priming of alveolar macrophages in such a way that immune responses are non-specifically enhanced upon stimulation. The therapeutic action of OM-85 may therefore result from an enhanced clearance of infectious bacteria from the respiratory tract due to increased alveolar macrophage activity. PMID:7648713
Pyo, Myoung Yun; Kim, Hae Ju; Back, Seung Kyung; Yang, Mihi
2007-11-01
Bisphenol A (BPA) is an environmental endocrine disrupter that is known to be transferred to the fetus via the placenta and to the neonate via milk. In this study, we investigated BPA-induced alterations of the activities of murine peritoneal macrophages in dams and 7 week old offspring of dams exposed to BPA from gestational day 7 until lactation on day 21 after delivery, i.e. 34-36 days. BPA was administered in drinking water at three doses, 15, 75, and 300 mg/L. Dams were sacrificed 21 days after delivery and offspring at the age of 7 weeks. Peritoneal macrophages were cultured in the presence of LPS or LPS plus IFN-gamma for 2 or 4 days. We found that nitric oxide (NO) production by maternal macrophages was significantly decreased in a BPA-dose dependent manner. However, while a significant reduction of NO production by macrophages in the offspring was observed at BPA concentrations of 75 mg/L and 300 mg/L in drinking water, this effect was not seen at the lowest concentration of 15 mg/L. Similar inhibition of tumor necrosis factor-alpha (TNF-alpha) production was observed with macrophages from both BPA-exposed dams and offspring. Thus, our results suggest that exposure to BPA during gestation and lactation induces downregulation of the activities of macrophages in both dams and offspring.
Terkawi, Mohamad Alaa; Hamasaki, Masanari; Takahashi, Daisuke; Ota, Masahiro; Kadoya, Ken; Yutani, Tomoyo; Uetsuki, Keita; Asano, Tsuyoshi; Irie, Tohru; Arai, Ryuta; Onodera, Tomohiro; Takahata, Masahiko; Iwasaki, Norimasa
2018-01-01
Osteolysis is a serious postoperative complication of total joint arthroplasty that leads to aseptic loosening and surgical revision. Osteolysis is a chronic destructive process that occurs when host macrophages recognize implant particles and release inflammatory mediators that increase bone-resorbing osteoclastic activity and attenuate bone-formation osteoblastic activity. Although much progress has been made in understanding the molecular responses of macrophages to implant particles, the pathways/signals that initiate osteolysis remain poorly characterized. Transcriptomics and gene-expression profiling of these macrophages may unravel key mechanisms in the pathogenesis of osteolysis and aid the identification of molecular candidates for therapeutic intervention. To this end, we analyzed the transcriptional profiling of macrophages exposed to ultra-high molecular weight polyethylene (UHMWPE) particles, the most common components used in bearing materials of orthopedic implants. Regulated genes in stimulated macrophages were involved in cytokine, chemokine, growth factor and receptor activities. Gene enrichment analysis suggested that stimulated macrophages elicited common gene expression signatures for inflammation and rheumatoid arthritis. Among the regulated genes, tumor necrosis factor superfamily member 15 (TNFSF15) and chemokine ligand 20 (CCL20) were further characterized as molecular targets involved in the pathogenesis of osteolysis. Treatment of monocyte cultures with TNFSF15 and CCL20 resulted in an increase in osteoclastogenesis and bone-resorbing osteoclastic activity, suggesting their potential contribution to loosening between implants and bone tissues. Implant loosening due to osteolysis is the most common mode of arthroplasty failure and represents a great challenge to orthopedic surgeons and a significant economic burden for patients and healthcare services worldwide. Bone loss secondary to a local inflammatory response initiated by particulate debris from implants is considered the principal feature of the pathogenesis of osteolysis. In the present study, we analyzed the transcriptional profiling of human macrophages exposed to UHMWPE particles and identified a large number of inflammatory genes that were not identified previously in macrophage responses to wear particles. Our data provide a new insight into the molecular pathogenesis of osteolysis and highlights a number of molecular targets with prognostic and therapeutic implications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Amit, Ido; Winter, Deborah R; Jung, Steffen
2016-01-01
Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, Claudia A.; Fievez, Laurence; Neyrinck, Audrey M.
Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact ofmore » sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.« less
Homma, Y; Hashimoto, T; Nagai, Y; Takenawa, T
1985-01-01
Alterations of phospholipid and arachidonic acid metabolism were studied by treatment of guinea-pig peritoneal-exudate macrophages with chemotactic peptide, formylmethionyl-leucylphenylalanine (fMet-Leu-Phe) and macrophage activation factor (MAF). The chemotactic peptide caused a rapid rearrangement in inositol phospholipids, including a breakdown of polyphosphoinositides within 30s, followed by a resultant formation of phosphatidylinositol (PI), diacylglycerol, phosphatidic acid and non-esterified arachidonic acid within 5 min. In addition to these sequential alterations, arachidonic acid was released mainly from PI. On the other hand, MAF induced a slow liberation of arachidonic acid, mainly from phosphatidylethanolamine (PE) and phosphatidylcholine (PC) by phospholipase A2 after the incubation period of 30 min, but not any rapid changes in phospholipids. Treatment of macrophages for 15 min with fMet-Leu-Phe produced the leukotrienes (LTs) B4, C4 and D4, prostaglandins (PG) E2 and F2 alpha and thromboxane (TX) B2. In contrast, MAF could not stimulate the production of arachidonic acid metabolites during the incubation period of 15 min, but could enhance that of PGE2, PGF2 alpha, TXB2 and hydroxyeicosatetraenoic acids at 6 h. However, the stimulated formation of LTs was not detected at any time. These results indicate that the effects of fMet-Leu-Phe on both phospholipid and arachidonic acid metabolism are very different from those mediated by MAF. PMID:3931627
Huang, Lihua; Hou, Lin; Xue, Hainan; Wang, Chunjie
2016-12-01
Objective To observe the influence of gallic acid on Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in the RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were divided into the following groups: control group, LPS group, LPS combined with gallic acid group, LPS combined with pyrrolidine dithiocarbamate (PDTC) group and LPS combined with dexamethasone (DM) group. RAW264.7 cells were cultured for 24 hours after corresponding treatments. The levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1) and IL-6 were detected by ELISA. The levels of TLR4 and NF-κB mRNAs were tested by real-time PCR. The levels of p-IκBα, p65, p-p65 and TLR4 proteins were examined by Western blotting. Results The expression levels of TNF-α, IL-1 and IL-6 were up-regulated in the RAW264.7 macrophages after stimulated by LPS. Gallic acid could reduce the elevated expression levels of TNF-α, IL-1 and IL-6 induced by LPS. The expression of TLR4 significantly increased after stimulated by LPS and NF-κB was activated. Gallic acid could reverse the above changes and prevent the activation of NF-κB. Conclusion Gallic acid could inhibit LPS-induced inflammatory response in RAW264.7 macrophages via TLR4/NF-κB pathway.
Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.
Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald
2013-01-01
Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for the characterisation of macrophage polarisation in situ. Furthermore, CD163 cannot be considered a reliable M2 marker when used on its own.
Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A
2005-10-01
A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.
Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels
NASA Technical Reports Server (NTRS)
Pierangeli, Silvia S.; Sonnenfeld, Gerald
1989-01-01
Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.
Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids.
Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten; Burkovski, Andreas; Lang, Roland
2017-07-01
Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. Copyright © 2017 American Society for Microbiology.
Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids
Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten
2017-01-01
ABSTRACT Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro. Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. PMID:28483856
Hsing, Chung-Hsi; Lin, Ming-Chung; Choi, Pui-Ching; Huang, Wei-Ching; Kai, Jui-In; Tsai, Cheng-Chieh; Cheng, Yi-Lin; Hsieh, Chia-Yuan; Wang, Chi-Yun; Chang, Yu-Ping; Chen, Yu-Hong; Chen, Chia-Ling; Lin, Chiou-Feng
2011-01-01
Background Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. Methodology/Principal Findings Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. Conclusions/Significance These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways. PMID:21408125
Dhar, Rana; Kimseng, Rungruedee; Chokchaisiri, Ratchanaporn; Hiransai, Poonsit; Utaipan, Tanyarath; Suksamrarn, Apichart; Chunglok, Warangkana
2018-02-01
Immune dysregulation has been implicated in the pathogenesis of many diseases. Macrophages play a crucial role contributing to the onset, progression, and resolution of inflammation. Macrophage inflammatory mediators are of considerable interest as potential targets to treat inflammatory diseases. The present study was conducted to elucidate the anti-inflammatory mechanism of 2',4-dihydroxy-3',4',6'-trimethoxychalcone (1), the major chalcone isolated from Chromolaena odorata (L.) R.M.King & H.Rob, against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. Cell viability, nitric oxide (NO), and proinflammatory cytokines of LPS-activated RAW 264.7 cells were measured by MTT, Griess, and ELISA assays, respectively. Cell lysates were subjected to Western blotting for investigation of protein expression. Treatment with the major chalcone 1 significantly attenuated the production of NO and proinflammatory cytokines, tumor necrosis factor-α, interleukin-1β, and interleukin-6 in a dose-dependent manner. The chalcone suppressed nuclear factor-κB (NF-κB) stimulation by preventing activation of inhibitor κB kinase (IKK) α/β, degradation of inhibitor κB (IκB) α, and translocation of p65 NF-κB into the nucleus. Additionally, the chalcone markedly repressed the phosphorylation of p38 mitogen-activated protein kinase (MAPK), but no further inhibition was detected for c-Jun N-terminal activated kinases or extracellular regulated kinases. Thus, suppression of NF-κB and p38 MAPK activation may be the core mechanism underlying the anti-inflammatory activity of 2',4-dihydroxy-3',4',6'-trimethoxychalcone (1). These findings provide evidence that 2',4-dihydroxy-3',4',6'-trimethoxychalcone (1) possesses anti-inflammatory activity via targeting proinflammatory macrophages. This anti-inflammatory chalcone is a promising compound for reducing inflammation.
Lipopolysaccharide modulation of a CD14-like molecule on porcine alveolar macrophages
NASA Technical Reports Server (NTRS)
Kielian, T. L.; Ross, C. R.; McVey, D. S.; Chapes, S. K.; Blecha, F.; Spooner, B. S. (Principal Investigator)
1995-01-01
Cluster of differentiation antigen 14 (CD14) functions as a receptor for lipopolysaccharide (LPS) LPS-binding protein (LBP) complexes. Because LPS has varying effects on CD14 expression in vitro, we evaluated CD14 expression in response to LPS with a fully differentiated macrophage phenotype, the alveolar macrophage. By using flow microfluorometric analysis and a radioimmunoassay with an anti-human CD14 monoclonal antibody (My4) that cross-reacts with porcine CD14, we found that macrophages stimulated with LPS for 24 h exhibited a two- to fivefold increase in CD14-like antigen compared with unstimulated cells. At low concentrations of LPS, up-regulation of the CD14-like antigen was dependent on serum; at higher concentrations of LPS, serum was not required. In the absence of serum a 10-fold higher dose of LPS (10 ng/ml) was required to increase CD14-like expression. In addition, LPS-induced CD14-like up-regulation correlated with secretion of tumor necrosis factor-alpha, regardless of serum concentration. Blockade with My4 antibody significantly inhibited LPS-induced tumor necrosis factor-alpha secretion at 1 ng/ml of LPS. However, inhibition decreased as we increased the LPS concentration, suggesting the existence of CD14-independent pathways of macrophage activation in response to LPS. Alternatively, My4 may have a lower affinity for the porcine CD14 antigen than LPS, which may have only partially blocked the LPS-LBP binding site at high concentrations of LPS. Therefore, these data suggest that LPS activation of porcine alveolar macrophages for 24 h increased CD14-like receptor expression. The degree of CD14-like up-regulation was related to LPS concentration, however, activation did not require the presence of serum at high concentrations of LPS.
Ohtsuki, Takahiro; Kimura, Kiminori; Tokunaga, Yuko; Tsukiyama-Kohara, Kyoko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Kohara, Michinori
2016-01-01
Macrophages in liver tissue are widely defined as important inflammatory cells in chronic viral hepatitis due to their proinflammatory activity. We reported previously that interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) play significant roles in causing chronic hepatitis in hepatitis C virus (HCV) transgenic mice (S. Sekiguchi et al., PLoS One 7:e51656, 2012, http://dx.doi.org/10.1371/journal.pone.0051656). In addition, we showed that recombinant vaccinia viruses expressing an HCV nonstructural protein (rVV-N25) could protect against the progression of chronic hepatitis by suppression of macrophage activation. Here, we focus on the role of macrophages in liver disease progression in HCV transgenic mice and examine characteristic features of macrophages following rVV-N25 treatment. The number of CD11b(+) F4/80(+) CD11c(-) CD206(+) (M2) macrophages in the liver of HCV transgenic mice was notably increased compared to that of age-matched control mice. These M2 macrophages in the liver produced elevated levels of IL-6 and TNF-α. rVV-N25 infection suppressed the number and activation of M2 macrophages in liver tissue. These results suggested that inflammatory cytokines produced by M2-like macrophages contribute to the induction of chronic liver inflammation in HCV transgenic mice. Moreover, the therapeutic effect of rVV-N25 might be induced by the suppression of the number and activation of hepatic macrophages. HCV causes persistent infections that can lead to chronic liver diseases, liver fibrosis, and hepatocellular carcinoma; the search for an HCV curative is the focus of ongoing research. Recently, effective anti-HCV drugs have been developed; however, vaccine development still is required for the prevention and therapy of infection by this virus. We demonstrate here that M2 macrophages are important for the pathogenesis of HCV-caused liver diseases and additionally show that M2 macrophages contribute to the therapeutic mechanism observed following rVV-N25 treatment. Copyright © 2015 Ohtsuki et al.
Ohtsuki, Takahiro; Kimura, Kiminori; Tokunaga, Yuko; Tsukiyama-Kohara, Kyoko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu
2015-01-01
ABSTRACT Macrophages in liver tissue are widely defined as important inflammatory cells in chronic viral hepatitis due to their proinflammatory activity. We reported previously that interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) play significant roles in causing chronic hepatitis in hepatitis C virus (HCV) transgenic mice (S. Sekiguchi et al., PLoS One 7:e51656, 2012, http://dx.doi.org/10.1371/journal.pone.0051656). In addition, we showed that recombinant vaccinia viruses expressing an HCV nonstructural protein (rVV-N25) could protect against the progression of chronic hepatitis by suppression of macrophage activation. Here, we focus on the role of macrophages in liver disease progression in HCV transgenic mice and examine characteristic features of macrophages following rVV-N25 treatment. The number of CD11b+ F4/80+ CD11c− CD206+ (M2) macrophages in the liver of HCV transgenic mice was notably increased compared to that of age-matched control mice. These M2 macrophages in the liver produced elevated levels of IL-6 and TNF-α. rVV-N25 infection suppressed the number and activation of M2 macrophages in liver tissue. These results suggested that inflammatory cytokines produced by M2-like macrophages contribute to the induction of chronic liver inflammation in HCV transgenic mice. Moreover, the therapeutic effect of rVV-N25 might be induced by the suppression of the number and activation of hepatic macrophages. IMPORTANCE HCV causes persistent infections that can lead to chronic liver diseases, liver fibrosis, and hepatocellular carcinoma; the search for an HCV curative is the focus of ongoing research. Recently, effective anti-HCV drugs have been developed; however, vaccine development still is required for the prevention and therapy of infection by this virus. We demonstrate here that M2 macrophages are important for the pathogenesis of HCV-caused liver diseases and additionally show that M2 macrophages contribute to the therapeutic mechanism observed following rVV-N25 treatment. PMID:26468521
Kumar, Rohit; Gupta, Yogendra Kumar; Singh, Surender
2016-01-01
Objective: Berberis aristata (Berberidaceae) is an important medicinal plant used in traditional system of medicine for the treatment of rheumatoid arthritis and other inflammatory disorders. The aim of the present study is to scientifically validate the traditional use of BA in the treatment of inflammatory disorders. Materials and Methods: Anti-inflammatory and anti-granuloma activity of BA hydroalcoholic extract (BAHE) were evaluated in experimental models, viz., carrageenan-induced paw edema, cotton pellet-induced granuloma formation, and complete Freund's adjuvant-induced stimulation of peritoneal macrophages in rats. Expression of inflammatory mediators, viz., tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, TNF-R1, and cyclooxygenase-2 (COX-2) was carried out in serum and peritoneal macrophages to derive the plausible mechanism of BAHE in activated peritoneal macrophages. Results: Pretreatment with BAHE produced a dose-dependent reduction (P < 0.01) in carrageenan-induced paw edema and cotton pellet-induced granuloma model. BAHE treatment produced significant (P < 0.01) reduction in serum inflammatory cytokine levels as compared to control. Protein expression of pro-inflammatory markers, IL-1β, IL-6, TNF-R1, and COX-2, was found to be reduced in stimulated macrophages whereas anti-inflammatory cytokine, IL-10, was upregulated in peritoneal macrophages. Conclusion: The result of the present study thus demonstrates the anti-inflammatory and anti-granuloma activity of BAHE which may be attributed to its inhibitory activity on macrophage-derived cytokine and mediators. PMID:27114638
NASA Astrophysics Data System (ADS)
Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You
2015-03-01
Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.
Li, Yang; Ding, Xiaoming; Fan, Ping; Guo, Jian; Tian, Xiaohui; Feng, Xinshun; Zheng, Jin; Tian, Puxun; Ding, Chenguang; Xue, Wujun
2016-11-01
Islet transplantation suffers from low efficiency caused by nonspecific inflammation-induced graft loss after transplantation. This study reports increased islet loss and enhanced inflammatory response in p27-deficient mice (p27-/-) and proposes a possible mechanism. Compared with wild type, p27-/- mice showed more severe functional injury of islet, with increased serum levels of inflammatory cytokines IL-1 and TNF-α, inducing macrophage proliferation. Furthermore, the increased number, proapoptotic proteins, and nuclear factor-kappa b (NF-κB) phosphorylation status of the infiltrating macrophages were accompanied by increased TNF-α mRNA level of islet graft site in p27-/- mice. Moreover, in vitro, we found that macrophages were still activated and cocultured with islet and promoted islet loss even blocking the direct effect of TNF-α on islets. Malondialdehyde (MDA, an end product of lipid peroxidation) in islet and media were increased after cocultured with macrophages. p27 deficiency also increased macrophage proliferation and islet injury. Therefore, p27 inactivation promotes injury islet graft loss via the elevation of proliferation and inflammatory cytokines secretion in infiltrating macrophages which induced nonspecific inflammation independent of TNF-α/nuclear factor-kappa b pathway. This potentially represents a promising therapeutic target in improving islet graft survival.
3,4-dichloropropionaniline suppresses normal macrophage function.
Ustyugova, Irina V; Frost, Laura L; Van Dyke, Knox; Brundage, Kathleen M; Schafer, Rosana; Barnett, John B
2007-06-01
Macrophages are a critical part of the innate immune response and natural surveillance mechanisms. As such, proper macrophage function is crucial for engulfing bacterial pathogens through phagocytosis and destroying them by generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The production of a number of cytokines by macrophages, such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, and IL-6, plays an important role in the initiation of the acquired immune response creating an inflammatory environment favorable for fighting a bacterial infection. 3,4-Dichloropropionaniline (DCPA) suppresses several inflammatory parameters, including TNF-alpha production through a mechanism where nuclear factor-kappaB (NF-kappaB)-DNA binding is inhibited but not entirely abrogated. The goal of the present study was to evaluate the effects of DCPA on the inflammatory mediators of macrophages, including ROS and RNS in both murine peritoneal exudate cells and the human monocytic cell line, THP-1. The ability to perform phagocytosis and directly kill Listeria monocytogenes was also assessed. The results indicate that DCPA decreases the ability of both types of macrophages to phagocytize beads and generate both types of reactive species, which was correlated with a decrement in listericidal activity. These results demonstrate that DCPA has profound effects on macrophage function and provide insight into the potential mechanisms of immunosuppression by DCPA.
Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E
2012-02-01
Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis.
Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E
2013-01-01
Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis. PMID:22042083
Levy, A S A; Simon, O R
2009-09-01
We previously reported that 6-shogaol, a phenolic compound from ginger has antiinflammatory properties in a Complete Freund's Adjuvant (CFA) model of mono-arthritic rats. In the present study, we investigated the effects of 6-shogaol on the production of inflammatory mediators from lipopolysaccharide (LPS) activated RAW 264.7 macrophages. These mediators (TNF-alpha, IL-1-beta and NO) and their output from macrophages are involved in various pathophysiological events of chronic inflammation and arthritis. Effects of 6-shogaol were investigated on the production of the mediators TNF-alpha, IL-1-beta and NO (measured as nitrate)from macrophages. Lipopolysaccharide activated RAW 264.7 macrophages were cultured in the presence and absence of 6-shogaol (2 microM, 10 microM and 20 microM) and ELISA was used to quantify the output of the mediators. 6-shogoal (2 microM, 10 microM and 20 microM) significantly inhibited the production of nitric oxide (NO), IL-1beta and TNF-alpha from the LPS activated RAW264.7 macrophages. The results suggest that macrophages are targets for the anti-inflammatory effects of 6-shogaol. Also, the inhibitory effects against TNF-alpha, IL-1beta and NO production from LPS activated macrophages are cellular mechanisms by which 6-shogaol produced its anti-inflammatory effects. These mechanisms provide an explanation of the protection by 6-shogaol against development of joint inflammation and cartilage degradation in CFA induced mono-arthritis that we previously demonstrated (1). Based on these results with 6-shogaol, there is evidence that it exhibits exploitable anti-inflammatory properties.
NASA Astrophysics Data System (ADS)
Huang, Yen-Jang; Hung, Kun-Che; Hsieh, Fu-Yu; Hsu, Shan-Hui
2015-12-01
The interaction of nanoparticles (NPs) with the body immune system is critically important for their biomedical applications. Most NPs stimulate the immune response of macrophages. Here we show that synthetic polyurethane nanoparticles (PU NPs, diameter 34-64 nm) with rich surface COO- functional groups (zeta potential -70 to -50 mV) can suppress the immune response of macrophages. The specially-designed PU NPs reduce the gene expression levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) for endotoxin-treated macrophages. The PU NPs increase the intracellular calcium of macrophages (4.5-6.5 fold) and activate autophagy. This is in contrast to the autophagy dysfunction generally observed upon NP exposure. These PU NPs may further decrease the nuclear factor-κB-related inflammation via autophagy pathways. The immunosuppressive activities of PU NPs can prevent animal death by inhibiting the macrophage recruitment and proinflammatory responses, confirmed by an in vivo zebrafish model. Therefore, the novel biodegradable PU NPs demonstrate COO- dependent immunosuppressive properties without carrying any anti-inflammatory agents. This study suggests that NP surface chemistry may regulate the immune response, which provides a new paradigm for potential applications of NPs in anti-inflammation and immunomodulation.The interaction of nanoparticles (NPs) with the body immune system is critically important for their biomedical applications. Most NPs stimulate the immune response of macrophages. Here we show that synthetic polyurethane nanoparticles (PU NPs, diameter 34-64 nm) with rich surface COO- functional groups (zeta potential -70 to -50 mV) can suppress the immune response of macrophages. The specially-designed PU NPs reduce the gene expression levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) for endotoxin-treated macrophages. The PU NPs increase the intracellular calcium of macrophages (4.5-6.5 fold) and activate autophagy. This is in contrast to the autophagy dysfunction generally observed upon NP exposure. These PU NPs may further decrease the nuclear factor-κB-related inflammation via autophagy pathways. The immunosuppressive activities of PU NPs can prevent animal death by inhibiting the macrophage recruitment and proinflammatory responses, confirmed by an in vivo zebrafish model. Therefore, the novel biodegradable PU NPs demonstrate COO- dependent immunosuppressive properties without carrying any anti-inflammatory agents. This study suggests that NP surface chemistry may regulate the immune response, which provides a new paradigm for potential applications of NPs in anti-inflammation and immunomodulation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06379e
Hemozoin Regulates iNOS Expression by Modulating the Transcription Factor NF-κB in Macrophages.
Ranjan, Ravi; Karpurapu, Manjula; Rani, Asha; Chishti, Athar H; Christman, John W
2016-01-01
Hemozoin (Hz) is released from ruptured erythrocytes during malaria infection caused by Plasmodium sp., in addition the malaria infected individuals are prone to bacterial sepsis. The molecular interactions between Hz, bacterial components and macrophages remains poorly investigated. In this report, we investigated the combinatorial immune-modulatory effects of phagocytosed Hz, Interferon gamma (IFNγ) or lipopolysaccharide (LPS) in macrophages. Macrophages were treated with various concentrations of commercial synthetic Hz, and surprisingly it did not result in inducible nitric oxide synthase (iNOS) expression. However, when macrophages were pretreated with Hz and then challenged with IFNγ or LPS, there was a differential impact on iNOS expression. There was an increase in iNOS expression when macrophages were pre-treated with Hz and subsequently treated with IFNγ when compared to IFNγ alone. Whereas iNOS expression was reduced when Hz phagocytosed macrophages were stimulated with LPS compared to LPS alone. Furthermore, there was an increased activation of NF-κB in Hz phagocytosed macrophages that were challenged with IFNγ. The interaction between Hz and macrophages has an impact on iNOS expression.
Akcora, Büsra Öztürk; Storm, Gert; Bansal, Ruchi
2018-03-01
Quiescent hepatic stellate cells (HSCs), in response to liver injury, undergo characteristic morphological transformation into proliferative, contractile and ECM-producing myofibroblasts. In this study, we investigated the implication of canonical Wnt signaling pathway in HSCs and liver fibrogenesis. Canonical Wnt signaling pathway activation and inhibition using β-catenin/CBP inhibitor ICG001 was examined in-vitro in TGFβ-activated 3T3, LX2, primary human HSCs, and in-vivo in CCl 4 -induced acute liver injury mouse model. Fibroblasts-conditioned medium studies were performed to assess the Wnt-regulated paracrine factors involved in crosstalk between HSCs-macrophages and HSCs-endothelial cells. Canonical Wnt signaling pathway components were significantly up-regulated in-vitro and in-vivo. In-vitro, ICG-001 significantly inhibited fibrotic parameters, 3D-collagen contractility and wound healing. Conditioned medium induced fibroblasts-mediated macrophage and endothelial cells activation was significantly inhibited by ICG-001. In-vivo, ICG-001 significantly attenuated collagen accumulation and HSC activation. Interestingly, ICG-001 drastically inhibited macrophage infiltration, intrahepatic inflammation and angiogenesis. We further analyzed the paracrine factors involved in Wnt-mediated effects and found CXCL12 was significantly suppressed both in-vitro and in-vivo following Wnt inhibition. Wnt-regulated CXCL12 secretion from activated HSCs potentiated macrophage infiltration and activation, and angiogenesis. Pharmacological inhibition of canonical Wnt signaling pathway via suppression of stromal CXCL12 suggests a potential therapeutic approach targeting activated HSCs in liver fibrosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanzhen; Mei, Chenfang; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070
Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growthmore » factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.« less
β-adrenergic-stimulated macrophages: Comprehensive localization in the M1–M2 spectrum
Lamkin, Donald M.; Ho, Hsin-Yun; Ong, Tiffany H.; Kawanishi, Carly K.; Stoffers, Victoria L.; Ahlawat, Nivedita; Ma, Jeffrey C.Y.; Arevalo, Jesusa M. G.; Cole, Steve W.; Sloan, Erica K.
2016-01-01
β-adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1–M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one predefined category of the M1–M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1–M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1–M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1–M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. PMID:27485040
β-Adrenergic-stimulated macrophages: Comprehensive localization in the M1-M2 spectrum.
Lamkin, Donald M; Ho, Hsin-Yun; Ong, Tiffany H; Kawanishi, Carly K; Stoffers, Victoria L; Ahlawat, Nivedita; Ma, Jeffrey C Y; Arevalo, Jesusa M G; Cole, Steve W; Sloan, Erica K
2016-10-01
β-Adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1-M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one pre-defined category of the M1-M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1-M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1-M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1-M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. Copyright © 2016 Elsevier Inc. All rights reserved.
LYATK1 potently inhibits LPS-mediated pro-inflammatory response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Feng; Liu, Yuan; Wang, Xiujuan
Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine productionmore » was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.« less
Shakespear, Melanie R; Hohenhaus, Daniel M; Kelly, Greg M; Kamal, Nabilah A; Gupta, Praveer; Labzin, Larisa I; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A; Reid, Robert C; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J
2013-08-30
Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.
Shakespear, Melanie R.; Hohenhaus, Daniel M.; Kelly, Greg M.; Kamal, Nabilah A.; Gupta, Praveer; Labzin, Larisa I.; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A.; Reid, Robert C.; Irvine, Katharine M.; Fairlie, David P.; Sweet, Matthew J.
2013-01-01
Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target. PMID:23853092
"In vivo" murine macrophages activation by a dichloromethane extract of Tilia x viridis.
Davicino, Roberto; Micucci, Patricia; Zettler, Gabriela; Ferraro, Graciela; Anesini, Claudia
2010-09-01
Macrophages are involved in the host defense against infectious pathogens and tumors. Tilia species have been used in folk medicine for the treatment of infectious diseases, previously it was demonstrated that a dichloromethane (DM) extract possess antiproliferative action "in vitro" on a lymphoma cell line. The aim of this work was to study the "in vivo" effect of DM extract upon mice peritoneal macrophages. DM extract-activated macrophages phagocytosis through hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) production (phagocytosis (%): basal 16.93 +/- 0.18, DM extract 25.93 +/- 2.8; H(2)O(2) (M): basal 0.0022 +/- 0.00016, DM extract 0.0036 +/- 0.0005; NO (mM): basal 0.0052 +/- 0.0007, DM extract 0.0099 +/- 0.0004). These actions were mediated by cell superoxide dismutase activation. On the other hand, DM extract decreased tumor necrosis factor alpha but increased interleukin-10 in serum. These results suggest that the modulation activity exerted by the extract on immune system cells could be an important mechanism to acquire resistance to tumors and infectious diseases.
Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X.; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang
2014-01-01
This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation. PMID:24550391
[Study of the antitumor activity of alveolar macrophages after transfected human INF-γ gene].
Zhou, Fengli; Bi, Xiaogang; Zhang, Tiantuo; Huang, Jing
2011-05-01
Alveolar macrophages (AMs) activated have the antitumor activity. The interferon-γ (INF-γ) is one of the stimulating factors. INF-γ can enhance the immune function of AMs in vitro. The aim of this study is to investigate the effect of human INF-γ gene on the antitumor activity of AMs when transfected into the alveolar macrophages (AMs) from the patients with lung cancer in vitro. AMs obtained by brochoalveolar lavage were separated and transfected by INF-γ gene. RT-PCR and ELISA were applied to determine whether the transfection was successful. The levels of tumor necrosis factor α (TNF-α), nitric oxide (NO) and interleukin-1 (IL-1) produced by AMs and the killing activity of AMs against L1210 cells was detected respectively. Both RT-PCR and ELISA demonstrated that human INF-γ gene had been successfully transfected into AMs. When transfected by human INF-γ gene, the levels of TNF-α, NO and IL-1 produced by AMs from the patients with lung cancer and the killing activity of AMs against L1210 cells were significantly higher than those of the control groups. Human INF-γ gene can enhance the antitumor activity of AMs when transfected into AMs from the patients with lung cancer.
Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu; Patel-Vayas, Kinal; Shen, Jianliang
Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h andmore » 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated early after ozone. ► Oxidative stress may contribute to regulating macrophage phenotype and function.« less
SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis.
Watson, Neva B; Schneider, Karin M; Massa, Paul T
2015-03-15
Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the CNS, causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator src homology region 2 domain-containing phosphatase 1 (SHP-1), which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler's murine encephalomyelitis virus (TMEV) infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification, with loss of ambulation in wild-type (WT) mice. Surprisingly, although similar extensive myofiber infection and inflammation are observed in SHP-1(-/-) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1(-/-) muscle, and an increased infiltration of immature monocytes/macrophages correlated with an absence of clinical disease in SHP-1(-/-) mice, whereas mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that, following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus-induced myopathy. Copyright © 2015 by The American Association of Immunologists, Inc.
Collaborating with the enemy: function of macrophages in the development of neoplastic disease.
Eljaszewicz, Andrzej; Wiese, Małgorzata; Helmin-Basa, Anna; Jankowski, Michal; Gackowska, Lidia; Kubiszewska, Izabela; Kaszewski, Wojciech; Michalkiewicz, Jacek; Zegarski, Wojciech
2013-01-01
Due to the profile of released mediators (such as cytokines, chemokines, growth factors, etc.), neoplastic cells modulate the activity of immune system, directly affecting its components both locally and peripherally. This is reflected by the limited antineoplastic activity of the immune system (immunosuppressive effect), induction of tolerance to neoplastic antigens, and the promotion of processes associated with the proliferation of neoplastic tissue. Most of these responses are macrophages dependent, since these cells show proangiogenic properties, attenuate the adaptive response (anergization of naïve T lymphocytes, induction of Treg cell formation, polarization of immune response towards Th2, etc.), and support invasion and metastases formation. Tumor-associated macrophages (TAMs), a predominant component of leukocytic infiltrate, "cooperate" with the neoplastic tissue, leading to the intensified proliferation and the immune escape of the latter. This paper characterizes the function of macrophages in the development of neoplastic disease.
Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice
Summer, R.; Little, F. F.; Ouchi, N.; Takemura, Y.; Aprahamian, T.; Dwyer, D.; Fitzsimmons, K.; Suki, B.; Parameswaran, H.; Fine, A.; Walsh, K.
2013-01-01
Adiponectin is an adipocyte-derived collectin that acts on a wide range of tissues including liver, brain, heart, and vascular endothelium. To date, little is known about the actions of adiponectin in the lung. Herein, we demonstrate that adiponectin is present in lung lining fluid and that adiponectin deficiency leads to increases in proinflammatory mediators and an emphysema-like phenotype in the mouse lung. Alveolar macrophages from adiponectin-deficient mice spontaneously display increased production of tumor necrosis factor-α (TNF-α) and matrix metalloproteinase (MMP-12) activity. Consistent with these observations, we found that pretreatment of alveolar macrophages with adiponectin leads to TNF-α and MMP-12 suppression. Together, our findings show that adiponectin leads to macrophage suppression in the lung and suggest that adiponectin-deficient states may contribute to the pathogenesis of inflammatory lung conditions such as emphysema. PMID:18326826
Sun, Yu; Wang, Yu; Li, Jia-Hui; Zhu, Shi-Hui; Tang, Hong-Tai; Xia, Zhao-Fan
2013-10-01
Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC. © 2013 John Wiley & Sons Ltd.
Liu, Hong-Mei; Liu, Yi-Tong; Zhang, Jing; Ma, Li-Jun
2017-08-01
The anti-inflammatory and antibacterial mechanisms of bone marrow mesenchymal stem cells (MSCs) ameliorating lung injury in chronic obstructive pulmonary disease (COPD) mice induced by cigarette smoke and Haemophilus Parainfluenza (HPi) were studied. The experiment was divided into four groups in vivo: control group, COPD group, COPD+HPi group, and COPD+HPi+MSCs group. The indexes of emphysematous changes, inflammatory reaction and lung injury score, and antibacterial effects were evaluated in all groups. As compared with control group, emphysematous changes were significantly aggravated in COPD group, COPD+HPi group and COPD+HPi+MSCs group (P<0.01), the expression of necrosis factor-kappaB (NF-κB) signal pathway and proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) were increased (P<0.01), and the phagocytic activity of alveolar macrophages was downregulated (P<0.01). As compared with COPD group, lung injury score, inflammatory cells and proinflammatory cytokines were significantly increased in the BALF of COPD+HPi group and COPD+HPi+MSCs group (P<0.01). As compared with COPD+HPi group, the expression of tumor necrosis factor-α stimulated protein/gene 6 (TSG-6) was increased, the NF-κB signal pathway was depressed, proinflammatory cytokine was significantly reduced, the anti-inflammatory cytokine IL-10 was increased, and lung injury score was significantly reduced in COPD+HPi+MSCs group. Meanwhile, the phagocytic activity of alveolar macrophages was significantly enhanced and bacterial counts in the lung were decreased. The results indicated cigarette smoke caused emphysematous changes in mice and the phagocytic activity of alveolar macrophages was decreased. The lung injury of acute exacerbation of COPD mice induced by cigarette smoke and HPi was alleviated through MSCs transplantation, which may be attributed to the fact that MSCs could promote macrophages into anti-inflammatory phenotype through secreting TSG-6, inhibit NF-кB signaling pathway, and reduce inflammatory response through reducing proinflammatory cytokines and promoting the expression of the anti-inflammatory cytokine. Simultaneously, MSCs could enhance phagocytic activity of macrophages and bacterial clearance. Meanwhile, we detected anti-inflammatory and antibacterial activity of macrophages regulated by MSCs in vitro. As compared with RAW264.7+HPi+CSE group, the expression of NF-кB p65, IL-1β, IL-6 and TNF-α was significantly reduced, and the phagocytic activity of macrophages was significantly increased in RAW264.7+HPi+CSE+MSCs group (P<0.01). The result indicated the macrophages co-cultured with MSCs may inhibit NF-кB signaling pathway and promote phagocytosis by paracrine mechanism.
RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice
Khaibullina, Alfia; Adjei, Elena A.; Afangbedji, Nowah; Ivanov, Andrey; Kumari, Namita; Almeida, Luis E.F.; Quezado, Zenaide M.N.; Nekhai, Sergei; Jerebtsova, Marina
2018-01-01
Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease. PMID:29519868
Macrophage Differentiation in Normal and Accelerated Wound Healing.
Kotwal, Girish J; Chien, Sufan
2017-01-01
Chronic wounds pose considerable public health challenges and burden. Wound healing is known to require the participation of macrophages, but mechanisms remain unclear. The M1 phenotype macrophages have a known scavenger function, but they also play multiple roles in tissue repair and regeneration when they transition to an M2 phenotype. Macrophage precursors (mononuclear cells/monocytes) follow the influx of PMN neutrophils into a wound during the natural wound-healing process, to become the major cells in the wound. Natural wound-healing process is a four-phase progression consisting of hemostasis, inflammation, proliferation, and remodeling. A lag phase of 3-6 days precedes the remodeling phase, which is characterized by fibroblast activation and finally collagen production. This normal wound-healing process can be accelerated by the intracellular delivery of ATP to wound tissue. This novel ATP-mediated acceleration arises due to an alternative activation of the M1 to M2 transition (macrophage polarization), a central and critical feature of the wound-healing process. This response is also characterized by an early increased release of pro-inflammatory cytokines (TNF, IL-1 beta, IL-6), a chemokine (MCP-1), an activation of purinergic receptors (a family of plasma membrane receptors found in almost all mammalian cells), and an increased production of platelets and platelet microparticles. These factors trigger a massive influx of macrophages, as well as in situ proliferation of the resident macrophages and increased synthesis of VEGFs. These responses are followed, in turn, by rapid neovascularization and collagen production by the macrophages, resulting in wound covering with granulation tissue within 24 h.
Perandini, Luiz Augusto; Chimin, Patricia; Lutkemeyer, Diego da Silva; Câmara, Niels Olsen Saraiva
2018-06-01
Chronic inflammation impairs skeletal muscle regeneration. Although many cells are involved in chronic inflammation, macrophages seem to play an important role in impaired muscle regeneration since these cells are associated with skeletal muscle stem cell (namely, satellite cells) activation and fibro-adipogenic progenitor cell (FAP) survival. Specifically, an imbalance of M1 and M2 macrophages seems to lead to impaired satellite cell activation, and these are the main cells that function during skeletal muscle regeneration, after muscle damage. Additionally, this imbalance leads to the accumulation of FAPs in skeletal muscle, with aberrant production of pro-fibrotic factors (e.g., extracellular matrix components), impairing the niche for proper satellite cell activation and differentiation. Treatments aiming to block the inflammatory pro-fibrotic response are partially effective due to their side effects. Therefore, strategies reverting chronic inflammation into a pro-regenerative pattern are required. In this review, we first describe skeletal muscle resident macrophage ontogeny and homeostasis, and explain how macrophages are replenished after muscle injury. We next discuss the potential role of chronic physical activity and exercise in restoring the M1 and M2 macrophage balance and consequently, the satellite cell niche to improve skeletal muscle regeneration after injury. © 2018 Federation of European Biochemical Societies.
2014-01-01
Introduction The mortality of rhabdomyolysis-induced acute kidney injury (AKI) is still high, as there is no effective therapy. It has been shown that bone marrow-derived mesenchymal stem cells (MSCs) can induce M2 macrophages, which mediate MSC protection in other experimental inflammation-related organ injury. This study was designed to investigate the protective effects of macrophage activation in MSC therapy of rhabdomyolysis-induced AKI. Methods MSCs were injected into glycerol-induced rhabdomyolysis mice. Renal injury was evaluated using the serum creatinine, urea nitrogen, renal pathology and acute tubular necrosis score. The distribution of MSCs was detected using two-photon fluorescence confocal imaging. Immunofluorescence of anti-F4/80 and anti-CD206 was performed to determine macrophages and M2 macrophages in the tissues of the kidney, and M2 macrophage infiltration was also evaluated using western blotting analyses. After depletion of macrophages using clodronate liposomes at the phase of kidney repair, renal injury was re-evaluated. RAW 264.7 macrophages were incubated with lipopolysaccharide and co-cultured with MSCs and subsequently visualised using immunofluorescence staining and flow cytometry analysis. Finally, disparate phenotype macrophages, including normal macrophages (M0), lipopolysaccharide-stimulated macrophages (M1), and MSC-co-cultured macrophages (M2), were infused into mice with AKI, which were pre-treated with liposomal clodronate. Results In vivo infusion of MSCs protected AKI mice from renal function impairment and severe tubular injury, which was accompanied by a time-dependent increase in CD206-positive M2 macrophage infiltration. In addition, depleting macrophages with clodronate delayed restoration of AKI. In vitro, macrophages co-cultured with MSCs acquired an anti-inflammatory M2 phenotype, which was characterised by an increased expression of CD206 and the secretory cytokine interleukin (IL)-10. The concentrations of IL-10, IL-6 and tumor necrosis factor α were evaluated using enzyme-linked immunosorbent assay. Furthermore, macrophage-depleted mice with intramuscular injection of glycerol were subjected to a single injection of different types of RAW 264.7 macrophages. Mice infused with M0 and M1 macrophages suffered a more severe histological and functional injury, while mice transfused with MSC-educated M2 macrophages showed reduced kidney injury. Conclusions Our findings suggested that MSCs can ameliorate rhabdomyolysis-induced AKI via the activation of macrophages to a trophic M2 phenotype, which supports the transition from tubule injury to tubule repair. PMID:24961539
Nadra, Imad; Boccaccini, Aldo R; Philippidis, Pandelis; Whelan, Linda C; McCarthy, Geraldine M; Haskard, Dorian O; Landis, R Clive
2008-01-01
Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.
Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B.; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip
2015-01-01
Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4+ T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4+ T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that leads to the generation of protective Th1 responses in BALB/c mice. PMID:26169275
Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L
2015-10-01
Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4(+) T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4(+) T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that leads to the generation of protective Th1 responses in BALB/c mice. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rezaiemanesh, Alireza; Mahmoudi, Mahdi; Amirzargar, Ali Akbar; Vojdanian, Mahdi; Jamshidi, Ahmad Reza; Nicknam, Mohammad Hossein
2017-09-01
Interleukin (IL)-23/IL-17 pathway involves in the pathogenesis of ankylosing spondylitis (AS). The exact mechanism implicated in overexpression of IL-23 and activation of the IL-23/IL-17 axis is not clear. The aim of the study was to clarify whether macrophages of AS patients undergo unfolded protein response (UPR) and secret increased IL-23. Peripheral blood monocyte isolated from 10 HLA-B27 + patients and five HLA-B27 + normal subjects were differentiated to macrophages by macrophage-colony stimulating factor (M-CSF) for seven days. Flow cytometry was used to detect monocyte purity and expression of macrophage markers. Analysis of mRNA expression for HLA-B and B27, UPR-associated proteins (BiP, CHOP, MDG1, and XBP1) and IL-23 was performed by RT-qPCR. RT-qPCR data showed a significant overexpression of HLA-B27, UPR genes (BiP, CHOP, and XBP1), and IL-23 in M-CSF-derived macrophages from AS patients compared to healthy controls. Increased expression of MDG1 was not significant. Our data suggest that UPR activation occurs in M-CSF-derived macrophages of AS patients and is accompanied by overexpression of HLA-B27. UPR appears to be associated with overproduction of IL-23 in AS macrophages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Shin; Hikiba, Yohko; Shibata, Wataru
2007-08-24
High-mobility group box 1 (HMGB1) is a nuclear factor released extracellularly as a proinflammatory cytokine. We measured the HMGB1 concentration in the sera of mice with chemically induced colitis (DSS; dextran sulfate sodium salt) and found a marked increase. Inhibition of HMGB1 by neutralizing anti-HMGB1 antibody resulted in reduced inflammation in DSS-treated colons. In macrophages, HMGB1 induces several proinflammatory cytokines, such as IL-6, which are regulated by NF-{kappa}B activation. Two putative sources of HMGB1 were explored: in one, bacterial factors induce HMGB1 secretion from macrophages and in the other, necrotic epithelial cells directly release HMGB1. LPS induced a small amountmore » of HMGB1 in macrophages, but macrophages incubated with supernatant prepared from necrotic cells and containing large amounts of HMGB1 activated NF-{kappa}B and induced IL-6. Using the colitis-associated cancer model, we demonstrated that neutralizing anti-HMGB1 antibody decreases tumor incidence and size. These observations suggest that HMGB1 is a potentially useful target for IBD treatment and the prevention of colitis-associated cancer.« less
Innate immune response adaptation in mice subjected to administration of DMBA and physical activity
ABDALLA, DOUGLAS R.; ALEIXO, ANDRÉ ADRIANO ROCHA; MURTA, EDDIE F.C.; MICHELIN, MÁRCIA A.
2014-01-01
Although there is growing interest in studies that promote the benefits of exercise and the correlation between exercise and fighting cancer, previous studies have not been able to elucidate the underlying mechanisms. The aim of the present study was to investigate cytokine synthesis by peritoneal macrophages in the presence of mammary tumors and the effect of physical activity. Female BALB/c virgin mice (age, eight weeks) were obtained for the present study and divided into four groups: A no tumor/non-trained control group; a no tumor/trained group subjected to swim training; a tumor/non-trained group in which the mice received the carcinogenic drug, DMBA and a tumor/trained group in which the mice were subjected to DMBA and swim training protocols. Following the experimental period, immune cells were collected from the peritoneal fluid, placed in culture medium and stimulated with lipopolysaccharide. The presence of the cluster of differentiation-14 marker and expression of the interleukin (IL)-12 cytokine was assessed by flow cytometry and measured via an enzyme-linked immunosorbent assay. The following cytokines were also identified: Interferon-γ, IL-4, IL-10, IL-12, tumor necrosis factor-α and transforming growth factor-β. Physical activity increased the quantity of IL-12 producing macrophages, whereas the presence of a tumor decreased the quantity of macrophages expressing IL-12. Tumor induction, in the absence of swim training, reduced macrophage-profile 1 (M1) cytokine levels while increasing the presence of macrophage-profile 2 cytokines. Physical activity in mice with tumors resulted in reductions in tumor development and promoted immune system polarization towards an antitumor M1 response pattern profile. PMID:24520305
Innate immune response adaptation in mice subjected to administration of DMBA and physical activity.
Abdalla, Douglas R; Aleixo, André Adriano Rocha; Murta, Eddie F C; Michelin, Márcia A
2014-03-01
Although there is growing interest in studies that promote the benefits of exercise and the correlation between exercise and fighting cancer, previous studies have not been able to elucidate the underlying mechanisms. The aim of the present study was to investigate cytokine synthesis by peritoneal macrophages in the presence of mammary tumors and the effect of physical activity. Female BALB/c virgin mice (age, eight weeks) were obtained for the present study and divided into four groups: A no tumor/non-trained control group; a no tumor/trained group subjected to swim training; a tumor/non-trained group in which the mice received the carcinogenic drug, DMBA and a tumor/trained group in which the mice were subjected to DMBA and swim training protocols. Following the experimental period, immune cells were collected from the peritoneal fluid, placed in culture medium and stimulated with lipopolysaccharide. The presence of the cluster of differentiation-14 marker and expression of the interleukin (IL)-12 cytokine was assessed by flow cytometry and measured via an enzyme-linked immunosorbent assay. The following cytokines were also identified: Interferon-γ, IL-4, IL-10, IL-12, tumor necrosis factor-α and transforming growth factor-β. Physical activity increased the quantity of IL-12 producing macrophages, whereas the presence of a tumor decreased the quantity of macrophages expressing IL-12. Tumor induction, in the absence of swim training, reduced macrophage-profile 1 (M1) cytokine levels while increasing the presence of macrophage-profile 2 cytokines. Physical activity in mice with tumors resulted in reductions in tumor development and promoted immune system polarization towards an antitumor M1 response pattern profile.
Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Wong, Emily B; Suleman, Moosa; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex
2017-01-01
A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.001 PMID:28130921
A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages
Mott, Kevin R; UnderHill, David; Wechsler, Steven L; Town, Terrence; Ghiasi, Homayon
2009-01-01
Background Macrophages and dendritic cells (DCs) play key roles in host defense against HSV-1 infection. Although macrophages and DCs can be infected by herpes simplex virus type 1 (HSV-1), both cell types are resistant to HSV-1 replication. The aim of our study was to determine factor (s) that are involved in the resistance of DCs and macrophages to productive HSV-1 infection. Results We report here that, in contrast to bone marrow-derived DCs and macrophages from wild type mice, DCs and macrophages isolated from signal transducers and activators of transcription-1 deficient (STAT1-/-) mice were susceptible to HSV-1 replication and the production of viral mRNAs and DNA. There were differences in expression of immediate early, early, and late gene transcripts between STAT1+/+ and STAT1-/- infected APCs. Conclusion These results suggest for the first time that the JAK-STAT1 pathway is involved in blocking replication of HSV-1 in DCs and macrophages. PMID:19439086
Bertling, Anne; Brodde, Martin F.; Visser, Mayken; Treffon, Janina; Fennen, Michelle; Fender, Anke C.; Kelsch, Reinhard; Kehrel, Beate E.
2017-01-01
Background Hemarthrosis, or bleeding into the joints, is a hallmark of hemophilia. Heme triggers oxidative stress, inflammation, and destruction of cartilage and bone. The haptoglobin-CD163-heme oxygenase-1 (HO-1) pathway circumvents heme toxicity through enzymatic degradation of heme and transcription of antioxidant genes. Plasma-derived factor concentrates contain many proteins that might impact on cellular pathways in joints, blood, and vessels. Methods Activation of platelets from healthy volunteers was assessed by flow cytometry analysis of fibrinogen binding and CD62P expression. Platelet CXCL4 release was measured by ELISA. Human peripheral blood mononuclear cells were exposed to CXCL4 or platelet supernatants (untreated or pre-stimulated with factor VIII (FVIII) products) during their differentiation to macrophages and analyzed for CD163 expression. Some macrophage cultures were additionally incubated with autologous hemoglobin for 18 h for analysis of HO-1 expression. Results Platelet CXCL4 release was increased by all 8 tested plasma-derived FVIII products but not the 3 recombinant products. Macrophages exposed to supernatant from platelets treated with some plasma-derived FVIII products downregulated CD163 surface expression and failed to upregulate the athero- and joint protective enzyme HO-1 in response to hemoglobin. Conclusion Plasma-derived FVIII products might promote bleeding-induced joint injury via generation of macrophages that are unable to counteract redox stress. PMID:29070980
Mahabeleshwar, Ganapati H.; Qureshi, Muhammad Awais; Takami, Yoichi; Sharma, Nikunj; Lingrel, Jerry B.; Jain, Mukesh K.
2012-01-01
Although Gram-positive infections account for the majority of cases of sepsis, the molecular mechanisms underlying their effects remains poorly understood. We investigated how cell wall components of Gram-positive bacteria contribute to the development of sepsis. Experimental observations derived from cultured primary macrophages and the cell line indicate that Gram-positive bacterial endotoxins induce hypoxia-inducible factor 1α (HIF-1α) mRNA and protein expression. Inoculation of live or heat-inactivated Gram-positive bacteria with macrophages induced HIF-1 transcriptional activity in macrophages. Concordant with these results, myeloid deficiency of HIF-1α attenuated Gram-positive bacterial endotoxin-induced cellular motility and proinflammatory gene expression in macrophages. Conversely, Gram-positive bacteria and their endotoxins reduced expression of the myeloid anti-inflammatory transcription factor Krüppel-like transcription factor 2 (KLF2). Sustained expression of KLF2 reduced and deficiency of KLF2 enhanced Gram-positive endotoxins induced HIF-1α mRNA and protein expression in macrophages. More importantly, KLF2 attenuated Gram-positive endotoxins induced cellular motility and proinflammatory gene expression in myeloid cells. Consistent with these results, mice deficient in myeloid HIF-1α were protected from Gram-positive endotoxin-induced sepsis mortality and clinical symptomatology. By contrast, myeloid KLF2-deficient mice were susceptible to Gram-positive sepsis induced mortality and clinical symptoms. Collectively, these observations identify HIF-1α and KLF2 as critical regulators of Gram-positive endotoxin-mediated sepsis. PMID:22110137
Gong, Wei; Dou, Huan; Liu, Xianqin; Sun, Lingyun; Hou, Yayi
2012-10-01
1. In the present study, we investigated the effects of technetium-99 conjugated with methylene diphosphonate ((99)Tc-MDP), an agent used in radionuclide therapy, on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and explored the underlying mechanisms. 2. The murine macrophage cell line RAW264.7 and bone marrow-derived-macrophages from C57BL/6 mice (BMM) were used as models for osteoclastogenesis in vitro. The expression of some key factors in RANKL (50 ng/mL)-induced osteoclastogenesis in RAW264.7 cells was investigated by flow cytometry and real-time reverse transcription-polymerase chain reaction (RT-PCR). To detect multinucleated osteoclast formation, RAW264.7 cells were induced with RANKL for 4 days, whereas BMM were induced by 50 ng/mL RANKL and 20 ng/mL macrophage colony-stimulating factor for 7 days, before being stained with tartrate-resistant acid phosphatase. 3. Osteoclastogenesis was evaluated using the osteoclast markers CD51, matrix metalloproteinase (MMP)-9 and cathepsin K. At 0.01 μg/mL, (99)Tc-MDP significantly inhibited RANKL-induced osteoclastogenesis without any cytotoxicity. In addition, (99)Tc-MDP abolished the appearance of multinucleated osteoclasts. 4. Real-time RT-PCR analysis of transcription factor expression revealed that (99)Tc-MDP inhibited the expression of c-Fos and nuclear factor of activated T cells. In addition, (99)Tc-MDP inhibited the expression of the inflammatory factors interleukin (IL)-6, tumour necrosis factor-α and IL-1β. Finally, (99)Tc-MDP inhibited the activation of mitogen-activated protein kinases in RAW264.7 cells following RANKL stimulation. 5. In conclusion, (99)Tc-MDP possesses anti-osteoclastogenic activity against RANKL-induced osteoclast formation. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Wiley Publishing Asia Pty Ltd.
Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B
2015-10-01
What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized macrophages showed enhanced phagocytic activity. They also had higher expression and activity of indoleamine 2,3-dioxygenase 1, a phenotypic marker of decidual macrophages, which inhibited proliferation of autologous T-cells via induction of G0/G1 cell cycle arrest. In addition, sHLAG5-polarized macrophages had an increased secretion of interleukin-6 and C-X-C motif ligand 1, which inhibited interferon-γ production in T-cells and induction of trophoblast invasion, respectively. Most information on the phenotypes and biological activities of human decidual macrophages are based on past literatures. A direct comparison between sHLAG5-polarized macrophages and primary decidual macrophages is required to verify the present observations. This is the first study on the role of sHLAG5 in macrophage differentiation. Further study on the mechanism that regulates the differentiation process of macrophages would enhance our understanding on the physiology of early pregnancy. This work was supported in part by the Hong Kong Research Grant Council Grant HKU774212 and the University of Hong Kong Grant 201309176126. The authors have no competing interests to declare. Nil. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, Wei; Wang, Yan; Sui, Xianxian; Sun, Yulin; Chen, Daohai
2016-02-01
To detect whether chitin and sepia ink sponge (CS) can promote wound healing and elevate impact of CS on phagocytosis ability of macrophages. Forty-eight rats were assigned to four groups: Normal group (Normal), negative control group (Con), chitin and sepia ink sponge group (CS) and positive control Surgicel Gauze(r) group (SG). Deep second-degree burn model was created in rats. Wound area was recorded by digital imaging and determined using Image J software. Samples were collected and kept at -80oC on 3d, 7d, 14d and 21d for cytokines detecting. Transforming growth factor (TGF)-β1, interleukin (IL)-6, matrix metalloproteinase (MMP)-1, hydroxyproline (Hyp) and macrophage activity reflected by tumor necrosis factor (TNF)-α were determined by enzyme-linked immunosorbent assay (ELISA). Comparing to Con and SG, scabs in CS group fell off and basically healed on 21 day. TGF-β1, IL-6, MMP-1 and Hyp were significantly increased by CS and SG comparing to Con (p < 0.05), CS had more apparently adjustment on TGF-β1 and MMP-1 compared to SG; results in vitro indicated CS significantly promoted phagocytosis ability of macrophages reflected in TNF-α (p < 0.05). CS improved wound healing through exerting significant influences on secretion of kinds of cytokines and activating macrophages.
Beninson, Lida A; Fleshner, Monika
2015-02-01
This study identifies a previously unknown immunological function of exosomes present in fetal bovine serum (FBS). Exosomes are small (40-100 nm), biologically active nanoparticles released from cells that associate with a variety of proteins and miRNA. Exosomes are present in nearly all biological fluids, including FBS, a common supplement to cell culture media. While there are a growing number of studies examining cellular responses to exosomes, there is no assessment of how FBS exosomes impact cellular responses to immunological challenges. Our results demonstrate that primary macrophages from Fisher 344 rats cultured with lipopolysaccharide (LPS) in the presence of FBS exosomes exhibit a dose-dependent reduction in IL-1β compared to macrophages cultured in medium supplemented with exosome-depleted FBS. The addition of fetal bovine exosomes also reduced macrophage tumor necrosis factor-alpha (TNF-α) and IL-6, but not IL-10, monocyte chemotactic factor-1 (MCP-1), nitric oxide (NO), or lactose dehydrogenase (LDH) response to LPS. The selectivity of exosomal impact on macrophage IL-1β and pro-inflammatory protein responses may implicate the potential role of exosome-inflammasome interactions. These findings suggest that researchers should consider the immunological influence of FBS exosomes, particularly on IL-1β activity, when studying cells in culture. Copyright © 2015. Published by Elsevier B.V.
Cunyat, Francesc; Rainho, Jennifer N.; West, Brian; Swainson, Louise; McCune, Joseph M.
2016-01-01
ABSTRACT Strategies aimed at eliminating persistent viral reservoirs from HIV-1-infected individuals have focused on CD4+ T-cell reservoirs. However, very little attention has been given to approaches that could promote elimination of tissue macrophage reservoirs. HIV-1 infection of macrophages induces phosphorylation of colony-stimulating factor 1 receptor (CSF-1R), which confers resistance to apoptotic pathways driven by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), thereby promoting viral persistence. In this study, we assessed whether CSF-1R antagonists (PLX647, PLX3397, and PLX5622) restored apoptotic sensitivity of HIV-1-infected macrophages in vitro. PLX647, PLX3397, and PLX5622 at clinically relevant concentrations blocked the activation of CSF-1R and reduced the viability of infected macrophages, as well as the extent of viral replication. Our data show that strategies targeting monocyte colony-stimulating factor (MCSF) signaling could be used to promote elimination of HIV-1-infected myeloid cells and to contribute to the elimination of persistent viral reservoirs. IMPORTANCE As the HIV/AIDS research field explores approaches to eliminate HIV-1 in individuals on suppressive antiviral therapy, those approaches will need to eliminate both CD4+ T-cell and myeloid cell reservoirs. Most of the attention has focused on CD4+ T-cell reservoirs, and scant attention has been paid to myeloid cell reservoirs. The distinct nature of the infection in myeloid cells versus CD4+ T cells will likely dictate different approaches in order to achieve their elimination. For CD4+ T cells, most strategies focus on promoting virus reactivation to promote immune-mediated clearance and/or elimination by viral cytopathicity. Macrophages resist viral cytopathic effects and CD8+ T-cell killing. Therefore, we have explored clearance strategies that render macrophages sensitive to viral cytopathicity. This research helps inform the design of strategies to promote clearance of the macrophage reservoir in infected individuals on suppressive antiviral therapy. PMID:27122585
Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha
Schepetkin, Igor A.; Xie, Gang; Kirpotina, Liliya N.; Klein, Robyn A.; Jutila, Mark A.; Quinn, Mark T.
2008-01-01
Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average Mr of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor α, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor κB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant. PMID:18597716
Nobili, Valerio; Carpino, Guido; Alisi, Anna; De Vito, Rita; Franchitto, Antonio; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio
2014-01-01
Nonalcoholic fatty liver disease (NAFLD) is one of the most important causes of liver-related morbidity and mortality in children. Recently, we have reported the effects of docosahexaenoic acid (DHA), the major dietary long-chain polyunsaturated fatty acids, in children with NAFLD. DHA exerts a potent anti-inflammatory activity through the G protein-coupled receptor (GPR)120. Our aim was to investigate in pediatric NAFLD the mechanisms underlying the effects of DHA administration on histo-pathological aspects, GPR120 expression, hepatic progenitor cell activation and macrophage pool. 20 children with untreated NAFLD were included. Children were treated with DHA for 18 months. Liver biopsies before and after the treatment were analyzed. Hepatic progenitor cell activation, macrophage pool and GPR120 expression were evaluated and correlated with clinical and histo-pathological parameters. GPR120 was expressed by hepatocytes, liver macrophages, and hepatic progenitor cells. After DHA treatment, the following modifications were present: i) the improvement of histo-pathological parameters such as NAFLD activity score, ballooning, and steatosis; ii) the reduction of hepatic progenitor cell activation in correlation with histo-pathological parameters; iii) the reduction of the number of inflammatory macrophages; iv) the increase of GPR120 expression in hepatocytes; v) the reduction of serine-311-phosphorylated nuclear factor kappa B (NF-κB) nuclear translocation in hepatocytes and macrophages in correlation with serum inflammatory cytokines. DHA could modulate hepatic progenitor cell activation, hepatocyte survival and macrophage polarization through the interaction with GPR120 and NF-κB repression. In this scenario, the modulation of GPR120 exploits a novel crucial role in the regulation of the cell-to-cell cross-talk that drives inflammatory response, hepatic progenitor cell activation and hepatocyte survival.
Pinto, Alexander R; Paolicelli, Rosa; Salimova, Ekaterina; Gospocic, Janko; Slonimsky, Esfir; Bilbao-Cortes, Daniel; Godwin, James W; Rosenthal, Nadia A
2012-01-01
Cardiac tissue macrophages (cTMs) are a previously uncharacterised cell type that we have identified and characterise here as an abundant GFP(+) population within the adult Cx(3)cr1(GFP/+) knock-in mouse heart. They comprise the predominant myeloid cell population in the myocardium, and are found throughout myocardial interstitial spaces interacting directly with capillary endothelial cells and cardiomyocytes. Flow cytometry-based immunophenotyping shows that cTMs exhibit canonical macrophage markers. Gene expression analysis shows that cTMs (CD45(+)CD11b(+)GFP(+)) are distinct from mononuclear CD45(+)CD11b(+)GFP(+) cells sorted from the spleen and brain of adult Cx(3)cr1(GFP/+) mice. Gene expression profiling reveals that cTMs closely resemble alternatively-activated anti-inflammatory M2 macrophages, expressing a number of M2 markers, including Mrc1, CD163, and Lyve-1. While cTMs perform normal tissue macrophage homeostatic functions, they also exhibit a distinct phenotype, involving secretion of salutary factors (including IGF-1) and immune modulation. In summary, the characterisation of cTMs at the cellular and molecular level defines a potentially important role for these cells in cardiac homeostasis.
PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2.
Xu, Ying; Yang, Enzhuo; Huang, Qi; Ni, Wenwen; Kong, Cong; Liu, Guoyuan; Li, Guanghua; Su, Haibo; Wang, Honghai
2015-06-01
Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are related proteins exclusive to Mycobacteria that play diverse roles in modulating critical innate immune pathways. In this study, we observed that the PPE57 protein is associated with the cell wall and is exposed on the cell surface. PPE57 enhances Mycobacterium spp. entering into macrophages and plays a role in macrophage phagocytosis. To explore the underlying mechanism, we demonstrated that PPE57 is able to recognise Toll-like receptor 2 (TLR2) and further induce macrophage activation by augmenting the expression of several cell surface molecules (CD40, CD80, CD86 and MHC class II) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-12p40) within macrophages. These molecules are involved in the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signalling pathways. We demonstrated that PPE57 effectively polarises T cells to secrete interferon (IFN)-γ and IL-2 and to up-regulate CXCR3 expression in vivo and in vitro, suggesting that this protein may contribute to Th1 polarisation during the immune response. Moreover, recombinant Bacillus Calmette-Guérin (BCG) over-expressing PPE57 could provide better protective efficacy against Mycobacterium tuberculosis challenge compared with BCG. Taken together, our data provides several pieces of evidence that PPE57 may regulate innate and adaptive immunity by interacting with TLR2. These findings indicate that PPE57 protein is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis. PPE57 is located on the cell surface and enhances mycobacterium entry into macrophage. PPE57 interacts directly with TLR2 on macrophages. PPE57 plays a key role in the activation of macrophages in a TLR2-dependent manner. PPE57 induces a Th1 immune response via TLR2-mediated macrophage functions. Recombinant BCG over-expressing PPE57 could improve protective efficacy against M. tuberculosis.
2014-01-01
Introduction The crucial role of innate immunity in the pathogenesis of systemic sclerosis (SSc) is well established, and in the past few years the hypothesis that Toll-like receptor 4 (TLR4) activation induced by endogenous ligands is involved in fibrogenesis has been supported by several studies on skin, liver, and kidney fibrosis. These findings suggest that TLR4 activation can enhance transforming growth factor beta (TGF-β) signaling, providing a potential mechanism for TLR4/Myeloid differentiation factor 88 (MyD88)-dependent fibrosis. Methods The expression of TLR4, CD14 and MD2 genes was analyzed by real-time polymerase chain reaction from skin biopsies of 24 patients with diffuse cutaneous SSc. In order to investigate the effects of the chronic skin exposure to endotoxin (Lipopolysaccharide (LPS)) in vivo we examined the expression of inflammation, TGF-β signaling and cellular markers genes by nanostring. We also identified cellular subsets by immunohistochemistry and flow cytometry. Results We found that TLR4 and its co-receptors, MD2 and CD14, are over-expressed in lesional skin from patients with diffuse cutaneous SSc, and correlate significantly with progressive or regressive skin disease as assessed by the Delta Modified Rodnan Skin Score. In vivo, a model of chronic dermal LPS exposure showed overexpression of proinflammatory chemokines, recruitment and activation of macrophages, and upregulation of TGF-β signature genes. Conclusions We delineated the role of MyD88 as necessary for the induction not only for the early phase of inflammation, but also for pro-fibrotic gene expression via activation of macrophages. Chronic LPS exposure might be a model of early stage of SSc when inflammation and macrophage activation are important pathological features of the disease, supporting a role for innate immune activation in SSc skin fibrosis. PMID:24984848
Stifano, Giuseppina; Affandi, Alsya J; Mathes, Allison L; Rice, Lisa M; Nakerakanti, Sashidhar; Nazari, Banafsheh; Lee, Jungeun; Christmann, Romy B; Lafyatis, Robert
2014-07-01
The crucial role of innate immunity in the pathogenesis of systemic sclerosis (SSc) is well established, and in the past few years the hypothesis that Toll-like receptor 4 (TLR4) activation induced by endogenous ligands is involved in fibrogenesis has been supported by several studies on skin, liver, and kidney fibrosis. These findings suggest that TLR4 activation can enhance transforming growth factor beta (TGF-β) signaling, providing a potential mechanism for TLR4/Myeloid differentiation factor 88 (MyD88)-dependent fibrosis. The expression of TLR4, CD14 and MD2 genes was analyzed by real-time polymerase chain reaction from skin biopsies of 24 patients with diffuse cutaneous SSc. In order to investigate the effects of the chronic skin exposure to endotoxin (Lipopolysaccharide (LPS)) in vivo we examined the expression of inflammation, TGF-β signaling and cellular markers genes by nanostring. We also identified cellular subsets by immunohistochemistry and flow cytometry. We found that TLR4 and its co-receptors, MD2 and CD14, are over-expressed in lesional skin from patients with diffuse cutaneous SSc, and correlate significantly with progressive or regressive skin disease as assessed by the Delta Modified Rodnan Skin Score. In vivo, a model of chronic dermal LPS exposure showed overexpression of proinflammatory chemokines, recruitment and activation of macrophages, and upregulation of TGF-β signature genes. We delineated the role of MyD88 as necessary for the induction not only for the early phase of inflammation, but also for pro-fibrotic gene expression via activation of macrophages. Chronic LPS exposure might be a model of early stage of SSc when inflammation and macrophage activation are important pathological features of the disease, supporting a role for innate immune activation in SSc skin fibrosis.
Zhou, Z N; Sharma, V P; Beaty, B T; Roh-Johnson, M; Peterson, E A; Van Rooijen, N; Kenny, P A; Wiley, H S; Condeelis, J S; Segall, J E
2014-07-17
Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.
Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro.
Wang, Li; Li, Yulin; Zhu, Lidan; Yin, Ran; Wang, Ren; Luo, Xiaohu; Li, Yongfu; Li, Yanan; Chen, Zhengxing
2016-07-01
Polysaccharides purified from rice bran show antitumor activity against tumor cells, yet the mechanism of this action remains poorly understood. To address this issue, our study evaluated the effect of rice bran polysaccharides on mouse melanoma cell line B16, and Raw264.7 macrophages. Rice bran polysaccharides (RBP) failed to inhibit B16 cell growth in vitro. However, Raw264.7 macrophages treated by RBP enhancement of cytotoxic effects. The cytotoxicity was confirmed by the stimulation of nitric oxide (NO) production and tumor necrosis factor-α (TNF-α) secretion on Raw264.7 macrophages in a dose-dependent manner. RBP2, a fraction of RBP, notably enhanced the inhibition of B16 cells and boosted the immunepotentiation effect compared with RBP. To further enhance the inhibition of B16 cell growth, sulfated polysaccharides (SRBP) was derived using the chlorosulfonic acid-pyridine method. SRBP2 was found to suppress B16 cell growth, reduce B16 cell survival and stimulate NO and TNF-α production. However, SRBP2 displayed a cytotoxic effect on Raw264.7 macrophages. These results suggest that the antitumor activity of RBP and RBP2 is mediated mainly through the activation of macrophages. SRBP2 exerts its antitumor activity by inducing apoptosis in tumor cells and the secretion of NO and TNF-α. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Chang; Rajapakse, Angana G; Riedo, Erwin; Fellay, Benoit; Bernhard, Marie-Claire; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen
2016-02-05
Nonalcoholic fatty liver disease (NAFLD) associates with obesity and type 2 diabetes. Hypoactive AMP-activated protein kinase (AMPK), hyperactive mammalian target of rapamycin (mTOR) signaling, and macrophage-mediated inflammation are mechanistically linked to NAFLD. Studies investigating roles of arginase particularly the extrahepatic isoform arginase-II (Arg-II) in obesity-associated NAFLD showed contradictory results. Here we demonstrate that Arg-II(-/-) mice reveal decreased hepatic steatosis, macrophage infiltration, TNF-α and IL-6 as compared to the wild type (WT) littermates fed high fat diet (HFD). A higher AMPK activation (no difference in mTOR signaling), lower levels of lipogenic transcription factor SREBP-1c and activity/expression of lipogenic enzymes were observed in the Arg-II(-/-) mice liver. Moreover, release of TNF-α and IL-6 from bone marrow-derived macrophages (BMM) of Arg-II(-/-) mice is decreased as compared to WT-BMM. Conditioned medium from Arg-II(-/-)-BMM exhibits weaker activity to facilitate triglyceride synthesis paralleled with lower expression of SREBP-1c and SCD-1 and higher AMPK activation in hepatocytes as compared to that from WT-BMM. These effects of BMM conditioned medium can be neutralized by neutralizing antibodies against TNF-α and IL-6. Thus, Arg-II-expressing macrophages facilitate diet-induced NAFLD through TNF-α and IL-6 in obesity.
Wang, Jiaoni; Zhou, Yingying; Wu, Shaoze; Huang, Kaiyu; Thapa, Saroj; Tao, Luyuan; Wang, Jie; Shen, Yigen; Wang, Jinsheng; Xue, Yangjing; Ji, Kangting
2018-01-01
Abdominal aortic aneurysm (AAA), characterized by macrophage infiltration-mediated inflammation and oxidative stress, is a potentially fatal disease. Astragaloside IV (AS-IV) has been acknowledged to exhibit antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effect of AS-IV against AAA formation induced by 3,4-benzopyrene (Bap) and angiotensin II (Ang II), and to explore probable mechanisms. Results showed that AS-IV decreased AAA formation, and reduced macrophage infiltration and expression of matrix metalloproteinase. Furthermore, AS-IV abrogated Bap-/Ang II-induced NF-κB activation and oxidative stress. In vitro , AS-IV inhibition of macrophage activation and NF-κB was correlated with increased phosphorylation of phosphatidylinositol 3-kinase (PI3-K)/AKT. Together, our findings suggest that AS-IV has potential as an intervention in the formation of AAA. (1)The protective effect of Astragaloside IV (AS-IV) on abdominal aortic aneurysm (AAA) is associated with its suppressing effects on inflammation in the aortic wall.(2)AS-IV abrogated 3,4-benzopyrene (Bap)/angiotensin II (Ang II)-induced nuclear factor-κB (NF-κB) activation and oxidative stress.(3)AS-IV inhibited Bap-induced RAW264.7 macrophage cells activation by inhibiting oxidative stress and NF-κB activation through phosphatidylinositol 3-kinase (PI3-K)/AKT pathway.AS-IV is a potential preventive agent for cigarette smoking-related AAA.
Tellechea, Mónica; Buxadé, Maria; Tejedor, Sonia; Aramburu, Jose; López-Rodríguez, Cristina
2018-01-01
Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions. Copyright © 2017 by The American Association of Immunologists, Inc.
González, O A; Ebersole, J L; Huang, C B
2010-04-01
Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes/macrophages, albeit this effect is most notable following direct stimulation of the cells with oral gram-negative bacteria.
Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina
2007-02-13
Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes. These spice-derived components may have a potential to improve chronic inflammatory conditions in obesity.
González, Yisett; Doens, Deborah; Santamaría, Ricardo; Ramos, Marla; Restrepo, Carlos M.; Barros de Arruda, Luciana; Lleonart, Ricardo; Gutiérrez, Marcelino; Fernández, Patricia L.
2013-01-01
Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation. PMID:24358331
IFN-ε protects primary macrophages against HIV infection.
Tasker, Carley; Subbian, Selvakumar; Gao, Pan; Couret, Jennifer; Levine, Carly; Ghanny, Saleena; Soteropoulos, Patricia; Zhao, Xilin; Landau, Nathaniel; Lu, Wuyuan; Chang, Theresa L
2016-12-08
IFN-ε is a unique type I IFN that is not induced by pattern recognition response elements. IFN-ε is constitutively expressed in mucosal tissues, including the female genital mucosa. Although the direct antiviral activity of IFN-ε was thought to be weak compared with IFN-α, IFN-ε controls Chlamydia muridarum and herpes simplex virus 2 in mice, possibly through modulation of immune response. We show here that IFN-ε induces an antiviral state in human macrophages that blocks HIV-1 replication. IFN-ε had little or no protective effect in activated CD4 + T cells or transformed cell lines unless activated CD4 + T cells were infected with replication-competent HIV-1 at a low MOI. The block to HIV infection of macrophages was maximal after 24 hours of treatment and was reversible. IFN-ε acted on early stages of the HIV life cycle, including viral entry, reverse transcription, and nuclear import. The protection did not appear to operate through known type I IFN-induced HIV host restriction factors, such as APOBEC3A and SAMHD1. IFN-ε-stimulated immune mediators and pathways had the signature of type I IFNs but were distinct from IFN-α in macrophages. IFN-ε induced significant phagocytosis and ROS, which contributed to the block to HIV replication. These findings indicate that IFN-ε induces an antiviral state in macrophages that is mediated by different factors than those induced by IFN-α. Understanding the mechanism of IFN-ε-mediated HIV inhibition through immune modulation has implications for prevention.
IFN-ε protects primary macrophages against HIV infection
Tasker, Carley; Subbian, Selvakumar; Gao, Pan; Couret, Jennifer; Levine, Carly; Ghanny, Saleena; Soteropoulos, Patricia; Zhao, Xilin; Landau, Nathaniel; Lu, Wuyuan
2016-01-01
IFN-ε is a unique type I IFN that is not induced by pattern recognition response elements. IFN-ε is constitutively expressed in mucosal tissues, including the female genital mucosa. Although the direct antiviral activity of IFN-ε was thought to be weak compared with IFN-α, IFN-ε controls Chlamydia muridarum and herpes simplex virus 2 in mice, possibly through modulation of immune response. We show here that IFN-ε induces an antiviral state in human macrophages that blocks HIV-1 replication. IFN-ε had little or no protective effect in activated CD4+ T cells or transformed cell lines unless activated CD4+ T cells were infected with replication-competent HIV-1 at a low MOI. The block to HIV infection of macrophages was maximal after 24 hours of treatment and was reversible. IFN-ε acted on early stages of the HIV life cycle, including viral entry, reverse transcription, and nuclear import. The protection did not appear to operate through known type I IFN-induced HIV host restriction factors, such as APOBEC3A and SAMHD1. IFN-ε–stimulated immune mediators and pathways had the signature of type I IFNs but were distinct from IFN-α in macrophages. IFN-ε induced significant phagocytosis and ROS, which contributed to the block to HIV replication. These findings indicate that IFN-ε induces an antiviral state in macrophages that is mediated by different factors than those induced by IFN-α. Understanding the mechanism of IFN-ε–mediated HIV inhibition through immune modulation has implications for prevention. PMID:27942584
Ueno, Manabu; Maeno, Toshitaka; Nishimura, Satoshi; Ogata, Fusa; Masubuchi, Hiroaki; Hara, Kenichiro; Yamaguchi, Kouichi; Aoki, Fumiaki; Suga, Tatsuo; Nagai, Ryozo; Kurabayashi, Masahiko
2015-03-10
Alveolar macrophages play a crucial role in the pathogenesis of emphysema, for which there is currently no effective treatment. Bisphosphonates are widely used to treat osteoclast-mediated bone diseases. Here we show that delivery of the nitrogen-containing bisphosphonate alendronate via aerosol inhalation ameliorates elastase-induced emphysema in mice. Inhaled, but not orally ingested, alendronate inhibits airspace enlargement after elastase instillation, and induces apoptosis of macrophages in bronchoalveolar fluid via caspase-3- and mevalonate-dependent pathways. Cytometric analysis indicates that the F4/80(+)CD11b(high)CD11c(mild) population characterizing inflammatory macrophages, and the F4/80(+)CD11b(mild)CD11c(high) population defining resident alveolar macrophages take up substantial amounts of the bisphosphonate imaging agent OsteoSense680 after aerosol inhalation. We further show that alendronate inhibits macrophage migratory and phagocytotic activities and blunts the inflammatory response of alveolar macrophages by inhibiting nuclear factor-κB signalling. Given that the alendronate inhalation effectively induces apoptosis in both recruited and resident alveolar macrophages, we suggest this strategy may have therapeutic potential for the treatment of emphysema.
NASA Astrophysics Data System (ADS)
Harris, Justin T.; Dumani, Diego S.; Cook, Jason R.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.; Homan, Kimberly A.
2017-03-01
While molecular and cellular imaging can be used to visualize the conventional morphology characteristics of vulnerable plaques, there is a need to monitor other physiological factors correlated with high rupture rates; a high M1 activated macrophage concentration is one such indicator of high plaque vulnerability. Here, we present a molecularly targeted contrast agent for intravascular photoacoustic (IVPA) imaging consisting of liposomes loaded with indocyanine green (ICG) J-aggregates with high absorption at 890 nm, allowing for imaging in the presence of blood. This "Lipo-ICG" was targeted to a biomarker of M1 activated macrophages in vulnerable plaques: folate receptor beta (FRβ). The targeted liposomes accumulate in plaques through areas of endothelial dysfunction, while the liposome encapsulation prevents nonspecific interaction with lipids and endothelium. Lipo-ICG specifically interacts with M1 activated macrophages, causing a spectral shift and change in the 890/780 nm photoacoustic intensity ratio upon breakdown of J-aggregates. This sensing mechanism enables assessment of the M1 activated macrophage concentration, providing a measure of plaque vulnerability. In a pilot in vivo study utilizing ApoE deficient mouse models of atherosclerosis, diseased mice showed increased uptake of FRβ targeted Lipo-ICG in the heart and arteries vs. normal mice. Likewise, targeted Lipo-ICG showed increased uptake vs. two non-targeted controls. Thus, we successfully synthesized a contrast agent to detect M1 activated macrophages in high risk atherosclerotic plaques and exhibited targeting both in vitro and in vivo. This biocompatible agent could enable M1 macrophage detection, allowing better clinical decision making in treatment of atherosclerosis.
Wang, Yu-Chen; Ma, Hong-Di; Yin, Xue-Ying; Wang, Yin-Hu; Liu, Qing-Zhi; Yang, Jing-Bo; Shi, Qing-Hua; Sun, Baolin; Gershwin, M Eric; Lian, Zhe-Xiong
2016-12-01
The functions of macrophages that lead to effective host responses are critical for protection against Staphylococcus aureus. Deep tissue-invading S. aureus initially countered by macrophages trigger macrophage accumulation and induce inflammatory responses through surface receptors, especially toll-like receptor 2 (TLR2). Here, we found that macrophages formed sporadic aggregates in the liver during infection. Within those aggregates, macrophages co-localized with T cells and were indispensable for their infiltration. In addition, we have focused on the mechanisms underlying the polarization of macrophages in Forkhead box transcription factor O1 (FoxO1) conditional knockout Lys Cre/+ FoxO1 fl/fl mice following S. aureus infection and report herein that macrophage M1-M2 polarization via TLR2 is intrinsically regulated by FoxO1. Indeed, for effective FoxO1 activity, stimulation of TLR2 is essential. However, following S. aureus challenge, there was a decrease in macrophage FoxO1, with increased phosphorylation of FoxO1 because of TLR2-mediated activation of PI3K/Akt and c-Raf/MEK/ERK pathway. Following infection in Lys Cre/+ FoxO1 fl/fl mice, mice became more susceptible to S. aureus with reduced macrophage aggregation in the liver and attenuated Th1 and Th17 responses. FoxO1 abrogation reduced M1 pro-inflammatory responses triggered by S. aureus and enhanced M2 polarization in macrophages. In contrast, overexpression of FoxO1 in macrophages increased pro-inflammatory mediators and functional surface molecule expression. In conclusion, macrophage FoxO1 is critical to promote M1 polarization and maintain a competent T cell immune response against S. aureus infection in the liver. FoxO1 regulates macrophage M1-M2 polarization downstream of TLR2 dynamically through phosphorylation.
Umeda, S.; Takahashi, K.; Shultz, L. D.; Naito, M.; Takagi, K.
1996-01-01
The development of macrophage populations in osteopetrosis (op) mutant mice defective in production of functional macrophage colony-stimulating factor (M-CSF) and the response of these cell populations to exogenous M-CSF were used to classify macrophages into four groups: 1) monocytes, monocyte-derived macrophages, and osteoclasts, 2) MOMA-1-positive macrophages, 3) ER-TR9-positive macrophages, and 4) immature tissue macrophages. Monocytes, monocyte-derived macrophages, osteoclasts in bone, microglia in brain, synovial A cells, and MOMA-1- or ER-TR9-positive macrophages were deficient in op/op mice. The former three populations expanded to normal levels in op/op mice after daily M-CSF administration, indicating that they are developed and differentiated due to the effect of M-CSF supplied humorally. In contrast, the other cells did not respond or very slightly responded to M-CSF, and their development seems due to either M-CSF produced in situ or expression of receptor for M-CSF. Macrophages present in tissues of the mutant mice were immature and appear to be regulated by either granulocyte/macrophage colony-stimulating factor and/or interleukin-3 produced in situ or receptor expression. Northern blot analysis revealed different expressions of GM-CSF and IL-3 mRNA in various tissues of the op/op mice. However, granulocyte/macrophage colony-stimulating factor and interleukin-3 in serum were not detected by enzyme-linked immunosorbent assay. The immature macrophages differentiated and matured into resident macrophages after M-CSF administration, and some of these cells proliferated in response to M-CSF. Images Figure 4 Figure 6 Figure 8 Figure 10 Figure 11 PMID:8701995
Bácsi, A; Aranyosi, J; Beck, Z; Ebbesen, P; Andirkó, I; Szabó, J; Lampé, L; Kiss, J; Gergely, L; Tóth, F D
1999-10-01
Although syncytiotrophoblast (ST) cells can be infected by human cytomegalovirus (HCMV), in vitro studies have indicated that ST cells do not support the complete viral reproductive cycle, or HCMV replication may occur in less than 3% of ST cells. The present study tested the possibility that placental macrophages might enhance activation of HCMV carried in ST cells and, further, that infected ST cells would be capable of transmitting virus to neighboring macrophages. For this purpose, we studied HCMV replication in ST cells grown alone or cocultured with uninfected placental macrophages. Our results demonstrated that HCMV gene expression in ST cells was markedly upregulated by coculture with macrophages, resulting in release of substantial amounts of infectious virus from HCMV-infected ST cells. After having become permissive for viral replication, ST cells delivered HCMV to the cocultured macrophages, as evidenced by detection of virus-specific antigens in these cells. The stimulatory effect of coculture on HCMV gene expression in ST cells was mediated by marked interleukin-8 (IL-8) and transforming growth factor-beta1 (TGF-beta1) release from macrophages, an effect caused by contact between the different placental cells. Our findings indicate an interactive role for the ST layer and placental macrophages in the dissemination of HCMV among placental tissue. Eventually, these interactions may contribute to the transmission of HCMV from mother to the fetus.
Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee
2012-08-01
The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.
Tumor-associated macrophages as major source of APRIL in gastric MALT lymphoma.
Munari, Fabio; Lonardi, Silvia; Cassatella, Marco A; Doglioni, Claudio; Cangi, Maria Giulia; Amedei, Amedeo; Facchetti, Fabio; Eishi, Yoshinobu; Rugge, Massimo; Fassan, Matteo; de Bernard, Marina; D'Elios, Mario M; Vermi, William
2011-06-16
Lymphoid hyperplasia of gastric mucosa associated with Helicobacter pylori (HP) infection represents a preneoplastic condition of the mucosa associated lymphoid tissue (MALT), which may evolve to a B-cell lymphoma. While it is well established that the initial neoplastic proliferation of B cells is antigen-driven and dependent on the helper activity of HP-specific T cells, it needs to be elucidated which cytokine or soluble factor(s) promote B-cell activation and lymphomagenesis. Herein, we originally report that gastric MALT lymphoma express high levels of a proliferation inducing ligand (APRIL), a novel cytokine crucial in sustaining B-cell proliferation. By immunohistochemistry, we demonstrate that APRIL is produced almost exclusively by gastric lymphoma-infiltrating macrophages located in close proximity to neoplastic B cells. We also show that macrophages produce APRIL on direct stimulation with both HP and HP-specific T cells. Collectively, our results represent the first evidence for an involvement of APRIL in gastric MALT lymphoma development in HP-infected patients.
Accelerated Tumor Cell Death by Angiogenic Modifiers
2003-08-01
complex process Two huge molecules called plasminogen-related growth is regulated by a delicate balance of angiogenesis in- factors ( PRGFs ...Increased activator(s) and/or decreased inhibi- cancer progression. PRGF -1 is also called hepatocyte tor(s) alter the balance and lead to the growth of...new growth factor/scatter factor (HGF/SF). PRGF -2 is also blood vessels (Hanahan, 1997). Several growth factors, known as macrophage-stimulating
Lin, Tzu-hua; Yao, Zhenyu; Sato, Taishi; Keeney, Michael; Li, Chenguang; Pajarinen, Jukka; Yang, Fan; Egashira, Kensuke; Goodman, Stuart B.
2014-01-01
Total joint replacement (TJR) is a very cost-effective surgery for end-stage arthritis. One important goal is to decrease the revision rate especially because TJR has been extended to younger patients. Continuous production of ultra-high molecular weight polyethylene (UHMWPE) wear particles induces macrophage infiltration and chronic inflammation, which can lead to peri-prosthetic osteolysis. Targeting individual pro-inflammatory cytokines directly has not reversed the osteolytic process in clinical trials, due to compensatory upregulation of other pro-inflammatory factors. We hypothesized that targeting the important transcription factor NF-κB could mitigate the inflammatory response to wear particles, potentially diminishing osteolysis. In the current study, we suppressed NF-κB activity in mouse RAW264.7 and human THP1 macrophage cell lines, as well as primary mouse and human macrophages, via competitive binding with double strand decoy oligodeoxynucleotide (ODN) containing an NF-κB binding element. We found that macrophage exposure to UHMWPE particles induced multiple pro-inflammatory cytokine and chemokine expression including TNF-α, MCP1, MIP1α and others. Importantly, the decoy ODN significantly suppressed the induced cytokine and chemokine expression in both murine and human macrophages, and resulted in suppression of macrophage recruitment. The strategic use of decoy NF-κB ODN, delivered locally, could potentially diminish particle-induced peri-prosthetic osteolysis. PMID:24814879
GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipocytokines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Arif Ul, E-mail: ahasan@med.kagawa-u.ac.jp; Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793; Ohmori, Koji
How nutritional excess leads to inflammatory responses in metabolic syndrome is not well characterized. Here, we evaluated the effects of ω-3 polyunsaturated fatty acid specific G-protein coupled receptor 120 (GPR120) activation on inflammatory pathways in adipocytes, and the influence of this process on macrophage migration. Using 3T3-L1 adipocytes, we found that agonizing GPR120 using its synthetic ligand, GSK137647, attenuated both basal and lipopolysaccharide-induced production of interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2). Moreover, the intervention reduced the phosphorylation of nuclear factor kappa B inhibitor alpha (IκBα) and nuclear translocation of nuclear factor kappa-B p65 subunit (p65). Furthermore, themore » silencing of GPR120 itself reduced IL-6 and CCL2 mRNA expression. Inhibition of protein kinase C (PKC) augmented the down-regulatory effect of GSK137647 on IL-6 and CCL2 mRNA. Using a luciferase assay to measure promoter activity of the IL-6 gene in mouse embryonic fibroblasts, we demonstrated that exogenous transfection of GPR120 alone reduced the promoter activity, which was augmented by GSK137647. Inhibition of PKC further reduced the promoter activity. Nevertheless, RAW 264.7 macrophages grown in conditioned medium collected from GSK137647-treated adipocytes attenuated the expressions of matrix metalloproteinases-9 and -3, and tissue inhibitor of metalloproteinase-1. Conditioned medium also inhibited the lipopolysaccharide-induced migration of these macrophages. Taken together, these findings provide critical evidence that although GPR120 is associated with a PKC-mediated pro-inflammatory pathway, the direct inhibitory effects of GPR120 on the nuclear factor kappa B pathway are anti-inflammatory. Moreover, GPR120 activity can attenuate the adipocyte-mediated enhanced production of extracellular matrix-modulating factors in macrophages and can reduce their migration by a paracrine mechanism. - Highlights: • Agonizing GPR120 differentially regulates the pro-inflammatory adipocytokines. • Agonizing GPR120 in adipocytes attenuates NF-κB mediated IL-6 and CCL2 production. • Agonizing GPR120 concomitantly triggers a PKC mediated pro-inflammatory pathway. • However, the resulted effect in adipocytes remains anti-inflammatory. • Agonizing GPR120 in adipocytes reduces macrophage migration in a paracrine manner.« less
Enterococcus faecalis lipoteichoic acid regulates macrophages autophagy via PI3K/Akt/mTOR pathway.
Lin, Dongjia; Gao, Yan; Zhao, Luodan; Chen, Yanhuo; An, Shaofeng; Peng, Zhixiang
2018-04-15
Enterococcus faecalis (E. faecalis) infection is considered an important etiological factor for the development of persistent apical periodontitis (PAP), but the exact mechanisms of autophagy between E. faecalis and immune cells remain unknown. In this study, we elucidated how E. faecalis lipoteichoic acid (LTA) is associated with macrophages autophagy. We found that E. faecalis LTA apparently activated macrophage autophagy with significant increase of autophagosomes and autophagy relative protein. Meanwhile, we noticed significantly decreasing expression of p-Akt and p-mTOR. However, these effect were absent in macrophages knockdown of Beclin1. In summary, these findings suggested E. faecalis LTA may increased macrophages autophagy via inhibiting PI3K/Akt/mTOR pathway and this process was Beclin1 dependent. Copyright © 2018 Elsevier Inc. All rights reserved.
Masuda, Takahiro; Deng, Xue; Tamai, Riyoko
2009-08-01
Alendronate is one of the nitrogen-containing bisphosphonates (NBPs) used as anti-bone resorptive drugs. However, NBPs have inflammatory side effects including osteomyelitis and osteonecrosis of the jaw. In the present study, we examined the effects of alendronate on chemokine production by the macrophage-like cell line, J774.1, when incubated with Pam(3)CSK(4) (a Toll-like receptor (TLR) 2 agonist) and Lipid A (a TLR4 agonist). Pretreatment of J774.1 cells with alendronate decreased the production of TLR ligand-induced monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) but did not influence nuclear factor-kappaB (NF-kappaB) activation. While this agent induced caspase-8 activation, a caspase-8 inhibitor did not affect the decrease in MCP-1 production by alendronate and TLR ligands. Thus, the alendronate-mediated decrease in chemokine production was independent of NF-kappaB and caspase-8 activation. Although transforming growth factor-beta1 (TGF-beta1) is known to inhibit chemokine production by various cell types via Smad3 activation, pretreatment with alendronate did not increase TGF-beta1 production by J774.1 cells incubated in the presence or absence of TLR ligands. However, alendronate directly activated Smad3. These results suggest that by down-regulating MCP-1 and MIP-1alpha production via Smad3, long-term use of alendronate might inhibit normal activation and migration of osteoclasts and cause osteonecrosis.
Microglia M2A Polarization as Potential Link between Food Allergy and Autism Spectrum Disorders.
Kalkman, Hans O; Feuerbach, Dominik
2017-12-09
Atopic diseases are frequently co-morbid with autism spectrum disorders (ASD). Allergic responses are associated with an activation of mast cells, innate lymphoid cells, and Th2 cells. These cells produce type-2 cytokines (IL4 and IL13), which stimulate microglia and macrophages to adopt a phenotype referred to as 'alternative activation' or 'M2A'. M2A-polarized macrophages and microglia play a physiological role in tissue repair by secreting growth factors such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1. In ASD there is evidence for increased type-2 cytokines, microglia activation, M2A polarization, and increased levels of growth factors. In neurons, these growth factors drive a signal transduction pathway that leads to activation of the enzyme mammalian Target of Rapamycin (mTOR), and thereby to the inhibition of autophagy. Activation of mTOR is an effect that is also common to several of the genetic forms of autism. In the central nervous system, redundant synapses are removed via an autophagic process. Activation of mTOR would diminish the pruning of redundant synapses, which in the context of ASD is likely to be undesired. Based on this line of reasoning, atopic diseases like food allergy, eczema or asthma would represent risk factors for autism spectrum disorders.
Sung, Jeehye; Lee, Junsoo
2015-05-01
Butein and luteolin are members of the flavonoid family, which displays a variety of biological activities. In this study, we demonstrated that butein and luteolin exert anti-inflammatory activities in RAW264.7 macrophages by inducing heme oxygenase-1 (HO-1) expression. Butein and luteolin dose-dependently attenuated inducible nitric oxide synthase (iNOS) expression, leading to the suppression of iNOS-derived nitric oxide (NO) production. The inhibitory effect of butein on NO production was greater than that of luteolin. Consistent with this finding, butein also showed higher inhibitory effects on lipopolysaccharide (LPS)-induced translocation of nuclear factor κB (NFκB) and NFκB reporter gene activity in macrophages than luteolin. Furthermore, the expression of HO-1 was dose-dependently induced by butein and luteolin treatments in macrophages. Additionally, the anti-inflammatory activities of butein and luteolin involved the induction of HO-1 expression, as confirmed by the zinc protoporphyrin (ZnPP) treatment (HO-1 selective inhibitor) and HO-1 small interfering (si)RNA system. ZnPP-mediated downregulation and siRNA-mediated knockdown of HO-1 significantly abolished the inhibitory effects of butein and luteolin on the production of NO in LPS-induced macrophages. Consequently, butein and luteolin were shown to be effective HO-1 inducers capable of inhibiting macrophage-derived proinflammatory mechanisms. These findings indicate that butein and luteolin are potential therapeutic agents for the treatment of inflammatory diseases.
Shin, Ji-Sun; Cho, Eu-Jin; Choi, Hye-Eun; Seo, Ji-Hyung; An, Hyo-Jin; Park, Hee-Juhn; Cho, Young-Wuk; Lee, Kyung-Tae
2014-12-02
Rubus coreanus Miquel (Rosaceae), the Korean black raspberry, has traditionally been used to treat inflammatory diseases including diarrhea, asthma, stomach ailment, and cancer. Although previous studies showed that the 19α-hydroxyursane-type triterpenoids isolated from Rubus coreanus exerted anti-inflammatory activities, their effects on ulcerative colitis and mode of action have not been explored. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms involving19α-hydroxyursane-type triterpenoid-rich fraction from Rubus coreanus (TFRC) on a mice model of colitis and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Experimental colitis was induced by DSS for 7 days in ICR mice. Disease activity indices (DAI) took into account body weight, stool consistency, and gross bleeding. Histological changes and macrophage accumulation were observed by immunohistochemical analysis. Pro-inflammatory markers were determined using immunoassays, RT-PCR, and real time PCR. Signaling pathway involving nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation was determined by luciferase assay and Western blotting. In DSS-induced colitis mice, TFRC improved DAIs and pathological characteristics including colon shortening and colonic epithelium injury. TFRC suppressed tissue levels of pro-inflammatory cytokines and reduced macrophage infiltration into colonic tissues. In LPS-induced RAW 264.7 macrophages, TFRC inhibited the production of NO, PGE2, and pro-inflammatory cytokines by down-regulating the activation of NF-κB and p38 MAPK signaling. The study demonstrates that TFRC has potent anti-inflammatory effects on DSS-induced colonic injury and LPS-induced macrophage activation, and supports its possible therapeutic and preventive roles in colitis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S. Joseph
2017-01-01
During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF–positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370
Park, Ji-Wan; Yoon, Hye-Jin; Kang, Woo Youl; Cho, Seungil; Seong, Sook Jin; Lee, Hae Won; Yoon, Young-Ran; Kim, Hyun-Ju
2018-02-01
GPR84, a member of the G protein-coupled receptor family, is found predominantly in immune cells, such as macrophages, and functions as a pivotal modulator of inflammatory responses. In this study, we investigated the role of GPR84 in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. Our microarray data showed that GPR84 was significantly downregulated in osteoclasts compared to in their precursors, macrophages. The overexpression of GPR84 in bone marrow-derived macrophages suppressed the formation of multinucleated osteoclasts without affecting precursor proliferation. In addition, GPR84 overexpression attenuated the induction of c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which are transcription factors that are critical for osteoclastogenesis. Furthermore, knockdown of GPR84 using a small hairpin RNA promoted RANKL-mediated osteoclast differentiation and gene expression of osteoclastogenic markers. Mechanistically, GPR84 overexpression blocked RANKL-stimulated phosphorylation of IκBα and three MAPKs, JNK, ERK, and p38. GPR84 also suppressed NF-κB transcriptional activity mediated by RANKL. Conversely, GPR84 knockdown enhanced RANKL-induced activation of IκBα and the three MAPKs. Collectively, our results revealed that GPR84 functions as a negative regulator of osteoclastogenesis, suggesting that it may be a potential therapeutic target for osteoclast-mediated bone-destructive diseases. © 2017 Wiley Periodicals, Inc.
Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo
2012-05-05
Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.
Deckert-Schlüter, M; Rang, A; Weiner, D; Huang, S; Wiestler, O D; Hof, H; Schlüter, D
1996-12-01
Toxoplasma gondii may cause severe infections in immunocompromised patients including fetuses and those with AIDS. Among the factors mediating protection against T. gondii, IFN-gamma has gained special attention. To analyze the role of IFN-gamma in the early phase of toxoplasmosis, IFN-gamma receptor-deficient (IFN-gamma R0/0) mice were orally infected with low-virulent toxoplasms. IFN-gamma R0/0 mice died of the disease up to day 10 postinfection, whereas immunocompetent wild-type (WT) mice developed a chronic toxoplasmosis. Histopathology revealed that in IFN-gamma R0/0 mice, the parasite multiplied unrestrictedly in the small intestine, the intestinal lymphatic tissue, the liver, and the spleen. Ultimately, animals died of a necrotizing hepatitis. In WT mice, the same organs were effected, but multiplication of the parasite was effectively limited. Compared with WT mice, immunohistochemistry and flow cytometry demonstrated that in IFN-gamma R0/0 mice, macrophages were only marginally activated in response to the infection, as evidenced by a reduced expression of major histocompatability complex class II antigens. In addition, immunohistochemistry and RT-PCR showed a reduced production of the macrophage-derived cytokines tumor necrosis factor-alpha, inducible nitric oxide synthase, and IL-1 beta in the liver of IFN-gamma R0/0 mice. In contrast, activation of T cells, recruitment of immune cells to inflammatory foci, and anti-T. gondii IgM antibody production were unaffected by the mutation of the IFN-gamma R. Moreover, induction of IL-2, IL-4, and IL-10 mRNA transcripts in the liver was normal in IFN-gamma R0/0 mice. Adoptive transfer experiments revealed that the immune T cells of WT animals did not protect IFN-gamma R0/0 mice from lethal infection with highly virulent toxoplasms, whereas WT mice were significantly protected by the adoptive transfer. Based on these studies, we conclude that IFN-gamma is absolutely required for an efficient activation of macrophages. Macrophages are of critical importance in toxoplasmosis, and insufficient macrophage activation cannot be compensated by other immune mechanisms.
Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N
2004-12-01
The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.
Bagheri, Mozhdeh; Dong, Yupeng; Ono, Masao
2015-06-01
Activated macrophages have been classified into classical (M1) and alternative (M2) macrophages. We aimed to establish a method to yield enough number of macrophages to analyze their molecular, biological and immunological functions. We used drugs; adjuvant albumin from chicken egg whites--Imject Alum (OVA-Alum) and OVA Complete Freund Adjuvant (OVA-CFA), to induce macrophages to M2 and M1 respectively. We analyzed the phenotype of purified macrophages induced under these immune conditions, using flow cytometry (FACS) to detect cell-surface molecules and the enzyme-linked immunosorbent assay (ELISA) was used to detect cytokines. The cDNA microarray was employed to measure changes in expression level of cell surface protein between M1 and M2 macrophages. Phenotype analysis of purified macrophages, induced under these immune conditions, showed macrophages induced by OVA-Alum was almost M2 while the proportion of M1 macrophages induced by OVA-CFA was significantly higher. The results also showed higher expression level of macrophage galactose N- acetyl-galactosamine specific lectin-2 protein (MGL1/2-PE), a known M2 macrophage marker, on the surface of Alum-induced macrophages. On the basis of these preliminary data, ELISA results revealed that after macrophage stimulation with lipopolysaccharides (LPS), the level of interleukin (IL)-10 produced by Alum- induced macrophages was higher than the level of IL-10 produced by CFA-induced macrophages. In contrast, the level of tumor necrosis factor-alpha (TNF-α) produced by CFA-induced macrophages was higher than Alum-induced macrophages. The cDNA microarray confirmed previous results and suggest immunoglobulin-like type 2 receptor alpha (Pilra) as a new marker for M1, macrophage galactose N-acetylgalactosamine-specific lectin 2 (Mgl2) as M2 macrophages marker.
Arachidonic acid induces macrophage cell cycle arrest through the JNK signaling pathway.
Shen, Ziying; Ma, Yunqing; Ji, Zhonghao; Hao, Yang; Yan, Xuan; Zhong, Yuan; Tang, Xiaochun; Ren, Wenzhi
2018-02-09
Arachidonic acid (AA) has potent pro-apoptotic effects on cancer cells at a low concentration and on macrophages at a very high concentration. However, the effects of AA on the macrophage cell cycle and related signaling pathways have not been fully investigated. Herein we aim to observe the effect of AA on macrophages cell cycle. AA exposure reduced the viability and number of macrophages in a dose- and time-dependent manner. The reduction in RAW264.7 cell viability was not caused by apoptosis, as indicated by caspase-3 and activated caspase-3 detection. Further research illustrated that AA exposure induced RAW264.7 cell cycle arrested at S phase, and some cell cycle-regulated proteins were altered accordingly. Moreover, JNK signaling was stimulated by AA, and the stimulation was partially reversed by a JNK signaling inhibitor in accordance with cell cycle-related factors. In addition, nuclear and total Foxo1/3a and phosphorylated Foxo1/3a were elevated by AA in a dose- and time-dependent manner, and this elevation was suppressed by the JNK signaling inhibitor. Our study demonstrated that AA inhibits macrophage viability by inducing S phase cell cycle arrest. The JNK signaling pathway and the downstream FoxO transcription factors are involved in AA-induced RAW264.7 cell cycle arrest.
Weiss, Ronald; Schilling, Erik; Grahnert, Anja; Kölling, Valeen; Dorow, Juliane; Ceglarek, Uta; Sack, Ulrich; Hauschildt, Sunna
2015-11-01
The differentiation of human monocytes into macrophages is influenced by environmental signals. Here we asked in how far nicotinamide (NAM), a vitamin B3 derivative known to play a major role in nicotinamide adenine dinucleotide (NAD)-mediated signaling events, is able to modulate monocyte differentiation into macrophages developed in the presence of granulocyte macrophage colony-stimulating factor (GM-MØ) or macrophage colony-stimulating factor (M-MØ). We found that GM-MØ undergo biochemical, morphological and functional modifications in response to NAM, whereas M-MØ were hardly affected. GM-MØ exposed to NAM acquired an M-MØ-like structure while the LPS-induced production of pro-inflammatory cytokines and COX-derived eicosanoids were down-regulated. In contrast, NAM had no effect on the production of IL-10 or the cytochrome P450-derived eicosanoids. Administration of NAM enhanced intracellular NAD concentrations; however, it did not prevent the LPS-mediated drain on NAD pools. In search of intracellular molecular targets of NAM known to be involved in LPS-induced cytokine and eicosanoid synthesis, we found NF-κB activity to be diminished. In conclusion, our data show that vitamin B3, when present during the differentiation of monocytes into GM-MØ, interferes with biochemical pathways resulting in strongly reduced pro-inflammatory features. © The Author(s) 2015.
Maloney, Nicole S.; Thackray, Larissa B.; Goel, Gautam; Hwang, Seungmin; Duan, Erning; Vachharajani, Punit; Xavier, Ramnik
2012-01-01
Noroviruses (NVs) cause the majority of cases of epidemic nonbacterial gastroenteritis worldwide and contribute to endemic enteric disease. However, the molecular mechanisms responsible for immune control of their replication are not completely understood. Here we report that the transcription factor interferon regulatory factor 1 (IRF-1) is required for control of murine NV (MNV) replication and pathogenesis in vivo. This led us to studies documenting a cell-autonomous role for IRF-1 in gamma interferon (IFN-γ)-mediated inhibition of MNV replication in primary macrophages. This role of IRF-1 in the inhibition of MNV replication by IFN-γ is independent of IFN-αβ signaling. While the signal transducer and activator of transcription STAT-1 was also required for IFN-γ-mediated inhibition of MNV replication in vitro, class II transactivator (CIITA), interferon regulatory factor 3 (IRF-3), and interferon regulatory factor 7 (IRF-7) were not required. We therefore hypothesized that there must be a subset of IFN-stimulated genes (ISGs) regulated by IFN-γ in a manner dependent only on STAT-1 and IRF-1. Analysis of transcriptional profiles of macrophages lacking various transcription factors confirmed this hypothesis. These studies identify a key role for IRF-1 in IFN-γ-dependent control of norovirus infection in mice and macrophages. PMID:22973039
Rivera-Toledo, Evelyn; Salido-Guadarrama, Iván; Rodríguez-Dorantes, Mauricio; Torres-González, Laura; Santiago-Olivares, Carlos; Gómez, Beatriz
2017-02-15
Cells susceptible to persistent viral infections undergo important changes in their biological functions as a consequence of the expression of viral gene products that are capable of altering the gene expression profile of the host cell. Previously, we reported that persistence of the RSV genome in a mouse macrophage cell line induces important alterations in cell homeostasis, including constitutive expression of IFN-β and other pro-inflammatory cytokines. Here, we postulated that changes in the homeostasis of non-infected macrophages could be induced by soluble factors secreted by persistently RSV- infected macrophages. To test this hypothesis, non-infected mouse macrophages were treated with conditioned medium (CM) collected from cultures of persistently RSV-infected macrophages. Total RNA was extracted and a microarray-based gene expression analysis was performed. Non-infected macrophages, treated under similar conditions with CM obtained from cultures of non-infected macrophages, were used as a control to establish differential gene expression between the two conditions. Results showed that CM from the persistently RSV-infected cultures altered expression of a total of 95 genes in non-infected macrophages, resulting in an antiviral gene-transcription profile along with inhibition of the inflammatory response, since some inflammatory genes were down-regulated, including Nlrp3 and Il-1 β, both related to the inflammasome pathway. However, down-regulation of Nlrp3 and Il-1 β was reversible upon acute RSV infection. Additionally, we observed that the inflammatory response, evaluated by secreted IL-1 β, a final product of the inflammasome activity, was enhanced during acute RSV infection in macrophages treated with CM from persistently RSV-infected cultures, compared to that in macrophages treated with the control CM. This suggests that soluble factors secreted during RSV persistence may induce an exacerbated inflammatory response in non-infected cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio; Masiello, Francesca; Federici, Giulia; Zingariello, Maria; Girelli, Gabriella; Whitsett, Carolyn; Petricoin, Emanuel F; Moestrup, Søren Kragh; Zeuner, Ann; Migliaccio, Anna Rita
2015-02-01
Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation directly, dexamethasone stimulates expansion of these cells indirectly by stimulating maturation and cytokinesis supporting activity of macrophages. Copyright© Ferrata Storti Foundation.
Case Report: GcMAF Treatment in a Patient with Multiple Sclerosis.
Inui, Toshio; Katsuura, Goro; Kubo, Kentaro; Kuchiike, Daisuke; Chenery, Leslye; Uto, Yoshihiro; Nishikata, Takahito; Mette, Martin
2016-07-01
Gc protein-derived macrophage-activating factor (GcMAF) has various functions as an immune modulator, such as macrophage activation, anti-angiogenic activity and anti-tumor activity. Clinical trials of second-generation GcMAF demonstrated remarkable clinical effects in several types of cancers. Thus, GcMAF-based immunotherapy has a wide application for use in the treatment of many diseases via macrophage activation that can be used as a supportive therapy. Multiple sclerosis (MS) is considered to be an autoimmune disorder that affects the myelinated axons in the central nervous system (CNS). This study was undertaken to examine the effects of second-generation GcMAF in a patient with MS. This case study demonstrated that treatments of GcMAF in a patient with MS have potent therapeutic actions with early beneficial responses, especially improvement of motor dysfunction. GcMAF shows therapeutic potency in the treatment of MS. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Fei, E-mail: zhufei@zju.edu.cn; Yue, Wanfu; Wang, Yongxia
Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at onemore » hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.« less
Häkkinen, T; Luoma, J S; Hiltunen, M O; Macphee, C H; Milliner, K J; Patel, L; Rice, S Q; Tew, D G; Karkola, K; Ylä-Herttuala, S
1999-12-01
We studied the expression of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), an enzyme capable of hydrolyzing platelet-activating factor (PAF), PAF-like phospholipids, and polar-modified phosphatidylcholines, in human and rabbit atherosclerotic lesions. Oxidative modification of low-density lipoprotein, which plays an important role in atherogenesis, generates biologically active PAF-like modified phospholipid derivatives with polar fatty acid chains. PAF is known to have a potent proinflammatory activity and is inactivated by its hydrolysis. On the other hand, lysophosphatidylcholine and oxidized fatty acids released from oxidized low-density lipoprotein as a result of Lp-PLA(2) activity are thought to be involved in the progression of atherosclerosis. Using combined in situ hybridization and immunocytochemistry, we detected Lp-PLA(2) mRNA and protein in macrophages in both human and rabbit atherosclerotic lesions. Reverse transcriptase-polymerase chain reaction analysis indicated an increased expression of Lp-PLA(2) mRNA in human atherosclerotic lesions. In addition, approximately 6-fold higher Lp-PLA(2) activity was detected in atherosclerotic aortas of Watanabe heritable hyperlipidemic rabbits compared with normal aortas from control rabbits. It is concluded that (1) macrophages in both human and rabbit atherosclerotic lesions express Lp-PLA(2), which could cleave any oxidatively modified phosphatidylcholine present in the lesion area, and (2) modulation of Lp-PLA(2) activity could lead to antiatherogenic effects in the vessel wall.
Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.
Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud
2015-04-01
Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.
Mukherjee, Tapas; Taye, Nandaraj; Vijayaragavan, Bharath; Chattopadhyay, Samit; Gomes, James; Basak, Soumen
2017-01-01
The nuclear factor κB (NF-κB) transcription factors coordinate the inflammatory immune response during microbial infection. Pathogenic substances engage canonical NF-κB signaling through the heterodimer RelA:p50, which is subjected to rapid negative feedback by inhibitor of κBα (IκBα). The noncanonical NF-κB pathway is required for the differentiation of immune cells; however, crosstalk between both pathways can occur. Concomitantly activated noncanonical signaling generates p52 from the p100 precursor. The synthesis of p100 is induced by canonical signaling, leading to formation of the late-acting RelA:p52 heterodimer. This crosstalk prolongs inflammatory RelA activity in epithelial cells to ensure pathogen clearance. We found that the Toll-like receptor 4 (TLR4)–activated canonical NF-κB signaling pathway is insulated from lymphotoxin β receptor (LTβR)–induced noncanonical signaling in mouse macrophage cell lines. Combined computational and biochemical studies indicated that the extent of NF-κB–responsive expression of Nfkbia, which encodes IκBα, inversely correlated with crosstalk. The Nfkbia promoter showed enhanced responsiveness to NF-κB activation in macrophages compared to that in fibroblasts. We found that this hyperresponsive promoter engaged the RelA:p52 dimer generated during costimulation of macrophages through TLR4 and LTβR to trigger synthesis of IκBα at late time points, which prevented the late-acting RelA crosstalk response. Together, these data suggest that despite the presence of identical signaling networks in cells of diverse lineages, emergent crosstalk between signaling pathways is subject to cell type–specific regulation. We propose that the insulation of canonical and noncanonical NF-κB pathways limits the deleterious effects of macrophage-mediated inflammation. PMID:27923915
Anti-Inflammatory Effect of Combination of Scutellariae Radix and Liriopis Tuber Water Extract
So, Mi-Hye; Choi, You-Kyung
2015-01-01
Scutellariae Radix and Liriopis Tuber have been used to treat the inflammatory diseases in traditional Korean medicine and anti-inflammatory effect of each herb has been shown partially in several articles. However, the combined extract of these medicinal herbs (SL) has not been reported for its anti-inflammatory effects. In this study, we investigated the effects of SL on the creation of several proinflammatory mediators in RAW 264.7 cell mouse macrophages induced by Lipopolysaccharide (LPS). SL inhibited significantly the increase of NO, the release of intracellular calcium, the increase of interleukin-6 (IL-6), macrophage inflammatory proteins (MIP-1α, MIP-1β, and MIP-2), and granulocyte colony-stimulating factor (G-CSF) in LPS-induced RAW 264.7 cell at the concentrations of 25, 50, and 100 μg/mL, and SL inhibited significantly the increase of macrophage colony-stimulating factor (M-CSF) at the concentrations of 25 and 50 μg/mL, and tumor necrosis factor (TNF) at the concentration of 25 μg/mL. These results implicate that SL has anti-inflammatory effects by suppressing the production of various inflammatory mediators in macrophages. But SL did not inhibit significantly the increase of granulocyte macrophage colony-stimulating factor (GM-CSF), leukemia inhibitory factor (LIF), and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES); therefore, further study is demanded for the follow-up research to find out the possibility of SL as a preventive and therapeutic medicine for various inflammatory diseases. PMID:26604969
Li, Xiaofei; Wang, Jing; Wang, Wei; Liu, Chunhong; Sun, Shuhui; Gu, Jianxin; Wang, Xun; Boraschi, Diana; Huang, Yuxian; Qu, Di
2013-01-01
Natural β-glucans extracted from plants and fungi have been used in clinical therapies since the late 20th century. However, the heterogeneity of natural β-glucans limits their clinical applicability. We have synthesized β-glu6, which is an analog of the lentinan basic unit, β-(1→6)-branched β-(1→3) glucohexaose, that contains an α-(1→3)-linked bond. We have demonstrated the stimulatory effect of this molecule on the immune response, but the mechanisms by which β-glu6 activates innate immunity have not been elucidated. In this study, murine macrophages and human PBMCs were used to evaluate the immunomodulatory effects of β-glu6. We showed that β-glu6 activated ERK and c-Raf phosphorylation but suppressed the AKT signaling pathway in murine macrophages. Additionally, β-glu6 enhanced the secretion of large levels of cytokines and chemokines, including CD54, IL-1α, IL-1β, IL-16, IL-17, IL-23, IFN-γ, CCL1, CCL3, CCL4, CCL12, CXCL10, tissue inhibitor of metalloproteinase-1 (TIMP-1) and G-CSF in murine macrophages as well as IL-6, CCL2, CCL3, CCL5, CXCL1 and macrophage migration inhibitory factor (MIF) in human PBMCs. In summary, it demonstrates the immunomodulatory activity of β-glu6 in innate immunity.
Structural modification of serum vitamin D3-binding protein and immunosuppression in AIDS patients.
Yamamoto, N; Naraparaju, V R; Srinivasula, S M
1995-11-01
A serum glycoprotein, vitamin D3-binding protein (Gc protein), can be converted by beta-galactosidase of stimulated B lymphocytes and sialidase of T lymphocytes to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is a precursor for MAF. Treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high-titered MAF (GcMAF). When peripheral blood monocytes/macrophages of 46 HIV-infected patients were treated with GcMAF (100 pg/ml), the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of plasma Gc protein was low in 16 (35%) of of these patients. Loss of the MAF precursor activity appeared to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase found in the patient blood stream. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Thus, precursor activity of Gc protein and alpha-N-acetylgalactosaminidase activity in patient blood can serve as diagnostic and prognostic indices.
Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages
Souza, Nadhia H. C.; Ferrari, Raquel A. M.; Silva, Daniela F. T.; Nunes, Fabio D.; Bussadori, Sandra K.; Fernandes, Kristianne P. S.
2014-01-01
BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT) has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA) of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS) and interferon - gamma (IFN-γ) (activation) for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2). Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT) assay (after 1, 3 and 5 days) in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm) macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm) macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle. PMID:25076002
Nibbering, P H; Van de Gevel, J S; Van Furth, R
1990-07-20
The present study was performed in order to establish whether a cell-ELISA could be used to determine the expression of antigens by adherent murine peritoneal macrophages and also quantify the numbers of such macrophages. Accurate determination of the number of adherent macrophages proved to be possible with a cell-ELISA designed to assess complement receptor type III (CRIII) expression. Expression of CRIII was considerably more sensitive than determination of the cell-protein or DNA content as a measure of the number of adherent macrophages. For the calculation of the expression of CRIII, Ia antigen, and antigen F4/80 by resident and activated macrophages, use was made of the linear part of the curve obtained when the numbers of macrophages were plotted against the absorbance values for each of the antigens. The values for CRIII expression did not differ significantly between resident macrophages, macrophages activated with recombinant interferon-gamma (rIFN-gamma) and macrophages activated with BCG/PPD. IFN-gamma-activated and BCG/PPD-activated macrophages expressed Ia antigen significantly more intensely than did resident peritoneal macrophages. In contrast the activated macrophages expressed F4/80 significantly less intensely than resident peritoneal macrophages.
Gardner, Carol R.; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D.; Laskin, Debra L.
2012-01-01
Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK−/− mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 hr of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK−/− mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK −/− mice. Whereas F4/80+ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK−/− mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK−/− mice treated with acetaminophen. These data demonstrate that STK plays a role in regulating macrophage recruitment and activation in the liver following acetaminophen administration, and in hepatotoxicity. PMID:22575169
Sahu, Sanjaya Kumar; Kumar, Manish; Chakraborty, Sohini; Banerjee, Srijon Kaushik; Kumar, Ranjeet; Gupta, Pushpa; Jana, Kuladip; Gupta, Umesh D; Ghosh, Zhumur; Kundu, Manikuntala; Basu, Joyoti
2017-05-01
For efficient clearance of Mycobacterium tuberculosis (Mtb), macrophages tilt towards M1 polarization leading to the activation of transcription factors associated with the production of antibacterial effector molecules such as nitric oxide (NO) and proinflammatory cytokines such as interleukin 1 β (IL-1β) and tumor necrosis factor α (TNF-α). At the same time, resolution of inflammation is associated with M2 polarization with increased production of arginase and cytokines such as IL-10. The transcriptional and post-transcriptional mechanisms that govern the balance between M1 and M2 polarization, and bacteria-containing processes such as autophagy and trafficking of Mtb to lysosomes, are incompletely understood. Here we report for the first time, that the transcription factor KLF4 is targeted by microRNA-26a (miR-26a). During Mtb infection, downregulation of miR-26a (observed both ex vivo and in vivo) facilitates upregulation of KLF4 which in turn favors increased arginase and decreased iNOS activity. We further demonstrate that KLF4 prevents trafficking of Mtb to lysosomes. The CREB-C/EBPβ signaling axis also favors M2 polarization. Downregulation of miR-26a and upregulation of C/ebpbeta were observed both in infected macrophages as well as in infected mice. Knockdown of C/ebpbeta repressed the expression of selected M2 markers such as Il10 and Irf4 in infected macrophages. The importance of these pathways is substantiated by observations that expression of miR-26a mimic or knockdown of Klf4 or Creb or C/ebpbeta, attenuated the survival of Mtb in macrophages. Taken together, our results attribute crucial roles for the miR-26a/KLF4 and CREB-C/EBPβsignaling pathways in regulating the survival of Mtb in macrophages. These studies expand our understanding of how Mtb hijacks host signaling pathways to survive in macrophages, and open up new exploratory avenues for host-targeted interventions.
Chakraborty, Sohini; Banerjee, Srijon Kaushik; Kumar, Ranjeet; Gupta, Pushpa; Jana, Kuladip; Gupta, Umesh D.; Ghosh, Zhumur; Kundu, Manikuntala
2017-01-01
For efficient clearance of Mycobacterium tuberculosis (Mtb), macrophages tilt towards M1 polarization leading to the activation of transcription factors associated with the production of antibacterial effector molecules such as nitric oxide (NO) and proinflammatory cytokines such as interleukin 1 β (IL-1β) and tumor necrosis factor α (TNF-α). At the same time, resolution of inflammation is associated with M2 polarization with increased production of arginase and cytokines such as IL-10. The transcriptional and post-transcriptional mechanisms that govern the balance between M1 and M2 polarization, and bacteria-containing processes such as autophagy and trafficking of Mtb to lysosomes, are incompletely understood. Here we report for the first time, that the transcription factor KLF4 is targeted by microRNA-26a (miR-26a). During Mtb infection, downregulation of miR-26a (observed both ex vivo and in vivo) facilitates upregulation of KLF4 which in turn favors increased arginase and decreased iNOS activity. We further demonstrate that KLF4 prevents trafficking of Mtb to lysosomes. The CREB-C/EBPβ signaling axis also favors M2 polarization. Downregulation of miR-26a and upregulation of C/ebpbeta were observed both in infected macrophages as well as in infected mice. Knockdown of C/ebpbeta repressed the expression of selected M2 markers such as Il10 and Irf4 in infected macrophages. The importance of these pathways is substantiated by observations that expression of miR-26a mimic or knockdown of Klf4 or Creb or C/ebpbeta, attenuated the survival of Mtb in macrophages. Taken together, our results attribute crucial roles for the miR-26a/KLF4 and CREB-C/EBPβsignaling pathways in regulating the survival of Mtb in macrophages. These studies expand our understanding of how Mtb hijacks host signaling pathways to survive in macrophages, and open up new exploratory avenues for host-targeted interventions. PMID:28558034
Btk Regulates Macrophage Polarization in Response to Lipopolysaccharide
Ní Gabhann, Joan; Hams, Emily; Smith, Siobhán; Wynne, Claire; Byrne, Jennifer C.; Brennan, Kiva; Spence, Shaun; Kissenpfennig, Adrien; Johnston, James A.; Fallon, Padraic G.; Jefferies, Caroline A.
2014-01-01
Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk −\\−) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk−/− macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk−/− macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk−/− macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk −/− mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation. PMID:24465735
Uto, Yoshihiro; Yamamoto, Syota; Mukai, Hirotaka; Ishiyama, Noriko; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Hori, Hitoshi
2012-06-01
The 1f1f subtype of the group-specific component (Gc) protein is converted into Gc protein-derived macrophage-activating factor (GcMAF) by enzymatic processing with β-galactosidase and sialidase. We previously demonstrated that preGc(1f1f)MAF, a full Gc(1f1f) protein otherwise lacking a galactosyl moiety, can be converted to GcMAF by treatment with mouse peritoneal fluid. Here, we investigated the effects of the β-galactosidase-treated 1s1s and 22 subtypes of Gc protein (preGc(1s1s)MAF and preGc₂₂MAF) on the phagocytic activation of mouse peritoneal macrophages. We demonstrated the presence of Gal-GalNAc disaccharide sugar structures in the Gc(1s1s) protein by western blotting using peanut agglutinin and Helix pomatia agglutinin lectin. We also found that preGc(1s1s)MAF and preGc₂₂MAF significantly enhanced the phagocytic activity of mouse peritoneal macrophages in the presence and absence of mouse peritoneal fluid. We demonstrate that preGc(1s1s)MAF and preGc₂₂MAF proteins can be used as effective macrophage activators.
[S632A3 promotes LPS-induced IFN-beta production through inhibiting the activation of GSK-3beta].
Zhang, Na; Yang, Xin; Xu, Rong; Wang, Zhen; Song, Dan-Qing; Li, Dian-Dong; Deng, Hong-Bin
2013-07-01
LPS stimulation of macrophages production of IFN-beta plays a key role in innate immunity defending the microbial invasion. In this study, the effect of S632A3 promoting LPS-induced IFN-beta production and the underlying mechanism were investigated, mRNA level was measured by real-time PCR, cytokine production was determined by ELISA, GSK-3beta activity was investigated by kinase assay, protein phosphorylation and expression were evaluated by Western blotting. The results revealed that S632A3 significantly augmented IFN-beta production by LPS-stimulated macrophages. S632A3 inhibition of the activation of GSK-3beta, reduced the threonine 239 phosphorylation of transcription factor c-Jun but increased the total level of c-Jun in LPS-stimulated macrophages. Moreover, small interfering RNA-mediated knockdown of c-Jun level abrogated the ability of S632A3 to augment IFN-beta. The study thus demonstrates S632A3 being a new anti-inflammation lead compound and provides a molecular mechanism by which S632A3 promoted LPS-induced IFN-beta production in macrophages through inhibiting the activation of GSK-3beta.
Spleen lymphocyte function modulated by a cocoa-enriched diet.
Ramiro-Puig, E; Pérez-Cano, F J; Ramírez-Santana, C; Castellote, C; Izquierdo-Pulido, M; Permanyer, J; Franch, A; Castell, M
2007-09-01
Previous studies have shown the down-regulating in vitro effect of cocoa flavonoids on lymphocyte and macrophage activation. In the present paper, we report the capacity of a long-term rich cocoa diet to modulate macrophage cytokine secretion and lymphocyte function in young rats. Weaned rats received natural cocoa (4% or 10% food intake), containing 32 mg flavonoids/g, for 3 weeks. Spleen immune function was then evaluated through the analysis of lymphocyte composition, their proliferative response and their ability to secrete cytokines and Ig. In addition, the status of activated peritoneal macrophages was established through tumour necrosis factor (TNF)-alpha secretion. The richest cocoa diet (10%) caused a reduction of TNF-alpha secretion by peritoneal macrophages showing anti-inflammatory activity. Similarly, although a 10% cocoa diet increased lymphocyte proliferation rate, it down-regulated T helper 2 (Th2)-related cytokines and decreased Ig secretion. These changes were accompanied by an increase in spleen B cell proportion and a decrease in Th cell percentage. In summary, these results demonstrate the functional activity of a cocoa-high dosage in down-regulating the immune response that might be beneficial in hypersensitivity and autoimmunity.
Spleen lymphocyte function modulated by a cocoa-enriched diet
Ramiro-Puig, E; Pérez-Cano, F J; Ramírez-Santana, C; Castellote, C; Izquierdo-Pulido, M; Permanyer, J; Franch, A; Castell, M
2007-01-01
Previous studies have shown the down-regulating in vitro effect of cocoa flavonoids on lymphocyte and macrophage activation. In the present paper, we report the capacity of a long-term rich cocoa diet to modulate macrophage cytokine secretion and lymphocyte function in young rats. Weaned rats received natural cocoa (4% or 10% food intake), containing 32 mg flavonoids/g, for 3 weeks. Spleen immune function was then evaluated through the analysis of lymphocyte composition, their proliferative response and their ability to secrete cytokines and Ig. In addition, the status of activated peritoneal macrophages was established through tumour necrosis factor (TNF)-α secretion. The richest cocoa diet (10%) caused a reduction of TNF-α secretion by peritoneal macrophages showing anti-inflammatory activity. Similarly, although a 10% cocoa diet increased lymphocyte proliferation rate, it down-regulated T helper 2 (Th2)-related cytokines and decreased Ig secretion. These changes were accompanied by an increase in spleen B cell proportion and a decrease in Th cell percentage. In summary, these results demonstrate the functional activity of a cocoa-high dosage in down-regulating the immune response that might be beneficial in hypersensitivity and autoimmunity. PMID:17565606
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z. N.; Sharma, V. P.; Beaty, B. T.
2014-10-13
Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and inmore » particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.« less
Xu, Guiliang; Liu, Guilin; Xiong, Sidong; Liu, Haiyan; Chen, Xi; Zheng, Biao
2015-02-27
SET and MYND domain-containing 2 (Smyd2), a histone 3 lysine 4- and histone 3 lysine 36 (H3K36)-specific methyltransferase, plays critical roles in cardiac development and tumorigenesis. However, the role of Smyd2 in immunity and inflammation remains poorly understood. In this study, we report that Smyd2 is a novel negative regulator for macrophage activation and M1 polarization. Elevated Smyd2 expression suppresses the production of proinflammatory cytokines, including IL-6 and TNF, and inhibits the expression of important cell surface molecules, including major MHC-II and costimulatory molecules. Furthermore, macrophages with high Smyd2 expression inhibit Th-17 cell differentiation but promote regulatory T cell differentiation as a result of increased TGF-β production and decreased IL-6 secretion. In macrophages, Smyd2 specifically facilitates H3K36 dimethylation at Tnf and Il6 promoters to suppress their transcription and inhibits NF-κB and ERK signaling. Therefore, our data demonstrate that epigenetic modification by Smyd2-mediated H3K36 dimethylation at Tnf and Il6 promoters plays an important role in the regulation of macrophage activation during inflammation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Macrophage Phenotype Modulation by CXCL4 in Atherosclerosis.
Gleissner, Christian A
2012-01-01
During atherogenesis, blood monocytes transmigrate into the subendothelial space and differentiate toward macrophages and foam cells. The major driver of monocyte-macrophage differentiation is macrophage colony-stimulating factor (M-CSF). M-CSF-induced macrophages are important promoters of atherogenesis as demonstrated in M-CSF and M-CSF receptor knock out mice. However, M-CSF is not the only relevant promoter of macrophage differentiation. The platelet chemokine CXCL4 also prevents monocyte apoptosis and promotes macrophage differentiation in vitro. It is secreted from activated platelets and has effects on various cell types relevant in atherogenesis. Knocking out the Pf4 gene coding for CXCL4 in Apoe(-/-) mice leads to reduced atherogenesis. Thus, it seems likely that CXC4-induced macrophages may have specific pro-atherogenic capacities. We have studied CXC4-induced differentiation of human macrophages using gene chips, systems biology, and functional in vitro and ex vivo experiments. Our data indicate that CXCL4-induced macrophages are distinct from both their M-CSF-induced counterparts and other known macrophage polarizations like M1 macrophages (induced by lipopolysaccharide and interferon-gamma) or M2 macrophages (induced by interleukin-4). CXCL4-induced macrophages have distinct phenotypic and functional characteristics, e.g., the complete loss of the hemoglobin-haptoglobin (Hb-Hp) scavenger receptor CD163 which is necessary for effective hemoglobin clearance after plaque hemorrhage. Lack of CD163 is accompanied by the inability to upregulate the atheroprotective enzyme heme oxygenase-1 in response to Hb-Hp complexes. This review covers the current knowledge about CXCL4-induced macrophages. Based on their unique properties, we have suggested to call these macrophages "M4." CXCL4 may represent an important orchestrator of macrophage heterogeneity within atherosclerotic lesions. Further dissecting its effects on macrophage differentiation may help to identify novel therapeutic targets in atherogenesis.
Yang, Weiwei; Lu, Yan; Xu, Yichen; Xu, Lizhi; Zheng, Wei; Wu, Yuanyuan; Li, Long; Shen, Pingping
2012-01-01
Hepatocarcinoma cancer (HCC), one of the most malignant cancers, occurs significantly more often in men than in women; however, little is known about its underlying molecular mechanisms. Here we identified that 17β-estradiol (E2) could suppress tumor growth via regulating the polarization of macrophages. We showed that E2 re-administration reduced tumor growth in orthotopic and ectopic mice HCC models. E2 functioned as a suppressor for macrophage alternative activation and tumor progression by keeping estrogen receptor β (ERβ) away from interacting with ATP5J (also known as ATPase-coupling factor 6), a part of ATPase, thus inhibiting the JAK1-STAT6 signaling pathway. These studies introduce a novel mechanism for suppressing male-predominant HCC. PMID:22908233
Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola
2014-04-17
Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.
2014-01-01
Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. Methods To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. Results GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. Conclusions This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism. PMID:24739187
Tanaka, Teruyoshi; Moriyama, Tatsuya; Kawamura, Yukio; Yamanouchi, Dai
2016-01-01
Aneurysm is characterized by balloon-like expansion of the arterial wall and eventual rupture of the aorta. The pathogenesis of aneurysm is associated with the degradation of matrix proteins by matrix metalloproteinases (MMPs) produced by activated macrophages. Although aneurysm is associated with significant mortality and morbidity, surgical intervention is the only proven treatment strategy. Therefore, development of therapeutic agents for aneurysm is greatly anticipated. Here, we demonstrated the protective effects of the major isoflavone puerarin, which is found in kudzu roots and vines. Aneurysms were surgically induced in ten-wk-old male mice using CaPO 4 . Subsequently, animals were intraperitoneally injected daily with puerarin at 2.5 mg/kg body weight or with vehicle alone for 2 wk. CaPO 4 -induced aneurysm was significantly suppressed by puerarin administration. In subsequent macrophage activation assays using Tumor necrosis factor (TNFα) and CaPO 4 crystals in vitro, puerarin decreased Mmp9 mRNA expression and secreted protein levels. Moreover, induction of IκB, ERK, and p38 phosphorylation by TNFα and CaPO 4 in macrophages was suppressed by puerarin treatments. Finally, puerarin attenuated reactive oxygen species production, following induction by TNFα and CaPO 4 . Taken together, the present data demonstrate that puerarin suppresses macrophage activation by inhibiting IκB, ERK, and p38 activity and reactive oxygen species production in a CaPO 4 -induced mouse model of aneurysm.
Fejer, György; Wegner, Mareike Dorothee; Györy, Ildiko; Cohen, Idan; Engelhard, Peggy; Voronov, Elena; Manke, Thomas; Ruzsics, Zsolt; Dölken, Lars; Prazeres da Costa, Olivia; Branzk, Nora; Huber, Michael; Prasse, Antje; Schneider, Robert; Apte, Ron N; Galanos, Chris; Freudenberg, Marina A
2013-06-11
Macrophages are diverse cell types in the first line of antimicrobial defense. Only a limited number of primary mouse models exist to study their function. Bone marrow-derived, macrophage-CSF-induced cells with a limited life span are the most common source. We report here a simple method yielding self-renewing, nontransformed, GM-CSF/signal transducer and activator of transcription 5-dependent macrophages (Max Planck Institute cells) from mouse fetal liver, which reflect the innate immune characteristics of alveolar macrophages. Max Planck Institute cells are exquisitely sensitive to selected microbial agents, including bacterial LPS, lipopeptide, Mycobacterium tuberculosis, cord factor, and adenovirus and mount highly proinflammatory but no anti-inflammatory IL-10 responses. They show a unique pattern of innate responses not yet observed in other mononuclear phagocytes. This includes differential LPS sensing and an unprecedented regulation of IL-1α production upon LPS exposure, which likely plays a key role in lung inflammation in vivo. In conclusion, Max Planck Institute cells offer an useful tool to study macrophage biology and for biomedical science.
1990-01-01
Lipopolysaccharide (LPS) potently stimulates human immunodeficiency virus type 1-long terminal repeat (HIV-1-LTR) CAT constructs transfected into monocyte/macrophage-like cell lines but not a T cell line. This effect appears to be mediated through the induction of nuclear factor kappa B (NF-kappa B). Electrophoretic mobility shift assays demonstrate that LPS induces a DNA binding activity indistinguishable from NF-kappa B in U937 and THP-1 cells. LPS is also shown to dramatically increase HIV-1 production from a chronically infected monocyte/macrophage-like cloned cell line, U1, which produces very low levels of HIV-1 at baseline. The stimulation of viral production from this cell line occurs only if these cells are treated with granulocyte/macrophage colony-stimulating factor (GM-CSF) before treatment with LPS. This stimulation of HIV-1 production is correlated with an increase in the level of HIV-1 RNA and and activation of NF- kappa B. LPS is not able to induce HIV-1 production in a cloned T cell line. The effect of LPS on HIV-1 replication occurs at picogram per milliliter concentrations and may be clinically significant in understanding the variability of the natural history of HIV-1 infection. PMID:2193097
Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.
Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg
2016-08-18
Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection.
Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis
Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg
2016-01-01
Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection. PMID:27537523
Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages.
Jin, Xueting; Kruth, Howard S
2016-06-30
A protocol is presented for cell culture of macrophage colony-stimulating factor (M-CSF) differentiated human monocyte-derived macrophages. For initiation of experiments, fresh or frozen monocytes are cultured in flasks for 1 week with M-CSF to induce their differentiation into macrophages. Then, the macrophages can be harvested and seeded into culture wells at required cell densities for carrying out experiments. The use of defined numbers of macrophages rather than defined numbers of monocytes to initiate macrophage cultures for experiments yields macrophage cultures in which the desired cell density can be more consistently attained. Use of cryopreserved monocytes reduces dependency on donor availability and produces more homogeneous macrophage cultures.
Ko, Wan-Kyu; Lee, Soo-Hong; Kim, Sung Jun; Jo, Min-Jae; Kumar, Hemant; Han, In-Bo; Sohn, Seil
2017-01-01
Purpose The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO). Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in mitogen-activated protein kinase (MAPK) signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) signaling pathways were evaluated by western blot assays. Results UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), interleukin 1-β (IL-1β), and interleukin 6 (IL-6) in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10) in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB) in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA. Conclusion UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug. PMID:28665991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu; Hankey, Pamela; Mishin, Vladimir
Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects ofmore » acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice treated with acetaminophen. These data demonstrate that STK plays a role in regulating macrophage recruitment and activation in the liver following acetaminophen administration, and in hepatotoxicity. -- Highlights: ► STK regulates alternative macrophage activation after acetaminophen intoxication. ► Loss of STK results in increased sensitivity to acetaminophen. ► Increased toxicity involves oxidative stress and decreases in repair macrophages.« less
Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad
2014-11-01
Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
The response of macrophages to titanium particles is determined by macrophage polarization.
Pajarinen, Jukka; Kouri, Vesa-Petteri; Jämsen, Eemeli; Li, Tian-Fang; Mandelin, Jami; Konttinen, Yrjö T
2013-11-01
Aseptic loosening of total joint replacements is driven by the reaction of macrophages to foreign body particles released from the implant. It was hypothesized that the macrophages' response to these particles is dependent, in addition to particle characteristics and contaminating biomolecules, on the state of macrophage polarization as determined by the local cytokine microenvironment. To test this hypothesis we differentiated M1 and M2 macrophages from human peripheral blood monocytes and compared their responses to titanium particles using genome-wide microarray analysis and a multiplex cytokine assay. In comparison to non-activated M0 macrophages, the overall chemotactic and inflammatory responses to titanium particles were greatly enhanced in M1 macrophages and effectively suppressed in M2 macrophages. In addition, the genome-wide approach revealed several novel, potentially osteolytic, particle-induced mediators, and signaling pathway analysis suggested the involvement of toll-like and nod-like receptor signaling in particle recognition. It is concluded that the magnitude of foreign body reaction caused by titanium particles is dependent on the state of macrophage polarization. Thus, by limiting the action of M1 polarizing factors, e.g. bacterial biofilm formation, in peri-implant tissues and promoting M2 macrophage polarization by biomaterial solutions or pharmacologically, it might be possible to restrict wear-particle-induced inflammation and osteolysis. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Xiao, Weihua; Liu, Yu; Chen, Peijie
2016-12-01
Muscle contusion is one of the most common muscle injuries in sports medicine. Macrophages play complex roles in the regeneration of skeletal muscle. However, the roles of macrophages, especially the mechanisms involved, in the regeneration of muscle contusion are still not fully understood. We hypothesize that the depletion of macrophages impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may be involved in the process. To test these hypotheses, we constructed a muscle contusion injury and a macrophage depletion model and followed it up with morphological and gene expression analyses. The data showed that fibrotic scars were formed in the muscle of contusion injury, and they deteriorated in the mice of macrophage depletion. Furthermore, the sizes of regenerating myofibers were significantly reduced by macrophage depletion. Pro-fibrotic factors, inflammatory cytokines, chemokines, and oxidative stress-related enzymes increased significantly after muscle injury. Moreover, the expression of these factors was delayed by macrophage depletion. Most of them were still significantly higher in the later stage of regeneration. These results suggest that macrophage depletion impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may play important roles in the process.
Sun, Jim; Wang, Xuetao; Lau, Alice; Liao, Ting-Yu Angela; Bucci, Cecilia; Hmama, Zakaria
2010-01-01
Background Microorganisms capable of surviving within macrophages are rare, but represent very successful pathogens. One of them is Mycobacterium tuberculosis (Mtb) whose resistance to early mechanisms of macrophage killing and failure of its phagosomes to fuse with lysosomes causes tuberculosis (TB) disease in humans. Thus, defining the mechanisms of phagosome maturation arrest and identifying mycobacterial factors responsible for it are key to rational design of novel drugs for the treatment of TB. Previous studies have shown that Mtb and the related vaccine strain, M. bovis bacille Calmette-Guérin (BCG), disrupt the normal function of host Rab5 and Rab7, two small GTPases that are instrumental in the control of phagosome fusion with early endosomes and late endosomes/lysosomes respectively. Methodology/Principal Findings Here we show that recombinant Mtb nucleoside diphosphate kinase (Ndk) exhibits GTPase activating protein (GAP) activity towards Rab5 and Rab7. Then, using a model of latex bead phagosomes, we demonstrated that Ndk inhibits phagosome maturation and fusion with lysosomes in murine RAW 264.7 macrophages. Maturation arrest of phagosomes containing Ndk-beads was associated with the inactivation of both Rab5 and Rab7 as evidenced by the lack of recruitment of their respective effectors EEA1 (early endosome antigen 1) and RILP (Rab7-interacting lysosomal protein). Consistent with these findings, macrophage infection with an Ndk knocked-down BCG strain resulted in increased fusion of its phagosome with lysosomes along with decreased survival of the mutant. Conclusion Our findings provide evidence in support of the hypothesis that mycobacterial Ndk is a putative virulence factor that inhibits phagosome maturation and promotes survival of mycobacteria within the macrophage. PMID:20098737
Liu, Dan; Wang, Dongsheng; Xu, Zhenbiao; Gao, Jing; Liu, Min; Liu, Yanxin; Jiang, Minghong; Zheng, Dexian
2015-10-01
Aging is the natural process of decline in physiological structure and function of various molecules, cells, tissues, and organs. Growing evidence indicates that increased immune genetic diversity and dysfunction of immune system cause aging-related pathophysiological process with the growth of age. In the present study, we observed that LPS-induced higher activation of cyclooxygenase (COX)-2 promoter is associated with the upregulated binding activity of nuclear factor kappa B (NF-κB) in peritoneal macrophages of aged mice than young ones. Additionally, COX-2 is a direct target of miR-101b and miR-26b in the macrophages. Significant upregulation of miR-101b and miR-26b effectively prevented LPS-induced excessive expression of COX-2 in the young mice. Because these negative regulatory factors were unresponsive to LPS stimulation, the levels of COX-2 were markedly higher in the macrophages of aged mice. Further study showed that NF-κB activation contributed to the increase in the expression of miR-101b and miR-26b in the LPS-stimulated macrophages of young mice, but not aged ones. Moreover, histone deacetylase (HDAC) inhibitor trichostatin A (TSA) upregulated expression of miR-101b and miR-26b in the aged mouse macrophages only, but not the young cells. This demonstrated that HDAC suppressed the expression of miR-101b and miR-26b in the LPS-treated macrophages of aged mice and contributed to the aging process. TSA-induced increased expression of miR-101b and miR-26b could further suppress COX-2 expression. These findings provide novel evidence on the regulation of immune senescence and miR-101b and miR-26b, which might be promising targets in treating aged-related inflammatory diseases. Epigenetic regulation of the microRNAs (miRNAs) provides an important evidence for the treatment of innate inflammatory disease with HDAC inhibitors in elderly.
KLF6 contributes to myeloid cell plasticity in the pathogenesis of intestinal inflammation
Goodman, Wendy A.; Omenetti, Sara; Date, Dipali; Di Martino, Luca; De Salvo, Carlo; Kim, Gun-Dong; Chowdhry, Saleem; Bamias, Giorgos; Cominelli, Fabio; Pizarro, Theresa T.; Mahabeleshwar, Ganapati H.
2016-01-01
Inflammatory bowel disease (IBD) is associated with dysregulated macrophage responses, such that quiescent macrophages acquire a pro-inflammatory activation state and contribute to chronic intestinal inflammation. The transcriptional events governing macrophage activation and gene expression in the context of chronic inflammation such as IBD remain incompletely understood. Here, we identify Kruppel-like transcription factor-6 (KLF6) as a critical regulator of pathogenic myeloid cell activation in human and experimental IBD. We found that KLF6 was significantly upregulated in myeloid cells and intestinal tissue from IBD patients and experimental models of IBD, particularly in actively inflamed regions of the colon. Using complementary gain- and loss-of-function studies, we observed that KLF6 promotes pro-inflammatory gene expression through enhancement of NFκB signaling, while simultaneously suppressing anti-inflammatory gene expression through repression of STAT3 signaling. To study the in vivo role of myeloid KLF6, we treated myeloid-specific KLF6-knockout mice (Mac-KLF6-KO) with dextran sulfate-sodium (DSS) and found that Mac-KLF6-KO mice were protected against chemically-induced colitis; this highlights the central role of myeloid KLF6 in promoting intestinal inflammation. Collectively, our results point to a novel gene regulatory program underlying pathogenic, pro-inflammatory macrophage activation in the setting of chronic intestinal inflammation. PMID:26838049
Kim, Mi Jin; Nagy, Laura E; Park, Pil-Hoon
2014-09-01
Adiponectin, an adipokine predominantly secreted from adipocytes, has been shown to play protective roles against chronic alcohol consumption. Although excessive reactive oxygen species (ROS) production in macrophages is considered one of the critical events for ethanol-induced damage in various target tissues, the effect of adiponectin on ethanol-induced ROS production is not clearly understood. In the present study, we investigated the effect of globular adiponectin (gAcrp) on ethanol-induced ROS production and the potential mechanisms underlying these effects of gAcrp in macrophages. Here we demonstrated that gAcrp prevented ethanol-induced ROS production in both RAW 264.7 macrophages and primary murine peritoneal macrophages. Globular adiponectin also inhibited ethanol-induced activation of NADPH oxidase. In addition, gAcrp suppressed ethanol-induced increase in the expression of NADPH oxidase subunits, including Nox2 and p22(phox), via modulation of nuclear factor-κB pathway. Furthermore, pretreatment with compound C, a selective inhibitor of AMPK, or knockdown of AMPK by small interfering RNA restored suppression of ethanol-induced ROS production and Nox2 expression by gAcrp. Finally, we found that gAcrp treatment induced phosphorylation of liver kinase B1 (LKB1), an upstream signaling molecule mediating AMPK activation. Knockdown of LKB1 restored gAcrp-suppressed Nox2 expression, suggesting that LKB1/AMPK pathway plays a critical role in the suppression of ethanol-induced ROS production and activation of NADPH oxidase by gAcrp. Taken together, these results demonstrate that globular adiponectin prevents ethanol-induced ROS production, at least in part, via modulation of NADPH oxidase in macrophages. Further, LKB1/AMPK axis plays an important role in the suppression of ethanol-induced NADPH oxidase activation by gAcrp in macrophages. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio
2016-01-01
Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were contrasted by ETA/BRA treatment in both cultured cell types. ET-1 seems to induce the M2 phenotype in cultured human macrophages, a process apparently contrasted by the action of the ETA/BRA, suggesting possible clinical implications in those fibrotic diseases characterized by increased ET-1 concentrations, such as systemic sclerosis but also type 2 diabetes.
Tabei, Yosuke; Sugino, Sakiko; Eguchi, Kenichiro; Tajika, Masahiko; Abe, Hiroko; Nakajima, Yoshihiro; Horie, Masanori
2017-08-19
Phagocytosis is a physiological process used by immune cells such as macrophages to actively ingest and destroy foreign pathogens and particles. It is the cellular process that leads to the failure of drug delivery carriers because the drug carriers are cleared by immune cells before reaching their target. Therefore, clarifying the mechanism of particle phagocytosis would have a significant implication for both fundamental understanding and biomedical engineering. As far as we know, the effect of particle shape on biological response has not been fully investigated. In the present study, we investigated the particle shape-dependent cellular uptake and biological response of differentiated THP-1 macrophages by using calcium carbonate (CaCO 3 )-based particles as a model. Transmission electron microscopy analysis revealed that the high uptake of needle-shaped CaCO 3 particles by THP-1 macrophages because of their high phagocytic activity. In addition, the THP-1 macrophages exposed to needle-shaped CaCO 3 accumulated a large amount of calcium in the intracellular matrix. The enhanced release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) by the THP-1 macrophages suggested that the needle-shaped CaCO 3 particles trigger a pro-inflammatory response. In contrast, no pro-inflammatory response was induced in undifferentiated THP-1 monocytes exposed to either needle- or cuboidal-shaped CaCO 3 particles, probably because of their low phagocytic activity. We also found that phosphate-coated particles efficiently repressed cellular uptake and the resulting pro-inflammatory response in both THP-1 macrophages and primary peritoneal macrophages. Our results indicate that the pro-inflammatory response of macrophages upon exposure to CaCO 3 particles is shape- and surface property-dependent, and is mediated by the intracellular accumulation of calcium ions released from phagocytosed CaCO 3 particles. Copyright © 2017 Elsevier Inc. All rights reserved.
McComb, Scott; Cessford, Erin; Alturki, Norah A; Joseph, Julie; Shutinoski, Bojan; Startek, Justyna B; Gamero, Ana M; Mossman, Karen L; Sad, Subash
2014-08-05
Myeloid cells play a critical role in perpetuating inflammation during various chronic diseases. Recently the death of macrophages through programmed necrosis (necroptosis) has emerged as an important mechanism in inflammation and pathology. We evaluated the mechanisms that lead to the induction of necrotic cell death in macrophages. Our results indicate that type I IFN (IFN-I) signaling is a predominant mechanism of necroptosis, because macrophages deficient in IFN-α receptor type I (IFNAR1) are highly resistant to necroptosis after stimulation with LPS, polyinosinic-polycytidylic acid, TNF-α, or IFN-β in the presence of caspase inhibitors. IFN-I-induced necroptosis occurred through both mechanisms dependent on and independent of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and led to persistent phosphorylation of receptor-interacting protein 3 (Rip3) kinase, which resulted in potent necroptosis. Although various IFN-regulatory factors (IRFs) facilitated the induction of necroptosis in response to IFN-β, IRF-9-STAT1- or -STAT2-deficient macrophages were highly resistant to necroptosis. Our results indicate that IFN-β-induced necroptosis of macrophages proceeds through tonic IFN-stimulated gene factor 3 (ISGF3) signaling, which leads to persistent expression of STAT1, STAT2, and IRF9. Induction of IFNAR1/Rip3-dependent necroptosis also resulted in potent inflammatory pathology in vivo. These results reveal how IFN-I mediates acute inflammation through macrophage necroptosis.
McComb, Scott; Cessford, Erin; Alturki, Norah A.; Joseph, Julie; Shutinoski, Bojan; Startek, Justyna B.; Gamero, Ana M.; Mossman, Karen L.; Sad, Subash
2014-01-01
Myeloid cells play a critical role in perpetuating inflammation during various chronic diseases. Recently the death of macrophages through programmed necrosis (necroptosis) has emerged as an important mechanism in inflammation and pathology. We evaluated the mechanisms that lead to the induction of necrotic cell death in macrophages. Our results indicate that type I IFN (IFN-I) signaling is a predominant mechanism of necroptosis, because macrophages deficient in IFN-α receptor type I (IFNAR1) are highly resistant to necroptosis after stimulation with LPS, polyinosinic-polycytidylic acid, TNF-α, or IFN-β in the presence of caspase inhibitors. IFN-I–induced necroptosis occurred through both mechanisms dependent on and independent of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and led to persistent phosphorylation of receptor-interacting protein 3 (Rip3) kinase, which resulted in potent necroptosis. Although various IFN-regulatory factors (IRFs) facilitated the induction of necroptosis in response to IFN−β, IRF-9–STAT1– or -STAT2–deficient macrophages were highly resistant to necroptosis. Our results indicate that IFN-β–induced necroptosis of macrophages proceeds through tonic IFN-stimulated gene factor 3 (ISGF3) signaling, which leads to persistent expression of STAT1, STAT2, and IRF9. Induction of IFNAR1/Rip3–dependent necroptosis also resulted in potent inflammatory pathology in vivo. These results reveal how IFN-I mediates acute inflammation through macrophage necroptosis. PMID:25049377
Wang, Min; Yang, Xiao-Bo; Zhao, Jing-Wen; Lu, Chuan-Jian; Zhu, Wei
2017-01-20
A novel heteropolysaccharide (SGRP1) with great immunomodulatory activity was isolated from the root of Smilax glabra Roxb. by hot water extraction. Physical and chemical analyses showed that SGRP1 had an average molecular weight of 1.26×10 4 Da and was composed of mannose, fucose and glucose in molar ratio of 1.00:3.09:39.41. The glycosidic linkage types of SGRP1 were proven to be (1→3)-linked -α-l-Fuc, (1→3)-linked-α-l-Man, (1→)-linked-α-d-Glc, and (1→6)-linked-α-d-Glc. The in vitro immunomodulatory assays demonstrated that SGRP1 could evidently promote the phagocytosis and increase macrophage-derived biological factors including nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) secretion via JNK and ERK signaling pathways and NLRP3 inflammasome signaling pathway. The data supported that SGRP1 had immunomodulatory potential through activating macrophages and enhancing host immune system function, which enabled it to be a novel immunomodulator for application in immunological diseases or functional food. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Peng; Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709; Xue, Peng
2013-11-01
Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2more » activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.« less
Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M
2015-10-01
The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.
Anzinger, Joshua J; Chang, Janet; Xu, Qing; Buono, Chiara; Li, Yifu; Leyva, Francisco J; Park, Bum-Chan; Greene, Lois E; Kruth, Howard S
2010-10-01
To examine the pinocytotic pathways mediating native low-density lipoprotein (LDL) uptake by human macrophage colony-stimulating factor-differentiated macrophages (the predominant macrophage phenotype in human atherosclerotic plaques). We identified the kinase inhibitor SU6656 and the Rho GTPase inhibitor toxin B as inhibitors of macrophage fluid-phase pinocytosis of LDL. Assessment of macropinocytosis by time-lapse microscopy revealed that both drugs almost completely inhibited macropinocytosis, although LDL uptake and cholesterol accumulation by macrophages were only partially inhibited (approximately 40%) by these agents. Therefore, we investigated the role of micropinocytosis in mediating LDL uptake in macrophages and identified bafilomycin A1 as an additional partial inhibitor (approximately 40%) of macrophage LDL uptake that targeted micropinocytosis. When macrophages were incubated with both bafilomycin A1 and SU6656, inhibition of LDL uptake was additive (reaching 80%), showing that these inhibitors target different pathways. Microscopic analysis of fluid-phase uptake pathways in these macrophages confirmed that LDL uptake occurs through both macropinocytosis and micropinocytosis. Our findings show that human macrophage colony-stimulating factor-differentiated macrophages take up native LDL by macropinocytosis and micropinocytosis, underscoring the importance of both pathways in mediating LDL uptake by these cells.
Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.
2017-01-01
Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory stimulated macrophages and a forced proteolytical quiescence in alternatively polarized macrophages by the expression of PAI-1. PMID:28818858
Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages.
Bae, Deok Sung; Kim, Young Hoon; Pan, Cheol-Ho; Nho, Chu Won; Samdan, Javzan; Yansan, Jamyansan; Lee, Jae Kown
2012-02-01
Protopine is an isoquinoline alkaloid contained in plants in northeast Asia. In this study, we investigated whether protopine derived from Hypecoum erectum L could suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (Raw 264.7 cells). Protopine was found to reduce nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin E(2) (PGE(2)) production by LPS-stimulated Raw 264.7 cells, without a cytotoxic effect. Pre-treatment of Raw 264.7 cells with protopine reduced the production of pro-inflammatory cytokines. These inhibitory effects were caused by blocking phosphorylation of mitogen-activated protein kinases (MAP kinases) and also blocking activation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com
2014-05-09
Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have amore » therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.« less
YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages.
Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching
2012-04-15
Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E₁ (a stable PGE₂ analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE₁- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE₁ significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE₁-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE₁ also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE₁-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Copyright © 2012 Elsevier Inc. All rights reserved.
LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages.
Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H; Enciso-Moreno, Jose A; Hancock, Robert E W; Rivas-Santiago, Bruno
2015-12-01
Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, B P; Di Stefano, V; Minutoli, L
2009-08-01
The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. LPS-stimulated (1 microg.mL(-1)) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32-128 microg.mL(-1)) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein kappaB-alpha (IkappaB-alpha) levels were evaluated by Western blot analysis. Nuclear factor kappaB (NF-kappaB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-alpha (TNF-alpha) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 microg.mL(-1)) significantly inhibited COX-2 (LPS = 18 +/- 2.1; flavocoxid = 3.8 +/- 0.9 integrated intensity), 5-LOX (LPS = 20 +/- 3.8; flavocoxid = 3.1 +/- 0.8 integrated intensity) and iNOS expression (LPS = 15 +/- 1.1; flavocoxid = 4.1 +/- 0.4 integrated intensity), but did not modify COX-1 expression. PGE(2) and LTB(4) levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IkappaB-alpha protein (LPS = 1.9 +/- 0.2; flavocoxid = 7.2 +/- 1.6 integrated intensity), blunted increased NF-kappaB binding activity (LPS = 9.2 +/- 2; flavocoxid = 2.4 +/- 0.7 integrated intensity) and the enhanced TNF-alpha mRNA levels (LPS = 8 +/- 0.9; flavocoxid = 1.9 +/- 0.8 n-fold/beta-actin) induced by LPS. Finally, flavocoxid decreased MDA, TNF and nitrite levels from LPS-stimulated macrophages. Flavocoxid might be useful as a potential anti-inflammatory agent, acting at the level of gene and protein expression.
Valdés-Tovar, Marcela; Escobar, Carolina; Solís-Chagoyán, Héctor; Asai, Miguel; Benítez-King, Gloria
2015-03-01
The light-dark cycle is an environmental factor that influences immune physiology, and so, variations of the photoperiod length result in altered immune responsivity. Macrophage physiology comprises a spectrum of functions that goes from host defense to immune down-regulation, in addition to their homeostatic activities. Macrophages also play a key role in the transition from innate to adaptive immune responses. Met-enkephalin (MEnk) has been recognized as a modulator of macrophage physiology acting in an autocrine or paracrine fashion to influence macrophage activation, phenotype polarization and production of cytokines that would enhance lymphocyte activation at early stages of an immune response. Previously it was shown that splenic MEnk tissue content is reduced in rats exposed to constant light. In this work, we explored whether production of Met-enkephalin-containing peptides (MECPs) in cultured splenic macrophages is affected by exposure of rats to a constant light regime. In addition, we explored whether primary immune response was impaired under this condition. We found that in rats, 15 days in constant light was sufficient to disrupt their general activity rhythm. Splenic MEnk content oscillations and levels were also blunted throughout a 24-h period in animals subjected to constant light. In agreement, de novo synthesis of MECPs evaluated through incorporation of (35)S-methionine was reduced in splenic macrophages from rats exposed to constant light. Moreover, MECPs immunocytochemistry showed a decrease in the intracellular content and lack of granule-like deposits in this condition. Furthermore, we found that primary T-dependent antibody response was compromised in rats exposed to constant light. In those animals, pharmacologic treatment with MEnk increased IFN-γ-secreting cells. Also, IL-2 secretion from antigen-stimulated splenocytes was reduced after incubation with naloxone, suggesting that immune-derived opioid peptides and stimulation of opioid receptors are involved in this process. Thus, the immune impairment observed from early stages of the response in constant light-subjected rats, could be associated with reduced production of macrophage-derived enkephalins, leading to a sub-optimal interaction between macrophages and lymphocytes in the spleen and the subsequent deficiency in antibody production.
LIANG, XUE; XU, ZHAO; YUAN, MENG; ZHANG, YUE; ZHAO, BO; WANG, JUNQIAN; ZHANG, AIXUE; LI, GUANGPING
2016-01-01
Programmed cell death 4 (PDCD4) is involved in a number of bioprocesses, such as apoptosis and inflammation. However, its regulatory mechanisms in atherosclerosis remain unclear. In this study, we investigated the role and mechanisms of action of PDCD4 in high-fat diet-induced atherosclerosis in mice and in foam cells (characteristic pathological cells in atherosclerotic lesions) derived from ox-LDL-stimulated macrophages. MicroRNA (miR)-16 was predicted to bind PDCD4 by bioinformatics analysis. In the mice with atherosclerosis and in the foam cells, PDCD4 protein expression (but not the mRNA expression) was enhanced, while that of miR-16 was reduced. Transfection with miR-16 mimic decreased the activity of a luciferase reporter containing the 3′ untranslated region (3′UTR) of PDCD4 in the macrophage-derived foam cells. Conversely, treatment with miR-16 inhibitor enhanced the luciferase activity. However, by introducing mutations in the predicted binding site located in the 3′UTR of PDCD4, the miR-16 mimic and inhibitor were unable to alter the level of PDCD4, suggesting that miR-16 is a direct negative regulator of PDCD4 in atherosclerosis. Furthermore, transfection wtih miR-16 mimic and siRNA targeting PDCD4 suppressed the secretion and mRNA expression of pro-inflammatory factors, such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), whereas it enhanced the secretion and mRNA expression of the anti-inflammatory factor, IL-10. Treatment with miR-16 inhibitor exerted the opposite effects. In addition, the phosphorylation of p38 and extracellular signal-regulated kinase (ERK), and nuclear factor-κB (NF-κB) expression were altered by miR-16. In conclusion, our data demonstrate that the targeting of PDCD4 by miR-16 may suppress the activation of inflammatory macrophages though mitogen-activated protein kinase (MAPK) and NF-κB signaling in atherosclerosis; thus, PDCD4 may prove to be a potential therapeutic target in the treatment of atherosclerosis. PMID:26936421
Wermuth, Peter J; Jimenez, Sergio A
2012-07-01
Nephrogenic systemic sibrosis is a progressive disorder occurring in some renal insufficiency patients exposed to gadolinium-based contrast agents (GdBCA). Previous studies demonstrated that the GdBCA Omniscan upregulated several innate immunity pathways in normal differentiated human macrophages, induced rapid nuclear localization of the transcription factor NF-κB, and increased the expression and production of numerous profibrotic/proinflammatory cytokines, chemokines, and growth factors. To further examine GdBCA stimulation of the innate immune system, cultured human embryonic kidney 293 cells expressing one of seven different human TLRs or one of two human nucleotide-binding oligomerization domain-like receptors were exposed in vitro for 24 h to various GdBCA. The signaling activity of each compound was evaluated by its ability to activate an NF-κB-inducible reporter gene. Omniscan and gadodiamide induced strong TLR4- and TLR7-mediated reporter gene activation. The other Gd compounds examined failed to induce reporter gene activation. TLR pathway inhibition using chloroquine or an inhibitor of IL-1R-associated kinases 1 and 4 in normal differentiated human macrophages abrogated Omniscan-induced gene expression. Omniscan and gadodiamide signaling via TLRs 4 and 7 resulted in increased production and expression of numerous proinflammatory/profibrotic cytokines, chemokines, and growth factors, including CXCL10, CCL2, CCL8, CXCL12, IL-4, IL-6, TGF-β, and vascular endothelial growth factor. These observations suggest that TLR activation by environmental stimuli may participate in the pathogenesis of nephrogenic systemic fibrosis and of other fibrotic disorders including systemic sclerosis.
Biodegradation of carbon nanohorns in macrophage cells
NASA Astrophysics Data System (ADS)
Zhang, Minfang; Yang, Mei; Bussy, Cyrill; Iijima, Sumio; Kostarelos, Kostas; Yudasaka, Masako
2015-02-01
With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the nanomaterials rather than in an inflammatory pathway induction.With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the nanomaterials rather than in an inflammatory pathway induction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06175f
da Silva Lima, Fabiana; Rogero, Marcelo Macedo; Ramos, Mayara Caldas; Borelli, Primavera; Fock, Ricardo Ambrósio
2013-06-01
Protein malnutrition affects resistance to infection by impairing the inflammatory response, modifying the function of effector cells, such as macrophages. Recent studies have revealed that glutamine-a non-essential amino acid, which could become conditionally essential in some situations like trauma, infection, post-surgery and sepsis-is able to modulate the synthesis of cytokines. The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappa B (NF-κB) signalling pathway of peritoneal macrophages from malnourished mice. Two-month-old male Balb/c mice were submitted to protein-energy malnutrition (n = 10) with a low-protein diet containing 2 % protein, whereas control mice (n = 10) were fed a 12 % protein-containing diet. The haemogram and analysis of plasma glutamine and corticosterone were evaluated. Peritoneal macrophages were pre-treated in vitro with glutamine (0, 0.6, 2 and 10 mmol/L) for 24 h and then stimulated with 1.25 μg LPS for 30 min, and the synthesis of TNF-α and IL-1α and the expression of proteins related to the NF-κB pathway were evaluated. Malnourished animals had anaemia, leucopoenia, lower plasma glutamine and increased corticosterone levels. TNF-α production of macrophages stimulated with LPS was significantly lower in cells from malnourished animals when cultivated in supraphysiological (2 and 10 mmol/L) concentrations of glutamine. Further, glutamine has a dose-dependent effect on the activation of macrophages, in both groups, when stimulated with LPS, inducing a decrease in TNF-α and IL-1α production and negatively modulating the NF-κB signalling pathway. These data lead us to infer that the protein malnutrition state interferes with the activation of macrophages and that higher glutamine concentrations, in vitro, have the capacity to act negatively in the NF-κB signalling pathway.
Wu, L; Yu, Y L; Galiano, R D; Roth, S I; Mustoe, T A
1997-10-01
Macrophage colony-stimulating factor (M-CSF) is produced by many cell types involved in wound repair, yet it acts specifically on monocytes and macrophages. The monocyte-derived cell is thought to be important in wound healing, but the importance of the role of tissue macrophages in wound healing has not been well defined. Dermal ulcers were created in normal and ischemic ears of young rabbits. Either rhM-CSF (17 microg/wound) or buffer was applied to each wound. Wounds were bisected and analyzed histologically at Days 7 and 10 postwounding. The amounts of epithelial growth and granulation tissue deposition were measured in all wounds. The level of increase of TGF-beta1 mRNA level in M-CSF-treated wounds was examined using competitive RT-PCR. M-CSF increased new granulation tissue formation by 37% (N = 21, P < 0.01) and 50% (P < 0.01) after single and multiple treatments, respectively, in nonischemic wounds. TGF-beta1 mRNA levels in rhM-CSF-treated wounds increased 5.01-fold (N = 8) over vehicle-treated wounds under nonischemic conditions. In contrast, no effect could be detected in ischemic wounds treated with rhM-CSF, and these wounds only showed a 1.66-fold increase in TGF-beta1 mRNA levels when compared to ischemic wounds treated with vehicle alone. GAPDH, a housekeeping gene, showed no change. As mesenchymal cells lack receptors for M-CSF, the improved healing of wounds treated with topical rhM-CSF must reflect a generalized enhancement of activation and function of tissue macrophages, as demonstrated by upregulation of TGF-beta. The lack of effect under ischemic conditions suggests that either macrophage activity and/or response to M-CSF is adversely affected under those conditions; this may suggest the pathogenesis of impaired wound healing at the cellular level. Copyright 1997 Academic Press.
Avni, Dorit; Philosoph, Amir; Meijler, Michael M; Zor, Tsaffrir
2010-03-01
The synthetic phospho-ceramide analogue-1 (PCERA-1) down-regulates production of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) and up-regulates production of the anti-inflammatory cytokine interleukin-10 (IL-10) in lipopolysaccharide (LPS) -stimulated macrophages. We have previously reported that PCERA-1 increases cyclic adenosine monophosphate (cAMP) levels. The objective of this study was to delineate the signalling pathway leading from PCERA-1 via cAMP to modulation of TNF-alpha and IL-10 production. We show here that PCERA-1 elevates intra-cellular cAMP level in a guanosine triphosphate-dependent manner in RAW264.7 macrophages. The cell-permeable dibutyryl cAMP was able to mimic the effects of PCERA-1 on cytokine production, whereas 8-chloro-phenylthio-methyladenosine-cAMP, which specifically activates the exchange protein directly activated by cAMP (EPAC) but not protein kinase A (PKA), failed to mimic PCERA-1 activities. Consistently, the PKA inhibitor H89 efficiently blocked PCERA-1-driven cytokine modulation as well as PCERA-1-stimulated phosphorylation of cAMP response element binding protein (CREB) on Ser-133. Finally, PCERA-1 activated cAMP-responsive transcription of a luciferase reporter, in synergism with the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results suggest that PCERA-1 activates a G(s) protein-coupled receptor, leading to elevation of cAMP, which acts via the PKA-CREB pathway to promote TNF-alpha suppression and IL-10 induction in LPS-stimulated macrophages. Identification of the PCERA-1 receptor is expected to set up a new target for development of novel anti-inflammatory drugs.
Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice.
The, Frans O; Boeckxstaens, Guy E; Snoek, Susanne A; Cash, Jenna L; Bennink, Roel; Larosa, Gregory J; van den Wijngaard, Rene M; Greaves, David R; de Jonge, Wouter J
2007-10-01
We previously showed that intestinal inflammation is reduced by electrical stimulation of the efferent vagus nerve, which prevents postoperative ileus in mice. We propose that this cholinergic anti-inflammatory pathway is mediated via alpha7 nicotinic acetylcholine receptors expressed on macrophages. The aim of this study was to evaluate pharmacologic activation of the cholinergic anti-inflammatory pathway in a mouse model for postoperative ileus using the alpha7 nicotinic acetylcholine receptor-agonist AR-R17779. Mice were pretreated with vehicle, nicotine, or AR-R17779 20 minutes before a laparotomy (L) or intestinal manipulation (IM). Twenty-four hours thereafter gastric emptying was determined using scintigraphy and intestinal muscle inflammation was quantified. Nuclear factor-kappaB transcriptional activity and cytokine production was assayed in peritoneal macrophages. Twenty-four hours after surgery IM led to a delayed gastric emptying compared with L (gastric retention: L(saline) 14% +/- 4% vs IM(saline) 38% +/- 10%, P = .04). Pretreatment with AR-R17779 prevented delayed gastric emptying (IM(AR-R17779) 15% +/- 4%, P = .03). IM elicited inflammatory cell recruitment (L(saline) 50 +/- 8 vs IM(saline) 434 +/- 71 cells/mm(2), P = .001) which was reduced by AR-R17779 pretreatment (IM(AR-R17779) 231 +/- 32 cells/mm(2), P = .04). An equimolar dose of nicotine was not tolerated. Subdiaphragmal vagotomy did not affect the anti-inflammatory properties of AR-R17779. In peritoneal macrophages, both nicotinic agonists reduced nuclear factor kappaB transcriptional activity and proinflammatory cytokine production, with nicotine being more effective than AR-R17779. AR-R17779 treatment potently prevents postoperative ileus, whereas toxicity limits nicotine administration to ineffective doses. Our data further imply that nicotinic inhibition of macrophage activation may involve other receptors in addition to alpha7 nicotinic acetylcholine receptor.
Putra, Agus Budiawan Naro; Nishi, Kosuke; Shiraishi, Ryusuke; Doi, Mikiharu; Sugahara, Takuya
2014-03-01
We previously reported that jellyfish collagen stimulates both the acquired and innate immune responses. In the acquired immune response, jellyfish collagen enhanced immunoglobulin production by lymphocytes in vitro and in vivo. Meanwhile, in the innate immune response jellyfish collagen promoted cytokine production and phagocytotic activity of macrophages. The facts that jellyfish collagen plays several potential roles in stimulating cytokine production by macrophages have further attracted us to uncover its mechanisms. We herein describe that the cytokine production-stimulating activity of jellyfish collagen was canceled by a Toll-like receptor 4 (TLR4) inhibitor. Moreover, jellyfish collagen stimulated phosphorylation of inhibitor of κBα (IκBα), promoted the translocation of nucleus factor-κB (NF-κB), and activated c-Jun N-terminal kinase (JNK). A JNK inhibitor also abrogated the cytokine production-stimulating activity of jellyfish collagen. These results suggest that jellyfish collagen may facilitate cytokine production by macrophages through activation of NF-κB and JNK via the TLR4 signaling pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Jia-Yun; Liu, Yuan; Gao, Xiao-Xue; Gao, Xiang; Cai, Hong
2014-09-01
Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4(+) T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2(-/-) and TLR4(-/-) mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2(-/-) and TLR4(-/-) mice. In addition, CD4(+) T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4(+) T cells from TLR2(-/-) and TLR4(-/-) mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2(-/-) and TLR4(-/-) mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2(-/-) and TLR4(-/-) mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.
Piao, Liang; Canguo, Zhao; Wenjie, Lu; Xiaoli, Cheng; Wenli, Shi; Li, Lu
2017-01-01
Macrophages, as a major cellular component in tumor microenvironment, play an important role in tumor progression. However, their roles in modulation of cytotoxic chemotherapy are still not fully understood. Here, we investigated the influence of Lipoplysaccharides (LPS)-stimulated macrophage products (LSMP) on Withaferin A (WA), a natural compound that derived from the medicinal plant Withania somnifera, as an antitumor agent in human breast cancer cells MDA-MB-231 and prostate cancer cells PC-3. Our results revealed that LSMP may enhance WA-induced apoptosis in both cell lines, the underlying mechanisms of which are closely associated with activation of caspase-8, -9 and -3, cleavage of poly ADP-ribose polymerase (PARP), as well as specifically inhibiting the translocation of nuclear factor-κB (NF-κB) and down-regulation of anti-apoptotic proteins X-linked inhibitor of apoptosis protein (XIAP) and inhibitor of apoptosis protein (cIAP1/2). These findings demonstrate that macrophages in tumor microenvironment can modulate tumor responses to chemotoxic agents, providing an effective strategy that targets macrophages to enhance the antitumor efficacy of cytotoxic chemotherapy. Copyright © 2016. Published by Elsevier Ltd.
Regulation of Bovine Leukemia Virus tax and pol mRNA Levels by Interleukin-2 and -10
Pyeon, Dohun; Splitter, Gary A.
1999-01-01
Recently, particular cytokines have been identified to affect progression of a variety of diseases and retrovirus infections. Previously, we demonstrated that interleukin-2 (IL-2), IL-12, and gamma interferon increased in peripheral blood mononuclear cells (PBMCs) from animals with early disease and decreased in PBMCs from animals with late disease stages of bovine leukemia virus (BLV) infection. In contrast, IL-10 increased with disease progression. To examine the effects of these cytokines on BLV expression, BLV tax and pol mRNA and p24 protein were quantified by competitive PCR and immunoblotting, respectively. IL-10 inhibited BLV tax and pol mRNA levels in BLV-infected PBMCs; however, the inhibitory effect of IL-10 was prevented in PBMCs depleted of monocytes and/or macrophages (monocyte/macrophages). To determine whether these factors were secreted or monocyte/macrophage associated, monocyte/macrophage-depleted PBMCs were cultured with isolated monocyte/macrophages in transwells where contact between monocyte/macrophages and nonadherent PBMCs was blocked. BLV tax and pol mRNA levels increased in transwell cultures similar to cultures containing nonseparated cells, and IL-10 addition inhibited the increase of BLV tax and pol mRNA. These results suggest that monocyte/macrophages secrete soluble factor(s) that increases BLV mRNA levels and that secretion of these soluble factor(s) could be inhibited by IL-10. In contrast, IL-2 increased BLV tax and pol mRNA and p24 protein production. Thus, IL-10 production by BLV-infected animals with late stage disease may serve to control BLV mRNA levels, while IL-2 may increase BLV mRNA in the early disease stage. To determine a correlation between cell proliferation and BLV expression, the effect of IL-2 and IL-10 on PBMC proliferation was tested. As anticipated, IL-2 stimulated while IL-10 suppressed antigen-specific PBMC proliferation. The present study, combined with our previous findings, suggests that increased IL-10 production in late disease stages suppresses BLV mRNA levels, while IL-2-activated immune responses stimulate BLV expression by BLV-infected B cells. PMID:10482594
Brock, Stephanie E; Rendon, Beatriz E; Yaddanapudi, Kavitha; Mitchell, Robert A
2012-11-02
AMP-activated protein kinase (AMPK) is a nutrient- and metabolic stress-sensing enzyme activated by the tumor suppressor kinase, LKB1. Because macrophage migration inhibitory factor (MIF) and its functional homolog, d-dopachrome tautomerase (d-DT), have protumorigenic functions in non-small cell lung carcinomas (NSCLCs) but have AMPK-activating properties in nonmalignant cell types, we set out to investigate this apparent paradox. Our data now suggest that, in contrast to MIF and d-DTs AMPK-activating properties in nontransformed cells, MIF and d-DT act cooperatively to inhibit steady-state phosphorylation and activation of AMPK in LKB1 wild type and LKB1 mutant human NSCLC cell lines. Our data further indicate that MIF and d-DT, acting through their shared cell surface receptor, CD74, antagonize NSCLC AMPK activation by maintaining glucose uptake, ATP production, and redox balance, resulting in reduced Ca(2+)/calmodulin-dependent kinase kinase β-dependent AMPK activation. Combined, these studies indicate that MIF and d-DT cooperate to inhibit AMPK activation in an LKB1-independent manner.
Nairz, Manfred; Schleicher, Ulrike; Schroll, Andrea; Sonnweber, Thomas; Theurl, Igor; Ludwiczek, Susanne; Talasz, Heribert; Brandacher, Gerald; Moser, Patrizia L.; Muckenthaler, Martina U.; Fang, Ferric C.; Bogdan, Christian
2013-01-01
Nitric oxide (NO) generated by inducible NO synthase 2 (NOS2) affects cellular iron homeostasis, but the underlying molecular mechanisms and implications for NOS2-dependent pathogen control are incompletely understood. In this study, we found that NO up-regulated the expression of ferroportin-1 (Fpn1), the major cellular iron exporter, in mouse and human cells. Nos2−/− macrophages displayed increased iron content due to reduced Fpn1 expression and allowed for an enhanced iron acquisition by the intracellular bacterium Salmonella typhimurium. Nos2 gene disruption or inhibition of NOS2 activity led to an accumulation of iron in the spleen and splenic macrophages. Lack of NO formation resulted in impaired nuclear factor erythroid 2-related factor-2 (Nrf2) expression, resulting in reduced Fpn1 transcription and diminished cellular iron egress. After infection of Nos2−/− macrophages or mice with S. typhimurium, the increased iron accumulation was paralleled by a reduced cytokine (TNF, IL-12, and IFN-γ) expression and impaired pathogen control, all of which were restored upon administration of the iron chelator deferasirox or hyperexpression of Fpn1 or Nrf2. Thus, the accumulation of iron in Nos2−/− macrophages counteracts a proinflammatory host immune response, and the protective effect of NO appears to partially result from its ability to prevent iron overload in macrophages PMID:23630227
Xu, Guang; Qin, Qiaojing; Yang, Min; Qiao, Zhongdong; Gu, Yong; Niu, Jianying
2017-02-01
Amounts of macrophages were infiltrated in glomeruli in diabetic nephropathy. Heparanase has been thought to be closely related to proteinuria. Our aims were to determine the effect of heparanase on the inflammation in AGEs-stimulated macrophages and its role on the functions of glomerular endothelial cells (GEnCs). The expression of inflammation cytokines in macrophages were assayed by q-RT PCR, western, and ELISA. Then western was used to measure the expression of RAGE and key proteins in NF-κB pathway in macrophages. The expression of the adherence molecules and tight junction proteins in GEnCs were assessed by western. The adherence of mononuclear cells to GEnCs were observed by HE staining and transendothelial FITC-BSA were tested for the permeability of GEnCs. HPA siRNA and heparanase inhibitor sulodexide could attenuate the increasing inflammatory factors (TNF-α and IL-1β) in AGEs-stimulated macrophages. NF-κB inhibitor PDTC could also decrease the augmented inflammation cytokines through inhibiting the activation of the NF-κB pathway induced by AGEs. The phosphorylation of NF-κB signaling pathway could be also attenuated by HPA siRNA and sulodexide, the same to the receptor of AGEs RAGE. When the macrophage-conditioned culture medium were added to the glomerular endothelial cells, we found HPA siRNA and sulodexide groups could decrease the increasing adherence and permeability of GEnCs induced by AGEs. Heparanase increases the inflammation in AGEs-stimulated macrophages through activating the RAGE-NF-κB pathway. Heparanase driven inflammation from AGEs-stimulated macrophages increases the adherence of GEnCs and augments the permeability of GEnCs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Alternatively Activated Macrophages Drive Browning of White Adipose Tissue in Burns.
Abdullahi, Abdikarim; Auger, Christopher; Stanojcic, Mile; Patsouris, David; Parousis, Alexandra; Epelman, Slava; Jeschke, Marc G
2017-08-16
The aim of this study was to uncover the mediators and mechanistic events that facilitate the browning of white adipose tissue (WAT) in response to burns. In hypermetabolic patients (eg, burns, cancer), the browning of WAT has presented substantial clinical challenges related to cachexia, atherosclerosis, and poor clinical outcomes. Browning of the adipose tissue has recently been found to induce and sustain hypermetabolism. Although browning appears central in trauma-, burn-, or cancer-induced hypermetabolic catabolism, the mediators are essentially unknown. WAT and blood samples were collected from patients admitted to the Ross Tilley Burn Centre at Sunnybrook Hospital. Wild type, CCR2 KO, and interleukin (IL)-6 KO male mice were purchased from Jax laboratories and subjected to a 30% total body surface area burn injury. WAT and serum collected were analyzed for browning markers, macrophages, and metabolic state via histology, gene expression, and mitochondrial respiration. In the present study, we show that burn-induced browning is associated with an increased macrophage infiltration, with a greater type 2 macrophage profile in the fat of burn patients. Similar to our clinical findings in burn patients, both an increase in macrophage recruitment and a type 2 macrophage profile were also observed in post burn mice. Genetic loss of the chemokine CCR2 responsible for macrophage migration to the adipose impairs burn-induced browning. Mechanistically, we show that macrophages recruited to burn-stressed subcutaneous WAT (sWAT) undergo alternative activation to induce tyrosine hydroxylase expression and catecholamine production mediated by IL-6, factors required for browning of sWAT. Together, our findings uncover macrophages as the key instigators and missing link in trauma-induced browning.
Vassallo, R; Kottom, T J; Standing, J E; Limper, A H
2001-08-01
beta-glucans represent major structural components of fungal cell walls. We recently reported that Pneumocystis carinii beta-glucans stimulate alveolar macrophages to release proinflammatory cytokines. Macrophage activation by beta-glucan is augmented by serum, implying the presence of circulating factors that interact with beta-glucans and enhance their ability to stimulate macrophages. Using beta-glucan-enriched cell wall fractions from P. carinii and Saccharomyces cerevisiae, two prominent proteins were precipitated from serum and demonstrated to be vitronectin (VN) and fibronectin (FN) by immune analysis. Preincubation of beta-glucan with VN or FN enhanced macrophage activation in response to this cell wall component. Because VN and FN accumulate in the lungs during P. carinii pneumonia, we further investigated hepatic and pulmonary expression of VN and FN messenger RNA during infection. P. carinii pneumonia in rodents is associated with increased hepatic expression of VN and FN as well as increased local expression of FN in the lung. Because interleukin (IL)-6 represents the major regulator of VN and FN expression during inflammatory conditions, we measured macrophage IL-6 release in response to stimulation with P. carinii beta-glucan. Stimulation of macrophages with P. carinii beta-glucan induced significant release of IL-6. Elevated concentrations of IL-6 were noted in the blood of infected animals compared with uninfected control animals. These studies indicate that VN and FN bind to beta-glucan components of P. carinii and augment macrophage inflammatory responses. P. carinii cell wall beta-glucan stimulates secretion of IL-6 by macrophages, thereby enhancing hepatic synthesis of both VN and FN, and lung synthesis of FN during pneumonia.
2008-03-26
Response after Encountering Streptococcus Pneumoniae" Brian Schae:5 ,Ph.D. Department of Microbi ogy & Immunology Committee Chairperson Masters...presenting cells (APCs), such as macrophages (M ) and dendritic cells (DC) recognize microbial surface components via cell surface receptors (i.e...stimulating factor (GM-CSF). TH1 cells are able to secrete IFN- , which is important in activating M to produce mediators important for microbial
Sefsafi, Zakia; Hasbaoui, Brahim El; Kili, Amina; Agadr, Aomar; Khattab, Mohammed
2018-01-01
Abstract Macrophage activation syndrome (MAS) is a severe and potentially fatal life-threatening condition associated with excessive activation and expansion of T cells with macrophages and a high expression of cytokines, resulting in an uncontrolled inflammatory response, with high levels of macrophage colony-stimulating factor and causing multiorgan damage. This syndrome is classified into primary (genetic/familial) or secondary forms to several etiologies, such as infections, neoplasias mainly hemopathies or autoimmune diseases. It is characterised clinically by unremitting high fever, pancytopaenia, hepatosplenomegaly, hepatic dysfunction, encephalopathy, coagulation abnormalities and sharply increased levels of ferritin. The pathognomonic feature of the syndrome is seen on bone marrow examination, which frequently, though not always, reveals numerous morphologically benign macrophages exhibiting haemophagocytic activity. Because MAS can follow a rapidly fatal course, prompt recognition of its clinical and laboratory features and immediate therapeutic intervention are essential. However, it is difficult to distinguish underlying disease flare, infectious complications or medication side effects from MAS. Although, the pathogenesis of MAS is unclear, the hallmark of the syndrome is an uncontrolled activation and proliferation of T lymphocytes and macrophages, leading to massive hypersecretion of pro-inflammatory cytokines. Mutations in cytolytic pathway genes are increasingly being recognised in children who develop MAS in his secondary form. We present here a case of Macrophage activation syndrome associated with Griscelli syndrome type 2 in a 3-years-old boy who had been referred due to severe sepsis with non-remitting high fever, generalized lymphoadenopathy and hepato-splenomegaly. Laboratory data revealed pancytopenia with high concentrations of triglycerides, ferritin and lactic dehydrogenase while the bone marrow revealed numerous morphologically benign macrophages with haemophagocytic activity that comforting the diagnosis of a SAM according to Ravelli and HLH-2004 criteria. Griscelli syndrome (GS) was evoked on; consanguineous family, recurrent infection, very light silvery-gray color of the hair and eyebrows, Light microscopy examination of the hair showed large, irregular clumps of pigments characteristic of GS. The molecular biology showed mutation in RAB27A gene confirming the diagnosis of a Griscelli syndrome type 2. The first-line therapy was based on the parenteral administration of high doses of corticosteroids, associated with immunosuppressive drugs, cyclosporine A and etoposide waiting for bone marrow transplantation (BMT). PMID:29875956
2009-01-01
To determine if nuclear factor-κB (NF-κB) activation may be a key factor in lung inflammation and respiratory dysfunction, we investigated whether NF-κB can be blocked by intratracheal administration of NF-κB decoy oligodeoxynucleotides (ODNs), and whether decoy ODN-mediated NF-κB inhibition can prevent smoke-induced lung inflammation, respiratory dysfunction, and improve pathological alteration in the small airways and lung parenchyma in the long-term smoke-induced mouse model system. We also detected changes in transcriptional factors. In vivo, the transfection efficiency of NF-κB decoy ODNs to alveolar macrophages in BALF was measured by fluorescein isothiocyanate (FITC)-labeled NF-κB decoy ODNs and flow cytometry post intratracheal ODN administration. Pulmonary function was measured by pressure sensors, and pathological changes were assessed using histology and the pathological Mias software. NF-κB and activator protein 1(AP-1) activity was detected by the electrophoretic motility shift assay (EMSA). Mouse cytokine and chemokine pulmonary expression profiles were investigated by enzyme-linked immunosorbent assay (ELISA) in bronchoalveolar lavage fluid (BALF) and lung tissue homogenates, respectively, after repeated exposure to cigarette smoke. After 24 h, the percentage of transfected alveolar macrophages was 30.00 ± 3.30%. Analysis of respiratory function indicated that transfection of NF-κB decoy ODNs significantly impacted peak expiratory flow (PEF), and bronchoalveolar lavage cytology displayed evidence of decreased macrophage infiltration in airways compared to normal saline-treated or scramble NF-κB decoy ODNs smoke exposed mice. NF-κB decoy ODNs inhibited significantly level of macrophage inflammatory protein (MIP) 1α and monocyte chemoattractant protein 1(MCP-1) in lung homogenates compared to normal saline-treated smoke exposed mice. In contrast, these NF-κB decoy ODNs-treated mice showed significant increase in the level of tumor necrosis factor-α(TNF-α) and pro-MMP-9(pro-matrix metalloproteinase-9) in mice BALF. Further measurement revealed administration of NF-κB decoy ODNs did not prevent pathological changes. These findings indicate that NF-κB activation play an important role on the recruitment of macrophages and pulmonary dysfunction in smoke-induced chronic lung inflammation, and with the exception of NF-κB pathway, there might be complex mechanism governing molecular dynamics of pro-inflammatory cytokines expression and structural changes in small airways and pulmonary parenchyma in vivo. PMID:19706153
The glycosylation and characterization of the candidate Gc macrophage activating factor.
Ravnsborg, Tina; Olsen, Dorthe T; Thysen, Anna Hammerich; Christiansen, Maja; Houen, Gunnar; Højrup, Peter
2010-04-01
The vitamin D binding protein, Gc globulin, has in recent years received some attention for its role as precursor for the extremely potent macrophage activating factor (GcMAF). An O-linked trisaccharide has been allocated to the threonine residue at position 420 in two of the three most common isoforms of Gc globulin (Gc1s and Gc1f). A substitution for a lysine residue at position 420 in Gc2 prevents this isoform from being glycosylated at that position. It has been suggested that Gc globulin subjected sequentially to sialidase and galactosidase treatment generates GcMAF in the form of Gc globulin with only a single GalNAc attached to T420. In this study we confirm the location of a linear trisaccharide on T420. Furthermore, we provide the first structural evidence of the generation of the proposed GcMAF by use of glycosidase treatment and mass spectrometry. Additionally the generated GcMAF candidate was tested for its effect on cytokine release from macrophages in human whole blood. Copyright 2010 Elsevier B.V. All rights reserved.
Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon
2018-03-01
Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone-marrow-derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2 -/- BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2 -/- BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very-long-chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2 -/- macrophages led to decreased inflammatory activation of Mfp2 -/- BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2 -/- macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, probably by influencing the dynamic lipid profile during macrophage polarization. © 2017 John Wiley & Sons Ltd.
Alveolar Macrophages Play a Key Role in Cockroach-Induced Allergic Inflammation via TNF-α Pathway
Kim, Joo Young; Sohn, Jung Ho; Choi, Je-Min; Lee, Jae-Hyun; Hong, Chein-Soo; Lee, Joo-Shil; Park, Jung-Won
2012-01-01
The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model. PMID:23094102
Tian, Hua; Yao, Shu-Tong; Yang, Na-Na; Ren, Jie; Jiao, Peng; Zhang, Xiangjian; Li, Dong-Xuan; Zhang, Gong-An; Xia, Zhen-Fang; Qin, Shu-Cun
2017-08-04
This study was designed to explore the protective effect of D4F, an apolipoprotein A-I mimetic peptide, on nuclear factor-κB (NF-κB)-dependent Fas/Fas ligand (FasL) pathway-mediated apoptosis in macrophages induced by oxidized low-density lipoprotein (ox-LDL). Our results showed that ox-LDL induced apoptosis, NF-κB P65 nuclear translocation and the upregulation of Fas/FasL pathway-related proteins, including Fas, FasL, Fas-associated death domain proteins (FADD), caspase-8 and caspase-3 in RAW264.7 macrophages, whereas silencing of Fas blocked ox-LDL-induced macrophage apoptosis. Furthermore, silencing of P65 attenuated macrophage apoptosis and the upregulation of Fas caused by ox-LDL, whereas P65 expression was not significantly affected by treatment with Fas siRNA. D4F attenuated the reduction of cell viability and the increase in lactate dehydrogenase leakage and apoptosis. Additionally, D4F inhibited ox-LDL-induced P65 nuclear translocation and upregulation of Fas/FasL pathway-related proteins in RAW264.7 cells and in atherosclerotic lesions of apoE -/- mice. However, Jo2, a Fas-activating monoclonal antibody, reversed the inhibitory effect of D4F on ox-LDL-induced cell apoptosis and upregulation of Fas, FasL and FADD. These data indicate that NF-κB mediates Fas/FasL pathway activation and apoptosis in macrophages induced by ox-LDL and that D4F protects macrophages from ox-LDL-induced apoptosis by suppressing the activation of NF-κB and the Fas/FasL pathway.
Di, Guohu; Du, Xianli; Qi, Xia; Zhao, Xiaowen; Duan, Haoyun; Li, Suxia; Xie, Lixin; Zhou, Qingjun
2017-08-01
To explore the role and mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in corneal epithelial wound healing in type 1 diabetic mice. Diabetic mice were treated with subconjunctival injections of BM-MSCs or recombinant tumor necrosis factor-α-stimulated gene/protein-6 (TSG-6). The corneal epithelial wound healing rate was examined by fluorescein staining. The mRNA and protein expression levels of TSG-6 were measured by quantitative RT-PCR and Western blot. The infiltrations of leukocytes and macrophages were analyzed by flow cytometry and immunofluoresence staining. The effect of TSG-6 was further evaluated in cultured limbal epithelial stem/progenitor cells, macrophages, and diabetic mice by short hairpin RNA (shRNA) knockdown. Local MSC transplantation significantly promoted diabetic corneal epithelial wound healing, accompanied by elevated corneal TSG-6 expression, increased corneal epithelial cell proliferation, and attenuated inflammatory response. Moreover, in cultured human limbal epithelial stem/progenitor cells, TSG-6 enhanced the colony-forming efficiency, stimulated mitogenic proliferation, and upregulated the expression level of ΔNp63. Furthermore, in diabetic mouse cornea and in vitro macrophage culture, TSG-6 alleviated leukocyte infiltration and promoted the polarization of recruited macrophages to anti-inflammatory M2 phenotypes with increased phagocytotic capacity. In addition, the promotion of epithelial stem/progenitor cell activation and macrophage polarization by MSC transplantation was largely abrogated by shRNA knockdown of TSG-6. This study provided the first evidence of TSG-6 secreted by MSCs promoting corneal epithelial wound healing in diabetic mice through activating corneal epithelial stem/progenitor cells and accelerating M2 macrophage polarization.
Martiney, James A.; Sherry, Barbara; Metz, Christine N.; Espinoza, Marisol; Ferrer, Angel S.; Calandra, Thierry; Broxmeyer, Hal E.; Bucala, Richard
2000-01-01
Human falciparum malaria, caused by Plasmodium falciparum infection, results in 1 to 2 million deaths per year, mostly children under the age of 5 years. The two main causes of death are severe anemia and cerebral malaria. Malarial anemia is characterized by parasite red blood cell (RBC) destruction and suppression of erythropoiesis (the mechanism of which is unknown) in the presence of a robust host erythropoietin response. The production of a host-derived erythropoiesis inhibitor in response to parasite products has been implicated in the pathogenesis of malarial anemia. The identity of this putative host factor is unknown, but antibody neutralization studies have ruled out interleukin-1β, tumor necrosis factor alpha, and gamma interferon while injection of interleukin-12 protects susceptible mice against lethal P. chabaudi infection. In this study, we report that ingestion of P. chabaudi-infected erythrocytes or malarial pigment (hemozoin) induces the release of macrophage migration inhibitory factor (MIF) from macrophages. MIF, a proinflammatory mediator and counter-regulator of glucocorticoid action, inhibits erythroid (BFU-E), multipotential (CFU-GEMM), and granulocyte-macrophage (CFU-GM) progenitor-derived colony formation. MIF was detected in the sera of P. chabaudi-infected BALB/c mice, and circulating levels correlated with disease severity. Liver MIF immunoreactivity increased concomitant with extensive pigment and parasitized RBC deposition. Finally, MIF was elevated three- to fourfold in the spleen and bone marrow of P. chabaudi-infected mice with active disease, as compared to early disease, or of uninfected controls. In summary, the present results suggest that MIF may be a host-derived factor involved in the pathophysiology of malaria anemia. PMID:10722628
Macrophage Resistance to HIV-1 Infection Is Enhanced by the Neuropeptides VIP and PACAP
Temerozo, Jairo R.; Joaquim, Rafael; Regis, Eduardo G.; Savino, Wilson; Bou-Habib, Dumith Chequer
2013-01-01
It is well established that host factors can modulate HIV-1 replication in macrophages, critical cells in the pathogenesis of HIV-1 infection due to their ability to continuously produce virus. The neuropeptides VIP and PACAP induce well-characterized effects on macrophages through binding to the G protein-coupled receptors VPAC1, VPAC2 and PAC1, but their influence on HIV-1 production by these cells has not been established. Here, we describe that VIP and PACAP reduce macrophage production of HIV-1, acting in a synergistic or additive manner to decrease viral growth. Using receptor antagonists, we detected that the HIV-1 inhibition promoted by VIP is dependent on its ligation to VPAC1/2, whereas PACAP decreases HIV-1 growth via activation of the VPAC1/2 and PAC1 receptors. Specific agonists of VPAC2 or PAC1 decrease macrophage production of HIV-1, whereas sole activation of VPAC1 enhances viral growth. However, the combination of specific agonists mimicking the receptor preference of the natural neuropeptides reproduces the ability of VIP and PACAP to increase macrophage resistance to HIV-1 replication. VIP and PACAP up-regulated macrophage secretion of the β-chemokines CCL3 and CCL5 and the cytokine IL-10, whose neutralization reversed the neuropeptide-induced inhibition of HIV-1 replication. Our results suggest that VIP and PACAP and the receptors VPAC2 and PAC1 could be used as targets for developing alternative therapeutic strategies for HIV-1 infection. PMID:23818986
Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Tsutsumi, Yasuo
2014-01-01
Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages. PMID:24987712
Matsumoto, T; Ogata, M; Koga, K; Shigematsu, A
1994-01-01
To investigate the effect of peripheral and central benzodiazepine receptor ligands on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) activity in mouse macrophages, three types of ligands, 4'-chlorodiazepam (pure peripheral), midazolam (mixed), and clonazepam (pure central), were compared. Midazolam and 4'-chlorodiazepam significantly suppressed LPS (1-microgram/ml)-induced TNF activity in thioglycolate-elicited mouse macrophages. In every concentration examined (0.001 to 100 microM), 4'-chlorodiazepam was the most effective agent, clonazepam was the least effective agent, and midazolam had an effect intermediate between those of the other two ligands. The peripheral benzodiazepine receptor ligands had a dose-dependent suppressive effect, and the 50% inhibitory concentrations were 0.01 microM for 4'-chlorodiazepam and 5 microM for midazolam. Concomitant use of PK 11195 (10 microM), an antagonist of the peripheral benzodiazepine receptor, reversed this suppressive effect with 4'-chlorodiazepam (10 microM) or midazolam (10 microM). PK 11195 showed this antagonistic effect in a dose-dependent manner. Intravenous 4'-chlorodiazepam (5 mg/kg of body weight) significantly suppressed LPS (100-micrograms)-induced TNF activity of sera (2 h postchallenge with LPS) from thioglycolate-treated mice. The present findings suggest that the peripheral benzodiazepine receptor plays an important role in modulating LPS-induced TNF activity in mouse macrophages. PMID:8031051
Nissimov, L.; Lengy, J.; Keisari, Y.
1994-01-01
Human monocytes, co-incubated for 7 days in culture with GM-CSF or IL-3 but not with IFN-γ, exerted a variable schistosotnulicidal effect on Schistosoma mansoni parasites when grown in 96-well round-bottomed plates but not in flat-bottomed plates. Addition of LPS or IFN-γ or both, for the last 48 h did not enhance the cidal effect. Addition of LPS but not IFN-γ to the pre-incubated cells with GM-CSF or IL-3 markedly stimulated TNF-α production by the cells but not their cidal activity. The variable cidal effects obtained with the monocytes/macrophages from different donors suggest that these effects may be genetically predetermined and are possibly linked to blood group markers or to MHC class I or II antigens. PMID:18475576
Cheng, Hui-Wen; Lee, Kock-Chee; Cheah, Khoot-Peng; Chang, Ming-Long; Lin, Che-Wei; Li, Joe-Sharg; Yu, Wen-Yu; Liu, E-Tung; Hu, Chien-Ming
2013-02-01
Polygonum viviparum L. (PV) is a member of the family Polygonaceae and is widely distributed in high-elevation areas. It is used as a folk remedy to treat inflammation-related diseases. This study was focused on the anti-inflammatory response of PV against lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. Treatment with PV did not cause cytotoxicity at 0-50 µg mL(-1) in RAW264.7 macrophages, and the IC(50) value was 270 µg mL(-1). PV inhibited LPS-stimulated nitric oxide (NO), prostaglandin (PG)E(2) , interleukin (IL)-1β and tumour necrosis factor (TNF)-α release and inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein expression. In addition, PV suppressed the LPS-induced p65 expression of nuclear factor (NF)-κB, which is associated with the inhibition of IκB-α degradation. These results suggest that, among mechanisms of the anti-inflammatory response, PV inhibits the production of NO and these cytokines by down-regulating iNOS and COX-2 gene expression. Furthermore, PV can induce haem oxygenase (HO)-1 protein expression through nuclear factor E2-related factor 2 (Nrf2) activation. A specific inhibitor of HO-1, zinc(II) protoporphyrin IX, inhibited the suppression of iNOS and COX-2 expression by PV. These results suggest that PV possesses anti-inflammatory actions in macrophages and works through a novel mechanism involving Nrf2 actions and HO-1. Thus PV could be considered for application as a potential therapeutic approach for inflammation-associated disorders. Copyright © 2012 Society of Chemical Industry.
MafB antagonizes phenotypic alteration induced by GM-CSF in microglia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshida, Ryusuke, E-mail: rkoshida-myz@umin.ac.jp; Oishi, Hisashi, E-mail: hoishi@md.tsukuba.ac.jp; Hamada, Michito
2015-07-17
Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB bymore » analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.« less
Narita, Hiroshi; Chen, Sen; Komori, Kimihiro; Kadomatsu, Kenji
2008-06-01
Neointimal hyperplasia is strikingly suppressed in an endothelium injury model in mice deficient in the growth factor midkine. Knockdown of midkine expression by means of antisense oligonucleotide or small interfering RNA has been shown to lead to suppression of neointimal hyperplasia in a balloon injury model and a rabbit vein graft model; therefore, midkine is an essential factor for neointimal hyperplasia. These findings, however, do not necessarily apply to the function of midkine in vascular stenoses such as in-stent restenosis, because human vascular stenosis is often accompanied by atherosclerosis. We investigated midkine expression in the neointima induced by implantation of a bare metal stent in the atheromatous lesions of hypercholesterolemic rabbits. We analyzed midkine expression during a THP-1 cell differentiation and in peritoneal macrophages exposed to low-density lipoprotein or oxidized low-density lipoprotein. Midkine expression reached the maximum level within 7 days after stenting and was detected in infiltrating macrophages. Differentiation of THP-1 cells to macrophage-like cells did not trigger midkine expression. Neither low-density lipoprotein nor oxidized low-density lipoprotein enhanced midkine expression in peritoneal macrophages that had been activated by thioglycollate, although these cells expressed a significant amount of midkine. The results indicate that macrophages are the major source of midkine in the atherosclerotic neointima. The amount of midkine expressed in macrophages may be sufficient (ie, further enhancement of the expression is not necessary) for the pathogenesis, because oxidized low-density lipoprotein stimulation did not induce the midkine expression. The growth factor midkine is induced during vascular stenosis in mouse and rat models with normal diet. Knockdown of midkine expression suppresses neointimal hyperplasia. The vascular response after stenting differs from that after balloon injury in that the inflammation is more prolonged and the accumulation of macrophages is more abundant in stent-injured vessel. We found here that macrophages are the major source of midkine in the atherosclerotic neointima of in-stent restenosis in hypercholesterolemic rabbits. Our data suggest that midkine has an important role in in-stent restenosis of atherosclerotic vessels and is a candidate molecular target to prevent in-stent restenosis.
Ikeda, Tohru; Kasai, Michiyuki; Tatsukawa, Eri; Kamitakahara, Masanobu; Shibata, Yasuaki; Yokoi, Taishi; Nemoto, Takayuki K; Ioku, Koji
2014-01-01
The biological activity of osteoblasts and osteoclasts is regulated not only by hormones but also by local growth factors, which are expressed in neighbouring cells or included in bone matrix. Previously, we developed hydroxyapatite (HA) composed of rod-shaped particles using applied hydrothermal methods (HHA), and it revealed mild biodegradability and potent osteoclast homing activity. Here, we compared serum proteins adsorbed to HHA with those adsorbed to conventional HA composed of globular-shaped particles (CHA). The two ceramics adsorbed serum albumin and γ-globulin to similar extents, but affinity for γ-globulin was much greater than that to serum albumin. The chemotactic activity for macrophages of serum proteins adsorbed to HHA was significantly higher than that of serum proteins adsorbed to CHA. Quantitative proteomic analysis of adsorbed serum proteins revealed preferential binding of vitamin D-binding protein (DBP) and complements C3 and C4B with HHA. When implanted with the femur of 8-week-old rats, HHA contained significantly larger amount of DBP than CHA. The biological activity of DBP was analysed and it was found that the chemotactic activity for macrophages was weak. However, DBP-macrophage activating factor, which is generated by the digestion of sugar chains of DBP, stimulated osteoclastogenesis. These results confirm that the microstructure of hydroxyapatite largely affects the affinity for serum proteins, and suggest that DBP preferentially adsorbed to HA composed of rod-shaped particles influences its potent osteoclast homing activity and local bone metabolism. PMID:24286277
Degreif, Adriana; Rossmann, Heidi; Canisius, Antje; Lackner, Karl J.
2013-01-01
Clinical and experimental evidence suggests a protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx-1) in the atherogenic process. GPx-1 deficiency accelerates atherosclerosis and increases lesion cellularity in ApoE−/− mice. However, the distribution of GPx-1 within the atherosclerotic lesion as well as the mechanisms leading to increased macrophage numbers in lesions is still unknown. Accordingly, the aims of the present study were (1) to analyze which cells express GPx-1 within atherosclerotic lesions and (2) to determine whether a lack of GPx-1 affects macrophage foam cell formation and cellular proliferation. Both in situ-hybridization and immunohistochemistry of lesions of the aortic sinus of ApoE−/− mice after 12 weeks on a Western type diet revealed that both macrophages and – even though to a less extent – smooth muscle cells contribute to GPx-1 expression within atherosclerotic lesions. In isolated mouse peritoneal macrophages differentiated for 3 days with macrophage-colony-stimulating factor (MCSF), GPx-1 deficiency increased oxidized low density-lipoprotein (oxLDL) induced foam cell formation and led to increased proliferative activity of peritoneal macrophages. The MCSF- and oxLDL-induced proliferation of peritoneal macrophages from GPx-1−/−ApoE−/− mice was mediated by the p44/42 MAPK (p44/42 mitogen-activated protein kinase), namely ERK1/2 (extracellular-signal regulated kinase 1/2), signaling pathway as demonstrated by ERK1/2 signaling pathways inhibitors, Western blots on cell lysates with primary antibodies against total and phosphorylated ERK1/2, MEK1/2 (mitogen-activated protein kinase kinase 1/2), p90RSK (p90 ribosomal s6 kinase), p38 MAPK and SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase), and immunohistochemistry of mice atherosclerotic lesions with antibodies against phosphorylated ERK1/2, MEK1/2 and p90RSK. Representative effects of GPx-1 deficiency on both macrophage proliferation and MAPK phosphorylation could be abolished by the GPx mimic ebselen. The present study demonstrates that GPx-1 deficiency has a significant impact on macrophage foam cell formation and proliferation via the p44/42 MAPK (ERK1/2) pathway encouraging further studies on new therapeutic strategies against atherosclerosis. PMID:23991041
Reljic, Rajko; Crawford, Carol; Challacombe, Stephen; Ivanyi, Juraj
2004-04-01
Potent Fcalpha-mediated actions of IgA have previously been shown for myeloid cells from man, but much less is known in relation to murine cells. Here, we report that mouse monoclonal IgA, irrespective of their antigenic specificity, inhibit the proliferation of mouse macrophage cell lines. The anti-proliferative activity was manifested by both monomeric and polymeric mouse IgA, but not by mouse monoclonal IgG and IgM. Growth of J774 cells was significantly inhibited during the 4-8 days of logarithmic growth, followed by a subsequent recovery of cell numbers prior to the stationary phase. We demonstrated that IgA binds to J774 cells, stimulates tumor necrosis factor (TNF)-alpha production and induces apoptosis which is not dependent on NO or FAS/CD95. We also demonstrated that IgA, in synergy with IFN-gamma, induced TNF-alpha production and apoptosis of thioglycollate-elicited mouse peritoneal macrophages. Thus, the in vitro actions of IgA described may also play a regulatory role for mouse macrophages in vivo.
Yang, Li; Yang, Jin Bo; Chen, Jia; Yu, Guang Yao; Zhou, Pei; Lei, Lei; Wang, Zhen Zhen; Cy Chang, Catherine; Yang, Xin Ying; Chang, Ta Yuan; Li, Bo Liang
2004-08-01
In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study, with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP-1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-1-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP-1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner. Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1 gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex, which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.
Penas, Federico; Mirkin, Gerardo A; Vera, Marcela; Cevey, Ágata; González, Cintia D; Gómez, Marisa I; Sales, María Elena; Goren, Nora B
2015-05-01
Trypanosoma cruzi, the etiological agent of Chagas' disease, induces a persistent inflammatory response. Macrophages are a first line cell phenotype involved in the clearance of infection. Upon parasite uptake, these cells increase inflammatory mediators like NO, TNF-α, IL-1β and IL-6, leading to parasite killing. Although desired, inflammatory response perpetuation and exacerbation may lead to tissue damage. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors that, besides regulating lipid and carbohydrate metabolism, have a significant anti-inflammatory effect. This is mediated through the interaction of the receptors with their ligands. PPARγ, one of the PPAR isoforms, has been implicated in macrophage polarization from M1, the classically activated phenotype, to M2, the alternatively activated phenotype, in different models of metabolic disorders and infection. In this study, we show for the first time that, besides PPARγ, PPARα is also involved in the in vitro polarization of macrophages isolated from T. cruzi-infected mice. Polarization was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers like Arginase I, Ym1, mannose receptor and TGF-β. Besides, macrophage phagocytic activity was significantly enhanced, leading to increased parasite load. We suggest that modulation of the inflammatory response by both PPARs might be due, at least in part, to a change in the profile of inflammatory macrophages. The potential use of PPAR agonists as modulators of overt inflammatory response during the course of Chagas' disease deserves further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Rockwell, Cheryl E.; Roth, Katherine J.; Chow, Aaron; O'Brien, Kate M; Albee, Ryan; Kelly, Kara; Towery, Keara; Luyendyk, James P.; Copple, Bryan L.
2014-01-01
Hypoxia-inducible factor-1α (HIF-1α) is activated in hepatic stellate cells (HSCs) by hypoxia, and regulates genes important for tissue repair. Whether HIF-1α is activated in HSCs after acute injury and contributes to liver regeneration, however, is not known. To investigate this, mice were generated with reduced levels of HIF-1α in HSCs by crossing HIF-1α floxed mice with mice that express Cre recombinase under control of the glial fibrillary acidic protein (GFAP) promoter (i.e., HIF-1α-GFAP Cre+ mice). These mice and control mice (i.e., HIF-1α-GFAP Cre- mice) were treated with a single dose of carbon tetrachloride, and liver injury and repair were assessed. After carbon tetrachloride, HIF-1α was activated in HSCs. Although liver injury was not different between the two strains of mice, during resolution of injury, clearance of necrotic cells was decreased in HIF-1α-GFAP Cre+ mice. In these mice, the persistence of necrotic cells stimulated a fibrotic response characterized by extensive collagen deposition. Hepatic accumulation of macrophages, which clear necrotic cells from the liver after carbon tetrachloride, was not affected by HIF-1α deletion in HSCs. Conversion of macrophages to M1-like, pro-inflammatory macrophages, which have increased phagocytic activity, however, was reduced in HIF-1α-GFAP Cre+ mice as indicated by a decrease in pro-inflammatory cytokines, and a decrease in the percentage of Gr1hi macrophages. Collectively, these studies have identified a novel function for HSCs and HIF-1α in orchestrating the clearance of necrotic cells from the liver, and demonstrated a key role for HSCs in modulating macrophage phenotype during acute liver injury. PMID:24639359
Immunostimulatory activity of polysaccharides from Cheonggukjang.
Lee, Seung-Jun; Rim, Hong-Kun; Jung, Ji-Yun; An, Hyo-Jin; Shin, Ji-Sun; Cho, Chang-Won; Rhee, Young Kyoung; Hong, Hee-Do; Lee, Kyung-Tae
2013-09-01
Cheonggukjang is a Korean whole soybean paste fermented by Bacillus subtilis and regarded as a healthy food. The objective of this study was to investigate the immunostimulatory activity of polysaccharides from Cheonggukjang (PSCJ) in RAW 264.7 macrophages and an animal model. PSCJ induced mRNA expressions of inducible nitric oxide synthase and tumor necrosis factor-α (TNF-α) by activating nuclear factor-κB, and subsequently increased the productions of nitric oxide (NO) and TNF-α in murine recombinant interferon-γ-primed RAW 264.7 macrophages. Furthermore, after daily oral administration of PSCJ, immobility time decreased significantly in the PSCJ-administered group (200 or 400 mg/kg) on day 10. Taken together, these results suggest that the PSCJ has a possible role improving immune function through regulatory effects on immunological parameters, such as NO and TNF-α productions and changes in indicators related to fatigue. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guo, Bao-Jian; Bian, Zhao-Xiang; Qiu, Hong-Cong; Wang, Yi-Tao; Wang, Ying
2017-08-01
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that includes Crohn's disease (CD) and ulcerative colitis (UC). Homeostasis of various regulatory factors involved with intestinal immunity is disrupted in IBD, including the intestinal epithelial barrier, macrophages, and cellular mediators such as cytokines and chemokines. No successful treatment is currently available for the management of IBD. Natural products and herbal medicines have exhibited efficacy for UC and CD in experimental models and clinical trials with the following activities: (1) maintenance of integrity of the intestinal epithelial barrier, (2) regulation of macrophage activation, (3) modulation of innate and adaptive immune response, and (4) inhibition of TNF-α activity. Here, we discuss the major factors involved in the pathogenesis of IBD and the current development of natural products and herbs for the treatment of IBD. © 2017 New York Academy of Sciences.
Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M.; Barron, Luke; Qualls, Joseph E.; Neale, Geoffrey; Alfonso-Pecchio, Adolfo; Jackowski, Suzanne; Rock, Charles O.; Wynn, Thomas A.; Murray, Peter J.
2017-01-01
Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine. PMID:27903651
Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M; Barron, Luke; Qualls, Joseph E; Neale, Geoffrey; Alfonso-Pecchio, Adolfo; Jackowski, Suzanne; Rock, Charles O; Wynn, Thomas A; Murray, Peter J
2017-01-06
Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G 1 , and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G 1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.