Science.gov

Sample records for macrophage il-10 production

  1. Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production.

    PubMed

    Baseler, Walter A; Davies, Luke C; Quigley, Laura; Ridnour, Lisa A; Weiss, Jonathan M; Hussain, S Perwez; Wink, David A; McVicar, Daniel W

    2016-12-01

    Inflammatory maturation of M1 macrophages by proinflammatory stimuli such as toll like receptor ligands results in profound metabolic reprogramming resulting in commitment to aerobic glycolysis as evidenced by repression of mitochondrial oxidative phosphorylation (OXPHOS) and enhanced glucose utilization. In contrast, "alternatively activated" macrophages adopt a metabolic program dominated by fatty acid-fueled OXPHOS. Despite the known importance of these developmental stages on the qualitative aspects of an inflammatory response, relatively little is know regarding the regulation of these metabolic adjustments. Here we provide evidence that the immunosuppressive cytokine IL-10 defines a metabolic regulatory loop. Our data show for the first time that lipopolysaccharide (LPS)-induced glycolytic flux controls IL-10-production via regulation of mammalian target of rapamycin (mTOR) and that autocrine IL-10 in turn regulates macrophage nitric oxide (NO) production. Genetic and pharmacological manipulation of IL-10 and nitric oxide (NO) establish that metabolically regulated autocrine IL-10 controls glycolytic commitment by limiting NO-mediated suppression of OXPHOS. Together these data support a model where autocine IL-10 production is controlled by glycolytic flux in turn regulating glycolytic commitment by preserving OXPHOS via suppression of NO. We propose that this IL-10-driven metabolic rheostat maintains metabolic equilibrium during M1 macrophage differentiation and that perturbation of this regulatory loop, either directly by exogenous cellular sources of IL-10 or indirectly via limitations in glucose availability, skews the cellular metabolic program altering the balance between inflammatory and immunosuppressive phenotypes.

  2. Borrelia burgdorferi elicited-IL-10 suppresses the production of inflammatory mediators, phagocytosis, and expression of co-stimulatory receptors by murine macrophages and/or dendritic cells.

    PubMed

    Chung, Yutein; Zhang, Nan; Wooten, R Mark

    2013-01-01

    Borrelia burgdorferi (Bb) is a tick-borne spirochete that is the causative agent for Lyme disease. Our previous studies indicate that virulent Bb can potently enhance IL-10 production by macrophages (MØs) and that blocking IL-10 production significantly enhances bacterial clearance. We hypothesize that skin-associated APC types, such as MØs and dendritic cells (DCs) are potent producers of IL-10 in response to Bb, which may act in autocrine fashion to suppress APC responses critical for efficient Bb clearance. Our goal is to delineate which APC immune functions are dysregulated by Bb-elicited IL-10 using a murine model of Lyme disease. Our in vitro studies indicated that both APCs rapidly produce IL-10 upon exposure to Bb, that these levels inversely correlate with the production of many Lyme-relevant proinflammatory cytokines and chemokines, and that APCs derived from IL-10(-/-) mice produced greater amounts of these proinflammatory mediators than wild-type APCs. Phagocytosis assays determined that Bb-elicited IL-10 levels can diminish Bb uptake and trafficking by MØs, suppresses ROS production, but does not affect NO production; Bb-elicited IL-10 had little effect on phagocytosis, ROS, and NO production by DCs. In general, Bb exposure caused little-to-no upregulation of several critical surface co-stimulatory markers by MØs and DCs, however eliminating Bb-elicited IL-10 allowed a significant upregulation in many of these co-stimulatory receptors. These data indicate that IL-10 elicited from Bb-stimulated MØs and DCs results in decreased production of proinflammatory mediators and co-stimulatory molecules, and suppress phagocytosis-associated events that are important for mediating both innate and adaptive immune responses by APCs.

  3. The Pore-Forming Toxin β hemolysin/cytolysin Triggers p38 MAPK-Dependent IL-10 Production in Macrophages and Inhibits Innate Immunity

    PubMed Central

    Bebien, Magali; Hensler, Mary E.; Davanture, Suzel; Hsu, Li-Chung; Karin, Michael; Park, Jin Mo; Alexopoulou, Lena; Liu, George Y.; Nizet, Victor; Lawrence, Toby

    2012-01-01

    Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns and immune-compromised adults. The pore-forming toxin (PFT) β hemolysin/cytolysin (βh/c) is a major virulence factor for GBS, which is generally attributed to its cytolytic functions. Here we show βh/c has immunomodulatory properties on macrophages at sub-lytic concentrations. βh/c-mediated activation of p38 MAPK drives expression of the anti-inflammatory and immunosuppressive cytokine IL-10, and inhibits both IL-12 and NOS2 expression in GBS-infected macrophages, which are critical factors in host defense. Isogenic mutant bacteria lacking βh/c fail to activate p38-mediated IL-10 production in macrophages and promote increased IL-12 and NOS2 expression. Furthermore, targeted deletion of p38 in macrophages increases resistance to invasive GBS infection in mice, associated with impaired IL-10 induction and increased IL-12 production in vivo. These data suggest p38 MAPK activation by βh/c contributes to evasion of host defense through induction of IL-10 expression and inhibition of macrophage activation, a new mechanism of action for a PFT and a novel anti-inflammatory role for p38 in the pathogenesis of invasive bacterial infection. Our studies suggest p38 MAPK may represent a new therapeutic target to blunt virulence and improve clinical outcome of invasive GBS infection. PMID:22829768

  4. Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages.

    PubMed

    González-Domínguez, Érika; Domínguez-Soto, Ángeles; Nieto, Concha; Flores-Sevilla, José Luis; Pacheco-Blanco, Mariana; Campos-Peña, Victoria; Meraz-Ríos, Marco A; Vega, Miguel A; Corbí, Ángel L; Sánchez-Torres, Carmen

    2016-02-01

    Human CD14(++)CD16(-) and CD14(+/lo)CD16(+) monocyte subsets comprise 85 and 15% of blood monocytes, respectively, and are thought to represent distinct stages in the monocyte differentiation pathway. However, the differentiation fates of both monocyte subsets along the macrophage (Mϕ) lineage have not yet been elucidated. We have now evaluated the potential of CD14(++) CD16(-) and CD16(+) monocytes to differentiate and to be primed toward pro- or anti-inflammatory Mϕs upon culture with GM-CSF or M-CSF, respectively (subsequently referred to as GM14, M14, GM16, or M16). Whereas GM16 and GM14 were phenotypic and functionally analogous, M16 displayed a more proinflammatory profile than did M14. Transcriptomic analyses evidenced that genes associated with M-CSF-driven Mϕ differentiation (including FOLR2, IL10, IGF1, and SERPINB2) are underrepresented in M16 with respect to M14. The preferential proinflammatory skewing of M16 relative to M14 was found to be mediated by the secretion of activin A and the low levels of IL-10 produced by M16. In fact, activin A receptor blockade during the M-CSF-driven differentiation of CD16(+) monocytes, or addition of IL-10-containing M14-conditioned medium, significantly enhanced their expression of anti-inflammatory-associated molecules while impairing their acquisition of proinflammatory-related markers. Thus, we propose that M-CSF drives CD14(++)CD16- monocyte differentiation into bona fide anti-inflammatory Mϕs in a self-autonomous manner, whereas M-CSF-treated CD16(+) monocytes generate Mϕs with a skewed proinflammatory profile by virtue of their high activin A expression unless additional anti-inflammatory stimuli such as IL-10 are provided.

  5. A Porphyra columbina hydrolysate upregulates IL-10 production in rat macrophages and lymphocytes through an NF-κB, and p38 and JNK dependent mechanism.

    PubMed

    Cian, Raúl E; López-Posadas, Rocío; Drago, Silvina R; Sánchez de Medina, Fermín; Martínez-Augustin, Olga

    2012-10-15

    The marine environment represents a relatively untapped source of functional ingredients. Here we characterise a hydrolysate obtained from Phorphyra columbina (PcRH) and its effects on primary splenocytes, macrophages and T lymphocytes in vitro. Our product had a high degree of hydrolysis, due to the use of a mixture of endo-peptidase and exo-peptidase, and was enriched in Asp, Ala and Glu. PcRH had mitogenic effects on rat splenic lymphocytes. IL-10 secretion was enhanced by PcRH in splenocytes (235%), macrophages (150%) and in lymphocytes (472%), while the production of TNFα and other proinflammatory cytokines by macrophages was inhibited (15-75%), especially under lipopolysaccharide stimulation. The effect of the hydrolysate on IL-10 was evoked by JNK, p38 MAPK and NF-κB dependent pathways in T lymphocytes. We conclude that PcRH has immunomodulatory effects on macrophages and lymphocytes, activating NF-κB and MAPK dependent pathways, and predominantly inducing IL-10 production.

  6. Identification of BCAP-{sub L} as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics

    SciTech Connect

    Matsumura, Takayuki; Oyama, Masaaki; Kozuka-Hata, Hiroko; Ishikawa, Kosuke; Inoue, Takafumi; Muta, Tatsushi; Semba, Kentaro; Inoue, Jun-ichiro

    2010-09-17

    Research highlights: {yields} Twenty five tyrosine-phosphorylated proteins in LPS-stimulated macrophages were determined. {yields} BCAP is a novel tyrosine-phosphorylated protein in LPS-stimulated macrophages. {yields} BCAP-{sub L} inhibits IL-6 and IL-10 production in LPS-stimulated macrophages. -- Abstract: Toll-like receptor (TLR) signaling in macrophages is essential for anti-pathogen responses such as cytokine production and antigen presentation. Although numerous reports suggest that protein tyrosine kinases (PTKs) are involved in cytokine induction in response to lipopolysaccharides (LPS; TLR4 ligand) in macrophages, the PTK-mediated signal transduction pathway has yet to be analyzed in detail. Here, we carried out a comprehensive and quantitative dynamic tyrosine phosphoproteomic analysis on the TLR4-mediated host defense system in RAW264.7 macrophages using stable isotope labeling by amino acids in cell culture (SILAC). We determined the temporal profiles of 25 proteins based on SILAC-encoded peptide(s). Of these, we focused on the tyrosine phosphorylation of B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) because the function of BCAP remains unknown in TLR signaling in macrophages. Furthermore, Bcap has two distinct transcripts, a full-length (Bcap-{sub L}) and an alternatively initiated or spliced (Bcap-{sub S}) mRNA, and little is known about the differential functions of the BCAP-{sub L} and BCAP-{sub S} proteins. Our study showed, for the first time, that RNAi-mediated selective depletion of BCAP-{sub L} enhanced IL-6 and IL-10 production but not TNF-{alpha} production in TLR ligand-stimulated macrophages. We propose that BCAP-{sub L} (but not BCAP-{sub S}) is a negative regulator of the TLR-mediated host defense system in macrophages.

  7. Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages.

    PubMed

    Koscsó, Balázs; Csóka, Balázs; Kókai, Endre; Németh, Zoltán H; Pacher, Pál; Virág, László; Leibovich, S Joseph; Haskó, György

    2013-12-01

    The alternatively activated macrophage phenotype induced by IL-10 is called M2c. Adenosine is an endogenous purine nucleoside that accumulates in the extracellular space in response to metabolic disturbances, hypoxia, inflammation, physical damage, or apoptosis. As adenosine is known to regulate classically activated M1 and IL4- and IL-13-activated M2a macrophages, the goal of the present study was to explore its effects on M2c macrophages. We found that adenosine augmented the IL-10-induced expression of TIMP-1 and arginase-1 by the mouse macrophage cell line RAW 264.7 and by mouse BMDMs. The effects of AR stimulation on IL-10-induced TIMP-1 or arginase-1 expression were lacking in A2BAR KO macrophages. The role of A2BAR on TIMP-1 production of RAW 264.7 cells was confirmed with specific agonist BAY606583 and antagonist PSB0788. AR stimulation augmented IL-10-induced STAT3 phosphorylation in macrophages, and pharmacological inhibition or silencing of STAT3 using siRNA reduced the stimulatory effect of AR stimulation on TIMP-1 production. In contrast to its stimulatory effect on IL-10-induced STAT3 activation, adenosine inhibited IL-6-induced STAT3 phosphorylation and SAA3 expression. In conclusion, adenosine enhances IL-10-induced STAT3 signaling and M2c macrophage activation.

  8. Endomorphins 1 and 2 inhibit IL-10 and IL-12 production and innate immune functions, and potentiate NF-kappaB DNA binding in THP-1 differentiated to macrophage-like cells.

    PubMed

    Azuma, Y; Ohura, K

    2002-09-01

    We evaluated immunological effects of opioid peptides endomorphins 1 and 2 on the production of interleukin-10 (IL-10) and IL-12 cytokines, functions related to innate immunity and NF-kappaB DNA binding in human cell line THP-1. Endomorphins 1 and 2 inhibited lipopolysaccharide (LPS)-stimulated IL-10 and IL-12 production in THP-1 differentiated to macrophage-like cells by phorbol 12-myristate 13-acetate (PMA). Similarly, they suppressed LPS-stimulated IL-10 and IL-12 production in THP-1 matured to monocytes by 1alpha,25-dihydroxyvitamin D3. In addition, endomorphins 1 and 2 led to marked potentiation of NF-kappaB binding in THP-1 differentiated to macrophage-like cells. Furthermore, these endomorphins further potentiated LPS-induced NF-kappaB binding. Moreover, they inhibited chemotaxis, phagocytosis of Escherichia coli and PMA-stimulated production of hydrogen peroxide in THP-1 differentiated to macrophage-like cells. These results suggest that endomorphins 1 and 2 may inhibit THP-1 functions, such as cytokine production and functions related to innate immune, and potentiate NF-kappaB DNA binding in THP-1.

  9. Porcine circovirus type 2 increases IL-1β and IL-10 production via the MyD88-NF-κB signaling pathway in porcine alveolar macrophages in vitro.

    PubMed

    Han, Junyuan; Zhang, Shuxia; Zhang, Yaqun; Chen, Mengmeng; Lv, Yingjun

    2016-07-25

    Porcine alveolar macrophages represent the first line of defense in the porcine lung after infection with porcine circovirus type 2 (PCV2) via the respiratory tract. However, PCV2 infection impairs the microbicidal capability of PAMs and alters cytokine production and/or secretion. Currently, the reason for the imbalance of cytokines has not been fully elucidated and the regulatory mechanisms involved are not clear. Here, we investigated the expression levels and regulation of IL-1β and IL-10 in PAMs following incubation with PCV2 in vitro. Both levels of IL-1β and IL-10 increased in PAM supernatants, and the distribution of NF-κB p65 staining in the nucleus, the expression of MyD88 and p-IκB in the cytoplasm and the DNA-binding activity of NF-κB increased after incubation with PCV2, while the expression of p65 in the cytoplasm of PAMs decreased. However, when PAMs were co-incubated with PCV2 and small interfering RNA targeting MyD88, these effects were reversed. Additionally, mRNA expression levels of Toll-like receptor (TLR)-2, -3, -4, -7, -8 and -9 were increased when PAMs were incubated with PCV2. These findings showed that PCV2 induced increased IL-1β and IL-10 production in PAMs, and these changes in expression were relative to the TLR-MyD88-NF-κB signaling pathway.

  10. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration.

    PubMed

    Makita, Naoyuki; Hizukuri, Yoshiyuki; Yamashiro, Kyoko; Murakawa, Masao; Hayashi, Yasuhiro

    2015-03-01

    M2 macrophages have been subdivided into subtypes such as IL-4-induced M2a and IL-10-induced M2c in vitro. Although it was reported that IL-10 stimulation leads to an increase in IL-4Rα, the effect of IL-4 and IL-10 in combination with macrophage subtype differentiation remains unclear. Thus, we sought to clarify whether IL-10 enhanced the M2 phenotype induced by IL-4. In this study, we showed that IL-10 enhanced IL-4Rα expression in M-CSF-induced bone marrow-derived macrophages (BMDMs). Global gene expression analysis of M2 macrophages induced by IL-4, IL-10 or IL-4 + IL-10 showed that IL-10 enhanced gene expression of M2a markers induced by IL-4 in M-CSF-induced BMDMs. Moreover, IL-4 and IL-10 synergistically induced CCL24 (Eotaxin-2) production. Enhanced CCL24 expression was also observed in GM-CSF-induced BMDMs and zymosan-elicited, thioglycolate-elicited and naive peritoneal macrophages. CCL24 is a CCR3 agonist and an eosinophil chemoattractant. In vitro, IL-4 + IL-10-stimulated macrophages produced a large amount of CCL24 and increased eosinophil migration, which was inhibited by anti-CCL24 antibody. We also showed that IL-4 + IL-10-stimulated (but not IL-4 or IL-10 alone) macrophages transferred into the peritoneum of C57BL/6J mice increased eosinophil infiltration into the peritoneal cavity. These results demonstrate that IL-4 + IL-10-simulated macrophages have enhanced M2a macrophage-related gene expression, CCL24 production and eosinophil infiltration-inducing activity, thereby suggesting their contribution to eosinophil-related diseases.

  11. Interleukin-10 (IL-10) Polymorphisms Are Associated with IL-10 Production and Clinical Malaria in Young Children

    PubMed Central

    Manaca, Maria Nelia; McNamara-Smith, Michelle; Mayor, Alfredo; Nhabomba, Augusto; Berthoud, Tamara Katherine; Khoo, Siew-Kim; Wiertsema, Selma; Aguilar, Ruth; Barbosa, Arnoldo; Quintó, Llorenç; Candelaria, Pierre; Schultz, En Nee; Hayden, Catherine M.; Goldblatt, Jack; Guinovart, Caterina; Alonso, Pedro L.; LeSouëf, Peter N.

    2012-01-01

    The role of interleukin-10 (IL-10) in malaria remains poorly characterized. The aims of this study were to investigate (i) whether genetic variants of the IL-10 gene influence IL-10 production and (ii) whether IL-10 production as well as the genotypes and haplotypes of the IL-10 gene in young children and their mothers are associated with the incidence of clinical malaria in young children. We genotyped three IL-10 single nucleotide polymorphisms in 240 children and their mothers from a longitudinal prospective cohort and assessed the IL-10 production by maternal peripheral blood mononuclear cells (PBMCs) and cord blood mononuclear cells (CBMCs). Clinical episodes of Plasmodium falciparum malaria in the children were documented until the second year of life. The polymorphism IL-10 A-1082G (GCC haplotype of three SNPs in IL-10) in children was associated with IL-10 production levels by CBMC cultured with P. falciparum-infected erythrocytes (P = 0.043), with the G allele linked to low IL-10 production capacity. The G allele in children was also significantly associated with a decreased risk for clinical malaria infection in their second year of life (P = 0.016). Furthermore, IL-10 levels measured in maternal PBMCs cultured with infected erythrocytes were associated with increased risk of malaria infection in young children (P < 0.001). In conclusion, IL-10 polymorphisms and IL-10 production capacity were associated with clinical malaria infections in young children. High IL-10 production capacity inherited from parents may diminish immunological protection against P. falciparum infection, thereby being a risk for increased malaria morbidity. PMID:22566507

  12. TNF-alpha and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages.

    PubMed

    Rojas, M; Olivier, M; Gros, P; Barrera, L F; García, L F

    1999-05-15

    The Bcg/Nramp1 gene controls early resistance and susceptibility of macrophages to mycobacterial infections. We previously reported that Mycobacterium tuberculosis-infected (Mtb) B10R (Bcgr) and B10S (Bcgs) macrophages differentially produce nitric oxide (NO-), leading to macrophage apoptosis. Since TNF-alpha and IL-10 have opposite effects on many macrophage functions, we determined the number of cells producing TNF-alpha and IL-10 in Mtb-infected or purified protein derivative-stimulated B10R and B10S macrophages lines, and Nramp1+/+ and Nramp1-/- peritoneal macrophages and correlated them with Mtb-mediated apoptosis. Mtb infection and purified protein derivative treatment induced more TNF-alpha+Nramp1+/+ and B10R, and more IL-10+Nramp1-/- and B10S cells. Treatment with mannosylated lipoarabinomannan, which rescues macrophages from Mtb-induced apoptosis, augmented the number of IL-10 B10R+ cells. Anti-TNF-alpha inhibited apoptosis, diminished NO- production, p53, and caspase 1 activation and increased Bcl-2 expression. In contrast, anti-IL-10 increased caspase 1 activation, p53 expression, and apoptosis, although there was no increment in NO- production. Murine rTNF-alpha induced apoptosis in noninfected B10R and B10S macrophages that was reversed by murine rIL-10 in a dose-dependent manner with concomitant inhibition of NO- production and caspase 1 activation. NO- and caspase 1 seem to be independently activated in that aminoguanidine did not affect caspase 1 activation and the inhibitor of caspase 1, Tyr-Val-Ala-Asp-acylooxymethylketone, did not block NO- production; however, both treatments inhibited apoptosis. These results show that Mtb activates TNF-alpha- and IL-10-dependent opposite signals in the induction of macrophage apoptosis and suggest that the TNF-alpha-IL-10 ratio is controlled by the Nramp1 background of resistance/susceptibility and may account for the balance between apoptosis and macrophage survival.

  13. Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli

    PubMed Central

    Chuang, Yishan; Knickel, Brianne K.; Leonard, Joshua N.

    2017-01-01

    Macrophages are ubiquitous innate immune cells that play a central role in health and disease by functionally “polarizing” to distinct phenotypes, which are broadly divided into classical inflammatory responses (M1) and alternative responses (M2) that promote immune suppression and wound healing. Although macrophages are attractive therapeutic targets, incomplete understanding of polarization limits clinical manipulation. While individual stimuli, pathways, and genes involved in polarization have been identified, how macrophages evaluate complex in vivo milieus comprising multiple divergent stimuli remains poorly understood. Here, we used combinations of “incoherent” stimuli – those that individually promote distinct macrophage phenotypes – to elucidate how the immunosuppressive, IL-10-driven macrophage phenotype is induced, maintained, and modulated under such combinatorial stimuli. The IL-10-induced immunosuppressive phenotype was largely dominant but required sustained IL-10 signaling to maintain this phenotype. Our data also implicate the intracellular protein, BCL3, as a key mediator of the IL-10-driven phenotype. IL-12 did not directly impact polarization of IL-10-treated macrophages, but IFNγ disrupted a positive feedback loop that may reinforce the IL-10-driven phenotype in vivo. This novel combinatorial perturbation approach thus generated new insights into macrophage decision making and local immune network function. PMID:27670945

  14. IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis.

    PubMed

    Cao, Qi; Wang, Yiping; Zheng, Dong; Sun, Yan; Wang, Ya; Lee, Vincent W S; Zheng, Guoping; Tan, Thian Kui; Ince, Jon; Alexander, Stephen I; Harris, David C H

    2010-06-01

    IL-10/TGF-beta-modified macrophages, a subset of activated macrophages, produce anti-inflammatory cytokines, suggesting that they may protect against inflammation-mediated injury. Here, macrophages modified ex vivo by IL-10/TGF-beta (IL-10/TGF-beta Mu2) significantly attenuated renal inflammation, structural injury, and functional decline in murine adriamycin nephrosis (AN). These cells deactivated effector macrophages and inhibited CD4+ T cell proliferation. IL-10/TGF-beta Mu2 expressed high levels of the regulatory co-stimulatory molecule B7-H4, induced regulatory T cells from CD4+CD25- T cells in vitro, and increased the number of regulatory T cells in lymph nodes draining the kidneys in AN. The phenotype of IL-10/TGF-beta Mu2 did not switch to that of effector macrophages in the inflamed kidney, and these cells did not promote fibrosis. Taken together, these data demonstrate that IL-10/TGF-beta-modified macrophages effectively protect against renal injury in AN and may become part of a therapeutic strategy for chronic inflammatory disease.

  15. The role of macrophage IL-10/innate IFN interplay during virus-induced asthma

    PubMed Central

    Zdrenghea, Mihnea T; Makrinioti, Heidi; Muresan, Adriana; Johnston, Sebastian L; Stanciu, Luminita A

    2015-01-01

    Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10–IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations. PMID:25430775

  16. Regular physical activity prevents chronic pain by altering resident muscle macrophage phenotype and increasing IL-10 in mice

    PubMed Central

    Leung, Audrey; Gregory, Nicholas S.; Allen, Lee-Ann H.; Sluka, Kathleen A.

    2015-01-01

    Regular physical activity in healthy individuals prevents development of chronic musculoskeletal pain; however, the mechanisms underlying this exercise-induced analgesia are not well understood. Interleukin-10(IL-10), an anti-inflammatory cytokine which can reduce nociceptor sensitization, increases during regular physical activity. Since macrophages play a major role in cytokine production and are present in muscle tissue, we propose that physical activity alters macrophage phenotype to increase IL-10 and prevent chronic pain. Physical activity was induced by allowing C57BL/6J mice free access to running wheels for 8 weeks and compared to sedentary mice with no running wheels. Using immunohistochemical staining of the gastrocnemius muscle to label regulatory (M2, secretes anti-inflammatory cytokines) and classical (M1, secretes proinflammatory cytokines) macrophages, the percentage of M2-macrophages increased significantly in physically active mice (68.5±4.6% of total) compared to sedentary mice (45.8±7.1% of total). Repeated acid injections into the muscle enhanced mechanical sensitivity of the muscle and paw in sedentary animals that does not occur in physically active mice; no sex differences occur in either sedentary or physically active mice. Blockade of IL-10 systemically or locally prevented the analgesia in physically active mice, i.e. mice developed hyperalgesia. Conversely, sedentary mice pretreated systemically or locally with IL-10 had reduced hyperalgesia after repeated acid injections. Thus, these results suggest that regular physical activity increases the percentage of regulatory macrophages in muscle and that IL-10 is an essential mediator in the analgesia produced by regular physical activity. PMID:26230740

  17. Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine

    PubMed Central

    Ochi, Takanori; Feng, Yongjia; Kitamoto, Sho; Nagao-Kitamoto, Hiroko; Kuffa, Peter; Atarashi, Koji; Honda, Kenya; Teitelbaum, Daniel H.; Kamada, Nobuhiko

    2016-01-01

    Intestinal resident macrophages (Mϕs) regulate gastrointestinal homeostasis via production of an anti-inflammatory cytokine interleukin (IL)-10. Although a constant replenishment by circulating monocytes is required to maintain the pool of resident Mϕs in the colonic mucosa, the homeostatic regulation of Mϕ in the small intestine (SI) remains unclear. Here, we demonstrate that direct stimulation by dietary amino acids regulates the homeostasis of intestinal Mϕs in the SI. Mice that received total parenteral nutrition (TPN), which deprives the animals of enteral nutrients, displayed a significant decrease of IL-10-producing Mϕs in the SI, whereas the IL-10-producing CD4+ T cells remained intact. Likewise, enteral nutrient deprivation selectively affected the monocyte-derived F4/80+ Mϕ population, but not non-monocytic precursor-derived CD103+ dendritic cells. Notably, in contrast to colonic Mϕs, the replenishment of SI Mϕs and their IL-10 production were not regulated by the gut microbiota. Rather, SI Mϕs were directly regulated by dietary amino acids. Collectively, our study highlights the diet-dependent, microbiota-independent regulation of IL-10-producing resident Mϕs in the SI. PMID:27302484

  18. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing.

    PubMed

    Lurier, Emily B; Dalton, Donald; Dampier, Will; Raman, Pichai; Nassiri, Sina; Ferraro, Nicole M; Rajagopalan, Ramakrishan; Sarmady, Mahdi; Spiller, Kara L

    2017-02-20

    Alternatively activated "M2" macrophages are believed to function during late stages of wound healing, behaving in an anti-inflammatory manner to mediate the resolution of the pro-inflammatory response caused by "M1" macrophages. However, the differences between two main subtypes of M2 macrophages, namely interleukin-4 (IL-4)-stimulated "M2a" macrophages and IL-10-stimulated "M2c" macrophages, are not well understood. M2a macrophages are characterized by their ability to inhibit inflammation and contribute to the stabilization of angiogenesis. However, the role and temporal profile of M2c macrophages in wound healing are not known. Therefore, we performed next generation sequencing (RNA-seq) to identify biological functions and gene expression signatures of macrophages polarized in vitro with IL-10 to the M2c phenotype in comparison to M1 and M2a macrophages and an unactivated control (M0). We then explored the expression of these gene signatures in a publicly available data set of human wound healing. RNA-seq analysis showed that hundreds of genes were upregulated in M2c macrophages compared to the M0 control, with thousands of alternative splicing events. Following validation by Nanostring, 39 genes were found to be upregulated by M2c macrophages compared to the M0 control, and 17 genes were significantly upregulated relative to the M0, M1, and M2a phenotypes (using an adjusted p-value cutoff of 0.05 and fold change cutoff of 1.5). Many of the identified M2c-specific genes are associated with angiogenesis, matrix remodeling, and phagocytosis, including CD163, MMP8, TIMP1, VCAN, SERPINA1, MARCO, PLOD2, PCOCLE2 and F5. Analysis of the macrophage-conditioned media for secretion of matrix-remodeling proteins showed that M2c macrophages secreted higher levels of MMP7, MMP8, and TIMP1 compared to the other phenotypes. Interestingly, temporal gene expression analysis of a publicly available microarray data set of human wound healing showed that M2c-related genes were

  19. Reciprocal induction of IL-10 and IL-12 from macrophages by low-density lipoprotein and its oxidized forms.

    PubMed

    Varadhachary, A S; Monestier, M; Salgame, P

    2001-10-10

    Atherosclerosis is a chronic inflammatory disease. Several lines of evidence indicate that altered or modified lipoproteins contribute to plaque formation and lesion progression in atherogenesis. In this study we examined if lipoproteins and their oxidized forms can exert an immunomodulatory effect, thereby potentially influencing atherogenesis. We demonstrate that LDL, upon binding to its receptor, induces interleukin (IL)-10 production from macrophages and biases naive T cells to become Th2-like. In contrast, oxLDL induces IL-12 from macrophages and accordingly favors differentiation of naive T cells along a Th1 pathway. IL-10 is a potent anti-inflammatory cytokine with a number of potential effects that could dampen inflammation at sites of vascular wall damage, including downregulation of MHC and adhesion molecules and biasing of adaptive immune responses toward the anti-inflammatory, humoral immune-promoting Th2 T cell subset. These studies assign a new immunomodulatory role to LDLs and offer a potential means to upregulate IL-10 production and prevent arterial inflammation.

  20. IL-10 down-regulates costimulatory molecules on Mycobacterium tuberculosis-pulsed macrophages and impairs the lytic activity of CD4 and CD8 CTL in tuberculosis patients.

    PubMed

    de la Barrera, S; Aleman, M; Musella, R; Schierloh, P; Pasquinelli, V; Garcia, V; Abbate, E; Sasiain, M del C

    2004-10-01

    Activation of T cells requires both TCR-specific ligation and costimulation through accessory molecules during T cell priming. IFNgamma is a key cytokine responsible for macrophage activation during Mycobacterium tuberculosis (Mtb) infection while IL-10 is associated with suppression of cell mediated immunity in intracellular infection. In this paper we evaluated the role of IFNgamma and IL-10 on the function of cytotoxic T cells (CTL) and on the modulation of costimulatory molecules in healthy controls and patients with active tuberculosis (TB). gamma-irradiated-Mtb (i-Mtb) induced IL-10 production from CD14(+) cells from TB patients. Moreover, CD3(+) T cells of patients with advanced disease also produced IL-10 after i-Mtb stimulation. In healthy donors, IL-10 decreased the lytic activity of CD4(+) and CD8(+) T cells whereas it increased gammadelta-mediated cytotoxicity. Furthermore, we found that the presence of IL-10 induced a loss of the alternative processing pathways of antigen presentation along with a down-regulation of the expression of costimulatory molecule expression on monocytes and macrophages from healthy individuals. Conversely, neutralization of endogenous IL-10 or addition of IFNgamma to either effector or target cells from TB patients induced a strong lytic activity mediated by CD8(+) CTL together with an up-regulation of CD54 and CD86 expression on target cells. Moreover, we observed that macrophages from TB patients could use alternative pathways for i-Mtb presentation. Taken together, our results demonstrate that the presence of IL-10 during Mtb infection might contribute to mycobacteria persistence inside host macrophages through a mechanism that involved inhibition of MHC-restricted cytotoxicity against infected macrophages.

  1. Interleukin 10 (IL-10)-mediated Immunosuppression: MARCH-I INDUCTION REGULATES ANTIGEN PRESENTATION BY MACROPHAGES BUT NOT DENDRITIC CELLS.

    PubMed

    Mittal, Sharad K; Cho, Kyung-Jin; Ishido, Satoshi; Roche, Paul A

    2015-11-06

    Efficient immune responses require regulated antigen presentation to CD4 T cells. IL-10 inhibits the ability of dendritic cells (DCs) and macrophages to stimulate antigen-specific CD4 T cells; however, the mechanisms by which IL-10 suppresses antigen presentation remain poorly understood. We now report that IL-10 stimulates expression of the E3 ubiquitin ligase March-I in activated macrophages, thereby down-regulating MHC-II, CD86, and antigen presentation to CD4 T cells. By contrast, IL-10 does not stimulate March-I expression in DCs, does not suppress MHC-II or CD86 expression on either resting or activated DCs, and does not affect antigen presentation by activated DCs. IL-10 does, however, inhibit the process of DC activation itself, thereby reducing the efficiency of antigen presentation in a March-I-independent manner. Thus, IL-10 suppression of antigen presenting cell function in macrophages is March-I-dependent, whereas in DCs, suppression is March- I-independent.

  2. Heat-killed BCG induces biphasic cyclooxygenase 2+ splenic macrophage formation--role of IL-10 and bone marrow precursors.

    PubMed

    Shibata, Yoshimi; Gabbard, Jon; Yamashita, Makiko; Tsuji, Shoutaro; Smith, Mike; Nishiyama, Akihito; Henriksen, Ruth Ann; Myrvik, Quentin N

    2006-09-01

    Previous studies have shown that prostaglandin E(2) (PGE(2)) release by splenic F4/80(+) cyclooxygenase (COX)-2(+) macrophages (MØ) isolated from mice, treated with mycobacterial components, plays a major role in the regulation of immune responses. However, splenic MØ, isolated from untreated mice and treated in vitro with lipopolysaccharide and interferon-gamma, express COX-1 and COX-2 within 1 day but release only minimal amounts of PGE(2) following elicitation with calcium ionophore A23187. For further characterization of in vivo requirements for development of PGE(2)-releasing MØ (PGE(2)-MØ), C57Bl/6 [wild-type (WT)], and interleukin (IL)-10-deficient (IL-10(-/-)) mice were treated intraperitoneally with heat-killed Mycobacterium bovis bacillus Calmette-Guerin (HK-BCG). One day following injection, COX-2 was induced in splenic MØ of both mouse strains. However, PGE(2) biosynthesis by these MØ was not increased. Thus, expression of COX-2 is not sufficient to induce PGE(2) production in vivo or in vitro. In sharp contrast, 14 days after HK-BCG treatment, PGE(2) release by COX-2(+) splenic MØ increased as much as sevenfold, and a greater increase was seen in IL-10(-/-) cells than in WT cells. To further determine whether the 14-day splenic PGE(2)-MØ could be derived from bone marrow precursors, we established a chimera in which bone marrow cells were transfused from green fluorescent protein (GFP)-transgenic donors to WT mice. Donors and recipients were treated with HK-BCG simultaneously, and marrow transfusion was performed on Days 1 and 2. On Day 14 after BCG treatment, a significant number of spleen cells coexpressed COX-2 and GFP, indicating that bone marrow-derived COX-2(+) MØ may be responsible for the increased PGE(2) production.

  3. Hepatocellular carcinoma is accelerated by NASH involving M2 macrophage polarization mediated by hif-1αinduced IL-10.

    PubMed

    Ambade, Aditya; Satishchandran, Abhishek; Saha, Banishree; Gyongyosi, Benedek; Lowe, Patrick; Kodys, Karen; Catalano, Donna; Szabo, Gyongyi

    2016-01-01

    Obesity-related inflammation promotes cancer development. Tissue resident macrophages affect tumor progression and the tumor micro-environment favors polarization into alternatively activated macrophages (M2) that facilitate tumor invasiveness. Here, we dissected the role of western diet-induced NASH in inducing macrophage polarization in a carcinogen initiated model of hepatocellular carcinoma (HCC). Adult C57BL/6 male mice received diethyl nitrosamine (DEN) followed by 24 weeks of high fat-high cholesterol-high sugar diet (HF-HC-HSD). We assessed liver MRI and histology, serum ALT, AFP, liver triglycerides, and cytokines. Macrophage polarization was determined by IL-12/TNFα (M1) and CD163/CD206 (M2) expression using flow cytometry. Role of hif-1α-induced IL-10 was dissected in hepatocyte specific hif-1αKO and hif-1αdPA (over-expression) mice. The western diet-induced features of NASH and accelerated HCC development after carcinogen exposure. Liver fibrosis and serum AFP were significantly increased in DEN + HF-HC-HSD mice compared to controls. Western diet resulted in macrophage (F4/80(+)CD11b(+)) infiltration to liver and DEN + HF-HC-HSD mice showed preferential increase in M2 macrophages. Isolated hepatocytes from western diet fed mice showed significant upregulation of the hypoxia-inducible transcription factor, hif-1α, and livers from hif-1α over-expressing mice had increased proportion of M2 macrophages. Primary hepatocytes from wild-type mice treated with DEN and palmitic acid in vitro showed activation of hif-1α and induction of IL-10, a M2 polarizing cytokine. IL-10 neutralization in hepatocyte-derived culture supernatant prevented M2 macrophage polarization and silencing hif-1α in macrophages blocked their M2 polarization. Therefore, our data demonstrate that NASH accelerates HCC progression via upregulation of hif-1α mediated IL-10 polarizing M2 macrophages.

  4. DC-Derived IL-10 Modulates Pro-inflammatory Cytokine Production and Promotes Induction of CD4+IL-10+ Regulatory T Cells during Plasmodium yoelii Infection

    PubMed Central

    Loevenich, Katharina; Ueffing, Kristina; Abel, Simone; Hose, Matthias; Matuschewski, Kai; Westendorf, Astrid M.; Buer, Jan; Hansen, Wiebke

    2017-01-01

    The cytokine IL-10 plays a crucial role during malaria infection by counteracting the pro-inflammatory immune response. We and others demonstrated that Plasmodium yoelii infection results in enhanced IL-10 production in CD4+ T cells accompanied by the induction of an immunosuppressive phenotype. However, it is unclear whether this is a direct effect caused by the parasite or an indirect consequence due to T cell activation by IL-10-producing antigen-presenting cells. Here, we demonstrate that CD11c+CD11b+CD8− dendritic cells (DCs) produce elevated levels of IL-10 after P. yoelii infection of BALB/c mice. DC-specific ablation of IL-10 in P. yoelii-infected IL-10flox/flox/CD11c-cre mice resulted in increased IFN-γ and TNF-α production with no effect on MHC-II, CD80, or CD86 expression in CD11c+ DCs. Accordingly, DC-specific ablation of IL-10 exacerbated systemic IFN-γ and IL-12 production without altering P. yoelii blood stage progression. Strikingly, DC-specific inactivation of IL-10 in P. yoelii-infected mice interfered with the induction of IL-10-producing CD4+ T cells while raising the frequency of IFN-γ-secreting CD4+ T cells. These results suggest that P. yoelii infection promotes IL-10 production in DCs, which in turn dampens secretion of pro-inflammatory cytokines and supports the induction of CD4+IL-10+ T cells. PMID:28293237

  5. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells

    PubMed Central

    Ruffell, Brian; Chang-Strachan, Debbie; Chan, Vivien; Rosenbusch, Alexander; Ho, Christine M.T.; Pryer, Nancy; Daniel, Dylan; Hwang, E. Shelley; Rugo, Hope S.; Coussens, Lisa M.

    2014-01-01

    Summary Blockade of colony-stimulating factor-1 (CSF-1) limits macrophage infiltration and improves response of mammary carcinomas to chemotherapy. Herein we identify interleukin (IL)-10 expression by macrophages as the critical mediator of this phenotype. Infiltrating macrophages were the primary source of IL-10 within tumors, and therapeutic blockade of IL-10 receptor (IL-10R) was equivalent to CSF-1 neutralization in enhancing primary tumor response to paclitaxel and carboplatin. Improved response to chemotherapy was CD8+ T cell-dependent, however IL-10 did not directly suppress CD8+ T cells or alter macrophage polarization. Instead, IL-10R blockade increased intratumoral dendritic cell expression of IL-12, which was necessary for improved outcomes. In human breast cancer, expression of IL12A and cytotoxic effector molecules were predictive of pathological complete response rates to paclitaxel. PMID:25446896

  6. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology

    PubMed Central

    Montes de Oca, Marcela; Kumar, Rajiv; de Labastida Rivera, Fabian; Amante, Fiona H; Sheel, Meru; Faleiro, Rebecca J.; Bunn, Patrick T.; Best, Shannon E.; Beattie, Lynette; Ng, Susanna S.; Edwards, Chelsea L.; Muller, Werner; Cretney, Erika; Nutt, Stephen L.; Smyth, Mark J.; Haque, Ashraful; Hill, Geoffrey R.; Sundar, Shyam; Kallies, Axel; Engwerda, Christian R.

    2016-01-01

    Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation. PMID:26765224

  7. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology.

    PubMed

    Montes de Oca, Marcela; Kumar, Rajiv; de Labastida Rivera, Fabian; Amante, Fiona H; Sheel, Meru; Faleiro, Rebecca J; Bunn, Patrick T; Best, Shannon E; Beattie, Lynette; Ng, Susanna S; Edwards, Chelsea L; Muller, Werner; Cretney, Erika; Nutt, Stephen L; Smyth, Mark J; Haque, Ashraful; Hill, Geoffrey R; Sundar, Shyam; Kallies, Axel; Engwerda, Christian R

    2016-01-01

    Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.

  8. IL-10 Cytokine Released from M2 Macrophages Is Crucial for Analgesic and Anti-inflammatory Effects of Acupuncture in a Model of Inflammatory Muscle Pain

    PubMed Central

    da Silva, Morgana D.; Bobinski, Franciane; Sato, Karina L.; Kolker, Sandra J.; Sluka, Kathleen A.; Santos, Adair R. S.

    2014-01-01

    Muscle pain is a common medical problem that is difficult to treat. One nonpharmacological treatment used is acupuncture, a procedure in which fine needles are inserted into body points with the intent of relieving pain and other symptoms. Here we investigated the effects of manual acu-puncture (MA) on modulating macrophage phenotype and interleukin-10 (IL-10) concentrations in animals with muscle inflammation. Carrageenan, injected in the gastrocnemius muscle of mice, induces an inflammatory response characterized by mechanical hyperalgesia and edema. The inflammation is initially a neutrophilic infiltration that converts to a macrophage-dominated inflammation by 48 h. MA of the Sanyinjiao or Spleen 6 (SP6) acupoint reduces nociceptive behaviors, heat, and mechanical hyperalgesia and enhanced escape/avoidance and the accompanying edema. SP6 MA increased muscle IL-10 levels and was ineffective in reducing pain behaviors and edema in IL-10 knockout (IL-10−/−) mice. Repeated daily treatments with SP6 MA induced a phenotypic switch of muscle macrophages with reduced M1 macrophages (pro-inflammatory cells) and an increase of M2 macrophages (anti-inflammatory cells and important IL-10 source). These findings provide new evidence that MA produces a phenotypic switch in macrophages and increases IL-10 concentrations in muscle to reduce pain and inflammation. PMID:24961568

  9. Endogenous IL-10 regulates IFN-gamma and IL-5 cytokine production and the granulomatous response in Schistosomiasis mansoni-infected mice.

    PubMed Central

    Boros, D L; Whitfield, J R

    1998-01-01

    In murine Schistosomiasis mansoni circumovum, granuloma formation is regulated by pro- and anti-inflammatory cytokines. Among the latter, interleukin-10 (IL-10) has been shown to regulate the inflammatory response. In this study we examined the role of endogenously produced IL-10 in T-helper 1 (Th1)- and Th2-type cytokine production and granuloma formation. The dynamics of IL-10 production through the course of the infection were different in granuloma versus splenic cells. In the former, production peaked during the early developmental stage (6 weeks of infection) of the granuloma and then declined. In splenocytes production peaked at 12 weeks, before down-modulation of the granuloma response. In the developing granuloma both macrophages and T cells secreted IL-10. In anti-IL-10 monoclonal antibody (mAb)-supplemented granuloma cell cultures endogenous IL-10-mediated regulation of interferon-gamma (IFN-gamma) was manifest only at 6 weeks; that of IL-2 continued throughout the infection (6-20 weeks). IL-4 production was unaffected, but IL-5 production was regulated at the 6 and 8 weeks time point. Splenocytes showed regulation of IFN-gamma and IL-2 production at the peak of the granulomatous response (8 weeks). IL-4 production was not regulated, whereas IL-5 production was regulated only at 6 weeks. Repeated injections of anti-IL-10 mAb given to mice at 6, 12 or 20 weeks of the infection significantly enhanced liver and lung granuloma growth, tissue eosinophilia, and IFN-gamma, IL-5 production at the early developmental phase (6 weeks) of the lesions. Thus, in schistosome-infected mice endogenous IL-10 is shown to regulate Th1- and Th2-type cytokine production and granuloma formation during the early Th0/Th1 phase of the immune response. PMID:9767435

  10. Manipulation of IL-10 gene expression by Toxoplasma gondii and its products

    PubMed Central

    Pestechian, Nader; Khanahmad Shahreza, Hosein; Faridnia, Roghiyeh; Kalani, Hamed

    2016-01-01

    Background: This study was designed to evaluate whether or not T. gondii and its derivatives can change the gene expression level of IL-10 in murine leukocytes in vivo. Methods: Fifty BALB/c mice were divided into 5 groups, four of which received the excretory/secretory product (ESP) from cell culture medium, the ESP from cell free medium, the Toxoplasma lysate product (TLP) and the active tachyzoites, respectively. The fifth group was considered as control and received PBS. The peritoneal leukocytes from the mice were collected. Their total RNA were extracted and converted to cDNA and the gene expression levels of IL-10 in the samples were evaluated by quantitative real time-PCR using the REST-2009 software. Results: The findings showed a decrease in the expression level of IL-10 in the TLP group (p=0.004). Moreover, the IL-10 gene expression level was upregulated in the group of the ESP from cell culture medium (p=0.04) and the active tachyzoite group (p=0.04). The expression of IL-10 gene in the group of ESP from cell-free medium was not significant compared to the control one (p=0.45). Conclusion: T. gondii and its derivatives are able to increase (the active T. gondii tachyzoite and the ESP from cell culture medium) and decrease (the TLP) the gene expression level of IL-10 in a murine model. The question remains to be examined in further study about which molecules are involved in this process. PMID:27683651

  11. IL-10 production from dendritic cells is associated with DC SIGN in human leprosy.

    PubMed

    Kumar, Sudhir; Naqvi, Raza Ali; Bhat, Ajaz A; Rani, Richa; Ali, Riyasat; Agnihotri, Abhishek; Khanna, Neena; Rao, D N

    2013-12-01

    The defective antigen presenting ability of antigen presenting cells (APCs) modulates host cytokines and co-stimulatory signals that may lead to severity of leprosy. In the present study, we sought to evaluate the phenotypic features of APCs along with whether DC SIGN (DC-specific intercellular adhesion molecule-grabbing nonintegrin) influences IL-10 production while moving from tuberculoid (BT/TT) to lepromatous (BL/LL) pole in leprosy pathogenesis. The study revealed an increased expression of DC SIGN on CD11c⁺ cells from BL/LL patients and an impaired form of CD83 (∼50 kDa). However, the cells after treatment with GM-CSF+IL-4+ManLAM showed an increased expression of similar form of CD83 on DCs. Upon treatment with ManLAM, DCs were found to show increased nuclear presence of NF-κB, thus leading to higher IL-10 production. High IL-10 production from ManLAM treated PBMCs further suggested the role of DC SIGN in subverting the DCs function towards BL/LL pole of leprosy. Anti-DC SIGN treatment resulting in restricted nuclear ingression of NF-κB as well as its acetylation along with enhanced T cell proliferation validated our findings. In conclusion, Mycobacterium leprae component triggers DC SIGN on DCs to induce production of IL-10 by modulating intracellular signalling pathway at the level of transcription factor NF-κB towards BL/LL pole of disease.

  12. The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia.

    PubMed

    Chakraborty, Krishnendu; Raundhal, Mahesh; Chen, Bill B; Morse, Christina; Tyurina, Yulia Y; Khare, Anupriya; Oriss, Timothy B; Huff, Rachael; Lee, Janet S; St Croix, Claudette M; Watkins, Simon; Mallampalli, Rama K; Kagan, Valerian E; Ray, Anuradha; Ray, Prabir

    2017-01-11

    Bacterial pneumonia is a significant healthcare burden worldwide. Failure to resolve inflammation after infection precipitates lung injury and an increase in morbidity and mortality. Gram-negative bacteria are common in pneumonia and increased levels of the mito-damage-associated molecular pattern (DAMP) cardiolipin can be detected in the lungs. Here we show that mice infected with Klebsiella pneumoniae develop lung injury with accumulation of cardiolipin. Cardiolipin inhibits resolution of inflammation by suppressing production of anti-inflammatory IL-10 by lung CD11b(+)Ly6G(int)Ly6C(lo)F4/80(+) cells. Cardiolipin induces PPARγ SUMOylation, which causes recruitment of a repressive NCOR/HDAC3 complex to the IL-10 promoter, but not the TNF promoter, thereby tipping the balance towards inflammation rather than resolution. Inhibition of HDAC activity by sodium butyrate enhances recruitment of acetylated histone 3 to the IL-10 promoter and increases the concentration of IL-10 in the lungs. These findings identify a mechanism of persistent inflammation during pneumonia and indicate the potential of HDAC inhibition as a therapy.

  13. The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia

    PubMed Central

    Chakraborty, Krishnendu; Raundhal, Mahesh; Chen, Bill B.; Morse, Christina; Tyurina, Yulia Y.; Khare, Anupriya; Oriss, Timothy B.; Huff, Rachael; Lee, Janet S.; St. Croix, Claudette M.; Watkins, Simon; Mallampalli, Rama K.; Kagan, Valerian E.; Ray, Anuradha; Ray, Prabir

    2017-01-01

    Bacterial pneumonia is a significant healthcare burden worldwide. Failure to resolve inflammation after infection precipitates lung injury and an increase in morbidity and mortality. Gram-negative bacteria are common in pneumonia and increased levels of the mito-damage-associated molecular pattern (DAMP) cardiolipin can be detected in the lungs. Here we show that mice infected with Klebsiella pneumoniae develop lung injury with accumulation of cardiolipin. Cardiolipin inhibits resolution of inflammation by suppressing production of anti-inflammatory IL-10 by lung CD11b+Ly6GintLy6CloF4/80+ cells. Cardiolipin induces PPARγ SUMOylation, which causes recruitment of a repressive NCOR/HDAC3 complex to the IL-10 promoter, but not the TNF promoter, thereby tipping the balance towards inflammation rather than resolution. Inhibition of HDAC activity by sodium butyrate enhances recruitment of acetylated histone 3 to the IL-10 promoter and increases the concentration of IL-10 in the lungs. These findings identify a mechanism of persistent inflammation during pneumonia and indicate the potential of HDAC inhibition as a therapy. PMID:28074841

  14. MicroRNA-155 potentiates the inflammatory response in hypothermia by suppressing IL-10 production.

    PubMed

    Billeter, Adrian T; Hellmann, Jason; Roberts, Henry; Druen, Devin; Gardner, Sarah A; Sarojini, Harshini; Galandiuk, Susan; Chien, Sufan; Bhatnagar, Aruni; Spite, Matthew; Polk, Hiram C

    2014-12-01

    Therapeutic hypothermia is commonly used to improve neurological outcomes in patients after cardiac arrest. However, therapeutic hypothermia increases sepsis risk and unintentional hypothermia in surgical patients increases infectious complications. Nonetheless, the molecular mechanisms by which hypothermia dysregulates innate immunity are incompletely understood. We found that exposure of human monocytes to cold (32°C) potentiated LPS-induced production of TNF and IL-6, while blunting IL-10 production. This dysregulation was associated with increased expression of microRNA-155 (miR-155), which potentiates Toll-like receptor (TLR) signaling by negatively regulating Ship1 and Socs1. Indeed, Ship1 and Socs1 were suppressed at 32°C and miR-155 antagomirs increased Ship1 and Socs1 and reversed the alterations in cytokine production in cold-exposed monocytes. In contrast, miR-155 mimics phenocopied the effects of cold exposure, reducing Ship1 and Socs1 and altering TNF and IL-10 production. In a murine model of LPS-induced peritonitis, cold exposure potentiated hypothermia and decreased survival (10 vs. 50%; P < 0.05), effects that were associated with increased miR-155, suppression of Ship1 and Socs1, and alterations in TNF and IL-10. Importantly, miR-155-deficiency reduced hypothermia and improved survival (78 vs. 32%, P < 0.05), which was associated with increased Ship1, Socs1, and IL-10. These results establish a causal role of miR-155 in the dysregulation of the inflammatory response to hypothermia.

  15. Imipramine exploits histone deacetylase 11 to increase the IL-12/IL-10 ratio in macrophages infected with antimony-resistant Leishmania donovani and clears organ parasites in experimental infection.

    PubMed

    Mukherjee, Sandip; Mukherjee, Budhaditya; Mukhopadhyay, Rupkatha; Naskar, Kshudiram; Sundar, Shyam; Dujardin, Jean-Claude; Roy, Syamal

    2014-10-15

    The efflux of antimony through multidrug resistance protein (MDR)-1 is the key factor in the failure of metalloid treatment in kala-azar patients infected with antimony-resistant Leishmania donovani (Sb(R)LD). Previously we showed that MDR-1 upregulation in Sb(R)LD infection is IL-10-dependent. Imipramine, a drug in use for the treatment of depression and nocturnal enuresis in children, inhibits IL-10 production from Sb(R)LD-infected macrophages (Sb(R)LD-Mϕs) and favors accumulation of surrogates of antimonials. It inhibits IL-10-driven nuclear translocation of c-Fos/c-Jun, critical for enhanced MDR-1 expression. The drug upregulates histone deacetylase 11, which inhibits acetylation of IL-10 promoter, leading to a decrease in IL-10 production from Sb(R)LD-Mϕs. It abrogates Sb(R)LD-mediated p50/c-Rel binding to IL-10 promoter and preferentially recruits p65/RelB to IL-12 p35 and p40 promoters, causing a decrease in IL-10 and overproduction of IL-12 in Sb(R)LD-Mϕs. Histone deacetylase 11 per se does not influence IL-12 promoter activity. Instead, a imipramine-mediated decreased IL-10 level allows optimal IL-12 production in Sb(R)LD-Mϕs. Furthermore, exogenous rIL-12 inhibits intracellular Sb(R)LD replication, which can be mimicked by the presence of Ab to IL-10. This observation indicated that reciprocity exists between IL-10 and IL-12 and that imipramine tips the balance toward an increased IL-12/IL-10 ratio in Sb(R)LD-Mϕs. Oral treatment of infected BALB/c mice with imipramine in combination with sodium stibogluconate cleared organ Sb(R)LD parasites and caused an expansion of the antileishmanial T cell repertoire where sodium stibogluconate alone had no effect. Our study deciphers a detailed molecular mechanism of imipramine-mediated regulation of IL-10/IL-12 reciprocity and its impact on Sb(R)LD clearance from infected hosts.

  16. Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10.

    PubMed

    Tausendschön, Michaela; Rehli, Michael; Dehne, Nathalie; Schmidl, Christian; Döring, Claudia; Hansmann, Martin-Leo; Brüne, Bernhard

    2015-01-01

    Macrophages (MΦ) often accumulate in hypoxic areas, where they significantly influence disease progression. Anti-inflammatory cytokines, such as IL-10, generate alternatively activated macrophages that support tumor growth. To understand how alternative activation affects the transcriptional profile of hypoxic macrophages, we globally mapped binding sites of hypoxia-inducible factor (HIF)-1α and HIF-2α in primary human monocyte-derived macrophages prestimulated with IL-10. 713 HIF-1 and 795 HIF-2 binding sites were identified under hypoxia. Pretreatment with IL-10 altered the binding pattern, with 120 new HIF-1 and 188 new HIF-2 binding sites emerging. HIF-1 binding was most prominent in promoters, while HIF-2 binding was more abundant in enhancer regions. Comparison of ChIP-seq data obtained in other cells revealed a highly cell type specific binding of HIF. In MΦ HIF binding occurred preferentially in already active enhancers or promoters. To assess the roles of HIF on gene expression, primary human macrophages were treated with siRNA against HIF-1α or HIF-2α, followed by genome-wide gene expression analysis. Comparing mRNA expression to the HIF binding profile revealed a significant enrichment of hypoxia-inducible genes previously identified by ChIP-seq. Analysis of gene expression under hypoxia alone and hypoxia/IL-10 showed the enhanced induction of a set of genes including PLOD2 and SLC2A3, while another group including KDM3A and ADM remained unaffected or was reduced by IL-10. Taken together IL-10 influences the DNA binding pattern of HIF and the level of gene induction.

  17. Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages.

    PubMed

    Huynh, Linda; Kusnadi, Anthony; Park, Sung Ho; Murata, Koichi; Park-Min, Kyung-Hyun; Ivashkiv, Lionel B

    2016-08-25

    Tumor necrosis factor (TNF) is best known for inducing a rapid but transient NF-κB-mediated inflammatory response. We investigated later phases of TNF signaling, after the initial transient induction of inflammatory genes has subsided, in primary human macrophages. TNF signaling induced expression of late response genes, including inhibitors of NF-κB and TLR signaling, with delayed and sustained kinetics 6-24 hr after TNF stimulation. A subset of late phase genes was expressed in rheumatoid arthritis synovial macrophages, confirming their expression under chronic inflammatory conditions in vivo. Expression of a subset of late phase genes was mediated by autocrine IL-10, which activated STAT3 with delayed kinetics. Hypoxia, which occurs at sites of infection or inflammation where TNF is expressed, suppressed this IL-10-STAT3 autocrine loop and expression of late phase genes. TNF-induced expression of IL-10 and downstream genes was also dependent on signaling by mTORC1, which senses the metabolic state of cells and is modulated by hypoxia. These results reveal an mTORC1-dependent IL-10-mediated late phase response to TNF by primary human macrophages, and identify suppression of IL-10 responses as a new mechanism by which hypoxia can promote inflammation. Thus, hypoxic and metabolic pathways may modulate TNF responses during chronic inflammation.

  18. Gut Microbial Dysbiosis Due to Helicobacter Drives an Increase in Marginal Zone B Cells in the Absence of IL-10 Signaling in Macrophages

    PubMed Central

    Ray, Avijit; Basu, Sreemanti; Gharaibeh, Raad Z.; Cook, Lydia C.; Kumar, Ranjit; Lefkowitz, Elliot J.; Walker, Catherine R.; Morrow, Casey D.; Franklin, Craig L.; Geiger, Terrence L.; Salzman, Nita H.; Fodor, Anthony; Dittel, Bonnie N.

    2015-01-01

    It is clear that IL-10 plays an essential role in maintaining homeostasis in the gut in response to the microbiome. However, it is unknown whether IL-10 also facilitates immune homeostasis at distal sites. To address this question, we asked whether splenic immune populations were altered in IL-10-deficient (Il10−/−) mice in which differences in animal husbandry history were associated with susceptibility to spontaneous enterocolitis that is microbiome-dependent. The susceptible mice exhibited a significant increase in splenic macrophages, neutrophils and marginal zone (MZ) B cells that was inhibited by IL-10 signaling in myeloid, but not B cells. The increase in macrophages was due to increased proliferation that correlated with a subsequent enhancement in MZ B cell differentiation. Cohousing and antibiotic treatment studies suggested that the alteration in immune homeostasis in the spleen was microbiome-dependent. 16S rRNA sequencing revealed that susceptible mice harbored a different microbiome with a significant increase in the abundance of the bacterial genus Helicobacter. The introduction of H. hepaticus to the gut of nonsusceptible mice was sufficient to drive macrophage expansion and MZ B cell development. Given that myeloid cells and MZ B cells are part of the first line of defense against blood-borne-pathogens, their increase following a breach in the gut epithelial barrier would be protective. Thus IL-10 is an essential gatekeeper that maintains immune homeostasis at distal sites that can become functionally imbalanced upon the introduction of specific pathogenic bacteria to the intestinal track. PMID:26324769

  19. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression

    PubMed Central

    Zhang, Xu; Li, Na; Shao, Han; Meng, Yan; Wang, Liping; Wu, Qian; Yao, Ying; Li, Jinbao; Bian, Jinjun; Zhang, Yan; Deng, Xiaoming

    2016-01-01

    Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases. PMID:27405597

  20. Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core: Critical role of IL-10/STAT3 signaling.

    PubMed

    Goswami, Kuntal Kanti; Sarkar, Madhurima; Ghosh, Sarbari; Saha, Akata; Ghosh, Tithi; Guha, Ipsita; Barik, Subhasis; Banerjee, Saptak; Roy, Soumyabrata; Bose, Anamika; Dasgupta, Parthasarathi; Baral, Rathindranath

    2016-12-01

    Heterogeneous tumor microenvironment (TME), broadly divided into tumor core and peripheral sub-microenvironments, differentially polarize normal macrophages into a different form known as tumor associated M2 macrophages (M2TAMs) to promote tumor growth. In view of the extensive immune-editing role of NLGP, here, we have observed that NLGP is effective to convert M2TAMs (CD11b(+)F4/80(high)) to M1 (CD11b(+)F4/80(low)) more prominently in tumor core, along with downregulation of other M2 associated markers, like, ManR, Ym1, Fizz1. High IL-10:IL-12 ratio at tumor core was downregulated in NLGP treated melanoma bearing mice. Decrease in IL-10 by NLGP is again associated with the decrease in hypoxia, as indicated by prominent downregulation of HIF1α and VEGF, particularly at tumor core. Macrophages exposed to hypoxic tumor core lysates in vitro exhibited high IL-10, HIF1α and VEGF expression that was significantly downregulated by NLGP. Further evidences suggest M2TAM to M1 conversion by NLGP is associated with STAT3-regulated IL-10 dependent pathway without affecting the IL-4 dependent one. Such TAM modulatory functions of NLGP might help in the restriction of melanoma growth by increasing the proportion of M1 TAMs in tumor core that helps in prevention of tumor relapse and dissemination of the tumor mass.

  1. Tumor-infiltrating lymphocyte activity is enhanced in tumors with low IL-10 production in HBV-induced hepatocellular carcinoma

    SciTech Connect

    Shi, Yang Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2015-05-22

    Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specific IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation.

  2. PGE2 Inhibits IL-10 Production via EP2-Mediated β-Arrestin Signaling in Neuroinflammatory Condition.

    PubMed

    Chu, Chun-Hsien; Chen, Shih-Heng; Wang, Qingshan; Langenbach, Robert; Li, Hong; Zeldin, Darryl; Chen, Shiou-Lan; Wang, Shijun; Gao, Huiming; Lu, Ru-Band; Hong, Jau-Shyong

    2015-08-01

    Regulatory mechanisms of the expression of interleukin-10 (IL-10) in brain inflammatory conditions remain elusive. To address this issue, we used multiple primary brain cell cultures to study the expression of IL-10 in lipopolysaccharide (LPS)-elicited inflammatory conditions. In neuron-glia cultures, LPS triggered well-orchestrated expression of various immune factors in the following order: tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and lastly IL-10, and these inflammatory mediators were mainly produced from microglia. While exogenous application of individual earlier-released pro-inflammatory factors (e.g., TNF-α, IL-1β, or PGE2) failed to induce IL-10 expression, removal of LPS from the cultures showed the requirement of continuing presence of LPS for IL-10 expression. Interestingly, genetic disruption of tnf-α, its receptors tnf-r1/r2, and cox-2 and pharmacological inhibition of COX-2 activity enhanced LPS-induced IL-10 production in microglia, which suggests negative regulation of IL-10 induction by the earlier-released TNF-α and PGE2. Further studies showed that negative regulation of IL-10 production by TNF-α is mediated by PGE2. Mechanistic studies indicated that PGE2-elicited suppression of IL-10 induction was eliminated by genetic disruption of the PGE2 receptor EP2 and was mimicked by the specific agonist for the EP2, butaprost, but not agonists for the other three EP receptors. Inhibition of cAMP-dependent signal transduction failed to affect PGE2-mediated inhibition of IL-10 production, suggesting that a G protein-independent pathway was involved. Indeed, deficiency in β-arrestin-1 or β-arrestin-2 abolished PGE2-elicited suppression of IL-10 production. In conclusion, we have demonstrated that COX-2-derived PGE2 inhibits IL-10 expression in brain microglia through a novel EP2- and β-arrestin-dependent signaling pathway.

  3. Hyaluronan carried by tumor-derived microvesicles induces IL-10 production in classical (CD14(++)CD16(-)) monocytes via PI3K/Akt/mTOR-dependent signalling pathway.

    PubMed

    Lenart, Marzena; Rutkowska-Zapala, Magdalena; Baj-Krzyworzeka, Monika; Szatanek, Rafał; Węglarczyk, Kazimierz; Smallie, Timothy; Ziegler-Heitbrock, Löms; Zembala, Marek; Siedlar, Maciej

    2017-01-01

    Tumor-derived microvesicles (TMV) can mimic effects of tumor cells leading to an increased anti-inflammatory cytokine production, such as interleukin 10 (IL-10), by tumor-infiltrating monocytes and macrophages. Yet, the mechanism of IL-10 induction by TMV in monocytes remains unclear. The co-incubation of TMV derived from the human pancreas carcinoma cell line (HPC-4) with human monocytes resulted in a nearly 30-fold increase in IL-10 protein production. This effect operates at the level of transcription since monocytes transduced with an adenovirus containing IL-10-promoter luciferase reporter gene showed a 5-fold induction of luciferase activity after treatment with TMV. Since tumor cells can express hyaluronan (HA), which participates in tumor invasion and metastases, we have tested its effect on IL-10 expression. We showed that HA at the concentration of 100μg/ml induces IL-10 protein expression and the IL-10 promoter activation in monocytes. Moreover, hyaluronidase treatment of TMV reduced IL-10 protein production by 50% and promoter activity by 40%. Inhibitors of the PI3K/Akt/mTOR pathway reduced both, TMV-induced IL-10 promoter activity and protein production, and the same was observed in monocytes when stimulated by HPC-4 cells or HA. Inhibition of PI3K activity down-regulated phosphorylation of the Akt and (to a lesser extent) mTOR proteins in monocytes following TMV or HA stimulation. When comparing monocyte subsets, TMV induced IL-10 protein and mRNA synthesis only in classical CD14(++)CD16(-) but not in CD16-positive monocytes. Our data show that TMV induce IL-10 synthesis in human classical monocytes via HA, which, in turn, activates the PI3K/Akt/mTOR pathway.

  4. IL-10 regulates murine lupus.

    PubMed

    Yin, Zhinan; Bahtiyar, Gul; Zhang, Na; Liu, Lanzhen; Zhu, Ping; Robert, Marie E; McNiff, Jennifer; Madaio, Michael P; Craft, Joe

    2002-08-15

    MRL/MpJ-Tnfrsf6(lpr) (MRL/MpJ-Fas(lpr); MRL-Fas(lpr)) mice develop a spontaneous lupus syndrome closely resembling human systemic lupus erythematosus. To define the role of IL-10 in the regulation of murine lupus, IL-10 gene-deficient (IL-10(-/-)) MRL-Fas(lpr) (MRL-Fas(lpr) IL-10(-/-)) mice were generated and their disease phenotype was compared with littermates with one or two copies of an intact IL-10 locus (MRL-Fas(lpr) IL-10(+/-) and MRL-Fas(lpr) IL-10(+/+) mice, respectively). MRL-Fas(lpr) IL-10(-/-) mice developed severe lupus, with earlier appearance of skin lesions, increased lymphadenopathy, more severe glomerulonephritis, and higher mortality than their IL-10-intact littermate controls. The increased severity of lupus in MRL-Fas(lpr) IL-10(-/-) mice was closely associated with enhanced IFN-gamma production by both CD4(+) and CD8(+) cells and increased serum concentration of IgG2a anti-dsDNA autoantibodies. The protective effect of IL-10 in this lupus model was further supported by the observation that administration of rIL-10 reduced IgG2a anti-dsDNA autoantibody production in wild-type MRL-Fas(lpr) animals. In summary, our results provide evidence that IL-10 can down-modulate murine lupus through inhibition of pathogenic Th1 cytokine responses. Modulation of the level of IL-10 may be of potential therapeutic benefit for human lupus.

  5. DC-SCRIPT Regulates IL-10 Production in Human Dendritic Cells by Modulating NF-κBp65 Activation.

    PubMed

    Søndergaard, Jonas Nørskov; Poghosyan, Susanna; Hontelez, Saartje; Louche, Pauline; Looman, Maaike W G; Ansems, Marleen; Adema, Gosse J

    2015-08-15

    The balance between tolerance and immunity is important for the outcome of an infection or cancer, and dendritic cells (DCs) are key regulators of this balance. DC-specific transcript (DC-SCRIPT) is a protein expressed by DCs and has been demonstrated to suppress both TLR-mediated expression of IL-10 and glucocorticoid receptor-mediated transcription of glucocorticoid-induced leucine zipper (GILZ). Because GILZ is known to promote IL-10 production, we investigated whether these two processes are linked. Dual-knockdown and inhibition experiments demonstrated that neither GILZ nor glucocorticoid receptor play a role in TLR-induced IL-10 production after DC-SCRIPT knockdown. The NF-κB pathway is another route involved in IL-10 production after DC activation. Strikingly, inhibition of NF-κB led to a decreased TLR-mediated IL-10 production in DC-SCRIPT knockdown DCs. Moreover, DC-SCRIPT knockdown DCs showed enhanced phosphorylation, acetylation, and IL10 enhancer binding of the NF-κB subunit p65. These data demonstrate that besides nuclear receptor regulation, DC-SCRIPT also modulates activation of NF-κBp65 after TLR activation in human DCs.

  6. IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids.

    PubMed

    Zizzo, Gaetano; Cohen, Philip L

    2013-05-15

    Exposure of human monocytes/macrophages to anti-inflammatory agents, such as IL-10 or glucocorticoids, can lead to two separate fates: either Fas/CD95-mediated apoptosis or differentiation into regulatory and efferocytic M2c (CD14(bright)CD16(+)CD163(+)Mer tyrosine kinase(+)) macrophages. We found that the prevalent effect depends on the type of Th cytokine environment and on the stage of monocyte-to-macrophage differentiation. In particular, the presence of IFN-γ (Th1 inflammation) or the prolonged exposure to IL-4 (chronic Th2 inflammation) promotes apoptosis of monocytes/macrophages and causes resistance to M2c differentiation, thus provoking impaired clearance of apoptotic neutrophils, uncontrolled accumulation of apoptotic cells, and persistent inflammation. In contrast, the presence of IL-17 (Th17 environment) prevents monocyte/macrophage apoptosis and elicits intense M2c differentiation, thus ensuring efficient clearance of apoptotic neutrophils and restoration of anti-inflammatory conditions. Additionally, the Th environment affects the expression of two distinct Mer tyrosine kinase isoforms: IL-4 downregulates the membrane isoform but induces an intracellular and Gas6-dependent isoform, whereas IFN-γ downregulates both and IL-17 upregulates both. Our data support an unexpected role for IL-17 in orchestrating resolution of innate inflammation, whereas IFN-γ and IL-4 emerge as major determinants of IL-10 and glucocorticoid resistance.

  7. Japanese encephalitis virus infection decrease endogenous IL-10 production: correlation with microglial activation and neuronal death.

    PubMed

    Swarup, Vivek; Ghosh, Joydeep; Duseja, Rachna; Ghosh, Soumya; Basu, Anirban

    2007-06-13

    The anti-inflammatory cytokine interleukin (IL)-10 is synthesized in the central nervous system (CNS) and acts to limit clinical symptoms of stroke, multiple sclerosis, Alzheimer's disease, meningitis, and the behavioral changes that occur during bacterial infections. Expression of IL-10 is critical during the course of most major diseases in the CNS and promotes survival of neurons and all glial cells in the brain by blocking the effects of proinflammatory cytokines and by promoting expression of cell survival signals. In order to assess functional importance of this cytokine in viral encephalitis we have exploited an experimental model of Japanese encephalitis (JE). We report for the first time that in Japanese encephalitis, there is a progressive decline in level of IL-10. The extent of progressive decrease in IL-10 level following viral infection is inversely proportional to the increase in the level of proinflammatory cytokines as well as negative consequences that follows viral infection.

  8. HDAC1-3 inhibitor MS-275 enhances IL10 expression in RAW264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice

    PubMed Central

    Leus, Niek G. J.; van den Bosch, Thea; van der Wouden, Petra E.; Krist, Kim; Ourailidou, Maria E.; Eleftheriadis, Nikolaos; Kistemaker, Loes E. M.; Bos, Sophie; Gjaltema, Rutger A. F.; Mekonnen, Solomon A.; Bischoff, Rainer; Gosens, Reinoud; Haisma, Hidde J.; Dekker, Frank J.

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) constitutes a major health burden. Studying underlying molecular mechanisms could lead to new therapeutic targets. Macrophages are orchestrators of COPD, by releasing pro-inflammatory cytokines. This process relies on transcription factors such as NF-κB, among others. NF-κB is regulated by lysine acetylation; a post-translational modification installed by histone acetyltransferases and removed by histone deacetylases (HDACs). We hypothesized that small molecule HDAC inhibitors (HDACi) targeting class I HDACs members that can regulate NF-κB could attenuate inflammatory responses in COPD via modulation of the NF-κB signaling output. MS-275 is an isoform-selective inhibitor of HDAC1-3. In precision-cut lung slices and RAW264.7 macrophages, MS-275 upregulated the expression of both pro- and anti-inflammatory genes, implying mixed effects. Interestingly, anti-inflammatory IL10 expression was upregulated in these model systems. In the macrophages, this was associated with increased NF-κB activity, acetylation, nuclear translocation, and binding to the IL10 promoter. Importantly, in an in vivo model of cigarette smoke-exposed C57Bl/6 mice, MS-275 robustly attenuated inflammatory expression of KC and neutrophil influx in the lungs. This study highlights for the first time the potential of isoform-selective HDACi for the treatment of inflammatory lung diseases like COPD. PMID:28344354

  9. Successful Treatment of Human Visceral Leishmaniasis Restores Antigen-Specific IFN-γ, but not IL-10 Production

    PubMed Central

    Adem, Emebet; Tajebe, Fitsumbirhan; Getahun, Mulusew; Kiflie, Amare; Diro, Ermias; Hailu, Asrat; Shkedy, Ziv; Mengesha, Bewketu; Mulaw, Tadele; Atnafu, Saba; Deressa, Tekalign; Mathewos, Biniam; Abate, Ebba; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Takele, Yegnasew; Kropf, Pascale

    2016-01-01

    One of the key immunological characteristics of active visceral leishmaniasis (VL) is a profound immunosuppression and impaired production of Interferon-γ (IFN-γ). However, recent studies from Bihar in India showed using a whole blood assay, that whole blood cells have maintained the capacity to produce IFN-γ. Here we tested the hypothesis that a population of low-density granulocytes (LDG) might contribute to T cell responses hyporesponsiveness via the release of arginase. Our results show that this population is affected by the anticoagulant used to collect blood: the frequency of LDGs is significantly lower when the blood is collected with heparin as compared to EDTA; however, the anticoagulant does not impact on the levels of arginase released. Next, we assessed the capacity of whole blood cells from patients with active VL to produce IFN-γ and IL-10 in response to antigen-specific and polyclonal activation. Our results show that whole blood cells produce low or levels below detection limit of IFN-γ and IL-10, however, after successful treatment of VL patients, these cells gradually regain their capacity to produce IFN-γ, but not IL-10, in response to activation. These results suggest that in contrast to VL patients from Bihar, India, whole blood cells from VL patients from Gondar, Ethiopia, have lost their ability to produce IFN-γ during active VL and that active disease is not associated with sustained levels of IL-10 production following stimulation. PMID:26962865

  10. Successful Treatment of Human Visceral Leishmaniasis Restores Antigen-Specific IFN-γ, but not IL-10 Production.

    PubMed

    Adem, Emebet; Tajebe, Fitsumbirhan; Getahun, Mulusew; Kiflie, Amare; Diro, Ermias; Hailu, Asrat; Shkedy, Ziv; Mengesha, Bewketu; Mulaw, Tadele; Atnafu, Saba; Deressa, Tekalign; Mathewos, Biniam; Abate, Ebba; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Takele, Yegnasew; Kropf, Pascale

    2016-03-01

    One of the key immunological characteristics of active visceral leishmaniasis (VL) is a profound immunosuppression and impaired production of Interferon-γ (IFN-γ). However, recent studies from Bihar in India showed using a whole blood assay, that whole blood cells have maintained the capacity to produce IFN-γ. Here we tested the hypothesis that a population of low-density granulocytes (LDG) might contribute to T cell responses hyporesponsiveness via the release of arginase. Our results show that this population is affected by the anticoagulant used to collect blood: the frequency of LDGs is significantly lower when the blood is collected with heparin as compared to EDTA; however, the anticoagulant does not impact on the levels of arginase released. Next, we assessed the capacity of whole blood cells from patients with active VL to produce IFN-γ and IL-10 in response to antigen-specific and polyclonal activation. Our results show that whole blood cells produce low or levels below detection limit of IFN-γ and IL-10, however, after successful treatment of VL patients, these cells gradually regain their capacity to produce IFN-γ, but not IL-10, in response to activation. These results suggest that in contrast to VL patients from Bihar, India, whole blood cells from VL patients from Gondar, Ethiopia, have lost their ability to produce IFN-γ during active VL and that active disease is not associated with sustained levels of IL-10 production following stimulation.

  11. Inhibition of IL-2 induced IL-10 production as a principle of phase-specific immunotherapy.

    PubMed

    Bodas, Manish; Jain, Nitya; Awasthi, Amit; Martin, Sunil; Penke Loka, Raghu Kumar; Dandekar, Dineshkumar; Mitra, Debashis; Saha, Bhaskar

    2006-10-01

    Leishmania donovani, a protozoan parasite, inflicts a fatal disease, visceral leishmaniasis. The suppression of antileishmanial T cell responses that characterizes the disease was proposed to be due to deficiency of a T cell growth factor, IL-2. We demonstrate that during the first week after L. donovani infection, IL-2 induces IL-10 that suppresses the host-protective functions of T cells 14 days after infection. The observed suppression is concurrent with increased CD4+ glucocorticoid-induced TNF receptor+ T cells and Foxp3 expression in BALB/c mice, implicating IL-2-dependent regulatory T cell control of antileishmanial immune responses. Indeed, IL-2 and IL-10 neutralization at different time points after the infection demonstrates their distinct roles at the priming and effector phases, respectively, and establishes kinetic modulation of ongoing immune responses as a principle of a rational, phase-specific immunotherapy.

  12. Aging-dependent decline of IL-10 producing B cells coincides with production of antinuclear antibodies but not rheumatoid factors.

    PubMed

    van der Geest, Kornelis S M; Lorencetti, Pedro G; Abdulahad, Wayel H; Horst, Gerda; Huitema, Minke; Roozendaal, Caroline; Kroesen, Bart-Jan; Brouwer, Elisabeth; Boots, Annemieke M H

    2016-03-01

    Aging is associated with development of autoimmunity. Loss of B cell tolerance in the elderly is suggested by an increased prevalence of anti-nuclear antibodies (ANAs) and rheumatoid factors (RFs). Accumulating evidence indicates that B cells also impact autoimmunity via secretion of cytokines. So far, few studies have directly assessed the effect of aging on the latter B cell function. Here, we determined if and how human aging influences the production of cytokines by B cells. In a cross-sectional study, we found that absolute numbers of circulating B cells were similar in 31 young (ages 19-39) and 73 old (age ≥ 60) individuals. Numbers of transitional B cells (CD19(+)CD27(-)CD38(High)CD24(High)) were decreased in old individuals, whereas numbers of naive and memory B cell subsets were comparable in young and old individuals. Short-term in vitro stimulation of whole blood samples revealed that numbers of B cells capable of producing TNF-α were similar in young and old individuals. In contrast, B cells capable of IL-10 production were decreased in old subjects. This decline of IL-10(+) B cells was observed in old individuals that were ANA positive, and in those that were negative for both ANAs and RFs. However, IL-10(+) B cells were remarkably well retained in the circulation of old subjects that were RF positive. Thus, pro-inflammatory TNF-α(+) B cells are retained in the elderly, whereas IL-10(+) B cells generally decline. In addition, our findings indicate that IL-10(+) B cells may differentially impact the development of ANAs and RFs in the elderly.

  13. pVAXhsp65 Vaccination Primes for High IL-10 Production and Decreases Experimental Encephalomyelitis Severity.

    PubMed

    Zorzella-Pezavento, Sofia Fernanda Gonçalves; Chiuso-Minicucci, Fernanda; França, Thais Graziela Donegá; Ishikawa, Larissa Lumi Watanabe; da Rosa, Larissa Camargo; Colavite, Priscila Maria; Balbino, Bianca; Marques, Camila; Ikoma, Maura Rosane Valerio; Masson, Ana Paula; Silva, Célio Lopes; Sartori, Alexandrina

    2017-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating pathology of the central nervous system (CNS) used as a model to study multiple sclerosis immunopathology. EAE has also been extensively employed to evaluate potentially therapeutic schemes. Considering the presence of an immune response directed to heat shock proteins (hsps) in autoimmune diseases and the immunoregulatory potential of these molecules, we evaluated the effect of a previous immunization with a genetic vaccine containing the mycobacterial hsp65 gene on EAE development. C57BL/6 mice were immunized with 4 pVAXhsp65 doses and 14 days later were submitted to EAE induction by immunization with myelin oligodendrocyte glycoprotein (MOG35-55) emulsified in Complete Freund's Adjuvant. Vaccinated mice presented significant lower clinical scores and lost less body weight. MOG35-55 immunization also determined less inflammation in lumbar spinal cord but did not change CD4+CD25+Foxp3+ T cells frequency in spleen and CNS. Infiltrating cells from the CNS stimulated with rhsp65 produced significantly higher levels of IL-10. These results suggest that the ability of pVAXhsp65 vaccination to control EAE development is associated with IL-10 induction.

  14. pVAXhsp65 Vaccination Primes for High IL-10 Production and Decreases Experimental Encephalomyelitis Severity

    PubMed Central

    Chiuso-Minicucci, Fernanda; Marques, Camila; Ikoma, Maura Rosane Valerio; Masson, Ana Paula; Silva, Célio Lopes

    2017-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating pathology of the central nervous system (CNS) used as a model to study multiple sclerosis immunopathology. EAE has also been extensively employed to evaluate potentially therapeutic schemes. Considering the presence of an immune response directed to heat shock proteins (hsps) in autoimmune diseases and the immunoregulatory potential of these molecules, we evaluated the effect of a previous immunization with a genetic vaccine containing the mycobacterial hsp65 gene on EAE development. C57BL/6 mice were immunized with 4 pVAXhsp65 doses and 14 days later were submitted to EAE induction by immunization with myelin oligodendrocyte glycoprotein (MOG35–55) emulsified in Complete Freund's Adjuvant. Vaccinated mice presented significant lower clinical scores and lost less body weight. MOG35–55 immunization also determined less inflammation in lumbar spinal cord but did not change CD4+CD25+Foxp3+ T cells frequency in spleen and CNS. Infiltrating cells from the CNS stimulated with rhsp65 produced significantly higher levels of IL-10. These results suggest that the ability of pVAXhsp65 vaccination to control EAE development is associated with IL-10 induction. PMID:28321419

  15. IL-10 production in murine IgM(+) CD138(hi) cells is driven by Blimp-1 and downregulated in class-switched cells.

    PubMed

    Suzuki-Yamazaki, Nao; Yanobu-Takanashi, Rieko; Okamura, Tadashi; Takaki, Satoshi

    2016-12-23

    In contrast to antibody-induced inflammatory responses, some B-cell subpopulations suppress inflammation through the production of interleukin (IL)-10. However, the mechanisms underlying Il10 gene expression during B-cell development is elusive. Here, we identify IgM(+) B220(lo) CD138(hi) cells responsible for marked IL-10 production in the bone marrow and spleen of mice. These murine IL-10-producing cells predominantly secrete IgM and have unique characteristics of long-lived plasma cells in spite of high expression of surface IgM. We found that IL-10 production is strongly correlated with the expression level of Prdm1 (encoding the Blimp-1 protein), an essential regulator of plasma cell development. Furthermore, overexpression of Prdm1 induces Il10 expression in naïve B cells. Immunoglobulin class-switching recombination events resulted in the downregulation of both Il10 and Prdm1 expression in differentiating B cells. Thus, the prolonged elevation of Blimp-1 expression during the formation of IgM(+) CD138(hi) cells without class-switching elicits IL-10 production. Adoptive transfer of Il10-deficient B cells into B-cell-deficient mice demonstrated that IgM(+) CD138(hi) cell-derived IL-10 supports the survival of class-switched plasma cells and their antibody production in response to antigen challenge. These findings reveal an important role for IL-10 secretion by IgM(+) CD138(hi) cells in the complete and efficient humoral response.

  16. First identification of regulatory B cell subsets expressing IL-10 in teleost fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IL-10 is an immunoregulatory cytokine with a potent anti-inflammatory activity, thus inhibiting the production of proinflammatory cytokines as well as processes of antigen presentation. IL-10 is produced by variety of cells, including antigen presentation cells (i.e., monocytes, macrophages and den...

  17. Lack of endogenous IL-10 enhances production of proinflammatory cytokines and leads to Brucella abortus clearance in mice.

    PubMed

    Corsetti, Patrícia P; de Almeida, Leonardo A; Carvalho, Natália B; Azevedo, Vasco; Silva, Teane M A; Teixeira, Henrique C; Faria, Ana C; Oliveira, Sergio C

    2013-01-01

    IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection.

  18. Human Cytomegalovirus-Encoded Human Interleukin-10 (IL-10) Homolog Amplifies Its Immunomodulatory Potential by Upregulating Human IL-10 in Monocytes

    PubMed Central

    Avdic, Selmir; McSharry, Brian P.; Steain, Megan; Poole, Emma; Sinclair, John; Abendroth, Allison

    2016-01-01

    ABSTRACT The human cytomegalovirus (HCMV) gene UL111A encodes cytomegalovirus-encoded human interleukin-10 (cmvIL-10), a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). This viral homolog exhibits a range of immunomodulatory functions, including suppression of proinflammatory cytokine production and dendritic cell (DC) maturation, as well as inhibition of major histocompatibility complex (MHC) class I and class II. Here, we present data showing that cmvIL-10 upregulates hIL-10, and we identify CD14+ monocytes and monocyte-derived macrophages and DCs as major sources of hIL-10 secretion in response to cmvIL-10. Monocyte activation was not a prerequisite for cmvIL-10-mediated upregulation of hIL-10, which was dose dependent and controlled at the transcriptional level. Furthermore, cmvIL-10 upregulated expression of tumor progression locus 2 (TPL2), which is a regulator of the positive hIL-10 feedback loop, whereas expression of a negative regulator of the hIL-10 feedback loop, dual-specificity phosphatase 1 (DUSP1), remained unchanged. Engagement of the hIL-10 receptor (hIL-10R) by cmvIL-10 led to upregulation of heme oxygenase 1 (HO-1), an enzyme linked with suppression of inflammatory responses, and this upregulation was required for cmvIL-10-mediated upregulation of hIL-10. We also demonstrate an important role for both phosphatidylinositol 3-kinase (PI3K) and STAT3 in the upregulation of HO-1 and hIL-10 by cmvIL-10. In addition to upregulating hIL-10, cmvIL-10 could exert a direct immunomodulatory function, as demonstrated by its capacity to upregulate expression of cell surface CD163 when hIL-10 was neutralized. This study identifies a mechanistic basis for cmvIL-10 function, including the capacity of this viral cytokine to potentially amplify its immunosuppressive impact by upregulating hIL-10 expression. IMPORTANCE Human cytomegalovirus (HCMV) is a large, double-stranded DNA virus that causes significant human disease

  19. Increased CD40 ligation and reduced BCR signalling leads to higher IL-10 production in B-cells from tolerant kidney transplant patients

    PubMed Central

    Nova-Lamperti, Estefania; Chana, Prabhjoat; Mobillo, Paula; Runglall, Manohursingh; Kamra, Yogesh; McGregor, Reuben; Lord, Graham M.; Lechler, Robert I.; Lombardi, Giovanna; Hernandez-Fuentes, Maria P.

    2016-01-01

    Background An increased percentage of peripheral transitional B-cells producing IL-10 has been observed in patients tolerant to kidney allografts. In healthy volunteers, the balance between the CD40 and B-cell receptor (BCR) signalling modulated IL-10 production by B-cells, with stimulation via the BCR decreasing CD40-mediated-IL-10 production. In this study, we evaluate whether in tolerant kidney transplant patients the increased IL-10 production by B-cells was due to an altered CD40 and/or BCR signalling. Methods B-cells obtained from a new cohort of tolerant renal transplant recipients and those from age- and gender-matched healthy volunteers, were activated via CD40 and BCR, either alone or in combination. Results In tolerant patients we observed higher percentages of B-cells producing IL-10 after CD40 ligation and higher expression of CD40L on activated T-cells, compared to healthy controls. Furthermore, B-cells from tolerant recipients had reduced ERK signalling following BCR-mediated activation compared to healthy controls. In keeping with this, combining BCR signalling with CD40 ligation did not reduce IL-10 secretion as was observed in healthy control transitional B-cells. Conclusion Altogether our data suggests that the altered response of B-cells in tolerant recipients may contribute to long-term stable graft acceptance. PMID:27472092

  20. IL-10 and IL-4 co-operate to normalize in vitro IgA production in IgA-deficient (IgAD) patients

    PubMed Central

    Marconi, M; Plebani, A; Avanzini, M A; Maccario, R; Pistorio, A; Duse, M; Stringa, M; Monafo, V

    1998-01-01

    In the present study we evaluated in vitro immunoglobulin production from IgAD individuals and healthy controls. Peripheral blood mononuclear cells (PBMC) from IgAD and controls were cultured with anti-CD40 MoAb presented on a CDw32-transfected fibroblast cell line (CD40 system) in the presence of IL-10, IL-2, IL-4, transforming growth factor-beta (TGF-β) alone as well as of IL-10 in combination with each of the other three cytokines. Only IL-10 added alone induced significant changes in baseline immunoglobulin production; marked increases in median supernatant levels of all three isotypes were observed in both groups. The most striking finding of this study was the synergizing effect of IL-4 on IgA production in the IgAD group when added with IL-10; median IgA supernatant level increased to a value superimposable on that found in the normal controls which remained about the same as when stimulated with IL-10 alone. The synergic effect of IL-4 and IL-10 was specific to the IgA isotype. PMID:9649225

  1. Fluoxetine stimulates anti-inflammatory IL-10 cytokine production and attenuates sensory deficits in a rat model of decompression sickness.

    PubMed

    Blatteau, Jean-Eric; de Maistre, Sébastien; Lambrechts, Kate; Abraini, Jacques; Risso, Jean-Jacques; Vallée, Nicolas

    2015-12-15

    Despite "gold standard" hyperbaric oxygen treatment, 30% of patients suffering from neurological decompression sickness still exhibit incomplete recovery, including sensory impairments. Fluoxetine, a well-known antidepressant, is recognized as having anti-inflammatory effects in the setting of cerebral ischemia. In this study, we focused on the assessment of sensory neurological deficits and measurement of circulating cytokines after decompression in rats treated or not with fluoxetine. Seventy-eight rats were divided into a clinical (n = 38) and a cytokine (n = 40) group. In both groups, the rats were treated with fluoxetine (30 mg/kg po, 6 h beforehand) or with a saccharine solution. All of the rats were exposed to 90 m seawater for 45 min before staged decompression. In the clinical group, paw withdrawal force after mechanical stimulation and paw withdrawal latency after thermal stimulation were evaluated before and 1 and 48 h after surfacing. At 48 h, a dynamic weight-bearing device was used to assess postural stability, depending on the time spent on three or four paws. For cytokine analysis, blood samples were collected from the vena cava 1 h after surfacing. Paw withdrawal force and latency were increased after surfacing in the controls, but not in the fluoxetine group. Dynamic weight-bearing assessment highlighted a better stability on three paws for the fluoxetine group. IL-10 levels were significantly decreased after decompression in the controls, but maintained at baseline level with fluoxetine. This study suggests that fluoxetine has a beneficial effect on sensory neurological recovery. We hypothesize that the observed effect is mediated through maintained anti-inflammatory cytokine IL-10 production.

  2. Differential interleukin-10 (IL-10) and IL-23 production by human blood monocytes and dendritic cells in response to commensal enteric bacteria.

    PubMed

    Manuzak, Jennifer; Dillon, Stephanie; Wilson, Cara

    2012-08-01

    Human peripheral blood contains antigen-presenting cells (APC), including dendritic cells (DC) and monocytes, that may encounter microbes that have translocated from the intestine to the periphery in disease states like HIV-1 infection and inflammatory bowel disease. We investigated the response of DC and monocytes in peripheral blood mononuclear cells (PBMC) to a panel of representative commensal enteric bacteria, including Escherichia coli, Enterococcus sp., and Bacteroides fragilis. All three bacteria induced significant upregulation of the maturation and activation markers CD40 and CD83 on myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC). However, only mDC produced cytokines, including interleukin-10 (IL-10), IL-12p40/70, and tumor necrosis factor alpha (TNF-α), in response to bacterial stimulation. Cytokine profiles in whole PBMC differed depending on the stimulating bacterial species: B. fragilis induced production of IL-23, IL-12p70, and IL-10, whereas E. coli and Enterococcus induced an IL-10-predominant response. mDC and monocyte depletion experiments indicated that these cell types differentially produced IL-10 and IL-23 in response to E. coli and B. fragilis. Bacteroides thetaiotaomicron did not induce levels of IL-23 similar to those of B. fragilis, suggesting that B. fragilis may have unique proinflammatory properties among Bacteroides species. The addition of recombinant human IL-10 to PBMC cultures stimulated with commensal bacteria abrogated the IL-23 response, whereas blocking IL-10 significantly enhanced IL-23 production, suggesting that IL-10 controls the levels of IL-23 produced. These results indicate that blood mDC and monocytes respond differentially to innate stimulation with whole commensal bacteria and that IL-10 may play a role in controlling the proinflammatory response to translocated microbes.

  3. Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells

    PubMed Central

    Ma, Cindy S.; Hare, Nathan J.; Nichols, Kim E.; Dupré, Loic; Andolfi, Grazia; Roncarolo, Maria-Grazia; Adelstein, Stephen; Hodgkin, Philip D.; Tangye, Stuart G.

    2005-01-01

    X-linked lymphoproliferative disease (XLP) is an often-fatal immunodeficiency characterized by hypogammaglobulinemia, fulminant infectious mononucleosis, and/or lymphoma. The genetic lesion in XLP, SH2D1A, encodes the adaptor protein SAP (signaling lymphocytic activation molecule–associated [SLAM-associated] protein); however, the mechanism(s) by which mutations in SH2D1A causes hypogammaglobulinemia is unknown. Our analysis of 14 XLP patients revealed normal B cell development but a marked reduction in the number of memory B cells. The few memory cells detected were IgM+, revealing deficient isotype switching in vivo. However, XLP B cells underwent proliferation and differentiation in vitro as efficiently as control B cells, which indicates that the block in differentiation in vivo is B cell extrinsic. This possibility is supported by the finding that XLP CD4+ T cells did not efficiently differentiate into IL-10+ effector cells or provide optimal B cell help in vitro. Importantly, the B cell help provided by SAP-deficient CD4+ T cells was improved by provision of exogenous IL-10 or ectopic expression of SAP, which resulted in increased IL-10 production by T cells. XLP CD4+ T cells also failed to efficiently upregulate expression of inducible costimulator (ICOS), a potent inducer of IL-10 production by CD4+ T cells. Thus, insufficient IL-10 production may contribute to hypogammaglobulinemia in XLP. This finding suggests new strategies for treating this immunodeficiency. PMID:15761493

  4. Persistent Mitochondrial Hyperpolarization, Increased Reactive Oxygen Intermediate Production, and Cytoplasmic Alkalinization Characterize Altered IL-10 Signaling in Patients with Systemic Lupus Erythematosus1

    PubMed Central

    Gergely, Peter; Niland, Brian; Gonchoroff, Nick; Pullmann, Rudolf; Phillips, Paul E.; Perl, Andras

    2014-01-01

    Abnormal death signaling in lymphocytes of systemic lupus erythematosus (SLE) patients has been associated with elevation of the mitochondrial transmembrane potential (Δψm) and increased production of reactive oxygen intermediates (ROI). The resultant ATP depletion sensitizes T cells for necrosis that may significantly contribute to inflammation in patients with SLE. In the present study, the role of mitochondrial signal processing in T cell activation was investigated. CD3/CD28 costimulation of PBL elicited transient mitochondrial hyperpolarization and intracellular pH (pHi) elevation, followed by increased ROI production. Baseline Δψm, ROI production, and pHi were elevated, while T cell activation-induced changes were blunted in 15 patients with SLE in comparison with 10 healthy donors and 10 rheumatoid arthritis patients. Similar to CD3/CD28 costimulation, treatment of control PBL with IL-3, IL-10, TGF-β1, and IFN-γ led to transient Δψm elevation. IL-10 had diametrically opposing effects on mitochondrial signaling in lupus and control donors. Unlike healthy or rheumatoid arthritis PBL, cells of lupus patients were resistant to IL-10-induced mitochondrial hyperpolarization. By contrast, IL-10 enhanced ROI production and cell death in lupus PBL without affecting ROI levels and survival of control PBL. Ab-mediated IL-10 blockade or stimulation with antagonistic lymphokine IL-12 normalized baseline and CD3/CD28-induced changes in ROI production and pHi with no impact on Δψm of lupus PBL. The results suggest that mitochondrial hyperpolarization, increased ROI production, and cytoplasmic alkalinization play crucial roles in altered IL-10 responsiveness in SLE. PMID:12097418

  5. Long-Lived CD4+IFN-γ+ T Cells rather than Short-Lived CD4+IFN-γ+IL-10+ T Cells Initiate Rapid IL-10 Production To Suppress Anamnestic T Cell Responses during Secondary Malaria Infection

    PubMed Central

    Villegas-Mendez, Ana; Inkson, Colette A.; Shaw, Tovah N.; Strangward, Patrick

    2016-01-01

    CD4+ T cells that produce IFN-γ are the source of host-protective IL-10 during primary infection with a number of different pathogens, including Plasmodium spp. The fate of these CD4+IFN-γ+IL-10+ T cells following clearance of primary infection and their subsequent influence on the course of repeated infections is, however, presently unknown. In this study, utilizing IFN-γ–yellow fluorescent protein (YFP) and IL-10–GFP dual reporter mice, we show that primary malaria infection–induced CD4+YFP+GFP+ T cells have limited memory potential, do not stably express IL-10, and are disproportionately lost from the Ag-experienced CD4+ T cell memory population during the maintenance phase postinfection. CD4+YFP+GFP+ T cells generally exhibited a short-lived effector rather than effector memory T cell phenotype postinfection and expressed high levels of PD-1, Lag-3, and TIGIT, indicative of cellular exhaustion. Consistently, the surviving CD4+YFP+GFP+ T cell–derived cells were unresponsive and failed to proliferate during the early phase of secondary infection. In contrast, CD4+YFP+GFP− T cell–derived cells expanded rapidly and upregulated IL-10 expression during secondary infection. Correspondingly, CD4+ T cells were the major producers within an accelerated and amplified IL-10 response during the early stage of secondary malaria infection. Notably, IL-10 exerted quantitatively stronger regulatory effects on innate and CD4+ T cell responses during primary and secondary infections, respectively. The results in this study significantly improve our understanding of the durability of IL-10–producing CD4+ T cells postinfection and provide information on how IL-10 may contribute to optimized parasite control and prevention of immune-mediated pathology during repeated malaria infections. PMID:27630165

  6. Preferential production of IgG1, IL-4 and IL-10 in MuSK-immunized mice.

    PubMed

    Ulusoy, Canan; Kim, Eunmi; Tüzün, Erdem; Huda, Ruksana; Yılmaz, Vuslat; Poulas, Konstantinos; Trakas, Nikos; Skriapa, Lamprini; Niarchos, Athanasios; Strait, Richard T; Finkelman, Fred D; Turan, Selin; Zisimopoulou, Paraskevi; Tzartos, Socrates; Saruhan-Direskeneli, Güher; Christadoss, Premkumar

    2014-04-01

    Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness associated with acetylcholine receptor (AChR), muscle-specific receptor kinase (MuSK) or low-density lipoprotein receptor-related protein 4 (LRP4)-antibodies. MuSK-antibodies are predominantly of the non-complement fixing IgG4 isotype. The MuSK associated experimental autoimmune myasthenia gravis (EAMG) model was established in mice to investigate immunoglobulin (Ig) and cytokine responses related with MuSK immunity. C57BL/6 (B6) mice immunized with 30μg of recombinant human MuSK in incomplete or complete Freund's adjuvant (CFA) showed significant EAMG susceptibility (>80% incidence). Although mice immunized with 10μg of MuSK had lower EAMG incidence (14.3%), serum MuSK-antibody levels were comparable to mice immunized with 30μg MuSK. While MuSK immunization stimulated production of all antibody isotypes, non-complement fixing IgG1 was the dominant anti-MuSK Ig isotype in both sera and neuromuscular junctions. Moreover, MuSK immunized IgG1 knockout mice showed very low serum MuSK-antibody levels. Sera and MuSK-stimulated lymph node cell supernatants of MuSK immunized mice showed significantly higher levels of IL-4 and IL-10 (but not IFN-γ and IL-12), than those of CFA immunized mice. Our results suggest that through activation of Th2-type cells, anti-MuSK immunity promotes production of IL-4, which in turn activates anti-MuSK IgG1, the mouse analog of human IgG4. These findings might provide clues for the pathogenesis of other IgG4-related diseases as well as development of disease specific treatment methods (e.g. specific IgG4 inhibitors) for MuSK-related MG.

  7. IL-10 Production Is Critical for Sustaining the Expansion of CD5+ B and NKT Cells and Restraining Autoantibody Production in Congenic Lupus-Prone Mice

    PubMed Central

    Baglaenko, Yuriy; Manion, Kieran P.; Chang, Nan-Hua; Gracey, Eric; Loh, Christina; Wither, Joan E.

    2016-01-01

    The development and progression of systemic lupus erythematosus is mediated by the complex interaction of genetic and environmental factors. To decipher the genetics that contribute to pathogenesis and the production of pathogenic autoantibodies, our lab has focused on the generation of congenic lupus-prone mice derived from the New Zealand Black (NZB) strain. Previous work has shown that an NZB-derived chromosome 4 interval spanning 32 to 151 Mb led to expansion of CD5+ B and Natural Killer T (NKT) cells, and could suppress autoimmunity when crossed with a lupus-prone mouse strain. Subsequently, it was shown that CD5+ B cells but not NKT cells derived from these mice could suppress the development of pro-inflammatory T cells. In this paper, we aimed to further resolve the genetics that leads to expansion of these two innate-like populations through the creation of additional sub-congenic mice and to characterize the role of IL-10 in the suppression of autoimmunity through the generation of IL-10 knockout mice. We show that expansion of CD5+ B cells and NKT cells localizes to a chromosome 4 interval spanning 91 to 123 Mb, which is distinct from the region that mediates the majority of the suppressive phenotype. We also demonstrate that IL-10 is critical to restraining autoantibody production and surprisingly plays a vital role in supporting the expansion of innate-like populations. PMID:26964093

  8. Shikonin inhibits TNF-α production through suppressing PKC-NF-κB-dependent decrease of IL-10 in rheumatoid arthritis-like cell model.

    PubMed

    Sun, Wen-Xiao; Liu, Yan; Zhou, Wei; Li, He-Wei; Yang, Jian; Chen, Zhen-Bing

    2017-04-01

    Shikonin, a major effective component in the Chinese herbal medicine Lithospermum erythrorhizon Sieb., exhibits an anti-inflammatory property towards rheumatoid arthritis (RA), but the potential mechanism is unclear. Our aim was to investigate the mechanism of shikonin on the lipopolysaccharide (LPS)-induced fibroblast-like synoviocyte (LiFLS) inflammation model. Fibroblast-like synoviocytes (FLSs) were treated with 200 μg/ml of LPS for 24 h to establish the RA-like model, LiFLS. FLSs were pretreated with shikonin (0.1-1 μM) for 30 min in the treatment groups. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays were used to detect mRNA and protein levels of interleukin (IL)-10 and tumor necrosis factor (TNF)-α. Signal proteins involved in IL-10 production were analyzed by Western blotting. Shikonin significantly reversed the inhibitory effects of LPS on IL-10 expression in FLSs by inactivating the PKC-NF-κB pathway. In addition, shikonin inhibited LPS-induced TNF-α expression in FLSs, and this effect was markedly diminished by IL-10-neutralizing antibody. The IL-10-mediated suppression of TNF-α transcription was demonstrated by no response to the protein synthesis inhibitor cyclohexamide and no mRNA decay. Shikonin inhibits LPS-induced TNF-α production in FLSs through suppressing the PKC-NF-κB-dependent decrease in IL-10, and this study also highlights the potential application of shikonin in the treatment of RA.

  9. Neonatal Plasma Polarizes TLR4-Mediated Cytokine Responses towards Low IL-12p70 and High IL-10 Production via Distinct Factors

    PubMed Central

    Belderbos, Mirjam E.; Levy, Ofer; Stalpers, Femke; Kimpen, Jan L.; Meyaard, Linde; Bont, Louis

    2012-01-01

    Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection. PMID:22442690

  10. Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB.

    PubMed

    Correa, Fernando; Hernangómez, Miriam; Mestre, Leyre; Loría, Frida; Spagnolo, Alessandra; Docagne, Fabian; Di Marzo, Vicenzo; Guaza, Carmen

    2010-01-15

    The endocannabinoid system exhibits anti-inflammatory properties by regulating cytokine production. Anandamide (AEA) down-regulates proinflammatory cytokines in a viral model of multiple sclerosis (MS). However, little is known about the mechanisms by which AEA exerts these effects. Microglial cells are the main source of cytokines within the brain and the first barrier of defense against pathogens by acting as antigen presenting cells. IL-10 is a key physiological negative regulator of microglial activation. In this study we show that AEA enhances LPS/IFNgamma-induced IL-10 production in microglia by targeting CB(2) receptors through the activation of ERK1/2 and JNK MAPKs. AEA also inhibits NF-kappaB activation by interfering with the phosphorylation of IkappaBalpha, which may result in an increase of IL-10 production. Moreover, endogenously produced IL-10 negatively regulates IL-12 and IL-23 cytokines, which in its turn modify the pattern of expression of transcription factors involved in Th commitment of splenocytes. This suggests that by altering the cytokine network, AEA could indirectly modify the type of immune responses within the central nervous system (CNS). Accordingly, pharmacological modulation of AEA uptake and degradation might be a useful tool for treating neuroinflammatory diseases.

  11. Tumor Expression of CD200 Inhibits IL-10 Production by Tumor-Associated Myeloid Cells and Prevents Tumor Immune Evasion of CTL Therapy

    PubMed Central

    Wang, Lixin; Liu, Jin-Qing; Talebian, Fatemeh; El-Omrani, Hani Y.; Khattabi, Mazin; Yu, Li; Bai, Xue-Feng

    2010-01-01

    CD200 is a cell-surface glycoprotein that functions through interaction with the CD200 receptor (CD200R) on myeloid lineage cells to regulate myeloid cell functions. Expression of CD200 has been implicated in multiple types of human cancer, however the impact of tumor expression of CD200 on tumor immunity remains poorly understood. To evaluate this issue, we generated CD200-positive mouse plasmacytoma J558 and mastocytoma P815 cells. We found that established CD200-positive tumors were often completely rejected by adoptively transferred CTL without tumor recurrence; in contrast, CD200-negative tumors were initially rejected by adoptively transferred CTL but the majority of tumors recurred. Tumor expression of CD200 significantly inhibited suppressive activity and IL-10 production by tumor-associated myeloid cells (TAMC), and as a result, more CTL accumulated in the tumor and exhibited a greater capacity to produce IFN-γ in CD200-positive tumors than in CD200-negative tumors. Neutralization of IL-10 significantly inhibited the suppressor activity of TAMC, and IL-10-deficiency allowed TAMC to kill cancer cells and their antigenic variants, which prevented tumor recurrence during CTL therapy. Thus, tumor expression of CD200 prevents tumor recurrence via inhibiting IL-10 production by TAMC. PMID:20662098

  12. Hypoxia Pre-Conditioned Embryonic Mesenchymal Stem Cell Secretome Reduces IL-10 Production by Peripheral Blood Mononuclear Cells

    PubMed Central

    Lotfinia, Majid; Lak, Shirin; Ghahhari, Nastaran Mohammadi; Johari, Behrooz; Maghsood, Faezeh; Parsania, Sara; Tabrizi, Bahareh Sadegh; Kadivar, Mehdi

    2017-01-01

    Background: Mesenchymal stem cells (MSCs) are important candidates for MSC-based cellular therapy. Current paradigm states that MSCs support local progenitor cells in damaged tissue through paracrine signaling. Therefore, the study of paracrine effects and secretome of MSCs could lead to the appreciation of mechanisms and molecules associated with the therapeutic effects of these cells. This study analyzed anti-inflammatory and immune-modulatory effects of MSC secretomes derived from embryonic stem cells (ESCs) and bone marrow cells after hypoxia and normoxia preconditioning. Methods: ESCs differentiated into MSCs and characterized by flow cytometry as well as by differentiation into adipocytes and osteoblasts. The experimental groups were consisted of individual groups of ESC-MSCs and BM-MSCs (bone marrow-derived mesenchymal stromal cells), which were preconditioned with either hypoxia or normoxia for 24, 48 and 72 h. After collecting the cell-free medium from each treatment, secretomes were concentrated by centrifugal filters. Using a peripheral blood mononuclear cell (PBMC) assay and ELISA, IL-10 concentration in PBMCs was evaluated after their incubation with different secretomes from preconditioned and non-preconditioned MSCs. Results: A significant difference was observed between ESC-MSC normoxia and ESC-MSC hypoxia in IL-10 concentration, and normoxia secretomes increased IL-10 secretion from PBMCs. Moreover, the strongest IL-10 secretion from PBMCs could be detected after the stimulation by ESC-MSC conditioned secretomes, but not BM-MSC conditioned medium. Conclusions: Human hypoxia preconditioned ESC-MSC secretome indicated stronger immune-modulatory effects compared to BM-MSC conditioned medium. It could be suggested that induced MSCs confer less immune-modulatory effects but produce more inflammatory molecules such as tumor necrosis factor α, which needs further investigation. PMID:27132108

  13. Enhanced inflammation in aged mice following infection with Streptococcus pneumoniae is associated with decreased IL-10 and augmented chemokine production.

    PubMed

    Williams, Andrew E; José, Ricardo J; Brown, Jeremy S; Chambers, Rachel C

    2015-03-15

    Streptococcus pneumoniae is the most common cause of severe pneumonia in the elderly. However, the impact of aging on the innate inflammatory response to pneumococci is poorly defined. We compared the innate immune response in old vs. young adult mice following infection with S. pneumoniae. The accumulation of neutrophils recovered from bronchoalveolar lavage fluid and lung homogenates was increased in aged compared with young adult mice, although bacterial outgrowth was similar in both age groups, as were markers of microvascular leak. Aged mice had similar levels of IL-1β, TNF, IFN-γ, IL-17, and granulocyte colony-stimulating factor following S. pneumoniae infection, compared with young mice, but increased levels of the chemokines CXCL9, CXCL12, CCL3, CCL4, CCL5, CCL11, and CCL17. Moreover, levels of IL-10 were significantly lower in aged animals. Neutralization of IL-10 in infected young mice was associated with increased neutrophil recruitment but no decrease in bacterial outgrowth. Furthermore, IL-10 neutralization resulted in increased levels of CCL3, CCL5, and CXCL10. We conclude that aging is associated with enhanced inflammatory responses following S. pneumoniae infection as a result of a compromised immunomodulatory cytokine response.

  14. Altered IL-10 and TNF-α production in peripheral blood mononuclear cells of systemic lupus erythematosus patients after Toll-like receptor 2, 4, or 9 activation.

    PubMed

    Tsao, Jeng-Ting; Hsieh, Song-Chou; Chiang, Bor-Luen; Yu, Chia-Li; Lin, Shih-Chang

    2012-09-01

    Toll-like receptor (TLR) activation and cytokines have been linked to the disease flare of systemic lupus erythematosus (SLE), yet the expression profiles of TLRs and cytokines in response to TLR activation in SLE patients remain unclear. In this study, we evaluated the expression levels of IL-10, TNF-α, interferon-γ (IFN-γ), TLR-2, TLR-4, and TLR-9 in peripheral blood mononuclear cells (PBMCs) from SLE patients and normal controls after PBMCs were stimulated with a TLR-2, TLR-4, or TLR-9 agonist. The expression levels in SLE patient group were statistically compared with those in normal control group. It was found in SLE patients that the IL-10 protein production was down-regulated after the activation of TLR-2, TLR-4, or TLR-9 and that the TNF-α protein production was decreased after the activation of TLR-2 or TLR-9, but not TLR-4. However, the transcript levels of IL-10 and TNF-α as well as the protein and transcript levels of IFN-γ were comparable between SLE and normal control groups. In addition, the TLR-2 transcript levels seem to be diminished after the activation of TLR-2, TLR-4, or TLR-9, but TLR-4 and TLR-9 transcript levels were not altered. The results indicate that the cytokine production from PBMCs in response to TLR activation is dysregulated in SLE patients, supporting the possibility that TLR activation may influence lupus disease activity through regulating cytokine production.

  15. Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice.

    PubMed

    Jo, Sung-Gang; Noh, Eui-Jeong; Lee, Jun-Young; Kim, Green; Choi, Joo-Hee; Lee, Mo-Eun; Song, Jung-Hee; Chang, Ji-Yoon; Park, Jong-Hwan

    2016-07-01

    Probiotics such as lactobacilli and bifidobacteria have healthpromoting effects by immune modulation. In the present study, we examined the immunomodulatory properties of Lactobacillus curvatus WiKim38, which was newly isolated from baechu (Chinese cabbage) kimchi. The ability of L. curvatus WiKim38 to induce cytokine production in bone marrow-derived dendritic cells (BMDCs) was determined by enzyme-linked immunosorbent assay. To evaluate the molecular mechanisms underlying L. curvatus Wikim38-mediated IL-10 production, Western blot analyses and inhibitor assays were performed. Moreover, the in vivo anti-inflammatory effects of L. curvatus WiKim38 were examined in a dextran sodium sulfate (DSS)-induced colitis mouse model. L. curvatus WiKim38 induced significantly higher levels of IL-10 in BMDCs compared with that induced by LPS. NF-κB and ERK were activated by L. curvatus WiKim38, and an inhibitor assay revealed that these pathways were required for L. curvatus WiKim38-induced production of IL-10 in BMDCs. An in vivo experiment showed that oral administration of L. curvatus WiKim38 increased the survival rate of mice with DSS-induced colitis and improved clinical signs and histopathological severity in colon tissues. Taken together, these results indicate that L. curvatus Wikim38 may have health-promoting effects via immune modulation, and may thus be applicable for therapy of various inflammatory diseases.

  16. Ephedrine hydrochloride inhibits PGN-induced inflammatory responses by promoting IL-10 production and decreasing proinflammatory cytokine secretion via the PI3K/Akt/GSK3β pathway.

    PubMed

    Zheng, Yuejuan; Yang, Yang; Li, Yuhu; Xu, Limin; Wang, Yi; Guo, Ziyi; Song, Haiyan; Yang, Muyi; Luo, Beier; Zheng, Aoxiang; Li, Ping; Zhang, Yan; Ji, Guang; Yu, Yizhi

    2013-07-01

    Approaches for controlling inflammatory responses and reducing the mortality rate of septic patients remain clinically ineffective; new drugs need to be identified that can induce anti-inflammatory responses. Ephedrine hydrochloride (EH) is a compound that is widely used in cardiovascular diseases, especially to treat hypotension caused by either anesthesia or overdose of antihypertensive drugs. In this study, we reported that EH also plays an important role in the control of the inflammatory response. EH increased IL-10 and decreased proinflammatory cytokine (IL-6, tumor-necrosis factor (TNF)-α, IL-12 and IL-1β) expression in primary peritoneal macrophages and Raw264.7 cells treated with peptidoglycan (PGN), a Gram-positive cell wall component. The anti-inflammatory role of EH was also demonstrated in an experimental mouse model of peritonitis induced by intraperitoneal PGN injection. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway was found to be responsible for the EH-mediated increase in IL-10 production and decrease in IL-6 expression. Therefore, our results illustrated that EH can help maintain immune equilibrium and diminish host damage by balancing the production of pro- and anti-inflammatory cytokines after PGN challenge. EH may be a new potential anti-inflammatory drug that can be useful for treating severe invasive Gram-positive bacterial infection.

  17. Analysis of the function of IL-10 in chickens using specific neutralising antibodies and a sensitive capture ELISA.

    PubMed

    Wu, Zhiguang; Hu, Tuanjun; Rothwell, Lisa; Vervelde, Lonneke; Kaiser, Pete; Boulton, Kay; Nolan, Matthew J; Tomley, Fiona M; Blake, Damer P; Hume, David A

    2016-10-01

    In mammals, the inducible cytokine interleukin 10 is a feedback negative regulator of inflammation. To determine the extent to which this function is conserved in birds, recombinant chicken IL-10 was expressed as a secreted human Ig Fc fusion protein (chIL-10-Fc) and used to immunise mice. Five monoclonal antibodies (mAb) which specifically recognise chicken IL-10 were generated and characterised. Two capture ELISA assays were developed which detected native chIL-10 secreted from chicken bone marrow-derived macrophages (chBMMs) stimulated with lipopolysaccharide (LPS). Three of the mAbs detected intracellular IL-10. This was detected in only a subset of the same LPS-stimulated chBMMs. The ELISA assay also detected massive increases in circulating IL-10 in chickens challenged with the coccidial parasite, Eimeria tenella. The same mAbs neutralised the bioactivity of recombinant chIL-10. The role of IL-10 in feedback control was tested in vitro. The neutralising antibodies prevented IL-10-induced inhibition of IFN-γ synthesis by mitogen-activated lymphocytes and increased nitric oxide production in LPS-stimulated chBMMs. The results confirm that IL-10 is an inducible feedback regulator of immune response in chickens, and could be the target for improved vaccine efficacy or breeding strategies.

  18. SB-273005, an antagonist of αvβ3 integrin, reduces the production of Th2 cells and cytokine IL-10 in pregnant mice.

    PubMed

    Wang, Shaojuan; Yang, Jing; Wang, Chongyang; Yang, Qing; Zhou, Xiaoli

    2014-06-01

    Pregnancy is associated with complex immunoreactions. In the present study, the effect of SB-273005, an antagonist of αvβ3 integrin, on the alterations of T helper (Th) cells and their derived cytokines that occur during pregnancy was investigated in mice. Five non-pregnant mice were used as a negative control. Mice were impregnated by co-housing females and males at a ratio of 2:1 overnight and pregnancy was confirmed by the appearance of vaginal plugs the following morning. Day 1 (D1) pregnant mice were randomly divided into two groups (n=20) and were administered either dimethylsulfoxide (mock treatment) or SB-273005 (3 mg/kg) by gavage at D3, D4 and D5. At D8, the levels of Th1 and Th2 cells and interleukin (IL)-2 and IL-10 in the spleen and peripheral blood were determined using flow cytometry and enzyme-linked immunosorbent assay. Pregnancy significantly increased the ratio of Th2:Th1 cells in the spleen compared with that in non-pregnant mice (P<0.01). However, this increase was significantly reduced by SB-273005 (P<0.001). Furthermore, whilst pregnancy decreased Th1 cell-produced IL-2 levels and increased Th2 cell-derived IL-10 levels, SB-273005 reversed both processes (P<0.05 for IL-2; P<0.01 for IL-10). The results from the present study demonstrated that pregnancy induces changes in the spleen, including a reduction of IL-2 and an increase in IL-10 production by Th1 and Th2 cells, respectively, as well as an upregulation of the Th2:Th1 ratio in the spleen. These immunological changes are reversed by SB-273005, indicating an important role for αvβ3 integrin in mediating these immunological alterations.

  19. IL-10 and TNFα Genotypes in SLE

    PubMed Central

    López, Patricia; Gutiérrez, Carmen; Suárez, Ana

    2010-01-01

    The production of two regulators of the inflammatory response, interleukin 10 (IL-10) and tumor necrosis factor α (TNFα), has been found to be deeply deregulated in SLE patients, suggesting that these cytokines may be involved in the pathogenesis of the disease. Genetic polymorphisms at the promoter regions of IL-10 and TNFα genes have been associated with different constitutive and induced cytokine production. Given that individual steady-state levels of these molecules may deviate an initial immune response towards different forms of lymphocyte activation, functional genetic variants in their promoters could influence the development of SLE. The present review summarizes the information previously reported about the involvement of IL-10 and TNFα genetic variants on SLE appearance, clinical phenotype, and outcome. We show that, in spite of the heterogeneity of the populations studied, the existing knowledge points towards a relevant role of IL-10 and TNFα genotypes in SLE. PMID:20625422

  20. CD44 co-stimulation promotes FoxP3+ regulatory T-cell persistence and function via production of IL-2, IL-10 and TGF-beta

    PubMed Central

    Bollyky, Paul L.; Falk, Ben A.; Long, Alice; Preisinger, Anton; Braun, Kathy R.; Wu, Rebecca P.; Evanko, Stephen P.; Buckner, Jane H.; Wight, Thomas N.; Nepom, Gerald T.

    2011-01-01

    Work by our group and others has demonstrated a role for the extracellular matrix receptor CD44 and it's ligand hyaluronan in CD4+CD25+ regulatory T-cell (Treg) function. Herein we explore the mechanistic basis for this observation. Using mouse FoxP3/GFP+ Treg we find that CD44 co-stimulation promotes expression of FoxP3, in part through production of IL-2. This promotion of IL-2 production was also resistant to Cyclosporine A treatment, suggesting that CD44 costimulation may promote IL-2 production through bypassing FoxP3-mediated suppression of NFAT. CD44 co-stimulation increased production of IL-10 in a partially Il-2 dependant manner and also promoted cell-surface TGF-β expression. Consistent with these findings, Treg from CD44 knock-out mice demonstrated impaired regulatory function ex vivo and depressed production of IL-10 and cell-surface TGF-β. These data reveal a novel role for CD44 cross-linking in the production of regulatory cytokines. Similar salutary effects on FoxP3 expression were observed upon co-stimulation with hyaluronan, the primary natural ligand for CD44. This effect is dependent upon CD44 cross-linking; while both high molecular weight hyaluronan (HMW-HA) and plate-bound anti-CD44 Ab promoted FoxP3 expression, neither low-molecular weight HA (LMW-HA) nor soluble anti-CD44 Ab did so. The implication is that intact HMW-HA can cross-link CD44 only in those settings where it predominates over fragmentary LMW-HA, namely in un-inflamed tissue. We propose that intact but not fragmented ECM is capable of cross-linking CD44 and thereby maintains immunologic tolerance in uninjured or healing tissue. PMID:19635906

  1. Involvement of TLR6 in the induction of COX-2, PGE2 and IL-10 in macrophages by lipids from virulent S2P and attenuated R1A Babesia bovis strains.

    PubMed

    Gimenez, G; Belaunzarán, M L; Magalhães, K G; Poncini, C V; Lammel, E M; González Cappa, S M; Bozza, P T; Isola, E L D

    2016-06-15

    Toll like receptors (TLRs) are involved in the modulation of diverse host genes expression through a complex network of signalling events that allow for an appropriate response to a microbial pathogen. In the present work we used TLR6KO mice in order to study the role of TLR6 in the immune discrimination of lipids from two Babesia bovis strains, attenuated R1A (LA) and virulent S2P (LV), and the consequent macrophage activation. We demonstrated that TLR6 is required for lipid body induction in murine peritoneal macrophages by both LA and LV. Interestingly, as regards IL-10 and COX-2/PGE2 pathway induction by LA and LV, we observed differences in the biological effects produced by these lipid extracts. Our results indicate a role of TLR6 in the down-modulation of these immunoregulators only in the case of LA, whereas this receptor was not implicated in pro-inflammatory TNFα, IL-6 and KC release induced by LA. Remarkably, LV did not exert the down-modulatory effect observed for LA, supporting the notion that LA and LV possess different lipid composition that could correlate with the polar pathogenic effect of both B. bovis strains.

  2. IL-27 promotes IL-10 production by effector Th1 CD4+ T cells; a critical mechanism for protection from severe immunopathology during malaria infection1

    PubMed Central

    Freitas do Rosário, Ana Paula; Lamb, Tracey; Spence, Philip; Stephens, Robin; Lang, Agathe; Roers, Axel; Muller, Werner; O’Garra, Anne; Langhorne, Jean

    2012-01-01

    Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. Interleukin (IL)-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. Here, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10−/− mice, with significant weight loss, drop in temperature and increased mortality. Furthermore, we show that IFN-γ+ Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS and low levels of CD127. Although Foxp3+ regulatory CD4+ T cells produce IL-10 during infection, highly activated IFN-γ+ Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria we demonstrate that the generation of protective IL10+IFN-γ+ Th1 cells is dependent on IL-27 signaling, and independent of IL-21. PMID:22205023

  3. Augmentation of antigen-specific antibody production and IL-10 generation with a fraction from Rooibos (Aspalathus linearis) tea.

    PubMed

    Ichiyama, Kenji; Tai, Akihiro; Yamamoto, Itaru

    2007-02-01

    Rooibos tea was extracted with boiling water. The aqueous extract was chromatographed in a Diaion HP20 column eluted stepwise with water, 25%, 50% and 75% (v/v) aqueous methanol, and 100% methanol. The water eluate (fraction A) showed an augmenting effect on anti-ovalbumin (anti-OVA) immunoglobulin M (IgM) production in OVA-stimulated murine splenocytes in vitro. Fraction A also showed a strong augmenting effect on interleukin-10 generation in murine splenocytes. Furthermore, continuous ingestion of fraction A was found to increase the anti-OVA IgM level in the sera of OVA-immunized mice.

  4. Interleukin-10 attenuation of collagen-induced arthritis is associated with suppression of interleukin-17 and retinoid-related orphan receptor γt production in macrophages and repression of classically activated macrophages

    PubMed Central

    2014-01-01

    Introduction Our objective in the present study was to determine the signaling pathway of interleukin 10 (IL-10) for modulating IL-17 expression in macrophages and the importance of this mediation in collagen-induced arthritis (CIA). Methods IL-10-knockout (IL-10−/−) mice and wild-type (WT) mice were immunized with chicken type II collagen (CII) to induce arthritis. The expression levels of IL-17 and retinoid-related orphan receptor γt (RORγt) in macrophages and joint tissues of IL-10−/− and WT mice were analyzed by enzyme-linked immunosorbent assay, quantitative RT-PCR (qRT-PCR) and Western blotting. The F4/80 macrophages and positive IL-17-producing macrophages in synovial tissues of the mice were determined by immunohistochemistry. The populations of classically activated macrophage (M1) and alternatively activated macrophage (M2) phenotypes were analyzed by flow cytometry. The expression of genes associated with M1 and M2 markers was analyzed by qRT-PCR. Results Compared to WT mice, IL-10−/− mice had exacerbated CIA development, which was associated with increased production of T helper 17 cell (Th17)/Th1 proinflammatory cytokines and CII-specific immunoglobulin G2a antibody after CII immunization. Macrophages in IL-10−/− mice had increased amounts of IL-17 and RORγt compared with the amounts in WT mice with CIA. Immunofluorescence microscopy showed that the number of IL-17-producing macrophages in synovial tissues was significantly higher in IL-10−/− mice than in WT mice. IL-10 deficiency might promote macrophage polarization toward the proinflammatory M1 phenotype, which contributes to the rheumatoid arthritis inflammation response. Conclusion IL-10 inhibits IL-17 and RORγt expression in macrophages and suppresses macrophages toward the proinflammatory M1 phenotype, which is important for the role of IL-10 in mediating the pathogenesis of CIA. PMID:24742125

  5. Immune Subversion by Mycobacterium tuberculosis through CCR5 Mediated Signaling: Involvement of IL-10

    PubMed Central

    Das, Shibali; Banerjee, Sayantan; Majumder, Saikat; Paul Chowdhury, Bidisha; Goswami, Avranil; Halder, Kuntal; Chakraborty, Urmita; Pal, Nishith K.; Majumdar, Subrata

    2014-01-01

    Tuberculosis is characterized by severe immunosuppression of the host macrophages, resulting in the loss of the host protective immune responses. During Mycobacterium tuberculosis infection, the pathogen modulates C-C Chemokine Receptor 5 (CCR5) to enhance IL-10 production, indicating the possible involvement of CCR5 in regulation of the host immune response. Here, we found that Mycobacterium infection significantly increased CCR5 expression in macrophages there by facilitating the activation of its downstream signaling. These events culminated in up-regulation of the immunosuppressive cytokine IL-10 production, which was further associated with the down-regulation of macrophage MHC-II expression along with the up-regulation of CCR5 expression via engagement of STAT-3 in a positive feedback loop. Treatment of macrophages with CCR5 specific siRNA abrogated the IL-10 production and restored MHCII expression. While, in vivo CCR5 silencing was also effective for the restoration of host immune responses against tuberculosis. This study demonstrated that CCR5 played a very critical role for the immune subversion mechanism employed by the pathogen. PMID:24695099

  6. TPL-2 negatively regulates interferon-β production in macrophages and myeloid dendritic cells

    PubMed Central

    Kaiser, Frank; Cook, Dorthe; Papoutsopoulou, Stamatia; Rajsbaum, Ricardo; Wu, Xuemei; Yang, Huei-Ting; Grant, Susan; Ricciardi-Castagnoli, Paola; Tsichlis, Philip N.; O'Garra, Anne

    2009-01-01

    Stimulation of Toll-like receptors (TLRs) on macrophages and dendritic cells (DCs) by pathogen-derived products induces the production of cytokines, which play an important role in immune responses. Here, we investigated the role of the TPL-2 signaling pathway in TLR induction of interferon-β (IFN-β) and interleukin-10 (IL-10) in these cell types. It has previously been suggested that IFN-β and IL-10 are coordinately regulated after TLR stimulation. However, in the absence of TPL-2 signaling, lipopolysaccharide (TLR4) and CpG (TLR9) stimulation resulted in increased production of IFN-β while decreasing IL-10 production by both macrophages and myeloid DCs. In contrast, CpG induction of both IFN-α and IFN-β by plasmacytoid DCs was decreased in the absence of TPL-2, although extracellular signal-regulated kinase (ERK) activation was blocked. Extracellular signal-related kinase–dependent negative regulation of IFN-β in macrophages was IL-10–independent, required protein synthesis, and was recapitulated in TPL-2–deficient myeloid DCs by retroviral transduction of the ERK-dependent transcription factor c-fos. PMID:19667062

  7. Inhibition of dextran sulfate sodium (DSS)-induced intestinal inflammation via enhanced IL-10 and TGF-beta production by galectin-9 homologues isolated from intestinal parasites.

    PubMed

    Kim, Joo-Young; Cho, Min Kyoung; Choi, Seon Hee; Lee, Keun Hee; Ahn, Soon Cheol; Kim, Dong-Hee; Yu, Hak Sun

    2010-11-01

    We isolated a galectin-9 (Gal-9) homologue gene (Tl-gal) from an adult worm of the canine gastrointestinal nematode parasite, Toxascaris leonina, via random cDNA library sequencing. The deduced amino acid sequence of the Tl-gal genes evidenced an identity of 89% with the galectin of Dirofilaria immitis, 87% identity with the galectin of Brugia malayi, and 35% identity with the human GAL-9 gene. To evaluate immune modulate function of Tl-GAL in host inflammatory response, we constructed recombinant Tl-GAL (rTl-GAL) using an Escherichia coli expression vector system and treated to intestinal inflammation mice. Although the carbohydrate-binding ability of rTl-GAL was less than that of rat galectin, we confirmed that recombinant rTl-GAL has carbohydrate-binding activity. The clinical symptoms of dextran sulfate sodium (DSS)-treated mice after rTl-GAL pre-treatment were found to be minimized, or less profound, as compared to those of the rTl-GAL untreated group. Additionally, the DSS-treated mice exhibited a significant shortening of the colon, but the large intestines of the rTl-GAL pre-treated mice were longer than those of the control group (P<0.05). Additionally, the rTl-GAL treated group exhibited significantly increased the levels of TGF-beta and IL-10 (P<0.05). The production of these regulatory cytokines may ameliorate intestinal inflammation. These findings demonstrate that rTl-GAL could inhibit inflammation reactions via the inhibition of Th1 and Th2 cytokine production by increasing the production of TGF-beta and IL-10 cytokines. The rTl-GAL may induce TGF-beta expression, primarily via the activation of the p38 pathway. In conclusion, rTl-GAL may function like a host galectin, thus functioning as a regulatory molecule in the host immune system; rTl-GAL may prove useful in the design of novel therapeutic intervention strategies for the treatment of allergic and immune diseases.

  8. Divergent mechanisms utilized by SOCS3 to mediate interleukin-10 inhibition of tumor necrosis factor alpha and nitric oxide production by macrophages.

    PubMed

    Qasimi, Pooran; Ming-Lum, Andrew; Ghanipour, Ali; Ong, Christopher J; Cox, Michael E; Ihle, James; Cacalano, Nicolas; Yoshimura, Akihiko; Mui, Alice L-F

    2006-03-10

    The cytokine interleukin-10 (IL-10) potently inhibits macrophage function through activation of the transcription factor STAT3. The expression of SOCS3 (suppressor of cytokine signaling-3) has been shown to be induced by IL-10 in a STAT3-dependent manner. However, the relevance of SOCS3 expression to the anti-inflammatory effect of IL-10 on macrophages has been controversial. Through kinetic analysis of the requirement for SOCS3 in IL-10 inhibition of lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNFalpha) transcription and translation, SOCS3 was found to be necessary for TNFalpha expression during the early phase, but not the late phase of IL-10 action. SOCS3 was essential for IL-10 inhibition of LPS-stimulated production of iNOS (inducible nitric-oxide synthase) protein and nitric oxide (NO). To determine the domains of SOCS3 protein important in mediating these effects, SOCS3-/- macrophages were reconstituted with SOCS3 mutated for the SH2, KIR, SOCS box domains, and tyrosines 204 (Tyr204) and 221 (Tyr221). The SH2 domain, SOCS box, and both Tyr204 and Tyr221 were required for IL-10 inhibition of TNFalpha mRNA and protein expression, but interestingly the KIR domain was necessary only for IL-10 inhibition of TNFalpha protein expression. In contrast, Tyr204 and Tyr221 were the only structural features of SOCS3 that were necessary in mediating IL-10 inhibition of iNOS protein expression and NO production. These data define SOCS3 as an important mediator of IL-10 inhibition of macrophage activation and that SOCS3 interferes with distinct LPS-stimulated signal transduction events through differing mechanisms.

  9. TonEBP suppresses IL-10-mediated immunomodulation

    PubMed Central

    Choi, Soo Youn; Lee, Hwan Hee; Lee, Jun Ho; Ye, Byeong Jin; Yoo, Eun Jin; Kang, Hyun Je; Jung, Gyu Won; An, Seung Min; Lee-Kwon, Whaseon; Chiong, Mario; Lavandero, Sergio; Kwon, Hyug Moo

    2016-01-01

    TonEBP is a key transcriptional activator of M1 phenotype in macrophage, and its high expression is associated with many inflammatory diseases. During the progression of the inflammatory responses, the M1 to M2 phenotypic switch enables the dual role of macrophages in controlling the initiation and resolution of inflammation. Here we report that in human and mouse M1 macrophages TonEBP suppresses IL-10 expression and M2 phenotype. TonEBP knockdown promoted the transcription of the IL-10 gene by enhancing chromatin accessibility and Sp1 recruitment to its promoter. The enhanced expression of M2 genes by TonEBP knockdown was abrogated by antagonism of IL-10 by either neutralizing antibodies or siRNA-mediated silencing. In addition, pharmacological suppression of TonEBP leads to similar upregulation of IL-10 and M2 genes. Thus, TonEBP suppresses M2 phenotype via downregulation of the IL-10 in M1 macrophages. PMID:27160066

  10. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10.

    PubMed

    Nitahara-Kasahara, Yuko; Hayashita-Kinoh, Hiromi; Chiyo, Tomoko; Nishiyama, Akiyo; Okada, Hironori; Takeda, Shin'ichi; Okada, Takashi

    2014-08-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease that causes respiratory and cardiac failure. Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, but its role and regulation in the disease time course has not been sufficiently examined. In the present study, we used IL-10(-/-)/mdx mice lacking both dystrophin and the anti-inflammatory cytokine, interleukin-10 (IL-10), to investigate whether a predisposition to inflammation affects the severity of DMD with advancing age. The IL-10 deficiency caused a profound DMD phenotype in the dystrophic heart such as muscle degeneration and extensive myofiber loss, but the limb muscle and diaphragm morphology of IL-10(-/) (-)/mdx mice was similar to that of mdx mice. Extensive infiltrates of pro-inflammatory M1 macrophages in regeneration of cardiotoxin-injured muscle, altered M1/M2 macrophage phenotype and increased pro-inflammatory cytokines/chemokines production were observed in the diaphragm and heart of IL-10(-/-)/mdx mice. We characterized the IL-10(-/-)/mdx mice as a dystrophic model with chronic inflammation and severe cardiorespiratory dysfunction, as evidenced by decreased percent fractional shortening (%FS) and ejection fraction percent (EF%) on echocardiography, reduced lower tidal volume on whole-body plethysmography. This study suggests that a predisposition to inflammation is an important indicator of DMD disease progression. Therefore, the development of anti-inflammatory strategies may help in slowing down the cardiorespiratory dysfunction on DMD.

  11. IL-10 Produced by Trophoblast Cells Inhibits Phagosome Maturation Leading to Profound Intracellular Proliferation of Salmonella enterica Typhimurium

    PubMed Central

    Nguyen, Tina; Robinson, Nirmal; Allison, Sarah E.; Coombes, Brian K; Sad, Subash; Krishnan, Lakshmi

    2013-01-01

    Introduction Salmonella enterica Typhimurium (ST) is a phagosomal pathogen that can infect placental trophoblast cells leading to abortion and severe maternal illness. It is unclear how the trophoblast cells promote profound bacterial proliferation. Methods The mechanism of internalization, intracellular growth and phagosomal biogenesis in ST-infected human epithelial (HeLa), macrophage (THP-1) and trophoblast-derived cell lines (JEG-3, BeWo and HTR-8) was studied. Specific inhibitors were used to block bacterial internalization. Phagosomal maturation was determined by confocal microscopy, western-blotting and release of lysosomal β-galactosidase by infected cells. Bacterial colony forming units were determined by plating infected cell lysates on agar plates. Results ST proliferated minimally in macrophages but replicated profoundly within trophoblast cells. The ST-∆invA (a mutant of Salmonella pathogenicity island-1 gene effector proteins) was unable to infect epithelial.cells, but was internalized by scavenger receptors on trophoblasts and macrophages. However, ST was contrastingly localized in early (Rab5+) or late (LAMP1+) phagosomes within trophoblast cells and macrophages respectively. Furthermore trophoblast cells (unlike macrophages) did not exhibit phagoso-lysosomal fusion. ST-infected macrophages produced IL-6 whereas trophoblast cells produced IL-10. Neutralizing IL-10 in JEG-3 cells accelerated phagolysomal fusion and reduced proliferation of ST. Placental bacterial burden was curtailed in vivo in anti-IL-10 antibody treated and IL-10-deficient mice. Discussion Macrophages phagocytose but curtail intracellular replication of ST in late phagosomes. In contrast, phagocytosis by trophoblast cells results in an inappropriate cytokine response and proliferation of ST in early phagosomes. Conclusion IL-10 production by trophoblast cells that delays phagosomal maturation may facilitate proliferation of pathogens in placental cells. PMID:23834952

  12. Is There Any Difference between the In Situ and Systemic IL-10 and IFN-γ Production when Clinical Forms of Cutaneous Sporotrichosis Are Compared?

    PubMed Central

    Morgado, Fernanda N.; Schubach, Armando O.; Pimentel, Maria Inês; Lyra, Marcelo R.; Vasconcellos, Érica C. F.; Valete-Rosalino, Claudia M.; Conceição-Silva, Fátima

    2016-01-01

    Fungus of the Sporothrix schenckii complex can produce skin lesions in humans, commonly lymphocutaneous (LC) and fixed (F) forms of sporotrichosis. Some authors have suggested that clinical forms are influenced by differences in virulence and genetic profile of isolates. But little is known about the role of immune response in determining the clinical outcome of sporotrichosis. To verify the profile of systemic and in situ IFN-γ and IL-10 expression in sporotrichosis patients, and consequently to detect any difference between the two compartments and/or clinical presentation, we quantified the number of IFN-γ and IL-10 producer peripheral blood mononuclear cells stimulated with S. schenckii antigen (Ss-Ag) by Elispot, and quantified cytokines expression by in situ immunohistochemistry in the same patient. Three groups were formed: 1- LC (n = 9); 2- F (n = 10); 3- healthy individuals (n = 14). All sporotrichosis patients produced high amounts of systemic IFN- γ when compared to uninfected individuals. No differences were observed between LC and F groups. Regarding in situ IL-10 expression, a difference between LC and F groups was observed: LC lesions presented higher amounts of IL-10 than F lesions differently from systemic IL-10 which showed similarities. Our data suggests that LC lesions present higher IL-10 expression which could be related to regulatory mechanisms for compensating the tissue injury, however favoring fungal persistence in the lesions. Surprisingly, there were no differences in systemic and in situ IFN- γ expression between CL and F patients, although it was significantly higher expressed in these patients than in healthy individuals. PMID:27622513

  13. Targeting IL-10 in auto-immune diseases.

    PubMed

    Tian, Guo; Li, Jiao-Long; Wang, De-Guang; Zhou, Dian

    2014-09-01

    IL-10 is a multifunctional cytokine secreted by a variety of cells. It not only inhibits activation of monocyte/macrophage system and synthesis of monocyte cytokine and inflammatory cytokine but also promotes the proliferation and maturation of non-monocyte-dependent T cell, stimulating proliferation of antigen-specific B cell. Increasing evidence indicates that IL-10 plays an important role in both the onset and development of auto-immune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS), multiple sclerosis (MS), Crohn's disease (CD), and psoriasis. However, the exact mechanisms of IL-10 in auto-immune diseases remain unclear. In the present review, we will summarize the biological effects of IL-10, as well as its role and therapeutic potential in auto-immune diseases.

  14. Carbon Monoxide Inhibits Tenascin-C Mediated Inflammation via IL-10 Expression in a Septic Mouse Model

    PubMed Central

    Uddin, Md. Jamal; Li, Chun-shi; Joe, Yeonsoo; Chen, Yingqing; Zhang, Qinggao; Ryter, Stefan W.; Chung, Hun Taeg

    2015-01-01

    Tenascin-C (TN-C), an extracellular matrix (ECM) glycoprotein, is specifically induced upon tissue injury and infection and during septic conditions. Carbon monoxide (CO) gas is known to exert various anti-inflammatory effects in various inflammatory diseases. However, the mechanisms underlying the effect of CO on TN-C-mediated inflammation are unknown. In the present study, we found that treatment with LPS significantly enhanced TN-C expression in macrophages. CO gas, or treatment with the CO-donor compound, CORM-2, dramatically reduced LPS-induced expression of TN-C and proinflammatory cytokines while significantly increased the expression of IL-10. Treatment with TN-C siRNA significantly suppressed the effects of LPS on proinflammatory cytokines production. TN-C siRNA did not affect the CORM-2-dependent increase of IL-10 expression. In cells transfected with IL-10 siRNA, CORM-2 had no effect on the LPS-induced expression of TN-C and its downstream cytokines. These data suggest that IL-10 mediates the inhibitory effect of CO on TN-C and the downstream production of proinflammatory cytokines. Additionally, administration of CORM-2 dramatically reduced LPS-induced TN-C and proinflammatory cytokines production while expression of IL-10 was significantly increased. In conclusion, CO regulated IL-10 expression and thus inhibited TN-C-mediated inflammation in vitro and in vivo. PMID:26557739

  15. Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression.

    PubMed

    Gower, R Michael; Boehler, Ryan M; Azarin, Samira M; Ricci, Christine F; Leonard, Joshua N; Shea, Lonnie D

    2014-02-01

    Biomaterial scaffolds are central to many tissue engineering strategies as they create a space for tissue growth and provide a support for cell adhesion and migration. However, biomaterial implantation results in unavoidable injury resulting in an inflammatory response, which can impair integration with the host and tissue regeneration. Toward the goal of reducing inflammation, we investigated the hypothesis that a lentiviral gene therapy-based approach to localized and sustained IL-10 expression at a scaffold could modulate the number, relative proportions, and cytokine production of infiltrating leukocyte populations. Flow cytometry was used to quantify infiltration of six leukocyte populations for 21 days following implantation of PLG scaffolds into intraperitoneal fat. Leukocytes with innate immune functions (i.e., macrophages, dendritic cells, neutrophils) were most prevalent at early time points, while T lymphocytes became prevalent by day 14. Reporter gene delivery indicated that transgene expression persisted at the scaffold for up to 28 days and macrophages were the most common leukocyte transduced, while transduced dendritic cells expressed the greatest levels of transgene. IL-10 delivery decreased leukocyte infiltration by 50% relative to controls, increased macrophage IL-10 expression, and decreased macrophage, dendritic cell, and CD4 T cell IFN-γ expression. Thus, IL-10 gene delivery significantly decreased inflammation following scaffold implant into the intraperitoneal fat, in part by modulating cytokine expression of infiltrating leukocytes.

  16. Peroxiredoxin-1, a possible target in modulating inflammatory cytokine production in macrophage like cell line RAW264.7.

    PubMed

    Tae Lim, Young; Sup Song, Dong; Joon Won, Tae; Lee, Yun-Jung; Yoo, Jong-Sun; Eun Hyung, Kyeong; Won Yoon, Joo; Park, So-Young; Woo Hwang, Kwang

    2012-06-01

    Peroxiredoxin (PRX), a scavenger of H(2) O(2) and alkyl hydroperoxides in living organisms, protects cells from oxidative stress. Contrary to its known anti-oxidant roles, the involvement of PRX-1 in the regulation of lipopolysaccharide (LPS) signaling is poorly understood, possible immunological functions of PRX-1 having been uncovered only recently. In the present study, it was discovered that the PRX-1 deficient macrophage like cell line (RAW264.7) has anti-inflammatory activity when stimulated by LPS. Treatment with LPS for 3 hrs resulted in increased gene expression of an anti-inflammatory cytokine, interleukin-10 (IL-10), in PRX-1 knock down RAW264.7 cells. Gene expression of pro-inflammatory cytokines IL-1β and tumor necrosis factor- α (TNF-α) did not show notable changes under the same conditions. However, production of these cytokines significantly decreased in PRX-1 knock down RAW264.7 cells with 12 hrs of stimulation. Production of IL-10 was also increased in PRX-1 knock down RAW264.7 cells with 12 hrs of stimulation. We predicted that higher concentrations of IL-10 would result in decreased expression of IL-1β and TNF-α in PRX-1 knock-down cells. This was confirmed by blocking IL-10, which reestablished IL-1β and TNF-α secretion. We also observed that increased concentrations of IL-10 do not affect the NF-κB pathway. Interestingly, STAT3 phosphorylation by LPS stimulation was significantly increased in PRX-1 knockdown RAW264.7 cells. Up-regulation of IL-10 in PRX-1 knockdown cells and the resulting downregulation of proinflammatory cytokine production seem to involve the STAT3 pathway in macrophages. Thus, down-regulation of PRX-1 may contribute to the suppression of adverse effects caused by excessive activation of macrophages through affecting the STAT3 signaling pathway.

  17. Macrophage Polarization Modulates FcγR- and CD13-Mediated Phagocytosis and Reactive Oxygen Species Production, Independently of Receptor Membrane Expression

    PubMed Central

    Mendoza-Coronel, Elizabeth; Ortega, Enrique

    2017-01-01

    In response to microenvironmental cues, macrophages undergo a profound phenotypic transformation acquiring distinct activation phenotypes ranging from pro-inflammatory (M1) to anti-inflammatory (M2). To study how activation phenotype influences phagocytosis and production of reactive oxygen species (ROS) mediated by receptors for IgG antibodies (Fcγ receptors) and by CD13, human monocyte-derived macrophages were polarized to distinct phenotypes using IFN-γ (Mϕ-IFN-γ), IL-4 (Mϕ-IL-4), or IL-10 (Mϕ-IL-10). Phenotypically, Mϕ-IFN-γ were characterized as CD14+CD80+CD86+ cells, Mϕ-IL-4 as CD209highCD206+CD11b+CD14low, and Mϕ-IL-10 as CD16+CD163+ cells. Compared to non-polarized macrophages, FcγRI expression increased in Mϕ-IFN-γ and Mϕ-IL-10 and FcγRIII expression increased in Mϕ-IL-10. None of the polarizing cytokines modified FcγRII or CD13 expression. Functionally, we found that cytokine-mediated activation significantly and distinctively affected FcγR- and CD13-mediated phagocytosis and ROS generation. Compared to non-polarized macrophages, FcγRI-, FcγRII-, and CD13-mediated phagocytosis was significantly increased in Mϕ-IL-10 and decreased in Mϕ-IFN-γ, although both cytokines significantly upregulated FcγRI expression. IL-10 also increased phagocytosis of Escherichia coli, showing that the effect of IL-10 on macrophage phagocytosis is not specific for a particular receptor. Interestingly, Mϕ-IL-4, which showed poor FcγR- and CD13-mediated phagocytosis, showed very high phagocytosis of E. coli and zymosan. Coupled with phagocytosis, macrophages produce ROS that contribute to microbial killing. As expected, Mϕ-IFN-γ showed significant production of ROS after FcγRI-, FcγRII-, or CD13-mediated phagocytosis. Unexpectedly, we found that Mϕ-IL-10 can also produce ROS after simultaneous stimulation through several phagocytic receptors, as coaggregation of FcγRI/FcγRII/CD13 induced a belated but significant ROS production. Together, these

  18. Leishmania (Viannia) braziliensis amastigotes induces the expression of TNFα and IL-10 by human peripheral blood mononuclear cells in vitro in a TLR4-dependent manner.

    PubMed

    Galdino, Hélio; Saar Gomes, Rodrigo; Dos Santos, Jessica Cristina; Pessoni, Lívia Lara; Maldaner, Anetícia Eduarda; Marques, Stéfanne Madalena; Gomes, Clayson Moura; Dorta, Miriam Leandro; de Oliveira, Milton Adriano Pelli; Joosten, Leo A B; Ribeiro-Dias, Fátima

    2016-12-01

    While the role of Toll-like receptors (TLRs) has been investigated in murine models of tegumentary leishmaniasis caused by Leishmania (Viannia) braziliensis, the interaction between TLRs and Leishmania sp. has not been investigated in human cells. The aim of this study was to evaluate the involvement of TLR4 in cytokine production of human peripheral blood mononuclear cells (PBMCs) induced by L. braziliensis, and whether the parasite alters the expression of TLR4 on monocytes/macrophages. Amastigote forms were obtained from mice lesions and PBMCs were isolated from healthy donors. PBMCs were cultured in absence or presence of IFNγ, TLR4 neutralizing antibodies, natural antagonist of TLR4 (Bartonella LPS), TLR4 agonist (E. coli LPS), and amastigote forms. The concentrations of tumor necrosis factor (TNFα) and interleukin 10 (IL-10) were assayed by ELISA and TLR4 expression by flow cytometry. Amastigotes forms of L. braziliensis induced TNFα and IL-10 production only in IFNγ-primed PBMCs. The TNFα and IL-10 production was inhibited by TLR4 neutralization, both with anti-TLR4 antibodies and Bartonella LPS. Interestingly, addition of E. coli LPS further increased TNFα but not IL-10 production induced by L. braziliensis amastigotes. Amastigotes of L. braziliensis strongly reduced membrane TLR4 expression on monocytes/macrophages, apparently by internalization after the infection. The present study reveals that TLR4 drives the production of TNFα and IL-10 induced by L. braziliensis amastigotes and that the parasites decrease TLR4 expression on monocyte surface.

  19. IL-10: A Multifunctional Cytokine in Viral Infections

    PubMed Central

    2017-01-01

    The anti-inflammatory master regulator IL-10 is critical to protect the host from tissue damage during acute phases of immune responses. This regulatory mechanism, central to T cell homeostasis, can be hijacked by viruses to evade immunity. IL-10 can be produced by virtually all immune cells, and it can also modulate the function of these cells. Understanding the effects of this multifunctional cytokine is therefore a complex task. In the present review we discuss the factors driving IL-10 production and the cellular sources of the cytokine during antiviral immune responses. We particularly focus on the IL-10 regulatory mechanisms that impact antiviral immune responses and how viruses can use this central regulatory pathway to evade immunity and establish chronic/latent infections. PMID:28316998

  20. Collagenase Production by Endotoxin-Activated Macrophages

    PubMed Central

    Wahl, Larry M.; Wahl, Sharon M.; Mergenhagen, Stephan E.; Martin, George R.

    1974-01-01

    Peritoneal exudate macrophages, when exposed to bacterial lipopolysaccharide in culture, were found to produce collagenase (EC 3.4.24.3). This enzyme was not detected in extracts of the macrophages or in media from nonstimulated macrophage cultures. Lipidcontaining fractions of the lipopolysaccharide, including a glycolipid from the rough mutant of Salmonella minnesota (R595) and lipid A, were potent stimulators of collagenase production. The lipid-free polysaccharide fraction had no effect. Cycloheximide prevented the production of collagenase by endotoxin-treated macrophages, suggesting that it was newly synthesized. Images PMID:4372628

  1. Vasoactive intestinal peptide inhibits liver pathology in acute murine schistosomiasis mansoni and modulates IL-10, IL-12 and TNF-alpha production.

    PubMed

    Allam, Gamal

    2007-01-01

    Vasoactive intestinal peptide (VIP) exerts a broad range of biologic actions that may include modulation of hepatic granuloma formation. This study aimed to investigate the effect of VIP administration on the course of acute murine schistosomiasis mansoni. Mice were infected each with 40 Schistosoma (S.) mansoni cercariae and injected intraperitoneally with VIP at a total dose of 1mug/kg body weight. VIP treatment was very effective in diminishing worm fecundity, hepatic granuloma size and number by about 54%, 75% and 51%, respectively, and reducing liver collagen content. Serum level of interleukin (IL)-10 was increased, while level of IL-12 and tumor necrosis factor (TNF)-alpha were decreased as a result of VIP administration. Carbohydrate antigen 19.9 (CA 19.9) induced by S. mansoni infection was decreased with VIP treatment. Activities of hepatic gamma-glutamyl transferase (gamma-GT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in liver tissue homogenate of infected treated mice were increased. These results indicate that suitable administration of exogenous VIP can be effective in ameliorating immunopathologic damage associated with schistosomiasis.

  2. Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus igniarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7).

    PubMed

    Suabjakyong, Papawee; Nishimura, Kazuhiro; Toida, Toshihiko; Van Griensven, Leo J L D

    2015-08-01

    Phellinus linteus and igniarius (L.) Quel. have been used in traditional Asian medicine for over two centuries against a variety of diseases. Polysaccharides from their fruiting bodies show strong immunomodulatory activity. In this study we characterized the structure and composition of polysaccharides from Phellinus linteus and Phellinus igniarius by HPLC, GC-MS and NMR (1-H, 13-C, COSY, NOESY and TOCSY). The polysaccharides from P. linteus and P. igniarius mainly contained glucose with minor proportions of mannose, galactose, xylose, arabinose and rhamnose. Methylation analyses showed that the glycosidic linkages were mostly 1 → 3, 1 → 6 or 1 → 3,6. The two-dimensional COSY, NOESY and TOCSY confirmed that these polysaccharides have a main chain of →3)-β-D-Glcp-(1→ with →6)-β-D-Glcp-(1→ side chain. In vitro assays by RT-PCR and ELISA showed that (1 → 3; 1 → 6)-β-D-polysaccharides from P. linteus and P. igniarius decreased TNF-α in RAW 264.7 cells, suggesting an immuno-suppressive activity. Furthermore, these polysaccharides stimulated a high IL-10 response and induced strong suppression of transcription of IL-6. The results suggest that polysaccharides from P. linteus and P. igniarius could possibly find applications in restoring the IL-6/IL-10 balance, the disturbance of which is thought to be related to chronic inflammatory disease, obesity, diabetes type 2, and to mania and depression.

  3. Association of interleukin-(IL)10 haplotypes and serum IL-10 levels in the progression of childhood immune thrombocytopenic purpura.

    PubMed

    Tesse, Riccardina; Del Vecchio, Giovanni Carlo; De Mattia, Domenico; Sangerardi, Maria; Valente, Federica; Giordano, Paola

    2012-08-15

    Derangement of genetic and immunological factors seems to have a pivotal role in the pathophysiology of immune thrombocytopenic purpura (ITP). We investigated interleukin(IL)-10 genetically determined expression in children with an acute progression of ITP (n=41) compared to young patients with chronic ITP (n=44) and healthy controls (n=60), and attempted to correlate IL-10 production with the course of the disease. We genotyped our study population for three single nucleotide polymorphisms at positions -1082 (A/G), -819 (C/T) and -592 (C/A) in the promoter region of the IL-10 gene. IL-10 levels were measured by enzyme-linked immunoassay. The IL-10 production in our study population was significantly higher in patients carrying the GCC haplotype than those bearing ACC and ATA haplotypes (6.9 ± 1.5 vs 3.6 ± 0.8 vs 3.3 ± 0.3, p=0.03). The serum concentration of IL-10 was significantly higher in patients with an acute course of their disease, who mainly carried the GCC haplotype (92%), compared to chronic subjects, bearing the non-GCC haplotypes, and controls [17 pg/mL (1.7-18) vs 3.5 pg/mL (0.6-11) vs 3 pg/mL (1-7), p<0.01)]. Our findings show that patients carrying the GCC-high producer IL-10 haplotype have an acute development of ITP and that IL-10 levels might represent a useful predictive biomarker of the disease course.

  4. Regulatory Dendritic Cells Restrain NK Cell IFN-γ Production through Mechanisms Involving NKp46, IL-10, and MHC Class I-Specific Inhibitory Receptors.

    PubMed

    Spallanzani, Raúl G; Torres, Nicolás I; Avila, Damián E; Ziblat, Andrea; Iraolagoitia, Ximena L Raffo; Rossi, Lucas E; Domaica, Carolina I; Fuertes, Mercedes B; Rabinovich, Gabriel A; Zwirner, Norberto W

    2015-09-01

    Cross-talk between mature dendritic cells (mDC) and NK cells through the cell surface receptors NKp30 and DNAM-1 leads to their reciprocal activation. However, the impact of regulatory dendritic cells (regDC) on NK cell function remains unknown. As regDC constrain the immune response in different physiological and pathological conditions, the aim of this work was to investigate the functional outcome of the interaction between regDC and NK cells and the associated underlying mechanisms. RegDC generated from monocyte-derived DC treated either with LPS and dexamethasone, vitamin D3, or vitamin D3 and dexamethasone instructed NK cells to secrete lower amounts of IFN-γ than NK cells exposed to mDC. Although regDC triggered upregulation of the activation markers CD69 and CD25 on NK cells, they did not induce upregulation of CD56 as mDC, and silenced IFN-γ secretion through mechanisms involving insufficient secretion of IL-18, but not IL-12 or IL-15 and/or induction of NK cell apoptosis. Blocking experiments demonstrated that regDC curb IFN-γ secretion by NK cells through a dominant suppressive mechanism involving IL-10, NK cell inhibitory receptors, and, unexpectedly, engagement of the activating receptor NKp46. Our findings unveil a previously unrecognized cross-talk through which regDC shape NK cell function toward an alternative activated phenotype unable to secrete IFN-γ, highlighting the plasticity of NK cells in response to tolerogenic stimuli. In addition, our findings contribute to identify a novel inhibitory role for NKp46 in the control of NK cell function, and have broad implications in the resolution of inflammatory responses and evasion of antitumor responses.

  5. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-α, IL-12, IFN-γ, IL-2, IL-4, IL-10 and IL-17.

    PubMed

    Habijanic, Jožica; Berovic, Marin; Boh, Bojana; Plankl, Mojca; Wraber, Branka

    2015-01-25

    An original strain of Ganoderma lucidum (W.Curt.:Fr.) Lloyd, MZKI G97 isolated from Slovenian habitats was grown by a submerged liquid substrate cultivation in a laboratory stirred tank reactor. Five fractions of extracellular and cell-wall polysaccharides were obtained by extraction, ethanol precipitation, and purification by ion-exchange, gel and affinity chromatography. The capacity of isolated polysaccharide fractions to induce innate inflammatory cytokines, and to modulate cytokine responses of activated lymphocytes was investigated. Human peripheral blood mononuclear cells (PBMC) were activated in vitro with polysaccharide fractions, in order to induce innate inflammatory cytokines: tumor necrosis factor alpha (TNF-α), interleukin (IL) 12 and interferon gamma (IFN-γ). For the immunomodulation capacity, polysaccharide fractions were cultured with ionomycine and phorbol myristate acetate (IONO+PMA) activated PBMC, and the concentrations of induced IL-2, IL-4, IFN-γ, IL-10 and IL-17 were measured. The results showed that polysaccharides from G. lucidum induced moderate to high amounts of innate inflammatory cytokines. Fungal cell-wall polysaccharides were stronger innate inflammatory cytokines inducers, while extracellular polysaccharides demonstrated a higher capacity to modulate cytokine responses of IONO+PMA induced production of IL-17. The results indicate that G. lucidum polysaccharides enhance Th1 response with high levels of IFN-γ and IL-2, and display low to no impact on IL-4 production. A similar pattern was observed at regulatory cytokine IL-10. All of the polysaccharide fractions tested induced IL-17 production at different concentration levels.

  6. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination.

    PubMed

    Llopiz, Diana; Ruiz, Marta; Infante, Stefany; Villanueva, Lorea; Silva, Leyre; Hervas-Stubbs, Sandra; Alignani, Diego; Guruceaga, Elizabeth; Lasarte, Juan J; Sarobe, Pablo

    2017-01-10

    Vaccination induces immunostimulatory signals that are often accompanied by regulatory mechanisms such as IL-10, which control T-cell activation and inhibit vaccine-dependent antitumor therapeutic effect. Here we characterized IL-10-producing cells in different tumor models treated with therapeutic vaccines. Although several cell subsets produced IL-10 irrespective of treatment, an early vaccine-dependent induction of IL-10 was detected in dendritic cells (DC). IL-10 production defined a DC population characterized by a poorly mature phenotype, lower expression of T-cell stimulating molecules and upregulation of PD-L1. These IL-10+ DC showed impaired in vitro T-cell stimulatory capacity, which was rescued by incubation with IL-10R and PD-L1-inhibiting antibodies. In vivo IL-10 blockade during vaccination decreased the proportion of IL-10+ DC and improved their maturation, without modifying PD-L1 expression. Similarly, PD-L1 blockade did not affect IL- 10 expression. Interestingly, vaccination combined with simultaneous blockade of IL-10 and PD-L1 induced stronger immune responses, resulting in a higher therapeutic efficacy in tumor-bearing mice. These results show that vaccine-induced immunoregulatory IL- 10+ DC impair priming of antitumor immunity, suggesting that therapeutic vaccination protocols may benefit from combined targeting of inhibitory molecules expressed by this DC subset.

  7. Malaria parasite infection compromises control of concurrent systemic non-typhoidal Salmonella infection via IL-10-mediated alteration of myeloid cell function.

    PubMed

    Lokken, Kristen L; Mooney, Jason P; Butler, Brian P; Xavier, Mariana N; Chau, Jennifer Y; Schaltenberg, Nicola; Begum, Ramie H; Müller, Werner; Luckhart, Shirley; Tsolis, Renée M

    2014-05-01

    Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection.

  8. IL-10 Induction from Implants Delivering Pancreatic Islets and Hyaluronan

    PubMed Central

    Bollyky, Paul L.; Vernon, Robert B.; Falk, Ben A.; Preisinger, Anton; Gooden, Michel D.; Nepom, Gerald T.; Gebe, John A.

    2013-01-01

    Local induction of pro-tolerogenic cytokines, such as IL-10, is an appealing strategy to help facilitate transplantation of islets and other tissues. Here, we describe a pair of implantable devices that capitalize on our recent finding that hyaluronan (HA) promotes IL-10 production by activated T cells. The first device is an injectable hydrogel made of crosslinked HA and heparan sulfate loaded with anti-CD3/anti-CD28 antibodies and IL-2. T cells embedded within this hydrogel prior to polymerization go on to produce IL-10 in vivo. The second device is a bioengineered implant consisting of a polyvinyl alcohol sponge scaffold, supportive collagen hydrogel, and alginate spheres mediating sustained release of HA in fluid form. Pancreatic islets that expressed ovalbumin (OVA) antigen were implanted within this device for 14 days into immunodeficient mice that received OVA-specific DO.11.10 T cells and a subsequent immunization with OVA peptide. Splenocytes harvested from these mice produced IL-10 upon re-challenge with OVA or anti-CD3 antibodies. Both of these devices represent model systems that will be used, in future studies, to further evaluate IL-10 induction by HA, with the objective of improving the survival and function of transplanted islets in the setting of autoimmune (type 1) diabetes. PMID:23971054

  9. IL-10 induction from implants delivering pancreatic islets and hyaluronan.

    PubMed

    Bollyky, Paul L; Vernon, Robert B; Falk, Ben A; Preisinger, Anton; Gooden, Michel D; Nepom, Gerald T; Gebe, John A

    2013-01-01

    Local induction of pro-tolerogenic cytokines, such as IL-10, is an appealing strategy to help facilitate transplantation of islets and other tissues. Here, we describe a pair of implantable devices that capitalize on our recent finding that hyaluronan (HA) promotes IL-10 production by activated T cells. The first device is an injectable hydrogel made of crosslinked HA and heparan sulfate loaded with anti-CD3/anti-CD28 antibodies and IL-2. T cells embedded within this hydrogel prior to polymerization go on to produce IL-10 in vivo. The second device is a bioengineered implant consisting of a polyvinyl alcohol sponge scaffold, supportive collagen hydrogel, and alginate spheres mediating sustained release of HA in fluid form. Pancreatic islets that expressed ovalbumin (OVA) antigen were implanted within this device for 14 days into immunodeficient mice that received OVA-specific DO.11.10 T cells and a subsequent immunization with OVA peptide. Splenocytes harvested from these mice produced IL-10 upon re-challenge with OVA or anti-CD3 antibodies. Both of these devices represent model systems that will be used, in future studies, to further evaluate IL-10 induction by HA, with the objective of improving the survival and function of transplanted islets in the setting of autoimmune (type 1) diabetes.

  10. The Effects of Yerba Maté (Ilex Paraguariensis) consumption on IL-1, IL-6, TNF-α and IL-10 production by bone marrow cells in wistar rats fed a high-fat diet.

    PubMed

    Carmo, Luciana Simão; Rogero, Marcelo Macedo; Cortez, Mayara; Yamada, Monica; Jacob, Patrícia Silva; Bastos, Deborah Helena Markowicz; Borelli, Primavera; Ambrósio Fock, Ricardo

    2013-01-01

    An excessive consumption of a high-fat diet (HFD) results in becoming overweight or obese, which triggers a chronic inflammatory condition that is associated with a high white blood cell count. Because of the potential for yerba maté (Ilex paraguariensis) (YM) to impact obesity, this study aimed to investigate the effects of YM consumption on the hematological response and on the production of interleukin (IL)-1α, IL-6, tumor necrosis factor (TNF)-α, and IL-10 by bone marrow cells from Wistar rats fed a HFD. Male Wistar rats were fed a control (CON) or HFD diet for twelve weeks. At the end of this period, the rats received YM (1 g/kg/day body weight) for 4 weeks. After euthanasia, hemograms and myelograms were evaluated, while the bone marrow cells were cultured in the presence or absence of lipopolysaccharide (LPS) to evaluate the production of IL-1α, IL-6, TNF-α, and IL-10. The consumption of YM reduced the body weight, the body adiposity, and the cholesterol levels in HFD-fed rats. Bone marrow cells from the HFD group produced more IL-1α, IL-6, and TNF-α, and less IL-10, when compared to cells from the control group, and YM consumption reduced the IL-1α, IL-6, and TNF-α production by the cells. However, cells from the HFD rats that were stimulated with LPS increased their IL-1α, IL-6, and TNF-α production, but YM consumption did not change this result. In summary, the consumption of YM affects the production of IL-1α, IL-6, and TNF-α by bone marrow cells, promotes weight loss, decreases the number of white blood cells, and significantly improves serum cholesterol level in HFD-fed rats. However, the bone marrow cells from the HFD+YM-fed rats challenged with LPS did not show improvement in the inflammatory response compared to the cells from animals fed only a HFD that were also challenged with LPS.

  11. The PGE2/IL-10 Axis Determines Susceptibility of B-1 Cell-Derived Phagocytes (B-1CDP) to Leishmania major Infection.

    PubMed

    Arcanjo, Angélica F; LaRocque-de-Freitas, Isabel F; Rocha, Juliana Dutra B; Zamith, Daniel; Costa-da-Silva, Ana Caroline; Nunes, Marise Pinheiro; Mesquita-Santos, Fabio P; Morrot, Alexandre; Filardy, Alessandra A; Mariano, Mario; Bandeira-Melo, Christianne; DosReis, George A; Decote-Ricardo, Debora; Freire-de-Lima, Célio Geraldo

    2015-01-01

    B-1 cells can be differentiated from B-2 cells because they are predominantly located in the peritoneal and pleural cavities and have distinct phenotypic patterns and activation properties. A mononuclear phagocyte derived from B-1 cells (B-1CDP) has been described. As the B-1CDP cells migrate to inflammatory/infectious sites and exhibit phagocytic capacity, the microbicidal ability of these cells was investigated using the Leishmania major infection model in vitro. The data obtained in this study demonstrate that B-1CDP cells are more susceptible to infection than peritoneal macrophages, since B-1CDP cells have a higher number of intracellular amastigotes forms and consequently release a larger number of promastigotes. Exacerbated infection by L. major required lipid bodies/PGE2 and IL-10 by B-1CDP cells. Both infection and the production of IL-10 were decreased when PGE2 production was blocked by NSAIDs. The involvement of IL-10 in this mechanism was confirmed, since B-1CDP cells from IL-10 KO mice are more competent to control L. major infection than cells from wild type mice. These findings further characterize the B-1CDP cells as an important mononuclear phagocyte that plays a previously unrecognized role in host responses to L. major infection, most likely via PGE2-driven production of IL-10.

  12. NLRP3 Deficiency Reduces Macrophage Interleukin-10 Production and Enhances the Susceptibility to Doxorubicin-induced Cardiotoxicity

    PubMed Central

    Kobayashi, Motoi; Usui, Fumitake; Karasawa, Tadayoshi; Kawashima, Akira; Kimura, Hiroaki; Mizushina, Yoshiko; Shirasuna, Koumei; Mizukami, Hiroaki; Kasahara, Tadashi; Hasebe, Naoyuki; Takahashi, Masafumi

    2016-01-01

    NLRP3 inflammasomes recognize non-microbial danger signals and induce release of proinflammatory cytokine interleukin (IL)-1β, leading to sterile inflammation in cardiovascular disease. Because sterile inflammation is involved in doxorubicin (Dox)-induced cardiotoxicity, we investigated the role of NLRP3 inflammasomes in Dox-induced cardiotoxicity. Cardiac dysfunction and injury were induced by low-dose Dox (15 mg/kg) administration in NLRP3-deficient (NLRP3−/−) mice but not in wild-type (WT) and IL-1β−/− mice, indicating that NLRP3 deficiency enhanced the susceptibility to Dox-induced cardiotoxicity independent of IL-1β. Although the hearts of WT and NLRP3−/− mice showed no significant difference in inflammatory cell infiltration, macrophages were the predominant inflammatory cells in the hearts, and cardiac IL-10 production was decreased in Dox-treated NLRP3−/− mice. Bone marrow transplantation experiments showed that bone marrow-derived cells contributed to the exacerbation of Dox-induced cardiotoxicity in NLRP3−/− mice. In vitro experiments revealed that NLRP3 deficiency decreased IL-10 production in macrophages. Furthermore, adeno-associated virus-mediated IL-10 overexpression restored the exacerbation of cardiotoxicity in the NLRP3−/− mice. These results demonstrated that NLRP3 regulates macrophage IL-10 production and contributes to the pathophysiology of Dox-induced cardiotoxicity, which is independent of IL-1β. Our findings identify a novel role of NLRP3 and provided new insights into the mechanisms underlying Dox-induced cardiotoxicity. PMID:27225830

  13. Cyclooxygenase 2-mediated suppression of macrophage interleukin-12 production after thermal injury.

    PubMed

    Schwacha, Martin G; Chung, Chun-Shiang; Ayala, Alfred; Bland, Kirby I; Chaudry, Irshad H

    2002-02-01

    Macrophage (Mphi) prostaglandin (PG)E(2) production has been implicated in immunosuppression and increased susceptibility to sepsis after thermal injury. Deficient interleukin (IL)-12 production has also been implicated in these postburn complications. The present study examined the relationship between Mphi cyclooxygenase (COX)-2 activity and IL-12 production after thermal injury. C57BL/6 female mice were subjected to a 25% total body surface area full-thickness burn. Mphi were isolated 7 days later, or the mice were subjected to sepsis by cecal ligation and puncture (CLP). IL-12 production by Mphi from injured mice was suppressed by >50%, whereas COX-2 expression and PGE(2) production were increased twofold. The COX-2 inhibitor NS-398 suppressed PGE(2) production and normalized IL-12 production in the injury group, whereas it had no effect on IL-10 production. Injured mice subjected to CLP had lower IL-12 plasma levels compared with sham-treated mice subjected to CLP. NS-398 treatment prevented the suppression in plasma IL-12 levels in the injury group. Thus elevated Mphi COX-2 activity, independent of IL-10, suppresses Mphi IL-12 production after thermal injury and may play an important role in the observed immunosuppression under such conditions.

  14. PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

    PubMed Central

    Díaz-Gandarilla, J. A.; Osorio-Trujillo, C.; Hernández-Ramírez, V. I.; Talamás-Rohana, P.

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPARγ, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  15. Effect of IL-10 on LOX-1 expression, signalling and functional activity: an atheroprotective response.

    PubMed

    Arjuman, Albina; Chandra, Nimai C

    2013-09-01

    The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has gained attention for its pro-inflammatory potential in atherogenesis. This study evaluates LOX-1 receptor modulation in the presence of an atheroprotective cytokine, interleukin-10 (IL-10). Both oxidized low-density lipoprotein (oxLDL) and IL-10 stimulated LOX-1 cell surface expression on THP-1 macrophages. However, our study demonstrates differential roles of oxLDL and IL-10 on LOX-1 functionality. Seemingly, oxLDL-induced LOX-1 promoted pro-inflammatory signalling by increasing intracellular NO, a substrate for pro-inflammatory peroxynitrite. In contrast, IL-10-induced LOX-1 facilitated scavenging of extracellular oxLDL without any effect on pro-inflammatory signalling. The atheroprotective effects of IL-10 were demonstrated by both facilitation of cellular oxLDL uptake and expression of LOXIN, an atheroprotective haplotype of the LOX-1 gene. Thus, increased expression of IL-10 may help to attenuate the risk of atherosclerosis developed by pro-inflammatory signal(s) generated through the interaction of oxLDL with its cognate receptor LOX-1 on macrophages.

  16. The role of IL-10 in Mycobacterium avium subsp. paratuberculosis infection.

    PubMed

    Hussain, Tariq; Shah, Syed Zahid Ali; Zhao, Deming; Sreevatsan, Srinand; Zhou, Xiangmei

    2016-12-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular pathogen and is the causative agent of Johne's disease of domestic and wild ruminants. Johne's disease is characterized by chronic granulomatous enteritis leading to substantial economic losses to the livestock sector across the world. MAP persistently survives in phagocytic cells, most commonly in macrophages by disrupting its early antibacterial activity. MAP triggers several signaling pathways after attachment to pathogen recognition receptors (PRRs) of phagocytic cells. MAP adopts a survival strategy to escape the host defence mechanisms via the activation of mitogen-activated protein kinase (MAPK) pathway. The signaling mechanism initiated through toll like receptor 2 (TLR2) activates MAPK-p38 results in up-regulation of interleukin-10 (IL-10), and subsequent repression of inflammatory cytokines. The anti-inflammatory response of IL-10 is mediated through membrane-bound IL-10 receptors, leading to trans-phosphorylation and activation of Janus Kinase (JAK) family receptor-associated tyrosine kinases (TyKs), that promotes the activation of latent transcription factors, signal transducer and activators of transcription 3 (STAT3). IL-10 is an important inhibitory cytokine playing its role in blocking phagosome maturation and apoptosis. In the current review, we describe the importance of IL-10 in early phases of the MAP infection and regulatory mechanisms of the IL-10 dependent pathways in paratuberculosis. We also highlight the strategies to target IL-10, MAPK and STAT3 in other infections caused by intracellular pathogens.

  17. Pregnancy Specific Glycoprotein 17 Binds to the Extracellular Loop 2 of Its Receptor, CD9, and Induces the Secretion of IL-10, IL-6, PGE2, and TGFBeta1 in Murine Macrophages

    DTIC Science & Technology

    2004-01-01

    HCSf: HCS-derived suppressor factor hPGH: human placenta growth hormone IgSF: immunoglobulin superfamily IDO: indoleamine 2,3-dioxygenase IVF ...pregnancy progresses, reaching 200-400 microgram/ml at term. The correlation between low levels of PSGs and poor pregnancy outcomes suggests PSGs play a...repressor elements located within the 5’ flanking region of the PSG genes [39] [40] [38]. 2.3 Association of PSG production with pregnancy outcome

  18. IL10 — EDRN Public Portal

    Cancer.gov

    From NCBI Gene: The protein encoded by this gene is a cytokine produced primarily by monocytes and to a lesser extent by lymphocytes. This cytokine has pleiotropic effects in immunoregulation and inflammation. It down-regulates the expression of Th1 cytokines, MHC class II Ags, and costimulatory molecules on macrophages. It also enhances B cell survival, proliferation, and antibody production. This cytokine can block NF-kappa B activity, and is involved in the regulation of the JAK-STAT signaling pathway. Knockout studies in mice suggested the function of this cytokine as an essential immunoregulator in the intestinal tract. Mutations in this gene are associated with an increased susceptibility to HIV-1 infection and rheumatoid arthritis.[provided by RefSeq, May 2011

  19. Protective role of reactive oxygen species in endotoxin-induced lung inflammation through modulation of IL-10 expression.

    PubMed

    Deng, Jing; Wang, Xuerong; Qian, Feng; Vogel, Stephen; Xiao, Lei; Ranjan, Ravi; Park, Hyesuk; Karpurapu, Manjula; Ye, Richard D; Park, Gye Young; Christman, John W

    2012-06-01

    Reactive oxygen species (ROS) generated by NADPH oxidase are generally known to be proinflammatory, and it seems to be counterintuitive that ROS play a critical role in regulating the resolution of the inflammatory response. However, we observed that deficiency of the p47(phox) component of NADPH oxidase in macrophages was associated with a paradoxical accentuation of inflammation in a whole animal model of noninfectious sepsis induced by endotoxin. We have confirmed this observation by interrogating four separate in vivo models that use complementary methodology including the use of p47(phox-/-) mice, p47(phox-/-) bone marrow chimera mice, adoptive transfer of macrophages from p47(phox-/-) mice, and an isolated perfused lung edema model that all point to a relationship between excessive acute inflammation and p47(phox) deficiency in macrophages. Mechanistic data indicate that ROS deficiency in both cells and mice results in decreased production of IL-10 in response to treatment with LPS, at least in part, through attenuation of the Akt-GSK3-β signal pathway and that it can be reversed by the administration of rIL-10. Our data support the innovative concept that generation of ROS is essential for counterregulation of acute lung inflammation.

  20. Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide production via reactive oxygen species and cathepsin B.

    PubMed

    Rajaram, Krithika; Nelson, David E

    2015-08-01

    The ability of certain species of Chlamydia to inhibit the biogenesis of phagolysosomes permits their survival and replication within macrophages. The survival of macrophage-adapted chlamydiae correlates with the multiplicity of infection (MOI), and optimal chlamydial growth occurs in macrophages infected at an MOI of ≤1. In this study, we examined the replicative capacity of Chlamydia muridarum in the RAW 264.7 murine macrophage cell line at different MOIs. C. muridarum productively infected these macrophages at low MOIs but yielded few viable elementary bodies (EBs) when macrophages were infected at a moderate (10) or high (100) MOI. While high MOIs caused cytotoxicity and irreversible host cell death, macrophages infected at a moderate MOI did not show signs of cytotoxicity until late in the infectious cycle. Inhibition of host protein synthesis rescued C. muridarum in macrophages infected at a moderate MOI, implying that chlamydial growth was blocked by activated defense mechanisms. Conditioned medium from these macrophages was antichlamydial and contained elevated levels of interleukin 1β (IL-1β), IL-6, IL-10, and beta interferon (IFN-β). Macrophage activation depended on Toll-like receptor 2 (TLR2) signaling, and cytokine production required live, transcriptionally active chlamydiae. A hydroxyl radical scavenger and inhibitors of inducible nitric oxide synthase (iNOS) and cathepsin B also reversed chlamydial killing. High levels of reactive oxygen species (ROS) led to an increase in cathepsin B activity, and pharmacological inhibition of ROS and cathepsin B reduced iNOS expression. Our data demonstrate that MOI-dependent TLR2 activation of macrophages results in iNOS induction via a novel ROS- and cathepsin-dependent mechanism to facilitate C. muridarum clearance.

  1. IL-10 Inhibits the NF-κB and ERK/MAPK-Mediated Production of Pro-Inflammatory Mediators by Up-Regulation of SOCS-3 in Trypanosoma cruzi-Infected Cardiomyocytes

    PubMed Central

    Siffo, Sofía; Mirkin, Gerardo A.; Goren, Nora B.

    2013-01-01

    Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas’ disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-6 expression, in T. cruzi-infected cardiomyocytes. We found that T. cruzi and IL-10 promote STAT3 phosphorylation and up-regulate the expression of suppressor of cytokine signalling (SOCS)-3 thereby preventing NF-κB nuclear translocation and ERK1/2 phosphorylation. Specific knockdown of SOCS-3 by small interfering RNA (siRNA) impeded the IL-10-mediated inhibition of NF-κB and ERK1/2 activation. As a result, the levels of studied pro-inflammatory mediators were restored in infected cardiomyocytes. Our study reports the first evidence that T. cruzi up- regulates SOCS-3 expression and highlights the relevance of IL-10 in the modulation of pro-inflammatory response of cardiomyocytes in Chagas’ disease. PMID:24260222

  2. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion.

    PubMed

    Cambier, Linda; de Couto, Geoffrey; Ibrahim, Ahmed; Echavez, Antonio K; Valle, Jackelyn; Liu, Weixin; Kreke, Michelle; Smith, Rachel R; Marbán, Linda; Marbán, Eduardo

    2017-03-01

    Cardiosphere-derived cells (CDCs) reduce myocardial infarct size via secreted extracellular vesicles (CDC-EVs), including exosomes, which alter macrophage polarization. We questioned whether short non-coding RNA species of unknown function within CDC-EVs contribute to cardioprotection. The most abundant RNA species in CDC-EVs is a Y RNA fragment (EV-YF1); its relative abundance in CDC-EVs correlates with CDC potency in vivo Fluorescently labeled EV-YF1 is actively transferred from CDCs to target macrophages via CDC-EVs. Direct transfection of macrophages with EV-YF1 induced transcription and secretion of IL-10. When cocultured with rat cardiomyocytes, EV-YF1-primed macrophages were potently cytoprotective toward oxidatively stressed cardiomyocytes through induction of IL-10. In vivo, intracoronary injection of EV-YF1 following ischemia/reperfusion reduced infarct size. A fragment of Y RNA, highly enriched in CDC-EVs, alters Il10 gene expression and enhances IL-10 protein secretion. The demonstration that EV-YF1 confers cardioprotection highlights the potential importance of diverse exosomal contents of unknown function, above and beyond the usual suspects (e.g., microRNAs and proteins).

  3. A novel murine model of rhinoscleroma identifies Mikulicz cells, the disease signature, as IL-10 dependent derivatives of inflammatory monocytes

    PubMed Central

    Fevre, Cindy; Almeida, Ana S; Taront, Solenne; Pedron, Thierry; Huerre, Michel; Prevost, Marie-Christine; Kieusseian, Aurélie; Cumano, Ana; Brisse, Sylvain; Sansonetti, Philippe J; Tournebize, Régis

    2013-01-01

    Rhinoscleroma is a human specific chronic disease characterized by the formation of granuloma in the airways, caused by the bacterium Klebsiella pneumoniae subspecies rhinoscleromatis, a species very closely related to K. pneumoniae subspecies pneumoniae. It is characterized by the appearance of specific foamy macrophages called Mikulicz cells. However, very little is known about the pathophysiological processes underlying rhinoscleroma. Herein, we characterized a murine model recapitulating the formation of Mikulicz cells in lungs and identified them as atypical inflammatory monocytes specifically recruited from the bone marrow upon K. rhinoscleromatis infection in a CCR2-independent manner. While K. pneumoniae and K. rhinoscleromatis infections induced a classical inflammatory reaction, K. rhinoscleromatis infection was characterized by a strong production of IL-10 concomitant to the appearance of Mikulicz cells. Strikingly, in the absence of IL-10, very few Mikulicz cells were observed, confirming a crucial role of IL-10 in the establishment of a proper environment leading to the maturation of these atypical monocytes. This is the first characterization of the environment leading to Mikulicz cells maturation and their identification as inflammatory monocytes. PMID:23554169

  4. Particulate β-glucan induces TNFα production in wound macrophages via a redox-sensitive NFκB-dependent pathway

    PubMed Central

    Roy, Sashwati; Dickerson, Ryan; Khanna, Savita; Collard, Eric; Gnyawali, Urmila; Gordillo, Gayle M.; Sen, Chandan K.

    2012-01-01

    Glucans are known to promote wound repair. Non-cellulosic β-glucans are recognized as potent immunological activators. β-Glucans are generally safe and are known to attenuate the rate of postoperative infection. Glyc101 is a particulate β-glucan isolated from Saccharomyces cerevisiae. In this study, the hypothesis that Glyc101 regulates wound macrophage function was tested. Glyc101 induced TNFα transcription in macrophages isolated from murine wound site. Multiplex assay identified IL-10 and TNFα as two cytokines that are induced by Glyc101 in human blood monocyte derived macrophages. Glyc101-induced TNFα production was observed to be mediated via the TLR-2 and dectin-1 receptors, receptor tyrosine kinases and NFκB activation. In murine wound macrophages, Glyc101 potentiated PMA-induced respiratory burst. In vivo, implantation of Glyc101 enriched PVA-sponges at the wound-site induced TNFα expression in macrophages. Consistently, Glyc101 induced TNFα expression in wound-site macrophages isolated from two patients with chronic wounds. These observations establish the translational significance of the net findings of this study. Activation of wound macrophages by Glyc101 represents one of the potential mechanisms by which this beta-glucan may benefit chronic wounds where inefficient inflammatory response is one of the underlying causes of impaired healing. PMID:21518092

  5. Antagonistic Interplay between MicroRNA-155 and IL-10 during Lyme Carditis and Arthritis.

    PubMed

    Lochhead, Robert B; Zachary, James F; Dalla Rosa, Luciana; Ma, Ying; Weis, John H; O'Connell, Ryan M; Weis, Janis J

    2015-01-01

    MicroRNA-155 has been shown to play a role in immune activation and inflammation, and is suppressed by IL-10, an important anti-inflammatory cytokine. The established involvement of IL-10 in the murine model of Borrelia burgdorferi-induced Lyme arthritis and carditis allowed us to assess the interplay between IL-10 and miR-155 in vivo. As reported previously, Mir155 was highly upregulated in joints from infected severely arthritic B6 Il10-/- mice, but not in mildly arthritic B6 mice. In infected hearts, Mir155 was upregulated in both strains, suggesting a role of miR-155 in Lyme carditis. Using B. burgdorferi-infected B6, Mir155-/-, Il10-/-, and Mir155-/- Il10-/- double-knockout (DKO) mice, we found that anti-inflammatory IL-10 and pro-inflammatory miR-155 have opposite and somewhat compensatory effects on myeloid cell activity, cytokine production, and antibody response. Both IL-10 and miR-155 were required for suppression of Lyme carditis. Infected Mir155-/- mice developed moderate/severe carditis, had higher B. burgdorferi numbers, and had reduced Th1 cytokine expression in hearts. In contrast, while Il10-/- and DKO mice also developed severe carditis, hearts had reduced bacterial numbers and elevated Th1 and innate cytokine expression. Surprisingly, miR-155 had little effect on Lyme arthritis. These results show that antagonistic interplay between IL-10 and miR-155 is required to balance host defense and immune activation in vivo, and this balance is particularly important for suppression of Lyme carditis. These results also highlight tissue-specific differences in Lyme arthritis and carditis pathogenesis, and reveal the importance of IL-10-mediated regulation of miR-155 in maintaining healthy immunity.

  6. Adrenergic modulation of cytokine release in bone marrow progenitor-derived macrophage following polymicrobial sepsis.

    PubMed

    Muthu, Kuzhali; Deng, Jiangping; Gamelli, Richard; Shankar, Ravi; Jones, Stephen B

    2005-01-01

    Catecholamines may impact on the pathophysiology of sepsis by attenuating proinflammatory cytokine and augmenting antiinflammatory cytokine production by macrophages. We tested this premise in bone marrow monocyte progenitor-derived macrophages. Polymicrobial sepsis was induced in mice through cecal ligation and puncture. ER-MP 12 monocyte progenitors were isolated and differentiated into macrophages in vitro 72 hr later. Lipopolysaccharide (LPS)-stimulated cytokine production was measured with and without epinephrine, IL-10 and anti-IL-10 antibody. Epinephrine significantly increased IL-10 production, but attenuated TNF-alpha release exclusively through beta2 adrenergic receptors, and is independent of IL-10 production. Together, these results suggest that epinephrine can promote a potent antiinflammatory response in sepsis.

  7. Lipocalin-2 ensures host defense against Salmonella Typhimurium by controlling macrophage iron homeostasis and immune response.

    PubMed

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Sonnweber, Thomas; Theurl, Igor; Theurl, Milan; Lindner, Ewald; Demetz, Egon; Aßhoff, Malte; Bellmann-Weiler, Rosa; Müller, Raphael; Gerner, Romana R; Moschen, Alexander R; Baumgartner, Nadja; Moser, Patrizia L; Talasz, Heribert; Tilg, Herbert; Fang, Ferric C; Weiss, Günter

    2015-11-01

    Lipocalin-2 (Lcn2) is an innate immune peptide with pleiotropic effects. Lcn2 binds iron-laden bacterial siderophores, chemo-attracts neutrophils and has immunomodulatory and apoptosis-regulating effects. In this study, we show that upon infection with Salmonella enterica serovar Typhimurium, Lcn2 promotes iron export from Salmonella-infected macrophages, which reduces cellular iron content and enhances the generation of pro-inflammatory cytokines. Lcn2 represses IL-10 production while augmenting Nos2, TNF-α, and IL-6 expression. Lcn2(-/-) macrophages have elevated IL-10 levels as a consequence of increased iron content. The crucial role of Lcn-2/IL-10 interactions was further demonstrated by the greater ability of Lcn2(-/-) IL-10(-/-) macrophages and mice to control intracellular Salmonella proliferation in comparison to Lcn2(-/-) counterparts. Overexpression of the iron exporter ferroportin-1 in Lcn2(-/-) macrophages represses IL-10 and restores TNF-α and IL-6 production to the levels found in wild-type macrophages, so that killing and clearance of intracellular Salmonella is promoted. Our observations suggest that Lcn2 promotes host resistance to Salmonella Typhimurium infection by binding bacterial siderophores and suppressing IL-10 production, and that both functions are linked to its ability to shuttle iron from macrophages.

  8. Lipocalin-2 ensures host defense against Salmonella Typhimurium by controlling macrophage iron homeostasis and immune response

    PubMed Central

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Sonnweber, Thomas; Theurl, Igor; Theurl, Milan; Lindner, Ewald; Demetz, Egon; Aβhoff, Malte; Bellmann-Weiler, Rosa; Müller, Raphael; Gerner, Romana R.; Moschen, Alexander R.; Baumgartner, Nadja; Moser, Patrizia L.; Talasz, Heribert; Tilg, Herbert; Fang, Ferric C.; Weiss, Günter

    2015-01-01

    Lipocalin-2 (Lcn2) is an innate immune peptide with pleiotropic effects. Lcn2 binds iron-laden bacterial siderophores, chemo-attracts neutrophils and has immunomodulatory and apoptosis-regulating effects. In this study we show that upon infection with Salmonella enterica serovar Typhimurium, Lcn2 promotes iron export from Salmonella-infected macrophages, which reduces cellular iron content and enhances the generation of pro-inflammatory cytokines. Lcn2 represses IL-10 production while augmenting Nos2, TNF-α and IL-6 expression. Lcn2-/- macrophages have elevated IL-10 levels as a consequence of increased iron content. The crucial role of Lcn-2/IL-10 interactions was further demonstrated by the greater ability of Lcn2-/- IL-10-/- macrophages and mice to control intracellular Salmonella proliferation in comparison to Lcn2-/- counterparts. Over-expression of the iron exporter ferroportin-1 in Lcn2-/- macrophages represses IL-10 and restores TNF-α and IL-6 production to the levels found in wild-type macrophages, so that killing and clearance of intracellular Salmonella is promoted. Our observations suggest that Lcn2 promotes host resistance to Salmonella Typhimurium infection by binding bacterial siderophores and suppressing IL-10 production, and that both functions are linked to its ability to shuttle iron from macrophages. PMID:26332507

  9. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    PubMed

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.

  10. IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections

    PubMed Central

    Leech, John M.; Lacey, Keenan A.; Mulcahy, Michelle E.; Medina, Eva

    2017-01-01

    IL-10 is a potent anti-inflammatory mediator that plays a crucial role in limiting host immunopathology during bacterial infections by controlling effector T cell activation. Staphylococcus aureus has previously been shown to manipulate the IL-10 response as a mechanism of immune evasion during chronic systemic and biofilm models of infection. In the present study, we demonstrate divergent roles for IL-10 depending on the site of infection. During acute systemic S. aureus infection, IL-10 plays an important protective role and is required to prevent bacterial dissemination and host morbidity by controlling effector T cells and the associated downstream hyperactivation of inflammatory phagocytes, which are capable of host tissue damage. CD19+CD11b+CD5+ B1a regulatory cells were shown to rapidly express IL-10 in a TLR2-dependent manner in response to S. aureus, and adoptive transfer of B1a cells was protective during acute systemic infection in IL-10–deficient hosts. In contrast, during localized s.c. infection, IL-10 production plays a detrimental role by facilitating bacterial persistence via the same mechanism of controlling proinflammatory T cell responses. Our findings demonstrate that induction of IL-10 has a major influence on disease outcome during acute S. aureus infection. Too much IL-10 at one end of the scale may suppress otherwise protective T cell responses, thus facilitating persistence of the bacteria, and at the other end, too little IL-10 may tend toward fatal host-mediated pathology through excessive activation of T cells and associated phagocyte-mediated damage. PMID:28167629

  11. Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes.

    PubMed

    Adikari, T N; Gomes, L; Wickramasinghe, N; Salimi, M; Wijesiriwardana, N; Kamaladasa, A; Shyamali, N L A; Ogg, G S; Malavige, G N

    2016-04-01

    Both dengue NS1 antigen and serum interleukin (IL)-10 levels have been shown to associate with severe clinical disease in acute dengue infection, and IL-10 has also been shown to suppress dengue-specific T cell responses. Therefore, we proceeded to investigate the mechanisms by which dengue NS1 contributes to disease pathogenesis and if it is associated with altered IL-10 production. Serum IL-10 and dengue NS1 antigen levels were assessed serially in 36 adult Sri Lankan individuals with acute dengue infection. We found that the serum IL-10 levels correlated positively with dengue NS1 antigen levels (Spearman's r = 0·47, P < 0·0001), and NS1 also correlated with annexin V expression by T cells in acute dengue (Spearman's r = 0·63, P = 0·001). However, NS1 levels did not associate with the functionality of T cell responses or with expression of co-stimulatory molecules. Therefore, we further assessed the effect of dengue NS1 on monocytes and T cells by co-culturing primary monocytes and peripheral blood mononuclear cells (PBMC), with varying concentrations of NS1 for up to 96 h. Monocytes co-cultured with NS1 produced high levels of IL-10, with the highest levels seen at 24 h, and then declined gradually. Therefore, our data show that dengue NS1 appears to contribute to pathogenesis of dengue infection by inducing IL-10 production by monocytes.

  12. THE ENHANCEMENT OF MACROPHAGE BACTERIOSTASIS BY PRODUCTS OF ACTIVATED LYMPHOCYTES

    PubMed Central

    Fowles, Robert E.; Fajardo, Ileana M.; Leibowitch, Jacques L.; David, John R.

    1973-01-01

    It was reported previously that the incubation of normal guinea pig macrophages with partially purified products of activated lymphocytes resulted in altered macrophage function including increased cell adherence to culture vessels, spreading, phagocytosis, and glucose carbon-1 oxidation. Studies reported here demonstrate that such macrophages also exhibit enhanced bacteriostasis. Lymphocytes were stimulated with concanavalin A, the culture supernatant was chromatographed over Sephadex G-100 and the fraction of mol wt 25,000–55,000, rich in lymphocyte mediators, was cultured with normal guinea pig macrophages for 1–3 days. Macrophages incubated with fractions from unstimulated lymphocyte cultures served as controls. The resulting macrophage monolayers were infected with Listeria monocytogenes. Macrophages incubated with mediator-rich fractions exhibited 2- to 10-fold enhanced bacteriostasis compared to controls. Further studies indicate that this enhancement was attributable to intrinsic changes in the macrophages and not simply a consequence of the number of macrophages on the monolayers. The studies support the concept that macrophage bacteriostasis can be enhanced by lymphocyte mediators. However, macrophages, which have been preincubated directly with sensitive lymphocytes and antigen exhibit even greater bacteriostasis and sometimes bactericidal capacity, suggesting that either a labile lymphocyte factor or direct lymphocyte macrophage interaction may also be involved in bactericidal activity. PMID:4200649

  13. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice.

    PubMed

    Loebbermann, Jens; Schnoeller, Corinna; Thornton, Hannah; Durant, Lydia; Sweeney, Nathan P; Schuijs, Martijn; O'Garra, Anne; Johansson, Cecilia; Openshaw, Peter J

    2012-01-01

    Interleukin (IL-) 10 is a pleiotropic cytokine with broad immunosuppressive functions, particularly at mucosal sites such as the intestine and lung. Here we demonstrate that infection of BALB/c mice with respiratory syncytial virus (RSV) induced IL-10 production by CD4(+) and CD8(+) T cells in the airways at later time points (e.g. day 8); a proportion of these cells also co-produced IFN-γ. Furthermore, RSV infection of IL-10(-/-) mice resulted in more severe disease with enhanced weight loss, delayed recovery and greater cell infiltration of the respiratory tract without affecting viral load. In addition, IL-10(-/-) mice had a pronounced airway neutrophilia and heightened levels of pro-inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid. Notably, the proportion of lung T cells producing IFN-γ was enhanced, suggesting that IL-10 may act in an autocrine manner to dampen effector T cell responses. Similar findings were made in mice treated with anti-IL-10R antibody and infected with RSV. Therefore, IL-10 inhibits disease and inflammation in mice infected with RSV, especially during recovery from infection.

  14. The cytolethal distending toxin of Aggregatibacter actinomycetemcomitans inhibits macrophage phagocytosis and subverts cytokine production.

    PubMed

    Ando-Suguimoto, Ellen Sayuri; da Silva, Maike Paulino; Kawamoto, Dione; Chen, Casey; DiRienzo, Joseph M; Mayer, Marcia Pinto Alves

    2014-03-01

    Aggregatibacter actinomycetemcomitans is an important periodontal pathogen that can participate in periodontitis and other non-oral infections. The cytolethal distending toxin (Cdt) is among the virulence factors produced by this bacterium. The Cdt is also secreted by several mucosa-associated Gram-negative pathogens and may play a role in perpetuating the infection by modulating the immune response. Although the toxin targets a wide range of eukaryotic cell types little is known about its activity on macrophages which play a key part in alerting the rest of the immune system to the presence of pathogens and their virulence factors. In view of this, we tested the hypothesis that the A. actinomycetemcomitans Cdt (AaCdt) disrupts macrophage function by inhibiting phagocytic activity as well as affecting the production of cytokines. Murine macrophages were co-cultured with either wild-type A. actinomycetemcomitans or a Cdt(-) mutant. Viable counts and qPCR showed that phagocytosis of the wild-type strain was significantly reduced relative to that of the Cdt(-) mutant. Addition of recombinant Aa(r)Cdt to co-cultures along with the Cdt(-) mutant diminished the phagocytic activity similar to that observed with the wild type strain. High concentrations of Aa(r)Cdt resulted in decreased phagocytosis of fluorescent bioparticles. Nitric oxide production was modulated by the presence of Cdt and the levels of IL-1β, IL-12 and IL-10 were increased. Production of TNF-α did not differ in the co-culture assays but was increased by the presence of Aa(r)Cdt. These data suggest that the Cdt may modulate macrophage function in A. actinomycetemcomitans infected sites by impairing phagocytosis and modifying the pro-inflammatory/anti-inflammatory cytokine balance.

  15. B cell activating factor (BAFF) selects IL-10(-)B cells over IL-10(+)B cells during inflammatory responses.

    PubMed

    Ma, Ning; Zhang, Yu; Liu, Qilin; Wang, Zhiding; Liu, Xiaoling; Zhu, Gaizhi; Yu, Dandan; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Wang, Tianxiao; Ma, Yuanfang; Shen, Beifen; Li, Yan; Xiao, He; Wang, Renxi

    2017-05-01

    B cell activating factor (BAFF) regulates B cell maturation, survival, function, and plays a critical pathogenic role in autoimmune diseases. It remains unclear how BAFF affects IL-10(-)B cells versus regulatory B cells (Bregs) in inflammatory responses. In this study, we found that IL-10-expressing Bregs decreased in lupus-prone MRL/lpr mice and experimental allergic encephalomyelitis (EAE) mice. On blockade of the effects of BAFF with TACI-IgG, IL-10(+) Bregs were upregulated in MRL/lpr and EAE mice. In addition, BAFF expanded IL-10(+)B cells over IL-10(-)B cells under noninflammatory conditions in vitro, whereas it expanded IL-10(-)B cells over IL-10(+)B cells during inflammatory responses, such as stimulation with autoantigen and LPS. Finally, the selection of IL-10(-)B cells over IL-10(+)B cells by BAFF was dependent on BAFF receptors (BAFFR, TACI, and BCMA) that were upregulated by inflammatory responses. This study suggests that BAFF selects IL-10(-)B cells over IL-10(+) regulatory B cells via BAFF receptors in inflammatory responses.

  16. Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon

    PubMed Central

    Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M.; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103+ dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103+ DCs from Il10−/−, Tlr2−/−, and Myd88−/− mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103+ DCs failed to induce IL-10 production from co-cultured Il27ra−/− T cells. B. breve treatment of Tlr2−/− mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4+ T cells from wild-type mice, but not Il10−/− mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells. PMID:22693446

  17. T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine.

    PubMed

    Schwarz, Tobias; Remer, Katharina A; Nahrendorf, Wiebke; Masic, Anita; Siewe, Lisa; Müller, Werner; Roers, Axel; Moll, Heidrun

    2013-01-01

    In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection.

  18. The role of IL-10 in microbiome-associated immune modulation and disease tolerance.

    PubMed

    Levast, Benoît; Li, Zhigang; Madrenas, Joaquín

    2015-10-01

    Current research on the microbiome of humans and other species is revealing a fundamental role for the interaction between the microbiota and the immune system in determining the health status of the host. In these studies, the cytokine interleukin-10 (IL-10) is emerging as an important player. We present here an overview of the developments in the field emphasizing how the microbiota composition and its interplay with immune cells affect the health of the host through changes in IL-10 production. In addition, we explore the function that IL-10-producing immune cells may have on the qualitative and quantitative changes in the microbiota and thus influence the balance between microbial commensalism and pathogenicity. In the last section of this review, we present a summary of the strategies that target IL-10 for therapeutic purposes using probiotics, purified proteins or biologicals.

  19. IL-10 mediates sigma 1 receptor-dependent suppression of antitumor immunity.

    PubMed

    Zhu, Li X; Sharma, Sherven; Gardner, Brian; Escuadro, Brian; Atianzar, Kimberly; Tashkin, Donald P; Dubinett, Steven M

    2003-04-01

    Sigma receptors are unique endoplasmic reticulum proteins that mediate signaling for a variety of drugs. We determined the effect of sigma(1) receptor agonists on immune responses in a syngeneic lung cancer model. Sigma(1) receptor agonists, including cocaine, up-regulated splenocyte IL-10 mRNA and protein production in vitro in a sigma receptor-dependent, pertussis toxin-sensitive manner. In vivo, sigma(1) receptor agonists promoted tumor growth and induced IL-10 at the tumor site. Increased tumor growth was prevented by administration of specific Abs to IL-10 or by administration of specific sigma(1) receptor antagonists. We report that sigma(1) receptor ligands, including cocaine, augment tumor growth through an IL-10 dependent mechanism.

  20. ICOS promotes IL-17 synthesis in colonic intraepithelial lymphocytes in IL-10−/− mice

    PubMed Central

    Schaefer, Jeremy S.; Montufar-Solis, Dina; Vigneswaran, Nadarajah; Klein, John R.

    2010-01-01

    In the absence of IL-10, colonic inflammation ensues, which is characterized by high levels of IL-17. Here, we demonstrate a direct correlation between ICOS expression and IL-17 production in cIELs. IL-10−/− mice had increased numbers of cIELs and greater colon weight. Although the CD69 early activation antigen was expressed on cIELs from normal and IL-10−/− mice, ICOS was expressed only on cIELs from IL-10−/− mice. IL-17-producing cells in IL-10−/− mice consisted of CD4+ and CD8+ cIELs; however, CD4+ cells were the predominant IL-17-producing cell population. Culture of cIELs from IL-10−/− mice with IL-23 resulted in an increase in ICOS and IL-17 expression, whereas IL-10 suppressed expression of ICOS and IL-17. This occurred in primary cultures and recall stimulation experiments. The ICOS ligand B7RP-1 was up-regulated on colonic epithelial cells and on a population of large granular leukocytes during inflammation. Culture of cIELs with B7RP-1+ DCs enhanced IL-17A production from normal cIELs but failed to do so using cIELs from ICOS−/− mice. In vivo treatment of IL-10−/− mice with antibody to ICOS resulted in a significant reduction in colonic pathology. These findings implicate ICOS as an activational signal of Th17 cells during chronic intestinal inflammation, and they suggest that under some conditions, control of ICOS expression may help to suppress chronic intestinal inflammation. PMID:19889730

  1. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling

    PubMed Central

    Zhao, Yutong; Zhao, Jing; Donahoe, Michael P.; Barge, Suchitra; Horne, William T.; Kolls, Jay K.; McVerry, Bryan J.; Birukova, Anastasiya; Tighe, Robert M.; Foster, W. Michael; Hollingsworth, John; Ray, Anuradha; Mallampalli, Rama; Ray, Prabir; Lee, Janet S.

    2016-01-01

    Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF)-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq). LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF)7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP)-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages. PMID:27434537

  2. The Influence of Bone Marrow-Secreted IL-10 in a Mouse Model of Cerulein-Induced Pancreatic Fibrosis

    PubMed Central

    Lin, Wey-Ran; Lim, Siew-Na; Yen, Tzung-Hai; Alison, Malcolm R.

    2016-01-01

    This study aimed to understand the role of IL-10 secreted from bone marrow (BM) in a mouse model of pancreatic fibrosis. The severity of cerulein-induced inflammation, fibrosis, and the frequency of BM-derived myofibroblasts were evaluated in the pancreas of mice receiving either a wild-type (WT) BM or an IL-10 knockout (KO) BM transplantation. The area of collagen deposition increased significantly in the 3 weeks after cerulein cessation in mice with an IL-10 KO BM transplant (13.7 ± 0.6% and 18.4 ± 1.1%, p < 0.05), but no further increase was seen in WT BM recipients over this time. The percentage of BM-derived myofibroblasts also increased in the pancreas of the IL-10 KO BM recipients after cessation of cerulein (6.7 ± 1.1% and 11.9 ± 1.3%, p < 0.05), while this figure fell in WT BM recipients after cerulein withdrawal. Furthermore, macrophages were more numerous in the IL-10 KO BM recipients than the WT BM recipients after cerulein cessation (23.2 ± 2.3 versus 15.3 ± 1.7 per HPF, p < 0.05). In conclusion, the degree of fibrosis, inflammatory cell infiltration, and the number of BM-derived myofibroblasts were significantly different between IL-10 KO BM and WT BM transplanted mice, highlighting a likely role of IL-10 in pancreatitis. PMID:27314021

  3. Activation of apoptosis, but not necrosis, during Mycobacterium tuberculosis infection correlated with decreased bacterial growth: role of TNF-alpha, IL-10, caspases and phospholipase A2.

    PubMed

    Arcila, Mary Luz; Sánchez, María Dulfary; Ortiz, Blair; Barrera, Luis Fernando; García, Luis F; Rojas, Mauricio

    2007-10-01

    Monocyte/macrophage cell death is an important event during mycobacterial infection. To get insights about the influence of mononuclear phagocyte maturation in this event we compared the response to Mycobacterium tuberculosis (Mtb) infection of fresh isolated monocytes and monocyte-derived macrophages (MDM) from healthy tuberculin positive individuals. Both monocytes and MDM underwent apoptosis, however, there was a higher numbers of apoptotic macrophages with active Caspases 8 and 9. We also compared Mtb-induced cell death in U937 pro-monocytes and PMA-differentiated cells (U937D). In response to Mtb infection, U937D cells underwent apoptosis and promonocytes both apoptosis and necrosis. There were high number of U937D cells producing TNF-alpha and high number of IL-10+ promonocytes. These evidences suggest that U937 could be a valid model to study the mechanisms that rule Mtb-induced cell death. Experiments with the cell line and fresh isolated mononuclear cells with pharmacological inhibitors showed that induction of necrosis involved calcium and cAMP signals resulting in IL-10 production. Necrosis also correlated with Caspase 3, PLA2 activity and bacterial growth. In U937D cells and monocytes from healthy donors there was activation of calcium, TNF-alpha and Caspase 8 activation and decreased bacterial load. Understanding the mechanisms that control the dichotomy events between apoptosis and necrosis/oncosis associated with cell maturity might open new strategies to better control the course of mycobacterial infections.

  4. Role of IL-10-producing regulatory B cells in control of cerebral malaria in Plasmodium berghei infected mice.

    PubMed

    Liu, Yunfeng; Chen, Yue; Li, Zhaotao; Han, Yingli; Sun, Yanxia; Wang, Qiong; Liu, Boyu; Su, Zhong

    2013-11-01

    Cerebral malaria (CM) is a neurological syndrome often occurring in severe malaria. Although CM is known as an immunopathology in brain tissue mediated by excessive proinflammatory cytokines, the immunoregulatory mechanism is poorly understood. Here, we investigated the role of IL-10-producing regulatory B (Breg) cells in modulating CM development in a murine model of Plasmodium berghei ANKA infection. We observed that blood-stage P. berghei induced expansion of IL-10-producing Breg cells in C57BL/6 mice. Adoptive transfer of IL-10(+) Breg cells to P. berghei infected mice significantly reduced the accumulation of NK and CD8(+) T cells and hemorrhage in brain tissue, and improved the survival of the mice compared with control groups, although parasitemia levels were not altered. Treatment of Breg-cell recipient mice with anti-IL-10 receptor mAb blocked the protective effect of Breg cells. Adoptive transfer of CD4(+) CD25(+) Treg cells failed to prevent CM in infected mice. Spleen cells from Breg-cell recipient mice produced increased levels of IL-10 in vitro. Cell co-culture showed that purified IL-10(+) B cells, but not IL-10(-) B cells, promoted IL-10 production by CD4(+) T cells. These results demonstrate that IL-10-producing Breg cells may represent an important mechanism for controlling the immunopathology and prevention of CM associated with P. berghei infection.

  5. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NFκB Pathway Suppression

    PubMed Central

    Zhou, Zhong'e; Tang, Yong; Chen, Chengjun; Lu, Yi; Liu, Liang

    2016-01-01

    Advanced glycation end products (AGEs) are major inflammatory mediators in diabetes, affecting atherosclerosis progression via macrophages. Metformin slows diabetic atherosclerosis progression through mechanisms that remain to be fully elucidated. The present study of murine bone marrow derived macrophages showed that (1) AGEs enhanced proinflammatory cytokines (interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)) mRNA expression, RAGE expression, and NFκB activation; (2) metformin pretreatment inhibited AGEs effects and AGEs-induced cluster designation 86 (CD86) (M1 marker) expression, while promoting CD206 (M2 marker) surface expression and anti-inflammatory cytokine (IL-10) mRNA expression; and (3) the AMPK inhibitor, Compound C, attenuated metformin effects. In conclusion, metformin inhibits AGEs-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression. PMID:27761470

  6. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NFκB Pathway Suppression.

    PubMed

    Zhou, Zhong'e; Tang, Yong; Jin, Xian; Chen, Chengjun; Lu, Yi; Liu, Liang; Shen, Chengxing

    2016-01-01

    Advanced glycation end products (AGEs) are major inflammatory mediators in diabetes, affecting atherosclerosis progression via macrophages. Metformin slows diabetic atherosclerosis progression through mechanisms that remain to be fully elucidated. The present study of murine bone marrow derived macrophages showed that (1) AGEs enhanced proinflammatory cytokines (interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)) mRNA expression, RAGE expression, and NFκB activation; (2) metformin pretreatment inhibited AGEs effects and AGEs-induced cluster designation 86 (CD86) (M1 marker) expression, while promoting CD206 (M2 marker) surface expression and anti-inflammatory cytokine (IL-10) mRNA expression; and (3) the AMPK inhibitor, Compound C, attenuated metformin effects. In conclusion, metformin inhibits AGEs-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression.

  7. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.

    PubMed Central

    Fadok, V A; Bratton, D L; Konowal, A; Freed, P W; Westcott, J Y; Henson, P M

    1998-01-01

    Apoptosis in vivo is followed almost inevitably by rapid uptake into adjacent phagocytic cells, a critical process in tissue remodeling, regulation of the immune response, or resolution of inflammation. Phagocytosis of apoptotic cells by macrophages has been suggested to be a quiet process that does not lead to production of inflammatory mediators. Here we show that phagocytosis of apoptotic neutrophils (in contrast to immunoglobulin G-opsonized apoptotic cells) actively inhibited the production of interleukin (IL)-1beta, IL-8, IL-10, granulocyte macrophage colony-stimulating factor, and tumor necrosis factor-alpha, as well as leukotriene C4 and thromboxane B2, by human monocyte-derived macrophages. In contrast, production of transforming growth factor (TGF)-beta1, prostaglandin E2, and platelet-activating factor (PAF) was increased. The latter appeared to be involved in the inhibition of proinflammatory cytokine production because addition of exogenous TGF-beta1, prostaglandin E2, or PAF resulted in inhibition of lipopolysaccharide-stimulated cytokine production. Furthermore, anti-TGF-beta antibody, indomethacin, or PAF receptor antagonists restored cytokine production in lipopolysaccharide-stimulated macrophages that had phagocytosed apoptotic cells. These results suggest that binding and/or phagocytosis of apoptotic cells induces active antiinflammatory or suppressive properties in human macrophages. Therefore, it is likely that resolution of inflammation depends not only on the removal of apoptotic cells but on active suppression of inflammatory mediator production. Disorders in either could result in chronic inflammatory diseases. PMID:9466984

  8. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.

    PubMed

    Fadok, V A; Bratton, D L; Konowal, A; Freed, P W; Westcott, J Y; Henson, P M

    1998-02-15

    Apoptosis in vivo is followed almost inevitably by rapid uptake into adjacent phagocytic cells, a critical process in tissue remodeling, regulation of the immune response, or resolution of inflammation. Phagocytosis of apoptotic cells by macrophages has been suggested to be a quiet process that does not lead to production of inflammatory mediators. Here we show that phagocytosis of apoptotic neutrophils (in contrast to immunoglobulin G-opsonized apoptotic cells) actively inhibited the production of interleukin (IL)-1beta, IL-8, IL-10, granulocyte macrophage colony-stimulating factor, and tumor necrosis factor-alpha, as well as leukotriene C4 and thromboxane B2, by human monocyte-derived macrophages. In contrast, production of transforming growth factor (TGF)-beta1, prostaglandin E2, and platelet-activating factor (PAF) was increased. The latter appeared to be involved in the inhibition of proinflammatory cytokine production because addition of exogenous TGF-beta1, prostaglandin E2, or PAF resulted in inhibition of lipopolysaccharide-stimulated cytokine production. Furthermore, anti-TGF-beta antibody, indomethacin, or PAF receptor antagonists restored cytokine production in lipopolysaccharide-stimulated macrophages that had phagocytosed apoptotic cells. These results suggest that binding and/or phagocytosis of apoptotic cells induces active antiinflammatory or suppressive properties in human macrophages. Therefore, it is likely that resolution of inflammation depends not only on the removal of apoptotic cells but on active suppression of inflammatory mediator production. Disorders in either could result in chronic inflammatory diseases.

  9. Role of IL-10 and TGF-β in melanoma.

    PubMed

    Wiguna, Arlina P; Walden, Peter

    2015-03-01

    IL-10 and TGF-β are immunosuppressive cytokines expressed in tumors including melanoma and, therefore, deemed major cause for failing antitumor immune responses. Re-evaluating their role, we compared their expression by quantitative RT-PCR in melanoma and skin of healthy individuals, tested their induction in dendritic cells and T cells co-cultured with tumor cells, and their effects on the immune cells. Both cytokines as well as their receptors were expressed in melanoma at significantly lower levels than in healthy skin. Consequently, the expressions of IL-10-responsive SOCS-3 and TGF-β-responsive Smad-7 were low in tumors but high in healthy skin. T cells co-cultured with tumor cells developed an anergic state without increased IL-10 or TGF-β expression. In vitro tumor-induced immature dendritic cells produced high IL-10 levels and less efficiently induced T-cell proliferation. Nonetheless, they could be induced to mature, and blocking IL-10 did not alter the capacity of the resulting mature dendritic cells to stimulate T cells. Mature dendritic cells co-cultured with tumor cells produced increased IL-10 but decreased TGF-β and more efficiently induced T-cell proliferation. The lack of correlation of IL-10 and TGF-β with immune deficits in situ and in vitro suggests re-evaluating their roles in cancer.

  10. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis.

    PubMed

    Souza, Cleverson D

    2015-03-15

    This study evaluated the role of the mitogen-activated protein kinase (MAPK)-p38 pathway in the nitric oxide synthase (iNOS) expression and nitric oxide (NO) production by bovine monocyte-derived macrophages ingesting Mycobacterium avium subsp. paratuberculosis (MAP) organisms in vitro. Bovine monocyte-derived macrophages were incubated with MAP organisms with or without a specific inhibitor of the MAPKp38 pathway and activation of the MAPKp38, interleukin - (IL) IL-10, IL-12, iNOS mRNA expression and NO production were evaluated. Incubation of macrophages with MAP organisms activates the MAPKp38 pathway at early time points post infection. Chemically inhibition of MAPKp38 before incubation of bovine macrophages with MAP resulted in increased expression of IL-12 mRNA at 2, 6 and 24h, decreased expression of IL-10 mRNA at 2, 6 and 24h and increased expression of iNOS mRNA at 2 and 6h. Nitric oxide was evaluated to indirectly determine the effects of MAPKp38 pathway on the anti-microbial activity of bovine macrophages. Incubation of bovine macrophages with MAP resulted in modest increased production of NO at 4 and 6h post infection. Pretreatment of bovine macrophages with the MAPKp38 inhibitor SB203580 before addition of MAP organisms resulted in increased production of NO at 2, 4, 6 and 24h post infection. This study expanded our knowledge of the importance of the MAPKp38 pathway in limiting an appropriate macrophage response to MAP and suggested how activation of MAPKp38 pathway may be a target of this organism to disrupt earlier antimicrobial mechanisms of macrophages. These findings raises the interesting possibility that the cellular manipulation of MAPKp38 may be useful in designing novel vaccines against MAP.

  11. Macrophage Stimulating Protein (MSP) evokes superoxide anion production by human macrophages of different origin

    PubMed Central

    Brunelleschi, Sandra; Penengo, Lorenza; Lavagno, Luisa; Santoro, Claudio; Colangelo, Donato; Viano, Ilario; Gaudino, Giovanni

    2001-01-01

    Macrophage Stimulating Protein (MSP), a serum factor related to Hepatocyte Growth Factor, was originally discovered to stimulate chemotaxis of murine resident peritoneal macrophages. MSP is the ligand for Ron, a member of the Met subfamily of tyrosine kinase receptors. The effects of MSP on human macrophages and the role played in human pathophysiology have long been elusive.We show here that human recombinant MSP (hrMSP) evokes a dose-dependent superoxide anion production in human alveolar and peritoneal macrophages as well as in monocyte-derived macrophages, but not in circulating human monocytes. Consistently, the mature Ron protein is expressed by the MSP responsive cells but not by the unresponsive monocytes. The respiratory burst evoked by hrMSP is quantitatively higher than the one induced by N-formylmethionyl-leucyl-phenylalanine and similar to phorbol myristate acetate-evoked one.To investigate the mechanisms involved in NADPH oxidase activation, leading to superoxide anion production, different signal transduction inhibitors were used. By using the non selective tyrosine kinase inhibitor genistein, the selective c-Src inhibitor PP1, the tyrosine phosphatase inhibitor sodium orthovanadate, the phosphatidylinositol 3-kinase inhibitor wortmannin, the p38 inhibitor SB203580, the MEK inhibitor PD098059, we demonstrate that hrMSP-evoked superoxide production is mediated by tyrosine kinase activity, requires the activation of Src but not of PI 3-kinase. We also show that MAP kinase and p38 signalling pathways are involved.These results clearly indicate that hrMSP induces the respiratory burst in human macrophages but not in monocytes, suggesting for the MSP/Ron complex a role of activator as well as of possible marker for human mature macrophages. PMID:11704649

  12. Correlation Between IL-10 and microRNA-187 Expression in Epileptic Rat Hippocampus and Patients with Temporal Lobe Epilepsy

    PubMed Central

    Alsharafi, Walid A.; Xiao, Bo; Abuhamed, Mutasem M.; Bi, Fang-Fang; Luo, Zhao-Hui

    2015-01-01

    Accumulating evidence is emerging that microRNAs (miRNAs) are key regulators in controlling neuroinflammatory responses that are known to play a potential role in the pathogenesis of temporal lobe epilepsy (TLE). The aim of the present study was to investigate the dynamic expression pattern of interleukin (IL)-10 as an anti-inflammatory cytokine and miR-187 as a post-transcriptional inflammation-related miRNA in the hippocampus of a rat model of status epilepticus (SE) and patients with TLE. We performed a real-time quantitative PCR and western blot on rat hippocampus 2 h, 7 days, 21 days and 60 days following pilocarpine-induced SE, and on hippocampus obtained from TLE patients and normal controls. To detect the relationship between IL-10 and miR-187 on neurons, lipopolysaccharide (LPS) and IL-10-stimulated neurons were performed. Furthermore, we identified the effect of antagonizing miR-187 by its antagomir on IL-10 secretion. Here, we reported that IL-10 secretion and miR-187 expression levels are inversely correlated after SE. In patients with TLE, the expression of IL-10 was also significantly upregulated, whereas miR-187 expression was significantly downregulated. Moreover, miR-187 expression was significantly reduced following IL-10 stimulation in an IL-10–dependent manner. On the other hand, antagonizing miR-187 promoted the production of IL-10 in hippocampal tissues of rat model of SE. Our findings demonstrate a critical role of miR-187 in the physiological regulation of IL-10 anti-inflammatory responses and elucidate the role of neuroinflammation in the pathogenesis of TLE. Therefore, modulation of the IL-10 / miR-187 axis may be a new therapeutic approach for TLE. PMID:26696826

  13. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages.

    PubMed

    Mattana, Antonella; Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W; Henriquez, Fiona L; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-10-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response.

  14. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages

    PubMed Central

    Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W.; Henriquez, Fiona L.; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-01-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. PMID:27481240

  15. The macrophage in HIV-1 infection: from activation to deactivation?

    PubMed

    Herbein, Georges; Varin, Audrey

    2010-04-09

    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-gamma display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  16. Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression

    PubMed Central

    Kelly, Jennifer A.; Brown, Elizabeth E.; Harley, John B.; Bae, Sang-Cheol; Alarcόn-Riquelme, Marta E.; Edberg, Jeffrey C.; Kimberly, Robert P.; Ramsey-Goldman, Rosalind; Petri, Michelle A.; Reveille, John D.; Vilá, Luis M.; Alarcón, Graciela S.; Kaufman, Kenneth M.; Vyse, Timothy J.; Jacob, Chaim O.; Gaffney, Patrick M.; Sivils, Kathy Moser; James, Judith A.; Kamen, Diane L.; Gilkeson, Gary S.; Niewold, Timothy B.; Merrill, Joan T.; Scofield, R. Hal; Criswell, Lindsey A.; Stevens, Anne M.; Boackle, Susan A.; Kim, Jae-Hoon; Choi, Jiyoung; Pons-Estel, Bernardo A.; Freedman, Barry I.; Anaya, Juan-Manuel; Martin, Javier; Yu, C. Yung; Chang, Deh-Ming; Song, Yeong Wook; Langefeld, Carl D.; Chen, Weiling; Grossman, Jennifer M.; Cantor, Rita M.; Hahn, Bevra H.; Tsao, Betty P.

    2013-01-01

    Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL

  17. Preferential binding to Elk-1 by SLE-associated IL10 risk allele upregulates IL10 expression.

    PubMed

    Sakurai, Daisuke; Zhao, Jian; Deng, Yun; Kelly, Jennifer A; Brown, Elizabeth E; Harley, John B; Bae, Sang-Cheol; Alarcόn-Riquelme, Marta E; Edberg, Jeffrey C; Kimberly, Robert P; Ramsey-Goldman, Rosalind; Petri, Michelle A; Reveille, John D; Vilá, Luis M; Alarcón, Graciela S; Kaufman, Kenneth M; Vyse, Timothy J; Jacob, Chaim O; Gaffney, Patrick M; Sivils, Kathy Moser; James, Judith A; Kamen, Diane L; Gilkeson, Gary S; Niewold, Timothy B; Merrill, Joan T; Scofield, R Hal; Criswell, Lindsey A; Stevens, Anne M; Boackle, Susan A; Kim, Jae-Hoon; Choi, Jiyoung; Pons-Estel, Bernardo A; Freedman, Barry I; Anaya, Juan-Manuel; Martin, Javier; Yu, C Yung; Chang, Deh-Ming; Song, Yeong Wook; Langefeld, Carl D; Chen, Weiling; Grossman, Jennifer M; Cantor, Rita M; Hahn, Bevra H; Tsao, Betty P

    2013-01-01

    Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10⁻⁸, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates

  18. Photodynamic therapy affects the expression of IL-6 and IL-10 in vivo

    NASA Astrophysics Data System (ADS)

    Gollnick, Sandra O.; Musser, David A.; Henderson, Barbara W.

    1998-05-01

    Photodynamic therapy (PDT), which can effectively destroy malignant tissue, also induces a complex immune response which potentiates anti-tumor immunity, but also inhibits skin contact hypersensitivity (CHS) and prolongs skin graft survival. The underlying mechanisms responsible for these effects are poorly understood, but are likely to involve meditation by cytokines. We demonstrate in a BALB/c mouse model that PDT delivered to normal and tumor tissue in vivo causes marked changes in the expression of cytokines interleukin (IL)-6 and IL-10. IL-6 mRNA and protein are rapidly and strongly enhanced in the PDT treated EMT6 tumor. Previous studies have shown that intratumoral injection of IL- 6 or transduction of the IL-6 gene into tumor cells can enhance tumor immunogenicity and inhibit tumor growth in experimental murine tumor systems. Thus, PDT may enhance local anti-tumor immunity by up-regulating IL-6. PDT also results in an increase in IL-10 mRNA and protein in the skin. The same PDT regime which enhances IL-10 production in the skin has been shown to strongly inhibit the CHS response. The kinetics of IL-10 expression coincide with the known kinetics of PDT induced CHS suppression and we propose that the enhanced IL-10 expression plays a role in the observed suppression of cell mediated responses seen following PDT.

  19. NFATc1 supports imiquimod-induced skin inflammation by suppressing IL-10 synthesis in B cells

    PubMed Central

    Alrefai, Hani; Muhammad, Khalid; Rudolf, Ronald; Pham, Duong Anh Thuy; Klein-Hessling, Stefan; Patra, Amiya K.; Avots, Andris; Bukur, Valesca; Sahin, Ugur; Tenzer, Stefan; Goebeler, Matthias; Kerstan, Andreas; Serfling, Edgar

    2016-01-01

    Epicutaneous application of Aldara cream containing the TLR7 agonist imiquimod (IMQ) to mice induces skin inflammation that exhibits many aspects of psoriasis, an inflammatory human skin disease. Here we show that mice depleted of B cells or bearing interleukin (IL)-10-deficient B cells show a fulminant inflammation upon IMQ exposure, whereas ablation of NFATc1 in B cells results in a suppression of Aldara-induced inflammation. In vitro, IMQ induces the proliferation and IL-10 expression by B cells that is blocked by BCR signals inducing NFATc1. By binding to HDAC1, a transcriptional repressor, and to an intronic site of the Il10 gene, NFATc1 suppresses IL-10 expression that dampens the production of tumour necrosis factor-α and IL-17 by T cells. These data indicate a close link between NFATc1 and IL-10 expression in B cells and suggest NFATc1 and, in particular, its inducible short isoform, NFATc1/αA, as a potential target to treat human psoriasis. PMID:27222343

  20. Acute stress induces increases in salivary IL-10 levels.

    PubMed

    Szabo, Yvette Z; Newton, Tamara L; Miller, James J; Lyle, Keith B; Fernandez-Botran, Rafael

    2016-09-01

    The purpose of this study was to investigate the stress-reactivity of the anti-inflammatory cytokine, IL-10, in saliva and to determine how salivary IL-10 levels change in relation to those of IL-1β, a pro-inflammatory cytokine, following stress. Healthy young adults were randomly assigned to retrieve a negative emotional memory (n = 46) or complete a modified version of the Trier Social Stress Test (n = 45). Saliva samples were taken 10 min before (baseline) and 50 min after (post-stressor) onset of a 10-min stressor, and were assayed using a high sensitivity multiplex assay for cytokines. Measurable IL-10 levels (above the minimum detectable concentration) were found in 96% of the baseline samples, and 98% of the post-stressor samples. Flow rate-adjusted salivary IL-10 levels as well as IL-1β/IL-10 ratios showed moderate but statistically significant increases in response to stress. Measurement of salivary IL-10 and pro-/anti-inflammatory cytokine ratios may be useful, noninvasive tools, in stress research.

  1. A NOVEL ROLE FOR HISTONE DEACETYLASE 6 (HDAC6) IN THE REGULATION OF THE TOLEROGENIC STAT3/IL-10 PATHWAY IN ANTIGEN PRESENTING CELLS

    PubMed Central

    Cheng, Fengdong; Lienlaf, Maritza; Wang, Hong-Wei; Perez-Villarroel, Patricio; Lee, Calvin; Woan, Karrune; Rock-Klotz, Jennifer; Sahakian, Eva; Woods, David; Pinilla-Ibarz, Javier; Kalin, Jay; Tao, Jianguo; Hancock, Wayne; Kozikowski, Alan; Seto, Edward; Villagra, Alejandro; Sotomayor, Eduardo M.

    2014-01-01

    Antigen-presenting cells (APCs) are critical in T-cell activation and in the induction of T-cell tolerance. Epigenetic modifications of specific genes in the APC play a key role in this process, and among them, histone deacetylases (HDACs) have emerged as key participants. HDAC6, one of the members of this family of enzymes, has been shown to be involved in regulation of inflammatory and immune responses. Here we show for the first time, that genetic or pharmacologic disruption of HDAC6 in macrophages and dendritic cells resulted in diminished production of the immunosuppressive cytokine IL-10, and induction of inflammatory APCs that effectively activate antigen-specific naïve T-cells and restore the responsiveness of anergic CD4+ T-cells. Mechanistically, we have found that HDAC6 forms a previously unknown molecular complex with STAT3, association that was detected in both the cytoplasmic and nuclear compartments of the APC. By using HDAC6 recombinant mutants we identified the domain comprising aminoacids 503-840 as being required for HDAC6 interaction with STAT3. Furthermore, by re-chromatin immunoprecipitation we confirmed that HDAC6 and STAT3 are both recruited to the same DNA sequence within the Il10 gene promoter. Of note, disruption of this complex by knocking down HDAC6 resulted in decreased STAT3 phosphorylation -but no changes in STAT3 acetylation- as well as diminished recruitment of STAT3 to the Il10 gene promoter region. The additional demonstration that a selective HDAC6 inhibitor disrupts this STAT3/IL-10 tolerogenic axis points to HDAC6 as a novel molecular target in APCs to overcome immune tolerance and tips the balance towards T-cell immunity. PMID:25108026

  2. B cells produce less IL-10, IL-6 and TNF-α in myasthenia gravis.

    PubMed

    Yilmaz, Vuslat; Oflazer, Piraye; Aysal, Fikret; Parman, Yeşim G; Direskeneli, Haner; Deymeer, Feza; Saruhan-Direskeneli, Güher

    2015-06-01

    B cells from myasthenia gravis (MG) patients with autoantibodies (Aab) against acetylcholine receptor (AChR), muscle-specific kinase (MuSK) or with no detectable Aab were investigated as cytokine producing cells in this study. B cells were evaluated for memory phenotypes and expressions of IL-10, IL-6 and IL-12A. Induced productions of IL-10, IL-6, IL-12p40, TNF-α and LT from isolated B cells in vitro were measured by immunoassays. MG patients receiving immunosuppressive treatment had higher proportions of memory B cells compared with healthy controls and untreated patients. With CD40 stimulation MG patients produced significantly lower levels of IL-10, IL-6. With CD40 and B cell receptor stimulation of B cells, TNF-α production also decreased in addition to these cytokines. The lower levels of these cytokine productions were not related to treatment. Our results confirm a disturbance of B cell subpopulations in MG subgroups on immunosuppressive treatment. B cell derived IL-10, IL-6 and TNF-α are down-regulated in MG, irrespective of different antibody productions. Ineffective cytokine production by B cells may be a susceptibility factor in dysregulation of autoimmune Aab production.

  3. Epstein-Barr virus IL-10 gene expression by a recombinant murine gammaherpesvirus in vivo enhances acute pathogenicity but does not affect latency or reactivation

    PubMed Central

    2014-01-01

    Background Many viral genes affect cytokine function within infected hosts, with interleukin 10 (IL-10) as a commonly targeted mediator. Epstein-Barr virus (EBV) encodes an IL-10 homologue (vIL-10) expressed during productive (lytic) infection and induces expression of cellular IL-10 (cIL-10) during latency. This study explored the role of vIL-10 in a murine gammaherpesvirus (MHV) model of viral infection. Methods The EBV vIL-10 gene was inserted into MHV-76, a strain which lacks the ability to induce cIL-10, by recombination in transfected mouse cells. Mice were infected intranasally with the recombinant, vIL-10-containing MHV-76 or control virus strains and assayed at various days post infection for lung virus titer, spleen cell number, percentage of latently infected spleen cells and ability to reactivate virus from spleen cells. Results Recombinant murine gammaherpesvirus expressing EBV vIL-10 rose to significantly higher titers in lungs and promoted an increase in spleen cell number in infected mice in comparison to MHV strains lacking the vIL-10 gene. However, vIL-10 expression did not alter the quantity of latent virus in the spleen or its ability to reactivate. Conclusions In this mouse model of gammaherpesvirus infection, EBV vIL-10 appears to influence acute-phase pathogenicity. Given that EBV and MHV wild-type strains contain other genes that induce cIL-10 expression in latency (e.g. LMP-1 and M2, respectively), vIL-10 may have evolved to serve the specific role in acute infection of enlarging the permissive host cell population, perhaps to facilitate initial survival and dissemination of viral-infected cells. PMID:25324959

  4. Bestatin, an inhibitor for aminopeptidases, modulates the production of cytokines and chemokines by activated monocytes and macrophages.

    PubMed

    Lkhagvaa, Battur; Tani, Kenji; Sato, Keiko; Toyoda, Yuko; Suzuka, Chiyuki; Sone, Saburo

    2008-12-01

    The aim of this study was to clarify the effect of bestatin, an aminopeptidase inhibitor, on the production of cytokines from peripheral blood monocytes and alveolar macrophages (AM). Human monocytes isolated from peripheral blood of healthy volunteers were incubated with or without lipopolysaccharide (LPS) in the presence or absence of bestatin. AM obtained from patients with sarcoidosis were incubated in the presence or absence of bestatin. The concentration of cytokines in the culture supernatant was determined by enzyme-linked immunosorbent assay. The expression of mRNA was determined by reverse transcription polymerase chain reaction. Bestatin suppressed the production and expression of proinflammatory cytokines and chemokines, interleukin (IL)-6, CXCL8/IL-8, CCL3/macrophage inflammatory protein (MIP)-1alpha by LPS-stimulated monocytes. The mean percentage of the inhibition of IL-6, CXCL8/IL-8, CCL3/MIP-1alpha by bestatin at a concentration of 50 microg/mL was 71.2%, 29.7% and 61.0%, respectively. On the other hand, bestatin increased the production and mRNA expression of IL-10 by LPS-stimulated monocytes. The treatment with bestatin significantly inhibited the production of IL-6 and CXCL8/IL-8 by AM from patients with sarcoidosis. The data presented here indicate that bestatin suppresses the production of the pro-inflammatory cytokines and stimulates the anti-inflammatory cytokine by activated human monocytes. This study suggests that bestatin may be useful as an anti-inflammatory agent in various inflammatory diseases.

  5. IL-10 promotes homeostatic proliferation of human CD8(+) memory T cells and, when produced by CD1c(+) DCs, shapes naive CD8(+) T-cell priming.

    PubMed

    Nizzoli, Giulia; Larghi, Paola; Paroni, Moira; Crosti, Maria Cristina; Moro, Monica; Neddermann, Petra; Caprioli, Flavio; Pagani, Massimiliano; De Francesco, Raffaele; Abrignani, Sergio; Geginat, Jens

    2016-07-01

    IL-10 is an anti-inflammatory cytokine that inhibits maturation and cytokine production of dendritic cells (DCs). Although mature DCs have the unique capacity to prime CD8(+) CTL, IL-10 can promote CTL responses. To understand these paradoxic findings, we analyzed the role of IL-10 produced by human APC subsets in T-cell responses. IL-10 production was restricted to CD1c(+) DCs and CD14(+) monocytes. Interestingly, it was differentially regulated, since R848 induced IL-10 in DCs, but inhibited IL-10 in monocytes. Autocrine IL-10 had only a weak inhibitory effect on DC maturation, cytokine production, and CTL priming with high-affinity peptides. Nevertheless, it completely blocked cross-priming and priming with low-affinity peptides of a self/tumor-antigen. IL-10 also inhibited CD1c(+) DC-induced CD4(+) T-cell priming and enhanced Foxp3 induction, but was insufficient to induce T-cell IL-10 production. CD1c(+) DC-derived IL-10 had also no effect on DC-induced secondary expansions of memory CTL. However, IL-15-driven, TCR-independent proliferation of memory CTL was enhanced by IL-10. We conclude that DC-derived IL-10 selects high-affinity CTL upon priming. Moreover, IL-10 preserves established CTL memory by enhancing IL-15-dependent homeostatic proliferation. These combined effects on CTL priming and memory maintenance provide a plausible mechanism how IL-10 promotes CTL responses in humans.

  6. Fasciola hepatica excretory-secretory products induce CD4+T cell anergy via selective up-regulation of PD-L2 expression on macrophages in a Dectin-1 dependent way.

    PubMed

    Guasconi, Lorena; Chiapello, Laura S; Masih, Diana T

    2015-07-01

    Fasciola hepatica excretory-secretory products (FhESP) induce immunomodulatory effects on macrophages. Previously, we demonstrated that these effects are dependent on Dectin-1. Therefore, the aim of this study was to determine how this affects the CD4 T-cells immune response. We observed that FhESP induce an increased expression of PD-L2 in macrophages via Dectin-1. Furthermore, in co-cultures with CD4 T-cell we observed a suppressive effect on proliferative response, down-modulation of IFN-γ and up-modulation of IL-10 via Dectin-1 on macrophages. These results suggest that FhESP induce T-cell anergy via selective up-regulation of PD-L2 expression on macrophages in a Dectin-1 dependent way.

  7. Early Secreted Antigenic Target of 6-kDa of Mycobacterium tuberculosis Stimulates IL-6 Production by Macrophages through Activation of STAT3

    PubMed Central

    Jung, Bock-Gie; Wang, Xisheng; Yi, Na; Ma, Justin; Turner, Joanne; Samten, Buka

    2017-01-01

    As early secreted antigenic target of 6 kDa (ESAT-6) of Mycobacterium tuberculosis (Mtb) is an essential virulence factor and macrophages are critical for tuberculosis infection and immunity, we studied ESAT-6 stimulated IL-6 production by macrophages. ESAT-6 stimulated significantly higher IL-6 secretion by murine bone marrow derived macrophages (BMDM) compared to culture filtrate protein 10 kDa (CFP10) and antigen 85A. Polymyxin B, an LPS blocker, did not affect ESAT-6 stimulated macrophage IL-6 production. ESAT-6 but not Pam3CSK4 induced IL-6 by TLR2 knockout BMDM. ESAT-6 induced phosphorylation and DNA binding of STAT3 and this was blocked by STAT3 inhibitors but not by rapamycin. STAT3 inhibitors suppressed ESAT-6-induced IL-6 transcription and secretion without affecting cell viability. This was confirmed by silencing STAT3 in macrophages. Blocking neither IL-6Rα/IL-6 nor IL-10 affected ESAT-6-induced STAT3 activation and IL-6 production. Infection of BMDM and human macrophages with Mtb with esat-6 deletion induced diminished STAT3 activation and reduced IL-6 production compared to wild type and esat-6 complemented Mtb strains. Administration of ESAT-6 but not CFP10 induced STAT3 phosphorylation and IL-6 expression in the mouse lungs, consistent with expression of ESAT-6, IL-6 and phosphorylated-STAT3 in Mtb-infected mouse lungs. We conclude that ESAT-6 stimulates macrophage IL-6 production through STAT3 activation. PMID:28106119

  8. Leishmania mexicana Infection Induces IgG to Parasite Surface Glycoinositol Phospholipids that Can Induce IL-10 in Mice and Humans

    PubMed Central

    Buxbaum, Laurence U.

    2013-01-01

    Infection with the intracellular protozoan parasite Leishmania mexicana causes chronic disease in C57BL/6 mice, in which cutaneous lesions persist for many months with high parasite burdens (107–108 parasites). This chronic disease process requires host IL-10 and FcγRIII. When Leishmania amastigotes are released from cells, surface-bound IgG can induce IL-10 and suppress IL-12 production from macrophages. These changes decrease IFN-γ from T cells and nitric oxide production in infected cells, which are both required for Leishmania control. However, antibodies targets and the kinetics of antibody production are unknown. Several groups have been unsuccessful in identifying amastigote surface proteins that bind IgG. We now show that glycoinositol phospholipids (GIPLs) of L. mexicana are recognized by mouse IgG1 by 6 weeks of infection, with a rapid increase between 12 and 16 weeks, consistent with the timing of chronic disease in C57BL/6 mice vs. healing in FcγRIII-deficient mice. A single prominent spot on TLC is recognized by IgG, and the glycolipid is a glycosyl phosphatidylinositol containing a branched mannose structure. We show that the lipid structure of the GIPL (the sn-2 fatty acid) is required for antibody recognition. This GIPL is abundant in L. mexicana amastigotes, rare in stationary-phase promastigotes, and absent in L. major, consistent with a role for antibodies to GIPLs in chronic disease. A mouse monoclonal anti-GIPL IgG recognizes GIPLs on the parasite surface, and induces IL-10 from macrophages. The current work also extends this mouse analysis to humans, finding that L. mexicana-infected humans with localized and diffuse cutaneous leishmaniasis have antibodies that recognize GIPLs, can bind to the surface of amastigotes, and can induce IL-10 from human monocytes. Further characterization of the target glycolipids will have important implications for drug and vaccine development and will elucidate the poorly understood role of glycolipids in

  9. Early Secreted Antigenic Target of 6 kDa of Mycobacterium tuberculosis Stimulates Macrophage Chemoattractant Protein-1 Production by Macrophages and Its Regulation by p38 Mitogen-Activated Protein Kinases and Interleukin-4.

    PubMed

    Ma, J; Jung, B-G; Yi, N; Samten, B

    2016-07-01

    Early secreted antigenic target of 6 kDa (ESAT-6), the major virulence factor of Mycobacterium tuberculosis, affects host immunity and the formation of granulomas likely through inflammatory cytokines. To understand its role in this regard further, we investigated the effect of ESAT-6 on macrophages by determining the production of macrophage chemoattractant protein (MCP)-1, a major chemokine associated with tuberculosis pathogenesis, by murine bone marrow-derived macrophages (BMDMs) and its regulation by protein kinases and cytokines. The results revealed that ESAT-6, but not Ag85A and culture filtrate protein 10 kDa (CFP10), induced MCP-1 production by BMDMs dose and time dependently. Inhibition of p38 but not other mitogen-activated protein kinases (MAPK) and PI3K further enhanced ESAT-6-induced MCP-1 production by BMDMs. Inhibition of p38 MAPK enhanced ESAT-6-induced MCP-1 mRNA accumulation without affecting mRNA stability. ESAT-6 also induced TNF-α from BMDMs and MCP-1 from mouse lung epithelial cells, and these were suppressed by p38 MAPK inhibition, implying cytokine- and cell-specific effect of p38 MAPK inhibition on ESAT-6-induced MCP-1 by macrophages. Pretreatment of BMDMs with IL-4, but not other cytokines (IL-2, IL-10, TNF-α, IFN-γ and IL-1α) further elevated ESAT-6-stimulated MCP-1 production although IL-4 did not induce MCP-1 without ESAT-6. Both p38 MAPK inhibitor and IL-4 did not show additive effect on ESAT-6-induced MCP-1 protein level despite such effect on MCP-1 mRNA level was evident. In conclusion, these results indicate a specific role for both p38 MAPK and IL-4 in ESAT-6-induced MCP-1 production by macrophages and suggest a pathway with significance in tuberculosis pathogenesis.

  10. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells.

    PubMed

    Di Giacinto, Claudia; Marinaro, Mariarosaria; Sanchez, Massimo; Strober, Warren; Boirivant, Monica

    2005-03-15

    Recent studies of murine models of mucosal inflammation suggest that, whereas some kinds of bacterial microflora are inducers of disease, others, known as probiotics, prevent disease. In the present study, we analyzed the regulatory cytokine and cell response to probiotic (VSL#3) administration in the context of the Th1 T cell colitis induced by trinitrobenzene sulfonic acid treatment of SJL/J mice. Daily administration of probiotics for 3 wk to mice during a remission period between a first and second course of colitis induced by trinitrobenzene sulfonic acid, resulted in a milder form of recurrent colitis than observed in mice administered PBS during this same period. This protective effect was attributable to effects on the lamina propria mononuclear cell (LPMC) population, because it could be transferred by LPMC from probiotic-treated mice to naive mice. Probiotic administration was associated with an early increase in the production of IL-10 and an increased number of regulatory CD4+ T cells bearing surface TGF-beta in the form of latency-associated protein (LAP) (LAP+ T cells). The latter were dependent on the IL-10 production because administration of anti-IL-10R mAb blocked their appearance. Finally, the LAP+ T cells were essential to the protective effect of probiotics because administration of anti-IL-10R or anti-TGF-beta at the initiation of recurrent colitis induction or depletion of LAP+ T cells from LPMC abolished the latter's capacity to transfer protection to naive recipients. These studies show that probiotic (VSL#3) administration during a remission period ameliorates the severity of recurrent colitis by inducing an immunoregulatory response involving TGF-beta-bearing regulatory cells.

  11. The macrophage chemotactic activity of Edwardsiella tarda extracellular products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemoattractant capabilities of Edwardsiella tarda extracellular products (ECP) were investigated from two isolates, the virulent FL6-60 parent and less virulent RET-04 mutant. Chemotaxis and chemokinesis were assayed in vitro using blind well chambers with peritoneal macrophages obtained from ...

  12. Macrophage recognition of toxic advanced glycosylation end products through the macrophage surface-receptor nucleolin.

    PubMed

    Miki, Yuichi; Dambara, Hikaru; Tachibana, Yoshihiro; Hirano, Kazuya; Konishi, Mio; Beppu, Masatoshi

    2014-01-01

    Advanced glycosylation end-products (AGEs) are non-enzymatically glycosylated proteins that play an important role in several diseases and aging processes, including angiopathy, renal failure, diabetic complications, and some neurodegenerative diseases. In particular, glyceraldehyde (GCA)- and glycolaldehyde (GOA)-derived AGEs are deemed toxic AGEs, due to their cytotoxicity. Recently, the shuttling-protein nucleolin has been shown to possess scavenger receptor-activity. Here, we investigated whether or not macrophages recognize toxic AGEs through nucleolin receptors expressed on their surface. Free amino acid groups and arginine residues found in bovine serum albumin (BSA) were time-dependently modified by incubation with GCA and GOA. In addition, average molecular size was increased by incubation with GCA and GOA. While GCA-treated BSA (GCA-BSA) and GOA-treated BSA (GOA-BSA) were recognized by thioglycollate-elicited mouse peritoneal macrophages in proportion to their respective aldehyde-modification ratios, aldehyde-untreated control-BSA was not. Surface plasmon-resonance analysis revealed that nucleolin strongly associated with GCA-BSA and GOA-BSA, but not with control-BSA. Further, pretreating macrophages with anti-nucleolin antibody, but not control-Immunoglobulin G, inhibited recognition of GCA-BSA and GOA-BSA by macrophages. Additionally, AGRO, a nucleolin-specific oligonucleotide aptamer, inhibited recognition of GCA-BSA and GOA-BSA. Moreover, nucleolin-transfected HEK293 cells recognized more GCA-BSA and GOA-BSA than control HEK cells did. Binding of nucleolin and GCA-BSA/GOA-BSA was also blocked by anti-nucleolin antibody at molecular level. These results indicate that nucleolin is a receptor that allows macrophages to recognize toxic AGEs.

  13. Significant roles played by IL-10 in Chlamydia infections.

    PubMed

    Hakimi, Hamid; Zare-Bidaki, Mohammad; Zainodini, Nahid; Assar, Shokrollah; Arababadi, Mohammad Kazemi

    2014-06-01

    Chlamydia species are obligate intracellular parasites which cause usually asymptomatic genital tract infections and also are associated with several complications. Previous studies demonstrated that immune responses to Chlamydia species are different and the diseases will be limited to some cases. Additionally, Chlamydia species are able to modulate immune responses via regulating expression of some immune system molecules including cytokines. IL-10, as the main anti-inflammatory cytokine, plays important roles in the induction of immune-tolerance against self-antigen and also immune-homeostasis after microbe elimination. Furthermore, it has been documented that ectopic expression of IL-10 is associated with several chronic infectious diseases. Therefore, it can be hypothesized that changes in the regulation of this cytokine can be associated with infection with several species of Chlamydia and their associated complications. This review collected the recent information regarding the association and relationship of IL-10 with Chlamydia infections. Another aim of this review article is to address recent data regarding the association of genetic variations (polymorphisms) of IL-10 and Chlamydia infections.

  14. Association of physical activity and IL-10 levels 20 years after sulfur mustard exposure: Sardasht-Iran cohort study.

    PubMed

    Ghazanfari, Zeinab; Ghazanfari, Tooba; Kermani-Jalilvand, Arezou; Yaraee, Roya; Vaez-Mahdavi, Mohammad R; Foroutan, Abbas; Araghizadeh, Hassan; Faghihzadeh, Soghrat; Moaiedmohseni, Sakine; Soroush, Mohammad R; Naghizadeh, Mohammad M; Hassan, Zuhair M

    2009-12-01

    IL-10 is an anti-inflammatory cytokine that is important in the regulation of inflammatory processes in different conditions. Sulfur mustard (SM) intoxicated patients are suffering from different inflammatory diseases in their lung, skin and eyes. Physical activity (PA) is reported to control inflammation by reducing pro-inflammatory and inducing anti-inflammatory cytokines. Our previous study revealed lower PA and more sedentary lifestyle among SM exposed population. This study aimed to determine the relationship of PA with IL-10 production in SM exposed subjects. Baseline, mitogen-induced and the serum levels of IL-10 were evaluated. In a historical cohort study, Sardasht-Iran Cohort Study (SICS), 372 SM exposed participants were studied 20 years after exposure and were compared with 128 unexposed control participants. The Global Physical Activity Questionnaire (GPAQ; developed by WHO) was used to obtain a self-reported measure of physical activity. Whole blood culture supernatants and serum samples were used for IL-10 measurement by ELISA technique. In both the control and exposed groups mitogen-induced IL-10 production was significantly elevated with severity of PA intensity (p<0.05). In the control subjects with moderate PA intensity, the mitogen-induced IL-10 production was higher than the corresponding in the exposed group (p<0.05). In the exposed group, mitogen-induced IL-10 production had significant positive correlation with total PA, total transport PA, total recreational PA and total moderate intensity work (p<0.05). The positive relationship between high PA and the levels of anti-inflammatory cytokine IL-10 indicates a need to encourage a more active lifestyle among the SM exposed subjects who have various inflammatory complications.

  15. Schistosoma japonicum infection induces macrophage polarization

    PubMed Central

    Xu, Jingwei; Zhang, Hao; Chen, Lin; Zhang, Donghui; Ji, Minjun; Wu, Haiwei; Wu, Guanling

    2014-01-01

    Abstract The role of macrophages (Mφ) as the first line of host defense is well accepted. These cells play a central role in orchestrating crucial functions during schistosomal infection. Thus, understanding the functional diversity of these cells in the process of infection as well as the mechanisms underlying these events is crucial for developing disease control strategies. In this study, we adopted a Mφ polarization recognition system. M1 macrophage was characterized by expressing CD16/32, IL-12 and iNOS. M2 macrophage was characterized by expressing CD206, IL-10 and arg-1. In vivo (mouse peritoneal macrophages of different infection stages were obtained) and in vitro (different S. japonicum antigens were used to stimulate RAW264.7) were characterized by using the above mentioned system. NCA and ACA stimulated RAW264.7 express significantly higher levels of IL-12 while significantly higher levels of IL-10 were detected after soluble egg antigen (SEA) stimulation. The results showed that dramatic changes of antigen in the microenvironment before and after egg production led to macrophage polarization. Furthermore, through TLR blocking experiments, the TLR4 signaling pathway was found to play a role in the process of macrophage polarization toward M1. Our data suggest that macrophage polarization during S. japonicum infection had significant effects on host immune responses to S. japonicum. PMID:25050114

  16. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells.

    PubMed

    Audo, Rachel; Hua, Charlotte; Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells.

  17. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells

    PubMed Central

    Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I.

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells. PMID:28072868

  18. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus.

    PubMed

    Vilela, Ricardo Chaves; Benchimol, Marlene

    2013-02-01

    Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL)-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.

  19. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    SciTech Connect

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  20. Seeking Balance: Potentiation and Inhibition of Multiple Sclerosis Autoimmune Responses by IL-6 and IL-10

    PubMed Central

    Ireland, Sara J.; Monson, Nancy L.; Davis, Laurie S.

    2015-01-01

    The cytokines IL-6 and IL-10 are produced by cells of the adaptive and innate arms of the immune system and they appear to play key roles in genetically diverse autoimmune diseases such as relapsing remitting multiple sclerosis (MS), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Whereas previous intense investigations focused on the generation of autoantibodies and their contribution to immune-mediated pathogenesis in these diseases more recent attention has focused on the roles of cytokines such as IL-6 and IL-10. In response to pathogens, antigen presenting cells (APC), including B cells, produce IL-6 and IL-10 in order to up- or down-regulate immune cell activation and effector responses. Evidence of elevated levels of the proinflammatory cytokine IL-6 has been routinely observed during inflammatory responses and in a number of autoimmune diseases. Our recent studies suggest that MS peripheral blood B cells secrete higher quantities of IL-6 and less IL-10 than B cells from healthy controls. Persistent production of IL-6, in turn, contributes to T cell expansion and the functional hyperactivity of APC such as MS B cells. Altered B cell activity can have a profound impact on resultant T cell effector functions. Enhanced signaling through the IL-6 receptor can effectively inhibit cytolytic activity, induce T cell resistance to IL-10-mediated immunosuppression and increase skewing of autoreactive T cells to a pathogenic Th17 phenotype. Our recent findings and studies by others support a role for the indirect attenuation of B cell responses by Glatiramer acetate (GA) therapy. Our studies suggest that GA therapy temporarily permits homeostatic regulatory mechanisms to be reinstated. Future studies of mechanisms underlying dysregulated B cell cytokine production could lead to the identification of novel targets for improved immunoregulatory therapies for autoimmune diseases. PMID:25794663

  1. Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation

    PubMed Central

    García-Hernández, M L; Hernández-Pando, R; Gariglio, P; Berumen, J

    2002-01-01

    The aim of this study was to investigate the mechanisms by which interleukin-10 (IL-10) induces tumour growth in a mouse-melanoma model. A B16-melanoma cell line (B16-0) was transfected with IL-10 cDNA and three clones that secreted high (B16-10), medium and low amounts of IL-10 were selected. Cell proliferation and IL-10 production were compared in vitro, and tumour growth, percentages of necrotic areas, tumour cells positive for proliferating cell nuclear antigen (PCNA), IL-10 receptor (IL-10R) and major histocompatibility complex type I (MHC-I) and II (MHC-II), as well as infiltration of macrophages, CD4+ and CD8+ lymphocytes and blood vessels were compared in vivo among IL-10-transfected and non-transfected tumours. Proliferation and tumour growth were greater for IL-10-transfected than for non-transfected cells (P < 0·001), and correlated with IL-10 concentration (r ≥ 0·79, P < 0·006). Percentages of tumour cells positive for PCNA and IL-10R were 4·4- and 16·7-fold higher, respectively, in B16-10 than in B16-0 tumours (P < 0·001). Macrophage distribution changed from a diffuse pattern in non-transfected (6·4 ± 1·7%) to a peripheral pattern in IL-10-transfected (3·8 ± 1·7%) tumours. The percentage of CD4+ lymphocytes was 7·6 times higher in B16-10 than in B16-0 tumours (P = 0·002). The expression of MHC-I molecules was present in all B16-0 tumour cells and completely negative in B16–10 tumour cells. In B16-0 tumours, 89 ± 4% of the whole tumour area was necrotic, whereas tumours produced by B16-10 cells showed only 4·3 ± 6% of necrotic areas. IL-10-transfected tumours had 17-fold more blood vessels than non-transfected tumours (61·8 ± 8% versus 3·5 ± 1·7% blood vessels/tumour; P < 0·001). All the effects induced by IL-10 were prevented in mice treated with a neutralizing anti-IL-10 monoclonal antibody. These data indicate that IL-10 could induce tumour growth in this B16-melanoma model by stimulation of tumour-cell proliferation

  2. Haemophilus ducreyi-induced interleukin-10 promotes a mixed M1 and M2 activation program in human macrophages.

    PubMed

    Li, Wei; Katz, Barry P; Spinola, Stanley M

    2012-12-01

    During microbial infection, macrophages are polarized to classically activated (M1) or alternatively activated (M2) cells in response to microbial components and host immune mediators. Proper polarization of macrophages is critical for bacterial clearance. To study the role of macrophage polarization during Haemophilus ducreyi infection, we analyzed a panel of macrophage surface markers in skin biopsy specimens of pustules obtained from experimentally infected volunteers. Lesional macrophages expressed markers characteristic of both M1 and M2 polarization. Monocyte-derived macrophages (MDM) also expressed a mixed M1 and M2 profile of surface markers and cytokines/chemokines upon infection with H. ducreyi in vitro. Endogenous interleukin 10 (IL-10) produced by infected MDM downregulated and enhanced expression of several M1 and M2 markers, respectively. Bacterial uptake, mediated mainly by class A scavenger receptors, and activation of mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways were required for H. ducreyi-induced IL-10 production in MDM. Compared to M1 cells, IL-10-polarized M2 cells displayed enhanced phagocytic activity against H. ducreyi and similar bacterial killing. Thus, IL-10-modulated macrophage polarization may contribute to H. ducreyi clearance during human infection.

  3. The paradoxical role of IL-10 in immunity and cancer.

    PubMed

    Mannino, Mark H; Zhu, Ziwen; Xiao, Huaping; Bai, Qian; Wakefield, Mark R; Fang, Yujiang

    2015-10-28

    Interleukin-10 (IL-10) produced by a wide-variety of cells is a highly pleiotropic cytokine. It has been implicated in the pathogenesis and/or development of autoimmune diseases and cancer, although it displays differential effects that seem to be contradictory sometimes. The ultimate role of this cytokine in disease, however, cannot be fully determined until the immunological contexts that regulate its function are further elucidated. In this review, we will discuss a wide variety of evidence of IL-10 in immunity and cancer in an effort to illuminate the remaining mysteries in the function of this cytokine that, when fully understood, may prove to be a powerful tool in the battle against cancer.

  4. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation.

    PubMed

    Xiao, Sheng; Brooks, Craig R; Sobel, Raymond A; Kuchroo, Vijay K

    2015-02-15

    T cell Ig and mucin domain (Tim)-1 identifies IL-10-producing regulatory B cells (Bregs). Mice on the C57BL/6 background harboring a loss-of-function Tim-1 mutant showed progressive loss of IL-10 production in B cells and with age developed severe multiorgan tissue inflammation. We demonstrate that Tim-1 expression and signaling in Bregs are required for optimal production of IL-10. B cells with Tim-1 defects have impaired IL-10 production but increased proinflammatory cytokine production, including IL-1 and IL-6. Tim-1-deficient B cells promote Th1 and Th17 responses but inhibit the generation of regulatory T cells (Foxp3(+) and IL-10-producing type 1 regulatory T cells) and enhance the severity of experimental autoimmune encephalomyelitis. Mechanistically, Tim-1 on Bregs is required for apoptotic cell (AC) binding to Bregs and for AC-induced IL-10 production in Bregs. Treatment with ACs reduces the severity of experimental autoimmune encephalomyelitis in hosts with wild-type but not Tim-1-deficient Bregs. Collectively, these findings suggest that in addition to serving as a marker for identifying IL-10-producing Bregs, Tim-1 is also critical for maintaining self-tolerance by regulating IL-10 production in Bregs.

  5. IL-10 and ARG-1 concentrations in bone marrow and peripheral blood of metastatic neuroblastoma patients do not associate with clinical outcome.

    PubMed

    Morandi, Fabio; Croce, Michela; Cangemi, Giuliana; Barco, Sebastiano; Rigo, Valentina; Carlini, Barbara; Amoroso, Loredana; Pistoia, Vito; Ferrini, Silvano; Corrias, Maria Valeria

    2015-01-01

    The expression of the immunosuppressive molecules IL-10 and arginase 1 (ARG-1), and of FOXP3 and CD163, as markers of regulatory T cells (Treg) and macrophages, respectively, was evaluated in bone marrow (BM) and peripheral blood (PB) samples collected at diagnosis from patients with metastatic neuroblastoma (NB). IL-10 and ARG-1 plasma concentrations were measured and the association of each parameter with patients' outcome was tested. The percentages of immunosuppressive Treg and type-1 regulatory (Tr1) cells were also determined. In both BM and PB samples, IL-10 mRNA expression was higher in metastatic NB patients than in controls. IL-10 plasma concentration was higher in patients with NB regardless of stage. Neither IL-10 expression nor IL-10 plasma concentration significantly associated with patient survival. In PB samples from metastatic NB patients, ARG-1 and CD163 expression was higher than in controls but their expression did not associate with survival. Moreover, ARG-1 plasma concentration was lower than in controls, and no association with patient outcome was found. Finally, in metastatic NB patients, the percentage of circulating Treg was higher than in controls, whereas that of Tr1 cells was lower. In conclusion, although IL-10 concentration and Treg percentage were increased, their contribution to the natural history of metastatic NB appears uncertain.

  6. Simvastatin Suppresses Airway IL-17 and Upregulates IL-10 in Patients With Stable COPD

    PubMed Central

    Wongkajornsilp, Adisak; Adcock, Ian M.; Barnes, Peter J.

    2015-01-01

    BACKGROUND: Statins have immunomodulatory properties that may provide beneficial effects in the treatment of COPD. We investigated whether a statin improves the IL-17/IL-10 imbalance in patients with COPD, as has previously been demonstrated in patients with asthma. METHODS: Thirty patients with stable COPD were recruited to a double-blind, randomized, controlled, crossover trial comparing the effect of simvastatin, 20 mg po daily, with that of a matched placebo on sputum inflammatory markers and airway inflammation. Each treatment was administered for 4 weeks separated by a 4-week washout period. The primary outcome was the presence of T-helper 17 cytokines and indoleamine 2,3-dioxygenase (IDO) in induced sputum. Secondary outcomes included sputum inflammatory cells, FEV1, and symptoms using the COPD Assessment Test (CAT). RESULTS: At 4 weeks, there was a significant reduction in sputum IL-17A, IL-22, IL-6, and CXCL8 concentrations (mean difference, −16.4 pg/mL, P = .01; −48.6 pg/mL, P < .001; −45.3 pg/mL, P = .002; and −190.9 pg/mL, P = .007, respectively), whereas IL-10 concentrations, IDO messenger RNA expression (fold change), and IDO activity (kynurenine to tryptophan ratio) were markedly increased during simvastatin treatment compared with placebo treatment periods (mean difference, 24.7 pg/mL, P < .001; 1.02, P < .001; and 0.47, P < .001, respectively). The absolute sputum macrophage count, proportion of macrophages, and CAT score were reduced after simvastatin compared with placebo (mean difference, −0.16 × 106, P = .004; −14.1%, P < .001; and −3.2, P = .02, respectively). Values for other clinical outcomes were similar between the simvastatin and placebo treatments. CONCLUSIONS: Simvastatin reversed the IL-17A/IL-10 imbalance in the airways and reduced sputum macrophage but not neutrophil counts in patients with COPD. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01944176; www.clinicaltrials.gov PMID:26043025

  7. Higenamine promotes M2 macrophage activation and reduces Hmgb1 production through HO-1 induction in a murine model of spinal cord injury.

    PubMed

    Zhang, Zhenyu; Li, Mingchao; Wang, Yan; Wu, Jian; Li, Jiaping

    2014-12-01

    Spinal cord injury (SCI) is considered to be primarily associated with loss of motor function and leads to the activation of diverse cellular mechanisms in the central nervous system to attempt to repair the damaged spinal cord tissue. Higenamine (HG) (1-[(4-hydroxyphenyl) methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol), an active ingredient of Aconiti Lateralis Radix Praeparata, has been traditionally used as a heart stimulant and anti-inflammatory agent in oriental countries. However, the function and related mechanism of HG on SCI have never been investigated. In our current study, HG treatment displayed increased myelin sparring and enhanced spinal cord repair process. The numbers of CD4(+) T cells, CD8(+) T cells, Ly6G(+) neutrophils and CD11b(+) macrophages were all significantly lower in the HG-treated group than that in the control group after SCI. HG administration increased the expression of IL-4 and IL-10 and promoted M2 macrophage activation. Significantly reduced Hmgb1 expression was also observed in HG-treated mice with SCI. Furthermore, HG treatment promoted HO-1 production. The increased number of M2 macrophages, decreased expression of Hmgb1 and promoted locomotor recovery induced by HG were all reversed with additional HO-1 inhibitor treatment. In conclusion, HG promotes M2 macrophage activation and reduces Hmgb1 expression dependent on HO-1 induction and then promotes locomotor function after SCI.

  8. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration

    PubMed Central

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter

    2017-01-01

    Introduction. Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P1–5) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods. Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results. All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P1. In contrast, M1-polarized macrophages significantly downregulated S1P4. The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion. The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages. PMID:28367448

  9. A workflow for in silico design of hIL-10 and ebvIL-10 inhibitors using well-known miniprotein scaffolds.

    PubMed

    Dueñas, Salvador; Aguila, Sergio A; Pimienta, Genaro

    2017-04-01

    The over-expression of immune-suppressors such as IL-10 is a crucial landmark in both tumor progression, and latent viral and parasite infection. IL-10 is a multifunctional protein. Besides its immune-cell suppressive function, it also promotes B-cell tumorigenesis of lymphomas and melanoma. Human pathogens like unicellular parasites and viruses that remain latent inside B cells promote the over-expression of hIL-10 upon infection, which inhibits cell-mediated immune surveillance, and at the same time mediates B cell proliferation. The B-cell specific oncogenic latent virus Epstein-Barr virus (EBV) encodes a viral homologue of hIL-10 (ebvIL-10), expressed during lytic viral proliferation. Once expressed, ebvIL-10 inhibits cell-mediated immune surveillance, assuring EBV re-infection. During long-term latency, EBV-infected B cells over-express hIL-10 to assure B-cell proliferation, occasionally inducing EBV-mediated lymphomas. The amino acid sequences of hIL-10 and ebvIL-10 are more than 80% identical and thus have a very similar tridimensional structure. Based on their published crystallographic structures bound to their human receptor IL10R1, we report a structure-based design of hIL-10 and ebvIL-10 inhibitors based on 3 loops from IL10R1 that establish specific hydrogen bonds with the two IL10s. We have grafted these loops onto a permissible loop in three well-known miniprotein scaffolds-the Conus snail toxin MVIIA, the plant-derived trypsin inhibitor EETI, and the human appetite modulator AgRP. Our computational workflow described in detail below was invigorated by the negative and positive controls implemented, and therefore paves the way for future in vitro and in vivo validation assays of the IL-10 inhibitors engineered.

  10. IL-10 distinguishes a unique population of activated, effector-like CD8(+) T cells in murine acute liver inflammation.

    PubMed

    Rood, Julia E; Canna, Scott W; Weaver, Lehn K; Tobias, John W; Behrens, Edward M

    2017-04-01

    Immune-mediated liver injury is a central feature of hyperinflammatory diseases, such as hemophagocytic syndromes, yet the immunologic mechanisms underlying those processes are incompletely understood. In this study, we used the toll-like receptor 9 (TLR9)-mediated model of a hemophagocytic syndrome known as macrophage activation syndrome (MAS) to dissect the predominant immune cell populations infiltrating the liver during inflammation. We identified CD8(+) T cells that unexpectedly produce interleukin-10 (IL-10) in addition to interferon-γ (IFN-γ) as a major hepatic population induced by TLR9 stimulation. Despite their ability to produce this anti-inflammatory cytokine, IL-10(+) hepatic CD8(+) T cells in TLR9-MAS mice did not resemble CD8(+) T suppressor cells. Instead, the induction of these cells occurred independently of antigen stimulation and was partially dependent on IFN-γ. IL-10(+) hepatic CD8(+) T cells demonstrated an activated phenotype and high turnover rate, consistent with an effector-like identity. Transcriptional analysis of this population confirmed a gene signature of effector CD8(+) T cells yet suggested responsiveness to liver injury-associated growth factors. Together, these findings suggest that IL-10(+) CD8(+) T cells induced by systemic inflammation to infiltrate the liver have initiated an inflammatory, rather than regulatory, program and may thus have a pathogenic role in severe, acute hepatitis.

  11. Mechanisms of Regulatory B cell Function in Autoimmune and Inflammatory Diseases beyond IL-10

    PubMed Central

    Ray, Avijit; Dittel, Bonnie N.

    2017-01-01

    In the past two decades it has become clear that in addition to antigen presentation and antibody production B cells play prominent roles in immune regulation. While B cell-derived IL-10 has garnered much attention, B cells also effectively regulate inflammation by a variety of IL-10-independent mechanisms. B cell regulation has been studied in both autoimmune and inflammatory diseases. While collectively called regulatory B cells (Breg), no definitive phenotype has emerged for B cells with regulatory potential. This has made their study challenging and thus unique B cell regulatory mechanisms have emerged in a disease-dependent manner. Thus to harness the therapeutic potential of Breg, further studies are needed to understand how they emerge and are induced to evoke their regulatory activities. PMID:28124981

  12. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages.

    PubMed

    Ocaña, A; Reglero, G

    2012-01-01

    Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis) were examined. Two oil fractions from each species were obtained by CO(2) supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects.

  13. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages

    PubMed Central

    Ocaña, A.; Reglero, G.

    2012-01-01

    Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis) were examined. Two oil fractions from each species were obtained by CO2 supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects. PMID:22577523

  14. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset.

    PubMed

    Sag, Duygu; Krause, Petra; Hedrick, Catherine C; Kronenberg, Mitchell; Wingender, Gerhard

    2014-09-01

    Invariant natural killer T (iNKT) cells rapidly produce copious amounts of multiple cytokines after activation, thereby impacting a wide variety of different immune reactions. However, strong activation of iNKT cells with α-galactosylceramide (αGalCer) reportedly induces a hyporeactive state that resembles anergy. In contrast, we determined here that iNKT cells from mice pretreated with αGalCer retain cytotoxic activity and maintain the ability to respond to TCR-dependent as well as TCR-independent cytokine-mediated stimulation. Additionally, αGalCer-pretreated iNKT cells acquired characteristics of regulatory cells, including production and secretion of the immunomodulatory cytokine IL-10. Through the production of IL-10, αGalCer-pretreated iNKT cells impaired antitumor responses and reduced disease in experimental autoimmune encephalomyelitis, a mouse model of autoimmune disease. Furthermore, a subset of iNKT cells with a similar inhibitory phenotype and function were present in mice not exposed to αGalCer and were enriched in mouse adipose tissue and detectable in human PBMCs. These data demonstrate that IL-10-producing iNKT cells with regulatory potential (NKT10 cells) represent a distinct iNKT cell subset.

  15. Lipoxygenase products mediate the attachment of rat macrophages to glomeruli in vitro

    SciTech Connect

    Baud, L.; Sraer, J.; Delarue, F.; Bens, M.; Balavoine, F.; Schlondorff, D.; Ardaillou, R.; Sraer, J.D.

    1985-06-01

    Because there is an accumulation of macrophages in the Bowman's space during human and experimental glomerulonephritis, the authors have studied the binding of (/sup 3/H)-uridine labeled macrophages to isolated glomeruli. Binding was related to the glomerular protein and macrophage concentrations, temperature, time of incubation, and was a saturable process. Macrophage adherence depended on glomerular lipoxygenase activity but not on glomerular cyclooxygenase activity since preincubation of glomeruli with nordihydroguaiaretic acid (NDGA) inhibited this phenomenon whereas preincubation with indomethacin was ineffective. Glomeruli interacted with macrophages in converting arachidonic acid (C20:4) to prostaglandins (PG) since productions of 6 keto-PGF1 alpha, TXB2, and PGD2 by glomeruli and macrophages incubated in combination were much greater than the sums of their respective productions by glomeruli and macrophages incubated separately. Macrophages were the source of the supplementary synthesis of PG which was abolished when these cells were pretreated with aspirin. Stimulation of macrophages by glomeruli was blunted by pretreatment of glomeruli with NDGA. Production of PG and of 12-HETE by macrophages was stimulated by a lipid extract of glomeruli containing the oxygenated metabolites of C20:4. Direct addition of 12-HPETE also stimulated macrophage functions. These data suggest that macrophage attachment to glomeruli and macrophage stimulation in the presence of glomeruli depend on glomerular lipoxygenase activity.

  16. Identification of tonsillar CD4(+)CD25(-)LAG3(+) T cells as naturally occurring IL-10-producing regulatory T cells in human lymphoid tissue.

    PubMed

    Sumitomo, Shuji; Nakachi, Shinichiro; Okamura, Tomohisa; Tsuchida, Yumi; Kato, Rika; Shoda, Hirofumi; Furukawa, Asayo; Kitahara, Nobuo; Kondo, Kenji; Yamasoba, Tatsuya; Yamamoto, Kazuhiko; Fujio, Keishi

    2017-01-01

    IL-10-producing regulatory T cells (IL-10-producing Tregs) are one of the regulatory T cell subsets characterized by the production of high amounts of IL-10, the lack of FOXP3 expression and the strong immunosuppressive capabilities. IL-10-producing Tregs have been primarily reported as induced populations thus far, in part because identifying naturally occurring IL-10-producing Tregs was difficult due to the lack of definitive surface markers. Lymphocyte-activation gene 3 (LAG3) is a CD4 homologue that we have identified as being expressed on IL-10 producing Tregs. In human PBMC, LAG3 combined with CD49b efficiently identifies IL-10-producing Tregs. However, naturally occurring IL-10-producing Tregs in human secondary lymphoid tissue have not been described. In this report, we identified CD4(+)CD25(-)LAG3(+) T cells in human tonsil. This T cell subset produced high amounts of IL-10 and expressed low levels of FOXP3. Surface markers and microarray analysis revealed that this is a distinct tonsillar CD4(+) T cell subset. CD4(+)CD25(-)LAG3(+) T cells expressed interleukin 10 (IL10), PR/SET domain 1 (PRDM1), and CD274 at high levels and chemokine receptor 5 (CXCR5) at low levels. CD4(+)CD25(-)LAG3(+) T cells suppressed antibody production more efficiently than CD4(+)CD25(+) T cells, and CD4(+)CD25(-)LAG3(+) T cells induced B cell apoptosis. Moreover, analysis of humanized mice revealed that this cell subset suppressed a graft-versus-host disease (GVHD) reaction in vivo. Our study reveals the existence of naturally occurring IL-10-producing Tregs in human secondary lymphoid tissue and their function in immune regulation.

  17. NOD Dendritic Cells Stimulated with Lactobacilli Preferentially Produce IL-10 versus IL-12 and Decrease Diabetes Incidence

    PubMed Central

    Manirarora, Jean N.; Parnell, Sarah A.; Hu, Yoon-Hyeon; Kosiewicz, Michele M.; Alard, Pascale

    2011-01-01

    Dendritic cells (DCs) from NOD mice produced high levels of IL-12 that induce IFNγ-producing T cells involved in diabetes development. We propose to utilize the microorganism ability to induce tolerogenic DCs to abrogate the proinflammatory process and prevent diabetes development. NOD DCs were stimulated with Lactobacilli (nonpathogenic bacteria targeting TLR2) or lipoteichoic acid (LTA) from Staphylococcus aureus (TLR2 agonist). LTA-treated DCs produced much more IL-12 than IL-10 and accelerated diabetes development when transferred into NOD mice. In contrast, stimulation of NOD DCs with L. casei favored the production of IL-10 over IL-12, and their transfer decreased disease incidence which anti-IL-10R antibodies restored. These data indicated that L. casei can induce NOD DCs to develop a more tolerogenic phenotype via production of the anti-inflammatory cytokine, IL-10. Evaluation of the relative production of IL-10 and IL-12 by DCs may be a very useful means of identifying agents that have therapeutic potential. PMID:21716731

  18. Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN

    PubMed Central

    Nagamatsu, Kanna; Kuwae, Asaomi; Konaka, Tadashi; Nagai, Shigenori; Yoshida, Sei; Eguchi, Masahiro; Watanabe, Mineo; Mimuro, Hitomi; Koyasu, Shigeo

    2009-01-01

    The inflammatory response is one of several host alert mechanisms that recruit neutrophils from the circulation to the area of infection. We demonstrate that Bordetella, a bacterial pathogen, exploits an antiinflammatory cytokine, interleukin-10 (IL-10), to evade the host immune system. We identified a Bordetella effector, BopN, that is translocated into the host cell via the type III secretion system, where it induces enhanced production of IL-10. Interestingly, the BopN effector translocates itself into the nucleus and is involved in the down-regulation of mitogen-activated protein kinases. Using pharmacological blockade, we demonstrated that BopN-induced IL-10 production is mediated, at least in part, by its ability to block the extracellular signal-regulated kinase pathway. We also showed that BopN blocks nuclear translocation of nuclear factor κB p65 (NF-κBp65) but, in contrast, promotes nuclear translocation of NF-κBp50. A BopN-deficient strain was unable to induce IL-10 production in mice, resulting in the elimination of bacteria via neutrophil infiltration into the pulmonary alveoli. Furthermore, IL-10–deficient mice effectively eliminated wild-type as well as BopN mutant bacteria. Thus, Bordetella exploits BopN as a stealth strategy to shut off the host inflammatory reaction. These results explain the ability of Bordetella species to avoid induction of the inflammatory response. PMID:20008527

  19. Defective nitric oxide production by alveolar macrophages during Pneumocystis pneumonia.

    PubMed

    Lasbury, Mark E; Liao, Chung-Ping; Hage, Chadi A; Durant, Pamela J; Tschang, Dennis; Wang, Shao-Hung; Zhang, Chen; Lee, Chao-Hung

    2011-04-01

    The effect of nitric oxide (NO) on Pneumocystis (Pc) organisms, the role of NO in the defense against infection with Pc, and the production of NO by alveolar macrophages (AMs) during Pneumocystis pneumonia (PCP) were investigated. The results indicate that NO was toxic to Pc organisms and inhibited their proliferation in culture. When the production of NO was inhibited by intraperitoneal injection of rats with the nitric oxide synthase inhibitor L-N(5)-(1-iminoethyl) ornithine, progression of Pc infection in immunocompetent rats was enhanced. Concentrations of NO in bronchoalveolar lavage fluids from immunosuppressed, Pc-infected rats and mice were greatly reduced, compared with those from uninfected animals, and AMs from these animals were defective in NO production. However, inducible nitric oxide synthase (iNOS) mRNA and protein concentrations were high in AMs from Pc-infected rats and mice. Immunoblot analysis showed that iNOS in AMs from Pc-infected rats existed primarily as a monomer, but the homo-dimerization of iNOS monomers was required for the production of NO. When iNOS dimerization cofactors, including calmodulin, were added to macrophage lysates, iNOS dimerization increased, whereas incubation of the same lysates with all cofactors except calmodulin did not rescue iNOS dimer formation. These data suggest that NO is important in the defense against Pc infection, but that the production of NO in AMs during PCP is defective because of the reduced dimerization of iNOS.

  20. IL-10 Controls Early Microglial Phenotypes and Disease Onset in ALS Caused by Misfolded Superoxide Dismutase 1.

    PubMed

    Gravel, Mathieu; Béland, Louis-Charles; Soucy, Geneviève; Abdelhamid, Essam; Rahimian, Reza; Gravel, Claude; Kriz, Jasna

    2016-01-20

    While reactive microgliosis is a hallmark of advanced stages of amyotrophic lateral sclerosis (ALS), the role of microglial cells in events initiating and/or precipitating disease onset is largely unknown. Here we provide novel in vivo evidence of a distinct adaptive shift in functional microglial phenotypes in preclinical stages of superoxide dismutase 1 (SOD1)-mutant-mediated disease. Using a mouse model for live imaging of microglial activation crossed with SOD1(G93A) and SOD1(G37R) mouse models, we discovered that the preonset phase of SOD1-mediated disease is characterized by development of distinct anti-inflammatory profile and attenuated innate immune/TLR2 responses to lipopolysaccharide (LPS) challenge. This microglial phenotype was associated with a 16-fold overexpression of anti-inflammatory cytokine IL-10 in baseline conditions followed by a 4.5-fold increase following LPS challenge. While infusion of IL-10R blocking antibody, initiated at day 60, caused a significant increase in markers of microglial activation and precipitated clinical onset of disease, a targeted overexpression of IL-10 in microglial cells, delivered via viral vectors expressed under CD11b promoter, significantly delayed disease onset and increased survival of SOD1(G93A) mice. We propose that the high IL-10 levels in resident microglia in early ALS represent a homeostatic and compensatory "adaptive immune escape" mechanism acting as a nonneuronal determinant of clinical onset of disease. Significance statement: We report here for the first time that changing the immune profile of brain microglia may significantly affect clinical onset and duration of disease in ALS models. We discovered that in presymptomatic disease microglial cells overexpress anti-inflammatory cytokine IL-10. Given that IL-10 is major homeostatic cytokine and its production becomes deregulated with aging, this may suggest that the capacity of microglia to adequately produce IL-10 may be compromised in ALS. We show

  1. IL-10-Producing Regulatory B Cells Are Decreased in Patients with Common Variable Immunodeficiency

    PubMed Central

    Costa, Priscilla Ramos; Barros, Myrthes Toledo; Kalil, Jorge; Kokron, Cristina Maria

    2016-01-01

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency in adults. CVID patients often present changes in the frequency and function of B lymphocytes, reduced number of Treg cells, chronic immune activation, recurrent infections, high incidence of autoimmunity and increased risk for malignancies. We hypothesized that the frequency of B10 cells would be diminished in CVID patients because these cells play an important role in the development of Treg cells and in the control of T cell activation and autoimmunity. Therefore, we evaluated the frequency of B10 cells in CVID patients and correlated it with different clinical and immunological characteristics of this disease. Forty-two CVID patients and 17 healthy controls were recruited for this study. Cryopreserved PBMCs were used for analysis of T cell activation, frequency of Treg cells and characterization of B10 cells by flow cytometry. IL-10 production by sorted B cells culture and plasma sCD14 were determined by ELISA. We found that CVID patients presented decreased frequency of IL-10-producing CD24hiCD38hi B cells in different cell culture conditions and decreased frequency of IL-10-producing CD24hiCD27+ B cells stimulated with CpG+PIB. Moreover, we found that CVID patients presented lower secretion of IL-10 by sorting-purified B cells when compared to healthy controls. The frequency of B10 cells had no correlation with autoimmunity, immune activation and Treg cells in CVID patients. This work suggests that CVID patients have a compromised regulatory B cell compartment which is not correlated with clinical and immunological characteristics presented by these individuals. PMID:26991898

  2. Associations of interleukin (IL)-1β, IL-1 receptor antagonist, and IL-10 with dental caries.

    PubMed

    Cogulu, Dilsah; Onay, Huseyin; Ozdemir, Yasemin; I Aslan, Gulcin; Ozkinay, Ferda; Kutukculer, Necil; Eronat, Cemal

    2015-03-01

    Streptococcus mutans is important in dental caries. Although the role of cytokines in the pathogenesis of dental caries is not clear, components of S. mutans were found to stimulate production of pro-inflammatory cytokines. We examined the associations of interleukin (IL)-1β, IL-1 receptor antagonist (IL-1ra), and IL-10 with dental caries. Unstimulated whole saliva and blood samples were obtained from 108 children aged 6-12 years with high caries (decayed, missing, or filled teeth [dmft/DMFT] index >4, n = 37), moderate caries (dmft/DMFT = 1-4, n = 37), or caries-free (dmft/DMFT = 0, n = 34). S. mutans level was classified as low (<10(5) colony-forming units [CFU]/mL) or high (≥10(5) CFU/mL). Saliva and serum concentrations of IL-1β, IL-1ra, and IL-10 were determined by ELISA. IL-1β, IL-1ra, and IL-10 gene polymorphisms were genotyped using PCR and restriction fragment length polymorphism analysis. The chi-square, Mann-Whitney U, one-way ANOVA, posthoc, Fisher's exact, and t tests were used in statistical analysis. Dental caries was not correlated with salivary or serum concentrations of the studied cytokines. S. mutans level positively correlated with saliva IL-1β concentration and inversely correlated with saliva IL-1ra concentration. There was no correlation of IL-1β, IL-1ra, or IL-10 gene polymorphisms with dental caries. S. mutans is important in stimulating saliva IL-1β and inhibiting IL-1ra. Future studies of associations between cytokines and dental caries should investigate additional cytokines and enroll a larger number of participants.

  3. Structure and Mechanism of Receptoe Sharing by the IL-10R2 Common Chain

    SciTech Connect

    Yoon, Sung-il; Jones, Brandi C.; Logsdon, Naomi J.; Harris, Bethany D.; Deshpande, Ashlesha; Radaeva, Svetlana; Halloran, Brian A.; Gao, Bin; Walter, Mark R.

    2010-06-14

    IL-10R2 is a shared cell surface receptor required for the activation of five class 2 cytokines (IL-10, IL-22, IL-26, IL-28, and IL-29) that play critical roles in host defense. To define the molecular mechanisms that regulate its promiscuous binding, we have determined the crystal structure of the IL-10R2 ectodomain at 2.14 {angstrom} resolution. IL-10R2 residues required for binding were identified by alanine scanning and used to derive computational models of IL-10/IL-10R1/IL-10R2 and IL-22/IL-22R1/IL-10R2 ternary complexes. The models reveal a conserved binding epitope that is surrounded by two clefts that accommodate the structural and chemical diversity of the cytokines. These results provide a structural framework for interpreting IL-10R2 single nucleotide polymorphisms associated with human disease.

  4. Structure and Mechanism of Receptor Sharing by the IL-10R2 Common Chain

    SciTech Connect

    Yoon, Sung-il; Jones, Brandi C.; Logsdon, Naomi J.; Harris, Bethany D.; Deshpande, Ashlesha; Radaeva, Svetlana; Halloran, Brian A.; Gao, Bin; Walter, Mark R.

    2010-07-19

    IL-10R2 is a shared cell surface receptor required for the activation of five class 2 cytokines (IL-10, IL-22, IL-26, IL-28, and IL-29) that play critical roles in host defense. To define the molecular mechanisms that regulate its promiscuous binding, we have determined the crystal structure of the IL-10R2 ectodomain at 2.14 {angstrom} resolution. IL-10R2 residues required for binding were identified by alanine scanning and used to derive computational models of IL-10/IL-10R1/IL-10R2 and IL-22/IL-22R1/IL-10R2 ternary complexes. The models reveal a conserved binding epitope that is surrounded by two clefts that accommodate the structural and chemical diversity of the cytokines. These results provide a structural framework for interpreting IL-10R2 single nucleotide polymorphisms associated with human disease.

  5. Cell type-specific regulation of IL-10 expression in inflammation and disease

    PubMed Central

    Hedrich, Christian M.; Bream, Jay H.

    2010-01-01

    IL-10 plays an essential part in controlling inflammation and instructing adaptive immune responses. Consequently, dysregulation of IL-10 is linked with susceptibility to numerous infectious and autoimmune diseases in mouse models and in humans. It has become increasingly clear that appropriate temporal/spatial expression of IL-10 may be the key to how IL-10 contributes to the delicate balance between inflammation and immunoregulation. The mechanisms that govern the cell type- and receptor-specific induction of IL-10, however, remain unclear. This is due largely to the wide distribution of cellular sources that express IL-10 under diverse stimulation conditions and in a variety of tissue compartments. Further complicating the issue is the fact that human IL-10 expression patterns appear to be under genetic influence resulting in differential expression and disease susceptibility. In this review, we discuss the cellular sources of IL-10, their link to disease phenotypes and the molecular mechanisms implicated in IL-10 regulation. PMID:20087682

  6. Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4+ T Cells

    PubMed Central

    Andolfi, Grazia; Fousteri, Georgia; Rossetti, Maura; Magnani, Chiara F; Jofra, Tatiana; Locafaro, Grazia; Bondanza, Attilio; Gregori, Silvia; Roncarolo, Maria-Grazia

    2012-01-01

    Type 1 regulatory T (Tr1) cells are an inducible subset of CD4+ Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10–producing Tr1 cell population by transducing human CD4+ T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP+ LV-IL-10–transduced human CD4+ T (CD4LV-IL-10) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4LV-IL-10 T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-β dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4LV-IL-10 T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4+ T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells. PMID:22692497

  7. Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4(+) T Cells.

    PubMed

    Andolfi, Grazia; Fousteri, Georgia; Rossetti, Maura; Magnani, Chiara F; Jofra, Tatiana; Locafaro, Grazia; Bondanza, Attilio; Gregori, Silvia; Roncarolo, Maria-Grazia

    2012-09-01

    Type 1 regulatory T (Tr1) cells are an inducible subset of CD4(+) Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10-producing Tr1 cell population by transducing human CD4(+) T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP(+) LV-IL-10-transduced human CD4(+) T (CD4(LV-IL-10)) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4(LV-IL-10) T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-β dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4(LV-IL-10) T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4(+) T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells.

  8. Enforced IL-10 expression confers type 1 regulatory T cell (Tr1) phenotype and function to human CD4(+) T cells.

    PubMed

    Andolfi, Grazia; Fousteri, Georgia; Rossetti, Maura; Magnani, Chiara F; Jofra, Tatiana; Locafaro, Grazia; Bondanza, Attilio; Gregori, Silvia; Roncarolo, Maria-Grazia

    2012-09-01

    Type 1 regulatory T (Tr1) cells are an inducible subset of CD4(+) Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10-producing Tr1 cell population by transducing human CD4(+) T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP(+) LV-IL-10-transduced human CD4(+) T (CD4(LV-IL-10)) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4(LV-IL-10) T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-β dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4(LV-IL-10) T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4(+) T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells.

  9. CD226 ligation protects against EAE by promoting IL-10 expression via regulation of CD4+ T cell differentiation

    PubMed Central

    Chen, Kun; Zhang, Chunmei; Song, Chaojun; Fang, Liang; Xu, Zhuwei; Yang, Kun; Jin, Boquan; Wang, Qintao; Chen, Lihua

    2016-01-01

    Treatment targeting CD226 can ameliorate experimental autoimmune encephalomyelitis (EAE), the widely accepted model of MS. However, the mechanisms still need to be elucidated. Here we showed that CD226 blockage by anti-CD226 blocking mAb LeoA1 efficiently promoted IL-10 production in human peripheral blood monocytes (PBMC) or in mixed lymphocyte culture (MLC) system, significantly induced the CD4+IL-10+ T cell differentiation while suppressing the generation of Th1 and Th17. Furthermore, CD226 pAb administration in vivo reduced the onset of EAE in mice by promoting IL-10 production and regulating T cell differentiation. Concomitantly, the onset and severity of EAE were reduced and the serum IL-10 expression levels were increased in CD226 knockout mice than that in control mice when both received EAE induction. These novel findings confirmed that CD226 played a pivotal role in mediating autoimmune diseases such as EAE. Furthermore, to our knowledge, we show for the first time that IL-10 is an important contributor in the inhibitory effects of CD226 ligation on EAE. PMID:26942885

  10. Differential effect of IL10 and TNFα genotypes on determining susceptibility to discoid and systemic lupus erythematosus

    PubMed Central

    Suarez, A; Lopez, P; Mozo, L; Gutierrez, C

    2005-01-01

    Objective: To ascertain the possible involvement of functional interleukin 10 (IL10) and tumour necrosis α (TNFα) cytokine promoter polymorphisms on the susceptibility to discoid and systemic lupus erythematosus (DLE, SLE), and their associations with immunological features. Methods: Single nucleotide polymorphisms of the IL10 (–1082, –819, and –592) and TNFα (–308) genes were determined using allele specific probes in 248 lupus patients and 343 matched controls. To assess functional significance of genotypes, basal mRNA cytokine levels were quantified in 106 genotyped healthy controls by real time RT-PCR. Specific autoantibodies and cutaneous manifestations were analysed in SLE patients and associated with functional genotypes. Results: After analysing the distribution of IL10 and TNFα transcript levels according to promoter genotypes in healthy individuals, patients and controls were classified into functional single and combined genotypes according to the expected high or low constitutive cytokine production. High TNFα genotypes (–308AA or AG) were associated with SLE independently of IL10 alleles, whereas the risk of developing DLE and the prevalence of discoid lesion in SLE were higher in the high IL10/low TNFα producer group (–1082GG/–308GG). Cytokine interaction also influences the appearance of autoantibodies. Antibodies against Sm are prevalent among low producer patients for both cytokines, a genotype not associated with lupus incidence, whereas low IL10/high TNFα patients have the highest frequency of antibodies to SSa and SSb. Conclusions: IL10/TNFα interaction influences susceptibility to DLE and the appearance of specific autoantibodies in SLE patients, whereas high TNFα producer genotypes represent a significant risk factor for SLE. PMID:15800006

  11. Mycobacterium avium Subspecies paratuberculosis Recombinant Proteins Modulate Antimycobacterial Functions of Bovine Macrophages.

    PubMed

    Bannantine, John P; Stabel, Judith R; Laws, Elizabeth; D Cardieri, Maria Clara; Souza, Cleverson D

    2015-01-01

    It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinant proteins expressed from coding sequences annotated as lipoproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38 activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulated macrophages. However, a parallel increase in expression of IL-12 and TNF-α was only observed in macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were further analyzed for their ability to enhance survival of M. avium within bovine macrophages as measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recombinant proteins along with M. paratuberculosis cells significantly enhanced phosphorylation of MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how the protein component of the lipoprotein interacts with the immune system. Collectively, these data reveal M. paratuberculosis proteins that might play a role in MAPK-p38 pathway activation and hence in survival of this organism within bovine macrophages.

  12. Improvement of spinal non-viral IL-10 gene delivery by D-mannose as a transgene adjuvant to control chronic neuropathic pain

    PubMed Central

    2014-01-01

    Background Peri-spinal subarachnoid (intrathecal; i.t.) injection of non-viral naked plasmid DNA encoding the anti-inflammatory cytokine, IL-10 (pDNA-IL-10) suppresses chronic neuropathic pain in animal models. However, two sequential i.t. pDNA injections are required within a discrete 5 to 72-hour period for prolonged efficacy. Previous reports identified phagocytic immune cells present in the peri-spinal milieu surrounding the i.t injection site that may play a role in transgene uptake resulting in subsequent IL-10 transgene expression. Methods In the present study, we aimed to examine whether factors known to induce pro-phagocytic anti-inflammatory properties of immune cells improve i.t. IL-10 transgene uptake using reduced naked pDNA-IL-10 doses previously determined ineffective. Both the synthetic glucocorticoid, dexamethasone, and the hexose sugar, D-mannose, were factors examined that could optimize i.t. pDNA-IL-10 uptake leading to enduring suppression of neuropathic pain as assessed by light touch sensitivity of the rat hindpaw (allodynia). Results Compared to dexamethasone, i.t. mannose pretreatment significantly and dose-dependently prolonged pDNA-IL-10 pain suppressive effects, reduced spinal IL-1β and enhanced spinal and dorsal root ganglia IL-10 immunoreactivity. Macrophages exposed to D-mannose revealed reduced proinflammatory TNF-α, IL-1β, and nitric oxide, and increased IL-10 protein release, while IL-4 revealed no improvement in transgene uptake. Separately, D-mannose dramatically increased pDNA-derived IL-10 protein release in culture supernatants. Lastly, a single i.t. co-injection of mannose with a 25-fold lower pDNA-IL-10 dose produced prolonged pain suppression in neuropathic rats. Conclusions Peri-spinal treatment with D-mannose may optimize naked pDNA-IL-10 transgene uptake for suppression of allodynia, and is a novel approach to tune spinal immune cells toward pro-phagocytic phenotype for improved non-viral gene therapy. PMID:24884664

  13. Structure of the mouse IL-10 gene and chromosomal localization of the mouse and human genes

    SciTech Connect

    Kim, J.M.; Khan, T.A.; Moore, K.W. ); Brannan, C.I.; Copeland, N.G.; Jenkins, N.A. )

    1992-06-01

    The nucleotide sequence of a 7.2-kb segment containing the mouse IL-10 (mIL-10) gene was determined. Comparison to the mIL-10 cDNA sequence revealed the presence of five exons that span [approximately]5.1 kb of genomic DNA. The noncoding regions of the mIL-10 gene contain sequences that have been associated with transcriptional regulation of several cytokine genes. The mIL-10 gene was mapped to mouse chromosome 1 and the human IL-10 gene was also mapped to human chromosome 1. 35 refs., 4 figs., 3 tabs.

  14. IL-10 restricts dendritic cell (DC) growth at the monocyte-to-monocyte-derived DC interface by disrupting anti-apoptotic and cytoprotective autophagic molecular machinery.

    PubMed

    Martin, Carla; Espaillat, Mel Pilar; Santiago-Schwarz, Frances

    2015-12-01

    An evolving premise is that cytoprotective autophagy responses are essential to monocyte-macrophage differentiation. Whether autophagy functions similarly during the monocyte-to-dendritic cell (DC) transition is unclear. IL-10, which induces apoptosis in maturing human DCs, has been shown to inhibit starvation-induced autophagy in murine macrophage cell lines. Based on the strict requirement that Bcl-2-mediated anti-apoptotic processes are implemented during the monocyte-to-DC transition, we hypothesized that cytoprotective autophagy responses also operate at the monocyte-DC interface and that IL-10 inhibits both anti-apoptotic and cytoprotective autophagy responses at this critical juncture. In support of our premise, we show that levels of anti-apoptotic Bcl-2 and autophagy-associated LC3 and Beclin-1 proteins are coincidentally upregulated during the monocyte-to-DC transition. Autophagy was substantiated by increased autophagosome visualization after bafilomycin treatment. Moreover, the autophagy inhibitor 3-MA restricted DC differentiation by prompting apoptosis. IL-10 implemented apoptosis that was coincidentally associated with reduced levels of Bcl-2 and widespread disruption of the autophagic flux. During peak apoptosis, IL-10 produced the death of newly committed DCs. However, cells surviving the IL-10 apoptotic schedule were highly phagocytic macrophage-like cells displaying reduced capacity to stimulate allogeneic naïve T cells in a mixed leukocyte reaction, increased levels of LC3, and mature autophagosomes. Thus, IL-10's negative control of DC-driven adaptive immunity at the monocyte-DC interface includes disruption of coordinately regulated molecular networks involved in pro-survival autophagy and anti-apoptotic responses.

  15. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Grecco, Ana Carolina P.; Paula, Rosemeire F. O.; Mizutani, Erica; Sartorelli, Juliana C.; Milani, Ana M.; Longhini, Ana Leda F.; Oliveira, Elaine C.; Pradella, Fernando; Silva, Vania D. R.; Moraes, Adriel S.; Peterlevitz, Alfredo C.; Farias, Alessandro S.; Ceragioli, Helder J.; Santos, Leonilda M. B.; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  16. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes.

    PubMed

    Grecco, Ana Carolina P; Paula, Rosemeire F O; Mizutani, Erica; Sartorelli, Juliana C; Milani, Ana M; Longhini, Ana Leda F; Oliveira, Elaine C; Pradella, Fernando; Silva, Vania D R; Moraes, Adriel S; Peterlevitz, Alfredo C; Farias, Alessandro S; Ceragioli, Helder J; Santos, Leonilda M B; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  17. Association of TNF-α and IL-10 polymorphisms with tuberculosis in Tunisian populations.

    PubMed

    Ben-Selma, Walid; Harizi, Hedi; Boukadida, Jalel

    2011-09-01

    Cytokine Th1/Th2 balance is known to play a key role in controlling Mycobacterium tuberculosis infection. Based upon the functional role of the TNF-α [-308 G(low) → A(high) (rs1800629)] and IL-10 [-1082 A(low) → G(high) (rs1800870), -819 T(low) → C(high) (rs1800871) and -592 A(low) → C(high) (rs1800872)] single nucleotide polymorphisms (SNPs) on production levels, we genotyped 76 patients with pulmonary tuberculosis (TB) (pTB), 55 patients with extrapulmonary TB (epTB) and 95 healthy blood donors by polymerase chain reaction fragment length polymorphism (PCR-RFLP). We observed that -308 A allele was associated with increased risk susceptibility to epTB (OR = 1.96; 95% CI, 1.04-3.71; P = 0.024). The -1082 AG genotype was significantly associated with increased risk development of epTB (odds ratio [OR] = 3.69; 95% confidence intervals [CI], 1.73-7.92; P corrected for the number of genotypes [Pc] = 0.0003). By contrast, -1082 AA genotype appeared to be associated with resistance to pTB (OR = 0.38; 95% CI, 0.19-0.74; Pc = 0.006) and epTB (OR = 0.22; 95% CI, 0.1-0.48; Pc = 0.00006). High-producer IL-10 GCC haplotype seemed to be associated with 2.11-fold (95% CI, 1.28-3.46; Pc = 0.003) and 2.57-fold (95% CI, 1.5-4.4; Pc = 0.0006) increased susceptibility to pTB and epTB, respectively. Combination of TNF-α/IL-10 high producer genotypes was associated with increased 3.13-fold (95% CI, 1.23-8.05; Pc = 0.028) susceptibility to epTB. However, combined TNF-α/IL-10 low producer genotypes appeared to have protect effect to pTB (OR = 0.44, 95% CI, 0.21-0.89; Pc = 0.04) and epTB (OR = 0.26, 95% CI, 0.1-0.62; Pc = 0.0028). Collectively, our results showed that analysed SNPs in the TNF-α and IL-10 gene polymorphisms play key role in susceptibility to or protection against TB development in Tunisian populations.

  18. Cross-Regulation of Proinflammatory Cytokines by Interleukin-10 and miR-155 in Orientia tsutsugamushi-Infected Human Macrophages Prevents Cytokine Storm.

    PubMed

    Tsai, Ming-Hsien; Chang, Chung-Hsing; Tsai, Rong-Kung; Hong, Yi-Ren; Chuang, Tsung-Hsien; Fan, Kan-Tang; Peng, Chi-Wen; Wu, Ching-Ying; Hsu, Wen-Li; Wang, Lih-Shinn; Chen, Li-Kuang; Yu, Hsin-Su

    2016-07-01

    Scrub typhus is caused by the obligate intracellular bacterium Orientia tsutsugamushi. Macrophages are host cells for its replication and clearance. Severe complications in patients are mainly caused by a cytokine storm resulting from overproduction of proinflammatory cytokines; nevertheless, the molecular mechanism for the occurrence remains obscure. Herein, we investigate the interactive regulation of cytokines and micro-RNA (miR) in human macrophages infected with low and high doses of O. tsutsugamushi. During low dose infection, macrophages produce high levels of IL-10 through extracellular signal-regulated kinase activation, which inhibits proinflammatory cytokine production and facilitates pathogen replication. Increasing levels of pathogen results in reduced levels of IL-10, and macrophages begin to generate high levels of proinflammatory cytokines through NF-κB activation. However, during a high dose infection, macrophages produce high levels of miR-155 to slow the proinflammatory response. The extracellular signal-regulated kinase/IL-10 axis suppresses the NF-κB/tumor necrosis factor alpha axis via activation of signal transducer and activator of transcription 3. Both IL-10 and miR-155 inhibit the NF-κB signaling pathway. Furthermore, IL-10 is a potent inhibitor of miR-155. Patients susceptible to a cytokine storm, peripheral blood mononuclear cells showed significantly lower IL-10 and miR-155 responses to O. tsutsugamushi challenge. Thus, IL-10 and miR-155 operate inhibitory mechanisms to achieve a proper defense mechanism and prevent a cytokine storm.

  19. Invariant NKT cells modulate the suppressive activity of Serum Amyloid A-differentiated IL-10-secreting neutrophils

    PubMed Central

    De Santo, Carmela; Arscott, Ramon; Booth, Sarah; Karydis, Ioannis; Jones, Margaret; Asher, Ruth; Salio, Mariolina; Middleton, Mark; Cerundolo, Vincenzo

    2010-01-01

    Neutrophils are the primary effector cells during inflammation, but can also control excessive inflammatory responses by secreting anti-inflammatory cytokines. However, the mechanisms modulating their plasticity remain unclear. We now show that systemic serum amyloid A-1 (SAA-1) controls the plasticity of neutrophil differentiation. SAA-1 not only induced anti-inflammatory IL-10-secreting neutrophils but also promoted invariant NKT (iNKT) cell interaction with these neutrophils, a process that limits their suppressive activity by reducing IL-10 and enhancing IL-12 production. Because SAA-1-producing melanomas promote differentiation of IL-10-secreting neutrophils, harnessing iNKT cells could be useful therapeutically by reducing the frequency of immunosuppressive neutrophils and restoring tumor specific immune responses. PMID:20890286

  20. IL10R2 Overexpression Promotes IL22/STAT3 Signaling in Colorectal Carcinogenesis.

    PubMed

    Khare, Vineeta; Paul, Gregor; Movadat, Oliver; Frick, Adrian; Jambrich, Manuela; Krnjic, Anita; Marian, Brigitte; Wrba, Friedrich; Gasche, Christoph

    2015-11-01

    The mucosal immune response in the setting of intestinal inflammation contributes to colorectal cancer. IL10 signaling has a central role in gut homeostasis and is impaired in inflammatory bowel disease (IBD). Out of two IL10 receptor subunits, IL10R1 and IL10R2, the latter is shared among the IL10 family of cytokines and activates STAT signaling. STAT3 is oncogenic in colorectal cancer; however, knowledge about IL10 signaling upstream of STAT3 in colorectal cancer is lacking. Here, expression of IL10 signaling genes was examined in matched pairs from normal and tumor tissue from colorectal cancer patients showing overexpression (mRNA, protein) of IL10R2 and STAT3 but not IL10R1. IL10R2 overexpression was related to microsatellite stability. Transient overexpression of IL10R2 in HT29 cells increased proliferation upon ligand activation (IL10 and IL22). IL22, and not IL10, phosphorylated STAT3 along with increased phosphorylation of AKT and ERK. A significantly higher expression of IL22R1 and IL10R2 was also confirmed in a separate cohort of colorectal cancer samples. IL22 expression was elevated in gut mucosa from patients with IBD and colitis-associated cancer, which also exhibited increased expression of IL22R1 but not its coreceptor IL10R2. Overall, these data indicate that overexpression of IL10R2 and STAT3 contributes to colorectal carcinogenesis in microsatellite-stable tumors through IL22/STAT3 signaling.

  1. Putative IL-10 Low Producer Genotypes Are Associated with a Favourable Etanercept Response in Patients with Rheumatoid Arthritis.

    PubMed

    Schotte, Heiko; Schlüter, Bernhard; Schmidt, Hartmut; Gaubitz, Markus; Drynda, Susanne; Kekow, Jörn; Willeke, Peter

    2015-01-01

    Outcome predictors of biologic therapeutic drugs like TNF inhibitors are of interest since side effects like serious infections or malignancy cannot be completely ruled out. Response rates are heterogeneous. The present study addressed the question whether in patients with rheumatoid arthritis (RA) interleukin-10 (IL-10) promoter genotypes with potential relevance for IL-10 production capacity are associated with response to long-term treatment with etanercept. Caucasian RA patients that, according to the EULAR criteria, responded well (n = 25), moderately (n = 17) or not (n = 8) to etanercept therapy (median 36 months, range 4-52), and 160 matched controls were genotyped for the IL-10 promoter SNPs -2849 G>A (rs6703630), -1082 G>A (rs1800896), -819 C>T (rs1800871) and -592 C>A (rs1800872). Haplotypes were reconstructed via mathematic model and tested for associations with disease susceptibility and therapy response. We identified the four predominant haplotypes AGCC, GATA, GGCC, and GACC in almost equal distribution. Patients that responded well carried the putative IL-10 low producer allele -2849 A or the haplotypes AGCC and GATA (RR 2.1 and 4.0, respectively; 95% CI 1.1-4.0 and 1.1-14.8), whereas an unfavourable response was associated with carriage of the putative high producer haplotype GGCC (RR 1.9, 95% CI 1.1-3.3). No significant associations of alleles or haplotypes with disease susceptibility were observed. In RA, a low IL-10 production which is genetically determined rather by haplotypes than by SNPs may favour the response to etanercept treatment. Iatrogenic blockade of TNF may reveal proinflammatory effects of its endogeneous antagonist IL-10. Further studies are needed to correlate these genetic findings to direct cytokine measurements.

  2. Ephedrine hydrochloride protects mice from LPS challenge by promoting IL-10 secretion and inhibiting proinflammatory cytokines.

    PubMed

    Zheng, Yuejuan; Guo, Ziyi; He, Weigang; Yang, Yang; Li, Yuhu; Zheng, Aoxiang; Li, Ping; Zhang, Yan; Ma, Jinzhu; Wen, Mingyue; Yang, Muyi; An, Huazhang; Ji, Guang; Yu, Yizhi

    2012-05-01

    Sepsis and its derivative endotoxic shock are still serious conditions with high mortality in the intensive care unit. The mechanisms that ensure the balance of proinflammatory cytokines and anti-inflammatory cytokine production are of particular importance. As an active α- and β-adrenergic agonist, ephedrine hydrochloride (EH) is a widely used agent for cardiovascular diseases, especially boosting blood pressure. Here we demonstrate that EH increased Toll-like receptor 4 (TLR4)-mediated production of interleukin 10 (IL-10) through p38 MAPK activation. Simultaneously, EH negatively regulated the production of proinflammatory cytokines. Consistently, EH increased lipopolysaccharide (LPS)-induced serum IL-10 and inhibited tumor necrotic factor-α (TNFα) production in vivo. As a result, EH treatment protected mice from endotoxic shock by lethal LPS challenge. In brief, our data demonstrated that EH could contribute to immune homeostasis by balancing the production of proinflammatory cytokines and anti-inflammatory cytokine in TLR4 signaling. This study provides a potential usage of EH in autoimmunologic diseases or other severe inflammations.

  3. A novel small heat shock protein 12.6 (HSP12.6) from Brugia malayi functions as a human IL-10 receptor binding protein.

    PubMed

    Gnanasekar, Munirathinam; Anandharaman, Veerapathran; Anand, Setty Balakrishnan; Nutman, Thomas B; Ramaswamy, Kalyanasundaram

    2008-06-01

    Phage display cDNA expression library of the third stage larvae (L3) of Brugia malayi was screened for identifying target(s) that bound to the human interleukin-10 receptor (huIL10R). This iterative screening identified an insert that showed significant homology to Caenorhabditis elegans HSP12.6. The gene was designated B. malayi HSP12.6 (BmHSP12.6) and has orthologues in several gastrointestinal nematode genome (Ancylostoma caninum, Ascaris lumbricoides and Ascaris suum) but the gene or gene product has not been studied further in these parasites. Structural analyses of BmHSP12.6 showed that it has a highly conserved alpha-crystallin central domain that is characteristic of other small heat shock proteins (HSPs). BmHSP12.6 has a short N-terminal domain and an unusually small C-terminal domain flanking the crystallin domain suggesting that this protein belongs to a novel class of small HSPs. BmHSP12.6 appears to be differentially transcribed with highest expression in the vertebrate stages of the parasite (L4, adult and mf) compared to its mosquito vector stage (L3). More importantly recombinant BmHSP12.6 bound to huIL10R in a dose dependent fashion and inhibited the binding of human IL-10 (huIL10) to huIL10R in vitro. rBmHSP12.6 also enhanced the growth and proliferation of MC/9 mast cells in vitro similar to huIL10. This study thus describes a novel small HSP from B. malayi that has the capacity to bind to huIL10R, block binding of huIL10 to huIL10R and function similar to huIL10.

  4. Infliximab therapy increases the frequency of circulating CD16(+) monocytes and modifies macrophage cytokine response to bacterial infection.

    PubMed

    Nazareth, N; Magro, F; Silva, J; Duro, M; Gracio, D; Coelho, R; Appelberg, R; Macedo, G; Sarmento, A

    2014-09-01

    Crohn's disease (CD) has been correlated with altered macrophage response to microorganisms. Considering the efficacy of infliximab treatment on CD remission, we investigated infliximab effects on circulating monocyte subsets and on macrophage cytokine response to bacteria. Human peripheral blood monocyte-derived macrophages were obtained from CD patients, treated or not with infliximab. Macrophages were infected with Escherichia coli, Enterococcus faecalis, Mycobacterium avium subsp. paratuberculosis (MAP) or M. avium subsp avium, and cytokine levels [tumour necrosis factor (TNF) and interleukin (IL)-10] were evaluated at different time-points. To evaluate infliximab-dependent effects on monocyte subsets, we studied CD14 and CD16 expression by peripheral blood monocytes before and after different infliximab administrations. We also investigated TNF secretion by macrophages obtained from CD16(+) and CD16(-) monocytes and the frequency of TNF(+) cells among CD16(+) and CD16(-) monocyte-derived macrophages from CD patients. Infliximab treatment resulted in elevated TNF and IL-10 macrophage response to bacteria. An infliximab-dependent increase in the frequency of circulating CD16(+) monocytes (particularly the CD14(++) CD16(+) subset) was also observed (before infliximab: 4·65 ± 0·58%; after three administrations: 10·68 ± 2·23%). In response to MAP infection, macrophages obtained from CD16(+) monocytes were higher TNF producers and CD16(+) macrophages from infliximab-treated CD patients showed increased frequency of TNF(+) cells. In conclusion, infliximab treatment increased the TNF production of CD macrophages in response to bacteria, which seemed to depend upon enrichment of CD16(+) circulating monocytes, particularly of the CD14(++) CD16(+) subset. Infliximab treatment of CD patients also resulted in increased macrophage IL-10 production in response to bacteria, suggesting an infliximab-induced shift to M2 macrophages.

  5. Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages.

    PubMed

    Escalona-Montaño, A R; Ortiz-Lozano, D M; Rojas-Bernabé, A; Wilkins-Rodriguez, A A; Torres-Guerrero, H; Mondragón-Flores, R; Mondragón-Gonzalez, R; Becker, I; Gutiérrez-Kobeh, L; Aguirre-Garcia, M M

    2016-09-01

    Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages.

  6. S100A8 induces IL-10 and protects against acute lung injury.

    PubMed

    Hiroshima, Yuka; Hsu, Kenneth; Tedla, Nicodemus; Chung, Yuen Ming; Chow, Sharron; Herbert, Cristan; Geczy, Carolyn L

    2014-03-15

    S100A8 is considered proinflammatory by activating TLR4 and/or the receptor for advanced glycation end products. The aim was to investigate inflammatory effects of S100A8 in murine lung. S100A8 was administered to BALB/c mice by nasal inhalation and genes induced over a time-course assessed. LPS was introduced intranasally either alone or 2 h after pretreatment of mice with intranasal application of S100A8 or dexamethasone. A Cys(42)-Ala(42) mutant S100A8 mutant was used to assess whether S100A8's effects were via pathways that were dependent on reactive oxygen species. S100A8 induced IL-10 mRNA, and expression was apparent only in airway epithelial cells. Importantly, it suppressed acute lung injury provoked by LPS inhalation by suppressing mast-cell activation and induction of mediators orchestrating leukocyte recruitment, possibly by reducing NF-κB activation via an IκBα/Akt pathway and by downmodulating pathways generating oxidative stress. The Cys(42)-Ala(42) S100A8 mutant did not induce IL-10 and was less immunosuppressive, indicating modulation by scavenging oxidants. S100A8 inhibition of LPS-mediated injury was as potent, and outcomes were remarkably similar to immunosuppression by dexamethasone. We challenge the notion that S100A8 is an agonist for TLR4 or the receptor for advanced glycation end products. S100A8 induced IL-10 in vivo and initiates a feedback loop that attenuates acute lung injury.

  7. PRELIMINARY REPORT ON THE PUTATIVE ASSOCIATION OF IL10 -3575 T/A GENETIC POLYMORPHISM WITH MALARIA SYMPTOMS

    PubMed Central

    DOMINGUES, Wilson; KANUNFRE, Kelly Aparecida; RODRIGUES, Jonatas Cristian; TEIXEIRA, Leandro Emidio; YAMAMOTO, Lidia; OKAY, Thelma Suely

    2016-01-01

    Only a small percentage of individuals living in endemic areas develop severe malaria suggesting that host genetic factors may play a key role. This study has determined the frequency of single nucleotide polymorphisms (SNPs) in some pro and anti-inflammatory cytokine gene sequences: IL6 (-174; rs1800795), IL12p40 (+1188; rs3212227), IL4 (+33; rs2070874), IL10 (-3575; rs1800890) and TGFb1 (+869; rs1800470), by means of PCR-RFLP. Blood samples were collected from 104 symptomatic and 37 asymptomatic subjects. Laboratory diagnosis was assessed by the thick blood smear test and nested-PCR. No association was found between IL6 (-174), IL12p40 (+1188), IL4 (+33), IL10 (- 3575), TGFb1 (+869) SNPs and malaria symptoms. However, regarding the IL10 -3575 T/A SNP, there were significantly more AA and AT subjects, carrying the polymorphic allele A, in the symptomatic group (c2 = 4.54, p = 0.01, OR = 0.40 [95% CI - 0.17- 0.94]). When the analysis was performed by allele, the frequency of the polymorphic allele A was also significantly higher in the symptomatic group (c2 = 4.50, p = 0.01, OR = 0.45 [95% CI - 0.21-0.95]). In conclusion, this study has suggested the possibility that the IL10 - 3575 T/A SNP might be associated with the presence and maintenance of malaria symptoms in individuals living in endemic areas. Taking into account that this polymorphism is related to decreased IL10 production, a possible role of this SNP in the pathophysiology of malaria is also suggested, but replication studies with a higher number of patients and evaluation of IL10 levels are needed for confirmation. PMID:27074324

  8. PRELIMINARY REPORT ON THE PUTATIVE ASSOCIATION OF IL10 -3575 T/A GENETIC POLYMORPHISM WITH MALARIA SYMPTOMS.

    PubMed

    Domingues, Wilson; Kanunfre, Kelly Aparecida; Rodrigues, Jonatas Cristian; Teixeira, Leandro Emidio; Yamamoto, Lidia; Okay, Thelma Suely

    2016-01-01

    Only a small percentage of individuals living in endemic areas develop severe malaria suggesting that host genetic factors may play a key role. This study has determined the frequency of single nucleotide polymorphisms (SNPs) in some pro and anti-inflammatory cytokine gene sequences: IL6 (-174; rs1800795), IL12p40 (+1188; rs3212227), IL4 (+33; rs2070874), IL10 (-3575; rs1800890) and TGFb1 (+869; rs1800470), by means of PCR-RFLP. Blood samples were collected from 104 symptomatic and 37 asymptomatic subjects. Laboratory diagnosis was assessed by the thick blood smear test and nested-PCR. No association was found between IL6 (-174), IL12p40 (+1188), IL4 (+33), IL10 (- 3575), TGFb1 (+869) SNPs and malaria symptoms. However, regarding the IL10 -3575 T/A SNP, there were significantly more AA and AT subjects, carrying the polymorphic allele A, in the symptomatic group (c2 = 4.54, p = 0.01, OR = 0.40 [95% CI - 0.17- 0.94]). When the analysis was performed by allele, the frequency of the polymorphic allele A was also significantly higher in the symptomatic group (c2 = 4.50, p = 0.01, OR = 0.45 [95% CI - 0.21-0.95]). In conclusion, this study has suggested the possibility that the IL10 - 3575 T/A SNP might be associated with the presence and maintenance of malaria symptoms in individuals living in endemic areas. Taking into account that this polymorphism is related to decreased IL10 production, a possible role of this SNP in the pathophysiology of malaria is also suggested, but replication studies with a higher number of patients and evaluation of IL10 levels are needed for confirmation.

  9. Variation in IL10 and Other Genes Involved in the Immune Response and in Oxidation and Prostate Cancer Recurrence

    PubMed Central

    Dluzniewski, Paul J.; Wang, Ming-Hsi; Zheng, Siqun Lilly; De Marzo, Angelo M.; Drake, Charles G.; Fedor, Helen L.; Partin, Alan W.; Han, Misop; Fallin, M. Daniele; Xu, Jianfeng; Isaacs, William B.; Platz, Elizabeth A.

    2012-01-01

    Background To evaluate the association of variation in genes involved in immune response, including IL10, production and detoxification of reactive oxygen species, and repair of oxidative DNA damage with risk of recurrence after surgery for localized prostate cancer. Methods We conducted a nested case-control study of men who had a radical prostatectomy in 1993–2001. 484 recurrence cases and 484 controls were matched on age, race, and pathologic stage and grade. Germline DNA was extracted from paraffin-embedded unaffected lymph nodes. We genotyped candidate single nucleotide polymorphisms (SNPs) in IL10, CRP, GPX1, GSR, GSTP1, hOGG1, IL1B, IL1RN, IL6, IL8, MPO, NOS2, NOS3, SOD1, SOD2, SOD3, TLR4, and TNF and tagging SNPs in IL10, CRP, GSR, IL1RN, IL6, NOS2, and NOS3. We used conditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI). Results The minor allele (A) in IL10 rs1800872, known to produce less interleukin-10, was associated with a higher risk of recurrence (OR=1.76, 95% CI: 1.00–3.10), and the minor allele (G) in rs1800896, known to produce more interleukin-10, was associated with a lower risk of recurrence (OR=0.66, 95% CI: 0.48–0.91). We also observed associations for candidate SNPs in CRP, GSTP1, and IL1B. A common IL10 haplotype and two common NOS2 haplotypes were associated with recurrence. Conclusion Variation in IL10, CRP, GSTP1, IL1B, and NOS2 was associated with recurrence independent of pathologic prognostic factors. Impact This study supports that genetic variation in immune response and oxidation influence recurrence risk and suggests genetic variation in these pathways may inform prognosis. PMID:22859398

  10. IL-10 Genetic Polymorphisms Were Associated with Valvular Calcification in Han, Uygur and Kazak Populations in Xinjiang, China

    PubMed Central

    Ma, Yi-Tong; Wulasihan, Muhuyati; Huang, Ying; Adi, Dilare; Yang, Yi-Ning; Ma, Xiang; Li, Xiao-Mei; Xie, Xiang; Huang, Ding; Liu, Fen; Chen, Bang-Dang

    2015-01-01

    Objective Valvular calcification occurs via ongoing endothelial injury associated with inflammation. IL-10 is an anti-inflammatory cytokine and 75% of the variation in IL-10 production is genetically determined. However, the relationship between genetic polymorphisms of IL-10 and valvular calcification has not been studied. The objective of this study was to investigate the association between valvular calcification and IL-10 genetic polymorphisms in the Han, Uygur and Kazak populations in China. Patients and Methods All of the participants were selected from subjects participating in the Cardiovascular Risk Survey (CRS) study. The single nucleotide polymorphisms (SNPs) rs1800871 and rs1800872 of the IL-10 gene were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Three independent case-control studies involving the Han population, the Uygur population and the Kazak population were used in the analysis. Results For the Han and Kazak populations, rs1800871 was found to be associated with valvular calcification in the recessive model, and the difference remained statistically significant following multivariate adjustment (p<0.001, p=0.031, respectively). For the Han, Uygur and Kazak populations, rs1800872 was found to be associated with valvular calcification in the dominant model, and the difference remained statistically significant following multivariate adjustment (p<0.001, p=0.009, and p=0.023,respectively) Conclusion Both rs1800871 and rs1800872 of the IL-10 gene are associated with valvular calcification in the Han and Kazak populations in China. Rs1800872 is also associated with valvular calcification in the Uygur population. PMID:26039365

  11. Effect of Penicillium mycotoxins on the cytokine gene expression, reactive oxygen species production, and phagocytosis of bovine macrophage (BoMacs) function.

    PubMed

    Oh, Se-Young; Mead, Philip J; Sharma, Bhawani S; Quinton, V Margaret; Boermans, Herman J; Smith, Trevor K; Swamy, H V L N; Karrow, Niel A

    2015-12-25

    Bovine macrophages (BoMacs) were exposed to the following Penicillium mycotoxins (PM): citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA). PM exposure at the concentration that inhibits proliferation by 25% (IC25) differentially for 24h altered the gene expression of various cytokines. OTA significantly induced IL-1α expression (p<0.05), while the expression of IL-6 was suppressed (p<0.01). MPA significantly induced the expression of IL-1α (p<0.05) and reduced the expression of IL-12α (p<0.01) and IL-10 (p<0.01). PAT significantly suppressed the expression of IL-23 (p<0.01), IL-10 (p<0.05) and TGF-β (p<0.05). Some PMs also affected reactive oxygen species (ROS) and phagocytosis of Mycobacterium avium ssp. Paratuberculosis (MAP) at higher concentrations. PAT and PA for example, significantly decreased the percent phagocytosis of MAP at 5.0 (p<0.01) and 15.6 μM (p<0.01), respectively, but only PA significantly suppressed PAM-3-stimulated ROS production at 62.5 (p<0.05) and 250.0 μM (p<0.01). OTA significantly increased the percent phagocytosis of MAP at 6.3 (p<0.05) and 12.5 μM (p<0.01). These findings suggest that exposure to sub-lethal concentrations of PMs can affect macrophage function, which could affect immunoregulation and innate disease resistance to pathogens.

  12. Pegylated IL-10 induces cancer immunity: the surprising role of IL-10 as a potent inducer of IFN-γ-mediated CD8(+) T cell cytotoxicity.

    PubMed

    Mumm, John B; Oft, Martin

    2013-07-01

    Recently, the development of several strategies based on immunotherapy has raised hopes for a more promising way to treat cancer patients. Here, we describe how interleukin (IL)-10, a seemingly unlikely candidate, stimulates the immune system in a particularly efficacious way. IL-10, an omnipotent anti-inflammatory cytokine, delivers an equally potent immune stimulation in the context of CD8(+) T cells and tumor immunity. By activation of tumor-resident, tumor-specific CD8(+) T cells, pegylated IL-10 can induce rejection of large and metastasizing tumors in mice. Here, we summarize the mechanisms of action of IL-10, the reasons why the mechanisms may be crucial for the treatment of cancer patients, and the rationale for applying pegylated IL-10 in the clinic.

  13. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages.

    PubMed

    Park, Se-Ra; Kim, Dong-Jae; Han, Seung-Hyun; Kang, Min-Jung; Lee, Jun-Young; Jeong, Yu-Jin; Lee, Sang-Jin; Kim, Tae-Hyoun; Ahn, Sang-Gun; Yoon, Jung-Hoon; Park, Jong-Hwan

    2014-05-01

    Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.

  14. IL-10 is excluded from the functional cytokine memory of human CD4+ memory T lymphocytes.

    PubMed

    Dong, Jun; Ivascu, Claudia; Chang, Hyun-Dong; Wu, Peihua; Angeli, Roberta; Maggi, Laura; Eckhardt, Florian; Tykocinski, Lars; Haefliger, Carolina; Möwes, Beate; Sieper, Jochen; Radbruch, Andreas; Annunziato, Francesco; Thiel, Andreas

    2007-08-15

    Epigenetic modifications, including DNA methylation, profoundly influence gene expression of CD4(+) Th-specific cells thereby shaping memory Th cell function. We demonstrate here a correlation between a lacking fixed potential of human memory Th cells to re-express the immunoregulatory cytokine gene IL10 and its DNA methylation status. Memory Th cells secreting IL-10 or IFN-gamma were directly isolated ex vivo from peripheral blood of healthy volunteers, and the DNA methylation status of IL10 and IFNG was assessed. Limited difference in methylation was found for the IL10 gene locus in IL-10-secreting Th cells, as compared with Th cells not secreting IL-10 isolated directly ex vivo or from in vitro-established human Th1 and Th2 clones. In contrast, in IFN-gamma(+) memory Th cells the promoter of the IFNG gene was hypomethylated, as compared with IFN-gamma-nonsecreting memory Th cells. In accordance with the lack of epigenetic memory, almost 90% of ex vivo-isolated IL-10-secreting Th cells lacked a functional memory for IL-10 re-expression after restimulation. Our data indicate that IL10 does not become epigenetically marked in human memory Th cells unlike effector cytokine genes such as IFNG. The exclusion of IL-10, but not effector cytokines, from the functional memory of human CD4(+) T lymphocytes ex vivo may reflect the need for appropriate regulation of IL-10 secretion, due to its potent immunoregulatory potential.

  15. CD4(+) Th2 cells are directly regulated by IL-10 during allergic airway inflammation.

    PubMed

    Coomes, S M; Kannan, Y; Pelly, V S; Entwistle, L J; Guidi, R; Perez-Lloret, J; Nikolov, N; Müller, W; Wilson, M S

    2017-01-01

    Interleukin-10 (IL-10) is an important regulatory cytokine required to control allergy and asthma. IL-10-mediated regulation of T cell-mediated responses was previously thought to occur indirectly via antigen-presenting cells. However, IL-10 can act directly on regulatory T cells and T helper type 17 (Th17) cells. In the context of allergy, it is therefore unclear whether IL-10 can directly regulate T helper type 2 (Th2) cells and whether this is an important regulatory axis during allergic responses. We sought to determine whether IL-10 signaling in CD4(+) Th2 cells was an important mechanism of immune regulation during airway allergy. We demonstrate that IL-10 directly limits Th2 cell differentiation and survival in vitro and in vivo. Ablation of IL-10 signaling in Th2 cells led to enhanced Th2 cell survival and exacerbated pulmonary inflammation in a murine model of house dust mite allergy. Mechanistically, IL-10R signaling regulated the expression of several genes in Th2 cells, including granzyme B. Indeed, IL-10 increased granzyme B expression in Th2 cells and led to increased Th2 cell death, identifying an IL-10-regulated granzyme B axis in Th2 cells controlling Th2 cell survival. This study provides clear evidence that IL-10 exerts direct effects on Th2 cells, regulating the survival of Th2 cells and severity of Th2-mediated allergic airway inflammation.

  16. IL-10 conditioning of human skin affects the distribution of migratory dendritic cell subsets and functional T cell differentiation.

    PubMed

    Lindenberg, Jelle J; Oosterhoff, Dinja; Sombroek, Claudia C; Lougheed, Sinéad M; Hooijberg, Erik; Stam, Anita G M; Santegoets, Saskia J A M; Tijssen, Henk J; Buter, Jan; Pinedo, Herbert M; van den Eertwegh, Alfons J M; Scheper, Rik J; Koenen, Hans J P M; van de Ven, Rieneke; de Gruijl, Tanja D

    2013-01-01

    In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14(+)CD141(+)DC-SIGN(+) DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a(+) subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8(+) T cells, migration of immature CD14(+) DDC was accompanied by increased release of IL-10, poor expansion of CD4(+) and CD8(+) T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.

  17. Environmental and genetic factors influence the relationship between circulating IL-10 and obesity phenotypes.

    PubMed

    Bassols, Judit; Botas, Patricia; Moreno-Navarrete, Jose M; Delgado, Elias; Ortega, Francisco; Ricart, Wifredo; Fernandez-Real, Jose M

    2010-03-01

    Interleukin-10 (IL-10) is a centrally operating anti-inflammatory cytokine that plays a crucial role in the regulation of the innate immune system. It has strong inactivating properties on the inflammatory host response and has been related with viral persistence. We aimed to evaluate the association among circulating IL-10, obesity phenotypes, IL-10 and IL-10R1 gene polymorphisms, and the environmental exposure to viral infection. IL-10 -819C/T gene promoter and IL-10 receptor-1 -243A/G gene polymorphisms were studied in 760 subjects, whereas the former was also investigated in a replication study of 676 subjects. The association of circulating IL-10 levels (enzyme-linked immunosorbent assay) with the serum IgG against adenoviruses and enteroviruses was evaluated in a subset of 189 subjects. Circulating levels of IL-10 were increased in obese people and were positively associated with weight, BMI, waist, waist-to-hip ratio, fat mass, systolic pressure, and, interestingly, the titer of adenoviruses and enteroviruses. Obese subjects with adenovirus titer over the median had the highest circulating IL-10 concentration. Both obesity and adenovirus titer were independently associated with IL-10 variance. Nonmorbid obese T carriers for the -819CT IL-10 gene polymorphism had significantly higher BMI and waist circumference, and those with normal fasting glucose had increased fasting triglycerides. G carriers for the -536AG IL-10R1 gene polymorphism had higher systolic and diastolic pressures, and IL-10 levels; and obese G carriers had an increased waist-to-hip ratio. In summary, circulating IL-10 levels were associated not only with obesity status but also with genetic factors and with the exposure to environmental pathogens.

  18. IFN-γ-producing NKT cells exacerbate sepsis by enhancing C5a generation via IL-10-mediated inhibition of CD55 expression on neutrophils.

    PubMed

    Kim, Ji Hyung; Oh, Sae Jin; Ahn, Sehee; Chung, Doo Hyun

    2014-07-01

    A role for NKT cells has been implicated in sepsis, but the mechanism by which NKT cells contribute to sepsis remains unclear. Here, we examined WT and NKT-cell-deficient mice of C57BL/6 background during cecal ligation and puncture-induced sepsis. The levels of C5a, IFN-γ, and IL-10 were higher in the serum and peritoneal fluid of WT mice than in those of CD1d(-/-) mice, while the mortality rate was lower in CD1d(-/-) mice than in WT mice. C5a blockade decreased mortality of WT mice during sepsis, whereas it did not alter that of CD1d(-/-) mice. As assessed by intracellular staining, NKT cells expressed IFN-γ, while neutrophils expressed IL-10. Upon coculture, IL-10-deficient NKT cells enhanced IL-10 production by WT, but not IFN-γR-deficient, neutrophils. Meanwhile, CD1d(-/-) mice exhibited high CD55 expression on neutrophils during sepsis, whereas those cells from WT mice expressed minimal levels of CD55. Recombinant IL-10 administration into CD1d(-/-) mice reduced CD55 expression on neutrophils. Furthermore, adoptive transfer of sorted WT, but not IFN-γ-deficient, NKT cells into CD1d(-/-) mice suppressed CD55 expression on neutrophils, but increased IL-10 and C5a levels. Taken together, IFN-γ-producing NKT cells enhance C5a generation via IL-10-mediated inhibition of CD55 expression on neutrophils, thereby exacerbating sepsis.

  19. IL-10R Polymorphisms are Associated with Very Early-Onset Ulcerative Colitis

    PubMed Central

    Moran, Christopher J; Walters, Thomas D; Guo, Cong-Hui; Kugathasan, Subra; Klein, Christoph; Turner, Dan; Wolters, Victorien M; Bandsma, Robert H; Mouzaki, Marialena; Langer, Jacob C; Cutz, Ernest; Benseler, Susanne M; Roifman, Chaim M; Silverberg, Mark S; Griffiths, Anne M; Snapper, Scott B; Muise, Aleixo M

    2012-01-01

    Background and Aims Interleukin-10 (IL-10) signaling genes are attractive inflammatory bowel disease (IBD) candidate genes as IL-10 restricts intestinal inflammation, IL-10 polymorphisms have been associated with IBD in genome-wide association studies, and mutations in IL-10 and IL-10 receptor (IL-10R) genes have been reported in immunodeficient children with severe infantile-onset IBD. Our objective was to determine if IL-10R polymorphisms were associated with early-onset IBD (EO-IBD) and very early-onset IBD (VEO-IBD). Methods Candidate-gene analysis of IL10RA and IL10RB was performed after initial sequencing of an infantile onset-IBD patient identified a novel homozygous mutation. The discovery cohort included 188 EO-IBD subjects and 188 healthy subjects. Polymorphisms associated with IBD in the discovery cohort were genotyped in an independent validation cohort of 422 EO-IBD subjects and 480 healthy subjects. Results We identified a homozygous, splice-site point mutation in IL10RA in an infantile-onset IBD patient causing a premature stop codon (P206X) and IL-10 insensitivity. IL10RA and IL10RB sequencing in the discovery cohort identified five IL10RA polymorphisms associated with ulcerative colitis (UC) and two IL10RB polymorphisms associated with Crohn’s disease (CD). Of these polymorphisms, two IL10RA SNPs, rs2228054 and rs2228055 were associated with very early-onset UC in the discovery cohort and replicated in an independent validation cohort (OR 3.08, combined p=2×10−4; and OR 2.93, p=6×10−4, respectively). Conclusions We identified IL10RA polymorphisms that confer risk for developing VEO-UC. Additionally, we identified the first splice site mutation in IL10RA resulting in infantile-onset IBD. This study expands the phenotype of IL10RA polymorphisms to include both severe arthritis and VEO-UC. PMID:22550014

  20. An essential protective role of IL-10 in the immunological mechanism underlying resistance vs susceptibility to lupus induction by dendritic cells and dying cells

    PubMed Central

    Ling, Guang-Sheng; Cook, H. Terence; Botto, Marina; Lau, Yu-Lung

    2011-01-01

    Objective. To define the role of IL-10 in lupus pathogenesis, and to understand the immunological mechanisms underlying resistance vs susceptibility to lupus disease induction by dendritic cells (DCs) and dying cells. Methods. Groups of IL-10-deficient and normal C57BL/6 mice were injected with syngenic DCs that had ingested necrotic cells prepared by either freeze–thaw cycle (DC/necF/T) or heat shock (DC/necH/S) procedures, or with DC or necrotic cells alone, or with PBS only. Disease development, including proteinuria and renal pathological changes, was monitored. Levels of autoantibodies against different lupus-associated nuclear antigens were measured by ELISAs, and IC deposition in the kidneys was confirmed by immunostaining. Results. No significant proteinuria was detected in the mice. However, striking renal pathological changes typical of IC-mediated GN were consistently observed in the DC/necF/T-treated IL-10−/− mice. These included glomerular hypercellularity and macrophage infiltration, renal IC deposition, circulating kidney-reactive autoantibodies and the presence of immunoglobulin G2 isotype-specific antibody complexes in the diseased kidneys. We demonstrated further that host-derived IL-10 was primarily responsible for protecting against the induction of pathogenic Th1 type of autoantibody responses in the mice. Conclusion. IL-10 protects against the induction of lupus-like renal end-organ damage by down-regulating pathogenic Th1 responses. PMID:21727182

  1. Seasonal and pandemic influenza H1N1 viruses induce differential expression of SOCS-1 and RIG-I genes and cytokine/chemokine production in macrophages

    PubMed Central

    Ramírez-Martínez, Gustavo; Cruz-Lagunas, Alfredo; Jiménez-Alvarez, Luis; Espinosa, Enrique; Ortíz-Quintero, Blanca; Santos-Mendoza, Teresa; Herrera, María Teresa; Canché-Pool, Elsy; Mendoza, Criselda; Bañales, José L.; García-Moreno, Sara A.; Morán, Juan; Cabello, Carlos; Orozco, Lorena; Aguilar-Delfín, Irma; Hidalgo-Miranda, Alfredo; Romero, Sandra; Suratt, Benjamin T.; Selman, Moisés; Zúñiga, Joaquín

    2014-01-01

    Background Infection with pandemic (pdm) A/H1N1 virus induces high levels of pro-inflammatory mediators in blood and lungs of experimental animals and humans. Methods To compare the involvement of seasonal A/PR/8/34 and pdm A/H1N1 virus strains in the regulation of inflammatory responses, we analyzed the changes in the whole-genome expression induced by these strains in macrophages and A549 epithelial cells. We also focused on the functional implications (cytokine production) of the differential induction of suppressors of cytokine signaling (SOCS)-1, SOCS-3, retinoid-inducible gene (RIG)-I and interferon receptor 1 (IFNAR1) genes by these viral strains in early stages of the infection. Results We identified 130 genes differentially expressed by pdm A/H1N1 and A/PR/8/34 infections in macrophages. mRNA levels of SOCS-1 and RIG-I were up-regulated in macrophages infected with the A/PR/8/34 but not with pdm A/H1N1 virus. mRNA levels of SOCS-3 and IFNAR1 induced by A/PR/8/34 and pdm A/H1N1 strains in macrophages, as well as in A549 cells were similar. We found higher levels of IL-6, TNF-α, IL-10, CCL3, CCL5, CCL4 and CXCL8 (p<0.05) in supernatants from cultures of macrophages infected with the pdm A/H1N1 virus compared to those infected with the A/PR/8/34 strain, coincident with the lack of SOCS-1 and RIG-I expression. In contrast, levels of INF-α were higher in cultures of macrophages 48 h after infection with the A/PR/8/34 strain than with the pdm A/H1N1 virus. Conclusions These findings suggest that factors inherent to the pdm A/H1N1 viral strain may increase the production of inflammatory mediators by inhibiting SOCS-1 and modifying the expression of antiviral immunity-related genes, including RIG-I, in human macrophages. PMID:23434273

  2. Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice.

    PubMed

    Lam, Roselind S; O'Brien-Simpson, Neil M; Lenzo, Jason C; Holden, James A; Brammar, Gail C; Walsh, Katrina A; McNaughtan, Judith E; Rowler, Dennis K; Van Rooijen, Nico; Reynolds, Eric C

    2014-09-01

    The role of the macrophage in the immunopathology of periodontitis has not been well defined. In this study, we show that intraoral inoculation of mice with Porphyromonas gingivalis resulted in infection, alveolar bone resorption, and a significant increase in F4/80(+) macrophages in gingival and submandibular lymph node tissues. Macrophage depletion using clodronate-liposomes resulted in a significant reduction in F4/80(+) macrophage infiltration of gingival and submandibular lymph node tissues and significantly (p < 0.01) less P. gingivalis-induced bone resorption compared with controls in BALB/c and C57BL/6 mice. In both mouse strains, the P. gingivalis-specific IgG Ab subclass and serum cytokine [IL-4, IL-10, IFN-γ, and IL-12 (p70)] responses were significantly (p < 0.01) lower in the macrophage-depleted groups. Macrophage depletion resulted in a significant reduction in the level of P. gingivalis infection, and the level of P. gingivalis infection was significantly correlated with the level of alveolar bone resorption. M1 macrophages (CD86(+)), rather than M2 macrophages (CD206(+)), were the dominant macrophage phenotype of the gingival infiltrate in response to P. gingivalis infection. P. gingivalis induced a significant (p < 0.01) increase in NO production and a small increase in urea concentration, as well as a significant increase in the secretion of IL-1β, IL-6, IL-10, IL-12 (p70), eotaxin, G-CSF, GM-CSF, macrophage chemoattractant protein-1, macrophage inflammatory protein-α and -β, and TNF-α in isolated murine macrophages. In conclusion, P. gingivalis infection induced infiltration of functional/inflammatory M1 macrophages into gingival tissue and alveolar bone resorption. Macrophage depletion reduced P. gingivalis infection and alveolar bone resorption by modulating the host immune response.

  3. Phlebotomine salivas inhibit immune inflammation-induced neutrophil migration via an autocrine DC-derived PGE2/IL-10 sequential pathway

    PubMed Central

    Carregaro, Vanessa; Valenzuela, Jesus G.; Cunha, Thiago M.; Verri, Waldiceu A.; Grespan, Renata; Matsumura, Graziela; Ribeiro, José M. C.; Elnaiem, Dia-Eldin; Silva, João S.; Cunha, Fernando Q.

    2008-01-01

    In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1α, TNF-α, and leukotriene B4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE2. SGE treatments failed to inhibit neutrophil migration and MIP-1α and LTB4 production in IL-10−/− mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE2 release triggered by SGE remained increased in IL-10−/− mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4+T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE2 and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE2/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases. PMID:18390928

  4. Autocrine stimulation of IL-10 is critical to the enrichment of IL-10-producing CD40(hi)CD5(+) regulatory B cells in vitro and in vivo.

    PubMed

    Kim, Hyuk Soon; Lee, Jun Ho; Han, Hee Dong; Kim, A-Ram; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Lee, Dajeong; Lee, Min Bum; Park, Yeong Min; Kim, Hyung Sik; Kim, Young Mi; You, Ji Chang; Choi, Wahn Soo

    2015-01-01

    IL-10-producing B (Breg) cells regulate various immune responses. However, their phenotype remains unclear. CD40 expression was significantly increased in B cells by LPS, and the Breg cells were also enriched in CD40(hi)CD5(+) B cells. Furthermore, CD40 expression on Breg cells was increased by IL-10, CD40 ligand, and B cell-activating factor, suggesting that CD40(hi) is a common phenotype of Breg cells. LPS-induced CD40 expression was largely suppressed by an anti-IL-10 receptor antibody and in IL-10(-/-)CD5(+)CD19(+) B cells. The autocrine effect of IL-10 on the CD40 expression was largely suppressed by an inhibitor of JAK/STAT3. In vivo, the LPS treatment increased the population of CD40(hi)CD5(+) Breg cells in mice. However, the population of CD40(hi)CD5(+) B cells was minimal in IL-10(-/-) mice by LPS. Altogether, our findings show that Breg cells are largely enriched in CD40(hi)CD5(+) B cells and the autocrine effect of IL-10 is critical to the formation of CD40(hi)CD5(+) Breg cells.

  5. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10.

    PubMed

    Mirotti, Luciana; Alberca Custódio, Ricardo Wesley; Gomes, Eliane; Rammauro, Florencia; de Araujo, Eliseu Frank; Garcia Calich, Vera Lucia; Russo, Momtchilo

    2017-01-01

    Aluminum-containing adjuvants usually referred as Alum are considered as T helper type-2 (Th2) adjuvants, while agonists of toll-like receptors (TLRs) are viewed as adjuvants that favor Th1/Th17 immunity. Alum has been used in numerous vaccine formulations; however, its undesired pro-Th2 adjuvant activity constitutes a caveat for Alum-based vaccines. Combining Alum with TLR-dependent, pro-Th1/Th17 adjuvants might dampen the pro-Th2 activity and improve the effectiveness of vaccine formulations. Here, using the ovalbumin (OVA) model of allergic lung inflammation, we found that sensitization with the synthetic TLR9 agonist, which is composed of oligodeoxynucleotides containing CpG motifs adsorbed to Alum, inhibited the development of OVA-induced lung allergic Th2 responses without shifting toward a Th1 pattern. The conversion of T cell immunity from the polarized allergic Th2 response to a non-polarized form by sensitization with OVA/Alum/CpG was dependent on MyD88 signaling in myeloid cells. Notably, sensitization of IL-10-deficient mice with OVA/Alum/CpG resulted in the development of neutrophilic lung inflammation associated with IFNγ production. However, in IL-10/IL-12-deficient mice, it resulted in neutrophilic inflammation dominated by IL-17 production. We conclude that OVA/Alum/CpG sensitization signaling via MyD88 and IL-10 molecules results in non-polarized immunity. Conversely, OVA/Alum/CpG sensitization in presence of MyD88 but absence of IL-10 or IL-10/IL-12 molecules results, respectively, in neutrophilic inflammation associated with IFNγ or IL-17 production. Our work provides novel OVA models of lung inflammation and suggests that Alum/CpG-based formulations might be of potential use in anti-allergic or anti-infectious processes.

  6. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10

    PubMed Central

    Mirotti, Luciana; Alberca Custódio, Ricardo Wesley; Gomes, Eliane; Rammauro, Florencia; de Araujo, Eliseu Frank; Garcia Calich, Vera Lucia; Russo, Momtchilo

    2017-01-01

    Aluminum-containing adjuvants usually referred as Alum are considered as T helper type-2 (Th2) adjuvants, while agonists of toll-like receptors (TLRs) are viewed as adjuvants that favor Th1/Th17 immunity. Alum has been used in numerous vaccine formulations; however, its undesired pro-Th2 adjuvant activity constitutes a caveat for Alum-based vaccines. Combining Alum with TLR-dependent, pro-Th1/Th17 adjuvants might dampen the pro-Th2 activity and improve the effectiveness of vaccine formulations. Here, using the ovalbumin (OVA) model of allergic lung inflammation, we found that sensitization with the synthetic TLR9 agonist, which is composed of oligodeoxynucleotides containing CpG motifs adsorbed to Alum, inhibited the development of OVA-induced lung allergic Th2 responses without shifting toward a Th1 pattern. The conversion of T cell immunity from the polarized allergic Th2 response to a non-polarized form by sensitization with OVA/Alum/CpG was dependent on MyD88 signaling in myeloid cells. Notably, sensitization of IL-10-deficient mice with OVA/Alum/CpG resulted in the development of neutrophilic lung inflammation associated with IFNγ production. However, in IL-10/IL-12-deficient mice, it resulted in neutrophilic inflammation dominated by IL-17 production. We conclude that OVA/Alum/CpG sensitization signaling via MyD88 and IL-10 molecules results in non-polarized immunity. Conversely, OVA/Alum/CpG sensitization in presence of MyD88 but absence of IL-10 or IL-10/IL-12 molecules results, respectively, in neutrophilic inflammation associated with IFNγ or IL-17 production. Our work provides novel OVA models of lung inflammation and suggests that Alum/CpG-based formulations might be of potential use in anti-allergic or anti-infectious processes. PMID:28220116

  7. The SNP at −592 of human IL-10 gene is associated with serum IL-10 levels and increased risk for human papillomavirus cervical lesion development

    PubMed Central

    2012-01-01

    Background Women with Human Papilloma Virus (HPV) persistence are characterized by high levels of IL-10 at cervix. We have determined whether polymorphisms of IL-10 gene promoter might be associated with increased risk of squamous intraepithelial cervical lesions (SICL) and whether exist significative differences of IL-10 mRNA expression at cervix and systemic and serum IL-10 protein between SICL cases and non-Cervical Lesions (NCL). Methods Peripheral blood samples from SICL (n = 204) and NCL (n = 166) were used to detect IL-10 promoter polymorphisms at loci -592A/C (rs1800872), -819C/T (rs1800871), -1082A/G (rs1800896), -1352A/G (rs1800893), by allelic discrimination and to evaluate serum IL-10 protein. Cervical epithelial scrapings from NCL and biopsies from SICLs were used for HPV-typing and to evaluate IL-10 mRNA expression level. The systemic and local IL-10 mRNA expression levels were measured by real time-PCR. Genotypic and allelic frequencies of the selected polymorphisms were analyzed by logistic regression, adjusting by age and HPV-genotype, to determine the association with SICL. Results No significant differences were found between genotype frequencies at loci −819, -1082, and −1352. Individuals carrying at least one copy of risk allele A of polymorphism −592 had a two-fold increased risk of developing SICL [adjusted odds ratio (OR), 2.02 (95% CI, 1.26-3.25), p = 0.003], compared to NCL. The IL-10 mRNA expression and serum IL-10 protein, were significantly higher in SICL cases (p < 0.01), being higher in patients carrying the risk allele A. Conclusions The −592 polymorphism is associated with increased risk of SICL and can serve as a marker of genetic susceptibility to SICL among Mexican women. According to IL-10 levels found in SICL, IL-10 can be relevant factor for viral persistence and progression disease. PMID:23148667

  8. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype.

    PubMed

    Villalta, S Armando; Rinaldi, Chiara; Deng, Bo; Liu, Grace; Fedor, Brian; Tidball, James G

    2011-02-15

    M1 macrophages play a major role in worsening muscle injury in the mdx mouse model of Duchenne muscular dystrophy. However, mdx muscle also contains M2c macrophages that can promote tissue repair, indicating that factors regulating the balance between M1 and M2c phenotypes could influence the severity of the disease. Because interleukin-10 (IL-10) modulates macrophage activation in vitro and its expression is elevated in mdx muscles, we tested whether IL-10 influenced the macrophage phenotype in mdx muscle and whether changes in IL-10 expression affected the pathology of muscular dystrophy. Ablation of IL-10 expression in mdx mice increased muscle damage in vivo and reduced mouse strength. Treating mdx muscle macrophages with IL-10 reduced activation of the M1 phenotype, assessed by iNOS expression, and macrophages from IL-10 null mutant mice were more cytolytic than macrophages isolated from wild-type mice. Our data also showed that muscle cells in mdx muscle expressed the IL-10 receptor, suggesting that IL-10 could have direct effects on muscle cells. We assayed whether ablation of IL-10 in mdx mice affected satellite cell numbers, using Pax7 expression as an index, but found no effect. However, IL-10 mutation significantly increased myogenin expression in vivo during the acute and the regenerative phase of mdx pathology. Together, the results show that IL-10 plays a significant regulatory role in muscular dystrophy that may be caused by reducing M1 macrophage activation and cytotoxicity, increasing M2c macrophage activation and modulating muscle differentiation.

  9. Reversal of experimental colitis disease activity in mice following administration of an adenoviral IL-10 vector

    PubMed Central

    Sasaki, Makoto; Mathis, J Michael; Jennings, Merilyn H; Jordan, Paul; Wang, Yuping; Ando, Tomoaki; Joh, Takashi; Alexander, J Steven

    2005-01-01

    Genetic deficiency in the expression of interleukin-10 (IL-10) is associated with the onset and progression of experimental inflammatory bowel disease (IBD). The clinical significance of IL-10 expression is supported by studies showing that immune-augmentation of IL-10 prevents inflammation and mucosal damage in animal models of colitis and in human colitis. Interleukin-10 (IL-10), an endogenous anti-inflammatory and immunomodulating cytokine, has been shown to prevent some inflammation and injury in animal and clinical studies, but the efficacy of IL-10 treatment remains unsatisfactory. We found that intra-peritoneal administration of adenoviral IL-10 to mice significantly reversed colitis induced by administration of 3% DSS (dextran sulfate), a common model of colitis. Adenoviral IL-10 (Ad-IL10) transfected mice developed high levels of IL-10 (394 +/- 136 pg/ml) within the peritoneal cavity where the adenovirus was expressed. Importantly, when given on day 4 (after the induction of colitis w/DSS), Ad-IL10 significantly reduced disease activity and weight loss and completely prevented histopathologic injury to the colon at day 10. Mechanistically, compared to Ad-null and DSS treated mice, Ad-IL10 and DSS-treated mice were able to suppress the expression of MAdCAM-1, an endothelial adhesion molecule associated with IBD. Our results suggest that Ad-IL10 (adenoviral IL-10) gene therapy of the intestine or peritoneum may be useful in the clinical treatment of IBD, since we demonstrated that this vector can reverse the course of an existing gut inflammation and markers of inflammation. PMID:16259632

  10. Kinetics of tumor necrosis factor production by photodynamic-therapy-activated macrophages

    NASA Astrophysics Data System (ADS)

    Pass, Harvey I.; Evans, Steven; Perry, Roger; Matthews, Wilbert

    1990-07-01

    The ability of photodynamic therapy (PDT) to activate macrophages and produce cytokines, specifically tumor necrosis factor (TNF), is unknown. Three day thioglycolate elicited macrophages were incubated with 25 ug/mi Photofrin II (P11) for 2 hour, after which they were subjected to 630 nm light with fluences of 0-1800 J/m. The amount of TNF produced in the system as well as macrophage viability was measured 1, 3, 6, and 18 hours after POT. The level of TNF produced by the macrophages was significantly elevated over control levels 6 hours after POT and the absolute level of tumor necrosis factor production was influenced by the treatment energy and the resulting macrophage cytotoxicity. These data suggest that POT therapy induced cytotoxicity in vivo may be amplified by macrophage stimulation to secrete cytokines and these cytokines may also participate in other direct/indirect photodynamic therapy effects, i.e. immunosuppression, vascular effects.

  11. Screening of reducing agents for the PEGylation of recombinant human IL-10.

    PubMed

    Ambrogelly, Alexandre; Cutler, Collette; Paporello, Brittany

    2013-06-01

    PEGylation is a technology commonly used to enhance the bioavailability of therapeutic proteins in patients. Reductive alkylation of a protein amino terminal alpha amine in the presence of a polyethylene glycol (PEG) chain derivatized with propionaldehyde and a reducing agent, typically sodium cyanoborohydride, is one of the technologies available to achieve quantitative and site specific PEGylation. While cyanoborohydride has proven to be a robust and efficient reagent for this type of reaction, it generates aqueous cyanide as a reaction by-product (and its corollary, the very volatile hydrogen cyanide). We report here the screening of reducing agents such as dimethylamine borane, trimethylamine borane, triethylamine borane, tert-butylamine borane, morpholine borane, pyridine borane, 2-picoline borane, and 5-ethyl-2-methyl-pyridine borane as alternatives to cyanoborohydride for the PEGylation of recombinant human IL-10. The results of our study show that pyridine borane and 2-picoline borane promote rhIL-10 PEGylation at levels comparable to those observed with cyanoborohydride.

  12. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells.

    PubMed Central

    Edwards, I. J.; Wagner, W. D.; Owens, R. T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion. Images Figure 6 PMID:2316626

  13. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    SciTech Connect

    Edwards, I.J.; Wagner, W.D.; Owens, R.T. )

    1990-03-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with (35S)sulfate and (3H)serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in (35S)sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of (3H)serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion.

  14. Anti-myeloperoxidase antibodies attenuate the monocyte response to LPS and shape macrophage development.

    PubMed

    Popat, Reena J; Hakki, Seran; Thakker, Alpesh; Coughlan, Alice M; Watson, Julie; Little, Mark A; Spickett, Corinne M; Lavender, Paul; Afzali, Behdad; Kemper, Claudia; Robson, Michael G

    2017-01-26

    Anti-neutrophil cytoplasmic antibody (ANCA) vasculitis is characterized by the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind monocytes in addition to neutrophils. While a pathological effect on neutrophils is acknowledged, the impact of ANCA on monocyte function is less well understood. Using IgG from patients we investigated the effect of these autoantibodies on monocytes and found that anti-myeloperoxidase antibodies (MPO-ANCA) reduced both IL-10 and IL-6 secretion in response to LPS. This reduction in IL-10 and IL-6 depended on Fc receptors and enzymatic myeloperoxidase and was accompanied by a significant reduction in TLR-driven signaling pathways. Aligning with changes in TLR signals, oxidized phospholipids, which function as TLR4 antagonists, were increased in monocytes in the presence of MPO-ANCA. We further observed that MPO-ANCA increased monocyte survival and differentiation to macrophages by stimulating CSF-1 production. However, this was independent of myeloperoxidase enzymatic activity and TLR signaling. Macrophages differentiated in the presence of MPO-ANCA secreted more TGF-β and further promoted the development of IL-10- and TGF-β-secreting CD4(+) T cells. Thus, MPO-ANCA may promote inflammation by reducing the secretion of antiinflammatory IL-10 from monocytes, and MPO-ANCA can alter the development of macrophages and T cells to potentially promote fibrosis.

  15. Anti-myeloperoxidase antibodies attenuate the monocyte response to LPS and shape macrophage development

    PubMed Central

    Popat, Reena J.; Hakki, Seran; Coughlan, Alice M.; Watson, Julie; Little, Mark A.; Spickett, Corinne M.; Lavender, Paul; Afzali, Behdad; Kemper, Claudia; Robson, Michael G.

    2017-01-01

    Anti-neutrophil cytoplasmic antibody (ANCA) vasculitis is characterized by the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind monocytes in addition to neutrophils. While a pathological effect on neutrophils is acknowledged, the impact of ANCA on monocyte function is less well understood. Using IgG from patients we investigated the effect of these autoantibodies on monocytes and found that anti-myeloperoxidase antibodies (MPO-ANCA) reduced both IL-10 and IL-6 secretion in response to LPS. This reduction in IL-10 and IL-6 depended on Fc receptors and enzymatic myeloperoxidase and was accompanied by a significant reduction in TLR-driven signaling pathways. Aligning with changes in TLR signals, oxidized phospholipids, which function as TLR4 antagonists, were increased in monocytes in the presence of MPO-ANCA. We further observed that MPO-ANCA increased monocyte survival and differentiation to macrophages by stimulating CSF-1 production. However, this was independent of myeloperoxidase enzymatic activity and TLR signaling. Macrophages differentiated in the presence of MPO-ANCA secreted more TGF-β and further promoted the development of IL-10– and TGF-β–secreting CD4+ T cells. Thus, MPO-ANCA may promote inflammation by reducing the secretion of antiinflammatory IL-10 from monocytes, and MPO-ANCA can alter the development of macrophages and T cells to potentially promote fibrosis. PMID:28138552

  16. Proinflammatory effects of exogenously administered IL-10 in experimental autoimmune orchitis.

    PubMed

    Kaneko, Tetsushi; Itoh, Masahiro; Nakamura, Yoichi; Iimura, Akira; Hayashi, Shogo; Takahashi, Kodo; Stivala, Franca; Bendtzen, Klaus; Nicoletti, Ferdinando

    2003-04-01

    We studied the effects of exogenously administered recombinant murine interleukin (IL)-10 on the development of experimental autoimmune orchitis (EAO) in C3H/He mice. IL-10 significantly augments histological signs of EAO when administered for 6 consecutive days from days 15 to 20 after primary immunisations with testicular germ cells. These data demonstrate that IL-10, in addition to its well-known antiinflammatory property, also has proinflammatory functions capable of up-regulating testicular immunoinflammatory processes in vivo.

  17. Macrophages polarization is mediated by the combination of PRR ligands and distinct inflammatory cytokines.

    PubMed

    Zhou, Lili; Cao, Xixi; Fang, Jie; Li, Yuhong; Fan, Mingwen

    2015-01-01

    Macrophages recognize microbes through Pattern Recognition Receptors (PRRs), and then release pro-inflammatory and anti-inflammatory cytokines. Recent studies have highlighted that collaboration between different PRRs. However, these studies have neglected the crosstalk between various PRRs on macrophages. In the present study, we investigated the interplay of nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2) and TLRs (TLR1, 2, 3, 4, 5, 6, 7, 8) in terms of macrophage activation, the expression and production of cytokines. The macrophages were stimulated with a single PRR ligand or a combination of TLR and NOD ligands. After 8 h of incubation, the mRNA expression of interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-12p35, IL-12p40, IL-13, and interferon-γ (IFN-γ) was evaluated. The production of these cytokines was also measured. NOD2 synergized with TLR3 agonists on enhancement of IL-10 release. However, the combination of NOD1 with TLR3 ligands showed little effect on IL-10 production. Moreover, NOD2 inhibited the percentages of CD11b + F4/80 + cells activated by TLR3 agonist.

  18. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  19. IL-10 Reduces Levels of Apoptosis in Toxoplasma gondii-Infected Trophoblasts

    PubMed Central

    Liu, Yang; Zhang, Haixia; Zhai, Xiaoyu; Hu, Xuemei

    2013-01-01

    Background To analyze the effects of IL-10 on the HLA-G expression and the apoptosis of trophoblasts infected with Toxoplasma gondii. Methods T. gondii-infected or uninfected human trophoblasts and immortalized human placental BeWo cells were cultured with or without human IL-10. Uninfected and infected cells without IL-10 cells served as controls. HLA-G expression was measured by real-time PCR and flow cytometry, respectively. Cells apoptosis were analyzed by flow cytometry. Apoptosis associated moleculars were measured by real-time PCR and Western bolt. Results HLA-G expression was increased in the infected trophoblasts and BeWo cells compared to uninfected cells. Treatment of infected cells with IL-10 decreased HLA-G expression compared to infected cells while no change in treatment of uninfected cells compared with uninfected cells. Levels of apoptosis and apoptosis associated caspase-3 and caspase-8 decreased and c-FLIP levels increased in treated infected cells with IL-10 compared to infected cells and no difference in IL-10 treated uninfected cells compared to uninfected cells. Conclusions IL-10 regulates HLA-G expression in T. gondii-infected trophoblasts. IL-10 treatment of infected trophoblasts reduced levels of apoptosis. This may contribute to the improvement in pregnancy outcomes when women infected with T. gondii treated with IL-10. PMID:23418570

  20. Endogenous prostaglandin E2 potentiates anti-inflammatory phenotype of macrophage through the CREB-C/EBP-β cascade.

    PubMed

    Na, Yi Rang; Jung, Daun; Yoon, Bo Ruem; Lee, Won Woo; Seok, Seung Hyeok

    2015-09-01

    Macrophages have important functions in tissue homeostasis, but the exact mechanisms regarding wide spectrum of macrophage phenotype remain unresolved. In this study, we report that mouse bone marrow derived naïve macrophages produce prostaglandin E2 (PGE2 ) endogenously, resulting in anti-inflammatory gene expression upon differentiation induced by macrophage colony stimulating factor (M-CSF). Cyclooxygenase (COX) inhibition by indomethacin reduced endogenous PGE2 production of macrophages and subsequently reduced arg1, IL10 and Mrc1, YmI and FizzI gene expressions. Of note, PGE2 phosphorylates CREB via EP2 and EP4 receptor ligation, thereby transcriptionally increasing C/EBP-β expression in BALB/c bone marrow derived macrophages. Activated CREB directly binds to the CREB-responsive element of the C/EBP-β promoter, such that PGE2 ultimately reinforces arg1, IL10 and Mrc1 gene expression. Cyclic AMP activator forskolin also phosphorylated CREB and induced the C/EBP-β cascade, but this was completely blocked by the PKA inhibitor, H89. Consequently, M-CSF grown macrophages inhibited T-cell proliferation but the inhibition ability was reduced when the COX is inhibited by indomethacin or macrophage C/EBP-β expression was decreased by siRNA transduction. Our results collectively describe the molecular basis for homeostatic macrophage differentiation by endogenous PGE2 .

  1. Functional characterization of a STAT3-dependent dendritic cell-derived CD14+ cell population arising upon IL-10-driven maturation

    PubMed Central

    Lindenberg, Jelle J.; van de Ven, Rieneke; Lougheed, Sinéad M.; Zomer, Anoek; Santegoets, Saskia J.A.M.; Griffioen, Arjan W.; Hooijberg, Erik; van den Eertwegh, Alfons J.M.; Thijssen, Victor L.; Scheper, Rik J.; Oosterhoff, Dinja; de Gruijl, Tanja D.

    2013-01-01

    Interleukin (IL)-10 is a major cancer-related immunosuppressive factor, exhibiting a unique ability to hamper the maturation of dendritic cells (DCs). We have previously reported that IL-10 induces the conversion of activated, migratory CD1a+ DCs found in the human skin to CD14+CD141+ macrophage-like cells. Here, as a model of tumor-conditioned DC maturation, we functionally assessed CD14- and CD14+ DCs that matured in vitro upon exposure to IL-10. IL-10-induced CD14+ DCs were phenotypically characterized by a low maturation state as well as by high levels of BDCA3 and DC-SIGN, and as such they closely resembled CD14+ cells infiltrating melanoma metastases. Compared with DC matured under standard conditions, CD14+ DCs were found to express high levels of B7-H1 on the cell surface, to secrete low levels of IL-12p70, to preferentially induce TH2 cells, to have a lower allogeneic TH cell and tumor antigen-specific CD8+ T-cell priming capacity and to induce proliferative T-cell anergy. In contrast to their CD14+ counterparts, CD14- monocyte-derived DCs retained allogeneic TH priming capacity but induced a functionally anergic state as they completely abolished the release of effector cytokines. Transcriptional and cytokine release profiling studies indicated a more profound angiogenic and pro-invasive signature of CD14+ DCs as compared with DCs matured in standard conditions or CD14− DCs matured in the presence of IL-10. Importantly, signal transducer and activator of transcription 3 (STAT3) depletion by RNA interference prevented the development of the IL-10-associated CD14+ phenotype, allowing for normal DC maturation and providing a potential means of therapeutic intervention. PMID:23734330

  2. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance.

    PubMed

    Conde, Patricia; Rodriguez, Mercedes; van der Touw, William; Jimenez, Ana; Burns, Matthew; Miller, Jennifer; Brahmachary, Manisha; Chen, Hui-ming; Boros, Peter; Rausell-Palamos, Francisco; Yun, Tae Jin; Riquelme, Paloma; Rastrojo, Alberto; Aguado, Begoña; Stein-Streilein, Joan; Tanaka, Masato; Zhou, Lan; Zhang, Junfeng; Lowary, Todd L; Ginhoux, Florent; Park, Chae Gyu; Cheong, Cheolho; Brody, Joshua; Turley, Shannon J; Lira, Sergio A; Bronte, Vincenzo; Gordon, Siamon; Heeger, Peter S; Merad, Miriam; Hutchinson, James; Chen, Shu-Hsia; Ochando, Jordi

    2015-06-16

    Tissue effector cells of the monocyte lineage can differentiate into different cell types with specific cell function depending on their environment. The phenotype, developmental requirements, and functional mechanisms of immune protective macrophages that mediate the induction of transplantation tolerance remain elusive. Here, we demonstrate that costimulatory blockade favored accumulation of DC-SIGN-expressing macrophages that inhibited CD8(+) T cell immunity and promoted CD4(+)Foxp3(+) Treg cell expansion in numbers. Mechanistically, that simultaneous DC-SIGN engagement by fucosylated ligands and TLR4 signaling was required for production of immunoregulatory IL-10 associated with prolonged allograft survival. Deletion of DC-SIGN-expressing macrophages in vivo, interfering with their CSF1-dependent development, or preventing the DC-SIGN signaling pathway abrogated tolerance. Together, the results provide new insights into the tolerogenic effects of costimulatory blockade and identify DC-SIGN(+) suppressive macrophages as crucial mediators of immunological tolerance with the concomitant therapeutic implications in the clinic.

  3. Glycoconjugates as Mediators of Nitric Oxide Production upon Exposure to Bacterial Spores by Macrophages

    NASA Astrophysics Data System (ADS)

    Lahiani, Mohamed; Soderberg, Lee; Tarasenko, Olga

    2011-06-01

    Phagocytes generate nitric oxide (NO) in large quantities to combat bacteria. The spore-producing Gram-positive organisms of Bacillus cereus family are causative agents from mild to a life threatening infection in humans and domestic animals. Our group have shown that glycoconjugates (GCs) activate macrophages and enhance killing of Bacillus spores. In this investigation, we will explore the effect of different GCs structures on NO production. The objective of this study is to study effects of GCs 2, 4, 6, 8, 10 on NO release upon exposure to B. cereus and Bacillus anthracis spores by macrophages. Our results demonstrated that GCs activated macrophages and increased NO production using studied GCs ligands compared to macrophage only (p<0.001). GC2 and GC8 were able to further increase NO production in macrophages compared to the B. anthracis spores treated macrophages (p<0.001). Our finding suggests that GCs could be used as potential mediators of NO production in macrophages to fight B. anthracis and other pathogens.

  4. Effects of IL-10 haplotype and atomic bomb radiation exposure on gastric cancer risk.

    PubMed

    Hayashi, Tomonori; Ito, Reiko; Cologne, John; Maki, Mayumi; Morishita, Yukari; Nagamura, Hiroko; Sasaki, Keiko; Hayashi, Ikue; Imai, Kazue; Yoshida, Kengo; Kajimura, Junko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Ohishi, Waka; Fujiwara, Saeko; Akahoshi, Masazumi; Nakachi, Kei

    2013-07-01

    Gastric cancer (GC) is one of the cancers that reveal increased risk of mortality and incidence in atomic bomb survivors. The incidence of gastric cancer in the Life Span Study cohort of the Radiation Effects Research Foundation (RERF) increased with radiation dose (gender-averaged excess relative risk per Gy = 0.28) and remains high more than 65 years after exposure. To assess a possible role of gene-environment interaction, we examined the dose response for gastric cancer incidence based on immunosuppression-related IL-10 genotype, in a cohort study with 200 cancer cases (93 intestinal, 96 diffuse and 11 other types) among 4,690 atomic bomb survivors participating in an immunological substudy. Using a single haplotype block composed of four haplotype-tagging SNPs (comprising the major haplotype allele IL-10-ATTA and the minor haplotype allele IL-10-GGCG, which are categorized by IL-10 polymorphisms at -819A>G and -592T>G, +1177T>C and +1589A>G), multiplicative and additive models for joint effects of radiation and this IL-10 haplotyping were examined. The IL-10 minor haplotype allele(s) was a risk factor for intestinal type gastric cancer but not for diffuse type gastric cancer. Radiation was not associated with intestinal type gastric cancer. In diffuse type gastric cancer, the haplotype-specific excess relative risk (ERR) for radiation was statistically significant only in the major homozygote category of IL-10 (ERR = 0.46/Gy, P = 0.037), whereas estimated ERR for radiation with the minor IL-10 homozygotes was close to 0 and nonsignificant. Thus, the minor IL-10 haplotype might act to reduce the radiation related risk of diffuse-type gastric cancer. The results suggest that this IL-10 haplotyping might be involved in development of radiation-associated gastric cancer of the diffuse type, and that IL-10 haplotypes may explain individual differences in the radiation-related risk of gastric cancer.

  5. IL-10 within the CNS is necessary for CD4+ T cells to mediate neuroprotection

    PubMed Central

    Xin, Junping; Wainwright, Derek A.; Mesnard, Nichole A.; Serpe, Craig J.; Sanders, Virginia M.; Jones, Kathryn J.

    2010-01-01

    We have previously shown that immunodeficient mice exhibit significant facial motoneuron (FMN) loss compared to wild-type (WT) mice after a facial nerve axotomy. Interleukin-10 (IL-10) is known as a regulatory cytokine that plays an important role in maintaining the anti-inflammatory environment within the central nervous system (CNS). IL-10 is produced by a number of different cells, including Th2 cells, and may exert an anti-apoptotic action on neurons directly. In the present study, the role of IL-10 in mediating neuroprotection following a facial nerve axotomy model in Rag2- and IL-10-deficient mice was investigated. Results indicate that IL-10 is neuroprotective, but only in the presence of CD4+ T cells that are not the requisite source of IL-10. In addition, using real-time PCR analysis of laser microdissected brainstem sections, results show that IL-10 mRNA is constitutively expressed in the facial nucleus and that a transient, significant reduction of IL-10 mRNA occurs following axotomy under immunodeficient conditions. Dual labeling immunofluorescence data show, unexpectedly, that the IL-10 receptor (IL-10R) is constitutively expressed by facial motoneurons, but is selectively induced in astrocytes within the facial nucleus after axotomy. Thus, a non-CD4+ T cell source of IL-10 is necessary for modulating both glial and neuronal events that mediate neuroprotection of injured motoneurons, but only with the cooperation of CD4+ T cells, providing an avenue of novel investigation into therapeutic approaches to prevent or reverse motoneuron diseases, such as amyotrophic lateral sclerosis (ALS). PMID:20723599

  6. Transcription of innate immunity genes and cytokine secretion by canine macrophages resistant or susceptible to intracellular survival of Leishmania infantum.

    PubMed

    Turchetti, Andréia Pereira; da Costa, Luciana Fachini; Romão, Everton de Lima; Fujiwara, Ricardo Toshio; da Paixão, Tatiane Alves; Santos, Renato Lima

    2015-01-15

    In this study we assessed the basal transcription of genes associated with innate immunity (i.e. Nramp1, NOD1, NOD2, TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR9) in canine monocyte-derived macrophages from Leishmania-free dogs. Additionally, secretion of cytokines (IL-10, IL-12, TNF-α and IFN-γ) and nitric oxide in culture supernatants of macrophages with higher or lower resistance to intracellular survival of Leishmania infantum was also measured. Constitutive transcription of TLR9 and NOD2 were negligible; NOD1, TLR1, and TLR7 had low levels of transcription, whereas Nramp1 and TLR2, 3, 4, 5, and 6 had higher levels of constitutive transcription in canine monocyte-derived macrophages. There were no significant differences in transcription between macrophages with higher or lower resistance to intracellular survival of L. infantum. Secretion of TNF-α was higher in more resistant macrophages (designated as resistant) at 24h after infection when compared to less resistant macrophages (designated as susceptible), as well as the secretion of IFN-γ at 72 h post infection. Secretion of IL-10 was lower in resistant macrophages at 24h after infection. No detectable production of nitric oxide was observed. Interestingly, there was a negative correlation between NOD2 transcript levels and intracellular survival of L. infantum in resistant macrophages. This study demonstrated that decreased intracellular survival of L. infantum in canine macrophages was associated with increased production of TNF-α and IFN-γ and decreased production of IL-10; and that constitutive transcription of Nramp1, TLR and NLR does not interfere in intracellular survival of L. infantum.

  7. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.

    PubMed

    Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin

    2016-01-01

    Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions.

  8. Cytomegalovirus-Specific IL-10-Producing CD4+ T Cells Are Governed by Type-I IFN-Induced IL-27 and Promote Virus Persistence

    PubMed Central

    Marsden, Morgan; Stacey, Maria A.; Abdul-Karim, Juneid; Gimeno Brias, Silvia; Costa Bento, Diana; Ghazal, Peter; Weaver, Casey T.; Carlesso, Gianluca; Clare, Simon; Godkin, Andrew; Jones, Gareth W.; Humphreys, Ian R.

    2016-01-01

    CD4+ T cells support host defence against herpesviruses and other viral pathogens. We identified that CD4+ T cells from systemic and mucosal tissues of hosts infected with the β-herpesviridae human cytomegalovirus (HCMV) or murine cytomegalovirus (MCMV) express the regulatory cytokine interleukin (IL)-10. IL-10+CD4+ T cells co-expressed TH1-associated transcription factors and chemokine receptors. Mice lacking T cell-derived IL-10 elicited enhanced antiviral T cell responses and restricted MCMV persistence in salivary glands and secretion in saliva. Thus, IL-10+CD4+ T cells suppress antiviral immune responses against CMV. Expansion of this T-cell population in the periphery was promoted by IL-27 whereas mucosal IL-10+ T cell responses were ICOS-dependent. Infected Il27rα-deficient mice with reduced peripheral IL-10+CD4+ T cell accumulation displayed robust T cell responses and restricted MCMV persistence and shedding. Temporal inhibition experiments revealed that IL-27R signaling during initial infection was required for the suppression of T cell immunity and control of virus shedding during MCMV persistence. IL-27 production was promoted by type-I IFN, suggesting that β-herpesviridae exploit the immune-regulatory properties of this antiviral pathway to establish chronicity. Further, our data reveal that cytokine signaling events during initial infection profoundly influence virus chronicity. PMID:27926930

  9. Cerebrospinal Fluid IL-10 and IL-10/IL-6 as Accurate Diagnostic Biomarkers for Primary Central Nervous System Large B-cell Lymphoma

    PubMed Central

    Song, Yang; Zhang, Wei; Zhang, Li; Wu, Wei; Zhang, Yan; Han, Xiao; Yang, Chen; Zhang, Lu; Zhou, Daobin

    2016-01-01

    Early diagnosis of primary central nervous system lymphoma (PCNSL) represents a challenge, and cerebrospinal fluid (CSF) cytokines may be diagnostic biomarkers for PCNSL. We used an electrochemiluminescence immunoassay to measure interleukin (IL)-10, IL-6, IL-8 and tumor necrosis factor α (TNF-α) in the CSF of 22 B cell PCNSL patients and 80 patients with other CNS diseases. CSF IL-10 was significantly higher in PCNSL patients than in the control group (median 74.7 pg/ml vs < 5.0 pg/ml, P < 0.000). Using a CSF IL-10 cutoff value of 8.2 pg/ml, the diagnostic sensitivity and specificity were 95.5% and 96.1%, respectively (AUC, 0.957; 95% CI, 0.901–1.000). For a CSF IL-10/IL-6 cutoff value of 0.72, the sensitivity was 95.5%, and the specificity was 100.0% (AUC, 0.976; 95% CI, 0.929–1.000). An increased CSF IL-10 level at diagnosis and post-treatment was associated with poor Progression free survival (PFS) for patients with PCNSL (P = 0.0181 and P = 0.0002, respectively). A low diagnostic value for PCNSL was found with CSF IL-8 or TNF-α. In conclusion, increased CSF IL-10 was a reliable diagnostic biomarker for large B cell PCNSL, and an IL-10/IL-6 ratio facilitates differentiation from other conditions, especially a CNS infection. PMID:27924864

  10. Phosphorus-Based Dendrimer ABP Treats Neuroinflammation by Promoting IL-10-Producing CD4(+) T Cells.

    PubMed

    Hayder, Myriam; Varilh, Marjorie; Turrin, Cédric-Olivier; Saoudi, Abdelhadi; Caminade, Anne-Marie; Poupot, Rémy; Liblau, Roland S

    2015-11-09

    Dendrimers are polyfunctional nano-objects of perfectly defined structure that can provide innovative alternatives for the treatment of chronic inflammatory diseases, including multiple sclerosis (MS). To investigate the efficiency of a recently described amino-bis(methylene phosphonate)-capped ABP dendrimer as a potential drug candidate for MS, we used the classical mouse model of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). Our study provides evidence that the ABP dendrimer prevents the development of EAE and inhibits the progression of established disease with a comparable therapeutic benefit as the approved treatment Fingolimod. We also show that the ABP dendrimer redirects the pathogenic myelin-specific CD4(+) T cell response toward IL-10 production.

  11. PKR mediated regulation of inflammation and IL-10 during viral encephalomyelitis

    PubMed Central

    Kapil, Parul; Stohlman, Stephen A.; Hinton, David R.; Bergmann, Cornelia C.

    2014-01-01

    Double-stranded RNA-dependent protein kinase (PKR) regulates antiviral activity, immune responses, apoptosis and neurotoxicity. Gliatropic coronavirus infection induced PKR activation in infected as well uninfected cells within the central nervous system (CNS). However, PKR deficiency only modestly increased viral replication and did not affect IFN-α/β or IL-1β expression. Despite reduced Il-6, Ccl5, and Cxcl10 mRNA, protein levels remained unaltered. Furthermore, PKR deficiency selectively reduced IL-10 production in CD4, but not CD8 T cells, without affecting CNS pathology. The results demonstrate the ability of PKR to balance neuroinflammation by selectively modulating key cytokines and chemokines in CNS resident and CD4 T cells. PMID:24642385

  12. Leishmania pifanoi proteoglycolipid complex P8 induces macrophage cytokine production through Toll-like receptor 4.

    PubMed

    Whitaker, Shanta M; Colmenares, Maria; Pestana, Karen Goldsmith; McMahon-Pratt, Diane

    2008-05-01

    The P8 proteoglycolipid complex (P8 PGLC) is a glyconjugate expressed by Leishmania mexicana complex parasites. We previously have shown that vaccination with P8 PGLC provides protection against cutaneous leishmaniasis in susceptible BALB/c mice. However, the biological importance of this complex remains unknown. Here we show that P8 PGLC localizes to the surface of Leishmania pifanoi amastigotes and that upon exposure to macrophages, P8 PGLC binds and induces inflammatory cytokine and chemokine mRNAs such as tumor necrosis factor alpha and RANTES early after stimulation. Our studies indicate that cytokine and chemokine induction is dependent upon Toll-like receptor 4 (TLR4). Interestingly, key inflammatory cytokines and chemokines (such as interleukin-6 [IL-6], macrophage inflammatory protein 1beta, and beta interferon [IFN-beta]) that can be induced through TLR4 activation were not induced or only slightly upregulated by P8 PGLC. Activation by P8 PGLC does not occur in the presence of TLR4 alone and requires both CD14 and myeloid differentiation protein 2 for signaling; this requirement may be responsible for the limited TLR4 response. This is the first characterization of a TLR4 ligand for Leishmania. In vitro experiments indicate that L. pifanoi amastigotes induce lower levels of cytokines in macrophages in the absence of TLR4; however, notably higher IL-10/IFN-gamma ratios were found for TLR4-deficient mice than for BALB/c mice. Further, increased levels of parasites persist in BALB/c mice deficient in TLR4. Taken together, these results suggest that TLR4 recognition of Leishmania pifanoi amastigotes is important for the control of infection and that this is mediated, in part, through the P8 PGLC.

  13. TNFA and IL10 Gene Polymorphisms are not Associated with Periodontitis in Brazilians

    PubMed Central

    Moreira, P. R; Costa, J. E; Gomez, R. S; Gollob, K. J; Dutra, W. O

    2009-01-01

    IL-10 and TNF-α are cytokines that have complex and opposing roles in the inflammatory responses. G/A polymorphisms at position –1082 of IL10 and –308 of TNFA genes have been reported to influence the expression of IL-10 and TNF-α, respectively. The aim of this study was to investigate the association between the IL10 (-1082) and TNFA (- 308) gene polymorphisms with different clinical forms or severity of periodontitis in a sample of Brazilian individuals. DNA was obtained from oral swabs of 165 Brazilian individuals, which were divided into three groups: individuals with chronic periodontitis, aggressive periodontitis and individuals without clinical evidence of periodontitis. Evaluation of IL10 and TNFA polymorphisms was performed by RFLP analysis. Statistical analysis of data was performed using the χ2 likelihood ratio and Fisher`s exact test. No significant differences in the genotype and allele distribution of either IL10 or TNFA were observed among individuals with different clinical forms or with different degrees of severity of periodontitis. Moreover, combined analysis of IL10 and TNFA polymorphisms did not show any association with periodontal status. As conclusion, the IL10 and TNFA gene promoter polymorphisms investigated are not associated with different clinical forms of periodontitis or with severity of the disease in the Brazilian population polymorphisms. PMID:19771178

  14. IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer.

    PubMed

    Hart, Kevin M; Byrne, Katelyn T; Molloy, Michael J; Usherwood, Edward M; Berwin, Brent

    2011-01-01

    Elevated levels of IL-10 in the microenvironment of human ovarian cancer and murine models of ovarian cancer are well established and correlate with poor clinical prognosis. However, amongst a myriad of immunosuppressive factors, the actual contribution of IL-10 to the ovarian tumor microenvironment, the mechanisms by which it acts, and its possible functional redundancy are unknown. We previously demonstrated that elimination of the myeloid-derived suppressor cell (MDSC) compartment within the ovarian tumor ascites inhibited tumor progression and, intriguingly, significantly decreased local IL-10 levels. Here we identify a novel pathway in which the tumor-infiltrating MDSC are the predominant producers of IL-10 and, importantly, require it to develop their immunosuppressive function in vivo. Importantly, we demonstrate that the role of IL-10 is critical, and not redundant with other immunosuppressive molecules, to in vivo tumor progression: blockade of the IL-10 signaling network results in alleviation of MDSC-mediated immunosuppression, altered T cell phenotype and activity, and improved survival. These studies define IL-10 as a fundamental modulator of both MDSC and T cells within the ovarian tumor microenvironment. Importantly, IL-10 signaling is shown to be necessary to the development and maintenance of a permissive tumor microenvironment and represents a viable target for anti-tumor strategies.

  15. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-alpha expression.

    PubMed

    Wagner, R; Janjigian, M; Myers, R R

    1998-01-01

    The chronic constriction injury model of mononeuropathy is a direct, partial nerve injury yielding thermal hyperalgesia. The inflammation that results from this injury is believed to contribute importantly to both the neuropathological and behavioral sequelae. This study involved administering a single dose (250 ng) of interleukin-10 (IL-10), an endogenous anti-inflammatory peptide, at the site and time of a chronic constriction injury (CCI) lesion to determine if IL-10 administration could attenuate the inflammatory response of the nerve to CCI and resulting thermal hyperalgesia. In IL-10-treated animals, thermal hyperalgesia was significantly reduced following CCI (days 3, 5 and 9). Histological sections from the peripheral nerve injury site of those animals had decreased cell profiles immunoreactive for ED-1, a marker of recruited macrophages, at both times studied (2 and 5 days post-CCI). IL-10 treatment also decreased cell profiles immunoreactive for the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) at day 2, but not day 5. Qualitative light microscopic assessment of neuropathology at the lesion site did not suggest substantial differences between IL-10 and vehicle-treated sections. The authors propose that initial production of TNF-alpha and perhaps other proinflammatory cytokines at the peripheral nerve lesion site importantly influences the long-term behavioral outcome of nerve injury, and that IL-10 therapy may accomplish this by downregulating the inflammatory response of the nerve to injury.

  16. Molecular cloning and expression of the IL-10 gene from guinea pigs.

    PubMed

    Dirisala, Vijaya R; Jeevan, Amminikutty; Bix, Gregory; Yoshimura, Teizo; McMurray, David N

    2012-04-25

    The Guinea pig (Cavia porcellus) is one of the most relevant small animals for modeling human tuberculosis (TB) in terms of susceptibility to low dose aerosol infection, the organization of granulomas, extrapulmonary dissemination and vaccine-induced protection. It is also considered to be a gold standard for a number of other infectious and non-infectious diseases; however, this animal model has a major disadvantage due to the lack of readily available immunological reagents. In the present study, we successfully cloned a cDNA for the critical Th2 cytokine, interleukin-10 (IL-10), from inbred Strain 2 guinea pigs using the DNA sequence information provided by the genome project. The complete open reading frame (ORF) consists of 537 base pairs which encodes a protein of 179 amino acids. This cDNA sequence exhibited 87% homology with human IL-10. Surprisingly, it showed only 84% homology with the previously published IL-10 sequence from the C4-deficient (C4D) guinea pig, leading us to clone IL-10 cDNA from the Hartley strain of guinea pig. The IL-10 gene from the Hartley strain showed 100% homology with the IL-10 sequence of Strain 2 guinea pigs. In order to validate the only published IL-10 sequence existing in Genbank reported from C4D guinea pigs, genomic DNA was isolated from tissues of C4D guinea pigs. Amplification with various sets of primers showed that the IL-10 sequence reported from C4D guinea pigs contained numerous errors. Hence the IL-10 sequence that is being reported by us replaces the earlier sequence making our IL-10 sequence to be the first one accurate from guinea pig. Recombinant guinea pig IL-10 proteins were subsequently expressed in both prokaryotic and eukaryotic cells, purified and were confirmed by N-terminal sequencing. Polyclonal anti-IL-10 antibodies were generated in rabbits using the recombinant IL-10 protein expressed in this study. Taken together, our results indicate that the DNA sequence information provided by the genome project

  17. Hepatitis B virus surface antigen selectively inhibits TLR2 ligand-induced IL-12 production in monocytes/macrophages by interfering with JNK activation.

    PubMed

    Wang, Sen; Chen, Zhiao; Hu, Conghua; Qian, Fangxing; Cheng, Yuming; Wu, Min; Shi, Bisheng; Chen, Jieliang; Hu, Yunwen; Yuan, Zhenghong

    2013-05-15

    It is widely accepted that chronic hepatitis B virus (HBV) infection is the result of an ineffective antiviral immune response against HBV infection. Our previous study found that the hepatitis B surface Ag (HBsAg) was related to decreased cytokine production induced by the TLR2 ligand (Pam3csk4) in PBMCs from chronic hepatitis B patients. In this study, we further explored the mechanism involved in the inhibitory effect of HBsAg on the TLR2 signaling pathway. The results showed that both Pam3csk4-triggered IL-12p40 mRNA expression and IL-12 production in PMA-differentiated THP-1 macrophage were inhibited by HBsAg in a dose-dependent manner, but the production of IL-1β, IL-6, IL-8, IL-10, and TNF-α was not influenced. The Pam3csk4-induced activation of NF-κB and MAPK signaling were further examined. The phosphorylation of JNK-1/2 and c-Jun was impaired in the presence of HBsAg, whereas the degradation of IκB-α, the nuclear translocation of p65, and the phosphorylation of p38 and ERK-1/2 were not affected. Moreover, the inhibition of JNK phosphorylation and IL-12 production in response to Pam3csk was observed in HBsAg-treated monocytes/macrophages (M/MΦs) from the healthy donors and the PBMCs and CD14-positive M/MΦs from chronic hepatitis B patients. Taken together, these results demonstrate that HBsAg selectively inhibits Pam3csk4- stimulated IL-12 production in M/MΦs by blocking the JNK-MAPK pathway and provide a mechanism by which HBV evades immunity and maintains its persistence.

  18. Il-10 deficient mice express IFN-γ mRNA and clear Leptospira interrogans from their kidneys more rapidly than normal C57BL/6 mice.

    PubMed

    Devlin, Amy A; Halvorsen, Priya J; Miller, Jennifer C; Laster, Scott M

    2017-02-10

    Leptospira interrogans (L. interrogans), the causative agent of leptospirosis, is a widespread zoonotic spirochete that lives a dual lifestyle. L. interrogans infects mice, rats, and wildlife in a persistent and asymptomatic fashion, while also causing productive and acute infections in other mammals such as humans and hamsters. Infections in humans can be fatal, accompanied by a cytokine storm and shock-like symptoms. Production of IL-10 has been noted in both rodent and human infections which has led a number of investigators to hypothesize that IL-10 plays a role in the pathogenesis of this disease. To test this hypothesis we have compared bacteremia and the cytokine response of normal and IL-10 deficient C57Bl/6 mice following ip infection with L. interrogans. In normal mice bacterial 16s mRNA was detected in both lung and kidney tissues within a day after infection. Levels of 16s mRNA then dropped in both organs with complete elimination from the lung by day 3 but persistence in the kidney for 7days after infection. In contrast, in IL-10 deficient mice, the organism was eliminated more rapidly from the kidney. We found that infection of both control and IL-10 deficient mice produced similar levels of a number of pro-inflammatory cytokine mRNAs. On the other hand, IFN-γ mRNA was only induced in IL-10 deficient mice. These results support the hypothesis that L. interrogans ability to induce IL-10, which in turn prevents production of IFN-γ and inhibits T cell immunity, may contribute to the persistent growth of this microorganism in the murine kidney.

  19. Production of MMP-9 and inflammatory cytokines by Trypanosoma cruzi-infected macrophages.

    PubMed

    de Pinho, Rosa Teixeira; da Silva, Wellington Seguins; de Castro Côrtes, Luzia Monteiro; da Silva Vasconcelos Sousa, Periela; de Araujo Soares, Renata Oliveira; Alves, Carlos Roberto

    2014-12-01

    Matrix metalloproteinases (MMPs) constitute a large family of Zn(2+) and Ca(2+) dependent endopeptidases implicated in tissue remodeling and chronic inflammation. MMPs also play key roles in the activation of growth factors, chemokines and cytokines produced by many cell types, including lymphocytes, granulocytes, and, in particular, activated macrophages. Their synthesis and secretion appear to be important in a number of physiological processes, including the inflammatory process. Here, we investigated the interaction between human and mouse macrophages with T. cruzi Colombian and Y strains to characterize MMP-9 and cytokine production in this system. Supernatants and total extract of T. cruzi infected human and mouse macrophages were obtained and used to assess MMP-9 profile and inflammatory cytokines. The presence of metalloproteinase activity was determined by zymography, enzyme-linked immunosorbent assay and immunoblotting assays. The effect of cytokines on MMP-9 production in human macrophages was verified by previous incubation of cytokines on these cells in culture, and analyzed by zymography. We detected an increase in MMP-9 production in the culture supernatants of T. cruzi infected human and mouse macrophages. The addition of IL-1β or TNF-α to human macrophage cultures increased MMP-9 production. In contrast, MMP-9 production was down-modulated when human macrophage cultures were treated with IFN-γ or IL-4 before infection. Human macrophages infected with T. cruzi Y or Colombian strains produced increased levels of MMP-9, which was related to the production of cytokines such as IL-1β, TNF-α and IL-6.

  20. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    SciTech Connect

    Chen, Huimin; Ma, Feng; Hu, Xiaona; Jin, Ting; Xiong, Chuhui; Teng, Xiaochun

    2013-10-11

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases.

  1. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages

    PubMed Central

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Background Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Methods Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. Results ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1

  2. Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-α and NO production in macrophages.

    PubMed

    Liu, Qiang; Zheng, Jin; Yin, Dan-Dan; Xiang, Jie; He, Fei; Wang, Yao-Chun; Liang, Liang; Qin, Hong-Yan; Liu, Li; Liang, Ying-Min; Han, Hua

    2012-05-01

    Macrophage activation is modulated by both environmental cues and endogenous programs. In the present study, we investigated the role of a PAQR family protein, monocyte to macrophage differentiation-associated (MMD), in macrophage activation and unveiled its underlying molecular mechanism. Our results showed that while MMD expression could be detected in all tissues examined, its expression level is significantly up-regulated upon monocyte differentiation. Within cells, EGFP-MMD fusion protein could be co-localized to endoplasmic reticulum, mitochondria, Golgi apparatus, but not lysosomes and cytoplasm. MMD expression is up-regulated in macrophages after LPS stimulation, and this might be modulated by RBP-J, the critical transcription factor of Notch signaling. Overexpression of MMD in macrophages increased the production of TNF-α and NO upon LPS stimulation. We found that MMD overexpression enhanced ERK1/2 and Akt phosphorylation in macrophages after LPS stimulation. Blocking Erk or Akt by pharmacological agent reduced TNF-α or NO production in MMD-overexpressing macrophages, respectively. These results suggested that MMD modulates TNF-α and NO production in macrophages, and this process might involves Erk or Akt.

  3. G-protein-coupled estrogen receptor agonist suppresses airway inflammation in a mouse model of asthma through IL-10.

    PubMed

    Itoga, Masamichi; Konno, Yasunori; Moritoki, Yuki; Saito, Yukiko; Ito, Wataru; Tamaki, Mami; Kobayashi, Yoshiki; Kayaba, Hiroyuki; Kikuchi, Yuta; Chihara, Junichi; Takeda, Masahide; Ueki, Shigeharu; Hirokawa, Makoto

    2015-01-01

    Estrogen influences the disease severity and sexual dimorphism in asthma, which is caused by complex mechanisms. Besides classical nuclear estrogen receptors (ERαβ), G-protein-coupled estrogen receptor (GPER) was recently established as an estrogen receptor on the cell membrane. Although GPER is associated with immunoregulatory functions of estrogen, the pathophysiological role of GPER in allergic inflammatory lung disease has not been examined. We investigated the effect of GPER-specific agonist G-1 in asthmatic mice. GPER expression in asthmatic lung was confirmed by immunofluorescent staining. OVA-sensitized BALB/c and C57BL/6 mice were treated with G-1 by daily subcutaneous injections during an airway challenge phase, followed by histological and biochemical examination. Strikingly, administration of G-1 attenuated airway hyperresponsiveness, accumulation of inflammatory cells, and levels of Th2 cytokines (IL-5 and IL-13) in BAL fluid. G-1 treatment also decreased serum levels of anti-OVA IgE antibodies. The frequency of splenic Foxp3+CD4+ regulatory T cells and IL-10-producing GPER+CD4+ T cells was significantly increased in G-1-treated mice. Additionally, splenocytes isolated from G-1-treated mice showed greater IL-10 production. G-1-induced amelioration of airway inflammation and IgE production were abolished in IL-10-deficient mice. Taken together, these results indicate that extended GPER activation negatively regulates the acute asthmatic condition by altering the IL-10-producing lymphocyte population. The current results have potential importance for understanding the mechanistic aspects of function of estrogen in allergic inflammatory response.

  4. A macrophage-stimulating compound from a screen of microbial natural products.

    PubMed

    Perry, Julie A; Koteva, Kalinka; Verschoor, Chris P; Wang, Wenliang; Bowdish, Dawn M E; Wright, Gerry D

    2015-01-01

    Rising rates of antibiotic resistance in bacterial pathogens is a medical crisis of global concern that necessitates the development of new treatment strategies. We have isolated a natural product with macrophage-stimulating activity from a screen of microbially produced bioactive molecules. Streptazolin increased bacterial killing and elaboration of immunostimulatory cytokines by macrophages in vitro. Furthermore, we show that streptazolin stimulates the macrophage nuclear factor κB (NF-κB) pathway via phosphatidylinositide 3-kinase (PI3K) signaling, and that the conjugated diene moiety is essential for stimulatory activity. Immunostimulatory molecules like streptazolin represent entries into new treatment paradigms to address the challenge of antibiotic resistance.

  5. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  6. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    PubMed

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  7. Modulation of macrophage apoptosis by antimycobacterial therapy: physiological role of apoptosis in the control of Mycobacterium tuberculosis.

    PubMed

    Gil, Diana; Garcia, Luis F; Rojas, Mauricio

    2003-07-15

    Apoptosis is a form of cell death that avoids inflammatory responses. We had previously reported that Mycobacterium tuberculosis (Mtb) and Purified Protein Derivative (PPD) induce apoptosis in murine macrophages. The production of TNFalpha and IL-10 in response to Mtb infection modulates apoptosis by controlling nitric oxide production and caspase activation. Furthermore, Mtb triggers calcium influx responsible for mitochondrial alterations, an early pathway of apoptosis, independently of TNFalpha and IL-10. In tuberculosis patients apoptotic macrophages are found in granulomas and bronchoalveolar lavages, suggesting that apoptosis may participate in the control of Mtb. To further explore the role of macrophage apoptosis in tuberculosis, we studied the capacity of standard antimycobacterial drugs to modulate different events associated with the induction of apoptosis. The B10R murine macrophage line was infected or not with Mtb (5:1 bacteria to macrophage ratio) or exposed to PPD (10 microg/ml), in the presence or absence of varying concentrations (1-20 microg/ml) of anti mycobacterial drugs (isoniazid, rifampin, thiacetazone, streptomycin, and ethambutol). Inhibition of the intracellular growth of M. tuberculosis by all drugs studied/correlated with inhibition of permeability transition (PT) alterations; TNFalpha, IL-10, and nitric oxide production, and caspase-1 activation. However, these drugs did not affect PPD-induced apoptosis or its associated events, suggesting that the ability of antimycobacterial drugs to block macrophage apoptosis could be explained by their effects on the metabolic activities of Mtb. All drugs, except isoniazid, at higher concentrations, induced PT alterations in noninfected macrophages in a way that appears to be dependent of calcium, since a calcium chelator prevented it. The results presented herein suggest that the pharmacological manipulation of pathways associated with macrophage apoptosis may affect the intracellular growth of

  8. IL-10 Alters Immunoproteostasis in APP mice, Increasing Plaque Burden and Worsening Cognitive Behavior

    PubMed Central

    Chakrabarty, Paramita; Li, Andrew; Ceballos-Diaz, Carolina; Eddy, James A.; Funk, Cory C; Moore, Brenda; DiNunno, Nadia; Rosario, Awilda M; Cruz, Pedro E; Verbeeck, Christophe; Sacino, Amanda; Nix, Sarah; Janus, Christopher; Price, Nathan D; Das, Pritam; Golde, Todd E

    2014-01-01

    Summary Anti-inflammatory strategies are proposed to have beneficial effects in Alzheimer's disease. To explore how anti-inflammatory cytokine signaling affects Aβ pathology, we investigated the effects of adeno-associated virus (AAV2/1) mediated expression of Interleukin (IL)-10 in the brains of APP transgenic mouse models. IL-10 expression resulted in increased Aβ accumulation and impaired memory in APP mice. A focused transcriptome analysis revealed changes consistent with enhanced IL-10 signaling and increased ApoE expression in IL-10 expressing APP mice. ApoE protein was selectively increased in the plaque-associated insoluble cellular fraction, likely due to direct interaction with aggregated Aβ in the IL-10 expressing APP mice. Ex vivo studies also show that IL-10 and ApoE can individually impair glial Aβ phagocytosis. Our observations that IL-10 has an unexpected negative effect on Aβ proteostasis and cognition in APP mouse models demonstrate the complex interplay between innate immunity and proteostasis in neurodegenerative diseases, an interaction we call immunoproteostasis. PMID:25619653

  9. MARCH1 down-regulation in IL-10-activated B cells increases MHC class II expression.

    PubMed

    Galbas, Tristan; Steimle, Viktor; Lapointe, Réjean; Ishido, Satoshi; Thibodeau, Jacques

    2012-07-01

    IL-10 is vastly studied for its anti-inflammatory properties on most immune cells. However, it has been reported that IL-10 activates B cells, up-regulates their MHC class II molecules and prevents apoptosis. As MARCH1 was shown to be responsible for the intracellular sequestration of MHC class II molecules in dendritic cells and monocytes in response to IL-10, we set out to clarify the role of this ubiquitin ligase in B cells. Here, we demonstrate in mice that splenic follicular B cells represent the major cell population that up-regulate MHC II molecules in the presence of IL-10. Activation of these cells through TLR4, CD40 or the IL-10 receptor caused the down-regulation of MARCH1 mRNA. Accordingly, B cells from MARCH1-deficient mice do not up-regulate I-A(b) in response to IL-10. In all, our results demonstrate that IL-10 can have opposite effects on MARCH1 regulation in different cell types.

  10. Recombinant human lactoferrin modulates human PBMC derived macrophage responses to BCG and LPS.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2016-12-01

    Lactoferrin, an iron-binding glycoprotein found in mammalian mucosal secretions and granules of neutrophils, possesses several immune modulatory properties. Published reports indicate that lactoferrin enhances the efficacy of the tuberculosis vaccine, BCG (Bacillus Calmette Guerin), both by increasing macrophage and dendritic cell ability to stimulate receptive T cells and by modulating the inflammatory response. This report is the first to demonstrate the effects of a recombinant human lactoferrin (10 μg/mL) on human PBMC derived CD14(+) and CD16(+) macrophages stimulated with a strong (LPS, 10 ng/mL) or weaker (BCG, MOI 1:1) stimulator of inflammation. After 3 days culture, LPS and human lactoferrin treated CD14(+) cells significantly increased production of IL-10, IL-6, and MCP-1 compared to the LPS only group. In contrast, similarly treated CD16(+) macrophages increased production of IL-12p40 and IL-10 and decreased TNF-α. Limited changes were observed in BCG stimulated CD14(+) and CD16(+) macrophages with and without lactoferrin. Analysis of surface expression of antigen presentation and co-stimulatory molecules demonstrated that CD14(+) macrophages, when stimulated with BCG or LPS and cultured with lactoferrin, increased expression of CD86. CD16(+) macrophages treated with lactoferrin showed a similar trend of increase in CD86 expression, but only when stimulated with BCG.

  11. Chitinous materials inhibit nitric oxide production by activated RAW 264.7 macrophages.

    PubMed

    Hwang, S M; Chen, C Y; Chen, S S; Chen, J C

    2000-04-29

    Chitinous materials have been studied in wound healing and artificial skin substitutes for many years. Nitric oxide (NO) has been shown to contribute to cytotoxicity in cell proliferation during inflammation of wound healing. In this study, we examined the effect of chitin and its derivatives on NO production by activated RAW 264.7 macrophages. Chitin and chitosan showed a significantly inhibitory effect on NO production by the activated macrophages. Hexa-N-acetylchitohexaose and penta-N-acetylchitopentaose also inhibited NO production but with less potency. However, N-acetylchitotetraose, -triose, -biose, and monomer of chitin, N-acetylglucosamine and glucosamine had little effect on NO production by the activated cells. These results suggest that the promotive effect of chitinous material on wound healing be related, at least partly, to inhibit NO production by the activated macrophages.

  12. Inhibition of SIK2 and SIK3 during differentiation enhances the anti-inflammatory phenotype of macrophages

    PubMed Central

    Darling, Nicola J.; Toth, Rachel; Arthur, J. Simon C.

    2017-01-01

    The salt-inducible kinases (SIKs) control a novel molecular switch regulating macrophage polarization. Pharmacological inhibition of the SIKs induces a macrophage phenotype characterized by the secretion of high levels of anti-inflammatory cytokines, including interleukin (IL)-10, and the secretion of very low levels of pro-inflammatory cytokines, such as tumour necrosis factor α. The SIKs, therefore, represent attractive new drug targets for the treatment of macrophage-driven diseases, but which of the three isoforms, SIK1, SIK2 or SIK3, would be appropriate to target remains unknown. To address this question, we developed knock-in (KI) mice for SIK1, SIK2 and SIK3, in which we introduced a mutation that renders the enzymes catalytically inactive. Characterization of primary macrophages from the single and double KI mice established that all three SIK isoforms, and in particular SIK2 and SIK3, contribute to macrophage polarization. Moreover, we discovered that inhibition of SIK2 and SIK3 during macrophage differentiation greatly enhanced the production of IL-10 compared with their inhibition in mature macrophages. Interestingly, macrophages differentiated in the presence of SIK inhibitors, MRT199665 and HG-9-91-01, still produced very large amounts of IL-10, but very low levels of pro-inflammatory cytokines, even after the SIKs had been reactivated by removal of the drugs. Our data highlight an integral role for SIK2 and SIK3 in innate immunity by preventing the differentiation of macrophages into a potent and stable anti-inflammatory phenotype. PMID:27920213

  13. Aryl hydrocarbon receptor protects against bacterial infection by promoting macrophage survival and reactive oxygen species production.

    PubMed

    Kimura, Akihiro; Abe, Hiromi; Tsuruta, Sanae; Chiba, Sayuri; Fujii-Kuriyama, Yoshiaki; Sekiya, Takashi; Morita, Rimpei; Yoshimura, Akihiko

    2014-04-01

    Aryl hydrocarbon receptor (AhR) is crucial for various immune responses. The relationship between AhR and infection with the intracellular bacteria Listeria monocytogenes (LM) is poorly understood. Here, we show that in response to LM infection, AhR is required for bacterial clearance by promoting macrophage survival and reactive oxygen species (ROS) production. AhR-deficient mice were more susceptible to listeriosis, and AhR deficiency enhances bacterial growth in vivo and in vitro. On the other hand, pro-inflammatory cytokines were increased in AhR-deficient macrophages infected with LM despite enhanced susceptibility to LM infection in AhR-deficient mice. Subsequent studies demonstrate that AhR protects against macrophage cell death induced by LM infection through the induction of the antiapoptotic factor, the apoptosis inhibitor of macrophages, which promotes macrophage survival in the setting of LM infection. Furthermore, AhR promotes ROS production for bacterial clearance. Our results demonstrate that AhR is essential to the resistance against LM infection as it promotes macrophage survival and ROS production. This suggests that the activation of AhR by its ligands may be an effective strategy against listeriosis.

  14. Antihistoplasma effect of activated mouse splenic macrophages involves production of reactive nitrogen intermediates.

    PubMed Central

    Lane, T E; Wu-Hsieh, B A; Howard, D H

    1994-01-01

    The mechanism by which recombinant murine gamma interferon (rMuIFN-gamma) and bacterial lipopolysaccharide (LPS) activate mouse resident splenic macrophages to inhibit the intracellular growth of the fungus Histoplasma capsulatum was examined. Growth inhibition depended on L-arginine metabolism. The growth inhibitory state normally induced by rMuIFN-gamma and LPS in resident splenic macrophages did not occur when the macrophages were cultured in the presence of NG-monomethyl-L-arginine, a competitive inhibitor of L-arginine metabolism. Resident splenic macrophages treated with rMuIFN-gamma and LPS produced nitrite (NO2-), an end product of L-arginine metabolism. When macrophages were cultured in the presence of NG-monomethyl-L-arginine together with rMuIFN-gamma and LPS, only baseline levels of NO2- were detected. Spleen cells from H. capsulatum-infected mice produced high levels of NO2- in culture. The production of NO2- correlated with in vitro inhibition of the intracellular growth of H. capsulatum. Anti-tumor necrosis factor alpha antibody did not block NO2- production by the immigrant splenic macrophages and did not abolish the antihistoplasma activity. PMID:8168960

  15. Chronic Low-Grade Inflammation in Childhood Obesity Is Associated with Decreased IL-10 Expression by Monocyte Subsets

    PubMed Central

    Mattos, Rafael T.; Medeiros, Nayara I.; Menezes, Carlos A.; Fares, Rafaelle C. G.; Franco, Eliza P.; Dutra, Walderez O.; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A. S.

    2016-01-01

    Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity. PMID:27977792

  16. Chronic Low-Grade Inflammation in Childhood Obesity Is Associated with Decreased IL-10 Expression by Monocyte Subsets.

    PubMed

    Mattos, Rafael T; Medeiros, Nayara I; Menezes, Carlos A; Fares, Rafaelle C G; Franco, Eliza P; Dutra, Walderez O; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A S

    2016-01-01

    Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity.

  17. Murine Kupffer Cells Are Protective in Total Hepatic Ischemia/Reperfusion Injury with Bowel Congestion through IL-10

    PubMed Central

    Ellett, Justin D.; Atkinson, Carl; Evans, Zachary P.; Amani, Zainab; Balish, Edward; Schmidt, Michael G.; van Rooijen, Nico; Schnellmann, Rick G.; Chavin, Kenneth D.

    2010-01-01

    Kupffer cells (KCs) are thought to mediate hepatocyte injury via their production of proinflammatory cytokines and reactive oxygen species in response to stress. In this study, we depleted KCs from the liver to examine their role in total warm hepatic ischemia/reperfusion (I/R) injury with bowel congestion. We injected 8-wk-old C57BL/10J mice with liposome-encapsulated clodronate 48 h before 35 min of hepatic ischemia with bowel congestion, followed by 6 or 24 h of reperfusion. KC-depleted animals had a higher mortality rate than diluent-treated animals and a 10-fold elevation in transaminase levels that correlated with increases in centrilobular necrosis. There was extensive LPS binding to the endothelial cells, which correlated with an upregulation of endothelial adhesion molecules in the KC-depleted animals versus diluent-treated animals. There was an increase in the levels of proinflammatory cytokines in KC-depleted animals, and a concomitant decrease in IL-10 levels. When KC-depleted mice were treated with recombinant IL-10, their liver damage profile in response to I/R was similar to diluent-treated animals, and endothelial cell adhesion molecules and proinflammatory cytokine levels decreased. KCs are protective in the liver subjected to total I/R with associated bowel congestion and are not deleterious as previously thought. This protection appears to be due to KC secretion of the potent anti-inflammatory cytokine IL-10. PMID:20400698

  18. Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis

    PubMed Central

    Liao, Wenbin; Pham, Victor; Liu, Linan; Riazifar, Milad; Pone, Egest J; Zhang, Shirley Xian; Ma, Fengxia; Lu, Mengrou; Walsh, Craig M.; Zhao, Weian

    2015-01-01

    Systemic administration of mesenchymal stem cells (MSCs) affords the potential to ameliorate the symptoms of Multiple Sclerosis (MS) in both preclinical and clinical studies. However, the efficacy of MSC-based therapy for MS likely depends on the number of cells that home to inflamed tissues and on the controlled production of paracrine and immunomodulatory factors. Previously, we reported that engineered MSCs expressing P-selectin glycoprotein ligand-1 (PSGL-1) and Sialyl-Lewisx (SLeX) via mRNA transfection facilitated the targeted delivery of anti-inflammatory cytokine interleukin-10 (IL-10) to inflamed ear. Here, we evaluated whether targeted delivery of MSCs with triple PSGL1/SLeX/IL-10 engineering improves therapeutic outcomes in mouse experimental autoimmune encephalomyelitis (EAE), a murine model for human MS. We found PSGL-1/SLeX mRNA transfection significantly enhanced MSC homing to the inflamed spinal cord. This is consistent with results from in vitro flow chamber assays in which PSGL-1/SleX mRNA transfection significantly increased the percentage of rolling and adherent cells on activated brain microvascular endothelial cells, which mimic the inflamed endothelium of blood brain/spinal cord barrier in EAE. In addition, IL-10-transfected MSCs show significant inhibitory activity on the proliferation of CD4+ T lymphocytes from EAE mice. In vivo treatment with MSCs engineered with PSGL-1/SLeX/IL-10 in EAE mice exhibited a superior therapeutic function over native (unmodified) MSCs, evidenced by significantly improved myelination and decreased lymphocytes infiltration into the white matter of the spinal cord. Our strategy of targeted delivery of performance-enhanced MSCs could potentially be utilized to increase the effectiveness of MSC-based therapy for MS and other central nervous system (CNS) disorders. PMID:26584349

  19. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions.

    PubMed

    Bernal, Laura; Alvarado-Vázquez, Abigail; Ferreira, David Wilson; Paige, Candler A; Ulecia-Morón, Cristina; Hill, Bailey; Caesar, Marina; Romero-Sandoval, E Alfonso

    2017-02-01

    Macrophages orchestrate the initiation and resolution of inflammation by producing pro- and anti-inflammatory products. An imbalance in these mediators may originate from a deficient or excessive immune response. Therefore, macrophages are valid therapeutic targets to restore homeostasis under inflammatory conditions. We hypothesize that a specific mannosylated nanoparticle effectively induces gene expression in human macrophages under inflammatory conditions without undesirable immunogenic responses. THP-1 macrophages were challenged with lipopolysaccharide (LPS, 5μg/mL). Polyethylenimine (PEI) nanoparticles grafted with a mannose receptor ligand (Man-PEI) were used as a gene delivery method. Nanoparticle toxicity, Man-PEI cellular uptake rate and gene induction efficiency (GFP, CD14 or CD68) were studied. Potential immunogenic responses were evaluated by measuring the production of tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-6 and IL-10. Man-PEI did not produce cytotoxicity, and it was effectively up-taken by THP-1 macrophages (69%). This approach produced a significant expression of GFP (mRNA and protein), CD14 and CD68 (mRNA), and transiently and mildly reduced IL-6 and IL-10 levels in LPS-challenged macrophages. Our results indicate that Man-PEI is suitable for inducing an efficient gene overexpression in human macrophages under inflammatory conditions with limited immunogenic responses. Our promising results set the foundation to test this technology to induce functional anti-inflammatory genes.

  20. Developmental endothelial locus-1 inhibits MIF production through suppression of NF-κB in macrophages.

    PubMed

    Lee, Seung-Hwan; Kim, Dong-Young; Kang, Yoon-Young; Kim, Hyesoon; Jang, Jungin; Lee, Mi-Ni; Oh, Goo Taeg; Kang, Sang-Wook; Choi, Eun Young

    2014-04-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that regulates leukocyte recruitment, thereby playing a pivotal role in the regulation of innate and adaptive immunity and tumor progression. Elevated levels of MIF are associated with numerous inflammatory disorders and cancers. To determine whether developmental endothelial locus-1 (Del-1) regulated MIF, RAW264.7 macrophages were treated with Del-1 and assessed using ELISA. The results showed that MIF was downregulated in macrophages by Del-1, an endogenous anti-inflammatory protein that was previously shown to limit leukocyte adhesion and migration. Treatment of RAW264.7 macrophages with Del-1 inhibited constitutive and lipopolysaccharide (LPS)-induced MIF secretion. Recombinant Del-1 protein attenuated the phosphorylation of IκBα induced by a relatively low concentration of LPS in THP-1 monocytes, but did not inhibit IκBα phosphorylation in response to a relatively high concentration of LPS. Concomitantly, translocation of NF-κB to the nucleus was inhibited by Del-1 in LPS-activated macrophages. In addition, conditioned medium harvested from cells transfected with a Del-1 expression plasmid suppressed NF-κB activation in response to relatively low concentrations of TNF-α, albeit not the activation that was induced by a relatively high concentration of TNF-α. On the other hand, although Del-1 enhanced the macrophage expression of p53, a known negative regulator of MIF production, MIF production was not significantly affected by the level of p53 in mouse bone marrow-derived macrophages. These findings suggested that Del-1 controls NF-κB-activated MIF production in macrophages, and the potential application of Del-1 to therapeutic modalities for chronic inflammation-associated cancers.

  1. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    SciTech Connect

    Liu, Yanzhen; Mei, Chenfang; Liu, Hao; Wang, Hongsheng; Zeng, Guoqu; Lin, Jianhui; Xu, Meiying

    2014-09-05

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.

  2. The Role of Toll-Like Receptor 9 in Chronic Stress-Induced Apoptosis in Macrophage

    PubMed Central

    Xiang, Yanxiao; Yan, Hui; Zhou, Jun; Zhang, Qi; Hanley, Gregory; Caudle, Yi; LeSage, Gene; Zhang, Xiumei; Yin, Deling

    2015-01-01

    Emerging evidence implied that chronic stress has been exerting detrimental impact on immune system functions in both humans and animals. Toll-like receptors (TLRs) have been shown to play an essential role in modulating immune responses and cell survival. We have recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic stress. However, the exact role of TLR9 in stress-mediated change of macrophage function remains unclear. The results of the current study showed that when BALB/c mice were treated with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These results indicated that TLR9-mediated macrophage responses were required for chronic stress-induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating macrophage accumulation and attenuating macrophage apoptosis, thus preventing

  3. Transcription factor Fli-1 positively regulates lipopolysaccharide-induced interleukin-27 production in macrophages.

    PubMed

    Gao, Peng; Yuan, Ming; Ma, Xianwei; Jiang, Wei; Zhu, Lingxi; Wen, Mingyue; Xu, Jing; Liu, Qiuyan; An, Huazhang

    2016-03-01

    IL-27 is an important regulator of TLR4-activated innate immune. The mechanism by which IL-27 production is regulated in TLR4-activated innate immune remains largely unclear. Here we show that expression of transcription factor Fli-1 at protein level is increased in macrophages following LPS stimulation. Fli-1 overexpression increases LPS-activated IL-27 production in macrophages. Consistently, Fli-1 knockdown inhibits LPS-induced IL-27 production in macrophages. Chromatin immunoprecipitation (ChIP) assay reveals that Fli-1 binds the promoter of IL-27 p28 subunit. Further experiments manifest that Fli-1 binds the region between -250 and -150 bp upstream of the transcriptional start site of p28 gene and increases p28 gene promoter-controlled transcription. These results demonstrate that Fli-1 positively regulates IL-27 production in TLR4-activated immune response by promoting transcription of IL-27 p28 gene.

  4. Influence of Pneumocystis carinii on nitrite production by rat alveolar macrophages.

    PubMed

    Simonpoli, A M; Rajagopalan-Levasseur, P; Brun-Pascaud, M; Bertrand, G; Pocidalo, M A; Girard, P M

    1996-01-01

    Nitrite production by rat alveolar macrophages was studied to determine the role of L-arginine oxidation in the interaction between these cells and Pneumocystis carinii. Alveolar macrophages from rats obtained from two different breeders were used: rats from Janvier breeder had latent P. carinii infection, while those from Charles River breeder were bred in a germ-free environment. Pneumocystis carinii increased in vitro nitrite generation by unstimulated alveolar macrophages from Janvier rats only, and this was blocked by NG-monomethyl-L-arginine. Incubation of cells from Janvier and Charles River rats with lipopolysaccharide and/or interferon-gamma increased nitrite production to a similar extent. Pneumocystis carinii partially decreased nitrite release by activated alveolar macrophages, and this was still inhibited by NG-monomethyl-L-arginine. In the presence of P. carinii, superoxide dismutase used as a superoxide anion scavenger had no effect on nitrite production by activated cells. These results show that prior exposure to P. carinii leads to nitric oxide production by rat alveolar macrophages. Although the magnitude of this production seems to be moderate, it is of biological significance since cells of P. carinii-naive rats do not generate nitrite whereas those of latently infected rats do.

  5. Impairment of macrophage eicosanoid and nitric oxide production by an alkaloid from Sinomenium acutum.

    PubMed

    Liu, L; Riese, J; Resch, K; Kaever, V

    1994-11-01

    The effects of sinomenine (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl- 9 alpha,13 alpha,14 alpha-morphinan-6-one), a pure alkaloid extracted from the Chinese medical plant Sinomenium acutum, on different macrophage capacities were investigated in vitro using resident mouse peritoneal macrophages and the macrophage-like cell line RAW 264.7. Sinomenine markedly decreased prostaglandin E2 and leukotriene C4 synthesis of macrophages stimulated by zymosan or calcium ionophore and also significantly inhibited the nitric oxide production of RAW 264.7 cells activated by interferon-gamma/lipopolysaccharide. It can be considered that these effects are part of the analgesic, anti-inflammatory, and antirheumatic mechanisms of sinomenine.

  6. C-type lectins on macrophages participate in the immunomodulatory response to Fasciola hepatica products

    PubMed Central

    Guasconi, Lorena; Serradell, Marianela C; Garro, Ana P; Iacobelli, Luciana; Masih, Diana T

    2011-01-01

    Fasciola hepatica releases excretory–secretory products (FhESP), and immunomodulatory properties have been described for the carbohydrates present in these parasite products. The interaction of FhESP with the innate immune cells, such as macrophages, is crucial in the early stage of infection. In this work we observed that peritoneal macrophages from naive BALB/c mice stimulated in vitro with FhESP presented: an increased arginase activity as well as Arginase I expression, and high levels of transforming growth factor-β and interleukin-10. A similar macrophage population was also observed in the peritoneum of infected mice. A partial inhibition of the immunomodulatory effects described above was observed when macrophages were pre-incubated with Mannan, anti-mannose receptor, Laminarin or anti-Dectin-1, and then stimulated with FhESP. In addition, we observed a partial inhibition of these effects in macrophages obtained from mice that were intraperitoneally injected with Mannan or Laminarin before being infected. Taken together, these results suggest the participation of at least two C-type lectin receptors, mannose receptor and Dectin-1, in the interaction of FhESP with macrophages, which allows this parasite to induce immunoregulatory effects on these important innate immune cells and may constitute a crucial event for extending its survival in the host. PMID:21595685

  7. VEGF-Production by CCR2-Dependent Macrophages Contributes to Laser-Induced Choroidal Neovascularization

    PubMed Central

    Krause, Torsten A.; Alex, Anne F.; Engel, Daniel R.; Kurts, Christian; Eter, Nicole

    2014-01-01

    Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF). Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source of VEGF in laser

  8. VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization.

    PubMed

    Krause, Torsten A; Alex, Anne F; Engel, Daniel R; Kurts, Christian; Eter, Nicole

    2014-01-01

    Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF). Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source of VEGF in laser

  9. Mycobacterium avium Subspecies paratuberculosis Recombinant Proteins Modulate Antimycobacterial Functions of Bovine Macrophages

    PubMed Central

    Bannantine, John P.; Stabel, Judith R.; Laws, Elizabeth; D. Cardieri, Maria Clara; Souza, Cleverson D.

    2015-01-01

    It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinant proteins expressed from coding sequences annotated as lipoproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38 activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulated macrophages. However, a parallel increase in expression of IL-12 and TNF-α was only observed in macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were further analyzed for their ability to enhance survival of M. avium within bovine macrophages as measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recombinant proteins along with M. paratuberculosis cells significantly enhanced phosphorylation of MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how the protein component of the lipoprotein interacts with the immune system. Collectively, these data reveal M. paratuberculosis proteins that might play a role in MAPK-p38 pathway activation and hence in survival of this organism within bovine macrophages. PMID:26076028

  10. Protein kinase C theta is required for efficient induction of IL-10-secreting T cells

    PubMed Central

    Burton, Bronwen R.

    2017-01-01

    Secretion of interleukin-10 (IL-10) by CD4+ T cells is an essential immunoregulatory mechanism. The work presented here assesses the role of the signaling molecule protein kinase C theta (PKCθ) in the induction of IL-10 expression in CD4+ T cells. Using wildtype and PKCθ-deficient Tg4 T cell receptor transgenic mice, we implemented a well-described protocol of repeated doses of myelin basic protein (MBP)Ac1-9[4Y] antigen to induce Tr1-like IL-10+ T cells. We find that PKCθ is required for the efficient induction of IL-10 following antigen administration. Both serum concentrations of IL-10 and the proportion of IL-10+ T cells were reduced in PKCθ-deficient mice relative to wildtype mice following [4Y] treatment. We further characterized the T cells of [4Y] treated PKCθ-deficient Tg4 mice and found reduced expression of the transcription factors cMaf, Nfil3 and FoxP3 and the surface receptors PD-1 and Tim3, all of which have been associated with the differentiation or function of IL-10+ T cells. Finally, we demonstrated that, unlike [4Y] treated wildtype Tg4 T cells, cells from PKCθ-deficient mice were unable to suppress the priming of naïve T cells in vitro and in vivo. In summary, we present data demonstrating a role for PKCθ in the induction of suppressive, IL-10-secreting T cells induced in TCR-transgenic mice following chronic antigen administration. This should be considered when contemplating PKCθ as a suitable drug target for inducing immune suppression and graft tolerance. PMID:28158245

  11. Quantitation of Productively Infected Monocytes and Macrophages of Simian Immunodeficiency Virus-Infected Macaques

    PubMed Central

    Avalos, Claudia R.; Price, Sarah L.; Forsyth, Ellen R.; Pin, Julia N.; Shirk, Erin N.; Bullock, Brandon T.; Queen, Suzanne E.; Li, Ming; Gellerup, Dane; O'Connor, Shelby L.; Zink, M. Christine; Mankowski, Joseph L.; Gama, Lucio

    2016-01-01

    ABSTRACT Despite the success of combined antiretroviral therapy (ART), human immunodeficiency virus (HIV) infection remains a lifelong infection because of latent viral reservoirs in infected patients. The contribution of CD4+ T cells to infection and disease progression has been extensively studied. However, during early HIV infection, macrophages in brain and other tissues are infected and contribute to tissue-specific diseases, such as encephalitis and dementia in brain and pneumonia in lung. The extent of infection of monocytes and macrophages has not been rigorously assessed with assays comparable to those used to study infection of CD4+ T cells and to evaluate the number of CD4+ T cells that harbor infectious viral genomes. To assess the contribution of productively infected monocytes and macrophages to HIV- and simian immunodeficiency virus (SIV)-infected cells in vivo, we developed a quantitative virus outgrowth assay (QVOA) based on similar assays used to quantitate CD4+ T cell latent reservoirs in HIV- and SIV-infected individuals in whom the infection is suppressed by ART. Myeloid cells expressing CD11b were serially diluted and cocultured with susceptible cells to amplify virus. T cell receptor β RNA was measured as a control to assess the potential contribution of CD4+ T cells in the assay. Virus production in the supernatant was quantitated by quantitative reverse transcription-PCR. Productively infected myeloid cells were detected in blood, bronchoalveolar lavage fluid, lungs, spleen, and brain, demonstrating that these cells persist throughout SIV infection and have the potential to contribute to the viral reservoir during ART. IMPORTANCE Infection of CD4+ T cells and their role as latent reservoirs have been rigorously assessed; however, the frequency of productively infected monocytes and macrophages in vivo has not been similarly studied. Myeloid cells, unlike lymphocytes, are resistant to the cytopathic effects of HIV. Moreover, tissue

  12. Sufficient production of geranylgeraniol is required to maintain endotoxin tolerance in macrophages.

    PubMed

    Kim, Jinyong; Lee, Joon No; Ye, James; Hao, Rosy; Debose-Boyd, Russell; Ye, Jin

    2013-12-01

    Endotoxin tolerance allows macrophages to produce large quantities of proinflammatory cytokines immediately after their contact with lipopolysaccharides (LPSs), but prevents their further production after repeated exposure to LPSs. While this response is known to prevent overproduction of proinflammatory cytokines, the mechanism through which endotoxin tolerance is established has not been identified. In the current study, we demonstrate that sufficient production of geranylgeraniol (GGOH) in macrophages is required to maintain endotoxin tolerance. We show that increased synthesis of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) protein following LPS treatment is required to produce enough GGOH to inhibit expression of Malt1, a protein known to stimulate expression of proinflammatory cytokines, in macrophages repeatedly exposed to LPSs. Depletion of GGOH caused by inhibition of HMGCR led to increased Malt1 expression in macrophages subjected to repeated exposure to LPSs. Consequently, endotoxin tolerance was impaired, and production of interleukin 1-β and other proinflammatory cytokines was markedly elevated in these cells. These results suggest that insufficient production of GGOH in macrophages may cause autoinflammatory diseases.

  13. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus

    PubMed Central

    Godsell, Jack; Rudloff, Ina; Kandane-Rathnayake, Rangi; Hoi, Alberta; Nold, Marcel F.; Morand, Eric F.; Harris, James

    2016-01-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the development of autoantibodies to nuclear antigens and inflammatory responses mediated by multiple cytokines. Although previous studies have determined clinical associations between SLE and the anti-inflammatory cytokines IL-10 and IL-37, their role in the disease, or their potential as biomarkers, remains unclear. We examined serum levels of IL-10 and IL-37 in a large cohort of SLE patients, with detailed longitudinal clinical data. We demonstrate a statistically significant association of serum IL-10 with disease activity, with higher levels in active compared to inactive disease. High first visit IL-10 was predictive of high subsequent disease activity; patients with IL-10 in highest quartile at first visit were 3.6 times more likely to have active disease in subsequent visits. Serum IL-37 was also higher in SLE patients compared to control, and was strongly associated with Asian ethnicity. However, IL-37 was not statistically significantly associated with disease activity. IL-37 was significantly reduced in patients with organ damage but this association was attenuated in multivariable analysis. The data suggest that IL-10, but not IL-37, may have potential as a biomarker predictive for disease activity in SLE. PMID:27708376

  14. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential

    PubMed Central

    Nagpal, Gandharva; Usmani, Salman Sadullah; Dhanda, Sandeep Kumar; Kaur, Harpreet; Singh, Sandeep; Sharma, Meenu; Raghava, Gajendra P. S.

    2017-01-01

    In the past, numerous methods have been developed to predict MHC class II binders or T-helper epitopes for designing the epitope-based vaccines against pathogens. In contrast, limited attempts have been made to develop methods for predicting T-helper epitopes/peptides that can induce a specific type of cytokine. This paper describes a method, developed for predicting interleukin-10 (IL-10) inducing peptides, a cytokine responsible for suppressing the immune system. All models were trained and tested on experimentally validated 394 IL-10 inducing and 848 non-inducing peptides. It was observed that certain types of residues and motifs are more frequent in IL-10 inducing peptides than in non-inducing peptides. Based on this analysis, we developed composition-based models using various machine-learning techniques. Random Forest-based model achieved the maximum Matthews’s Correlation Coefficient (MCC) value of 0.59 with an accuracy of 81.24% developed using dipeptide composition. In order to facilitate the community, we developed a web server “IL-10pred”, standalone packages and a mobile app for designing IL-10 inducing peptides (http://crdd.osdd.net/raghava/IL-10pred/). PMID:28211521

  15. IL-10 deficiency exacerbates the brain inflammatory response to permanent ischemia without preventing resolution of the lesion

    PubMed Central

    Pérez-de Puig, Isabel; Miró, Francesc; Salas-Perdomo, Angélica; Bonfill-Teixidor, Ester; Ferrer-Ferrer, Maura; Márquez-Kisinousky, Leonardo; Planas, Anna M

    2013-01-01

    Stroke induces inflammation that can aggravate brain damage. This work examines whether interleukin-10 (IL-10) deficiency exacerbates inflammation and worsens the outcome of permanent middle cerebral artery occlusion (pMCAO). Expression of IL-10 and IL-10 receptor (IL-10R) increased after ischemia. From day 4, reactive astrocytes showed strong IL-10R immunoreactivity. Interleukin-10 knockout (IL-10 KO) mice kept in conventional housing showed more mortality after pMCAO than the wild type (WT). This effect was associated with the presence of signs of colitis in the IL-10 KO mice, suggesting that ongoing systemic inflammation was a confounding factor. In a pathogen-free environment, IL-10 deficiency slightly increased infarct volume and neurologic deficits. Induction of proinflammatory molecules in the IL-10 KO brain was similar to that in the WT 6 hours after ischemia, but was higher at day 4, while differences decreased at day 7. Deficiency of IL-10 promoted the presence of more mature phagocytic cells in the ischemic tissue, and enhanced the expression of M2 markers and the T-cell inhibitory molecule CTLA-4. These findings agree with a role of IL-10 in attenuating local inflammatory reactions, but do not support an essential function of IL-10 in lesion resolution. Upregulation of alternative immunosuppressive molecules after brain ischemia can compensate, at least in part, the absence of IL-10. PMID:24022622

  16. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells

    PubMed Central

    Yoshimura, Teizo; Imamichi, Tomozumi; Weiss, Jonathan M.; Sato, Miwa; Li, Liangzhu; Matsukawa, Akihiro; Wang, Ji Ming

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly upregulated neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2–3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage CSF, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently upregulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly upregulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment. PMID:26834744

  17. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    SciTech Connect

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  18. Theophylline-Based KMUP-1 Improves Steatohepatitis via MMP-9/IL-10 and Lipolysis via HSL/p-HSL in Obese Mice

    PubMed Central

    Wu, Bin-Nan; Kuo, Kung-Kai; Chen, Yu-Hsun; Chang, Chain-Ting; Huang, Hung-Tu; Chai, Chee-Yin; Dai, Zen-Kong; Chen, Ing-Jun

    2016-01-01

    KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) has been reported to cause hepatic fat loss. However, the action mechanisms of KMUP-1 in obesity-induced steatohepatitis remains unclear. This study elucidated the steatohepatitis via matrix metallopeptidase 9 (MMP-9) and tumor necrosis factor α (TNFα), and related lipolysis via hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) by KMUP-1. KMUP-1 on steatohepatitis-associated HSL/p-HSL/ATGL/MMP-9/TNFα/interleukin-10 (IL-10) and infiltration of M1/M2 macrophages in obese mice were examined. KMUP-1 was administered by oral gavage from weeks 1–14 in high-fat diet (HFD)-supplemented C57BL/6J male mice (protection group) and from weeks 8–14, for 6 weeks, in HFD-induced obese mice (treatment group). Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining of tissues, oil globules number and size, infiltration and switching of M1/M2 macrophages were measured to determine the effects on livers. IL-10 and MMP-9 proteins were explored to determine the effects of KMUP-1 on M1/M2 macrophage polarization in HFD-induced steatohepatitis. Long-term administration of KMUP-1 reversed HFD-fed mice increased in body weight, sGOT/sGPT, triglyceride (TG) and glucose. Additionally, KMUP-1 decreased MMP-9 and reactive oxygen species (ROS), and increased HSL/p-HSL and IL-10 in HFD mice livers. In conclusion, KMUP-1, a phosphodiesterase inhibitor (PDEI), was shown to reduce lipid accumulation in liver tissues, suggesting that it could be able to prevent or treat steatohepatitis induced by HFD. PMID:27548140

  19. Modulation of Cytokine Secretion Allows CD4 T Cells Secreting IL-10 and IL-17 to Simultaneously Participate in Maintaining Tolerance and Immunity.

    PubMed

    Saito, Kanako; Pignon, Pascale; Ayyoub, Maha; Valmori, Danila

    2015-01-01

    CD4 T cells secreting IL-10 or IL-17 are frequent at mucosal sites, where their equilibrium is important for simultaneously maintaining tolerance and immunity to the resident microbiota. The mode of action of these cells, however, is as yet incompletely understood. In this study, we have combined ex vivo analysis of CD4 T cells producing IL-10 or/and IL-17 with assessment of clonal populations isolated ex vivo using a cytokine catch assay. We found that circulating CD4 T cells secreting IL-10 or/and IL-17 ex vivo include both conventional FOXP3- CD4 T cells and FOXP3+ Helios- Treg. Upon assessment of clonal populations derived from single ex vivo isolated cytokine secreting cells, we found that IL-10 or/and IL-17 secreting cells prevalently secrete one or the other cytokine depending on the type of stimulation, the time after stimulation and the presence of microbial products. Namely, IL-10 secretion by clonal cells was prevalent at early time points after TCR mediated stimulation, was independent of co-stimulation and was increased in the presence of the microbial fermentation product butyrate. In contrast, IL-17 secretion was higher at later time points after TCR mediated stimulation and in the presence of co-stimulatory signals. Taken together, these results provide insights into the mechanisms that, through modulation of cytokine secretion depending on conditions, allow IL-10 and IL-17 producing CD4 T cells to contribute to maintain tolerance to microbes locally, while retaining the ability to participate in protective immune responses at distant sites.

  20. Impairment of the cellular immune response in acute murine toxoplasmosis: regulation of interleukin 2 production and macrophage-mediated inhibitory effects.

    PubMed Central

    Haque, S; Khan, I; Haque, A; Kasper, L

    1994-01-01

    Depression of the cellular immune response to Toxoplasma gondii has been reported in both mice and humans. The present study was undertaken to determine the kinetics and mechanism of the observed downregulation of interleukin 2 (IL-2) production during experimental murine toxoplasmosis. For these investigations, the cell-mediated immune response to the wild type (PTg) was compared with that to the less-virulent mutant parasite (PTgB), which is deficient in the major surface antigen, p30 (SAG-1). Spleen cells from infected A/J mice failed to proliferate in response to Toxoplasma antigens during the first week of infection. Both PTg- and PTgB-infected A/J mice exhibited a significant reduction in the concanavalin A (Con A)-induced lymphoproliferative response. Further, the response of splenocytes from mice infected with the wild-type parasite was significantly diminished compared with that of mice infected with PTgB. The lymphoproliferative response to Con A reached its nadir at day 7 and remained below control levels for at least 14 days postinfection. By day 21 postinfection, the response to Con A and to Toxoplasma antigens was restored to the level observed prior to day 7. Con A-stimulated culture supernatants of spleen cells from mice on day 7 postinfection contained significantly less IL-2 than normal mice. There was no significant difference in the numbers of binding sites or capacity of high-affinity IL-2 receptors between infected and normal mouse splenocytes as determined by Scatchard analysis. Exogenous IL-2 at different concentrations failed to restore the proliferative response of lymphocytes from infected mice to Con A. Adherent macrophages from 7-day-infected mice were able to suppress IL-2 production by normal splenocytes following stimulation with Con A. The inhibitory activity mediated by infected cells was reversed by the antibody to IL-10 but not transforming growth factor beta. There were insignificant levels of nitric oxide production in both

  1. Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide

    PubMed Central

    1980-01-01

    After in vitro exposure to lipopolysaccharide (LPS) or muramyl dipeptide (MDP), cultured resident mouse peritoneal macrophages were primed to display enhanced generation of superoxide anion (O2-) in response to stimulation by phorbol myristate acetate (PMA) or opsonized zymosan. Priming with LPS (1 microgram/ml) produced a sevenfold enhancement of PMA-stimulated O2- generation; priming was detected within 30 min and persisted for at least 4 d. Exposure to MDP (1 muM) primed the macrophages to double their O2- release; the response was first observed after 4 h and persisted for at least 3 d. The priming response was not observed with stereoisomers of MDP, which are inactive as adjuvants. LPS and MDP appeared to work directly on the macrophages rather than indirectly by interacting with adherent lymphocytes: (a) Addition of nonadherent cell populations that contained lymphocytes had no effect on the response. (b) The response was normal with cells from nude mice, which lack mature T lymphocytes. (c) Macrophages from C3H/HeJ mice, whose B lymphocytes fail to respond to LPS, were weak in their response to priming LPS; the addition of normal (C3Heb/FeJ) nonadherent cells had no effect on this weak response. (d) The macrophage-like cell line J774.1 also showed enhanced O2--generating capacity after a 4-h exposure to LPS or MDP. The O2--generating capacity of macrophages primed with LPS in vitro was equivalent to that previously observed with cells elicited in vivo by injection of LPS or activated by infection with Bacille Calmette-Guerin. The data suggest that previous exposure to bacterial products could prime macrophages to respond with increased production of toxic oxygen metabolites on contact with invading microorganisms or tumor cells. PMID:7350246

  2. Pulmonary Surfactant Phosphatidylglycerol Inhibits Mycoplasma pneumoniae-stimulated Eicosanoid Production from Human and Mouse Macrophages*

    PubMed Central

    Kandasamy, Pitchaimani; Zarini, Simona; Chan, Edward D.; Leslie, Christina C.; Murphy, Robert C.; Voelker, Dennis R.

    2011-01-01

    Mycoplasma pneumoniae is a human pathogen causing respiratory infections that are also associated with serious exacerbations of chronic lung diseases. Membranes and lipoproteins from M. pneumoniae induced a 4-fold increase in arachidonic acid (AA) release from RAW264.7 and a 2-fold increase in AA release from primary human alveolar macrophages. The bacterial lipoprotein mimic and TLR2/1 agonist Pam3Cys and the TLR2/6 agonist MALP-2 produced effects similar to those elicited by M. pneumoniae in macrophages by inducing the phosphorylation of p38MAPK and p44/42ERK1/2 MAP kinases and cyclooxygenase-2 (COX-2) expression. M. pneumoniae induced the generation of prostaglandins PGD2 and PGE2 from RAW264.7 cells and thromboxane B2 (TXB2) from human alveolar macrophages. Anti-TLR2 antibody completely abolished M. pneumoniae-induced AA release and TNFα secretion from RAW264.7 cells and human alveolar macrophages. Disruption of the phosphorylation of p44/42ERK1/2 or inactivation of cytosolic phospholipase A2α (cPLA2α) completely inhibited M. pneumoniae-induced AA release from macrophages. The minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG), antagonized the proinflammatory actions of M. pneumoniae, Pam3Cys, and MALP-2 by reducing the production of AA metabolites from macrophages. The effect of POPG was specific, insofar as saturated PG, and saturated and unsaturated phosphatidylcholines did not have significant effect on M. pneumoniae-induced AA release. Collectively, these data demonstrate that M. pneumoniae stimulates the production of eicosanoids from macrophages through TLR2, and POPG suppresses this pathogen-induced response. PMID:21205826

  3. Polymorphisms of IL-10 gene in patients infected with HCV under antiviral treatment in southern Brazil.

    PubMed

    da Silva, Naylê Maria Oliveira; Germano, Fabiana Nunes; Vidales-Braz, Beatris Maria; Carmo Zanella, Ricardo do; dos Santos, Deise Machado; Lobato, Rubens; de Martinez, Ana Maria Barral

    2015-06-01

    Interleukin-10 (IL-10) is a cytokine that plays an important role in the regulation of the immune system. Gene polymorphisms of IL-10 have been associated with the different expression levels of this cytokine. In hepatitis C virus infection, IL-10 appears to interfere with the progression of disease, viral persistence and the response to therapy. This study investigated genetic variability in the IL-10 gene promoter between patients infected with hepatitis C virus (HCV) and healthy individuals, associating the frequency of polymorphisms with different aspects of viral infection. This is a case-control study with 260 patients who were infected with HCV and 260 healthy individuals. Genotyping of the polymorphisms was performed using the technique of amplification refractory mutation system PCR (ARMS-PCR) for regions of the IL-10 gene promoter (-1082 G/A, -819 C/T, -592 C/A). The frequencies of alleles and genotypes related to polymorphisms in the IL-10 gene promoter showed a higher frequency of the G allele and genotype GG in the -1082 region between the infected group and the control group (p=0.005 and p=0.001, respectively), whereas the AA genotype was significantly more frequent in the control group. The frequencies of the haplotypes GTA and GCC were higher in the group of infected individuals, whereas the haplotype ATA was more frequent in the healthy group (p<0.006). It was also observed that the genotypes GG and AG in the region -1082 were significantly more frequent among patients infected with HCV who were in advanced stages of fibrosis and cirrhosis (p=0.042). No association was observed between polymorphisms of IL-10 and sustained virologic response (SVR).

  4. HF-LPLI-treated tumor cells induce NO production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Zhou, Feifan; Wu, Shengnan; Xing, Da

    2013-02-01

    High fluence low-power laser irradiation (HF-LPLI) provides a new stimulator to trigger cell apoptosis, and it is well known that apoptotic cells provide antigens to effectively trigger recognition by the immune system. In order to investigate the effect of HF-LPLI on the professional antigen-presenting cell (APC) function, in our primary study, we focused our attention on the effect of HF-LPLI-treated tumor cells on macrophages phagocytosis and NO production. Both confocal microscopy and flowcytometry analysis showed that HF-LPLI (120 J/cm2) induced significantly EMT6 death. Further experiments showed that HF-LPLI-treated EMT6 cells could be phagocyted by the murine macrophage cells RAW264.7, and could induce NO production in macrophages. Taken together, our results indicate that HF-LPLI-treated tumor cells effectively regulated the immune system. The HF-LPLI effect on the APC function needs to be further studied.

  5. Macrophage Polarization.

    PubMed

    Murray, Peter J

    2017-02-10

    Macrophage polarization refers to how macrophages have been activated at a given point in space and time. Polarization is not fixed, as macrophages are sufficiently plastic to integrate multiple signals, such as those from microbes, damaged tissues, and the normal tissue environment. Three broad pathways control polarization: epigenetic and cell survival pathways that prolong or shorten macrophage development and viability, the tissue microenvironment, and extrinsic factors, such as microbial products and cytokines released in inflammation. A plethora of advances have provided a framework for rationally purifying, describing, and manipulating macrophage polarization. Here, I assess the current state of knowledge about macrophage polarization and enumerate the major questions about how activated macrophages regulate the physiology of normal and damaged tissues.

  6. Haplotypes of the IL10 Gene as Potential Protection Factors in Leprosy Patients

    PubMed Central

    Garcia, Patricia; Alencar, Dayse; Pinto, Pablo; Santos, Ney; Salgado, Claudio; Sortica, Vinicius A.; Hutz, Mara H.; Santos, Sidney

    2013-01-01

    Leprosy is an infectious disease caused by Mycobacterium leprae characterized by dermatoneurological signs and symptoms that has a large number of new cases worldwide. Several studies have associated interleukin 10 with susceptibility/resistance to several diseases. We investigated haplotypes formed by three single nucleotide polymorphisms (SNPs) located in the IL10 gene (A-1082G, C-819T, and C-592A) in order to better understand the susceptibility to and severity of leprosy in an admixed northern Brazil population, taking into account estimates of interethnic admixture. We observed the genotypes ACC/ACC (P = 0.021, odds ratio [OR] [95% confidence interval (CI)] = 0.290 [0.085 to 0823]) and ACC/GCC (P = 0.003, OR [95% CI] = 0.220 [0.504 to 0.040]) presenting significant results for protection against leprosy development, framed in the profiles of low and medium interleukin production, respectively. Therefore, we suggest that genotypes A-1082G, C-819T, and C-592A formed by interleukin-10 polymorphisms are closely related to protection of the leprosy development in an admixed northern Brazil population, in particular ACC/ACC and ACC/GCC genotypes. PMID:23966553

  7. IL-10 Is Significantly Involved in HSP70-Regulation of Experimental Subretinal Fibrosis

    PubMed Central

    Yang, Yang; Takeda, Atsunobu; Yoshimura, Takeru; Oshima, Yuji; Sonoda, Koh-Hei; Ishibashi, Tatsuro

    2013-01-01

    Subretinal fibrosis is directly related to severe visual loss, especially if occurs in the macula, and is frequently observed in advanced age-related macular degeneration and other refractory eye disorders such as diabetic retinopathy and uveitis. In this study, we analyzed the immunosuppressive mechanism of subretinal fibrosis using the novel animal model recently demonstrated. Both TLR2 and TLR4 deficient mice showed significant enlargement of subretinal fibrotic area as compared with wild-type mice. A single intraocular administration of heat shock protein 70 (HSP70), which is an endogenous ligand for TLR2 and TLR4, inhibited subretinal fibrosis in wild-type mice but not in TLR2 and TLR4-deficient mice. Additionally, HSP70 induced IL-10 production in eyes from wild-type mice but was impaired in both TLR2- and TLR4-deficient mice, indicating that HSP70-TLR2/TLR4 axis plays an immunomodulatory role in subretinal fibrosis. Thus, these results suggest that HSP70-TLR2/TLR4 axis is a new therapeutic target for subretinal fibrosis due to prognostic CNV. PMID:24376495

  8. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    PubMed Central

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-01-01

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pre-treatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pre-treatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pre-treatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from a M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia, and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies

  9. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    SciTech Connect

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  10. Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines.

    PubMed

    Rabadi, Seham M; Sanchez, Belkys C; Varanat, Mrudula; Ma, Zhuo; Catlett, Sally V; Melendez, Juan Andres; Malik, Meenakshi; Bakshi, Chandra Shekhar

    2016-03-04

    Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth.

  11. Contrary to BCG, MLM fails to induce the production of TNF alpha and NO by macrophages.

    PubMed

    Rojas-Espinosa, Oscar; Wek-Rodríguez, Kendy; Arce-Paredes, Patricia; Aguilar-Torrentera, Fabiola; Truyens, Carine; Carlier, Yves

    2002-06-01

    Pathogenic mycobacteria must possess efficient survival mechanisms to resist the harsh conditions of the intraphagosomal milieu. In this sense, Mycobacterium lepraemurium (MLM) is one of the most evolved intracellular parasites of murine macrophages; this microorganism has developed a series of properties that allows it not only to resist, but also to multiply within the inhospitable environment of the phagolysosome. Inside the macrophages, MLM appears surrounded by a thick lipid-envelope that protects the microorganism from the digestive effect of the phagosomal hydrolases and the acid pH. MLM produces a disease in which the loss of specific cell-mediated immunity ensues, thus preventing activation of macrophages. In vitro, and possibly also in vivo, MLM infects macrophages without triggering the oxidative (respiratory burst) response of these cells, thus preventing the production of the toxic reactive oxygen intermediaries (ROI). Supporting the idea that MLM is within the most evolved pathogenic microorganisms, in the present study we found, that contrary to BCG, M. lepraemurium infects macrophages without stimulating these cells to produce meaningful levels of tumor necrosis factor alpha (TNF alpha) or nitric oxide (NO). Thus, the ability of the microorganisms to stimulate in their cellular hosts, the production of ROI and RNI (reactive nitrogen intermediates), seems to be an inverse correlate of their pathogenicity; the lesser their ability, the greater their pathogenicity.

  12. Selective differences in macrophage populations and monokine production in resolving pulmonary granuloma and fibrosis.

    PubMed Central

    Lemaire, I.

    1991-01-01

    Alveolar macrophages (AM) and their production of interleukin-1-like activity (IL-1) and macrophage-derived growth factor for fibroblasts (MDGF) were examined during chronic inflammatory reactions leading to either granuloma formation or fibrosis. Groups of five rats each received, respectively, a single transtracheal injection of xonotlite, attapulgite, short chrysotile 4T30, UICC chrysotile B asbestos, or saline. One month later, such treatments induced either no change (xonotlite), granuloma formation (attapulgite and short chrysotile 4T30), or fibrosis (UICC chrysotile B). By 8 months, however, the granulomatous reactions had resolved or greatly diminished, whereas the fibrosis persisted irreversibly. Parallel examination of cell populations obtained by bronchoalveolar lavage revealed that multinucleated giant macrophages (MGC) were present in lavage fluids of animals with resolving granulomatous reactions but absent in those obtained from animals with lung fibrosis. Evaluation of monokine production by inflammatory macrophages also revealed significant differences. Enhanced production of IL-1-like activity was seen in both types of lung injury, although especially during the early stage (1 month) and decreased thereafter (8 months). By contrast, augmentation of MDGF production was observed in animals with lung fibrosis only and persisted up to 9 months. Taken together, these data indicate that production of selected cytokines, as well as AM differentiation along a given pathway, may modulate the outcome of a chronic inflammatory response. PMID:1992772

  13. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production

    PubMed Central

    Yang, Kun; Wu, Yongjian; Xie, Heping; Li, Miao; Ming, Siqi; Li, Liyan; Li, Meiyu; Wu, Minhao; Gong, Sitang; Huang, Xi

    2016-01-01

    Mycobacterium tuberculosis (MTB) is a hard-to-eradicate intracellular microbe, which escapes host immune attack during latent infection. Recent studies reveal that mesenchymal stem cells (MSCs) provide a protective niche for MTB to maintain latency. However, the regulation of mycobacterial residency in MSCs in the infectious microenvironment remains largely unknown. Here, we found that macrophage-mediated inflammatory response during MTB infection facilitated the clearance of bacilli residing in mouse MSCs. Higher inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production were observed in mouse MSCs under macrophage-mediated inflammatory circumstance. Blocking NO production in MSCs increased the survival of intracellular mycobacteria, indicating NO-mediated antimycobacterial activity. Moreover, both nuclear factor κB (NF-κB) and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways were involved in iNOS expression and NO production in inflammatory microenvironment. Furthermore, pro-inflammatory cytokine interleukin-1β could trigger NO production in MSCs and exert anti-mycobacterial activity via NF-κB signaling pathway. Neutralization of interleukin-1β in macrophage-mediated inflammatory microenvironment dampened the ability of mouse MSCs to produce NO. Together, our findings demonstrated that macrophage-mediated inflammatory response during mycobacterial infection promotes the clearance of bacilli in mouse MSCs by increasing NO production, which may provide a better understanding of latent MTB infection. PMID:27251437

  14. The predominance of alternatively activated macrophages following challenge with cell wall peptide-polysaccharide after prior infection with Sporothrix schenckii.

    PubMed

    Alegranci, Pamela; de Abreu Ribeiro, Livia Carolina; Ferreira, Lucas Souza; Negrini, Thais de Cássia; Maia, Danielle Cardoso Geraldo; Tansini, Aline; Gonçalves, Amanda Costa; Placeres, Marisa Campos Polesi; Carlos, Iracilda Zeppone

    2013-08-01

    Sporotrichosis is a subcutaneous mycosis that is caused by the dimorphic fungus Sporothrix schenckii. This disease generally occurs within the skin and subcutaneous tissues, causing lesions that can spread through adjacent lymphatic vessels and sometimes leading to systemic diseases in immunocompromised patients. Macrophages are crucial for proper immune responses against a variety of pathogens. Furthermore, macrophages can play different roles in response to different microorganisms and forms of activation, and they can be divided into "classic" or "alternatively" activated populations, as also known as M1 and M2 macrophages. M1 cells can lead to tissue injury and contribute to pathogenesis, whereas M2 cells promote angiogenesis, tissue remodeling, and repair. The aim of this study was to investigate the roles of M1 and M2 macrophages in a sporotrichosis model. Toward this end, we performed phenotyping of peritoneal exudate cells and evaluated the concomitant production of several immunomediators, including IL-12, IL-10, TGF-β, nitric oxide, and arginase-I activity, which were stimulated ex vivo with cell wall peptide-polysaccharide. Our results showed the predominance of the M2 macrophage population, indicated by peaks of arginase-I activity as well as IL-10 and TGF-β production during the 6th and 8th weeks after infection. These results were consistent with cellular phenotyping that revealed increases in CD206-positive cells over this period. This is the first report of the participation of M2 macrophages in sporotrichosis infections.

  15. Differential Responses of Disease-Resistant and Disease-Susceptible Primate Macrophages and Myeloid Dendritic Cells to Simian Hemorrhagic Fever Virus Infection

    PubMed Central

    Vatter, Heather A.

    2014-01-01

    Simian hemorrhagic fever virus (SHFV) causes a fatal hemorrhagic fever in macaques but an asymptomatic, persistent infection in baboons. To investigate factors contributing to this differential infection outcome, the targets of SHFV infection, macrophages (MΦs) and myeloid dendritic cells (mDCs), were differentiated from macaque and baboon peripheral blood monocytes and used to compare viral replication and cell responses. SHFV replicated in >90% of macaque MΦs but in only ∼10% of baboon MΦs. Although SHFV infected ∼50% of macaque and baboon mDCs, virus replication was efficient in macaque but not in baboon mDCs. Both types of macaque cultures produced higher virus yields than baboon cultures. A more efficient type I interferon response and the production of proinflammatory cytokines, including interleukin-1β (IL-1β), IL-6, IL-12/23(p40), tumor necrosis factor alpha (TNF-α), and macrophage inflammatory protein 1α (MIP-1α), in response to SHFV infection were observed in macaque but not baboon cultures, suggesting less efficient counteraction of these responses by viral proteins in macaque cells. Baboon cultures produced higher levels of IL-10 than macaque cultures both prior to and after SHFV infection. In baboon but not macaque cell cultures, SHFV infection upregulated IL-10R1, a subunit of the IL-10 receptor (IL-10R), and also SOCS3, a negative regulator of proinflammatory cytokine production. Incubation of macaque cultures with human IL-10 before and/or after SHFV infection decreased production of IL-6, IL-1β, and MIP-1α but not TNF-α, suggesting a role for IL-10 in suppressing SHFV-induced proinflammatory cytokine production in macaques. PMID:24335289

  16. Impact of the IL-10 Promoter Gene Polymorphisms in the Severity of Chronic Hepatitis B Infection

    PubMed Central

    Ghaleh Baghi, Sahand; Alavian, Seyed Moayed; Mehrnoush, Leila; Salimi, Shima

    2015-01-01

    Background: Interleukin-10 (IL-10) is an important anti-inflammatory cytokine. The polymorphisms of its promoter gene have been considered to be related with the chronicity of hepatitis B infection. Objectives: The aim of this study was to evaluate the polymorphisms at different positions in the IL-10 promoter gene in patients with chronic hepatitis B. Patients and Methods: Totally, 166 patients with chronic hepatitis B infection were enrolled. Genotypes at different positions (i.e. -819, - 592, and - 1082) in the IL-10 gene promoter were determined. Results: The C/A genotype at position -592, C/T genotype at position -819, and GCC/ATA haplotype of the IL-10 gene promoter were significantly more common in the patients with cirrhosis. The genotypes were significantly different between the hepatitis B e antigen (HBeAg)-negative and HBeAg-positive patients at position -592 (C/A and C/C), position -819 (C/C and C/T), and position -1082 (A/A and G/A). Conclusions: Some IL-10 promoter gene polymorphisms predisposed the infected hepatitis B virus cases to cirrhosis in our study population. PMID:26300930

  17. Relevance of HLA-G, HLA-E and IL-10 expression in lip carcinogenesis.

    PubMed

    Gonçalves, Andréia Souza; Oliveira, Jéssica Petini; Oliveira, Carolina Ferrari Piloni; Silva, Tarcília Aparecida; Mendonça, Elismauro Francisco; Wastowski, Isabela Jubé; Batista, Aline Carvalho

    2016-09-01

    HLA-G, HLA-E and IL-10 are molecules which can provide tumor immunosuppression as well as the capacity of evasion to the immune system host. This study set out to evaluate HLA-G, HLA-E and IL-10 expression in lip squamous cell carcinoma (LSCC) and in a potentially malignant disorder (actinic cheilitis - AC), correlating the expression of these proteins with the degree of epithelial dysplasia. Immunohistochemistry was undertaken to identify HLA-G, HLA-E and IL-10 in samples from patients with LSCC (n=20), AC (n=30) and healthy lip mucosa (control) (n=10). A semiquantitative scoring system was used for analysis. Differences between the groups were evaluated using the Pearson Chi-Squared test. The percentage of LSCC samples showing high immunoreactivity (IRS>2) for HLA-G, HLA-E and IL-10 (neoplastic/epithelial cells) and HLA-E (stroma/connective tissue) was significantly higher that of the control (P<0.05). A tendency for a progressive increase in the proteins analyzed was observed from the control to AC and to LSCC. The degree of dysplasia in the AC samples was not significantly associated with the proteins evaluated (P>0.05). The high expression of HLA-G, HLA-E and IL-10 in AC and LSCC reflects the capacity that these pathologies have for evasion and progression.

  18. IL-10 and PRKDC polymorphisms are associated with glioma patient survival

    PubMed Central

    Hu, Mingjun; Du, Jieli; Cui, Lihong; Huang, Tingqin; Guo, Xiaoye; Zhao, Yonglin; Ma, Xudong; Jin, Tianbo; Li, Gang; Song, Jinning

    2016-01-01

    Interleukin-10 (IL-10) and DNA repair gene PRKDC mutations are implicated in the development of multiple human cancers, including glioma. We investigated associations between IL-10 and PRKDC gene polymorphisms and prognosis in low- and high-grade glioma patients. We analyzed the associations of one IL-10 and one PRKDC single nucleotide polymorphism with patient clinical factors in 481 glioma patients using Cox proportional hazard models and Kaplan-Meier curves. We also assessed associations between patient clinical characteristics and prognosis. Our data showed that the extent of tumor resection (gross-total resection) and application of chemotherapy were associated with improved patient outcomes in all glioma cases. Additionally, univariate (Log-rank p = 0.019) and multivariate Cox regression analyses (p = 0.022) showed that the IL-10 rs1800871 C/T genotype correlates with improved overall survival in cases of low-grade glioma, whereas the PRKDC rs7003908 C/C genotype correlated with reduced overall and progression-free survival in high-grade glioma patients in univariate (Log-rank p = 0.000 and p = 0.000, respectively) and multivariate Cox regression analyses (p = 0.001; p = 0.002, respectively). These results suggest that IL-10 rs1800871 and PRKDC rs7003908 may be useful biomarkers for predicting glioma patient outcome. Further functional studies are needed to evaluate the mechanisms by which these polymorphisms affect glioma progression. PMID:27811370

  19. Glutamate decreases the secretion of IL-10 by peripheral blood lymphocytes in persons with autoimmune thyroiditis.

    PubMed

    Kvaratskhelia, E; Dabrundashvili, N; Gagua, M; Maisuradze, E; Mikeladze, D

    2008-11-01

    Human T lymphocytes expose ionotropic and metabotropic glutamate receptors, which control immune responses, cell activation, maturation, and death. Several cytokines release during inflammation which identification may have important physiological and clinical implications. Main biological function of IL-10 is limitation and termination of inflammatory responses and the regulation of differentiation and proliferation of several immune cells. Various inflammatory molecules regulated the secretion of IL-8 and IL-10, but the action of glutamate on the biosynthesis of cytokines is unknown. We have found that in peripheral blood lymphocytes glutamate at the concentrations within normal plasma levels (1 x 10(-5) M), as well as at lower concentration (0.3 x 10(-6) M) changes the secretion of immunosuppressive cytokine IL-10, whereas synthesis of proinflammatory chemokine, IL-8 did not changed significantly. Moreover, our results have shown that peripheral blood lymphocytes from patients with autoimmune thyroiditis release less IL-10 at both concentration of glutamate than peripheral blood lymphocytes from healthy persons. These data suggest that glutamate decrease the secretion of IL-10 by peripheral blood lymphocytes, especially in patients with autoimmune thyroiditis that may be responsible for prolongation of inflammation.

  20. Escherichia coli maltose-binding protein activates mouse peritoneal macrophages and induces M1 polarization via TLR2/4 in vivo and in vitro.

    PubMed

    Ni, Weihua; Zhang, Qingyong; Liu, Guomu; Wang, Fang; Yuan, Hongyan; Guo, Yingying; Zhang, Xu; Xie, Fei; Li, Qiongshu; Tai, Guixiang

    2014-07-01

    Maltose-binding protein (MBP) is a component of the maltose transport system of Escherichia coli. Our previous study found that MBP combined with Bacillus Calmette-Guerin (BCG) increases the percentage of activated macrophages in the spleen and the pinocytic activity of peritoneal macrophages in vivo. However, the effect of MBP alone on macrophages remains unclear. In the present study, the results showed that MBP enhanced LPS-stimulated macrophage activity in vivo. Subsequently, we investigated the regulatory effect of MBP on mouse peritoneal macrophages in vitro and the possible underlying mechanism. The results showed that MBP directly promoted macrophage phagocytic activity and increased the production of NO, IL-1β and IL-6. Notably, macrophage phenotypic analysis showed that MBP significantly increased iNOS, IL-12p70 and CD16/32. In contrast, MBP decreased the secretion of IL-10 and slightly decreased Arg-1 mRNA and CD206 protein expression. These results suggested that MBP activated macrophages and polarized them into M1 macrophages. Further study found that MBP directly bound to macrophages and upregulated TLR2 mRNA expression. This process was accompanied by a clear increase in MyD88 expression and phosphorylation of p38 MAPK and IκB-α, but these effects were largely abrogated by pretreatment with anti-TLR2 or anti-TLR4 antibodies. The effects of MBP on macrophage NO production were also partially inhibited by anti-TLR2 and/or anti-TLR4 antibodies. Furthermore, the effect of MBP on IL-12 and IL-10 secretion was largely influenced by the NF-κB inhibitor PDTC and the p38 MAPK inhibitor SB203580. These results suggest that MBP directly activates macrophages and induces M1 polarization through a process that may involve TLR2 and TLR4.

  1. Histone Deacetylase Inhibitors Promote Mitochondrial Reactive Oxygen Species Production and Bacterial Clearance by Human Macrophages.

    PubMed

    Ariffin, Juliana K; das Gupta, Kaustav; Kapetanovic, Ronan; Iyer, Abishek; Reid, Robert C; Fairlie, David P; Sweet, Matthew J

    2015-12-28

    Broad-spectrum histone deacetylase inhibitors (HDACi) are used clinically as anticancer agents, and more isoform-selective HDACi have been sought to modulate other conditions, including chronic inflammatory diseases. Mouse studies suggest that HDACi downregulate immune responses and may compromise host defense. However, their effects on human macrophage antimicrobial responses are largely unknown. Here, we show that overnight pretreatment of human macrophages with HDACi prior to challenge with Salmonella enterica serovar Typhimurium or Escherichia coli results in significantly reduced intramacrophage bacterial loads, which likely reflect the fact that this treatment regime impairs phagocytosis. In contrast, cotreatment of human macrophages with HDACi at the time of bacterial challenge did not impair phagocytosis; instead, HDACi cotreatment actually promoted clearance of intracellular S. Typhimurium and E. coli. Mechanistically, treatment of human macrophages with HDACi at the time of bacterial infection enhanced mitochondrial reactive oxygen species generation by these cells. The capacity of HDACi to promote the clearance of intracellular bacteria from human macrophages was abrogated when cells were pretreated with MitoTracker Red CMXRos, which perturbs mitochondrial function. The HDAC6-selective inhibitor tubastatin A promoted bacterial clearance from human macrophages, whereas the class I HDAC inhibitor MS-275, which inhibits HDAC1 to -3, had no effect on intracellular bacterial loads. These data are consistent with HDAC6 and/or related HDACs constraining mitochondrial reactive oxygen species production from human macrophages during bacterial challenge. Our findings suggest that, whereas long-term HDACi treatment regimes may potentially compromise host defense, selective HDAC inhibitors may have applications in treating acute bacterial infections.

  2. Histone Deacetylase Inhibitors Promote Mitochondrial Reactive Oxygen Species Production and Bacterial Clearance by Human Macrophages

    PubMed Central

    Ariffin, Juliana K.; das Gupta, Kaustav; Kapetanovic, Ronan; Iyer, Abishek; Reid, Robert C.; Fairlie, David P.

    2015-01-01

    Broad-spectrum histone deacetylase inhibitors (HDACi) are used clinically as anticancer agents, and more isoform-selective HDACi have been sought to modulate other conditions, including chronic inflammatory diseases. Mouse studies suggest that HDACi downregulate immune responses and may compromise host defense. However, their effects on human macrophage antimicrobial responses are largely unknown. Here, we show that overnight pretreatment of human macrophages with HDACi prior to challenge with Salmonella enterica serovar Typhimurium or Escherichia coli results in significantly reduced intramacrophage bacterial loads, which likely reflect the fact that this treatment regime impairs phagocytosis. In contrast, cotreatment of human macrophages with HDACi at the time of bacterial challenge did not impair phagocytosis; instead, HDACi cotreatment actually promoted clearance of intracellular S. Typhimurium and E. coli. Mechanistically, treatment of human macrophages with HDACi at the time of bacterial infection enhanced mitochondrial reactive oxygen species generation by these cells. The capacity of HDACi to promote the clearance of intracellular bacteria from human macrophages was abrogated when cells were pretreated with MitoTracker Red CMXRos, which perturbs mitochondrial function. The HDAC6-selective inhibitor tubastatin A promoted bacterial clearance from human macrophages, whereas the class I HDAC inhibitor MS-275, which inhibits HDAC1 to -3, had no effect on intracellular bacterial loads. These data are consistent with HDAC6 and/or related HDACs constraining mitochondrial reactive oxygen species production from human macrophages during bacterial challenge. Our findings suggest that, whereas long-term HDACi treatment regimes may potentially compromise host defense, selective HDAC inhibitors may have applications in treating acute bacterial infections. PMID:26711769

  3. Blueberries inhibit proinflammatory cytokine TNF-alpha and IL-6 production in macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. However, the underlying mechanisms are not fully understood. In this study, the effect of BB on proinflammatory cytokine production in macrophages was investigated. ApoE-/- mice were fed AIN-93G diet (...

  4. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    ERIC Educational Resources Information Center

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  5. No effect of exposure to static and sinusoidal magnetic fields on nitric oxide production by macrophages

    SciTech Connect

    Mnaimneh, S. |; Bizri, M. |; Veyret, B.

    1996-12-31

    The effects of exposure to static (1--100 mT) or sinusoidal (1 Hz, 1.6 mT) magnetic fields on the production of nitric oxide (NO) by murine BCG-activated macrophages were investigated. In these cells, the inducible isoform of NO synthase is present. No significant differences were observed in nitrite levels among exposed, sham-exposed, or control macrophages after exposure for 14 h to static fields of 1, 10, 50, and 100 mT and to sinusoidal 1.6 mT, 1 Hz magnetic fields.

  6. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  7. Granulocyte-Macrophage Colony Stimulatory Factor Enhances the Pro-Inflammatory Response of Interferon-γ-Treated Macrophages to Pseudomonas aeruginosa Infection

    PubMed Central

    Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages

  8. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    PubMed

    Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages

  9. Gene Expression Patterns in Experimental Colitis in IL-10 Deficient Mice

    PubMed Central

    Hansen, Jonathan J.; Holt, Lisa; Sartor, R. Balfour

    2009-01-01

    While others have described gene expression patterns in humans with inflammatory bowel diseases and animals with chemically-induced colitis, a genome-wide comparison of gene expression in genetically susceptible animals that develop spontaneous colitis has not been reported. We used microarray technology to compare gene expression profiles in cecal specimens from specific pathogen-free IL10-deficient (IL10−/−) mice with colitis and normal wild-type (WT) mice. RNA isolated from ceca of IL10−/− and WT mice was subjected to microarray analysis. Results were confirmed by real-time PCR and immunofluorescence microscopy of selected molecules. Expression of the selected genes in DSS-treated mice with colitis and epithelial cell lines activated with pathophysiologic stimuli was measured by real-time PCR. Histological inflammation of the colon and IL-12/23p40 secretion from intestinal explants were greater in IL10−/− and DSS-treated mice vs. WT and untreated mice. Microarray analysis demonstrated >10-fold induction of the following molecules in the ceca of IL10−/− mice: Mitochondrial ribosomal protein-L33, aquaporin-4, indoleamine-pyrrole-2,3- dioxygenase, and MHC class II with 63, 25, 20, and 12-fold increases, respectively. Cytochrome-P450, pancreatic lipase-related protein-2, and transthyretin were down-regulated in IL10−/− mice. MHC II was increased throughout the colon, and aquaporin-4 was increased in the basolateral aspect of cecal epithelial cells. MHC II mRNA was increased in epithelial cells treated with IFNγ, but not TNF or Toll-like receptor ligands. Although most upregulated genes in experimental colitis are immune-related, aquaporin-4 and mitochondrial ribosomal protein, which have not been previously associated with inflammation, were most highly upregulated. PMID:19133689

  10. Immunological Outcome in Haploidentical-HSC Transplanted Patients Treated with IL-10-Anergized Donor T Cells

    PubMed Central

    Bacchetta, Rosa; Lucarelli, Barbarella; Sartirana, Claudia; Gregori, Silvia; Lupo Stanghellini, Maria T.; Miqueu, Patrick; Tomiuk, Stefan; Hernandez-Fuentes, Maria; Gianolini, Monica E.; Greco, Raffaella; Bernardi, Massimo; Zappone, Elisabetta; Rossini, Silvano; Janssen, Uwe; Ambrosi, Alessandro; Salomoni, Monica; Peccatori, Jacopo; Ciceri, Fabio; Roncarolo, Maria-Grazia

    2013-01-01

    T-cell therapy after hematopoietic stem cell transplantation (HSCT) has been used alone or in combination with immunosuppression to cure hematologic malignancies and to prevent disease recurrence. Here, we describe the outcome of patients with high-risk/advanced stage hematologic malignancies, who received T-cell depleted (TCD) haploidentical-HSCT (haplo-HSCT) combined with donor T lymphocytes pretreated with IL-10 (ALT-TEN trial). IL-10-anergized donor T cells (IL-10-DLI) contained T regulatory type 1 (Tr1) cells specific for the host alloantigens, limiting donor-vs.-host-reactivity, and memory T cells able to respond to pathogens. IL-10-DLI were infused in 12 patients with the goal of improving immune reconstitution after haplo-HSCT without increasing the risk of graft-versus-host-disease (GvHD). IL-10-DLI led to fast immune reconstitution in five patients. In four out of the five patients, total T-cell counts, TCR-Vβ repertoire and T-cell functions progressively normalized after IL-10-DLI. These four patients are alive, in complete disease remission and immunosuppression-free at 7.2 years (median follow-up) after haplo-HSCT. Transient GvHD was observed in the immune reconstituted (IR) patients, despite persistent host-specific hypo-responsiveness of donor T cells in vitro and enrichment of cells with Tr1-specific biomarkers in vivo. Gene-expression profiles of IR patients showed a common signature of tolerance. This study provides the first indication of the feasibility of Tr1 cell-based therapy and paves way for the use of these Tr1 cells as adjuvant treatment for malignancies and immune-mediated disorders. PMID:24550909

  11. Chlamydia trachomatis induces anti-inflammatory effect in human macrophages by attenuation of immune mediators in Jurkat T-cells.

    PubMed

    Azenabor, Anthony A; Cintrón-Cuevas, Jenniffer; Schmitt, Heather; Bumah, Violet

    2011-12-01

    The chronic course of Chlamydia trachomatis infection is subtle with no obvious unusual inflammatory change. The reason for this is not clear. The data reported here explain how macrophage usual inflammatory response switches to anti-inflammatory response during C. trachomatis infection of mixed culture of macrophages and Jurkat T-cells. We assessed the establishment of productive infection in individual or mixed cell culture models, determined the status of C. trachomatis in the cells by monitoring HSP-60:MOMP or the proportions of the estimated IFUs that shed HSP-60 or MOMP. Also, the specific time-course expression of IL-12, IL-10 and IFN-γ or IL-12R, IL-10R, and IFN-γ-R during infection of cell models was assessed. Finally, the early events in cytokine elaboration in circumstances of varying intracellular Ca²⁺ levels were determined. There was evidence of productive infection in all individual and mixed cell culture models. The shedding of HSP-60 was highest in THP-1/Jurkat mixed cell culture model. The proportions of IFU that shed HSP-60 was heightened in infected THP-1/Jurkat mixed culture model, while the proportion of IFU that shed MOMP was higher in infected macrophage/Jurkat mixed culture and infected macrophages only. There was profound early elaboration of IL-10, varying significantly from IL-12 and IFN-γ in all infected individual or mixed cell culture models except in the case of Jurkat; where all cytokine elaboration was downregulated. The receptor to IL-10 was upregulated in infected macrophage/Jurkat cells and THP-1/Jurkat cells compared with other models in which IL-12 and IFN-γ receptors were more expressed. There was no observed significant change in cytokine in any model following the impairment of intracellular Ca²⁺ except in the case of macrophage/Jurkat cell model in which IL-12 and IL-10 were upregulated in 1h or 3 h, respectively. The implication of these findings is that C. trachomatis mediates a switch from inflammatory to anti

  12. New Insights into the Immunological Changes in IL-10-Deficient Mice during the Course of Spontaneous Inflammation in the Gut Mucosa

    PubMed Central

    Gomes-Santos, Ana Cristina; Moreira, Thais Garcias; Castro-Junior, Archimedes Barbosa; Horta, Bernardo Coelho; Lemos, Luisa; Cruz, Deborah Nogueira; Guimarães, Mauro Andrade Freitas; Cara, Denise Carmona; McCafferty, Donna-Marie; Faria, Ana Maria Caetano

    2012-01-01

    IL-10 is a regulatory cytokine that plays a major role in the homeostasis of the gut and this is illustrated by the fact that IL-10−/− mice develop spontaneous colitis. In this study, IL-10−/− mice were analyzed for immunological changes during colitis development. We found a reduced frequency of regulatory T cells CD4+CD25+Foxp3+ and higher frequency of activated T cells in the colon that precedes the macroscopic signs of the disease. Production of IL-17 and IFN-γ was higher in the colon. Colitis progression culminates with the reduction of CD4+LAP+ regulatory T cells in the intestine. Frequency of B1 cells and the secretory IgA production were both elevated. Despite these alterations, 16-week-old IL-10−/− mice could be rendered tolerant by a continuous feeding protocol. Our study provides detailed analysis of changes that precede colitis and it also suggests that oral tolerance could be used to design novel alternative therapies for the disease. PMID:22400037

  13. Immune tolerance induced by intravenous transfer of immature dendritic cells via up-regulating numbers of suppressive IL-10(+) IFN-γ(+)-producing CD4(+) T cells.

    PubMed

    Zhou, Fang; Ciric, Bogoljub; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2013-05-01

    Dendritic cells (DCs) regulate immunity and immune tolerance in vivo. However, the mechanisms of DC-mediated tolerance have not been fully elucidated. Here, we demonstrate that intravenous (i.v.) transfer of bone marrow-derived DCs pulsed with myelin oligodendrocyte glycoprotein (MOG) peptide blocks the development of experimental autoimmune encephalomyelitis in C57BL/6J mice. i.v. transfer of MOG-pulsed DCs leads to the down-regulation of the production of IL-17A and IFN-γ and up-regulation of IL-10 secretion. The development of regulatory T cells (Tregs) is facilitated via up-regulation of FoxP3 expression and production of IL-10. The number of suppressive CD4(+)IL-10(+)IFN-γ(+) T cells is also improved. The expression of OX40, CD154, and CD28 is down-regulated, but the expression of CD152, CD80, PD-1, ICOS, and BTLA is up-regulated on CD4(+) T cells after i.v. transfer of immature DCs. The expression of CCR4, CCR5, and CCR7 on CD4(+) T cells is also improved. Our results suggest that immature DCs may induce tolerance via facilitating the development of CD4(+)FoxP3(+) Tregs and suppressive CD4(+)IL-10(+)IFN-γ(+) T cells in vivo.

  14. Synergistic effects of mineral fibres and cigarette smoke on the production of tumour necrosis factor by alveolar macrophages of rats.

    PubMed

    Morimoto, Y; Kido, M; Tanaka, I; Fujino, A; Higashi, T; Yokosaki, Y

    1993-10-01

    The objective of this study was to evaluate the combined effects of mineral fibres and cigarette smoke on the production of tumour necrosis factor (TNF) by alveolar macrophages. Rats were exposed to cigarette smoke in vivo, and production of TNF by alveolar macrophages was measured in the presence of mineral fibres in vitro. For smoke exposure, rats were divided into two groups. Five were exposed to a daily concentration of 10 mg/m3 of cigarette smoke for an eight hour period, and five rats (controls) were not exposed to smoke. Bronchoalveolar lavage was performed after exposure to smoke and the recovered alveolar macrophages were incubated with either chrysotile or ceramic fibres on a microplate for 24 hours. Activity of TNF in the supernatant was determined by the L-929 fibroblast cell bioassay. When alveolar macrophages were not stimulated by mineral fibres, production of TNF by rats exposed to smoke and unexposed rats was essentially the same. When alveolar macrophages were stimulated in vitro by chrysotile or ceramic fibres, production of TNF by alveolar macrophages from rats exposed to smoke was higher than that by alveolar macrophages from unexposed rats. The findings suggest that cigarette smoke and mineral fibres have a synergistic effect on TNF production by alveolar macrophages.

  15. Synergistic effects of mineral fibres and cigarette smoke on the production of tumour necrosis factor by alveolar macrophages of rats.

    PubMed Central

    Morimoto, Y; Kido, M; Tanaka, I; Fujino, A; Higashi, T; Yokosaki, Y

    1993-01-01

    The objective of this study was to evaluate the combined effects of mineral fibres and cigarette smoke on the production of tumour necrosis factor (TNF) by alveolar macrophages. Rats were exposed to cigarette smoke in vivo, and production of TNF by alveolar macrophages was measured in the presence of mineral fibres in vitro. For smoke exposure, rats were divided into two groups. Five were exposed to a daily concentration of 10 mg/m3 of cigarette smoke for an eight hour period, and five rats (controls) were not exposed to smoke. Bronchoalveolar lavage was performed after exposure to smoke and the recovered alveolar macrophages were incubated with either chrysotile or ceramic fibres on a microplate for 24 hours. Activity of TNF in the supernatant was determined by the L-929 fibroblast cell bioassay. When alveolar macrophages were not stimulated by mineral fibres, production of TNF by rats exposed to smoke and unexposed rats was essentially the same. When alveolar macrophages were stimulated in vitro by chrysotile or ceramic fibres, production of TNF by alveolar macrophages from rats exposed to smoke was higher than that by alveolar macrophages from unexposed rats. The findings suggest that cigarette smoke and mineral fibres have a synergistic effect on TNF production by alveolar macrophages. Images PMID:8217857

  16. Tristetraprolin mediates radiation-induced TNF-α production in lung macrophages.

    PubMed

    Ray, Dipankar; Shukla, Shirish; Allam, Uday Sankar; Helman, Abigail; Ramanand, Susmita Gurjar; Tran, Linda; Bassetti, Michael; Krishnamurthy, Pranathi Meda; Rumschlag, Matthew; Paulsen, Michelle; Sun, Lei; Shanley, Thomas P; Ljungman, Mats; Nyati, Mukesh K; Zhang, Ming; Lawrence, Theodore S

    2013-01-01

    The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (-/-) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTP(Ser178) phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.

  17. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages.

    PubMed

    Svensson-Arvelund, Judit; Mehta, Ratnesh B; Lindau, Robert; Mirrasekhian, Elahe; Rodriguez-Martinez, Heriberto; Berg, Göran; Lash, Gendie E; Jenmalm, Maria C; Ernerudh, Jan

    2015-02-15

    A successful pregnancy requires that the maternal immune system is instructed to a state of tolerance to avoid rejection of the semiallogeneic fetal-placental unit. Although increasing evidence supports that decidual (uterine) macrophages and regulatory T cells (Tregs) are key regulators of fetal tolerance, it is not known how these tolerogenic leukocytes are induced. In this article, we show that the human fetal placenta itself, mainly through trophoblast cells, is able to induce homeostatic M2 macrophages and Tregs. Placental-derived M-CSF and IL-10 induced macrophages that shared the CD14(+)CD163(+)CD206(+)CD209(+) phenotype of decidual macrophages and produced IL-10 and CCL18 but not IL-12 or IL-23. Placental tissue also induced the expansion of CD25(high)CD127(low)Foxp3(+) Tregs in parallel with increased IL-10 production, whereas production of IFN-γ (Th1), IL-13 (Th2), and IL-17 (Th17) was not induced. Tregs expressed the suppressive markers CTLA-4 and CD39, were functionally suppressive, and were induced, in part, by IL-10, TGF-β, and TRAIL. Placental-derived factors also limited excessive Th cell activation, as shown by decreased HLA-DR expression and reduced secretion of Th1-, Th2-, and Th17-associated cytokines. Thus, our data indicate that the fetal placenta has a central role in promoting the homeostatic environment necessary for successful pregnancy. These findings have implications for immune-mediated pregnancy complications, as well as for our general understanding of tissue-induced tolerance.

  18. Effects of asbestos and silica on superoxide anion production in the guinea pig alveolar macrophage

    SciTech Connect

    Roney, P.L.

    1988-01-01

    This study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production. Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues. On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C).

  19. Tacaribe Virus but Not Junin Virus Infection Induces Cytokine Release from Primary Human Monocytes and Macrophages

    PubMed Central

    Groseth, Allison; Hoenen, Thomas; Weber, Michaela; Wolff, Svenja; Herwig, Astrid; Kaufmann, Andreas; Becker, Stephan

    2011-01-01

    The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV) and the hemorrhagic fever-causing Junin virus (JUNV), in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation. PMID:21572983

  20. TNF Blockade Maintains an IL-10+ Phenotype in Human Effector CD4+ and CD8+ T Cells

    PubMed Central

    Roberts, Ceri A.; Durham, Lucy E.; Fleskens, Veerle; Evans, Hayley G.; Taams, Leonie S.

    2017-01-01

    CD4+ and CD8+ effector T cell subpopulations can display regulatory potential characterized by expression of the prototypically anti-inflammatory cytokine IL-10. However, the underlying cellular mechanisms that regulate expression of IL-10 in different T cell subpopulations are not yet fully elucidated. We recently showed that TNF inhibitors (TNFi) promote IL-10 expression in human CD4+ T cells, including IL-17+ CD4+ T cells. Here, we further characterized the regulation of IL-10 expression via blockade of TNF signaling or other cytokine/co-stimulatory pathways, in human T cell subpopulations. Addition of the TNFi drug adalimumab to anti-CD3-stimulated human CD4+ T cell/monocyte cocultures led to increased percentages of IL-10+ cells in pro-inflammatory IL-17+, IFNγ+, TNFα+, GM-CSF+, and IL-4+ CD4+ T cell subpopulations. Conversely, exogenous TNFα strongly decreased IL-10+ cell frequencies. TNF blockade also regulated IL-10 expression in CD4+ T cells upon antigenic stimulation. Using time course experiments in whole peripheral blood mononuclear cell (PBMC) cultures, we show that TNF blockade maintained, rather than increased, IL-10+ cell frequencies in both CD4+ and CD8+ T cells following in vitro stimulation in a dose- and time-dependent manner. Blockade of IL-17, IFNγ, IL-6R, or CD80/CD86-mediated co-stimulation did not significantly regulate IL-10 expression within CD4+ or CD8+ T cell subpopulations. We show that TNF blockade acts directly on effector CD4+ T cells, in the absence of monocytes or CD4+ CD25highCD127low regulatory T cells and independently of IL-27, resulting in higher IL-10+ frequencies after 3 days in culture. IL-10/IL-10R blockade reduced the frequency of IL-10-expressing cells both in the presence and absence of TNF blockade. Addition of recombinant IL-10 alone was insufficient to drive an increase in IL-10+ CD4+ T cell frequencies in 3-day CD4+ T cell/monocyte cocultures, but resulted in increased IL-10 expression at later time points in

  1. Fucoidan modulates cytokine production and migration of THP‑1‑derived macrophages via colony‑stimulating factor‑1.

    PubMed

    Li, Peng; Wang, Huayang; Shao, Qianqian; Kong, Beihua; Qu, Xun

    2017-04-01

    Fucoidan is known for its various biological activities, including immunomodulatory effects on immune cells. However, the effect of fucoidan on the functions of macrophages remains to be elucidated. The present study examined the effects of fucoidan on cytokine production and migration of THP‑1‑derived macrophages and its potential mechanisms. Fucoidan was added during the differentiation process of THP‑1‑derived macrophages along with lipopolysaccharide and interferon‑γ for 42 h, and then macrophages were harvested for functional assays. Fucoidan altered the morphology of THP‑1‑derived macrophages, and also attenuated their migration activity and pro‑inflammatory cytokine production. Additionally, THP‑1‑derived macrophages intensively produced colony‑stimulating factor‑1 (CSF‑1), which was significantly decreased by fucoidan. CSF‑1 neutralizing antibody attenuated the basic production level of pro‑inflammatory cytokines in macrophages. Furthermore, when recombinant human CSF‑1 was added along with fucoidan, the attenuating effects of fucoidan on migration and cytokine production were significantly reversed. In conclusion, the present study suggests that macrophages appear to be a potential target in the immunomodulatory action of fucoidan, and CSF‑1 may be involved in this modulation.

  2. Occupational exposure to trichloroethylene and serum concentrations of IL-6, IL-10, and TNF-alpha.

    PubMed

    Bassig, Bryan A; Zhang, Luoping; Tang, Xiaojiang; Vermeulen, Roel; Shen, Min; Smith, Martyn T; Qiu, Chuangyi; Ge, Yichen; Ji, Zhiying; Reiss, Boris; Hosgood, H Dean; Liu, Songwang; Bagni, Rachel; Guo, Weihong; Purdue, Mark; Hu, Wei; Yue, Fei; Li, Laiyu; Huang, Hanlin; Rothman, Nathaniel; Lan, Qing

    2013-07-01

    To evaluate the immunotoxicity of trichloroethylene (TCE), we conducted a cross-sectional molecular epidemiology study in China of workers exposed to TCE. We measured serum levels of IL-6, IL-10, and TNF-α, which play a critical role in regulating various components of the immune system, in 71 exposed workers and 78 unexposed control workers. Repeated personal exposure measurements were taken in workers before blood collection using 3 M organic vapor monitoring badges. Compared to unexposed workers, the serum concentration of IL-10 in workers exposed to TCE was decreased by 70% (P = 0.001) after adjusting for potential confounders. Further, the magnitude of decline in IL-10 was >60% and statistically significant in workers exposed to <12 ppm as well as in workers with exposures ≥ 12 ppm of TCE, compared to unexposed workers. No significant differences in levels of IL-6 or TNF-α were observed among workers exposed to TCE compared to unexposed controls. Given that IL-10 plays an important role in immunologic processes, including mediating the Th1/Th2 balance, our findings provide additional evidence that TCE is immunotoxic in humans.

  3. Resilience to traumatic events related to urban violence and increased IL10 serum levels.

    PubMed

    Teche, Stefania P; Rovaris, Diego L; Aguiar, Bianca W; Hauck, Simone; Vitola, Eduardo S; Bau, Claiton H D; Freitas, Lucia H; Grevet, Eugenio H

    2017-04-01

    The exposition to traumatic events related to urban violence is epidemic in Brazil, with rate of 80% in the general population, and is becoming a major cause of post-traumatic stress disorder (PTSD). The objective of the study was to compare serum levels of pro-inflammatory interleukin-6 (IL-6) and anti-inflammatory interleukin-10 (IL-10) in PTSD and resilient individuals. We hypothesized that resilient individuals present an attenuated pro-inflammatory and enhanced anti-inflammatory state. We conducted a case-control study comparing 30 resilient individuals and 30 PTSD patients exposed to traumatic events related to urban violence. The groups were evaluated using Self-Report Questionnaire (SRQ-20), Mini-International Neuropsychiatric Interview (MINI) and the Davidson Trauma Scale. For all individuals, blood samples were collected to determine IL-6, IL-10 and cortisol serum levels. All samples were frozen at -80°C until the assay and were analyzed with the same immunoassay kit and in duplicates. The resilient group presented higher IL-10 levels than PTSD patients [mean (CI95%); 1.03 (0.52-2.08) pg/mL vs. 0.29 (0.20-0.43) pg/mL; P=0.002]. There were no differences in terms of IL-6 or cortisol levels. The results provided evidence for increased levels of IL-10 in resilient individuals when compared to PTSD patients, probably conferring them a better anti-inflammatory response after exposition.

  4. Influence of IL-18 and IL-10 Polymorphisms on Tacrolimus Elimination in Chinese Lung Transplant Patients

    PubMed Central

    Zhang, Xiaoqing; Xu, Jiandong; Zhang, Tao; Li, Yuping; Xie, Boxiong; Zhang, Wei; Lin, Shengtao; Ye, Ling; Liu, Yuan

    2017-01-01

    Aims. The influence of interleukin-10 (IL-10) and interleukin-18 (IL-18) polymorphisms on tacrolimus pharmacokinetics had been described in liver and kidney transplantation. The expression of cytokines varied in different kinds of transplantation. The influence of IL-10 and IL-18 genetic polymorphisms on the pharmacokinetic parameters of tacrolimus remains unclear in lung transplantation. Methods. 51 lung transplant patients at Shanghai Pulmonary Hospital were included. IL-18 polymorphisms (rs5744247 and rs1946518), IL-10 polymorphisms (rs1800896, rs1800872, and rs3021097), and CYP3A5 rs776746 were genotyped. Dose-adjusted trough blood concentrations (C/D ratio, mg/kg body weight) in lung transplant patients during the first 4 postoperative weeks were calculated. Results. IL-18 rs5744247 allele C and rs1946518 allele A were associated with fast tacrolimus metabolism. Combined analysis showed that the numbers of low IL-18 mRNA expression alleles had positive correlation with tacrolimus C/D ratios in lung transplant recipients. The influence of IL-18 polymorphisms on tacrolimus C/D ratios was observed in CYP3A5 expresser recipients, but not in CYP3A5 nonexpresser recipients. No clinical significance of tacrolimus C/D ratios difference of IL-10 polymorphisms was found in our data. Conclusions. IL-18 polymorphisms may influence tacrolimus elimination in lung transplantation patients. PMID:28246425

  5. Occupational Exposure to Trichloroethylene and Serum Concentrations of IL-6, IL-10, and TNF-alpha

    PubMed Central

    Bassig, Bryan A.; Zhang, Luoping; Tang, Xiaojiang; Vermeulen, Roel; Shen, Min; Smith, Martyn T.; Qiu, Chuangyi; Ge, Yichen; Ji, Zhiying; Reiss, Boris; Hosgood, H. Dean; Liu, Songwang; Bagni, Rachel; Guo, Weihong; Purdue, Mark; Hu, Wei; Yue, Fei; Li, Laiyu; Huang, Hanlin; Rothman, Nathaniel; Lan, Qing

    2015-01-01

    To evaluate the immunotoxicity of trichloroethylene (TCE), we conducted a cross-sectional molecular epidemiology study in China of workers exposed to TCE. We measured serum levels of IL-6, IL-10, and TNF-α, which play a critical role in regulating various components of the immune system, in 71 exposed workers and 78 unexposed control workers. Repeated personal exposure measurements were taken in workers before blood collection using 3 M organic vapor monitoring badges. Compared to unexposed workers, the serum concentration of IL-10 in workers exposed to TCE was decreased by 70% (P = 0.001) after adjusting for potential confounders. Further, the magnitude of decline in IL-10 was >60% and statistically significant in workers exposed to <12 ppm as well as in workers with exposures ≥ 12 ppm of TCE, compared to unexposed workers. No significant differences in levels of IL-6 or TNF-α were observed among workers exposed to TCE compared to unexposed controls. Given that IL-10 plays an important role in immunologic processes, including mediating the Th1/Th2 balance, our findings provide additional evidence that TCE is immunotoxic in humans. PMID:23798002

  6. Micro RNA-17-92 cluster mediates interleukin-4-suppressed IL-10 expression in B cells.

    PubMed

    Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Liu, Jiang-Qi; Mo, Li-Hua; Liu, Zhi-Gang; Yang, Ping-Chang

    2016-01-01

    The pathogenesis of allergen-related inflammation in the intestine is to be further understood. Micro RNA (miR) can regulate immune responses. This study aims to investigate the role of miR-17-92 cluster in the induction of food allergen-related inflammation in the intestine. In this study, a mouse model of food allergen-related intestinal inflammation was developed. Expression of miR-17-92 cluster in B cells of the intestinal mucosa was analyzed by real time quantitative RT-PCR. The results showed that the levels of miR-19a, one of the members of the miR-17-92 cluster, were detected in the B cells of the intestine of mice sensitized to ovalbumin, which was significantly higher than that in naïve control mice. The expression of IL-10 by B cells was significantly lower in the sensitized mice as compared with naive control mice. Exposure to IL-4 in the culture increased the expression of miR-19a as well as suppression the expression of IL-10 in B cells via remolding DNA structure at the IL-10 promoter locus. We conclude that B cells from sensitized mice show higher levels of miR-19a, which plays an important role in the suppression of IL-10 in the B cells.

  7. Polymorphisms of Il-10 (-1082) and RANKL (-438) Genes and the Failure of Dental Implants

    PubMed Central

    Ribeiro, Rodrigo; Melo, Rayanne; Tortamano Neto, Pedro; Vajgel, André

    2017-01-01

    Background. Genetic polymorphisms in certain cytokines and chemokines have been investigated to understand why some individuals display implant flaws despite having few risk factors at the time of implant. Purpose. To investigate the association of genetic polymorphisms in interleukin- (IL-) 10 [-1082 region (A/G)] and RANKL [-438 region (A/G)] with the failure of dental implants. Materials and Methods. This study included 90 partially edentulous male and female patients who were rehabilitated with a total of 245 Straumann dental implants. An implant was considered a failure if any of the following occurred: mobility, persistent subjective complaint, recurrent peri-implant infection with suppuration, continuous radiolucency around the implant, probing depth ≥ 5 mm, and bleeding on probing. Buccal mucosal cells were collected for analysis of RANKL438 and IL-10. Results. The implant success rate in this population was 34.4%. The mutant allele (G) in RANKL had an incidence of 52.3% and mutant allele (A) in IL-10 was observed in 37.8%. No statistically significant difference was detected between the failure of the implant and the genotypes and allelic frequencies. Conclusion. No association was detected between the genetic polymorphisms of RANKL (-438) and IL-10 (-1082) and the failure of dental implants in the population studied. PMID:28348592

  8. CD8+ Treg cells suppress CD8+ T cell-responses by IL-10-dependent mechanism during H5N1 influenza virus infection.

    PubMed

    Zou, Qiang; Wu, Bing; Xue, Jia; Fan, Xiaoxu; Feng, Congcong; Geng, Shuang; Wang, Ming; Wang, Bin

    2014-01-01

    Although Treg-cell-mediated suppression during infection or autoimmunity has been described, functions of Treg cells during highly pathogenic avian influenza virus infection remain poorly characterized. Here we found that in Foxp3-GFP transgenic mice, CD8(+) Foxp3(+) Treg cells, but not CD4(+) Foxp3(+) Treg cells, were remarkably induced during H5N1 infection. In addition to expressing CD25, the CD8(+) Foxp3(+) Treg cells showed a high level of GITR and produced IL-10. In an adoptive transfer model, CD8(+) Treg cells suppressed CD8(+) T-cell responses and promoted H5N1 virus infection, resulting in enhanced mortality and increased virus load in the lung. Furthermore, in vitro neutralization of IL-10 and studies with IL-10R-deficient mice in vitro and in vivo demonstrated an important role for IL-10 production in the capacity of CD8(+) Treg cells to inhibit CD8(+) T-cell responses. Our findings identify a previously unrecognized role of CD8(+) Treg cells in the negative regulation of CD8(+) T-cell responses and suggest that modulation of CD8(+) Treg cells may be a therapeutic strategy to control H5N1 viral infection.

  9. Lemongrass effects on IL-1beta and IL-6 production by macrophages.

    PubMed

    Sforcin, J M; Amaral, J T; Fernandes, A; Sousa, J P B; Bastos, J K

    2009-01-01

    Cymbopogon citratus has been widely recognised for its ethnobotanical and medicinal usefulness. Its insecticidal, antimicrobial and therapeutic properties have been reported, but little is known about its effect on the immune system. This work aimed to investigate the in vivo effect of a water extract of lemongrass on pro-inflammatory cytokine (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of lemongrass essential oil on cytokine production by macrophages was also analysed in vitro. The chemical composition of the extract and the oil was also investigated. Treatment of mice with water extract of lemongrass inhibited macrophages to produce IL-1beta but induced IL-6 production by these cells. Lemongrass essential oil inhibited the cytokine production in vitro. Linalool oxide and epoxy-linalool oxide were found to be the major components of lemongrass water extract, and neral and geranial were the major compounds of its essential oil. Taken together, these data suggest an anti-inflammatory action of this natural product.

  10. Maternal filarial infection: association of anti-sheath antibody responses with plasma levels of IFN-γ and IL-10.

    PubMed

    Achary, K G; Mandal, N N; Mishra, S; Sarangi, S S; Kar, S K; Satapathy, A K; Bal, M S

    2013-04-01

    Maternal filarial infection influences the risk of acquiring infection and development of immunity in children. Here we have analysed the blood samples of 60 mothers (24 infected and 36 uninfected) and their corresponding cord bloods to assess the impact of maternal infection on the anti-sheath antibodies and cytokine production in neonates born from them. About 69·4% of non-infected mothers and their cord bloods showed the presence of anti-sheath antibodies, while only 16·6% of the cord bloods from infected mothers were positive for it. The IL-10 level was significantly high in cord bloods of infected mothers compared with non-infected mothers. At the same time the IL-10 level was also observed to be remarkably high in cord bloods of both infected and non-infected mothers negative for anti-sheath antibody. In contrast, IFN-γ levels were significantly high in cord bloods of non-infected mothers compared with infected mothers and the increment was prominent in cord bloods of both infected and non-infected mothers positive for anti-sheath antibody. The study reveals that the presence or absence of anti-sheath antibodies in association with cytokines skews the filarial specific immunity to either Th1 or Th2 responses in neonates. This may affect the natural history of filarial infection in early childhood.

  11. Hsp65-Producing Lactococcus lactis Prevents Inflammatory Intestinal Disease in Mice by IL-10- and TLR2-Dependent Pathways.

    PubMed

    Gomes-Santos, Ana Cristina; de Oliveira, Rafael Pires; Moreira, Thaís Garcias; Castro-Junior, Archimedes Barbosa; Horta, Bernardo Coelho; Lemos, Luísa; de Almeida, Leonardo Augusto; Rezende, Rafael Machado; Cara, Denise Carmona; Oliveira, Sérgio Costa; Azevedo, Vasco Ariston Carvalho; Miyoshi, Anderson; Faria, Ana Maria Caetano

    2017-01-01

    Heat shock proteins (Hsps) are highly expressed at all sites of inflammation. As they are ubiquitous and immunodominant antigens, these molecules represent good candidates for the therapeutic use of oral tolerance in autoimmune and chronic inflammatory diseases. Evidences from human and animal studies indicate that inflammatory bowel disease (IBD) results from uncontrolled inflammatory responses to intestinal microbiota. Hsps are immunodominant proteins expressed by several immune cells and by commensal bacteria. Using an IBD mouse model, we showed that oral pretreatment with genetically modified Lactococcus lactis that produces and releases Mycobacterium Hsp65, completely prevented DSS-induced colitis in C57BL/6 mice. Protection was associated with reduced pro-inflammatory cytokines, such as IFN-γ, IL-6, and TNF-α; increased IL-10 production in colonic tissue; and expansion of CD4(+)Foxp3(+) and CD4(+)LAP(+) regulatory T cells in spleen and mesenteric lymph nodes. This effect was dependent on IL-10 and toll-like receptor 2. Thus, this approach may open alternative options for long-term management of IBD.

  12. Hsp65-Producing Lactococcus lactis Prevents Inflammatory Intestinal Disease in Mice by IL-10- and TLR2-Dependent Pathways

    PubMed Central

    Gomes-Santos, Ana Cristina; de Oliveira, Rafael Pires; Moreira, Thaís Garcias; Castro-Junior, Archimedes Barbosa; Horta, Bernardo Coelho; Lemos, Luísa; de Almeida, Leonardo Augusto; Rezende, Rafael Machado; Cara, Denise Carmona; Oliveira, Sérgio Costa; Azevedo, Vasco Ariston Carvalho; Miyoshi, Anderson; Faria, Ana Maria Caetano

    2017-01-01

    Heat shock proteins (Hsps) are highly expressed at all sites of inflammation. As they are ubiquitous and immunodominant antigens, these molecules represent good candidates for the therapeutic use of oral tolerance in autoimmune and chronic inflammatory diseases. Evidences from human and animal studies indicate that inflammatory bowel disease (IBD) results from uncontrolled inflammatory responses to intestinal microbiota. Hsps are immunodominant proteins expressed by several immune cells and by commensal bacteria. Using an IBD mouse model, we showed that oral pretreatment with genetically modified Lactococcus lactis that produces and releases Mycobacterium Hsp65, completely prevented DSS-induced colitis in C57BL/6 mice. Protection was associated with reduced pro-inflammatory cytokines, such as IFN-γ, IL-6, and TNF-α; increased IL-10 production in colonic tissue; and expansion of CD4+Foxp3+ and CD4+LAP+ regulatory T cells in spleen and mesenteric lymph nodes. This effect was dependent on IL-10 and toll-like receptor 2. Thus, this approach may open alternative options for long-term management of IBD. PMID:28194152

  13. PPAR-γ/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis.

    PubMed

    Ferreira, Ana Elisa; Sisti, Flavia; Sônego, Fabiane; Wang, Suojuan; Filgueiras, Luciano Ribeiro; Brandt, Stephanie; Serezani, Ana Paula Moreira; Du, Hong; Cunha, Fernando Q; Alves-Filho, Jose Carlos; Serezani, Carlos Henrique

    2014-03-01

    Polymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-γ agonists. TZDs exert anti-inflammatory actions in different disease models, including polymicrobial sepsis. The TZD pioglitazone, which has been approved by the U.S. Food and Drug Administration, improves sepsis outcome; however, the molecular programs that mediate its effect have not been determined. In a murine model of sepsis, we now show that pioglitazone treatment improves microbial clearance and enhances neutrophil recruitment to the site of infection. We also observed reduced proinflammatory cytokine production and high IL-10 levels in pioglitazone-treated mice. These effects were associated with a decrease in STAT-1-dependent expression of MyD88 in vivo and in vitro. IL-10R blockage abolished PPAR-γ-mediated inhibition of MyD88 expression. These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.

  14. Indicators of Moderate and Severe Preeclampsia in Correlation with Maternal IL10

    PubMed Central

    Markova, Ana Daneva; Hadži-Lega, Marija; Mijakoski, Dragan

    2016-01-01

    AIM: The purpose of the actual study was to evaluate the relationship between the formation of anti-inflammatory cytokine IL10 and several indicators of moderate and severe preeclampsia in the third trimester of pregnancy. MATERIAL AND METHODS: Examination of the indicators of preeclampsia and maternal IL10 levels was conducted in 50 women with pregnancies complicated by varying degrees of preeclampsia in the third trimester of gestation as well as in 50 normotensive patients, hospitalized at the University Clinic of Gynecology and Obstetrics, Skopje, Republic of Macedonia. The levels of IL10 were determined with a commercial test developed by Orgenium Laboratories (Finland), using reagents from AviBion ELISA research kits. Patients with preeclampsia were categorized into moderate and severe preeclampsia group according to the degree of preeclampsia. Logistic regression analysis was used to determine the predictive value of different parameters for the occurrence of severe preeclampsia. Odds ratios and 95% Confidence Intervals were calculated in order to quantify independent associations. RESULTS: The regression analysis detected systolic blood pressure (160 mmHg or higher), diastolic blood pressure (100 mmHg or higher), persistent proteinuria in pregnancy, serum LDH concentration (450 U/L or higher) and reduced serum concentrations of IL10 as significant predictors of severe preeclampsia in pregnant women after adjusting for age. CONCLUSION: The findings of significantly lower serum IL10 concentrations in patients with severe preeclampsia in comparison with respective concentrations in patients with moderate preeclampsia can be considered as major pathognomonic laboratory sign of severe preeclampsia. PMID:27335593

  15. TNFα and IL10 SNPs act together to predict disease behaviour in Crohn's disease

    PubMed Central

    Fowler, E; Eri, R; Hume, G; Johnstone, S; Pandeya, N; Lincoln, D; Templeton, D; Radford-Smith, G

    2005-01-01

    Background: The cytokines tumour necrosis factor (TNF)α and interleukin (IL)10 have been implicated in the pathogenesis of Crohn's disease (CD), with increased concentrations reported in patients with active disease. However, limited data exist on their effects on disease phenotype in the same population. Certain single nucleotide polymorphisms (SNPs) within the promoter region of the IL10 (-1082G/A, -592C/A) and TNFα (-308G/A, -857C/T) genes have been associated with altered levels of circulating IL10 and TNFα. Methods: We conducted an Australian based case–control study (304 CD patients; 231 healthy controls) of these four SNPs. Further investigation of two SNPs was conducted using a logistic regression analysis. Results: We identified a possible association of both IL10 SNPs and TNFα-857 with CD. Further investigation of a relationship with disease severity showed a significant association of higher producing IL10-1082G and TNFα-857C alleles with stricturing behaviour, which was strongest when these alleles were combined and persisted after multivariate analysis (p = 0.007; odds ratio (OR) 2.37, 95% CI 1.26 to 4.43). In addition, the TNFα-857CC genotype was independently associated with familial CD (p = 0.03; OR 3.12; 95% CI 1.15 to 8.46). Conclusion: These two SNPs may help to predict disease behaviour in CD patients, which may be clinically useful in shaping treatment of the disease at an earlier stage. PMID:15937090

  16. Impact of Notch1 Deletion in Macrophages on Pro-inflammatory Cytokine Production and the Outcome of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Wongchana, Wipawee; Lawlor, Rebecca G.; Osborne, Barbara A.; Palaga, Tanapat

    2015-01-01

    Notch signaling is involved in regulating TLR-mediated responses in activated macrophages. In this study, we investigated the impact of Notch signaling in macrophages in an experimental autoimmune encephalomyelitis (EAE) model. To examine the impact of deficiency in Notch signaling in activated macrophages in EAE, an adoptive transfer of activated macrophages derived from Notch1fl/fl X Mx1cre+/− (N1KO) or CSL/Rbp-jkfl/fl X Mx1cre+/− (CSL/RBP-Jκ KO) mice was performed prior to induction of EAE. Mice receiving activated N1KO macrophages showed decreased severity of EAE, compared with mice receiving wild type or CSL/RBP-Jκ KO macrophages. In vitro re-stimulation of splenocytes by MOG35-55 peptide from these mice revealed that cells from mice receiving N1KO macrophages produced significantly less IL-17 compared with the control mice, whereas IFNγ production was similar in both groups. We found that activated N1KO, but not CSL/RBP-Jκ KO, macrophages produced less IL-6 and had lower CD80 expression, compared with wild type and did not exhibit any defect in IL-12p40/70 production, whereas activated macrophages from CSL/RBP-Jκ KO mice phenocopied gamma secretase inhibitor (GSI) treatment for reduced IL-12p40/70 production. Furthermore, the nuclear translocation of the NF-κB subunit c-Rel was compromised in GSI-treated and CSL/RBP-Jκ KO but not N1KO macrophages. These results suggest that Notch1 and CSL/RBP-Jκ in macrophages may affect the severity of EAE differently, possibly through modulating IL-6 and CD80 expression, which is involved in the Th17 but not Th1 response. PMID:26503951

  17. A single sub-erythematous exposure of solar-simulated radiation on the elicitation phase of contact hypersensitivity induces IL-10-producing T-regulatory cells in human skin.

    PubMed

    Stoebner, Pierre E; Rahmoun, Massilva; Ferrand, Christophe; Meunier, Laurent; Yssel, Hans; Pène, Jérôme

    2006-08-01

    Solar ultraviolet (UV) radiation has hazardous effects on human health that are, in part, associated with its immunosuppressive effects via the induction of interleukin (IL)-10 production. Although IL-10 is produced by both T helper type 2 (Th2) cells and T-regulatory type 1 (Tr1) cells, the relative contribution of either subset in UV radiation-induced immunosuppression has not been established. Here, we show that T cells isolated from non-treated allergic contact dermatitis (ACD) reactions, 48 h following nickel challenge and propagated for 7-10 days in the presence of IL-2, were mainly CD4(+) and produced IL-10, but little interferon-gamma. A single sub-erythematous solar-simulated radiation (SSR) prior to antigen challenge exposure resulted in a clinical attenuation of the intensity of ACD reactions which was associated with a significant increase in both the magnitude of IL-10 production by skin-infiltrating T cells and the frequency of IL-10-producing Tr1 cells. Skin-infiltrating T cells in SSR-exposed, as well as non-exposed, ACD reactions showed a perturbed T-cell receptor (TCR)-Vbeta repertoire, without overexpression of a particular TCR-Vbeta gene product, indicating the presence of high frequencies of nickel non-specific T cells in ACD reactions. These results show that a single sub-erythematous SSR induces immunosuppression via the cutaneous infiltration of IL-10-producing Tr1, and to a lesser extent, Th2 cells.

  18. Production of modified C-reactive protein in U937-derived macrophages.

    PubMed

    Ciubotaru, Irina; Potempa, Lawrence A; Wander, Rosemary C

    2005-11-01

    Plasma C-reactive protein (CRP) has been proposed to be a strong independent predictor for cardiovascular disease. This circulating form of CRP (native CRP or nCRP) is well described. Recently, the existence of a conformationally distinct isoform of CRP (modified CRP or mCRP) has been reported. The relevance of each CRP isoform to atherosclerotic disease is unknown. The purpose of this study was to examine the natural expression of CRP in undifferentiated, differentiated, and stimulated macrophages, cells known to contribute to atherogenesis in vivo, and to determine whether transcribed CRP was expressed as nCRP or mCRP. Macrophages were generated from U937 monocytes using phorbol 12-myristate 13-acetate. Differentiated macrophages were further stimulated with lipopolysaccharides (LPS). In undifferentiated, differentiated, and stimulated cells, CRP expression was assessed by reverse transcription-polymerase chain reaction, and CRP protein production was measured by fluorescence microscopy and flow cytometry (cellular CRP) or high-sensitivity enzyme-linked immunosorbent assay (secreted CRP). CRP transcript was minimally expressed in undifferentiated cells. Expression increased markedly in macrophages during differentiation and was not affected by LPS at 24 hrs. Cellular CRP protein increased in a time-dependent manner after LPS stimulation, and this induction was mediated via interleukin (IL)-6 and IL-1beta. A small amount of secreted CRP was detected in the media of differentiated cells, but it was not significantly increased after LPS stimulation. Using specific monoclonal antibodies, our data indicate that cellular CRP is directly translated as the mCRP rather than the nCRP isomer. These results indicate that U937-derived macrophages are a good cell model to further study the production of mCRP under conditions relevant for the atherogenic process.

  19. Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10 signals in hepatocellular carcinoma

    PubMed Central

    Ouyang, Fang-Zhu; Wu, Rui-Qi; Wei, Yuan; Liu, Rui-Xian; Yang, Dong; Xiao, Xiao; Zheng, Limin; Li, Bo; Lao, Xiang-Ming; Kuang, Dong-Ming

    2016-01-01

    B cells are prominent components of human solid tumours, but activation status and functions of these cells in human cancers remain elusive. Here we establish that over 50% B cells in hepatocellular carcinoma (HCC) exhibit an FcγRIIlow/− activated phenotype, and high infiltration of these cells positively correlates with cancer progression. Environmental semimature dendritic cells, but not macrophages, can operate in a CD95L-dependent pathway to generate FcγRIIlow/− activated B cells. Early activation of monocytes in cancer environments is critical for the generation of semimature dendritic cells and subsequent FcγRIIlow/− activated B cells. More importantly, the activated FcγRIIlow/− B cells from HCC tumours, but not the resting FcγRIIhigh B cells, without external stimulation suppress autologous tumour-specific cytotoxic T-cell immunity via IL-10 signals. Collectively, generation of FcγRIIlow/− activated B cells may represent a mechanism by which the immune activation is linked to immune tolerance in the tumour milieu. PMID:27853178

  20. Francisella tularensis Antioxidants Harness Reactive Oxygen Species to Restrict Macrophage Signaling and Cytokine Production*

    PubMed Central

    Melillo, Amanda A.; Bakshi, Chandra Shekhar; Melendez, J. Andrés

    2010-01-01

    Francisella tularensis is the etiologic agent of the highly infectious animal and human disease tularemia. Its extreme infectivity and virulence are associated with its ability to evade immune detection, which we now link to its robust reactive oxygen species-scavenging capacity. Infection of primary human monocyte-derived macrophages with virulent F. tularensis SchuS4 prevented proinflammatory cytokine production in the presence or absence of IFN-γ compared with infection with the attenuated live vaccine strain. SchuS4 infection also blocked signals required for macrophage cytokine production, including Akt phosphorylation, IκBα degradation, and NF-κB nuclear localization and activation. Concomitant with SchuS4-mediated suppression of Akt phosphorylation was an increase in the levels of the Akt antagonist PTEN. Moreover, SchuS4 prevented the H2O2-dependent oxidative inactivation of PTEN compared with a virulent live vaccine strain. Mutation of catalase (katG) sensitized F. tularensis to H2O2 and enhanced PTEN oxidation, Akt phosphorylation, NF-κB activation, and inflammatory cytokine production. Together, these findings suggest a novel role for bacterial antioxidants in restricting macrophage activation through their ability to preserve phosphatases that temper kinase signaling and proinflammatory cytokine production. PMID:20558723

  1. Mesenchymal stem cells reprogram host macrophages to attenuate obliterative bronchiolitis in murine orthotopic tracheal transplantation.

    PubMed

    Guo, Zhixiang; Zhou, Xiaohui; Li, Jing; Meng, Qingshu; Cao, Hao; Kang, Le; Ni, Yinkai; Fan, Huimin; Liu, Zhongmin

    2013-04-01

    After lung transplantation, obliterative bronchiolitis (OB) is one of the major limitations for the long-term survival of allografts. At present, effective treatment to prevent this phenomenon remains elusive. Mesenchymal stem cells (MSCs) are capable of modulating the immune system through the interaction with a wide range of immune cells. Here, we found that treatment of mice with bone marrow derived MSCs prevents the development of airway occlusion and increased IL-10 levels in trachea grafts, which was eliminated by the depletion of macrophages. Mechanistically, MSCs-derived PGE2, through the receptors EP2 and EP4, promoted the release of IL-10 and inhibited the production of IL-6 and TNF-α by macrophages. These results suggest that MSCs can both decrease the innate inflammatory responses and prevent allograft rejection by down-regulating the levels of IL-6 and TNF-α and increasing IL-10 production respectively. For easy availability and immune privilege, MSC-based treatment of OB provides an effective strategy for regulation of immune responses in lung transplantation.

  2. O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages

    PubMed Central

    Xisto, Mariana I. D. S.; Bittencourt, Vera C. B.; Liporagi-Lopes, Livia Cristina; Haido, Rosa M. T.; Mendonça, Morena S. A.; Sassaki, Guilherme; Figueiredo, Rodrigo T.; Romanos, Maria Teresa V.; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  3. Recent insights into microbial triggers of interleukin-10 production in the host and the impact on infectious disease pathogenesis.

    PubMed

    Duell, Benjamin L; Tan, Chee K; Carey, Alison J; Wu, Fan; Cripps, Allan W; Ulett, Glen C

    2012-04-01

    Since its initial description as a Th2-cytokine antagonistic to interferon-alpha and granulocyte-macrophage colony-stimulating factor, many studies have shown various anti-inflammatory actions of interleukin-10 (IL-10), and its role in infection as a key regulator of innate immunity. Studies have shown that IL-10 induced in response to microorganisms and their products plays a central role in shaping pathogenesis. IL-10 appears to function as both sword and shield in the response to varied groups of microorganisms in its capacity to mediate protective immunity against some organisms but increase susceptibility to other infections. The nature of IL-10 as a pleiotropic modulator of host responses to microorganisms is explained, in part, by its potent and varied effects on different immune effector cells which influence antimicrobial activity. A new understanding of how microorganisms trigger IL-10 responses is emerging, along with recent discoveries of how IL-10 produced during disease might be harnessed for better protective or therapeutic strategies. In this review, we summarize studies from the past 5 years that have reported the induction of IL-10 by different classes of pathogenic microorganisms, including protozoa, nematodes, fungi, viruses and bacteria and discuss the impact of this induction on the persistence and/or clearance of microorganisms in the host.

  4. Species dependent impact of helminth-derived antigens on human macrophages infected with Mycobacterium tuberculosis: Direct effect on the innate anti-mycobacterial response

    PubMed Central

    Singh, Susmita K.; McKay, Derek M.

    2017-01-01

    Background In countries with a high prevalence of tuberculosis there is high coincident of helminth infections that might worsen disease outcome. While Mycobacterium tuberculosis (Mtb) gives rise to a pro-inflammatory Th1 response, a Th2 response is typical of helminth infections. A strong Th2 response has been associated with decreased protection against tuberculosis. Principal findings We investigated the direct effect of helminth-derived antigens on human macrophages, hypothesizing that helminths would render macrophages less capable of controlling Mtb. Measuring cytokine output, macrophage surface markers with flow cytometry, and assessing bacterial replication and phagosomal maturation revealed that antigens from different species of helminth directly affect macrophage responses to Mtb. Antigens from the tapeworm Hymenolepis diminuta and the nematode Trichuris muris caused an anti-inflammatory response with M2-type polarization, reduced macrophage phagosome maturation and ability to activate T cells, along with increased Mtb burden, especially in T. muris exposed cells which also induced the highest IL-10 production upon co-infection. However, antigens from the trematode Schistosoma mansoni had the opposite effect causing a decrease in IL-10 production, M1-type polarization and increased control of Mtb. Conclusion We conclude that, independent of any adaptive immune response, infection with helminth parasites, in a species-specific manner can influence the outcome of tuberculosis by either enhancing or diminishing the bactericidal function of macrophages. PMID:28192437

  5. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma.

    PubMed

    Sapan, Heber Bombang; Paturusi, Idrus; Jusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muh Nasrum; Pusponegoro, Aryono Djuned; Arief, Syafrie Kamsul; Labeda, Ibrahim; Islam, Andi Asadul; Rendy, Leo; Hatta, Mochammad

    2016-01-01

    Massive injury remains the most common cause of death for productive age group globally. The current immune, inflammatory paradigm, based on an incomplete understanding of the functional integration of the complex host response, remains a major impediment to the development of effective innovative diagnostic and therapeutic effort. This study attempt to investigate the pattern of inflammatory and anti-inflammatory cytokines such as interleukin-6 and 10 (IL-6 and IL-10) and their interaction in severe injury condition with its major complication as multiple organ dysfunction syndrome (MODS) and failure (MOF) after polytrauma. This is multicenter study held at 4 academic Level-1 Trauma center included 54 polytrauma participants. Inclusion criteria were age between 16-60 years old, had new acute episode of polytrauma which defined as injury in ≥2 body region with Injury Severity Score (ISS) ≥16, and the presence of Systemic Inflammation Response Syndrome (SIRS). Serum level of IL-6 and IL-10 were taken on day 2, 3, and 5 after trauma. During hospitalization, samples were observed for the occurrence of MODS or MOF using Sequential Organ Failure Assessment (SOFA) and mortality rate were also noted. Participant were mostly male with mean of age of 35, 9 years old, endured polytrauma caused by traffic accident. Elevation of cytokines (IL-6, IL-10, and IL-6/IL-10 ratio) had directly proportional with MODS and mortality. Threshold level of compensation for severe trauma is IL-6 of 50 pg/mL and trauma load of ISS ≥30. Inflammation reaction greater than this threshold level would result in downhill level of IL-6, IL-10, or IL-6/IL-10 ratio which associated with poor outcome (MODS and death). The elevation of these cytokines level were represent as compensation/adaptive immune system and its fall represent decompensating/failure of immune system after severe trauma. The pattern of IL-6 and IL-10 after polytrauma represent immune system effort to restore homeostasis

  6. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma

    PubMed Central

    Sapan, Heber Bombang; Paturusi, Idrus; Jusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muh Nasrum; Pusponegoro, Aryono Djuned; Arief, Syafrie Kamsul; Labeda, Ibrahim; Islam, Andi Asadul; Rendy, Leo; Hatta, Mochammad

    2016-01-01

    Massive injury remains the most common cause of death for productive age group globally. The current immune, inflammatory paradigm, based on an incomplete understanding of the functional integration of the complex host response, remains a major impediment to the development of effective innovative diagnostic and therapeutic effort. This study attempt to investigate the pattern of inflammatory and anti-inflammatory cytokines such as interleukin-6 and 10 (IL-6 and IL-10) and their interaction in severe injury condition with its major complication as multiple organ dysfunction syndrome (MODS) and failure (MOF) after polytrauma. This is multicenter study held at 4 academic Level-1 Trauma center included 54 polytrauma participants. Inclusion criteria were age between 16-60 years old, had new acute episode of polytrauma which defined as injury in ≥2 body region with Injury Severity Score (ISS) ≥16, and the presence of Systemic Inflammation Response Syndrome (SIRS). Serum level of IL-6 and IL-10 were taken on day 2, 3, and 5 after trauma. During hospitalization, samples were observed for the occurrence of MODS or MOF using Sequential Organ Failure Assessment (SOFA) and mortality rate were also noted. Participant were mostly male with mean of age of 35, 9 years old, endured polytrauma caused by traffic accident. Elevation of cytokines (IL-6, IL-10, and IL-6/IL-10 ratio) had directly proportional with MODS and mortality. Threshold level of compensation for severe trauma is IL-6 of 50 pg/mL and trauma load of ISS ≥30. Inflammation reaction greater than this threshold level would result in downhill level of IL-6, IL-10, or IL-6/IL-10 ratio which associated with poor outcome (MODS and death). The elevation of these cytokines level were represent as compensation/adaptive immune system and its fall represent decompensating/failure of immune system after severe trauma. The pattern of IL-6 and IL-10 after polytrauma represent immune system effort to restore homeostasis

  7. Combined promoter haplotypes of the IL10R genes are associated with protection against severe malaria in Gabonese children.

    PubMed

    Velavan, T P; Büyükyazici, Birgül; Kremsner, Peter G; Kun, Jürgen F J

    2012-02-01

    The critical barrier in control of infections remains the failure of the immune system to clear parasites despite antigen recognition. We examined and validated possible association of regulatory immune gene polymorphisms in a cohort of children with mild and severe malaria. We focussed on two precursors of the Interleukin 10 Receptor (IL10R) gene namely the IL10R alpha and IL10R beta that play a fundamental role in initiation of signal transduction. Initial screening across 40 Gabonese ad