Gracey, Eric; Lin, Aifeng; Akram, Ali; Chiu, Basil; Inman, Robert D.
2013-01-01
Macrophages can display a number of distinct phenotypes, known collectively as polarized macrophages. The best defined of these phenotypes are the classically-activated, interferon gamma (IFNγ)/LPS induced (M1) and alternatively-activated, IL-4 induced (M2) macrophages. The goal of this study is to characterize macrophage- Chlamydia interactions in the context of macrophage polarization. Here we use Chlamydia muridarum and murine bone-marrow derived macrophages to show Chlamydia does not induce M2 polarization in macrophages as a survival strategy. Unexpectedly, the infection of macrophages was silent with no upregulation of M1 macrophage-associated genes. We further demonstrate that macrophages polarized prior to infection have a differential capacity to control Chlamydia . M1 macrophages harbor up to 40-fold lower inclusion forming units (IFU) than non-polarized or M2 polarized macrophages. Gene expression analysis showed an increase in 16sRNA in M2 macrophages with no change in M1 macrophages. Suppressed Chlamydia growth in M1 macrophages correlated with the induction of a bacterial gene expression profile typical of persistence as evident by increased Euo expression and decreased Omp1 and Tal expression. Observations of permissive Chlamydia growth in non-polarized and M2 macrophages and persistence in M1 macrophages were supported through electron microscopy. This work supports the importance of IFNγ in the innate immune response to Chlamydia . However, demonstration that the M1 macrophages, despite an antimicrobial signature, fail to eliminate intracellular Chlamydia supports the notion that host–pathogen co-evolution has yielded a pathogen that can evade cellular defenses against this pathogen, and persist for prolonged periods of time in the host. PMID:23967058
Rivera-Toledo, Evelyn; Salido-Guadarrama, Iván; Rodríguez-Dorantes, Mauricio; Torres-González, Laura; Santiago-Olivares, Carlos; Gómez, Beatriz
2017-02-15
Cells susceptible to persistent viral infections undergo important changes in their biological functions as a consequence of the expression of viral gene products that are capable of altering the gene expression profile of the host cell. Previously, we reported that persistence of the RSV genome in a mouse macrophage cell line induces important alterations in cell homeostasis, including constitutive expression of IFN-β and other pro-inflammatory cytokines. Here, we postulated that changes in the homeostasis of non-infected macrophages could be induced by soluble factors secreted by persistently RSV- infected macrophages. To test this hypothesis, non-infected mouse macrophages were treated with conditioned medium (CM) collected from cultures of persistently RSV-infected macrophages. Total RNA was extracted and a microarray-based gene expression analysis was performed. Non-infected macrophages, treated under similar conditions with CM obtained from cultures of non-infected macrophages, were used as a control to establish differential gene expression between the two conditions. Results showed that CM from the persistently RSV-infected cultures altered expression of a total of 95 genes in non-infected macrophages, resulting in an antiviral gene-transcription profile along with inhibition of the inflammatory response, since some inflammatory genes were down-regulated, including Nlrp3 and Il-1 β, both related to the inflammasome pathway. However, down-regulation of Nlrp3 and Il-1 β was reversible upon acute RSV infection. Additionally, we observed that the inflammatory response, evaluated by secreted IL-1 β, a final product of the inflammasome activity, was enhanced during acute RSV infection in macrophages treated with CM from persistently RSV-infected cultures, compared to that in macrophages treated with the control CM. This suggests that soluble factors secreted during RSV persistence may induce an exacerbated inflammatory response in non-infected cells. Copyright © 2017 Elsevier B.V. All rights reserved.
HCMV Reprogramming of Infected Monocyte Survival and Differentiation: A Goldilocks Phenomenon
Stevenson, Emily V.; Collins-McMillen, Donna; Kim, Jung Heon; Cieply, Stephen J.; Bentz, Gretchen L.; Yurochko, Andrew D.
2014-01-01
The wide range of disease pathologies seen in multiple organ sites associated with human cytomegalovirus (HCMV) infection results from the systemic hematogenous dissemination of the virus, which is mediated predominately by infected monocytes. In addition to their role in viral spread, infected monocytes are also known to play a key role in viral latency and life-long persistence. However, in order to utilize infected monocytes for viral spread and persistence, HCMV must overcome a number of monocyte biological hurdles, including their naturally short lifespan and their inability to support viral gene expression and replication. Our laboratory has shown that HCMV is able to manipulate the biology of infected monocytes in order to overcome these biological hurdles by inducing the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral gene expression and replication. In this current review, we describe the unique aspects of how HCMV promotes monocyte survival and differentiation by inducing a “finely-tuned” macrophage cell type following infection. Specifically, we describe the induction of a uniquely polarized macrophage subset from infected monocytes, which we argue is the ideal cellular environment for the initiation of viral gene expression and replication and, ultimately, viral spread and persistence within the infected host. PMID:24531335
HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy.
Honeycutt, Jenna B; Thayer, William O; Baker, Caroline E; Ribeiro, Ruy M; Lada, Steven M; Cao, Youfang; Cleary, Rachel A; Hudgens, Michael G; Richman, Douglas D; Garcia, J Victor
2017-05-01
Despite years of fully suppressive antiretroviral therapy (ART), HIV persists in its hosts and is never eradicated. One major barrier to eradication is that the virus infects multiple cell types that may individually contribute to HIV persistence. Tissue macrophages are critical contributors to HIV pathogenesis; however, their specific role in HIV persistence during long-term suppressive ART has not been established. Using humanized myeloid-only mice (MoM), we demonstrate that HIV infection of tissue macrophages is rapidly suppressed by ART, as reflected by a rapid drop in plasma viral load and a dramatic decrease in the levels of cell-associated viral RNA and DNA. No viral rebound was observed in the plasma of 67% of the ART-treated animals at 7 weeks after ART interruption, and no replication-competent virus was rescued from the tissue macrophages obtained from these animals. In contrast, in a subset of animals (∼33%), a delayed viral rebound was observed that is consistent with the establishment of persistent infection in tissue macrophages. These observations represent the first direct evidence, to our knowledge, of HIV persistence in tissue macrophages in vivo.
HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honeycutt, Jenna B.; Thayer, William O.; Baker, Caroline E.
Despite years of fully suppressive antiretroviral therapy (ART), HIV persists in its hosts and is never eradicated. One major barrier to eradication is that the virus infects multiple cell types that may individually contribute to HIV persistence. Tissue macrophages are critical contributors to HIV pathogenesis; however, their specific role in HIV persistence during long-term suppressive ART has not been established. Using humanized myeloid-only mice (MoM), we demonstrate that HIV infection of tissue macrophages is rapidly suppressed by ART, as reflected by a rapid drop in plasma viral load and a dramatic decrease in the levels of cell-associated viral RNA andmore » DNA. No viral rebound was observed in the plasma of 67% of the ART-treated animals at 7 weeks after ART interruption, and no replication-competent virus was rescued from the tissue macrophages obtained from these animals. In contrast, in a subset of animals (~33%), a delayed viral rebound was observed that is consistent with the establishment of persistent infection in tissue macrophages. Furthermore, these observations represent the first direct evidence, to our knowledge, of HIV persistence in tissue macrophages in vivo.« less
HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy
Honeycutt, Jenna B.; Thayer, William O.; Baker, Caroline E.; ...
2017-04-17
Despite years of fully suppressive antiretroviral therapy (ART), HIV persists in its hosts and is never eradicated. One major barrier to eradication is that the virus infects multiple cell types that may individually contribute to HIV persistence. Tissue macrophages are critical contributors to HIV pathogenesis; however, their specific role in HIV persistence during long-term suppressive ART has not been established. Using humanized myeloid-only mice (MoM), we demonstrate that HIV infection of tissue macrophages is rapidly suppressed by ART, as reflected by a rapid drop in plasma viral load and a dramatic decrease in the levels of cell-associated viral RNA andmore » DNA. No viral rebound was observed in the plasma of 67% of the ART-treated animals at 7 weeks after ART interruption, and no replication-competent virus was rescued from the tissue macrophages obtained from these animals. In contrast, in a subset of animals (~33%), a delayed viral rebound was observed that is consistent with the establishment of persistent infection in tissue macrophages. Furthermore, these observations represent the first direct evidence, to our knowledge, of HIV persistence in tissue macrophages in vivo.« less
HIV persistence in tissue macrophages of humanized myeloid only mice during antiretroviral therapy
Honeycutt, J. B.; Thayer, W.O.; Baker, C. E.; Ribeiro, R.M.; Lada, S.M.; Cao, Y.; Cleary, R. A.; Hudgens, M. G.; Richman, D.D.; Garcia, J. V.
2017-01-01
Despite years of fully suppressive antiretroviral therapy (ART), HIV persists in the host and is never eradicated. One major barrier to eradication is that multiple different cell types are infected that may individually contribute to HIV persistence. Tissue macrophages are critical contributors to HIV disease (1–3); however, their specific role in HIV persistence during long-term suppressive ART has not been established (4–6). Using humanized myeloid-only mice (MoM), we demonstrate that HIV infection of tissue macrophages is rapidly suppressed by ART, as determined by a rapid drop in plasma viral load and a dramatic drop in the levels of cell-associated viral RNA and DNA. No virus rebound was observed in the plasma of 67% of the ART treated animals at seven weeks post-ART interruption, and no replication competent virus was rescued from the tissue macrophages obtained from these animals. In contrast, in a subset of animals (~33%), a significantly delayed viral rebound was observed that is consistent with the establishment of persistent infection in tissue macrophages. These observations represent the first direct evidence of HIV persistence in tissue macrophages in vivo. PMID:28414330
Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span
Morales-Nebreda, Luisa; Cuda, Carla M.; Walter, James M.; Chen, Ching-I; Anekalla, Kishore R.; Joshi, Nikita; Williams, Kinola J.N.; Abdala-Valencia, Hiam; Yacoub, Tyrone J.; Chi, Monica; Gates, Khalilah; Homan, Philip J.; Soberanes, Saul; Dominguez, Salina; Saber, Rana; Hinchcliff, Monique; Marshall, Stacy A.; Bharat, Ankit; Berdnikovs, Sergejs; Bhorade, Sangeeta M.; Balch, William E.; Chandel, Navdeep S.; Jain, Manu; Ridge, Karen M.; Bagheri, Neda; Shilatifard, Ali
2017-01-01
Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion. PMID:28694385
Avalos, Claudia R; Abreu, Celina M; Queen, Suzanne E; Li, Ming; Price, Sarah; Shirk, Erin N; Engle, Elizabeth L; Forsyth, Ellen; Bullock, Brandon T; Mac Gabhann, Feilim; Wietgrefe, Stephen W; Haase, Ashley T; Zink, M Christine; Mankowski, Joseph L; Clements, Janice E; Gama, Lucio
2017-08-15
A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. IMPORTANCE Resting CD4 + T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4 + T cells and underscore the importance of macrophages in developing strategies to eradicate HIV. Copyright © 2017 Avalos et al.
Hansen, Michelle J.; Chan, Sheau Pyng J.; Langenbach, Shenna Y.; Dousha, Lovisa F.; Jones, Jessica E.; Yatmaz, Selcuk; Seow, Huei Jiunn; Vlahos, Ross; Anderson, Gary P.; Bozinovski, Steven
2014-01-01
While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS) for 4 months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a transition from acute mediators (MIP-2α, KC and G-CSF) to sustained drivers of neutrophil and macrophage recruitment and activation (IL-17A and Serum Amyoid A (SAA)). Follicle-like lymphoid aggregates formed with CS exposure and persisted with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-elastase) which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic airway inflammation. PMID:25405776
Macrophages and the Viral Dissemination Super Highway
Klepper, Arielle; Branch, Andrea D
2016-01-01
Monocytes and macrophages are key components of the innate immune system yet they are often the victims of attack by infectious agents. This review examines the significance of viral infection of macrophages. The central hypothesis is that macrophage tropism enhances viral dissemination and persistence, but these changes may come at the cost of reduced replication in cells other than macrophages. PMID:26949751
Rollin, Guillaume; Tan, Xin; Tros, Fabiola; Dupuis, Marion; Nassif, Xavier; Charbit, Alain; Coureuil, Mathieu
2017-01-01
The Gram-positive human pathogen Staphylococcus aureus is a leading cause of severe bacterial infections. Recent studies have shown that various cell types could readily internalize S. aureus and infected cells have been proposed to serve as vehicle for the systemic dissemination of the pathogen. Here we focused on the intracellular behavior of the Community-Associated Methicillin-Resistant S. aureus strain USA300. Supporting earlier observations, we found that wild-type S. aureus strain USA300 persisted for longer period within endothelial cells than within macrophages and that a mutant displaying the small colony variant phenotype (ΔhemDBL) had increased intracellular persistence. Time-lapse microscopy revealed that initial persistence of wild-type bacteria in endothelial cells corresponded to distinct single cell events, ranging from active intracellular bacterial proliferation, leading to cell lysis, to non-replicating bacterial persistence even 1 week after infection. In sharp contrast, ΔhemDBL mutant bacteria were essentially non-replicating up to 10 days after infection. These findings suggest that internalization of S. aureus in endothelial cells triggers its persistence and support the notion that endothelial cells might constitute an intracellular persistence niche responsible for reported relapse of infection after antibiotic therapy. PMID:28769913
GROWTH INHIBITION OF 'CRYPTOCOCCUS NEOFORMANS' BY HUMAN ALVEOLAR MACROPHAGES (JOURNAL VERSION)
Macrophage cytotoxicity for Cryptococcus neoformans was investigated by culturing human alveolar macrophage (AM) with a thin-capsuled clone of C. neoformans. Under appropriate conditions, fungal replication was inhibited in the presence of human AM. The effect persisted over the ...
NASA Technical Reports Server (NTRS)
Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.
2002-01-01
Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.
Gu, Chao-Jiang; Kelschenbach, Jennifer; Kim, Boe-Hyun; Arancio, Ottavio; Suh, Jin; Polsky, Bruce; Edagwa, Benson; Gendelman, Howard E.
2018-01-01
Suppression of HIV replication by antiretroviral therapy (ART) or host immunity can prevent AIDS but not other HIV-associated conditions including neurocognitive impairment (HIV-NCI). Pathogenesis in HIV-suppressed individuals has been attributed to reservoirs of latent-inducible virus in resting CD4+ T cells. Macrophages are persistently infected with HIV but their role as HIV reservoirs in vivo has not been fully explored. Here we show that infection of conventional mice with chimeric HIV, EcoHIV, reproduces physiological conditions for development of disease in people on ART including immunocompetence, stable suppression of HIV replication, persistence of integrated, replication-competent HIV in T cells and macrophages, and manifestation of learning and memory deficits in behavioral tests, termed here murine HIV-NCI. EcoHIV established latent reservoirs in CD4+ T lymphocytes in chronically-infected mice but could be induced by epigenetic modulators ex vivo and in mice. In contrast, macrophages expressed EcoHIV constitutively in mice for up to 16 months; murine leukemia virus (MLV), the donor of gp80 envelope in EcoHIV, did not infect macrophages. Both EcoHIV and MLV were found in brain tissue of infected mice but only EcoHIV induced NCI. Murine HIV-NCI was prevented by antiretroviral prophylaxis but once established neither persistent EcoHIV infection in mice nor NCI could be reversed by long-acting antiretroviral therapy. EcoHIV-infected, athymic mice were more permissive to virus replication in macrophages than were wild-type mice, suffered cognitive dysfunction, as well as increased numbers of monocytes and macrophages infiltrating the brain. Our results suggest an important role of HIV expressing macrophages in HIV neuropathogenesis in hosts with suppressed HIV replication. PMID:29879225
Gu, Chao-Jiang; Borjabad, Alejandra; Hadas, Eran; Kelschenbach, Jennifer; Kim, Boe-Hyun; Chao, Wei; Arancio, Ottavio; Suh, Jin; Polsky, Bruce; McMillan, JoEllyn; Edagwa, Benson; Gendelman, Howard E; Potash, Mary Jane; Volsky, David J
2018-06-01
Suppression of HIV replication by antiretroviral therapy (ART) or host immunity can prevent AIDS but not other HIV-associated conditions including neurocognitive impairment (HIV-NCI). Pathogenesis in HIV-suppressed individuals has been attributed to reservoirs of latent-inducible virus in resting CD4+ T cells. Macrophages are persistently infected with HIV but their role as HIV reservoirs in vivo has not been fully explored. Here we show that infection of conventional mice with chimeric HIV, EcoHIV, reproduces physiological conditions for development of disease in people on ART including immunocompetence, stable suppression of HIV replication, persistence of integrated, replication-competent HIV in T cells and macrophages, and manifestation of learning and memory deficits in behavioral tests, termed here murine HIV-NCI. EcoHIV established latent reservoirs in CD4+ T lymphocytes in chronically-infected mice but could be induced by epigenetic modulators ex vivo and in mice. In contrast, macrophages expressed EcoHIV constitutively in mice for up to 16 months; murine leukemia virus (MLV), the donor of gp80 envelope in EcoHIV, did not infect macrophages. Both EcoHIV and MLV were found in brain tissue of infected mice but only EcoHIV induced NCI. Murine HIV-NCI was prevented by antiretroviral prophylaxis but once established neither persistent EcoHIV infection in mice nor NCI could be reversed by long-acting antiretroviral therapy. EcoHIV-infected, athymic mice were more permissive to virus replication in macrophages than were wild-type mice, suffered cognitive dysfunction, as well as increased numbers of monocytes and macrophages infiltrating the brain. Our results suggest an important role of HIV expressing macrophages in HIV neuropathogenesis in hosts with suppressed HIV replication.
Poquet, Yannick; Levillain, Florence; Botanch, Catherine; Bardou, Fabienne; Daffé, Mamadou; Emile, Jean-François; Marchou, Bruno; Cardona, Pere-Joan; de Chastellier, Chantal; Altare, Frédéric
2008-01-01
Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M. tuberculosis interactions with granuloma-specific cell populations are needed to gain insight into mycobacterial persistence, and to better understand the physiopathology of the disease. We have analyzed the formation of foamy macrophages (FMs), a granuloma-specific cell population characterized by its high lipid content, and studied their interaction with the tubercle bacillus. Within our in vitro human granuloma model, M. tuberculosis long chain fatty acids, namely oxygenated mycolic acids (MA), triggered the differentiation of human monocyte-derived macrophages into FMs. In these cells, mycobacteria no longer replicated and switched to a dormant non-replicative state. Electron microscopy observation of M. tuberculosis–infected FMs showed that the mycobacteria-containing phagosomes migrate towards host cell lipid bodies (LB), a process which culminates with the engulfment of the bacillus into the lipid droplets and with the accumulation of lipids within the microbe. Altogether, our results suggest that oxygenated mycolic acids from M. tuberculosis play a crucial role in the differentiation of macrophages into FMs. These cells might constitute a reservoir used by the tubercle bacillus for long-term persistence within its human host, and could provide a relevant model for the screening of new antimicrobials against non-replicating persistent mycobacteria. PMID:19002241
Bordetella pertussis modulates human macrophage defense gene expression.
Valdez, Hugo Alberto; Oviedo, Juan Marcos; Gorgojo, Juan Pablo; Lamberti, Yanina; Rodriguez, Maria Eugenia
2016-08-01
Bordetella pertussis, the etiological agent of whooping cough, still causes outbreaks. We recently found evidence that B. pertussis can survive and even replicate inside human macrophages, indicating that this host cell might serve as a niche for persistence. In this work, we examined the interaction of B. pertussis with a human monocyte cell line (THP-1) that differentiates into macrophages in culture in order to investigate the host cell response to the infection and the mechanisms that promote that intracellular survival. To that end, we investigated the expression profile of a selected number of genes involved in cellular bactericidal activity and the inflammatory response during the early and late phases of infection. The bactericidal and inflammatory response of infected macrophages was progressively downregulated, while the number of THP-1 cells heavily loaded with live bacteria increased over time postinfection. Two of the main toxins of B. pertussis, pertussis toxin (Ptx) and adenylate cyclase (CyaA), were found to be involved in manipulating the host cell response. Therefore, failure to express either toxin proved detrimental to the development of intracellular infections by those bacteria. Taken together, these results support the relevance of host defense gene manipulation to the outcome of the interaction between B. pertussis and macrophages. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cunyat, Francesc; Rainho, Jennifer N.; West, Brian; Swainson, Louise; McCune, Joseph M.
2016-01-01
ABSTRACT Strategies aimed at eliminating persistent viral reservoirs from HIV-1-infected individuals have focused on CD4+ T-cell reservoirs. However, very little attention has been given to approaches that could promote elimination of tissue macrophage reservoirs. HIV-1 infection of macrophages induces phosphorylation of colony-stimulating factor 1 receptor (CSF-1R), which confers resistance to apoptotic pathways driven by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), thereby promoting viral persistence. In this study, we assessed whether CSF-1R antagonists (PLX647, PLX3397, and PLX5622) restored apoptotic sensitivity of HIV-1-infected macrophages in vitro. PLX647, PLX3397, and PLX5622 at clinically relevant concentrations blocked the activation of CSF-1R and reduced the viability of infected macrophages, as well as the extent of viral replication. Our data show that strategies targeting monocyte colony-stimulating factor (MCSF) signaling could be used to promote elimination of HIV-1-infected myeloid cells and to contribute to the elimination of persistent viral reservoirs. IMPORTANCE As the HIV/AIDS research field explores approaches to eliminate HIV-1 in individuals on suppressive antiviral therapy, those approaches will need to eliminate both CD4+ T-cell and myeloid cell reservoirs. Most of the attention has focused on CD4+ T-cell reservoirs, and scant attention has been paid to myeloid cell reservoirs. The distinct nature of the infection in myeloid cells versus CD4+ T cells will likely dictate different approaches in order to achieve their elimination. For CD4+ T cells, most strategies focus on promoting virus reactivation to promote immune-mediated clearance and/or elimination by viral cytopathicity. Macrophages resist viral cytopathic effects and CD8+ T-cell killing. Therefore, we have explored clearance strategies that render macrophages sensitive to viral cytopathicity. This research helps inform the design of strategies to promote clearance of the macrophage reservoir in infected individuals on suppressive antiviral therapy. PMID:27122585
Anderson, Donald S.; Patchin, Esther S.; Silva, Rona M.; Uyeminami, Dale L.; Sharmah, Arjun; Guo, Ting; Das, Gautom K.; Brown, Jared M.; Shannahan, Jonathan; Gordon, Terry; Chen, Lung Chi; Pinkerton, Kent E.; Van Winkle, Laura S.
2015-01-01
The growing use of silver nanoparticles (AgNPs) in consumer products raises concerns about potential health effects. This study investigated the persistence and clearance of 2 different size AgNPs (20 and 110 nm) delivered to rats by single nose-only aerosol exposures (6 h) of 7.2 and 5.4 mg/m3, respectively. Rat lung tissue was assessed for silver accumulations using inductively-coupled plasma mass spectrometry (ICP-MS), autometallography, and enhanced dark field microscopy. Involvement of tissue macrophages was assessed by scoring of silver staining in bronchoalveolar lavage fluid (BALF). Silver was abundant in most macrophages at 1 day post-exposure. The group exposed to 20 nm AgNP had the greatest number of silver positive BALF macrophages at 56 days post-exposure. While there was a significant decrease in the amount of silver in lung tissue at 56 days post-exposure compared with 1 day following exposure, at least 33% of the initial delivered dose was still present for both AgNPs. Regardless of particle size, silver was predominantly localized within the terminal bronchial/alveolar duct junction region of the lung associated with extracellular matrix and within epithelial cells. Inhalation of both 20 and 110 nm AgNPs resulted in a persistence of silver in the lung at 56 days post-exposure and local deposition as well as accumulation of silver at the terminal bronchiole alveolar duct junction. Further the smaller particles, 20 nm AgNP, produced a greater silver burden in BALF macrophages as well as greater persistence of silver positive macrophages at later timepoints (21 and 56 days). PMID:25577195
Macrophage Phenotype Controls Long-Term AKI Outcomes—Kidney Regeneration versus Atrophy
Gröbmayr, Regina; Ryu, Mi; Lorenz, Georg; Hartter, Ingo; Mulay, Shrikant R.; Susanti, Heni Eka; Kobayashi, Koichi S.; Flavell, Richard A.; Anders, Hans-Joachim
2014-01-01
The mechanisms that determine full recovery versus subsequent progressive CKD after AKI are largely unknown. Because macrophages regulate inflammation as well as epithelial recovery, we investigated whether macrophage activation influences AKI outcomes. IL-1 receptor–associated kinase-M (IRAK-M) is a macrophage-specific inhibitor of Toll-like receptor (TLR) and IL-1 receptor signaling that prevents polarization toward a proinflammatory phenotype. In postischemic kidneys of wild-type mice, IRAK-M expression increased for 3 weeks after AKI and declined thereafter. However, genetic depletion of IRAK-M did not affect immunopathology and renal dysfunction during early postischemic AKI. Regarding long-term outcomes, wild-type kidneys regenerated completely within 5 weeks after AKI. In contrast, IRAK-M−/− kidneys progressively lost up to two-thirds of their original mass due to tubule loss, leaving atubular glomeruli and interstitial scarring. Moreover, M1 macrophages accumulated in the renal interstitial compartment, coincident with increased expression of proinflammatory cytokines and chemokines. Injection of bacterial CpG DNA induced the same effects in wild-type mice, and TNF-α blockade with etanercept partially prevented renal atrophy in IRAK-M−/− mice. These results suggest that IRAK-M induction during the healing phase of AKI supports the resolution of M1 macrophage– and TNF-α–dependent renal inflammation, allowing structural regeneration and functional recovery of the injured kidney. Conversely, IRAK-M loss-of-function mutations or transient exposure to bacterial DNA may drive persistent inflammatory mononuclear phagocyte infiltrates, which impair kidney regeneration and promote CKD. Overall, these results support a novel role for IRAK-M in the regulation of wound healing and tissue regeneration. PMID:24309188
Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes; Fischer, Michael B; Weber, Viktoria
2015-01-01
Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence for the ability of C. pneumoniae to evade cellular defense and to persist in human macrophages.
Epelman, Slava; Lavine, Kory J.; Beaudin, Anna E.; Sojka, Dorothy K.; Carrero, Javier A.; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L.; Ivanov, Stoyan; Satpathy, Ansuman T.; Schilling, Joel D.; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E. Camilla; Yokoyama, Wayne; Unanue, Emil R.; Colonna, Marco; Randolph, Gwendalyn J.; Mann, Douglas L.
2014-01-01
Summary Cardiac macrophages are crucial for tissue repair after cardiac injury but have not been well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6chi monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins and strategies to regulate compartment. PMID:24439267
Deciphering the Intracellular Fate of Propionibacterium acnes in Macrophages
Fischer, Natalie; Mak, Tim N.; Shinohara, Debika Biswal; Sfanos, Karen S.; Meyer, Thomas F.
2013-01-01
Propionibacterium acnes is a Gram-positive bacterium that colonizes various niches of the human body, particularly the sebaceous follicles of the skin. Over the last years a role of this common skin bacterium as an opportunistic pathogen has been explored. Persistence of P. acnes in host tissue has been associated with chronic inflammation and disease development, for example, in prostate pathologies. This study investigated the intracellular fate of P. acnes in macrophages after phagocytosis. In a mouse model of P. acnes-induced chronic prostatic inflammation, the bacterium could be detected in prostate-infiltrating macrophages at 2 weeks postinfection. Further studies performed in the human macrophage cell line THP-1 revealed intracellular survival and persistence of P. acnes but no intracellular replication or escape from the host cell. Confocal analyses of phagosome acidification and maturation were performed. Acidification of P. acnes-containing phagosomes was observed at 6 h postinfection but then lost again, indicative of cytosolic escape of P. acnes or intraphagosomal pH neutralization. No colocalization with the lysosomal markers LAMP1 and cathepsin D was observed, implying that the P. acnes-containing phagosome does not fuse with lysosomes. Our findings give first insights into the intracellular fate of P. acnes; its persistency is likely to be important for the development of P. acnes-associated inflammatory diseases. PMID:23862148
Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway
2015-01-01
In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084
Mina, Elin G; Marques, Cláudia N H
2016-08-10
Persister cells, a tolerant cell sub-population, are commonly associated with chronic and recurrent infections. However, little is known about their ability to actually initiate or establish an infection, become virulent and cause pathogenicity within a host. Here we investigated whether Staphylococcus aureus persister cells initiate an infection and are recognized by macrophages, while in a persister cell status, and upon awakening due to exposure to cis-2-decenoic acid (cis-DA). Our results show that S. aureus persister cells are not able to initiate infections in A. thaliana and present significantly reduced virulence towards C. elegans compared to total populations. In contrast, awakened S. aureus persister cells are able to initiate infections in A. thaliana and in C. elegans albeit, with lower mortality than total population. Furthermore, exposure of S. aureus persister cells to cis-DA led to a loss of tolerance to ciprofloxacin, and an increase of the bacterial fluorescence to levels found in total population. In addition, macrophage engulfment of persister cells was significantly lower than engulfment of total population, both before and following awakening. Overall our findings indicate that upon awakening of a persister population the cells regain their ability to infect hosts despite the absence of an increased immune response.
A Negative Feedback Loop Between Autophagy and Immune Responses in Mycobacterium leprae Infection.
Ma, Yuelong; Zhang, Li; Lu, Jie; Shui, Tiejun; Chen, Jia; Yang, Jun; Yuan, Joanna; Liu, Yeqiang; Yang, Degang
2017-01-01
The obligate intracellular bacterium Mycobacterium leprae is the causative agent of leprosy and primarily infects macrophages, leading to irreversible nerve damage and deformities. So far, the underlying reasons allowing M. leprae to persist and propagate in macrophages, despite the presence of cellular immunity, are still a mystery. Here, we investigated the role of autophagy, a cellular process that degrades cytosolic materials and intracellular pathogens, in M. leprae infection. We found that live M. leprae infection of macrophages resulted in significantly elevated autophagy level. However, macrophages with high autophagy levels preferentially expressed lower levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-12, and tumor necrosis factor-α, and preferentially primed anti-inflammatory T cells responses, characterized by high IL-10 and low interferon-γ, granzyme B, and perforin responses. These anti-inflammatory T cells could suppress further induction of autophagy, leading to improved survival of intracellular M. leprae in infected macrophages. Therefore, these data demonstrated that although autophagy had a role in eliminating intracellular pathogens, the induction of autophagy resulted in anti-inflammatory immune responses, which suppressed autophagy in a negative feedback loop and allowed the persistence of M. leprae.
Zheng, Bin; Bai, Yang; Chen, Hongbin; Pan, Huizhuo; Ji, Wanying; Gong, Xiaoqun; Wu, Xiaoli; Wang, Hanjie; Chang, Jin
2018-05-14
Optical imaging for biological applications is in need of more sensitive tool. Persistent luminescent nanophosphors enable highly sensitive in vivo optical detection and almost completely avoids tissue autofluorescence. Nevertheless, the actual persistent luminescent nanophosphors necessitates ex vivo activation before systemic operation, which severely restricted the use of long-term imaging in vivo. Hence, we introduced a novel generation of optical nanophosphors, based on (Zn2SiO4: Mn): Y3+, Yb3+, Tm3+ upconverting persistent luminescent nanophosphors, these nanophosphors can be excited in vivo through living tissues by highly penetrating near-infrared light. We can trace labeled tumor therapeutic macrophages in vivo after endocytosing these nanophosphors in vitro and follow macrophages biodistribution by a simple whole animal optical detection. These nanophosphors will open novel potentials for cell therapy research and for a variety of diagnosis applications in vivo.
Dunne, Karl A.; Allam, Amr; McIntosh, Anne; Houston, Stephanie A.; Cerovic, Vuk; Goodyear, Carl S.; Roe, Andrew J.; Beatson, Scott A.; Milling, Simon W.; Walker, Daniel; Wall, Daniel M.
2013-01-01
Adherent invasive Escherichia coli (AIEC) have been implicated as a causative agent of Crohn’s disease (CD) due to their isolation from the intestines of CD sufferers and their ability to persist in macrophages inducing granulomas. The rapid intracellular multiplication of AIEC sets it apart from other enteric pathogens such as Salmonella Typhimurium which after limited replication induce programmed cell death (PCD). Understanding the response of infected cells to the increased AIEC bacterial load and associated metabolic stress may offer insights into AIEC pathogenesis and its association with CD. Here we show that AIEC persistence within macrophages and dendritic cells is facilitated by increased proteasomal degradation of caspase-3. In addition S-nitrosylation of pro- and active forms of caspase-3, which can inhibit the enzymes activity, is increased in AIEC infected macrophages. This S-nitrosylated caspase-3 was seen to accumulate upon inhibition of the proteasome indicating an additional role for S-nitrosylation in inducing caspase-3 degradation in a manner independent of ubiquitination. In addition to the autophagic genetic defects that are linked to CD, this delay in apoptosis mediated in AIEC infected cells through increased degradation of caspase-3, may be an essential factor in its prolonged persistence in CD patients. PMID:23861899
McComb, Scott; Cessford, Erin; Alturki, Norah A; Joseph, Julie; Shutinoski, Bojan; Startek, Justyna B; Gamero, Ana M; Mossman, Karen L; Sad, Subash
2014-08-05
Myeloid cells play a critical role in perpetuating inflammation during various chronic diseases. Recently the death of macrophages through programmed necrosis (necroptosis) has emerged as an important mechanism in inflammation and pathology. We evaluated the mechanisms that lead to the induction of necrotic cell death in macrophages. Our results indicate that type I IFN (IFN-I) signaling is a predominant mechanism of necroptosis, because macrophages deficient in IFN-α receptor type I (IFNAR1) are highly resistant to necroptosis after stimulation with LPS, polyinosinic-polycytidylic acid, TNF-α, or IFN-β in the presence of caspase inhibitors. IFN-I-induced necroptosis occurred through both mechanisms dependent on and independent of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and led to persistent phosphorylation of receptor-interacting protein 3 (Rip3) kinase, which resulted in potent necroptosis. Although various IFN-regulatory factors (IRFs) facilitated the induction of necroptosis in response to IFN-β, IRF-9-STAT1- or -STAT2-deficient macrophages were highly resistant to necroptosis. Our results indicate that IFN-β-induced necroptosis of macrophages proceeds through tonic IFN-stimulated gene factor 3 (ISGF3) signaling, which leads to persistent expression of STAT1, STAT2, and IRF9. Induction of IFNAR1/Rip3-dependent necroptosis also resulted in potent inflammatory pathology in vivo. These results reveal how IFN-I mediates acute inflammation through macrophage necroptosis.
McComb, Scott; Cessford, Erin; Alturki, Norah A.; Joseph, Julie; Shutinoski, Bojan; Startek, Justyna B.; Gamero, Ana M.; Mossman, Karen L.; Sad, Subash
2014-01-01
Myeloid cells play a critical role in perpetuating inflammation during various chronic diseases. Recently the death of macrophages through programmed necrosis (necroptosis) has emerged as an important mechanism in inflammation and pathology. We evaluated the mechanisms that lead to the induction of necrotic cell death in macrophages. Our results indicate that type I IFN (IFN-I) signaling is a predominant mechanism of necroptosis, because macrophages deficient in IFN-α receptor type I (IFNAR1) are highly resistant to necroptosis after stimulation with LPS, polyinosinic-polycytidylic acid, TNF-α, or IFN-β in the presence of caspase inhibitors. IFN-I–induced necroptosis occurred through both mechanisms dependent on and independent of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and led to persistent phosphorylation of receptor-interacting protein 3 (Rip3) kinase, which resulted in potent necroptosis. Although various IFN-regulatory factors (IRFs) facilitated the induction of necroptosis in response to IFN−β, IRF-9–STAT1– or -STAT2–deficient macrophages were highly resistant to necroptosis. Our results indicate that IFN-β–induced necroptosis of macrophages proceeds through tonic IFN-stimulated gene factor 3 (ISGF3) signaling, which leads to persistent expression of STAT1, STAT2, and IRF9. Induction of IFNAR1/Rip3–dependent necroptosis also resulted in potent inflammatory pathology in vivo. These results reveal how IFN-I mediates acute inflammation through macrophage necroptosis. PMID:25049377
Promising landscape for regulating macrophage polarization: epigenetic viewpoint
Chen, Lu; Zhang, Wen; Xu, Zhenyu; Zuo, Jian; Jiang, Hui; Luan, Jiajie
2017-01-01
Macrophages are critical myeloid cells with the hallmark of phenotypic heterogeneity and functional plasticity. Macrophages phenotypes are commonly described as classically-activated M1 and alternatively-activated M2 macrophages which play an essential role in the tissues homeostasis and diseases pathogenesis. Alternations of macrophage polarization and function states require precise regulation of target-gene expression. Emerging data demonstrate that epigenetic mechanisms and transcriptional factors are becoming increasingly appreciated in the orchestration of macrophage polarization in response to local environmental signals. This review is to focus on the advanced concepts of epigenetics changes involved with the macrophage polarization, including microRNAs, DNA methylation and histone modification, which are responsible for the altered cellular signaling and signature genes expression during M1 or M2 polarization. Eventually, the persistent investigation and understanding of epigenetic mechanisms in tissue macrophage polarization and function will enhance the potential to develop novel therapeutic targets for various diseases. PMID:28915705
Macrophages in tissue repair, regeneration, and fibrosis
Wynn, Thomas A.; Vannella, Kevin M.
2016-01-01
Inflammatory monocytes and resident tissue macrophages are key regulators of tissue repair, regeneration, and fibrosis. Following tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, with uncontrolled inflammatory mediator and growth factor production, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contributing to a state of persistent injury, which may lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue regenerating phenotypes following injury, and highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically. PMID:26982353
Hypoxia promotes Mycobacterium tuberculosis-specific up-regulation of granulysin in human T cells.
Zenk, Sebastian F; Vollmer, Michael; Schercher, Esra; Kallert, Stephanie; Kubis, Jan; Stenger, Steffen
2016-06-01
Oxygen tension affects local immune responses in inflammation and infection. In tuberculosis mycobacteria avoid hypoxic areas and preferentially persist and reactivate in the oxygen-rich apex of the lung. Oxygen restriction activates antimicrobial effector mechanisms in macrophages and restricts growth of intracellular Mycobacterium tuberculosis (M.Tb). The effect of oxygen restriction on T cell-mediated antimicrobial effector mechanisms is unknown. Therefore we determined the influence of hypoxia on the expression of granulysin, an antimicrobial peptide of lymphocytes. Hypoxia increased the antigen-specific up-regulation of granulysin mRNA and protein in human CD4(+) and CD8(+) T lymphocytes. This observation was functionally relevant, because oxygen restriction supported the growth-limiting effect of antigen-specific T cells against virulent M.Tb residing in primary human macrophages. Our results provide evidence that oxygen restriction promotes the expression of granulysin and suggest that this effect-in conjunction with additional T cell-mediated immune responses-supports protection against mycobacteria. The therapeutic modulation of oxygen availability may offer a new strategy for the host-directed therapy of infectious diseases with intracellular pathogens.
Carossino, Mariano; Loynachan, Alan T.; Canisso, Igor F.; Cook, R. Frank; Campos, Juliana R.; Nam, Bora; Go, Yun Young; Squires, Edward L.; Troedsson, Mats H. T.; Swerczek, Thomas; Del Piero, Fabio; Bailey, Ernest; Timoney, Peter J.
2017-01-01
ABSTRACT Equine arteritis virus (EAV) has a global impact on the equine industry as the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of equids. A distinctive feature of EAV infection is that it establishes long-term persistent infection in 10 to 70% of infected stallions (carriers). In these stallions, EAV is detectable only in the reproductive tract, and viral persistence occurs despite the presence of high serum neutralizing antibody titers. Carrier stallions constitute the natural reservoir of the virus as they continuously shed EAV in their semen. Although the accessory sex glands have been implicated as the primary sites of EAV persistence, the viral host cell tropism and whether viral replication in carrier stallions occurs in the presence or absence of host inflammatory responses remain unknown. In this study, dual immunohistochemical and immunofluorescence techniques were employed to unequivocally demonstrate that the ampulla is the main EAV tissue reservoir rather than immunologically privileged tissues (i.e., testes). Furthermore, we demonstrate that EAV has specific tropism for stromal cells (fibrocytes and possibly tissue macrophages) and CD8+ T and CD21+ B lymphocytes but not glandular epithelium. Persistent EAV infection is associated with moderate, multifocal lymphoplasmacytic ampullitis comprising clusters of B (CD21+) lymphocytes and significant infiltration of T (CD3+, CD4+, CD8+, and CD25+) lymphocytes, tissue macrophages, and dendritic cells (Iba-1+ and CD83+), with a small number of tissue macrophages expressing CD163 and CD204 scavenger receptors. This study suggests that EAV employs complex immune evasion mechanisms that warrant further investigation. IMPORTANCE The major challenge for the worldwide control of EAV is that this virus has the distinctive ability to establish persistent infection in the stallion's reproductive tract as a mechanism to ensure its maintenance in equid populations. Therefore, the precise identification of tissue and cellular tropism of EAV is critical for understanding the molecular basis of viral persistence and for development of improved prophylactic or treatment strategies. This study significantly enhances our understanding of the EAV carrier state in stallions by unequivocally identifying the ampullae as the primary sites of viral persistence, combined with the fact that persistence involves continuous viral replication in fibrocytes (possibly including tissue macrophages) and T and B lymphocytes in the presence of detectable inflammatory responses, suggesting the involvement of complex viral mechanisms of immune evasion. Therefore, EAV persistence provides a powerful new natural animal model to study RNA virus persistence in the male reproductive tract. PMID:28424285
Alvarado-Vazquez, Perla Abigail; Bernal, Laura; Paige, Candler A; Grosick, Rachel L; Moracho Vilrriales, Carolina; Ferreira, David Wilson; Ulecia-Morón, Cristina; Romero-Sandoval, E Alfonso
2017-08-01
M1 macrophages release proinflammatory factors during inflammation. They transit to an M2 phenotype and release anti-inflammatory factors to resolve inflammation. An imbalance in the transition from M1 to M2 phenotype in macrophages contributes to the development of persistent inflammation. CD163, a member of the scavenger receptor cysteine-rich family, is an M2 macrophage marker. The functional role of CD163 during the resolution of inflammation is not completely known. We postulate that CD163 contributes to the transition from M1 to M2 phenotype in macrophages. We induced CD163 gene in THP-1 and primary human macrophages using polyethylenimine nanoparticles grafted with a mannose ligand (Man-PEI). This nanoparticle specifically targets cells of monocytic origin via mannose receptors. Cells were challenged with a single or a double stimulation of lipopolysaccharide (LPS). A CD163 or empty plasmid was complexed with Man-PEI nanoparticles for cell transfections. Quantitative RT-PCR, immunocytochemistry, and ELISAs were used for molecular assessments. CD163-overexpressing macrophages displayed reduced levels of tumor necrosis factor-alpha (TNF)-α and monocytes chemoattractant protein (MCP)-1 after a single stimulation with LPS. Following a double stimulation paradigm, CD163-overexpressing macrophages showed an increase of interleukin (IL)-10 and IL-1ra and a reduction of MCP-1. This anti-inflammatory phenotype was partially blocked by an anti-CD163 antibody (effects on IL-10 and IL-1ra). A decrease in the release of TNF-α, IL-1β, and IL-6 was observed in CD163-overexpressing human primary macrophages. The release of IL-6 was blocked by an anti-CD163 antibody in the CD163-overexpressing group. Our data show that the induction of the CD163 gene in human macrophages under inflammatory conditions produces changes in cytokine secretion in favor of an anti-inflammatory phenotype. Targeting macrophages to induce CD163 using cell-directed nanotechnology is an attractive and practical approach for inflammatory conditions that could lead to persistent pain, i.e. major surgeries, burns, rheumatoid arthritis, etc. Copyright © 2017 Elsevier GmbH. All rights reserved.
Groves, Angela M.; Gow, Andrew J.; Massa, Christopher B.; Laskin, Jeffrey D.
2012-01-01
Surfactant protein–D (Sftpd) is a pulmonary collectin important in down-regulating macrophage inflammatory responses. In these experiments, we analyzed the effects of chronic macrophage inflammation attributable to loss of Sftpd on the persistence of ozone-induced injury, macrophage activation, and altered functioning in the lung. Wild-type (Sftpd+/+) and Sftpd−/− mice (aged 8 wk) were exposed to air or ozone (0.8 parts per million, 3 h). Bronchoalveolar lavage (BAL) fluid and tissue were collected 72 hours later. In Sftpd−/− mice, but not Sftpd+/+ mice, increased BAL protein and nitrogen oxides were observed after ozone inhalation, indicating prolonged lung injury and oxidative stress. Increased numbers of macrophages were also present in BAL fluid and in histologic sections from Sftpd−/− mice. These cells were enlarged and foamy, suggesting that they were activated. This conclusion was supported by findings of increased BAL chemotactic activity, and increased expression of inducible nitric oxide synthase in lung macrophages. In both Sftpd+/+ and Sftpd−/− mice, inhalation of ozone was associated with functional alterations in the lung. Although these alterations were limited to central airway mechanics in Sftpd+/+ mice, both central airway and parenchymal mechanics were modified by ozone exposure in Sftpd−/− mice. The most notable changes were evident in resistance and elastance spectra and baseline lung function, and in lung responsiveness to changes in positive end-expiratory pressure. These data demonstrate that a loss of Sftpd is associated with prolonged lung injury, oxidative stress, and macrophage accumulation and activation in response to ozone, and with more extensive functional changes consistent with the loss of parenchymal integrity. PMID:22878412
Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis.
Nguyen, Phuong Chi; Delorme, Vincent; Bénarouche, Anaïs; Martin, Benjamin P; Paudel, Rishi; Gnawali, Giri R; Madani, Abdeldjalil; Puppo, Rémy; Landry, Valérie; Kremer, Laurent; Brodin, Priscille; Spilling, Christopher D; Cavalier, Jean-François; Canaan, Stéphane
2017-09-18
A new class of Cyclophostin and Cyclipostins (CyC) analogs have been investigated against Mycobacterium tuberculosis H37Rv (M. tb) grown either in broth medium or inside macrophages. Our compounds displayed a diversity of action by acting either on extracellular M. tb bacterial growth only, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth with very low toxicity towards host macrophages. Among the eight potential CyCs identified, CyC 17 exhibited the best extracellular antitubercular activity (MIC 50 = 500 nM). This compound was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 23 potential candidates, most of them being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA and HsaD, have previously been reported as essential for in vitro growth of M. tb and/or survival and persistence in macrophages. Overall, our findings support the assumption that CyC 17 may thus represent a novel class of multi-target inhibitor leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes participating in important physiological processes.
Hawley, Kelly L.; Cruz, Adriana R.; Benjamin, Sarah J.; La Vake, Carson J.; Cervantes, Jorge L.; LeDoyt, Morgan; Ramirez, Lady G.; Mandich, Daniza; Fiel-Gan, Mary; Caimano, Melissa J.; Radolf, Justin D.; Salazar, Juan C.
2017-01-01
Syphilis is a multi-stage, sexually transmitted disease caused by the spirochete Treponema pallidum (Tp). Considered broadly, syphilis can be conceptualized as a dualistic process in which spirochete-driven inflammation, the cause of clinical manifestations, coexists to varying extents with bacterial persistence. Inflammation is elicited in the tissues, along with the persistence of spirochetes to keep driving a robust immune response while evading host defenses; this duality is best exemplified during the florid, disseminated stage called secondary syphilis (SS). SS lesions typically contain copious amounts of spirochetes along with a mixed cellular infiltrate consisting of CD4+ T cells, CD8+ T cells, NK cells, plasma cells, and macrophages. In the rabbit model, Tp are cleared by macrophages via antibody-mediated opsonophagocytosis. Previously, we demonstrated that human syphilitic serum (HSS) promotes efficient uptake of Tp by human monocytes and that opsonophagocytosis of Tp markedly enhances cytokine production. Herein, we used monocyte-derived macrophages to study Tp–macrophage interactions ex vivo. In the absence of HSS, monocyte-derived macrophages internalized low numbers of Tp and secreted little cytokine (e.g., TNF). By contrast, these same macrophages internalized large numbers of unopsonized Borrelia burgdorferi and secreted robust levels of cytokines. Maturation of macrophages with M-CSF and IFNγ resulted in a macrophage phenotype with increased expression of HLA-DR, CD14, inducible nitric oxide synthase, TLR2, TLR8, and the Fcγ receptors (FcγR) CD64 and CD16, even in the absence of LPS. Importantly, IFNγ-polarized macrophages resulted in a statistically significant increase in opsonophagocytosis of Tp accompanied by enhanced production of cytokines, macrophage activation markers (CD40, CD80), TLRs (TLR2, TLR7, TLR8), chemokines (CCL19, CXCL10, CXCL11), and TH1-promoting cytokines (IL-12, IL-15). Finally, the blockade of FcγRs, primarily CD64, significantly diminished spirochetal uptake and proinflammatory cytokine secretion by IFNγ-stimulated macrophages. Our ex vivo studies demonstrate the importance of CD64-potentiated uptake of opsonized Tp and suggest that IFNγ-activated macrophages have an important role in the context of early syphilis. Our study results also provide an ex vivo surrogate system for use in future syphilis vaccine studies. PMID:29051759
Vijay, Srinivasan; Vinh, Dao N.; Hai, Hoang T.; Ha, Vu T. N.; Dung, Vu T. M.; Dinh, Tran D.; Nhung, Hoang N.; Tram, Trinh T. B.; Aldridge, Bree B.; Hanh, Nguyen T.; Thu, Do D. A.; Phu, Nguyen H.; Thwaites, Guy E.; Thuong, Nguyen T. T.
2017-01-01
Mycobacterial cellular variations in growth and division increase heterogeneity in cell length, possibly contributing to cell-to-cell variation in host and antibiotic stress tolerance. This may be one of the factors influencing Mycobacterium tuberculosis persistence to antibiotics. Tuberculosis (TB) is a major public health problem in developing countries, antibiotic persistence, and emergence of antibiotic resistance further complicates this problem. We wanted to investigate the factors influencing cell-length distribution in clinical M. tuberculosis strains. In parallel we examined M. tuberculosis cell-length distribution in a large set of clinical strains (n = 158) from ex vivo sputum samples, in vitro macrophage models, and in vitro cultures. Our aim was to understand the influence of clinically relevant factors such as host stresses, M. tuberculosis lineages, antibiotic resistance, antibiotic concentrations, and disease severity on the cell size distribution in clinical M. tuberculosis strains. Increased cell size and cell-to-cell variation in cell length were associated with bacteria in sputum and infected macrophages rather than liquid culture. Multidrug-resistant (MDR) strains displayed increased cell length heterogeneity compared to sensitive strains in infected macrophages and also during growth under rifampicin (RIF) treatment. Importantly, increased cell length was also associated with pulmonary TB disease severity. Supporting these findings, individual host stresses, such as oxidative stress and iron deficiency, increased cell-length heterogeneity of M. tuberculosis strains. In addition we also observed synergism between host stress and RIF treatment in increasing cell length in MDR-TB strains. This study has identified some clinical factors contributing to cell-length heterogeneity in clinical M. tuberculosis strains. The role of these cellular adaptations to host and antibiotic tolerance needs further investigation. PMID:29209302
Fineran, Paul; Lloyd-Evans, Emyr; Lack, Nathan A; Platt, Nick; Davis, Lianne C; Morgan, Anthony J; Höglinger, Doris; Tatituri, Raju Venkata V; Clark, Simon; Williams, Ian M; Tynan, Patricia; Al Eisa, Nada; Nazarova, Evgeniya; Williams, Ann; Galione, Antony; Ory, Daniel S; Besra, Gurdyal S; Russell, David G; Brenner, Michael B; Sim, Edith; Platt, Frances M
2016-11-18
Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis , achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.
Constant replenishment from circulating monocytes maintains the macrophage pool in adult intestine
Scott, Charlotte L.; Perdiguero, Elisa Gomez; Geissmann, Frederic; Henri, Sandrine; Malissen, Bernard; Osborne, Lisa C.; Artis, David; Mowat, Allan McI.
2014-01-01
The paradigm that resident macrophages in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate mapping models and monocytopenic mice, together with bone marrow chimeric and parabiotic models, we show that embryonic precursors seeded the intestinal mucosa and demonstrated extensive in situ proliferation in the neonatal period. However these cells did not persist in adult intestine. Instead, they were replaced around the time of weaning by the CCR2-dependent influx of Ly6Chi monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool. PMID:25151491
Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair
Kharraz, Yacine; Guerra, Joana; Mann, Christopher J.; Serrano, Antonio L.; Muñoz-Cánoves, Pura
2013-01-01
Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD), macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell) functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair. PMID:23509419
Efferocytosis is an innate antibacterial mechanism
Martin, Constance J.; Booty, Matthew G.; Rosebrock, Tracy R.; Nunes-Alves, Cláudio; Desjardins, Danielle M.; Keren, Iris; Fortune, Sarah M.; Remold, Heinz G.; Behar, Samuel M.
2012-01-01
Summary Mycobacterium tuberculosis persists within macrophages in an arrested phagosome and depends upon necrosis to elude immunity and disseminate. Although apoptosis of M. tuberculosis-infected macrophages is associated with reduced bacterial growth, the bacteria are relatively resistant to death mechanisms, leaving the mechanisms underlying this observation unresolved. We find that following apoptosis, M. tuberculosis-infected macrophages are rapidly taken up by uninfected macrophages through efferocytosis, a dedicated apoptotic cell engulfment process. Efferocytosis of M. tuberculosis sequestered within an apoptotic macrophage further compartmentalizes the bacterium and delivers it along with the apoptotic cell debris to the lysosomal compartment. M. tuberculosis is killed only after efferocytosis, indicating that apoptosis itself is not intrinsically bactericidal but requires subsequent phagocytic uptake and lysosomal fusion of the apoptotic body harboring the bacterium. While efferocytosis is recognized as a constitutive housekeeping function of macrophages, these data indicate that it can also function as an antimicrobial effector mechanism. PMID:22980326
Miranda, Farlen J B; Damasceno-Sá, João Cláudio; DaMatta, Renato A
2016-01-01
Raising ostriches became an important economic activity after their products became commodities. The health of farm animals is of paramount importance, so assessing basic immunological responses is necessary to better understand health problems. We developed a method to obtain ostrich thrombocytes and macrophages. The thrombocytes died by apoptosis after 48 h in culture, and the macrophages expanded in size and increased the number of acidic compartments. Macrophages were activated by chicken interferon-γ, producing high levels of nitric oxide. Toxoplasma gondii was able to infect these macrophages, and activation controlled parasitic reproduction. T. gondii, however, persisted in these cells, and infection reduced the production of nitric oxide. These results are important for the future assessment of the basic cellular and immunobiology of ostriches and demonstrate T. gondii suppression of nitric oxide production. © 2016 Poultry Science Association Inc.
2012-01-01
Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology. PMID:22694285
Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis
Luo, Yongting; Duan, Hongxia; Qian, Yining; Feng, Liqun; Wu, Zhenzhen; Wang, Fei; Feng, Jing; Yang, Dongling; Qin, Zhihai; Yan, Xiyun
2017-01-01
The persistence of cholesterol-engorged macrophages (foam cells) in the artery wall fuels the development of atherosclerosis. However, the mechanism that regulates the formation of macrophage foam cells and impedes their emigration out of inflamed plaques is still elusive. Here, we report that adhesion receptor CD146 controls the formation of macrophage foam cells and their retention within the plaque during atherosclerosis exacerbation. CD146 is expressed on the macrophages in human and mouse atheroma and can be upregulated by oxidized low-density lipoprotein (oxLDL). CD146 triggers macrophage activation by driving the internalization of scavenger receptor CD36 during lipid uptake. In response to oxLDL, macrophages show reduced migratory capacity toward chemokines CCL19 and CCL21; this capacity can be restored by blocking CD146. Genetic deletion of macrophagic CD146 or targeting of CD146 with an antibody result in much less complex plaques in high-fat diet-fed ApoE−/− mice by causing lipid-loaded macrophages to leave plaques. Collectively, our findings identify CD146 as a novel retention signal that traps macrophages within the artery wall, and a promising therapeutic target in atherosclerosis treatment. PMID:28084332
Xavier, Mariana N.; Winter, Maria G.; Spees, Alanna M.; den Hartigh, Andreas B.; Nguyen, Kim; Roux, Christelle M.; Silva, Teane M. A.; Atluri, Vidya L.; Kerrinnes, Tobias; Keestra, A. Marijke; Monack, Denise M.; Luciw, Paul A.; Eigenheer, Richard A.; Bäumler, Andreas J.; Santos, Renato L.; Tsolis, Renée M.
2013-01-01
SUMMARY Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAM), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAM. Glucose uptake was crucial for increased replication of B. abortus in AAM, and chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAM and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAM and targeting this pathway may aid in eradicating chronic infection. PMID:23954155
Coxsackievirus B4 Can Infect Human Peripheral Blood-Derived Macrophages
Alidjinou, Enagnon Kazali; Sané, Famara; Trauet, Jacques; Copin, Marie-Christine; Hober, Didier
2015-01-01
Beyond acute infections, group B coxsackieviruses (CVB) are also reported to play a role in the development of chronic diseases, like type 1 diabetes. The viral pathogenesis mainly relies on the interplay between the viruses and innate immune response in genetically-susceptible individuals. We investigated the interaction between CVB4 and macrophages considered as major players in immune response. Monocyte-derived macrophages (MDM) generated with either M-CSF or GM-CSF were inoculated with CVB4, and infection, inflammation, viral replication and persistence were assessed. M-CSF-induced MDM, but not GM-CSF-induced MDM, can be infected by CVB4. In addition, enhancing serum was not needed to infect MDM in contrast with parental monocytes. The expression of viral receptor (CAR) mRNA was similar in both M-CSF and GM-CSF MDM. CVB4 induced high levels of pro-inflammatory cytokines (IL-6 and TNFα) in both MDM populations. CVB4 effectively replicated and persisted in M-CSF MDM, but IFNα was produced in the early phase of infection only. Our results demonstrate that CVB4 can replicate and persist in MDM. Further investigations are required to determine whether the interaction between the virus and MDM plays a role in the pathogenesis of CVB-induced chronic diseases. PMID:26610550
Coxsackievirus B4 Can Infect Human Peripheral Blood-Derived Macrophages.
Alidjinou, Enagnon Kazali; Sané, Famara; Trauet, Jacques; Copin, Marie-Christine; Hober, Didier
2015-11-24
Beyond acute infections, group B coxsackieviruses (CVB) are also reported to play a role in the development of chronic diseases, like type 1 diabetes. The viral pathogenesis mainly relies on the interplay between the viruses and innate immune response in genetically-susceptible individuals. We investigated the interaction between CVB4 and macrophages considered as major players in immune response. Monocyte-derived macrophages (MDM) generated with either M-CSF or GM-CSF were inoculated with CVB4, and infection, inflammation, viral replication and persistence were assessed. M-CSF-induced MDM, but not GM-CSF-induced MDM, can be infected by CVB4. In addition, enhancing serum was not needed to infect MDM in contrast with parental monocytes. The expression of viral receptor (CAR) mRNA was similar in both M-CSF and GM-CSF MDM. CVB4 induced high levels of pro-inflammatory cytokines (IL-6 and TNFα) in both MDM populations. CVB4 effectively replicated and persisted in M-CSF MDM, but IFNα was produced in the early phase of infection only. Our results demonstrate that CVB4 can replicate and persist in MDM. Further investigations are required to determine whether the interaction between the virus and MDM plays a role in the pathogenesis of CVB-induced chronic diseases.
Enterococcus faecalis lipoteichoic acid regulates macrophages autophagy via PI3K/Akt/mTOR pathway.
Lin, Dongjia; Gao, Yan; Zhao, Luodan; Chen, Yanhuo; An, Shaofeng; Peng, Zhixiang
2018-04-15
Enterococcus faecalis (E. faecalis) infection is considered an important etiological factor for the development of persistent apical periodontitis (PAP), but the exact mechanisms of autophagy between E. faecalis and immune cells remain unknown. In this study, we elucidated how E. faecalis lipoteichoic acid (LTA) is associated with macrophages autophagy. We found that E. faecalis LTA apparently activated macrophage autophagy with significant increase of autophagosomes and autophagy relative protein. Meanwhile, we noticed significantly decreasing expression of p-Akt and p-mTOR. However, these effect were absent in macrophages knockdown of Beclin1. In summary, these findings suggested E. faecalis LTA may increased macrophages autophagy via inhibiting PI3K/Akt/mTOR pathway and this process was Beclin1 dependent. Copyright © 2018 Elsevier Inc. All rights reserved.
Macrophage origin limits functional plasticity in helminth-bacterial co-infection
Campbell, Sharon M.; Duncan, Sheelagh; Hewitson, James P.; Barr, Tom A.; Jackson-Jones, Lucy H.; Maizels, Rick M.
2017-01-01
Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell. PMID:28334040
Lamina propria macrophage phenotypes in relation to Escherichia coli in Crohn's disease.
Elliott, Timothy R; Rayment, Neil B; Hudspith, Barry N; Hands, Rebecca E; Taylor, Kirstin; Parkes, Gareth C; Prescott, Natalie J; Petrovska, Liljana; Hermon-Taylor, John; Brostoff, Jonathan; Boussioutas, Alex; Mathew, Christopher G; Bustin, Stephen A; Sanderson, Jeremy D
2015-07-03
Abnormal handling of E. coli by lamina propria (LP) macrophages may contribute to Crohn's disease (CD) pathogenesis. We aimed to determine LP macrophage phenotypes in CD, ulcerative colitis (UC) and healthy controls (HC), and in CD, to compare macrophage phenotypes according to E. coli carriage. Mucosal biopsies were taken from 35 patients with CD, 9 with UC and 18 HCs. Laser capture microdissection was used to isolate E. coli-laden and unladen LP macrophages from ileal or colonic biopsies. From these macrophages, mRNA was extracted and cytokine and activation marker expression measured using RT-qPCR. E. coli-laden LP macrophages were identified commonly in mucosal biopsies from CD patients (25/35, 71 %), rarely in UC (1/9, 11 %) and not at all in healthy controls (0/18). LP macrophage cytokine mRNA expression was greater in CD and UC than healthy controls. In CD, E. coli-laden macrophages expressed high IL-10 & CD163 and lower TNFα, IL-23 & iNOS irrespective of macroscopic inflammation. In inflamed tissue, E. coli-unladen macrophages expressed high TNFα, IL-23 & iNOS and lower IL-10 & CD163. In uninflamed tissue, unladen macrophages had low cytokine mRNA expression, closer to that of healthy controls. In CD, intra-macrophage E. coli are commonly found and LP macrophages express characteristic cytokine mRNA profiles according to E. coli carriage. Persistence of E. coli within LP macrophages may provide a stimulus for chronic inflammation.
Caire-Brändli, Irène; Papadopoulos, Alexia; Malaga, Wladimir; Marais, David; Canaan, Stéphane; Thilo, Lutz
2014-01-01
During the dormant phase of tuberculosis, Mycobacterium tuberculosis persists in lung granulomas by residing in foamy macrophages (FM) that contain abundant lipid bodies (LB) in their cytoplasm, allowing bacilli to accumulate lipids as intracytoplasmic lipid inclusions (ILI). An experimental model of FM is presented where bone marrow-derived mouse macrophages are infected with M. avium and exposed to very-low-density lipoprotein (VLDL) as a lipid source. Quantitative analysis of detailed electron microscope observations showed the following results. (i) Macrophages became foamy, and mycobacteria formed ILI, for which host triacylglycerides, rather than cholesterol, was essential. (ii) Lipid transfer occurred via mycobacterium-induced fusion between LB and phagosomes. (iii) Mycobacteria showed a thinned cell wall and became elongated but did not divide. (iv) Upon removal of VLDL, LB and ILI declined within hours, and simultaneous resumption of mycobacterial division restored the number of mycobacteria to the same level as that found in untreated control macrophages. This showed that the presence of ILI resulted in a reversible block of division without causing a change in the mycobacterial replication rate. Fluctuation between ILI either partially or fully extending throughout the mycobacterial cytoplasm was suggestive of bacterial cell cycle events. We propose that VLDL-driven FM constitute a well-defined cellular system in which to study changed metabolic states of intracellular mycobacteria that may relate to persistence and reactivation of tuberculosis. PMID:24478064
Efferocytosis is an innate antibacterial mechanism.
Martin, Constance J; Booty, Matthew G; Rosebrock, Tracy R; Nunes-Alves, Cláudio; Desjardins, Danielle M; Keren, Iris; Fortune, Sarah M; Remold, Heinz G; Behar, Samuel M
2012-09-13
Mycobacterium tuberculosis persists within macrophages in an arrested phagosome and depends upon necrosis to elude immunity and disseminate. Although apoptosis of M. tuberculosis-infected macrophages is associated with reduced bacterial growth, the bacteria are relatively resistant to other forms of death, leaving the mechanism underlying this observation unresolved. We find that after apoptosis, M. tuberculosis-infected macrophages are rapidly taken up by uninfected macrophages through efferocytosis, a dedicated apoptotic cell engulfment process. Efferocytosis of M. tuberculosis sequestered within an apoptotic macrophage further compartmentalizes the bacterium and delivers it along with the apoptotic cell debris to the lysosomal compartment. M. tuberculosis is killed only after efferocytosis, indicating that apoptosis itself is not intrinsically bactericidal but requires subsequent phagocytic uptake and lysosomal fusion of the apoptotic body harboring the bacterium. While efferocytosis is recognized as a constitutive housekeeping function of macrophages, these data indicate that it can also function as an antimicrobial effector mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.
Macrophages are necessary for epimorphic regeneration in African spiny mice.
Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W
2017-05-16
How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration ( Acomys cahirinus ) and scarring ( Mus musculus ), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response.
Macrophages are necessary for epimorphic regeneration in African spiny mice
Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W
2017-01-01
How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration (Acomys cahirinus) and scarring (Mus musculus), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response. DOI: http://dx.doi.org/10.7554/eLife.24623.001 PMID:28508748
Evolution of granulomas in lungs of mice infected aerogenically with Mycobacterium tuberculosis.
Cardona, P J; Llatjós, R; Gordillo, S; Díaz, J; Ojanguren, I; Ariza, A; Ausina, V
2000-08-01
Aerogenous infection of C57Bl/6 mice with a virulent strain of Mycobacterium tuberculosis (CL 511) leads to the formation of primary granulomas in the lung where neutrophils, macrophages and subsequently, lymphocytes accumulate progressively around an initial cluster of infected macrophages. The spread of infection through the lung parenchyma gives rise to secondary granulomas featuring numerous lymphocytes that surround a small number of infected macrophages. Afterwards, foamy macrophages add an outer layer to the granulomas, which characteristically respect the pulmonary interstitium and remain confined within the alveolar spaces. This feature, in conjunction with the constant presence of M. tuberculosis in the products of broncho-alveolar lavage, suggests that the upward bronchial migration of infected macrophages may contribute significantly to pulmonary dissemination of mycobacterial infection. The latter would be in agreement with the persistence of chronic pulmonary infection in spite of a concomitant strong T helper 1 cell response.
Ruangkiattikul, Nanthapon; Nerlich, Andreas; Abdissa, Ketema; Lienenklaus, Stefan; Suwandi, Abdulhadi; Janze, Nina; Laarmann, Kristin; Spanier, Julia; Kalinke, Ulrich; Weiss, Siegfried; Goethe, Ralph
2017-10-03
Type I interferons (IFN-I), such as IFN-α and IFN-β are important messengers in the host response against bacterial infections. Knowledge about the role of IFN-I in infections by nontuberculous mycobacteria (NTM) is limited. Here we show that macrophages infected with pathogens of the Mycobacterium avium complex produced significantly lower amounts of IFN-β than macrophages infected with the opportunistic pathogen M. smegmatis. To dissect the molecular mechanisms of this phenomenon, we focused on the obligate pathogen Mycobacterium avium ssp paratuberculosis (MAP) and the opportunistic M. smegmatis. Viability of both bacteria was required for induction of IFN-β in macrophages. Both bacteria induced IFN-β via the cGAS-STING-TBK1-IRF3/7-pathway of IFN-β activation. Stronger phosphorylation of TBK1 and higher amounts of extracellular bacterial DNA in the macrophage cytosol were found in M. smegmatis infected macrophages than in MAP infected macrophages. After intraperitoneal infection of mice, a strong Ifnb induction by M. smegmatis correlated with clearance of the bacteria. In contrast, MAP only induced weak Ifnb expression which correlated with bacterial persistence and increased number of granulomas in the liver. In mice lacking the type I interferon receptor we observed improved survival of M. smegmatis while survival of MAP was similar to that in wildtype mice. On the other hand, treatment of MAP infected wildtype mice with the IFN-I inducer poly(I:C) or recombinant IFN-β impaired the survival of MAP. This indicates an essential role of IFN-I in clearing infections by MAP and M. smegmatis. The expression level of IFN-I is decisive for transient versus persistent NTM infection.
Ruangkiattikul, Nanthapon; Nerlich, Andreas; Abdissa, Ketema; Lienenklaus, Stefan; Suwandi, Abdulhadi; Janze, Nina; Laarmann, Kristin; Spanier, Julia; Kalinke, Ulrich; Weiss, Siegfried; Goethe, Ralph
2017-01-01
Abstract Type I interferons (IFN-I), such as IFN-α and IFN-β are important messengers in the host response against bacterial infections. Knowledge about the role of IFN-I in infections by nontuberculous mycobacteria (NTM) is limited. Here we show that macrophages infected with pathogens of the Mycobacterium avium complex produced significantly lower amounts of IFN-β than macrophages infected with the opportunistic pathogen M. smegmatis. To dissect the molecular mechanisms of this phenomenon, we focused on the obligate pathogen Mycobacterium avium ssp paratuberculosis (MAP) and the opportunistic M. smegmatis. Viability of both bacteria was required for induction of IFN-β in macrophages. Both bacteria induced IFN-β via the cGAS-STING-TBK1-IRF3/7-pathway of IFN-β activation. Stronger phosphorylation of TBK1 and higher amounts of extracellular bacterial DNA in the macrophage cytosol were found in M. smegmatis infected macrophages than in MAP infected macrophages. After intraperitoneal infection of mice, a strong Ifnb induction by M. smegmatis correlated with clearance of the bacteria. In contrast, MAP only induced weak Ifnb expression which correlated with bacterial persistence and increased number of granulomas in the liver. In mice lacking the type I interferon receptor we observed improved survival of M. smegmatis while survival of MAP was similar to that in wildtype mice. On the other hand, treatment of MAP infected wildtype mice with the IFN-I inducer poly(I:C) or recombinant IFN-β impaired the survival of MAP. This indicates an essential role of IFN-I in clearing infections by MAP and M. smegmatis. The expression level of IFN-I is decisive for transient versus persistent NTM infection. PMID:28422568
Krahenbuhl, J L; Lambert, L H; Remington, J S
1976-01-01
Injection of mice with Corynebacterium parvum or living or killed Toxoplasma gondii was studied to determine the efficacy of these treatments in activating peritoneal macrophages to inhibit the uptake of [3H]TdR (cytostasis) by tumour target cells in vitro. In the presence of activated macrophages from mice treated i.p. with a wide dose range of either C. parvum or living Toxoplasma, cytostasis was usually greater than 99%. This population of activated macrophages was transient in C. parvum-treated mice, but persists, probably for life, in Toxoplasma-infected mice. Whereas the i.p. route of administration of C. parvum was more efficient in activating macrophages than the i.v. route, the s.c. route appeared to be relatively ineffective. Treatment with killed Toxoplasma by any route was also relatively ineffective in activating macrophages. In contrast Toxoplasma infection resulted in highly activated peritoneal macrophages, regardless of the route of administration. Depending upon the route of initial treatment, the route of readministration of C. parvum had either no appreciable effect or resulted in a marked alteration in the cytostatic capacity of peritoneal macrophages. PMID:992714
Bernhards, R C; Cote, C K; Amemiya, K; Waag, D M; Klimko, C P; Worsham, P L; Welkos, S L
2017-03-01
Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3-180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.
Slesiona, Silvia; Gressler, Markus; Mihlan, Michael; Zaehle, Christoph; Schaller, Martin; Barz, Dagmar; Hube, Bernhard; Jacobsen, Ilse D.; Brock, Matthias
2012-01-01
Invasive bronchopulmonary aspergillosis (IBPA) is a life-threatening disease in immunocompromised patients. Although Aspergillus terreus is frequently found in the environment, A. fumigatus is by far the main cause of IBPA. However, once A. terreus establishes infection in the host, disease is as fatal as A. fumigatus infections. Thus, we hypothesized that the initial steps of disease establishment might be fundamentally different between these two species. Since alveolar macrophages represent one of the first phagocytes facing inhaled conidia, we compared the interaction of A. terreus and A. fumigatus conidia with alveolar macrophages. A. terreus conidia were phagocytosed more rapidly than A. fumigatus conidia, possibly due to higher exposure of β-1,3-glucan and galactomannan on the surface. In agreement, blocking of dectin-1 and mannose receptors significantly reduced phagocytosis of A. terreus, but had only a moderate effect on phagocytosis of A. fumigatus. Once phagocytosed, and in contrast to A. fumigatus, A. terreus did not inhibit acidification of phagolysosomes, but remained viable without signs of germination both in vitro and in immunocompetent mice. The inability of A. terreus to germinate and pierce macrophages resulted in significantly lower cytotoxicity compared to A. fumigatus. Blocking phagolysosome acidification by the v-ATPase inhibitor bafilomycin increased A. terreus germination rates and cytotoxicity. Recombinant expression of the A. nidulans wA naphthopyrone synthase, a homologue of A. fumigatus PksP, inhibited phagolysosome acidification and resulted in increased germination, macrophage damage and virulence in corticosteroid-treated mice. In summary, we show that A. terreus and A. fumigatus have evolved significantly different strategies to survive the attack of host immune cells. While A. fumigatus prevents phagocytosis and phagolysosome acidification and escapes from macrophages by germination, A. terreus is rapidly phagocytosed, but conidia show long-term persistence in macrophages even in immunocompetent hosts. PMID:22319619
Saffold Virus Type 3 (SAFV-3) Persists in HeLa Cells
Himeda, Toshiki; Hosomi, Takushi; Okuwa, Takako; Muraki, Yasushi; Ohara, Yoshiro
2013-01-01
Saffold virus (SAFV) was identified as a human cardiovirus in 2007. Although several epidemiological studies have been reported, they have failed to provide a clear picture of the relationship between SAFV and human diseases. SAFV genotype 3 has been isolated from the cerebrospinal fluid specimen of patient with aseptic meningitis. This finding is of interest since Theiler’s murine encephalomyelitis virus (TMEV), which is the closely related virus, is known to cause a multiple sclerosis-like syndrome in mice. TMEV persistently infects in mouse macrophage cells in vivo and in vitro, and the viral persistence is essential in TMEV-induced demyelinating disease. The precise mechanism(s) of SAFV infection still remain unclear. In order to clarify the SAFV pathogenicity, in the present study, we studied the possibilities of the in vitro persistent infection of SAFV. The two distinct phenotypes of HeLa cells, HeLa-N and HeLa-R, were identified. In these cells, the type of SAFV-3 infection was clearly different. HeLa-N cells were lyticly infected with SAFV-3 and the host suitable for the efficient growth. On the other hand, HeLa-R cells were persistently infected with SAFV-3. In addition, the SAFV persistence in HeLa-R cells is independent of type I IFN response of host cells although the TMEV persistence in mouse macrophage cells depends on the response. Furthermore, it was suggested that SAFV persistence may be influenced by the expression of receptor(s) for SAFV infection on the host cells. The present findings on SAFV persistence will provide the important information to encourage the research of SAFV pathogenicity. PMID:23308162
Wound Administration of M2-Polarized Macrophages Does Not Improve Murine Cutaneous Healing Responses
Jetten, Nadine; Roumans, Nadia; Gijbels, Marion J.; Romano, Andrea; Post, Mark J.; de Winther, Menno P. J.; van der Hulst, Rene R. W. J.; Xanthoulea, Sofia
2014-01-01
Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds. PMID:25068282
Liver macrophages: friend or foe during hepatitis B infection?
Faure-Dupuy, Suzanne; Durantel, David; Lucifora, Julie
2018-05-17
The Hepatitis B virus chronically infects the liver of 250 million people worldwide. Over the past decades, major advances have been made in the understanding of Hepatitis B virus life cycle in hepatocytes. Beside these parenchymal cells, the liver also contains resident and infiltrating myeloid cells involved in immune responses to pathogens and much less is known about their interplay with Hepatitis B virus. In this review, we summarized and discussed the current knowledge of the role of liver macrophages (including Kupffer cells and liver monocyte-derived macrophages), in HBV infection. While it is still unclear if liver macrophages play a role in the establishment and persistence of HBV infection, several studies disclosed data suggesting that HBV would favour liver macrophage anti-inflammatory phenotypes and thereby increase liver tolerance. In addition, alternatively activated liver macrophages might also play in the long term a key role in hepatitis B associated pathogenesis, especially through the activation of hepatic stellate cells. Therapies aiming at a transient activation of pro-inflammatory liver macrophages should therefore be considered for the treatment of chronic HBV infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Bosurgi, Lidia; Manfredi, Angelo A; Rovere-Querini, Patrizia
2011-01-01
Macrophages are present in regenerating skeletal muscles and participate in the repair process. This is due to a unique feature of macrophages, i.e., their ability to perceive signals heralding ongoing tissue injury and to broadcast the news to cells suited at regenerating the tissue such as stem and progenitor cells. Macrophages play a complex role in the skeletal muscle, probably conveying information on the pattern of healing which is appropriate to ensure an effective healing of the tissue, yielding novel functional fibers. Conversely, they are likely to be involved in limiting the efficacy of regeneration, with formation of fibrotic scars and fat replacement of the tissue when the original insult persists. In this review we consider the beneficial versus the detrimental actions of macrophages during the response to muscle injury, with attention to the available information on the molecular code macrophages rely on to guide, throughout the various phases of muscle healing, the function of conventional and unconventional stem cells. Decrypting this code would represent a major step forward toward the establishment of novel targeted therapies for muscle diseases.
DHA Suppresses Primary Macrophage Inflammatory Responses via Notch 1/ Jagged 1 Signaling
Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K.
2016-01-01
Persistent macrophages were observed in the lungs of murine offspring exposed to maternal LPS and neonatal hyperoxia. Maternal docosahexaenoic acid (DHA) supplementation prevented the accumulation of macrophages and improved lung development. We hypothesized that these macrophages are responsible for pathologies observed in this model and the effects of DHA supplementation. Primary macrophages were isolated from adult mice fed standard chow, control diets, or DHA supplemented diets. Macrophages were exposed to hyperoxia (O2) for 24 h and LPS for 6 h or 24 h. Our data demonstrate significant attenuation of Notch 1 and Jagged 1 protein levels in response to DHA supplementation in vivo but similar results were not evident in macrophages isolated from mice fed standard chow and supplemented with DHA in vitro. Co-culture of activated macrophages with MLE12 epithelial cells resulted in the release of high mobility group box 1 and leukotriene B4 from the epithelial cells and this release was attenuated by DHA supplementation. Collectively, our data indicate that long term supplementation with DHA as observed in vivo, resulted in deceased Notch 1/Jagged 1 protein expression however, DHA supplementation in vitro was sufficient to suppress release LTB4 and to protect epithelial cells in co-culture. PMID:26940787
DHA Suppresses Primary Macrophage Inflammatory Responses via Notch 1/ Jagged 1 Signaling.
Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K
2016-03-04
Persistent macrophages were observed in the lungs of murine offspring exposed to maternal LPS and neonatal hyperoxia. Maternal docosahexaenoic acid (DHA) supplementation prevented the accumulation of macrophages and improved lung development. We hypothesized that these macrophages are responsible for pathologies observed in this model and the effects of DHA supplementation. Primary macrophages were isolated from adult mice fed standard chow, control diets, or DHA supplemented diets. Macrophages were exposed to hyperoxia (O2) for 24 h and LPS for 6 h or 24 h. Our data demonstrate significant attenuation of Notch 1 and Jagged 1 protein levels in response to DHA supplementation in vivo but similar results were not evident in macrophages isolated from mice fed standard chow and supplemented with DHA in vitro. Co-culture of activated macrophages with MLE12 epithelial cells resulted in the release of high mobility group box 1 and leukotriene B4 from the epithelial cells and this release was attenuated by DHA supplementation. Collectively, our data indicate that long term supplementation with DHA as observed in vivo, resulted in deceased Notch 1/Jagged 1 protein expression however, DHA supplementation in vitro was sufficient to suppress release LTB4 and to protect epithelial cells in co-culture.
The meningeal lymphatic system: a route for HIV brain migration?
Lamers, Susanna L; Rose, Rebecca; Ndhlovu, Lishomwa C; Nolan, David J; Salemi, Marco; Maidji, Ekaterina; Stoddart, Cheryl A; McGrath, Michael S
2016-06-01
Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4(+) T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.
Correction of MFG-E8 Resolves Inflammation and Promotes Cutaneous Wound Healing in Diabetes.
Das, Amitava; Ghatak, Subhadip; Sinha, Mithun; Chaffee, Scott; Ahmed, Noha S; Parinandi, Narasimham L; Wohleb, Eric S; Sheridan, John F; Sen, Chandan K; Roy, Sashwati
2016-06-15
Milk fat globule epidermal growth factor-factor 8 (MFG-E8) is a peripheral glycoprotein that acts as a bridging molecule between the macrophage and apoptotic cells, thus executing a pivotal role in the scavenging of apoptotic cells from affected tissue. We have previously reported that apoptotic cell clearance activity or efferocytosis is compromised in diabetic wound macrophages. In this work, we test the hypothesis that MFG-E8 helps resolve inflammation, supports angiogenesis, and accelerates wound closure. MFG-E8(-/-) mice displayed impaired efferocytosis associated with exaggerated inflammatory response, poor angiogenesis, and wound closure. Wound macrophage-derived MFG-E8 was recognized as a critical driver of wound angiogenesis. Transplantation of MFG-E8(-/-) bone marrow to MFG-E8(+/+) mice resulted in impaired wound closure and compromised wound vascularization. In contrast, MFG-E8(-/-) mice that received wild-type bone marrow showed improved wound closure and improved wound vascularization. Hyperglycemia and exposure to advanced glycated end products inactivated MFG-E8, recognizing a key mechanism that complicates diabetic wound healing. Diabetic db/db mice suffered from impaired efferocytosis accompanied with persistent inflammation and slow wound closure. Topical recombinant MFG-E8 induced resolution of wound inflammation, improvements in angiogenesis, and acceleration of closure, upholding the potential of MFG-E8-directed therapeutics in diabetic wound care. Copyright © 2016 by The American Association of Immunologists, Inc.
Atypical presentation of macrophagic myofasciitis 10 years post vaccination.
Ryan, Aisling M; Bermingham, Niamh; Harrington, Hugh J; Keohane, Catherine
2006-12-01
Macrophagic myofasciitis (MMF) is an uncommon inflammatory disorder of muscle believed to be due to persistence of vaccine-derived aluminium hydroxide at the site of injection. The condition is characterised by diffuse myalgias, arthralgia and fatigue. We describe a patient with histologically confirmed MMF whose presentation was atypical with left chest and upper limb pain beginning more than 10 years post vaccination. Treatment with steroids led to symptomatic improvement. Although rare, clinicians should consider MMF in cases of atypical myalgia.
Macrophage-selective toxicity as a mechanism of hydroquinone-induced myelotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.J.
1989-01-01
This research has focused upon the role of the bone marrow stroma in the etiology of benzene hematotoxicity. Treatment with the metabolite hydroquinone results in a reduced capacity of the stroma to support myelopoiesis. The goal of this research was to examine stromal cell selective toxicity following hydroquinone treatment. Populations of macrophages and a fibroblastoid cell line (LTF) or primary fibroblasts were developed from mouse bone marrow. Following treatment of with hydroquinone, treated or control fibroblastoid cells were reconstituted with control or treated macrophages, respectively, and the cultures were assayed for their ability to support myelopoiesis. To examine mechanisms ofmore » selective toxicity, macrophage and LTF cultures were incubated with 14C-hydroquinone and bioactivation was examined. After 24 hours, macrophages had 16-fold higher levels of bound {sup 14}C than LTF cells. Peroxide-dependent bioactivation in cell homogenates revealed that peroxide could support formation of covalent-binding species in macrophage homogenates but not in LTF homogenates. It was determined that macrophages, but not LTF cells, contained detectable levels of peroxidase activity which was consistent with the postulate that increased binding was due to peroxidase-mediated bioactivation of hydroquinone. Accordingly, purified myeloperoxidase incubated with {sup 14}C-hydroquinone, resulted in bioactivation to a covalent-binding species. This study provided evidence supporting selective bioactivation as a mechanism of selective toxicity of hydroquinone to bone marrow stromal macrophages.« less
Yang, Degang; Shui, Tiejun; Miranda, Jake W; Gilson, Danny J; Song, Zhengyu; Chen, Jia; Shi, Chao; Zhu, Jianyu; Yang, Jun; Jing, Zhichun
2016-01-01
The persistence of Mycobacterium leprae (M. leprae) infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions. Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNF-alpha) and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg) cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma) expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings. Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.
CHARACTERIZATION OF AN EQUINE MACROPHAGE CELL LINE: APPLICATION TO STUDIES OF EIAV INFECTION
Fidalgo-Carvalho, Isabel; Craigo, Jodi K.; Barnes, Shannon; Costa-Ramos, Carolina; Montelaro, Ronald C.
2009-01-01
EIAV is a monocyte/macrophage tropic virus. To date, even though EIAV has been under investigation for numerous years, very few details have been elucidated about EIAV/macrophage interactions. This is largely due to the absence of an equine macrophage cell line that would support viral replication. Herein we describe the spontaneous immortalization and generation of a clonal equine macrophage-like (EML) cell line with the functional and immunophenotype characteristics of differentiated equine monocyte derived macrophage(s) (eMDM(s)). These cells possess strong non-specific esterase (NSE) activity, are able to phagocytose fluorescent bioparticles, and produce nitrites in response to LPS. The EML-3C cell line expresses the EIAV receptor for cellular entry (ELR1) and supports replication of the virulent EIAVPV biological clone. Thus, EML-3C cells provide a useful cell line possessing equine macrophage related properties for the growth and study of EIAV infection as well as of other equine macrophage tropic viruses. PMID:19038510
Eradication of HIV from Tissue Reservoirs: Challenges for the Cure.
Rose, Rebecca; Nolan, David J; Maidji, Ekaterina; Stoddart, Cheryl A; Singer, Elyse J; Lamers, Susanna L; McGrath, Michael S
2018-01-01
The persistence of HIV infection, even after lengthy and successful combined antiretroviral therapy (cART), has precluded an effective cure. The anatomical locations and biological mechanisms through which the viral population is maintained remain unknown. Much research has focused nearly exclusively on circulating resting T cells as the predominant source of persistent HIV, a strategy with limited success in developing an effective cure strategy. In this study, we review research supporting the importance of anatomical tissues and other immune cells for HIV maintenance and expansion, including the central nervous system, lymph nodes, and macrophages. We present accumulated research that clearly demonstrates the limitations of using blood-derived cells as a proxy for tissue reservoirs and sanctuaries throughout the body. We cite recent studies that have successfully used deep-sequencing strategies to uncover the complexity of HIV infection and the ability of the virus to evolve despite undetectable plasma viral loads. Finally, we suggest new strategies and highlight the importance of tissue banks for future research.
Genoula, Melanie; Marín Franco, José Luis; Dupont, Maeva; Kviatcovsky, Denise; Milillo, Ayelén; Schierloh, Pablo; Moraña, Eduardo Jose; Poggi, Susana; Palmero, Domingo; Mata-Espinosa, Dulce; González-Domínguez, Erika; León Contreras, Juan Carlos; Barrionuevo, Paula; Rearte, Bárbara; Córdoba Moreno, Marlina Olyissa; Fontanals, Adriana; Crotta Asis, Agostina; Gago, Gabriela; Cougoule, Céline; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Sánchez-Torres, Carmen; Hernández-Pando, Rogelio; Vérollet, Christel; Lugo-Villarino, Geanncarlo; Sasiain, María del Carmen; Balboa, Luciana
2018-01-01
The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10−/− mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence. PMID:29593722
Genoula, Melanie; Marín Franco, José Luis; Dupont, Maeva; Kviatcovsky, Denise; Milillo, Ayelén; Schierloh, Pablo; Moraña, Eduardo Jose; Poggi, Susana; Palmero, Domingo; Mata-Espinosa, Dulce; González-Domínguez, Erika; León Contreras, Juan Carlos; Barrionuevo, Paula; Rearte, Bárbara; Córdoba Moreno, Marlina Olyissa; Fontanals, Adriana; Crotta Asis, Agostina; Gago, Gabriela; Cougoule, Céline; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Sánchez-Torres, Carmen; Hernández-Pando, Rogelio; Vérollet, Christel; Lugo-Villarino, Geanncarlo; Sasiain, María Del Carmen; Balboa, Luciana
2018-01-01
The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14 + cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10 -/- mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence.
Avalos, Claudia R.; Abreu, Celina M.; Queen, Suzanne E.; Li, Ming; Price, Sarah; Shirk, Erin N.; Engle, Elizabeth L.; Forsyth, Ellen; Bullock, Brandon T.; Mac Gabhann, Feilim; Wietgrefe, Stephen W.; Haase, Ashley T.; Zink, M. Christine; Mankowski, Joseph L.; Clements, Janice E.
2017-01-01
ABSTRACT A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. PMID:28811349
Abendaño, Naiara; Sevilla, Iker A; Prieto, José Miguel; Garrido, Joseba M; Juste, Ramon A; Alonso-Hearn, Marta
2013-05-03
Assessment of the virulence of isolates of Mycobacterium avium subsp. paratuberculosis (Map) exhibiting distinct genotypes and isolated from different hosts may help to clarify the degree to which clinical manifestations of the disease in cattle can be attributed to bacterial or to host factors. The objective of this study was to test the ability of 10 isolates of Map representing distinct genotypes and isolated from domestic (cattle, sheep, and goat), and wildlife animal species (fallow deer, deer, wild boar, and bison) to enter and grow in bovine macrophages. The isolates were previously typed using IS1311 PCR followed by restriction endonuclease analysis into types C, S or B. Intracellular growth of the isolates in a bovine macrophage-like cell line (BoMac) and in primary bovine monocyte-derived macrophages (MDM) was evaluated by quantification of CFU numbers in the initial inoculum and inside of the host cells at 2h and 7 d p.i. using an automatic liquid culture system (Bactec MGIT 960). Individual data illustrated that growth was less variable in BoMac than in MDM cells. All the isolates from goat and sheep hosts persisted within BoMac cells in lower CFU numbers than the other tested isolates after 7 days of infection regardless of genotype. In addition, BoMac cells exhibited differential inflammatory, apoptotic and destructive responses when infected with a bovine or an ovine isolate; which correlated with the differential survival of these strains within BoMac cells. Our results indicated that the survival of the tested Map isolates within bovine macrophages is associated with the specific host from which the isolates were initially isolated. Copyright © 2013 Elsevier B.V. All rights reserved.
Regulatory T Cells Promote Myositis and Muscle Damage in Toxoplasma gondii Infection.
Jin, Richard M; Blair, Sarah J; Warunek, Jordan; Heffner, Reid R; Blader, Ira J; Wohlfert, Elizabeth A
2017-01-01
The coordination of macrophage polarization is essential for the robust regenerative potential of skeletal muscle. Repair begins with a phase mediated by inflammatory monocytes (IM) and proinflammatory macrophages (M1), followed by polarization to a proregenerative macrophage (M2) phenotype. Recently, regulatory T cells (Tregs) were described as necessary for this M1 to M2 transition. We report that chronic infection with the protozoan parasite Toxoplasma gondii causes a nonresolving Th1 myositis with prolonged tissue damage associated with persistent M1 accumulation. Surprisingly, Treg ablation during chronic infection rescues macrophage homeostasis and skeletal muscle fiber regeneration, showing that Tregs can directly contribute to muscle damage. This study provides evidence that the tissue environment established by the parasite could lead to a paradoxical pathogenic role for Tregs. As such, these findings should be considered when tailoring therapies directed at Tregs in inflammatory settings. Copyright © 2016 by The American Association of Immunologists, Inc.
Hirai, Takayuki; Uchida, Kenzo; Nakajima, Hideaki; Guerrero, Alexander Rodriguez; Takeura, Naoto; Watanabe, Shuji; Sugita, Daisuke; Yoshida, Ai; Johnson, William E. B.; Baba, Hisatoshi
2013-01-01
Background Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease. Methods Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass. Results The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) −2 progressively increased. Conclusions Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. PMID:23717624
Jahangier, Z N; Jacobs, J W G; Kraan, M C; Wenting, M J G; Smeets, T J; Bijlsma, J W J; Lafeber, F P J G; Tak, P P
2006-01-01
Objective To explore whether pretreatment features of synovial tissue in patients with gonarthritis could predict the clinical effect of radiation synovectomy with yttrium‐90 (90Y) and glucocorticoids or with intra‐articular glucocorticoids alone. Methods A synovial biopsy was carried out blindly 2 weeks before treatment in 66 patients with persistent gonarthritis, who were randomised to treatment either with 90Y and triamcinolone or with placebo and triamcinolone. Immunohistochemistry was used to detect T cells, macrophages, B cells, plasma cells, fibroblast‐like synoviocytes, adhesion molecules and pro‐inflammatory cytokines. Stained sections were evaluated by digital image analysis. Individual patient improvement was expressed using a composite change index (CCI; range 0–12). Successful treatment was defined as CCI ⩾6 after 6 months. Results Patients with rheumatoid arthritis, psoriatic arthritis, undifferentiated arthritis and other causes of gonarthritis were included. The overall response rate was 47%. Clinical efficacy in both therapeutic groups was similar and not dependent on diagnosis. No significant differences were noted between baseline microscopic features of synovial tissue inflammation in patients with rheumatoid arthritis and in those with non‐rheumatoid arthritis (ie, all diagnoses other than rheumatoid arthritis). The number of macrophages in the synovial sublining was significantly higher in responders than in non‐responders (p = 0.002), independent of treatment group and diagnosis. The clinical effect was positively correlated with pretreatment total macrophage numbers (r = 0.28; p = 0.03), sublining macrophage numbers (r = 0.34; p = 0.005) and vascular cell adhesion molecule 1 expression (r = 0.25; p = 0.04). Conclusion The observations support the view that intra‐articular treatment either with 90Y and glucocorticoids or with glucocorticoids alone is especially successful in patients with marked synovial inflammation. PMID:16627543
CD206-positive myeloid cells bind galectin-9 and promote a tumor-supportive microenvironment.
Enninga, Elizabeth Ann L; Chatzopoulos, Kyriakos; Butterfield, John T; Sutor, Shari L; Leontovich, Alexey A; Nevala, Wendy K; Flotte, Thomas J; Markovic, Svetomir N
2018-05-07
In patients with metastatic melanoma, high blood levels of galectin-9 are correlated with worse overall survival and a bias towards a Th2 inflammatory state supportive of tumor growth. Although galectin-9 signaling through TIM3 on T cells has been described, less is known about the interaction of galectin-9 with macrophages. We aimed to determine whether galectin-9 is a binding partner of CD206 on macrophages and whether the result of this interaction is tumor-supportive. It was determined that incubation of CD68+ macrophages with galectin-9 or anti-CD206 blocked target binding and that both CD206 and galectin-9 were detected by immunoprecipitation of cell lysates. CD206 and galectin-9 had a binding affinity of 2.8 × 10 -7 M. Galectin-9 causes CD206+ macrophages to make significantly more FGF2 and monocyte chemoattractant protein (MCP-1), but less macrophage-derived chemokine (MDC). Galectin-9 had no effect on classical monocyte subsets, but caused expansion of the non-classical populations. Lastly, there was a positive correlation between increasing numbers of CD206 macrophages and galectin-9 expression in tumors, and high levels of CD206 macrophages correlated negatively with melanoma survival. These results indicate that galectin-9 binds CD206 on M2 macrophages, which appear to drive angiogenesis and the production of chemokines that support tumor growth and poor patient prognoses. Targeting this interaction systemically through circulating monocytes may therefore be a novel way to improve local anti-tumor effects by macrophages. This article is protected by copyright. All rights reserved.
Effects of BCG infection on the susceptibility of mouse macrophages to endotoxin.
Peavy, D L; Baughn, R E; Musher, D M; Musher, D M
1979-01-01
Mice infected intravenously with Mycobacterium bovis (BCG) are 100 to 1,000 times more sensitive to the lethal effects of bacterial lipopolysaccharides (LPS). Since BCG infection results in macrophage activation and LPS may cause pathophysiological effects through interaction with this cell type, it was of interest to determine whether macrophages from BCG-infected animals were more susceptible to the toxic effects of LPS in vitro. When LPS-susceptible, C57BL/6 mice were infected with BCG, a significant reduction in the 50% lethal dose of LPS was first observed after 7 days and persisted for several weeks. Macrophages from these animals had greatly increased susceptibility to LPS in vitro, which correlated with the development of acquired cellular resistance as determined by their ability to inhibit the growth of Listeria monocytogenes. In contrast, BCG infection of C3H/HeJ mice, a strain resistant to LPS, did not alter the 50% lethal dose of LPS for these animals or increase the sensitivity of their peritoneal macrophages to LPS in vitro. These results indicate that susceptibility of BCG-infected mice to the lethal effects of LPS parallels the susceptibility of their macrophages in vitro; release of vasoactive substances from LPS-susceptible activated macrophages in vivo may be, in part, responsible for lethality. PMID:378847
McCabe, Amanda; Smith, Julianne N P; Costello, Angelica; Maloney, Jackson; Katikaneni, Divya; MacNamara, Katherine C
2018-05-17
Severe aplastic anemia results from profound hematopoietic stem cell loss. T cells and interferon gamma have long been associated with severe aplastic anemia, yet the underlying mechanisms driving hematopoietic stem cell loss remain unknown. Using a mouse model of severe aplastic anemia, we demonstrate that interferon gamma-dependent hematopoietic stem cell loss required macrophages. Interferon gamma was necessary for bone marrow macrophage persistence, despite loss of other myeloid cells and hematopoietic stem cells. Depleting macrophages or abrogating interferon gamma signaling specifically in macrophages did not impair T cell activation or interferon gamma production in the bone marrow but rescued hematopoietic stem cells and reduced mortality. Thus, macrophages are not required for induction of interferon gamma in severe aplastic anemia and rather act as sensors of interferon gamma. Macrophage depletion rescued thrombocytopenia, increased bone marrow megakaryocytes, preserved platelet-primed stem cells, and increased the platelet-repopulating capacity of transplanted hematopoietic stem cells. In addition to the hematopoietic effects, severe aplastic anemia induced loss of non-hematopoietic stromal populations, including podoplanin-positive stromal cells. However, a subset of podoplanin-positive macrophages was increased during disease, and blockade of podoplanin in mice was sufficient to rescue disease. Our data further our understanding of disease pathogenesis demonstrating a novel role for macrophages as sensors of interferon gamma, thus illustrating an important role for the microenvironment in pathogenesis of severe aplastic anemia. Copyright © 2018, Ferrata Storti Foundation.
Bosurgi, Lidia; Manfredi, Angelo A.; Rovere-Querini, Patrizia
2011-01-01
Macrophages are present in regenerating skeletal muscles and participate in the repair process. This is due to a unique feature of macrophages, i.e., their ability to perceive signals heralding ongoing tissue injury and to broadcast the news to cells suited at regenerating the tissue such as stem and progenitor cells. Macrophages play a complex role in the skeletal muscle, probably conveying information on the pattern of healing which is appropriate to ensure an effective healing of the tissue, yielding novel functional fibers. Conversely, they are likely to be involved in limiting the efficacy of regeneration, with formation of fibrotic scars and fat replacement of the tissue when the original insult persists. In this review we consider the beneficial versus the detrimental actions of macrophages during the response to muscle injury, with attention to the available information on the molecular code macrophages rely on to guide, throughout the various phases of muscle healing, the function of conventional and unconventional stem cells. Decrypting this code would represent a major step forward toward the establishment of novel targeted therapies for muscle diseases. PMID:22566851
How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics.
Avalos Vizcarra, Ima; Hosseini, Vahid; Kollmannsberger, Philip; Meier, Stefanie; Weber, Stefan S; Arnoldini, Markus; Ackermann, Martin; Vogel, Viola
2016-01-05
To survive antibiotics, bacteria use two different strategies: counteracting antibiotic effects by expression of resistance genes or evading their effects e.g. by persisting inside host cells. Since bacterial adhesins provide access to the shielded, intracellular niche and the adhesin type 1 fimbriae increases bacterial survival chances inside macrophages, we asked if fimbriae also influenced survival by antibiotic evasion. Combined gentamicin survival assays, flow cytometry, single cell microscopy and kinetic modeling of dose response curves showed that type 1 fimbriae increased the adhesion and internalization by macrophages. This was caused by strongly decreased off-rates and affected the number of intracellular bacteria but not the macrophage viability and morphology. Fimbriae thus promote antibiotic evasion which is particularly relevant in the context of chronic infections.
Frangogiannis, Nikolaos G; Mendoza, Leonardo H; Ren, Guofeng; Akrivakis, Spyridon; Jackson, Peggy L; Michael, Lloyd H; Smith, C Wayne; Entman, Mark L
2003-08-01
Myocardial infarction is associated with the rapid induction of mononuclear cell chemoattractants that promote monocyte infiltration into the injured area. Monocyte-to-macrophage differentiation and macrophage proliferation allow a long survival of monocytic cells, critical for effective healing of the infarct. In a canine infarction-reperfusion model, newly recruited myeloid leukocytes were markedly augmented during early reperfusion (5-72 h). By 7 days, the number of newly recruited myeloid cells was reduced, and the majority of the inflammatory cells remaining in the infarct were mature macrophages. Macrophage colony-stimulating factor (MCSF) is known to facilitate monocyte survival, monocyte-to-macrophage conversion, and macrophage proliferation. We demonstrated marked induction of MCSF mRNA in ischemic segments persisting for at least 5 days after reperfusion. MCSF expression was predominantly localized to mature macrophages infiltrating the infarcted myocardium; the expression of the MCSF receptor, c-Fms, a protein with tyrosine kinase activity, was found in these macrophages but was also observed in a subset of microvessels within the infarct. Many infarct macrophages expressed proliferating cell nuclear antigen, a marker of proliferative activity. In vitro MCSF induced monocyte chemoattractant protein-1 synthesis in canine venous endothelial cells. MCSF-induced endothelial monocyte chemoattractant protein-1 upregulation was inhibited by herbimycin A, a tyrosine kinase inhibitor, and by LY-294002, a phosphatidylinositol 3'-kinase inhibitor. We suggest that upregulation of MCSF in the infarcted myocardium may have an active role in healing not only through its effects on cells of monocyte/macrophage lineage, but also by regulating endothelial cell chemokine expression.
Kim, Edy Y.; Battaile, John T.; Patel, Anand C.; You, Yingjian; Agapov, Eugene; Grayson, Mitchell H.; Benoit, Loralyn A.; Byers, Derek E.; Alevy, Yael; Tucker, Jennifer; Swanson, Suzanne; Tidwell, Rose; Tyner, Jeffrey W.; Morton, Jeffrey D.; Castro, Mario; Polineni, Deepika; Patterson, G. Alexander; Schwendener, Reto A.; Allard, John D.; Peltz, Gary; Holtzman, Michael J.
2008-01-01
To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of a chronic lung disease that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after infection with a common type of respiratory virus is cleared to trace levels of noninfectious virus. Unexpectedly, the chronic inflammatory disease arises independently of an adaptive immune response and is driven by IL-13 produced by macrophages stimulated by CD1d-dependent TCR-invariant NKT cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a novel NKT cell-macrophage innate immune axis. PMID:18488036
Mycobacteria exploit nitric oxide-induced transformation of macrophages into permissive giant cells.
Gharun, Kourosh; Senges, Julia; Seidl, Maximilian; Lösslein, Anne; Kolter, Julia; Lohrmann, Florens; Fliegauf, Manfred; Elgizouli, Magdeldin; Vavra, Martina; Schachtrup, Kristina; Illert, Anna L; Gilleron, Martine; Kirschning, Carsten J; Triantafyllopoulou, Antigoni; Henneke, Philipp
2017-12-01
Immunity to mycobacteria involves the formation of granulomas, characterized by a unique macrophage (MΦ) species, so-called multinucleated giant cells (MGC). It remains unresolved whether MGC are beneficial to the host, that is, by prevention of bacterial spread, or whether they promote mycobacterial persistence. Here, we show that the prototypical antimycobacterial molecule nitric oxide (NO), which is produced by MGC in excessive amounts, is a double-edged sword. Next to its antibacterial capacity, NO propagates the transformation of MΦ into MGC, which are relatively permissive for mycobacterial persistence. The mechanism underlying MGC formation involves NO-induced DNA damage and impairment of p53 function. Moreover, MGC have an unsurpassed potential to engulf mycobacteria-infected apoptotic cells, which adds a further burden to their antimycobacterial capacity. Accordingly, mycobacteria take paradoxical advantage of antimicrobial cellular efforts by driving effector MΦ into a permissive MGC state. © 2017 The Authors.
Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr.
Datta, Prasun K; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C; Fecchio, Chiara; Barrero, Carlos A
2016-09-01
HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS.
Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr
Datta, Prasun K.; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C.; Fecchio, Chiara; Barrero, Carlos A.
2016-01-01
ABSTRACT HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS. PMID:27245560
Myeloid Cell Interaction with HIV: A Complex Relationship
Rodrigues, Vasco; Ruffin, Nicolas; San-Roman, Mabel; Benaroch, Philippe
2017-01-01
Cells of the myeloid lineage, particularly macrophages, serve as primary hosts for HIV in vivo, along with CD4 T lymphocytes. Macrophages are present in virtually every tissue of the organism, including locations with negligible T cell colonization, such as the brain, where HIV-mediated inflammation may lead to pathological sequelae. Moreover, infected macrophages are present in multiple other tissues. Recent evidence obtained in humanized mice and macaque models highlighted the capacity of macrophages to sustain HIV replication in vivo in the absence of T cells. Combined with the known resistance of the macrophage to the cytopathic effects of HIV infection, such data bring a renewed interest in this cell type both as a vehicle for viral spread as well as a viral reservoir. While our understanding of key processes of HIV infection of macrophages is far from complete, recent years have nevertheless brought important insight into the uniqueness of the macrophage infection. Productive infection of macrophages by HIV can occur by different routes including from phagocytosis of infected T cells. In macrophages, HIV assembles and buds into a peculiar plasma membrane-connected compartment that preexists to the infection. While the function of such compartment remains elusive, it supposedly allows for the persistence of infectious viral particles over extended periods of time and may play a role on viral transmission. As cells of the innate immune system, macrophages have the capacity to detect and respond to viral components. Recent data suggest that such sensing may occur at multiple steps of the viral cycle and impact subsequent viral spread. We aim to provide an overview of the HIV–macrophage interaction along the multiple stages of the viral life cycle, extending when pertinent such observations to additional myeloid cell types such as dendritic cells or blood monocytes. PMID:29250073
Miranda, Jake W.; Gilson, Danny J.; Song, Zhengyu; Chen, Jia; Shi, Chao; Zhu, Jianyu; Yang, Jun; Jing, Zhichun
2016-01-01
Background The persistence of Mycobacterium leprae (M. leprae) infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions. Methodology/Principal Findings Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNF-alpha) and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg) cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma) expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings. Conclusions/Significance Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity. PMID:26751388
Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages
NASA Astrophysics Data System (ADS)
Freire-de-Lima, Célio G.; Nascimento, Danielle O.; Soares, Milena B. P.; Bozza, Patricia T.; Castro-Faria-Neto, Hugo C.; de Mello, Fernando G.; Dosreis, George A.; Lopes, Marcela F.
2000-01-01
After apoptosis, phagocytes prevent inflammation and tissue damage by the uptake and removal of dead cells. In addition, apoptotic cells evoke an anti-inflammatory response through macrophages. We have previously shown that there is intense lymphocyte apoptosis in an experimental model of Chagas' disease, a debilitating cardiac illness caused by the protozoan Trypanosoma cruzi. Here we show that the interaction of apoptotic, but not necrotic T lymphocytes with macrophages infected with T. cruzi fuels parasite growth in a manner dependent on prostaglandins, transforming growth factor-β (TGF-β) and polyamine biosynthesis. We show that the vitronectin receptor is critical, in both apoptotic-cell cytoadherence and the induction of prostaglandin E2/TGF-β release and ornithine decarboxylase activity in macrophages. A single injection of apoptotic cells in infected mice increases parasitaemia, whereas treatment with cyclooxygenase inhibitors almost completely ablates it in vivo. These results suggest that continual lymphocyte apoptosis and phagocytosis of apoptotic cells by macrophages have a role in parasite persistence in the host, and that cyclooxygenase inhibitors have potential therapeutic application in the control of parasite replication and spread in Chagas' disease.
Kovacsics, Colleen E.; Vance, Patricia J.; Collman, Ronald G.
2015-01-01
ABSTRACT Expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) is significantly reduced in the brain prefrontal cortex of HIV-positive individuals with HIV-associated neurocognitive disorders (HAND). Furthermore, this HO-1 deficiency correlates with brain viral load, markers of macrophage activation, and type I interferon responses. In vitro, HIV replication in monocyte-derived macrophages (MDM) selectively reduces HO-1 protein and RNA expression and induces production of neurotoxic levels of glutamate; correction of this HO-1 deficiency reduces neurotoxic glutamate production without an effect on HIV replication. We now demonstrate that macrophage HO-1 deficiency, and the associated neurotoxin production, is a conserved feature of infection with macrophage-tropic HIV-1 strains that correlates closely with the extent of replication, and this feature extends to HIV-2 infection. We further demonstrate that this HO-1 deficiency does not depend specifically upon the HIV-1 accessory genes nef, vpr, or vpu but rather on HIV replication, even when markedly limited. Finally, antiretroviral therapy (ART) applied to MDM after HIV infection is established does not prevent HO-1 loss or the associated neurotoxin production. This work defines a predictable relationship between HIV replication, HO-1 loss, and neurotoxin production in MDM that likely reflects processes in place in the HIV-infected brains of individuals receiving ART. It further suggests that correcting this HO-1 deficiency in HIV-infected MDM could provide neuroprotection above that provided by current ART or proposed antiviral therapies directed at limiting Nef, Vpr, or Vpu functions. The ability of HIV-2 to reduce HO-1 expression suggests that this is a conserved phenotype among macrophage-tropic human immunodeficiency viruses that could contribute to neuropathogenesis. IMPORTANCE The continued prevalence of HIV-associated neurocognitive disorders (HAND) underscores the need for adjunctive therapy that targets the neuropathological processes that persist in antiretroviral therapy (ART)-treated HIV-infected individuals. To this end, we previously identified one such possible process, a deficiency of the antioxidative and anti-inflammatory enzyme heme oxygenase-1 (HO-1) in the brains of individuals with HAND. In the present study, our findings suggest that the HO-1 deficiency associated with excess glutamate production and neurotoxicity in HIV-infected macrophages is a highly conserved phenotype of macrophage-tropic HIV strains and that this phenotype can persist in the macrophage compartment in the presence of ART. This suggests a plausible mechanism by which HIV infection of brain macrophages in ART-treated individuals could exacerbate oxidative stress and glutamate-induced neuronal injury, each of which is associated with neurocognitive dysfunction in infected individuals. Thus, therapies that rescue the HO-1 deficiency in HIV-infected individuals could provide additional neuroprotection to ART. PMID:26269184
Tissue Inhibitor of Metalloproteinases–3 Moderates the Proinflammatory Status of Macrophages
Gharib, Sina A.; Bench, Eli M.; Sussman, Samuel W.; Wang, Roy T.; Rims, Cliff; Birkland, Timothy P.; Wang, Ying; Manicone, Anne M.; McGuire, John K.; Parks, William C.
2013-01-01
Tissue inhibitor of metalloproteinases–3 (TIMP-3) has emerged as a key mediator of inflammation. Recently, we reported that the resolution of inflammation is impaired in Timp3−/− mice after bleomycin-induced lung injury. Here, we demonstrate that after LPS instillation (another model of acute lung injury), Timp3−/− mice demonstrate enhanced and persistent neutrophilia, increased numbers of infiltrated macrophages, and delayed weight gain, compared with wild-type (WT) mice. Because macrophages possess broad immune functions and can differentiate into cells that either stimulate inflammation (M1 macrophages) or are immunosuppressive (M2 macrophages), we examined whether TIMP-3 influences macrophage polarization. Comparisons of the global gene expression of unstimulated or LPS-stimulated bone marrow–derived macrophages (BMDMs) from WT and Timp3−/− mice revealed that Timp3−/− BMDMs exhibited an increased expression of genes associated with proinflammatory (M1) macrophages, including Il6, Il12, Nos2, and Ccl2. Microarray analyses also revealed a baseline difference in gene expression between WT and Timp3−/− BMDMs, suggesting altered macrophage differentiation. Furthermore, the treatment of Timp3−/− BMDMs with recombinant TIMP-3 rescued this altered gene expression. We also examined macrophage function, and found that Timp3−/− M1 cells exhibit significantly more neutrophil chemotactic activity and significantly less soluble Fas ligand–induced caspase-3/7 activity, a marker of apoptosis, compared with WT M1 cells. Macrophage differentiation into immunosuppressive M2 cells is mediated by exposure to IL-4/IL-13, and we found that Timp3−/− M2 macrophages demonstrated a lower expression of genes associated with an anti-inflammatory phenotype, compared with WT M2 cells. Collectively, these findings indicate that TIMP-3 functions to moderate the differentiation of macrophages into proinflammatory (M1) cells. PMID:23742180
Fineran, Paul; Lloyd-Evans, Emyr; Lack, Nathan A.; Platt, Nick; Davis, Lianne C.; Morgan, Anthony J.; Höglinger, Doris; Tatituri, Raju Venkata V.; Clark, Simon; Williams, Ian M.; Tynan, Patricia; Al Eisa, Nada; Nazarova, Evgeniya; Williams, Ann; Galione, Antony; Ory, Daniel S.; Besra, Gurdyal S.; Russell, David G.; Brenner, Michael B.; Sim, Edith; Platt, Frances M.
2017-01-01
Background. Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with intracellular mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. Methods. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Results. Macrophages infected with intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. Conclusion. These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies. PMID:28008422
Estradiol Is a Critical Mediator of Macrophage-Nerve Cross Talk in Peritoneal Endometriosis
Greaves, Erin; Temp, Julia; Esnal-Zufiurre, Arantza; Mechsner, Sylvia; Horne, Andrew W.; Saunders, Philippa T.K.
2016-01-01
Endometriosis occurs in approximately 10% of women and is associated with persistent pelvic pain. It is defined by the presence of endometrial tissue (lesions) outside the uterus, most commonly on the peritoneum. Peripheral neuroinflammation, a process characterized by the infiltration of nerve fibers and macrophages into lesions, plays a pivotal role in endometriosis-associated pain. Our objective was to determine the role of estradiol (E2) in regulating the interaction between macrophages and nerves in peritoneal endometriosis. By using human tissues and a mouse model of endometriosis, we demonstrate that macrophages in lesions recovered from women and mice are immunopositive for estrogen receptor β, with up to 20% being estrogen receptor α positive. In mice, treatment with E2 increased the number of macrophages in lesions as well as concentrations of mRNAs encoded by Csf1, Nt3, and the tyrosine kinase neurotrophin receptor, TrkB. By using in vitro models, we determined that the treatment of rat dorsal root ganglia neurons with E2 increased mRNA concentrations of the chemokine C-C motif ligand 2 that stimulated migration of colony-stimulating factor 1–differentiated macrophages. Conversely, incubation of colony-stimulating factor 1 macrophages with E2 increased concentrations of brain-derived neurotrophic factor and neurotrophin 3, which stimulated neurite outgrowth from ganglia explants. In summary, we demonstrate a key role for E2 in stimulating macrophage-nerve interactions, providing novel evidence that endometriosis is an estrogen-dependent neuroinflammatory disorder. PMID:26073038
How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics
Avalos Vizcarra, Ima; Hosseini, Vahid; Kollmannsberger, Philip; Meier, Stefanie; Weber, Stefan S.; Arnoldini, Markus; Ackermann, Martin; Vogel, Viola
2016-01-01
To survive antibiotics, bacteria use two different strategies: counteracting antibiotic effects by expression of resistance genes or evading their effects e.g. by persisting inside host cells. Since bacterial adhesins provide access to the shielded, intracellular niche and the adhesin type 1 fimbriae increases bacterial survival chances inside macrophages, we asked if fimbriae also influenced survival by antibiotic evasion. Combined gentamicin survival assays, flow cytometry, single cell microscopy and kinetic modeling of dose response curves showed that type 1 fimbriae increased the adhesion and internalization by macrophages. This was caused by strongly decreased off-rates and affected the number of intracellular bacteria but not the macrophage viability and morphology. Fimbriae thus promote antibiotic evasion which is particularly relevant in the context of chronic infections. PMID:26728082
Devi, Savita; Rajakumara, Eerappa; Ahmed, Niyaz
2015-01-01
Evasion of innate immune recognition is one of the key strategies for persistence of Helicobacter pylori, by virtue of its ability to modulate or escape the host innate immune receptors and signaling pathways. C-type lectin receptors (CLRs) predominantly expressed by macrophages are pivotal in tailoring immune response against pathogens. The recognition of glyco or carbohydrate moieties by Mincle (Macrophage inducible C-type lectin) is emerging as a crucial element in anti-fungal and anti-mycobacterial immunity. Herein, we demonstrate the role of Mincle in modulation of innate immune response against H. pylori infection. Our results revealed an upregulated expression of Mincle which was independent of direct host cell contact. Upon computational modelling, Mincle was observed to interact with the Lewis antigens of H. pylori LPS and possibly activating an anti-inflammatory cytokine production, thereby maintaining a balance between pro- and anti-inflammatory cytokine production. Furthermore, siRNA mediated knockdown of Mincle in human macrophages resulted in up regulation of pro-inflammatory cytokines and consequent down regulation of anti-inflammatory cytokines. Collectively, our study demonstrates a novel mechanism employed by H. pylori to escape clearance by exploiting functional plasticity of Mincle to strike a balance between pro-and anti-inflammatory responses ensuring its persistence in the host. PMID:26456705
ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation
Schumacher, Michael A; Hedl, Matija; Abraham, Clara; Bernard, Jessica K; Lozano, Patricia R; Hsieh, Jonathan J; Almohazey, Dana; Bucar, Edie B; Punit, Shivesh; Dempsey, Peter J; Frey, Mark R
2017-01-01
Efficient clearance of pro-inflammatory macrophages from tissues after resolution of a challenge is critical to prevent prolonged inflammation. Defects in clearance can contribute to conditions such as inflammatory bowel disease, and thus may be therapeutically targetable. However, the signaling pathways that induce termination of pro-inflammatory macrophages are incompletely defined. We tested whether the ErbB4 receptor tyrosine kinase, previously not known to have role in macrophage biology, is involved in this process. In vitro, pro-inflammatory activation of cultured murine and human macrophages induced ErbB4 expression; in contrast, other ErbB family members were not induced in pro-inflammatory cells, and other innate immune lineages (dendritic cells, neutrophils) did not express detectable ErbB4 levels. Treatment of activated pro-inflammatory macrophages with the ErbB4 ligand neuregulin-4 (NRG4) induced apoptosis. ErbB4 localized to the mitochondria in these cells. Apoptosis was accompanied by loss of mitochondrial membrane potential, and was dependent upon the proteases that generate the cleaved ErbB4 intracellular domain fragment, suggesting a requirement for this fragment and mitochondrial pathway apoptosis. In vivo, ErbB4 was highly expressed on pro-inflammatory macrophages but not neutrophils during experimental DSS colitis in C57Bl/6 mice. Active inflammation in this model suppressed NRG4 expression, which may allow for macrophage persistence and ongoing inflammation. Consistent with this notion, NRG4 levels rebounded during the recovery phase, and administration of exogenous NRG4 during colitis reduced colonic macrophage numbers and ameliorated inflammation. These data define a novel role for ErbB4 in macrophage apoptosis, and outline a mechanism of feedback inhibition that may promote resolution of colitis. PMID:28230865
Macrophage sphingolipids are essential for the entry of mycobacteria.
Viswanathan, Gopinath; Jafurulla, Md; Kumar, G Aditya; Raghunand, Tirumalai R; Chattopadhyay, Amitabha
2018-07-01
Mycobacteria are intracellular pathogens that can invade and survive within host macrophages. Mycobacterial infections remain a major cause of mortality and morbidity worldwide, with serious concerns of emergence of multi and extensively drug-resistant tuberculosis. While significant advances have been made in identifying mycobacterial virulence determinants, the detailed molecular mechanism of internalization of mycobacteria into host cells remains poorly understood. Although several studies have highlighted the crucial role of sphingolipids in mycobacterial growth, persistence and establishment of infection, the role of sphingolipids in the entry of mycobacteria into host cells is not known. In this work, we explored the role of host membrane sphingolipids in the entry of Mycobacterium smegmatis into J774A.1 macrophages. Our results show that metabolic depletion of sphingolipids in host macrophages results in a significant reduction in the entry of M. smegmatis. Importantly, the entry of Escherichia coli into host macrophages under similar conditions remained invariant, implying the specificity of the requirement of sphingolipids in mycobacterial entry. To the best of our knowledge, our results constitute the first report demonstrating the role of host macrophage sphingolipids in the entry of mycobacteria. Our results could help in the development of novel therapeutic strategies targeting sphingolipid-mediated entry of mycobacteria into host cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao
2018-04-14
The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.
Lee, SeungHwan; Zhang, Ji
2012-08-01
Macrophages are important immune effector cells in both innate and adaptive immune responses. Injury to peripheral nerves triggers activation of resident macrophages and infiltration of haematogenous macrophages, which they play critical roles in Wallerian degeneration and neuropathic pain. As macrophages are able to change their phenotypes in response to environment cues, we attempt to identify distinct phenotypes of macrophages in injured nerves and to understand the potential contribution of each macrophage subpopulation to the genesis of neuropathic pain associated with nerve injury. Rat mental nerves (terminal branches of trigeminal nerve) were loosely ligated. Sensitivity to mechanical stimuli at the lower lip area was monitored using calibrated von Frey Hairs. We examined the expression pattern of Iba-1, MAC1 and ED1 which allow us to reveal the immunophenotypes of macrophages at different time points post-injury. Functional status of each macrophage subpopulation was further investigated by colocalization with cytokines/chemokines, myelin basic protein and MHC II antigen, which reflect respectively secretory, phagocytic and antigen presentation properties of activated macrophages. Following nerve injury, a burst of Iba-1(+) macrophages was found in injured mental nerves. Among them, we detected two major immunophenotypes: MAC1(+) cytokines/chemokines secreting macrophages and ED1(+) phagocytic macrophages. Small, round shaped MAC1(+) macrophages were distributed essentially around the lesion site and existed only at early time points. Large, irregular and foamy ED1(+) macrophages were found among damaged nerve fibers and they persisted for at least 3 months post-injury. Although ED1(+) macrophages did not secrete inflammatory mediators, they were able to express neurotransmitter CGRP and MHC II at later time points. In parallel, we observed that mechanical allodynia developed after the nerve ligation was at its lowest level within 1 month. Although slightly increased afterwards, the head escape threshold maintained significantly lower than before injury until 3 months. We suggest that MAC1(+) macrophages contribute to the initiation of neuropathic pain by releasing cytokines/chemokines, and ED1(+) macrophages may contribute in maintaining the hypersensitivity under other mechanisms. Our results highlighted the heterogeneity and the plasticity of macrophages in response to the injury and provided further information on their potential involvement in neuropathic pain. Exploring the full spectrum of macrophage phenotypes in injured nerve is necessary. Individual macrophage population may be selectively targeted by cell-specific intervention for an effective treatment of neuropathic pain. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kali, Avinash; Cokic, Ivan; Tang, Richard
Emerging evidence now supports the notion that persistent microvascular obstruction (PMO) may be more predictive of major adverse cardiovascular events than MI size itself. But, how PMO, a phenomenon limited to the acute/sub-acute period of MI, imparts adverse remodeling throughout the post MI period, particularly after its resolution, is incompletely understood. We hypothesized that PMOs resolve into chronic iron crystals within MI territories and actively impart a proinflammatory burden and adverse remodeling of infarction and LV in the chronic phase of MI. Canine models reperfused (n=20) and non-reperfused (n=20) with and without PMO were studied with serial cardiac MRI tomore » characterize the spatiotemporal relationships between PMO, iron deposition, and infarct and LV remodeling indices between acute (day 7, post MI) and chronic (week 8, post MI). Histopathology and immunohistochemistry were used to validate the iron deposition, microscopically map and quantify the relationship between iron-rich chronic MI regions against pro-inflammatory macrophages, proinflammatory cytokines and matrix metalloproteinase. Atomic resolution transmission electron microscopy (TEM) was used to determine the crystallinity of iron and assess the physical effects of iron on lysosomes within macrophages, and energy-dispersive X-ray spectroscopy (EDS) to identify the chemical composition of the iron composite. Results showed that PMOs lead to iron deposition within chronic MI and that the extent of chronic iron deposition is strongly related to PMO Volume (r>0.6, p<0.001). TEM and EDS analysis showed that iron within chronic MI is found within macrophages as aggregates of nanocrystals of ~2.5 nm diameter in ferric state. Correlative histological studies showed that iron content, proinflammatory burden and collagen degrading enzyme were highly correlated (r >0.7, p<0.001). Iron within chronic MI was significantly associated with infarct resorption (r>0.5, p<0.001) and adverse structural (r>0.5, p<0.001) remodeling. Territories of PMO in the acute phase of MI resolve into iron oxide nanocrystals in ferric state in the chronic phase of MI. The amount of iron deposition is determined by the extent of persistent microvascular obstruction and is directly related to the extent of pro-inflammatory burden, infarct thinning and adverse LV remodeling. Resolution of PMO into iron deposition could be a potential contributing source to the adverse remodeling of the heart in the chronic phase of MI.« less
Goldner, R D; Adams, D O
1977-11-01
The response of mononuclear phagocytes to three inert particles--barium sulfate, talc, and thorium dioxide--was studied by correlated light and electron microscopy. All three particles induced maturation of the mononuclear phagocytes, which proceeded to the stage of the mature macrophage and required 7 to 9 days. Once established, maturation persisted as long as 45 days, as did the inert particles. The resultant lesions, dense aggregates of mature macrophages, were termed mature granulomas. The resultant maturation differed from that produced by digestible bacteria in tempo and extent but not in pattern.
Baxter, M A; Leslie, R G; Reeves, W G
1983-01-01
The kinetics of superoxide anion production in guinea-pig peritoneal macrophages and neutrophils were determined following in vitro stimulation with phorbol myristate acetate (PMA), opsonized zymosan (OZ) and soluble immune complexes of guinea-pig IgG2 (SIC). Superoxide production was recorded as chemiluminescence (CL) arising from the reductive cleavage of lucigenin. With PMA, both macrophages and neutrophils displayed a two-phase response consisting of a rapid initial burst of CL, which preceded ligand ingestion, followed by a plateau in the CL response which persisted for more than 30 min. By contrast, OZ induced a slow progressive increase in CL in both phagocytes which was consistent with the development of an oxidative burst concomitant with ingestion. The phagocytes differed in their responses to SIC, the macrophages displaying CL kinetics similar to those observed with PMA, whereas the neutrophils responded in the manner observed with OZ. The relationship between disparity in the patterns of macrophage and neutrophil CL responses to SIC and differences in their expression of Fc receptors for IgG2 (Coupland & Leslie, 1983) is discussed. PMID:6299935
Mahajan, Sahil; Chandra, Vemika; Dave, Sandeep; Nanduri, Ravikanth; Gupta, Pawan
2012-08-01
Mycobacterium tuberculosis, the causative agent of tuberculosis, has a remarkable ability to usurp its host's innate immune response, killing millions of infected people annually. One approach to manage infection is prevention through the use of natural agents. In this regard, stem bromelain (SBM), a pharmacologically active member of the sulfhydryl proteolytic enzyme family, obtained from Ananas comosus and possessing a remarkable ability to induce the innate and acquired immune systems, is important. We evaluated SBM's ability to induce apoptosis and free-radical generation in macrophages. We also studied antimycobacterial properties of SBM and its effect on foamy macrophages. SBM treatment of peritoneal macrophages resulted in the upregulation of proapoptotic proteins and downregulation of antiapoptotic proteins. Additionally, SBM treatment activated macrophages, curtailed the levels of free glutathione, and augmented the production of hydrogen peroxide, superoxide anion, peroxynitrite, and nitric oxide. SBM cleaves CD36 and reduced the formation of foam cells, the hallmark of M. tuberculosis infection. These conditions created an environment for the increased clearance of M. tuberculosis. Together these data provide a mechanism for antimycobacterial activity of SBM and provide important insights for the use of cysteine proteases as immunomodulatory agents.
He, Hongliang; Yuan, Quan; Bie, Jinghua; Wallace, Ryan L; Yannie, Paul J; Wang, Jing; Lancina, Michael G; Zolotarskaya, Olga Yu; Korzun, William; Yang, Hu; Ghosh, Shobha
2018-03-01
Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque burden. Copyright © 2017 Elsevier Inc. All rights reserved.
Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells
Velmurugan, Ramraj; Challa, Dilip K.; Ram, Sripad; Ober, Raimund J.; Ward, E. Sally
2016-01-01
Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcγ receptor (FcγR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is pro-tumorigenic. In the current study we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcγR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies. PMID:27226489
DaMata, Jarina Pena; Mendes, Bárbara Pinheiro; Maciel-Lima, Kátia; Menezes, Cristiane Alves Silva; Dutra, Walderez Ornelas; Sousa, Lirlândia Pires; Horta, Maria Fátima
2015-01-01
Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection. PMID:26513474
DaMata, Jarina Pena; Mendes, Bárbara Pinheiro; Maciel-Lima, Kátia; Menezes, Cristiane Alves Silva; Dutra, Walderez Ornelas; Sousa, Lirlândia Pires; Horta, Maria Fátima
2015-01-01
Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.
In vitro and intra-macrophage gene expression by Rhodococcus equi strain 103.
Rahman, Md Tanvir; Parreira, Valeria; Prescott, John F
2005-09-30
Rhodococcus equi is a facultative intracellular respiratory pathogen of foals that persists and multiplies within macrophages. In foals, virulence is associated with 80-90 kb plasmids, which include a pathogenicity island (PI) containing the virulence-associated protein (vap) gene family, but detailed understanding of the basis of virulence is still poor. A 60 spot-based DNA microarray was developed containing eight PI genes and 42 chromosomal putative virulence or virulence-associated genes selected from a recent partial genome sequence in order to study transcription of these genes by R. equi grown inside macrophages and under in vitro conditions thought to simulate those of macrophages. In addition to seven PI genes, nine chromosomal genes involved in fatty acid and lipid metabolism (choD, fadD13, fbpB), heme biosynthesis (hemE), iron utilization (mbtF), heat shock resistance and genes encoding chaperones (clpB, groEL), a sigma factor (sigK), and a transcriptional regulator (moxR) were significantly induced in R. equi growing inside macrophages. The pattern of R. equi chromosomal genes significantly transcribed inside macrophages largely differed from those transcribed under in vitro conditions (37 degrees C, pH 5.0 or 50mM H2O2 for 30 min). This study has identified genes, other than those of the virulence plasmid, the transcription of which is enhanced within equine macrophages. These genes should be investigated further to improve understanding of how this organism survives intracellularly.
Bacterial Stimulation of Toll-Like Receptor 4 Drives Macrophages To Hemophagocytose
McDonald, Erin M.; Pilonieta, M. Carolina; Nick, Heidi J.
2015-01-01
During acute infection with bacteria, viruses or parasites, a fraction of macrophages engulf large numbers of red and white blood cells, a process called hemophagocytosis. Hemophagocytes persist into the chronic stage of infection and have an anti-inflammatory phenotype. Salmonella enterica serovar Typhimurium infection of immunocompetent mice results in acute followed by chronic infection, with the accumulation of hemophagocytes. The mechanism(s) that triggers a macrophage to become hemophagocytic is unknown, but it has been reported that the proinflammatory cytokine gamma interferon (IFN-γ) is responsible. We show that primary macrophages become hemophagocytic in the absence or presence of IFN-γ upon infection with Gram-negative bacterial pathogens or prolonged exposure to heat-killed Salmonella enterica, the Gram-positive bacterium Bacillus subtilis, or Mycobacterium marinum. Moreover, conserved microbe-associated molecular patterns are sufficient to stimulate macrophages to hemophagocytose. Purified bacterial lipopolysaccharide (LPS) induced hemophagocytosis in resting and IFN-γ-pretreated macrophages, whereas lipoteichoic acid and synthetic unmethylated deoxycytidine-deoxyguanosine dinucleotides, which mimic bacterial DNA, induced hemophagocytosis only in IFN-γ-pretreated macrophages. Chemical inhibition or genetic deletion of Toll-like receptor 4, a pattern recognition receptor responsive to LPS, prevented both Salmonella- and LPS-stimulated hemophagocytosis. Inhibition of NF-κB also prevented hemophagocytosis. These results indicate that recognition of microbial products by Toll-like receptors stimulates hemophagocytosis, a novel outcome of prolonged Toll-like receptor signaling, suggesting hemophagocytosis is a highly conserved innate immune response. PMID:26459510
De Kleer, Ismé; Henri, Sandrine; Post, Sijranke; Vanhoutte, Leen; De Prijck, Sofie; Deswarte, Kim; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N.
2013-01-01
Tissue-resident macrophages can develop from circulating adult monocytes or from primitive yolk sac–derived macrophages. The precise ontogeny of alveolar macrophages (AMFs) is unknown. By performing BrdU labeling and parabiosis experiments in adult mice, we found that circulating monocytes contributed minimally to the steady-state AMF pool. Mature AMFs were undetectable before birth and only fully colonized the alveolar space by 3 d after birth. Before birth, F4/80hiCD11blo primitive macrophages and Ly6ChiCD11bhi fetal monocytes sequentially colonized the developing lung around E12.5 and E16.5, respectively. The first signs of AMF differentiation appeared around the saccular stage of lung development (E18.5). Adoptive transfer identified fetal monocytes, and not primitive macrophages, as the main precursors of AMFs. Fetal monocytes transferred to the lung of neonatal mice acquired an AMF phenotype via defined developmental stages over the course of one week, and persisted for at least three months. Early AMF commitment from fetal monocytes was absent in GM-CSF–deficient mice, whereas short-term perinatal intrapulmonary GM-CSF therapy rescued AMF development for weeks, although the resulting AMFs displayed an immature phenotype. This demonstrates that tissue-resident macrophages can also develop from fetal monocytes that adopt a stable phenotype shortly after birth in response to instructive cytokines, and then self-maintain throughout life. PMID:24043763
Gill, Alexander J; Kovacsics, Colleen E; Vance, Patricia J; Collman, Ronald G; Kolson, Dennis L
2015-10-01
Expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) is significantly reduced in the brain prefrontal cortex of HIV-positive individuals with HIV-associated neurocognitive disorders (HAND). Furthermore, this HO-1 deficiency correlates with brain viral load, markers of macrophage activation, and type I interferon responses. In vitro, HIV replication in monocyte-derived macrophages (MDM) selectively reduces HO-1 protein and RNA expression and induces production of neurotoxic levels of glutamate; correction of this HO-1 deficiency reduces neurotoxic glutamate production without an effect on HIV replication. We now demonstrate that macrophage HO-1 deficiency, and the associated neurotoxin production, is a conserved feature of infection with macrophage-tropic HIV-1 strains that correlates closely with the extent of replication, and this feature extends to HIV-2 infection. We further demonstrate that this HO-1 deficiency does not depend specifically upon the HIV-1 accessory genes nef, vpr, or vpu but rather on HIV replication, even when markedly limited. Finally, antiretroviral therapy (ART) applied to MDM after HIV infection is established does not prevent HO-1 loss or the associated neurotoxin production. This work defines a predictable relationship between HIV replication, HO-1 loss, and neurotoxin production in MDM that likely reflects processes in place in the HIV-infected brains of individuals receiving ART. It further suggests that correcting this HO-1 deficiency in HIV-infected MDM could provide neuroprotection above that provided by current ART or proposed antiviral therapies directed at limiting Nef, Vpr, or Vpu functions. The ability of HIV-2 to reduce HO-1 expression suggests that this is a conserved phenotype among macrophage-tropic human immunodeficiency viruses that could contribute to neuropathogenesis. The continued prevalence of HIV-associated neurocognitive disorders (HAND) underscores the need for adjunctive therapy that targets the neuropathological processes that persist in antiretroviral therapy (ART)-treated HIV-infected individuals. To this end, we previously identified one such possible process, a deficiency of the antioxidative and anti-inflammatory enzyme heme oxygenase-1 (HO-1) in the brains of individuals with HAND. In the present study, our findings suggest that the HO-1 deficiency associated with excess glutamate production and neurotoxicity in HIV-infected macrophages is a highly conserved phenotype of macrophage-tropic HIV strains and that this phenotype can persist in the macrophage compartment in the presence of ART. This suggests a plausible mechanism by which HIV infection of brain macrophages in ART-treated individuals could exacerbate oxidative stress and glutamate-induced neuronal injury, each of which is associated with neurocognitive dysfunction in infected individuals. Thus, therapies that rescue the HO-1 deficiency in HIV-infected individuals could provide additional neuroprotection to ART. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Aga, Mini; Watters, Jyoti J; Pfeiffer, Zachary A; Wiepz, Gregory J; Sommer, Julie A; Bertics, Paul J
2004-04-01
Extracellular nucleotides such as ATP are present in abundance at sites of inflammation and tissue damage, and these agents exert a potent modulatory effect on macrophage/monocyte function via the nucleotide receptor P2X(7). In this regard, after exposure to bacterial LPS, P2X(7) activation augments expression of the inducible nitric oxide (NO) synthase and production of NO in macrophages. Because P2X(7) has been reported to stimulate certain members of the MAP kinase family (ERK1/2) and can enhance the DNA-binding activity of NF-kappa B, we tested the hypothesis that LPS and nucleotides regulate NF-kappa B-dependent inflammatory events via cross talk with MAPK-associated pathways. In this regard, the present studies revealed that cotreatment of macrophages with LPS and the P2X(7)-selective ligand 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) results in the cooperative activation of NF-kappa B DNA-binding activity and a sustained attenuation of levels of the NF-kappa B inhibitory protein I kappa B alpha. Interestingly, a persistent reduction in I kappa B alpha levels is also observed when the MEK1/2 inhibitor U0126 is coadministered with LPS, suggesting that components of the MEK/ERK pathway are involved in regulating I kappa B alpha protein expression and/or turnover. The observation that U0126 and BzATP exhibit overlapping actions with respect to LPS-induced changes in I kappa B alpha levels is supported by the finding that Ras activation, which is upstream of MEK/ERK activation, is reduced upon macrophage cotreatment with BzATP and LPS compared with the effects of BzATP treatment alone. These data are consistent with the concept that the Ras/MEK/ERK pathways are involved in regulating NF-kappa B/I kappa B-dependent inflammatory mediator production and suggest a previously unidentified mechanism by which nucleotides can modulate LPS-induced action via cross talk between NF-kappa B and Ras/MEK/MAPK-associated pathways.
Effect of Apoptotic Cell Recognition on Macrophage Polarization and Mycobacterial Persistence
de Oliveira Fulco, Tatiana; Andrade, Priscila Ribeiro; de Mattos Barbosa, Mayara Garcia; Pinto, Thiago Gomes Toledo; Ferreira, Paula Fernandez; Ferreira, Helen; da Costa Nery, José Augusto; Real, Suzana Côrte; Borges, Valéria Matos; Moraes, Milton Ozório; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira
2014-01-01
Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection. PMID:25024361
USDA-ARS?s Scientific Manuscript database
Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular pathogen that persists inside host macrophages despite severe oxidative stress and nutrient deprivation. Intrabacterial pH homeostasis is vital to pathogenic mycobacteria to preserve cellular biological processes and stability of ...
Bovine viral diarrhea virus modulation of monocyte derived macrophages
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is a single stranded, positive sense RNA virus and is the causative agent of bovine viral diarrhea (BVD). Disease can range from persistently infected (PI) animals displaying no clinical symptoms of disease to an acute, severe disease. Presently, limited studies ha...
Verhagen, Claudia; Faber, William; Klatser, Paul; Buffing, Anita; Naafs, Ben; Das, Pranab
1999-01-01
The presence of mycobacterial antigens in leprosy skin lesions was studied by immunohistological methods using monoclonal antibodies (MAbs) to Mycobacterium leprae-specific phenolic glycolipid I (PGL-I) and to cross-reactive mycobacterial antigens of 36 kd, 65 kd, and lipoarabinomannan (LAM). The staining patterns with MAb to 36 kd and 65 kd were heterogeneous and were also seen in the lesions of other skin diseases. The in situ staining of PGL-I and LAM was seen only in leprosy. Both antigens were abundantly present in infiltrating macrophages in the lesions of untreated multibacillary (MB) patients, whereas only PGL-I was occasionally seen in scattered macrophages in untreated paucibacillary lesions. During treatment, clearance of PGL-I from granulomas in MB lesions occurred before that of LAM, although the former persisted in scattered macrophages in some treated patients. This persistence of PGL-I in the lesions paralleled high serum anti-PGL-I antibody titers but was not indicative for the presence of viable bacilli in the lesions. Interestingly, we also observed a differential expression pattern of PGL-I and LAM in the lesions of MB patients with reactions during the course of the disease as compared with those without reactions. In conclusion, the in situ expression pattern of PGL-I and LAM in MB patients may assist in early diagnosis of reactions versus relapse. PMID:10362804
Hicks, R; Lam, H F; Al-Shamma, K J; Hewitt, P J
1984-03-01
Rats were exposed to single periods of inhalation of fumes generated by arc welding. Two processes were compared: either manual metal arc (MMA) using flux-coated mild steel (MS) electrodes or metal inert-gas (MIG) welding with stainless steel (SS). Widespread but small deposits of fume particles were cleared effectively from alveoli and airways. Peribronchial and subpleural aggregates of particle-laden macrophages remained. More massive and persistent lung-burdens were established by intratracheal administration of suspensions of fume-particles (10 mg and 50 mg, single doses). Initial pneumonitis was attributed to irritant gases or soluble toxic components of particles. MIG-SS particle deposits were more persistent and lesions more severe, inhibition of phagocytosis or clearance and damage to epithelial cells being associated with possible toxic effects in macrophages. Both types of particle caused alveolar epithelial thickening, with proliferation of granular pneumocytes and exudation of lamellar material. Foam cells appeared in alveoli. Long-term effects (80-300 days) involved formation of nodular aggregates of particle-laden macrophages. Giant cells were formed. Nodules containing MIG-SS material were irregular and surrounded by collapsed and thickened epithelium. Soluble chromium or nickel constituents are cited as probable active agents producing effects resembling those of cytotoxic non-fibrogenic dusts, e.g., soluble silicas . MMA-MS particles produced low-grade fibrotic ( collagenised ) changes.
Confinement-Induced Drug-Tolerance in Mycobacteria Mediated by an Efflux Mechanism
Luthuli, Brilliant B.; Purdy, Georgiana E.; Balagaddé, Frederick K.
2015-01-01
Tuberculosis (TB) is the world’s deadliest curable disease, responsible for an estimated 1.5 million deaths annually. A considerable challenge in controlling this disease is the prolonged multidrug chemotherapy (6 to 9 months) required to overcome drug-tolerant mycobacteria that persist in human tissues, although the same drugs can sterilize genetically identical mycobacteria growing in axenic culture within days. An essential component of TB infection involves intracellular Mycobacterium tuberculosis bacteria that multiply within macrophages and are significantly more tolerant to antibiotics compared to extracellular mycobacteria. To investigate this aspect of human TB, we created a physical cell culture system that mimics confinement of replicating mycobacteria, such as in a macrophage during infection. Using this system, we uncovered an epigenetic drug-tolerance phenotype that appears when mycobacteria are cultured in space-confined bioreactors and disappears in larger volume growth contexts. Efflux mechanisms that are induced in space-confined growth environments contribute to this drug-tolerance phenotype. Therefore, macrophage-induced drug tolerance by mycobacteria may be an effect of confined growth among other macrophage-specific mechanisms. PMID:26295942
Goodrum, K J
1987-01-01
Complement levels and complement activation are key determinants in streptococcus-induced inflammatory responses. Activation of macrophage functions, such as complement synthesis, by group B streptococci (GBS) was examined as a possible component of GBS-induced chronic inflammation. Using an enzyme-linked immunosorbent assay, secreted C3 from mouse macrophagelike cell lines (PU5-1.8 and J774A.1) was monitored after cultivation with GBS. Whole, heat-killed GBS (1 to 10 CFU per macrophage) of both type Ia and III strains induced 25 to 300% increases in secreted C3 in both cell lines after a 24-h cultivation. GBS-treated cell lines exhibited increases in secreted lysozyme (10%) and in cellular protein (25 to 50%). Inhibition of macrophage phagocytosis by cytochalasin B inhibited GBS stimulation of C3. Purified cell walls of GBS type III strain 603-79 (1 to 10 micrograms/ml) also enhanced C3 synthesis. Local enhancement of macrophage C3 production by ingested streptococci or by persistent cell wall antigens may serve to promote chronic inflammatory responses. PMID:3552987
Regulatory T cells promote myositis and muscle damage in Toxoplasma gondii infection
Jin, Richard M.; Blair, Sarah J.; Warunek, Jordan; Heffner, Reid R.; Blader, Ira J.; Wohlfert, Elizabeth A.
2016-01-01
The coordination of macrophage polarization is essential for the robust regenerative potential of skeletal muscle. Repair begins with an inflammatory monocyte/pro-inflammatory macrophage (M1)-mediated phase followed by polarization to a pro-regenerative (M2) phenotype. Recently, regulatory T cells (Tregs) were described as necessary for this M1 to M2 transition. Here, we report that chronic infection with the protozoan parasite Toxoplasma gondii causes a non-resolving Th1 myositis with prolonged tissue damage associated with persistent M1 accumulation. Surprisingly, Treg ablation during chronic infection rescues macrophage homeostasis and skeletal muscle fiber regeneration showing that Tregs can directly contribute to muscle damage. This study provides evidence that the tissue environment established by the parasite could lead to a paradoxical pathogenic role for Tregs. As such, these findings should be considered when tailoring therapies directed at Tregs in inflammatory settings. PMID:27895180
Jayakumar, Asha; Widenmaier, Robyn; Ma, Xiaojing; McDowell, Mary Ann
2009-01-01
To establish and persist within a host, Leishmania spp. parasites delay the onset of cell-mediated immunity by suppressing interleukin-12 (IL-12) production from host macrophages. Although it is established that Leishmania spp.-infected macrophages have impaired IL-12 production, the mechanisms that account for this suppression remain to be completely elucidated. Using a luciferase reporter assay assessing IL-12 transcription, we report here that Leishmania major, Leishmania donovani, and Leishmania chagasi inhibit IL-12 transcription in response to interferon-gamma, lipopolysaccharide, and CD40 ligand and that Leishmania spp. lipophosphoglycan, phosphoglycans, and major surface protein are not necessary for inhibition. In addition, all the Leishmania spp. strains and life-cycle stages tested inhibited IL-12 promoter activity. Our data further reveal that autocrine-acting host factors play no role in the inhibitory response and that phagocytosis signaling is necessary for inhibition of IL-12. PMID:18372625
USDA-ARS?s Scientific Manuscript database
Johne’s disease is an enteric disease caused by the intracellular pathogen Mycobacterium avium subsp. paratuberculosis (MAP). Upon translocation from the lumen of the small intestine, mycobacteria have the ability to thwart innate defense mechanisms and persist within the macrophage in the lamina pr...
USDA-ARS?s Scientific Manuscript database
Salmonella enterica serovar Enteritidis (SE) is a major etiologic agent of non-typhoid salmonellosis. The organisms colonize adult chicken hosts without causing overt clinical signs. The immunological mechanisms underlying the silent and persistent infection of chickens by SE are not clearly underst...
Targeting cFMS signaling to restore immune function and eradicate HIV reservoirs
NASA Astrophysics Data System (ADS)
Gerngross, Lindsey
While combination anti-retroviral therapy (cART) has improved the length and quality of life of individuals living with HIV-1 infection, the prevalence of HIV-associated neurocognitive disorders (HAND) has increased and remains a significant clinical concern. The neuropathogenesis of HAND is not completely understood, however, latent HIV infection in the central nervous system (CNS) and chronic neuroinflammation are believed to play a prominent role. CNS-associated macrophages and resident microglia are significant contributors to CNS inflammation and constitute the chief reservoir of HIV-1 infection in the CNS. Previous studies from our lab suggest monocyte/macrophage invasion of the CNS in HIV may be driven by altered monocyte/macrophage homeostasis. We have reported expansion of a monocyte subset (CD14+CD16 +CD163+) in peripheral blood of HIV+ patients that is phenotypically similar to macrophages/microglia that accumulate in the CNS as seen in post-mortem tissue. The factors driving the expansion of this monocyte subset are unknown, however, signaling through cFMS, a type III receptor tyrosine kinase (RTK), may play a role. Macrophage-colony stimulating factor (M-CSF), a ligand of cFMS, has been shown to be elevated in the cerebral spinal fluid (CSF) of individuals with the most severe form of HAND, HIV-associated dementia (HAD). M-CSF promotes a Macrophage-2-like phenotype and increases CD16 and CD163 expression in cultured monocytes. M-CSF has also been shown to increase the susceptibility of macrophages to HIV infection and enhance virus production. These findings, in addition to the known function of M-CSF in promoting macrophage survival, supports a role for M-CSF in the development and maintenance of macrophage viral reservoirs in tissues where these cells accumulate, including the CNS. Interestingly, a second ligand for cFMS, IL-34, was recently identified and reported to share some functions with M-CSF, suggesting that both ligands may contribute to HIV-associated CNS injury and AIDS pathogenesis. Through immunohistochemical studies using a relevant animal model of HIV infection, SIV infected rhesus macaques, we reported the presence of M-CSF and IL-34 in the brains of seronegative and SIV+ animals, for the first time, and identified spatial differences in the expression of these ligands. Important to our interest in viral persistence in the CNS, we observed the predominance of M-CSF expression in brain to be by cells that comprise perivascular cuffs and nodular lesions, which contain monocytes/ macrophages that have migrated into the CNS. IL-34 appeared to be a tissue-specific ligand expressed by resident microglia. Like M-CSF, we found that IL-34 also increased the frequency of CD16 +CD163+ monocytes in vitro. We further investigated the potential of cFMS inhibition as a means to abrogate macrophage-2-like immune polarization using the small molecule tyrosine kinase inhibitor (TKI), GW2580. The addition of GW2580 abolished cFMS ligand-mediated increases in CD16+CD163+ monocyte frequency in human peripheral blood mononuclear cells (PBMC) as well as virus production in HIV infected primary human microglia. Furthermore, we found cFMS-mediated upregulation of CD16 and CD163 to be relevant to an additional disease process, high-grade astrocytomas, suggesting that M-CSF and IL-34 may be mediators of other neuroinflammatory diseases, as well. We hope these findings will provide insight into the role of altered monocyte/macrophage homeostasis in HIV disease and identify a novel strategy for targeting long-lived cellular reservoirs of HIV infection through restored immune homeostasis.
Ohtsuki, Takahiro; Kimura, Kiminori; Tokunaga, Yuko; Tsukiyama-Kohara, Kyoko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Kohara, Michinori
2016-01-01
Macrophages in liver tissue are widely defined as important inflammatory cells in chronic viral hepatitis due to their proinflammatory activity. We reported previously that interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) play significant roles in causing chronic hepatitis in hepatitis C virus (HCV) transgenic mice (S. Sekiguchi et al., PLoS One 7:e51656, 2012, http://dx.doi.org/10.1371/journal.pone.0051656). In addition, we showed that recombinant vaccinia viruses expressing an HCV nonstructural protein (rVV-N25) could protect against the progression of chronic hepatitis by suppression of macrophage activation. Here, we focus on the role of macrophages in liver disease progression in HCV transgenic mice and examine characteristic features of macrophages following rVV-N25 treatment. The number of CD11b(+) F4/80(+) CD11c(-) CD206(+) (M2) macrophages in the liver of HCV transgenic mice was notably increased compared to that of age-matched control mice. These M2 macrophages in the liver produced elevated levels of IL-6 and TNF-α. rVV-N25 infection suppressed the number and activation of M2 macrophages in liver tissue. These results suggested that inflammatory cytokines produced by M2-like macrophages contribute to the induction of chronic liver inflammation in HCV transgenic mice. Moreover, the therapeutic effect of rVV-N25 might be induced by the suppression of the number and activation of hepatic macrophages. HCV causes persistent infections that can lead to chronic liver diseases, liver fibrosis, and hepatocellular carcinoma; the search for an HCV curative is the focus of ongoing research. Recently, effective anti-HCV drugs have been developed; however, vaccine development still is required for the prevention and therapy of infection by this virus. We demonstrate here that M2 macrophages are important for the pathogenesis of HCV-caused liver diseases and additionally show that M2 macrophages contribute to the therapeutic mechanism observed following rVV-N25 treatment. Copyright © 2015 Ohtsuki et al.
Ohtsuki, Takahiro; Kimura, Kiminori; Tokunaga, Yuko; Tsukiyama-Kohara, Kyoko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu
2015-01-01
ABSTRACT Macrophages in liver tissue are widely defined as important inflammatory cells in chronic viral hepatitis due to their proinflammatory activity. We reported previously that interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) play significant roles in causing chronic hepatitis in hepatitis C virus (HCV) transgenic mice (S. Sekiguchi et al., PLoS One 7:e51656, 2012, http://dx.doi.org/10.1371/journal.pone.0051656). In addition, we showed that recombinant vaccinia viruses expressing an HCV nonstructural protein (rVV-N25) could protect against the progression of chronic hepatitis by suppression of macrophage activation. Here, we focus on the role of macrophages in liver disease progression in HCV transgenic mice and examine characteristic features of macrophages following rVV-N25 treatment. The number of CD11b+ F4/80+ CD11c− CD206+ (M2) macrophages in the liver of HCV transgenic mice was notably increased compared to that of age-matched control mice. These M2 macrophages in the liver produced elevated levels of IL-6 and TNF-α. rVV-N25 infection suppressed the number and activation of M2 macrophages in liver tissue. These results suggested that inflammatory cytokines produced by M2-like macrophages contribute to the induction of chronic liver inflammation in HCV transgenic mice. Moreover, the therapeutic effect of rVV-N25 might be induced by the suppression of the number and activation of hepatic macrophages. IMPORTANCE HCV causes persistent infections that can lead to chronic liver diseases, liver fibrosis, and hepatocellular carcinoma; the search for an HCV curative is the focus of ongoing research. Recently, effective anti-HCV drugs have been developed; however, vaccine development still is required for the prevention and therapy of infection by this virus. We demonstrate here that M2 macrophages are important for the pathogenesis of HCV-caused liver diseases and additionally show that M2 macrophages contribute to the therapeutic mechanism observed following rVV-N25 treatment. PMID:26468521
Obesity impairs apoptotic cell clearance in asthma
Fernandez-Boyanapalli, Ruby; Goleva, Elena; Kolakowski, Christena; Min, Elysia; Day, Brian; Leung, Donald Y. M.; Riches, David W. H.; Bratton, Donna L.; Sutherland, E. Rand
2014-01-01
Background Asthma in obese adults is typically more severe and less responsive to glucocorticoids than asthma in nonobese adults. Objective We sought to determine whether the clearance of apoptotic inflammatory cells (efferocytosis) by airway macrophages was associated with altered inflammation and reduced glucocorticoid sensitivity in obese asthmatic patients. Methods We investigated the relationship of efferocytosis by airway (induced sputum) macrophages and blood monocytes to markers of monocyte programming, in vitro glucocorticoid response, and systemic oxidative stress in a cohort of adults with persistent asthma. Results Efferocytosis by airway macrophages was assessed in obese (n = 14) and nonobese (n = 19) asthmatic patients. Efferocytosis by macrophages was 40% lower in obese than nonobese subjects, with a mean efferocytic index of 1.77 (SD, 1.07) versus 3.00 (SD, 1.25; P < .01). A similar reduction of efferocytic function was observed in blood monocytes of obese participants. In these monocytes there was also a relative decrease in expression of markers of alternative (M2) programming associated with efferocytosis, including peroxisome proliferator-activated receptor δ and CX3 chemokine receptor 1. Macrophage efferocytic index was significantly correlated with dexamethasone-induced mitogen-activated protein kinase phosphatase 1 expression (ρ = 0.46, P < .02) and baseline glucocorticoid receptor α expression (ρ = 0.44, P < .02) in PBMCs. Plasma 4-hydroxynonenal levels were increased in obese asthmatic patients at 0.33 ng/mL (SD, 0.15 ng/mL) versus 0.16 ng/mL (SD, 0.08 ng/mL) in nonobese patients (P = .006) and was inversely correlated with macrophage efferocytic index (ρ = −0.67, P = .02). Conclusions Asthma in obese adults is associated with impaired macrophage/monocyte efferocytosis. Impairment of this anti-inflammatory process is associated with altered monocyte/macrophage programming, reduced glucocorticoid responsiveness, and systemic oxidative stress. PMID:23154082
The Immunological Basis of Hypertension
Pons, Héctor; Quiroz, Yasmir; Johnson, Richard J.
2014-01-01
A large number of investigations have demonstrated the participation of the immune system in the pathogenesis of hypertension. Studies focusing on macrophages and Toll-like receptors have documented involvement of the innate immunity. The requirements of antigen presentation and co-stimulation, the critical importance of T cell–driven inflammation, and the demonstration, in specific conditions, of agonistic antibodies directed to angiotensin II type 1 receptors and adrenergic receptors support the role of acquired immunity. Experimental findings support the concept that the balance between T cell–induced inflammation and T cell suppressor responses is critical for the regulation of blood pressure levels. Expression of neoantigens in response to inflammation, as well as surfacing of intracellular immunogenic proteins, such as heat shock proteins, could be responsible for autoimmune reactivity in the kidney, arteries, and central nervous system. Persisting, low-grade inflammation in these target organs may lead to impaired pressure natriuresis, an increase in sympathetic activity, and vascular endothelial dysfunction that may be the cause of chronic elevation of blood pressure in essential hypertension. PMID:25150828
Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik
2014-04-01
Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Xinbing; Li, Xin; Yue, Simon C.; Anandaiah, Asha; Hashem, Falah; Reinach, Peter S.; Koziel, Henry; Tachado, Souvenir D.
2012-01-01
Human macrophages at mucosal sites are essential targets for acute HIV infection. During the chronic phase of infection, they are persistent reservoirs for the AIDS virus. HIV virions gain entry into macrophages following ligation of surface CD4-CCR5 co-receptors, which leads to the release of two copies of HIV ssRNA. These events lead to reverse transcription and viral replication initiation. Toll-like receptors TLR7 and TLR8 recognize specific intracellular viral ssRNA sequences, but in human alveolar macrophages, their individual roles in TLR-mediated HIV ssRNA recognition are unclear. In the current study, HIV-1 ssRNA induced TNFα release in a dose-dependent manner in adherent human macrophages expressing both intracellular TLR7 and TLR8. This response was reduced by inhibiting either endocytosis (50 μm dynasore) or endosomal acidification (1 μg/ml chloroquine). Either MYD88 or TLR8 gene knockdown with relevant siRNA reduced HIV-1 ssRNA-mediated TNFα release, but silencing TLR7 had no effect on this response. Furthermore, HIV-1 ssRNA induced histone 4 acetylation at the TNFα promoter as well as trimethylation of histone 3 at lysine 4, whereas TLR8 gene knockdown reduced these effects. Taken together in human macrophages, TLR8 binds and internalizes HIV ssRNA, leading to endosomal acidification, chromatin remodeling, and increases in TNFα release. Drugs targeting macrophage TLR8-linked signaling pathways may modulate the innate immune response to acute HIV infection by reducing viral replication. PMID:22393042
Fernandes, Maria Cecilia; Dillon, Laura A L; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M; El-Sayed, Najib M
2016-05-10
Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in infection that was reduced at later time points. A similar expression pattern was observed in the parasites. Our analyses provide specific insights into the interplay between human macrophages and Leishmania parasites and constitute an important general resource for the study of how pathogens evade host defenses and modulate the functions of the cell to survive intracellularly. Copyright © 2016 Fernandes et al.
Larsen, Anett K.; Nymo, Ingebjørg H.; Boysen, Preben; Tryland, Morten; Godfroid, Jacques
2013-01-01
A high prevalence of Brucella pinnipedialis serology and bacteriology positive animals has been found in the Northeast Atlantic stock of hooded seal ( Cystophora cristata ); however no associated gross pathological changes have been identified. Marine mammal brucellae have previously displayed different infection patterns in human and murine macrophages. To investigate if marine mammal Brucella spp. are able to invade and multiply in cells originating from a presumed host species, we infected alveolar macrophages from hooded seal with a B . pinnipedialis hooded seal isolate. Hooded seal alveolar macrophages were also challenged with B . pinnipedialis reference strain (NCTC 12890) from harbor seal ( Phoca vitulina ), B . ceti reference strain (NCTC 12891) from harbor porpoise ( Phocoena phocoena ) and a B . ceti Atlantic white-sided dolphin ( Lagenorhynchus acutus ) isolate (M83/07/1), to evaluate possible species-specific differences. Brucella suis 1330 was included as a positive control. Alveolar macrophages were obtained by post mortem bronchoalveolar lavage of euthanized hooded seals. Phenotyping of cells in the lavage fluid was executed by flow cytometry using the surface markers CD14 and CD18. Cultured lavage cells were identified as alveolar macrophages based on morphology, expression of surface markers and phagocytic ability. Alveolar macrophages were challenged with Brucella spp. in a gentamicin protection assay. Following infection, cell lysates from different time points were plated and evaluated quantitatively for colony forming units. Intracellular presence of B . pinnipedialis hooded seal isolate was verified by immunocytochemistry. Our results show that the marine mammal brucellae were able to enter hooded seal alveolar macrophages; however, they did not multiply intracellularly and were eliminated within 48 hours, to the contrary of B. suis that showed the classical pattern of a pathogenic strain. In conclusion, none of the four marine mammal strains tested were able to establish a persistent infection in primary alveolar macrophages from hooded seal. PMID:23936159
The Macrophage in the Development of Experimental Crescentic Glomerulonephritis
Thomson, Napier M.; Holdsworth, Stephen R.; Glasgow, Eric F.; Atkins, Robert C.
1979-01-01
The role played by the macrophage in the development of injury in rabbit nephrotoxic nephritis (NTN) has been assessed by electron microscopy and glomerular culture of renal tissue obtained by several biopsies during the course of the disease. These observations have been correlated with the other immune, cellular, and biochemical events occurring in the glomerulus, ie, deposition of immunoglobulin and complement, proteinuria, polymorphonuclear leukocyte (PMN) exudation, fibrin deposition, crescent formation, and renal failure. A biphasic macrophage accumulation was detected, corresponding to the heterologous and autologous phases of the disease. In the autologous or crescentic phase, macrophages accumulated within the glomerular tuft from Day 5; their appearance coincided with the accumulation of PMN and development of proteinuria. Fibrin deposition in Bowman's space, which commenced on Days 6 and 7, was rapidly followed by the migration of macrophages from the glomeruli into Bowman's space. Within Bowman's space, macrophages were observed to phagocytose fibrin, transform into epithelioid and giant cells, and accumulate to form a substantial proportion of the cells forming the crescent. The inflammatory process of PMN exudation, macrophage accumulation, fibrin deposition, and crescent formation and the degree of renal failure reached a maximum by Days 12 to 14. Thereafter, resolution of the inflammatory process occurred so that by Day 40 macrophages had disappeared from the glomeruli. However, varying degrees of glomerular damage and renal failure persisted, occurring largely as a result of glomerulosclerosis and sclerosis of crescents. The tissue culture studies also demonstrated mesangial cell proliferation during the inflammatory process but did not show any abnormality of epithelial cell activity. This study demonstrates that the macrophages participate in NTN by accumulating in damaged glomeruli then migrating into Bowman's space (probably in response to fibrin deposition) where they undergo granulomatous transformation and accumulate, contributing to crescent formation. ImagesFigure 2Figure 3Figure 4Figure 1 PMID:371409
Interaction of PRRS virus with bone marrow monocyte subsets.
Fernández-Caballero, Teresa; Álvarez, Belén; Alonso, Fernando; Revilla, Concepción; Martínez-Lobo, Javier; Prieto, Cinta; Ezquerra, Ángel; Domínguez, Javier
2018-06-01
PRRSV can replicate for months in lymphoid organs leading to persistent host infections. Porcine bone marrow comprises two major monocyte subsets, one of which expresses CD163 and CD169, two receptors involved in the entry of PRRSV in macrophages. In this study, we investigate the permissiveness of these subsets to PRRSV infection. PRRSV replicates efficiently in BM CD163 + monocytes reaching titers similar to those obtained in alveolar macrophages, but with a delayed kinetics. Infection of BM CD163 - monocytes was variable and yielded lower titers. This may be related with the capacity of BM CD163 - monocytes to differentiate into CD163 + CD169 + cells after culture in presence of M-CSF. Both subsets secreted IL-8 in response to virus but CD163 + cells tended to produce higher amounts. The infection of BM monocytes by PRRSV may contribute to persistence of the virus in this compartment and to hematological disorders found in infected animals such as the reduction in the number of peripheral blood monocytes. Copyright © 2018 Elsevier B.V. All rights reserved.
Phagocytosis imprints heterogeneity in tissue-resident macrophages
A-Gonzalez, Noelia; Quintana, Juan A.; Mazariegos, Marina; González de la Aleja, Arturo; Nicolás-Ávila, José A.; Crainiciuc, Georgiana; Rothlin, Carla V.; Peinado, Héctor; Castrillo, Antonio
2017-01-01
Tissue-resident macrophages display varying phenotypic and functional properties that are largely specified by their local environment. One of these functions, phagocytosis, mediates the natural disposal of billions of cells, but its mechanisms and consequences within living tissues are poorly defined. Using a parabiosis-based strategy, we identified and isolated macrophages from multiple tissues as they phagocytosed blood-borne cellular material. Phagocytosis was circadianally regulated and mediated by distinct repertoires of receptors, opsonins, and transcription factors in macrophages from each tissue. Although the tissue of residence defined the core signature of macrophages, phagocytosis imprinted a distinct antiinflammatory profile. Phagocytic macrophages expressed CD206, displayed blunted expression of Il1b, and supported tissue homeostasis. Thus, phagocytosis is a source of macrophage heterogeneity that acts together with tissue-derived factors to preserve homeostasis. PMID:28432199
Cuevas, Víctor D; Anta, Laura; Samaniego, Rafael; Orta-Zavalza, Emmanuel; Vladimir de la Rosa, Juan; Baujat, Geneviève; Domínguez-Soto, Ángeles; Sánchez-Mateos, Paloma; Escribese, María M; Castrillo, Antonio; Cormier-Daire, Valérie; Vega, Miguel A; Corbí, Ángel L
2017-03-01
Macrophage phenotypic and functional heterogeneity derives from tissue-specific transcriptional signatures shaped by the local microenvironment. Most studies addressing the molecular basis for macrophage heterogeneity have focused on murine cells, whereas the factors controlling the functional specialization of human macrophages are less known. M-CSF drives the generation of human monocyte-derived macrophages with a potent anti-inflammatory activity upon stimulation. We now report that knockdown of MAFB impairs the acquisition of the anti-inflammatory profile of human macrophages, identify the MAFB-dependent gene signature in human macrophages and illustrate the coexpression of MAFB and MAFB-target genes in CD163 + tissue-resident and tumor-associated macrophages. The contribution of MAFB to the homeostatic/anti-inflammatory macrophage profile is further supported by the skewed polarization of monocyte-derived macrophages from multicentric carpotarsal osteolysis (Online Mendelian Inheritance in Man #166300), a pathology caused by mutations in the MAFB gene. Our results demonstrate that MAFB critically determines the acquisition of the anti-inflammatory transcriptional and functional profiles of human macrophages. Copyright © 2017 by The American Association of Immunologists, Inc.
2011-08-01
macrophages (MQs), on growth of breast tumor cells, and (2) to test the hypothesis that MSCs of non -breast adipose tissues, in contrast to MSCs of...macrophages in normal and malignant tissues. In contrast to all studies focused on the role of breast tissue microenvironment in growth of primary breast...the phenotype of macrophages, provide an immune environment suitable for growth of breast cancer cells, but MSCs present in non -breast adipose
Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping
2016-08-01
Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. ©2016 American Association for Cancer Research.
Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping
2016-01-01
Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing anti-tumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2 related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration towards and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. PMID:27196773
Recent Advances in Obesity-Induced Inflammation and Insulin Resistance
Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu
2013-01-01
It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268
Dai, Jiezhi; Zhang, Xiaotian; Li, Li; Chen, Hua; Chai, Yimin
2017-01-01
Type 2 diabetes is a persistent inflammatory response that impairs the healing process. We hypothesized that stimulation with high glucose following a pro-inflammatory signal would lead to autophagy inhibition, reactive oxygen species (ROS) production and eventually to the activation of the Nod-like receptor protein (NLRP) -3. Macrophages were isolated from human diabetic wound. We measured the expression of NLRP3, caspase1 and interleukin-1 beta (IL-1β) by western blot and real-time PCR, and the surface markers on cells by flow cytometry. THP-1-derived macrophages exposed to high glucose were applied to study the link between autophagy, ROS and NLRP3 activation. LC3-II, P62, NLRP3 inflammation and IL-1β expression were measured by western blot and real-time PCR. ROS production was measured with a Cellular Reactive Oxygen Species Detection Assay Kit. Macrophages isolated from diabetic wounds exhibited a pro-inflammatory phenotype, including sustained NLRP3 inflammasome activity associated with IL-1β secretion. Our data showed that high glucose inhibited autophagy, induced ROS production, and activated NLRP3 inflammasome and cytokine secretion in THP-1-derived macrophages. To study high glucose-induced NLRP3 inflammasome signalling, we performed studies using an autophagy inducer, a ROS inhibitor and a NLRP3 inhibitor and found that all reduced the NLRP3 inflammasome activation and cytokine secretion. Sustained NLRP3 inflammasome activity in wound-derived macrophages contributes to the hyper-inflammation in human diabetic wounds. Autophagy inhibition and ROS generation play an essential role in high glucose-induced NLRP3 inflammasome activation and cytokine secretion in macrophages. © 2017 The Author(s). Published by S. Karger AG, Basel.
Mojumdar, Kamalika; Giordano, Christian; Lemaire, Christian; Liang, Feng; Divangahi, Maziar; Qureshi, Salman T; Petrof, Basil J
2016-05-01
Injury to skeletal muscle, whether acute or chronic, triggers macrophage-mediated innate immunity in a manner which can be either beneficial or harmful for subsequent repair. Endogenous ligands for Toll-like receptor 2 (TLR2) are released by damaged tissues and might play an important role in activating the innate immune system following muscle injury. To test this hypothesis, we compared macrophage behaviour and muscle repair mechanisms in mice lacking TLR2 under conditions of either acute (cardiotoxin-induced) or chronic (mdx mouse genetic model of Duchenne muscular dystrophy; DMD) muscle damage. In previously healthy muscle subjected to acute damage, TLR2 deficiency reduced macrophage numbers in the muscle post-injury but did not alter the expression pattern of the prototypical macrophage polarization markers iNOS and CD206. In addition, there was abnormal persistence of necrotic fibres and impaired regeneration in TLR2-/- muscles after acute injury. In contrast, TLR2 ablation in chronically diseased muscles of mdx mice not only resulted in significantly reduced macrophage numbers but additionally modified their phenotype by shifting from inflammatory (iNOS(pos) CD206(neg) ) to more anti-inflammatory (iNOS(neg) CD206(pos) ) characteristics. This decrease in macrophage-mediated inflammation was associated with ameliorated muscle histopathology and improved force-generating capacity of the dystrophic muscle. Our results suggest that the role of TLR2 in macrophage function and skeletal muscle repair depends greatly upon the muscle injury context, and raise the possibility that inhibition of TLR2 could serve as a useful therapeutic measure in DMD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Tranchemontagne, Zachary R; Camire, Ryan B; O'Donnell, Vanessa J; Baugh, Jessfor; Burkholder, Kristin M
2016-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) causes invasive, drug-resistant skin and soft tissue infections. Reports that S. aureus bacteria survive inside macrophages suggest that the intramacrophage environment may be a niche for persistent infection; however, mechanisms by which the bacteria might evade macrophage phagosomal defenses are unclear. We examined the fate of the S. aureus-containing phagosome in THP-1 macrophages by evaluating bacterial intracellular survival and phagosomal acidification and maturation and by testing the impact of phagosomal conditions on bacterial viability. Multiple strains of S. aureus survived inside macrophages, and in studies using the MRSA USA300 clone, the USA300-containing phagosome acidified rapidly and acquired the late endosome and lysosome protein LAMP1. However, fewer phagosomes containing live USA300 bacteria than those containing dead bacteria associated with the lysosomal hydrolases cathepsin D and β-glucuronidase. Inhibiting lysosomal hydrolase activity had no impact on intracellular survival of USA300 or other S. aureus strains, suggesting that S. aureus perturbs acquisition of lysosomal enzymes. We examined the impact of acidification on S. aureus intramacrophage viability and found that inhibitors of phagosomal acidification significantly impaired USA300 intracellular survival. Inhibition of macrophage phagosomal acidification resulted in a 30-fold reduction in USA300 expression of the staphylococcal virulence regulator agr but had little effect on expression of sarA, saeR, or sigB. Bacterial exposure to acidic pH in vitro increased agr expression. Together, these results suggest that S. aureus survives inside macrophages by perturbing normal phagolysosome formation and that USA300 may sense phagosomal conditions and upregulate expression of a key virulence regulator that enables its intracellular survival. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Tranchemontagne, Zachary R.; Camire, Ryan B.; O'Donnell, Vanessa J.; Baugh, Jessfor
2015-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) causes invasive, drug-resistant skin and soft tissue infections. Reports that S. aureus bacteria survive inside macrophages suggest that the intramacrophage environment may be a niche for persistent infection; however, mechanisms by which the bacteria might evade macrophage phagosomal defenses are unclear. We examined the fate of the S. aureus-containing phagosome in THP-1 macrophages by evaluating bacterial intracellular survival and phagosomal acidification and maturation and by testing the impact of phagosomal conditions on bacterial viability. Multiple strains of S. aureus survived inside macrophages, and in studies using the MRSA USA300 clone, the USA300-containing phagosome acidified rapidly and acquired the late endosome and lysosome protein LAMP1. However, fewer phagosomes containing live USA300 bacteria than those containing dead bacteria associated with the lysosomal hydrolases cathepsin D and β-glucuronidase. Inhibiting lysosomal hydrolase activity had no impact on intracellular survival of USA300 or other S. aureus strains, suggesting that S. aureus perturbs acquisition of lysosomal enzymes. We examined the impact of acidification on S. aureus intramacrophage viability and found that inhibitors of phagosomal acidification significantly impaired USA300 intracellular survival. Inhibition of macrophage phagosomal acidification resulted in a 30-fold reduction in USA300 expression of the staphylococcal virulence regulator agr but had little effect on expression of sarA, saeR, or sigB. Bacterial exposure to acidic pH in vitro increased agr expression. Together, these results suggest that S. aureus survives inside macrophages by perturbing normal phagolysosome formation and that USA300 may sense phagosomal conditions and upregulate expression of a key virulence regulator that enables its intracellular survival. PMID:26502911
Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.
He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y
2015-01-01
Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.
γδ T cells protect against LPS-induced lung injury
Wehrmann, Fabian; Lavelle, James C.; Collins, Colm B.; Tinega, Alex N.; Thurman, Joshua M.; Burnham, Ellen L.; Simonian, Philip L.
2016-01-01
γδ T lymphocytes are a unique T cell population with important anti-inflammatory capabilities. Their role in acute lung injury, however, is poorly understood but may provide significant insight into lung-protective mechanisms occurring after injury. In a murine model of lung injury, wild-type C57BL/6 and TCRδ−/− mice were exposed to Escherichia coli LPS, followed by analysis of γδ T cell and macrophage subsets. In the absence of γδ T cells, TCRδ−/− mice developed increased inflammation and alveolar-capillary leak compared with wild-type C57BL/6 mice after LPS exposure that correlated with expansion of distinct macrophage populations. Classically activated M1 macrophages were increased in the lung of TCRδ−/− mice at d 1, 4, and 7 after LPS exposure that peaked at d 4 and persisted at d 7 compared with wild-type animals. In response to LPS, Vγ1 and Vγ7 γδ T cells were expanded in the lung and expressed IL-4. Coculture experiments showed decreased expression of TNF-α by resident alveolar macrophages in the presence of γδ T cells that was reversed in the presence of an anti-IL-4-blocking antibody. Treatment of mice with rIL4 resulted in reduced numbers of M1 macrophages, inflammation, and alveolar-capillary leak. Therefore, one mechanism by which Vγ1 and Vγ7 γδ T cells protect against LPS-induced lung injury is through IL-4 expression, which decreases TNF-α production by resident alveolar macrophages, thus reducing accumulation of M1 macrophages, inflammation, and alveolar-capillary leak. PMID:26428678
SHIP-1 Increases Early Oxidative Burst and Regulates Phagosome Maturation in Macrophages1
Kamen, Lynn A.; Levinsohn, Jonathan; Cadwallader, Amy; Tridandapani, Susheela; Swanson, Joel A.
2010-01-01
Although the inositol phosphatase SHIP-1 is generally thought to inhibit signaling for Fc receptor-mediated phagocytosis, the product of its activity, phosphatidylinositol 3,4 bisphosphate (PI(3,4)P2) has been implicated in activation of the NADPH oxidase. This suggests that SHIP-1 positively regulates generation of reactive oxygen species after phagocytosis. To examine how SHIP-1 activity contributes to Fc receptor-mediated phagocytosis, we measured and compared phospholipid dynamics, membrane trafficking and the oxidative burst in macrophages from SHIP-1-deficient and wild-type mice. SHIP-1-deficient macrophages showed significantly elevated ratios of PI(3,4,5) P3 to PI(3,4)P2 on phagosomal membranes. Imaging reactive oxygen intermediate activities in phagosomes revealed decreased early NADPH oxidase activity in SHIP-1-deficient macrophages. SHIP-1-deficiency also altered later stages of phagosome maturation, as indicated by the persistent elevation of PI(3)P and the early localization of Rab5a to phagosomes. These direct measurements of individual organelles indicate that phagosomal SHIP-1 enhances the early oxidative burst through localized alteration of the membrane 3′ phosphoinositide composition. PMID:18490750
Mattila, Joshua T.; Ojo, Olabisi O.; Kepka-Lenhart, Diane; Marino, Simeone; Kim, Jin Hee; Eum, Seok Yong; Via, Laura E.; Barry, Clifton E.; Klein, Edwin; Kirschner, Denise E.; Morris, Sidney M.; Lin, Philana Ling; Flynn, JoAnne L.
2013-01-01
Macrophages in granulomas are both anti-mycobacterial effector and host cell for Mycobacterium tuberculosis(M.tb), yet basic aspects of macrophage diversity and function within the complex structures of granulomas remain poorly understood. To address this, we examined myeloid cell phenotypes and expression of enzymes correlated with host defense in macaque and human granulomas. Macaque granulomas had upregulated inducible and endothelial nitric oxide synthase (iNOS and eNOS) and arginase (Arg1 and Arg2) expression and enzyme activity compared to non-granulomatous tissue. Immunohistochemical analysis indicated macrophages adjacent to uninvolved normal tissue were more likely to express CD163, while epithelioid macrophages in regions where bacteria reside strongly expressed CD11c, CD68 and HAM56. Calprotectin-positive neutrophils were abundant in regions adjacent to caseum. iNOS, eNOS, Arg1 and Arg2 proteins were identified in macrophages and localized similarly in granulomas across species, with greater eNOS expression and ratio of iNOS:Arg1 expression in epithelioid macrophages, as compared to cells in the lymphocyte cuff. iNOS, Arg1 and Arg2 expression in neutrophils was also identified. The combination of phenotypic and functional markers support that macrophages with anti-inflammatory phenotypes localized to outer regions of granulomas while the inner regions were more likely to contain macrophages with pro-inflammatory, presumably bactericidal, phenotypes. Together these data support the concept that granulomas have organized microenvironments that balance anti-microbial anti-inflammatory responses to limit pathology in the lungs. PMID:23749634
Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu; Patel-Vayas, Kinal; Shen, Jianliang
Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h andmore » 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated early after ozone. ► Oxidative stress may contribute to regulating macrophage phenotype and function.« less
Goren, Itamar; Müller, Elke; Schiefelbein, Dana; Christen, Urs; Pfeilschifter, Josef; Mühl, Heiko; Frank, Stefan
2007-09-01
To date, diabetes-associated skin ulcerations represent a therapeutic problem of clinical importance. The insulin-resistant type II diabetic phenotype is functionally connected to obesity in rodent models of metabolic syndrome through the release of inflammatory mediators from adipose tissue. Here, we used the impaired wound-healing process in obese/obese (ob/ob) mice to investigate the impact of obesity-mediated systemic inflammation on cutaneous wound-healing processes. Systemic administration of neutralizing monoclonal antibodies against tumor necrosis factor (TNF)alpha (V1q) or monocyte/macrophage-expressed EGF-like module-containing mucin-like hormone receptor-like (Emr)-1 (F4/80) into wounded ob/ob mice at the end of acute wound inflammation initiated a rapid and complete neo-epidermal coverage of impaired wound tissue in the presence of a persisting diabetic phenotype. Wound closure in antibody-treated mice was paralleled by a marked attenuation of wound inflammation. Remarkably, anti-TNFalpha- and anti-F4/80-treated mice exhibited a strong reduction in circulating monocytic cells and reduced numbers of viable macrophages at the wound site. Our data provide strong evidence that anti-TNFalpha therapy, widely used in chronic inflammatory diseases in humans, might also exert effects by targeting "activated" TNFalpha-expressing macrophage subsets, and that inactivation or depletion of misbehaving macrophages from impaired wounds might be a novel therapeutic clue to improve healing of skin ulcers.
Stravoravdi, P; Toliou, T; Kirtsis, P; Natsis, K; Konstandinidis, E; Barich, A; Gigis, P; Dimitriadis, K
1999-03-01
Our purpose was to investigate a new therapeutic model, GM-CSF-targeted immunomodulation on transitional cell carcinoma (TCC) marker lesions and to evaluate the immunologic response of the bladder mucosa. Eleven patients with pTa or pT1 bladder cancer were eligible for the study. All lesions were removed by transurethral resection (TUR) except for a marker lesion. All patients received 8 weekly instillations of 300 microg of GM-CSF, after which cystoscopy with bladder biopsies +/- TUR was repeated on adjacent urothelium or tumor or both. Paraffin-embedded sections were immunohistochemically stained with CD68, which labels monocytes and macrophages. The CD68+ cell population was evaluated as 1+ to 3+. Comparable specimens were routinely processed for ultrastructural analysis. Complete response was observed in 6 patients (55%), persistent tumor occurred in 4 patients (approximately 36.4%), and 1 patient (8.6%) showed recurrence. Immunohistochemically, an at least twofold increase in the number of the CD68+ cells was observed in all responders. Submicroscopically, migration of macrophages to the surface layer occurred. Macrophages showed an extensive lysosomal system and pseudopodia. This study indicates that the prophylactic treatment of TCC with GM-CSF may induce immunomodulatory effects on macrophage activities, which could be associated with the clinical evolution of the disease.
Role of urease in megasome formation and Helicobacter pylori survival in macrophages
Schwartz, Justin T.; Allen, Lee-Ann H.
2007-01-01
Previous studies have demonstrated that Helicobacter pylori (Hp) delays its entry into macrophages and persists inside megasomes, which are poorly acidified and accumulate early endosome autoantigen 1. Herein, we explored the role of Hp urease in bacterial survival in murine peritoneal macrophages and J774 cells. Plasmid-free mutagenesis was used to replace ureA and ureB with cat in Hp Strains 11637 and 11916. ureAB null Hp lacked detectable urease activity and did not express UreA or UreB as judged by immunoblotting. Deletion of ureAB had no effect on Hp binding to macrophages or the rate or extent of phagocytosis. However, intracellular survival of mutant organisms was impaired significantly. Immunofluorescence microscopy demonstrated that (in contrast to parental organisms) mutant Hp resided in single phagosomes, which were acidic and accumulated the lysosome marker lysosome-associated membrane protein-1 but not early endosome autoantigen 1. A similar phenotype was observed for spontaneous urease mutants derived from Hp Strain 60190. Treatment of macrophages with bafilomycin A1, NH4Cl, or chloroquine prevented acidification of phagosomes containing mutant Hp. However, only ammonium chloride enhanced bacterial viability significantly. Rescue of ureAB null organisms was also achieved by surface adsorption of active urease. Altogether, our data indicate a role for urease and urease-derived ammonia in megasome formation and Hp survival. PMID:16543403
Systems Biology-Based Identification of Mycobacterium tuberculosis Persistence Genes in Mouse Lungs
Dutta, Noton K.; Bandyopadhyay, Nirmalya; Veeramani, Balaji; Lamichhane, Gyanu; Karakousis, Petros C.; Bader, Joel S.
2014-01-01
ABSTRACT Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. PMID:24549847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamir,D.; Zierow, S.; Leng, L.
Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 A). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (K(d) = 2.9 xmore » 10(-8) M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.« less
Ma, Tuan; Chen, Renqiong; Li, Xiqing; Lu, Changming; Xi, Liyan
2015-09-01
Penicillium marneffei (P. marneffei) is a pathogenic fungus that can persist in macrophages and cause a life-threatening systemic mycosis in immunocompromised hosts. To elucidate the mechanisms underlying this opportunistic fungal infection, we established the co-culture system of P. marneffei conidia and human monocyte-derived macrophages (MDM) for investigating the interactions between them. And, we impaired the immune state of MDM by the addition of dexamethasone (DEX). Compared with immunocompetent MDM without DEX treatment in response to P. marneffei, DEX could damage MDM function in initiating the innate immune response through decreasing TNF-α production and the proportion of P. marneffei conidia in mature phagolysosomes, while the red pigment secretion by P. marneffei conidia was promoted by DEX following MDM lysis. Our data provide the evidence that DEX-treated MDM have a low fungicidal activity against P. marneffei that causes penicilliosis in immunocompromised hosts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultrastructure of Prototheca zopfii in bovine granulomatous mastitis.
Cheville, N F; McDonald, J; Richard, J
1984-05-01
Mammary glands from cows with protothecal mastitis were examined by light and electron microscopy at 6, 13, 20, and greater than 180 days after infection. With increasing time, there were increases in severity of granulomatous inflammation, number of endospores and sporangia, and ratio of degenerate to intact algae. Algae were found in macrophages but were not seen in neutrophils, epithelial cells, or myoepithelial cells. Macrophages containing algae were markedly enlarged, chiefly from reduplication of the Golgi complex and its associated vesicles. Intracellular algae were degenerate and consisted of intact cell wall profiles which contained membrane fragments but lacked nuclei and cytoplasmic organelles. Degenerate algae in vitro had thin cell walls and did not undergo internal lysis. Cell wall material of intracellular algae stained as an acidic, nonsulfated, carboxylated glycoprotein. These findings suggest that intracellular Prototheca zopfii degenerate by progressive lysis of internal organelles with persistence of cell wall glycans and that development of aberrant cell wall forms occurs as a defective response by host macrophages.
Alveolar macrophage development in mice requires L-plastin for cellular localization in alveoli.
Todd, Elizabeth M; Zhou, Julie Y; Szasz, Taylor P; Deady, Lauren E; D'Angelo, June A; Cheung, Matthew D; Kim, Alfred H J; Morley, Sharon Celeste
2016-12-15
Alveolar macrophages are lung-resident sentinel cells that develop perinatally and protect against pulmonary infection. Molecular mechanisms controlling alveolar macrophage generation have not been fully defined. Here, we show that the actin-bundling protein L-plastin (LPL) is required for the perinatal development of alveolar macrophages. Mice expressing a conditional allele of LPL (CD11c.Cre pos -LPL fl/fl ) exhibited significant reductions in alveolar macrophages and failed to effectively clear pulmonary pneumococcal infection, showing that immunodeficiency results from reduced alveolar macrophage numbers. We next identified the phase of alveolar macrophage development requiring LPL. In mice, fetal monocytes arrive in the lungs during a late fetal stage, maturing to alveolar macrophages through a prealveolar macrophage intermediate. LPL was required for the transition from prealveolar macrophages to mature alveolar macrophages. The transition from prealveolar macrophage to alveolar macrophage requires the upregulation of the transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ), which is induced by exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF). Despite abundant lung GM-CSF and intact GM-CSF receptor signaling, PPAR-γ was not sufficiently upregulated in developing alveolar macrophages in LPL -/- pups, suggesting that precursor cells were not correctly localized to the alveoli, where GM-CSF is produced. We found that LPL supports 2 actin-based processes essential for correct localization of alveolar macrophage precursors: (1) transmigration into the alveoli, and (2) engraftment in the alveoli. We thus identify a molecular pathway governing neonatal alveolar macrophage development and show that genetic disruption of alveolar macrophage development results in immunodeficiency. © 2016 by The American Society of Hematology.
Anthony, Desiree; McQualter, Jonathan L.; Bishara, Maria; Lim, Ee X.; Yatmaz, Selcuk; Seow, Huei Jiunn; Hansen, Michelle; Thompson, Michelle; Hamilton, John A.; Irving, Louis B.; Levy, Bruce D.; Vlahos, Ross; Anderson, Gary P.; Bozinovski, Steven
2014-01-01
Serum amyloid A (SAA) is expressed locally in chronic inflammatory conditions such as chronic obstructive pulmonary disease (COPD), where macrophages that do not accord with the classic M1/M2 paradigm also accumulate. In this study, the role of SAA in regulating macrophage differentiation was investigated in vitro using human blood monocytes from healthy subjects and patients with COPD and in vivo using an airway SAA challenge model in BALB/c mice. Differentiation of human monocytes with SAA stimulated the proinflammatory monokines IL-6 and IL-1β concurrently with the M2 markers CD163 and IL-10. Furthermore, SAA-differentiated macrophages stimulated with lipopolysaccharide (LPS) expressed markedly higher levels of IL-6 and IL-1β. The ALX/FPR2 antagonist WRW4 reduced IL-6 and IL-1β expression but did not significantly inhibit phagocytic and efferocytic activity. In vivo, SAA administration induced the development of a CD11chighCD11bhigh macrophage population that generated higher levels of IL-6, IL-1β, and G-CSF following ex vivo LPS challenge. Blocking CSF-1R signaling effectively reduced the number of CD11chighCD11bhigh macrophages by 71% and also markedly inhibited neutrophilic inflammation by 80%. In conclusion, our findings suggest that SAA can promote a distinct CD11chighCD11bhigh macrophage phenotype, and targeting this population may provide a novel approach to treating chronic inflammatory conditions associated with persistent SAA expression.—Anthony, D., McQualter, J. L., Bishara, M., Lim, E. X., Yatmaz, S., Seow, H. J., Hansen, M., Thompson, M., Hamilton, J. A., Irving, L. B., Levy, B. D., Vlahos, R., Anderson, G. P., Bozinovski, S. SAA drives proinflammatory heterotypic macrophage differentiation in the lung via CSF-1R-dependent signaling. PMID:24846388
Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V.; Kobzik, Lester; Chroneos, Zissis C.
2011-01-01
Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap+) but not Eap-deficient (Eap−) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap+ S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap+ but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap+ S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap− S. aureus was impaired. Macrophages express two isoforms: SP-R210L and SP-R210S. The results show that WT alveolar macrophages are distinguished by expression of SP-R210L, whereas SR-A−/− alveolar macrophages are deficient in SP-R210L expressing only SP-R210S. Accordingly, SR-A−/− mice were highly susceptible to both Eap+ and Eap− S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210L mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A. PMID:21123169
Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V; Kobzik, Lester; Chroneos, Zissis C
2011-02-11
Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.
Fujita, Katsuhide; Fukuda, Makiko; Fukui, Hiroko; Horie, Masanori; Endoh, Shigehisa; Uchida, Kunio; Shichiri, Mototada; Morimoto, Yasuo; Ogami, Akira; Iwahashi, Hitoshi
2015-01-01
Abstract The use of carbon nanotubes in the industry has grown; however, little is known about their toxicological mechanism of action. Single-wall carbon nanotube (SWCNT) suspensions were administered by single intratracheal instillation in rats. Persistence of alveolar macrophage-containing granuloma was observed around the sites of SWCNT aggregation at 90 days post-instillation in 0.2-mg- or 0.4-mg-injected doses per rat. Meanwhile, gene expression profiling revealed that a large number of genes involved in the inflammatory response were markedly upregulated until 90 days or 180 days post-instillation. Subsequently, gene expression patterns were dramatically altered at 365 days post-instillation, and the number of upregulated genes involved in the inflammatory response was reduced. These results suggested that alveolar macrophage-containing granuloma reflected a characteristic of the histopathological transition period from the acute-phase to the subchronic-phase of inflammation, as well as pulmonary acute phase response persistence up to 90 or 180 days after intratracheal instillation in this experimental setting. The expression levels of the genes Ctsk, Gcgr, Gpnmb, Lilrb4, Marco, Mreg, Mt3, Padi1, Slc26a4, Spp1, Tnfsf4 and Trem2 were persistently upregulated in a dose-dependent manner until 365 days post-instillation. In addition, the expression levels of Atp6v0d2, Lpo, Mmp7, Mmp12 and Rnase9 were significantly upregulated until 754 days post-instillation. We propose that these persistently upregulated genes in the chronic-phase response following the acute-phase response act as potential biomarkers in lung tissue after SWCNT instillation. This study provides further insight into the time-dependent changes in genomic expression associated with the pulmonary toxicity of SWCNTs. PMID:24911292
Hare, Nathan J; Lee, Ling Y; Loke, Ian; Britton, Warwick J; Saunders, Bernadette M; Thaysen-Andersen, Morten
2017-01-06
Tuberculosis (TB) remains a prevalent and lethal infectious disease. The glycobiology associated with Mycobacterium tuberculosis infection of frontline alveolar macrophages is still unresolved. Herein, we investigated the regulation of protein N-glycosylation in human macrophages and their secreted microparticles (MPs) used for intercellular communication upon M. tb infection. LC-MS/MS-based proteomics and glycomics were performed to monitor the regulation of glycosylation enzymes and receptors and the N-glycome in in vitro-differentiated macrophages and in isolated MPs upon M. tb infection. Infection promoted a dramatic regulation of the macrophage proteome. Most notably, significant infection-dependent down-regulation (4-26 fold) of 11 lysosomal exoglycosidases, e.g., β-galactosidase, β-hexosaminidases and α-/β-mannosidases, was observed. Relative weak infection-driven transcriptional regulation of these exoglycosidases and a stronger augmentation of the extracellular hexosaminidase activity demonstrated that the lysosome-centric changes may originate predominantly from infection-induced secretion of the lysosomal content. The macrophages showed heterogeneous N-glycan profiles and displayed significant up-regulation of complex-type glycosylation and concomitant down-regulation of paucimannosylation upon infection. Complementary intact N-glycopeptide analysis supported a subcellular-specific manipulation of the glycosylation machinery and altered glycosylation patterns of lysosomal N-glycoproteins within infected macrophages. Interestingly, the corresponding macrophage-derived MPs displayed unique N-glycome and proteome signatures supporting a preferential packaging from plasma membranes. The MPs were devoid of infection-dependent N-glycosylation signatures, but interestingly displayed increased levels of the glyco-initiating oligosaccharyltransferase complex and associated α-glucosidases that correlated with increased formation, N-glycan precursor levels and N-glycan density of infected MPs. In conclusion, this system-wide study provides new insight into the host- and pathogen-driven N-glycoproteome manipulation of macrophages in TB.
Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation
Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany
2016-01-01
Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960
CD8 T cells and Mycobacterium tuberculosis infection
Lin, Philana Ling; Flynn, JoAnne L.
2015-01-01
Tuberculosis is primarily a respiratory disease that is caused by Mycobacterium tuberculosis. M. tuberculosis can persist and replicate in macrophages in vivo, usually in organized cellular structures called granulomas. There is substantial evidence for the importance of CD4 T cells in control of tuberculosis, but the evidence for a requirement for CD8 T cells in this infection has not been proven in humans. However, animal model data support a non-redundant role for CD8 T cells in control of M. tuberculosis infection, and in humans, infection with this pathogen leads to generation of specific CD8 T cell responses. These responses include classical (MHC Class I restricted) and non-classical CD8 T cells. Here, we discuss the potential roles of CD8 T cells in defense against tuberculosis, and our current understanding of the wide range of CD8 T cell types seen in M. tuberculosis infection. PMID:25917388
Foamy macrophages and the progression of the human TB granuloma
Russell, David G.; Cardona, Pere-Joan; Kim, Mi-Jeong; Allain, Sophie; Altare, Frédéric
2009-01-01
The progression of tuberculosis from a latent, sub-clinical infection to active disease that culminates in transmission of infectious bacilli is determined locally at the level of the granuloma. This progression takes place even in the face of a robust immune response that, while it contains infection, is unable to eliminate the bacterium. The factors or environmental conditions that influence this progression remain to be determined. Recent advances have indicated that pathogen-induced dysregulation of host lipid synthesis and sequestration plays a critical role in this transition. The foamy macrophage appears to be a key player in both sustaining persistent bacteria and contributing to the tissue pathology that leads to cavitation and release of infectious bacilli. PMID:19692995
Macrophages in Progressive Human Immunodeficiency Virus/Simian Immunodeficiency Virus Infections
DiNapoli, Sarah R.; Hirsch, Vanessa M.
2016-01-01
The cells that are targeted by primate lentiviruses (HIV and simian immunodeficiency virus [SIV]) are of intense interest given the renewed effort to identify potential cures for HIV. These viruses have been reported to infect multiple cell lineages of hematopoietic origin, including all phenotypic and functional CD4 T cell subsets. The two most commonly reported cell types that become infected in vivo are memory CD4 T cells and tissue-resident macrophages. Though viral infection of CD4 T cells is routinely detected in both HIV-infected humans and SIV-infected Asian macaques, significant viral infection of macrophages is only routinely observed in animal models wherein CD4 T cells are almost entirely depleted. Here we review the roles of macrophages in lentiviral disease progression, the evidence that macrophages support viral replication in vivo, the animal models where macrophage-mediated replication of SIV is thought to occur, how the virus can interact with macrophages in vivo, pathologies thought to be attributed to viral replication within macrophages, how viral replication in macrophages might contribute to the asymptomatic phase of HIV/SIV infection, and whether macrophages represent a long-lived reservoir for the virus. PMID:27307568
Jones, Christina V; Alikhan, Maliha A; O'Reilly, Megan; Sozo, Foula; Williams, Timothy M; Harding, Richard; Jenkin, Graham; Ricardo, Sharon D
2014-09-06
Lung immaturity due to preterm birth is a significant complication affecting neonatal health. Despite the detrimental effects of supplemental oxygen on alveolar formation, it remains an important treatment for infants with respiratory distress. Macrophages are traditionally associated with the propagation of inflammatory insults, however increased appreciation of their diversity has revealed essential functions in development and regeneration. Macrophage regulatory cytokine Colony-Stimulating Factor-1 (CSF-1) was investigated in a model of neonatal hyperoxia exposure, with the aim of promoting macrophages associated with alveologenesis to protect/rescue lung development and function. Neonatal mice were exposed to normoxia (21% oxygen) or hyperoxia (Hyp; 65% oxygen); and administered CSF-1 (0.5 μg/g, daily × 5) or vehicle (PBS) in two treatment regimes; 1) after hyperoxia from postnatal day (P)7-11, or 2) concurrently with five days of hyperoxia from P1-5. Lung structure, function and macrophages were assessed using alveolar morphometry, barometric whole-body plethysmography and flow cytometry. Seven days of hyperoxia resulted in an 18% decrease in body weight and perturbation of lung structure and function. In regime 1, growth restriction persisted in the Hyp + PBS and Hyp + CSF-1 groups, although perturbations in respiratory function were resolved by P35. CSF-1 increased CSF-1R+/F4/80+ macrophage number by 34% at P11 compared to Hyp + PBS, but was not associated with growth or lung structural rescue. In regime 2, five days of hyperoxia did not cause initial growth restriction in the Hyp + PBS and Hyp + CSF-1 groups, although body weight was decreased at P35 with CSF-1. CSF-1 was not associated with increased macrophages, or with functional perturbation in the adult. Overall, CSF-1 did not rescue the growth and lung defects associated with hyperoxia in this model; however, an increase in CSF-1R+ macrophages was not associated with an exacerbation of lung injury. The trophic functions of macrophages in lung development requires further elucidation in order to explore macrophage modulation as a strategy for promoting lung maturation.
Hussain, Tariq; Zhao, Deming; Shah, Syed Zahid Ali; Wang, Jie; Yue, Ruichao; Liao, Yi; Sabir, Naveed; Yang, Lifeng; Zhou, Xiangmei
2018-01-01
Mycobacterium avium subspecies paratuberculosis (MAP) persistently survive and replicate in mononuclear phagocytic cells by adopting various strategies to subvert host immune response. Interleukin-10 (IL-10) upregulation via inhibition of macrophage bactericidal activity is a critical step for MAP survival and pathogenesis within the host cell. Mitogen-activated protein kinase p38 signaling cascade plays a crucial role in the elevation of IL-10 and progression of MAP pathogenesis. The contribution of microRNAs (miRNAs) and their influence on the activation of macrophages during MAP pathogenesis are still unclear. In the current study, we found that miRNA-27a-3p (miR-27a) expression is downregulated during MAP infection both in vivo and in vitro. Moreover, miR-27a is also downregulated in toll-like receptor 2 (TLR2)-stimulated murine macrophages (RAW264.7 and bone marrow-derived macrophage). ELISA and real-time qRT-PCR results confirm that overexpression of miR-27a inhibited MAP-induced IL-10 production in macrophages and upregulated pro-inflammatory cytokines, while miR-27a inhibitor counteracted these effects. Luciferase reporter assay results revealed that IL-10 and TGF-β-activated protein kinase 1 binding protein 2 (TAB 2) are potential targets of miR-27a. In addition, we demonstrated that miR-27a negatively regulates TAB 2 expression and diminishes TAB 2-dependent p38/JNK phosphorylation, ultimately downregulating IL-10 expression in MAP-infected macrophages. Furthermore, overexpression of miR-27a significantly inhibited the intracellular survival of MAP in infected macrophages. Our data show that miR-27a augments antimicrobial activities of macrophages and inhibits the expression of IL-10, demonstrating that miR-27a regulates protective innate immune responses during MAP infection and can be exploited as a novel therapeutic target in the control of intracellular pathogens, including paratuberculosis. PMID:29375563
Horsthemke, Markus; Bachg, Anne C.; Groll, Katharina; Moyzio, Sven; Müther, Barbara; Hemkemeyer, Sandra A.; Wedlich-Söldner, Roland; Sixt, Michael; Tacke, Sebastian; Bähler, Martin; Hanley, Peter J.
2017-01-01
Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading. PMID:28289096
Schwartzkopff, Franziska; Grimm, Tobias A; Lankford, Carla S R; Fields, Karen; Wang, Jiun; Brandt, Ernst; Clouse, Kathleen A
2009-12-01
Platelet factor 4 (CXCL4), a member of the CXC chemokine subfamily released in high amounts by activated platelets, has been identified as a monocyte survival factor that induces monocyte differentiation into macrophages. Although CXCL4 has been shown to have biological effects unique to chemokines, nothing is known about the role of CXCL4-derived human macrophages or CXCL4 in human immunodeficiency virus (HIV) disease. In this study, CXCL4-derived macrophages are compared with macrophage-colony stimulating factor (M-CSF)-derived macrophages for their ability to support HIV-1 replication. We show that CXCL4-derived macrophages can be infected with macrophage-tropic HIV-1 that uses either CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4) as a co-receptor for viral entry. We also find that M-CSF and the chemokines, monocyte chemoattractant protein 1 (MCP-1; CCL2) and macrophage-inflammatory-protein-1-alpha (MIP-1alpha; CCL3) are produced upon R5- and X4-tropic HIV-1 replication in both M-CSF- and CXCL4-derived human macrophages. In addition, CXCL4 added to M-CSF-derived macrophages after virus adsorption and maintained throughout the infection enhances HIV-1 replication. We thus propose a novel role for CXCL4 in HIV disease.
Macrophages: Their Emerging Roles in Bone
Sinder, Benjamin P; Pettit, Allison R; McCauley, Laurie K
2016-01-01
Macrophages are present in nearly all tissues and are critical for development, homeostasis, and regeneration. Resident tissue macrophages of bone, termed osteal macrophages, are recently classified myeloid cells that are distinct from osteoclasts. Osteal macrophages are located immediately adjacent to osteoblasts, regulate bone formation, and play diverse roles in skeletal homeostasis. Genetic or pharmacological modulation of macrophages in vivo results in significant bone phenotypes, and these phenotypes depend on which macrophage subsets are altered. Macrophages are also key mediators of osseous wound healing and fracture repair, with distinct roles at various stages of the repair process. A central function of macrophages is their phagocytic ability. Each day, billions of cells die in the body and efferocytosis (phagocytosis of apoptotic cells) is a critical process in both clearing dead cells and recruitment of replacement progenitor cells to maintain homeostasis. Recent data suggest a role for efferocytosis in bone biology and these new mechanisms are outlined. Finally, although macrophages have an established role in primary tumors, emerging evidence suggests that macrophages in bone support cancers which preferentially metastasize to the skeleton. Collectively, this developing area of osteoimmunology raises new questions and promises to provide novel insights into pathophysiologic conditions as well as therapeutic and regenerative approaches vital for skeletal health. PMID:26531055
Transcriptional and Proteomic Responses to Carbon Starvation in Paracoccidioides
Lima, Patrícia de Sousa; Casaletti, Luciana; Bailão, Alexandre Melo; de Vasconcelos, Ana Tereza Ribeiro; Fernandes, Gabriel da Rocha; Soares, Célia Maria de Almeida
2014-01-01
Background The genus Paracoccidioides comprises human thermal dimorphic fungi, which cause paracoccidioidomycosis (PCM), an important mycosis in Latin America. Adaptation to environmental conditions is key to fungal survival during human host infection. The adaptability of carbon metabolism is a vital fitness attribute during pathogenesis. Methodology/Principal Findings The fungal pathogen Paracoccidioides spp. is exposed to numerous adverse conditions, such as nutrient deprivation, in the human host. In this study, a comprehensive response of Paracoccidioides, Pb01, under carbon starvation was investigated using high-resolution transcriptomic (RNAseq) and proteomic (NanoUPLC-MSE) approaches. A total of 1,063 transcripts and 421 proteins were differentially regulated, providing a global view of metabolic reprogramming during carbon starvation. The main changes were those related to cells shifting to gluconeogenesis and ethanol production, supported by the degradation of amino acids and fatty acids and by the modulation of the glyoxylate and tricarboxylic cycles. This proposed carbon flow hypothesis was supported by gene and protein expression profiles assessed using qRT-PCR and western blot analysis, respectively, as well as using enzymatic, cell dry weight and fungus-macrophage interaction assays. The carbon source provides a survival advantage to Paracoccidioides inside macrophages. Conclusions/Significance For a complete understanding of the physiological processes in an organism, the integration of approaches addressing different levels of regulation is important. To the best of our knowledge, this report presents the first description of the responses of Paracoccidioides spp. to host-like conditions using large-scale expression approaches. The alternative metabolic pathways that could be adopted by the organism during carbon starvation can be important for a better understanding of the fungal adaptation to the host, because systems for detecting and responding to carbon sources play a major role in adaptation and persistence in the host niche. PMID:24811072
The sensor kinase MprB is required for Rhodococcus equi virulence.
MacArthur, Iain; Parreira, Valeria R; Lepp, Dion; Mutharia, Lucy M; Vazquez-Boland, José A; Prescott, John F
2011-01-10
Rhodococcus equi is a soil bacterium and, like Mycobacterium tuberculosis, a member of the mycolata. Through possession of a virulence plasmid, it has the ability to infect the alveolar macrophages of foals, resulting in pyogranulomatous bronchopneumonia. The virulence plasmid has an orphan two-component system (TCS) regulatory gene, orf8, mutation of which completely attenuates virulence. This study attempted to find the cognate sensor kinase (SK) of orf8. Annotation of the R. equi strain 103 genome identified 23 TCSs encoded on the chromosome, which were used in a DNA microarray to compare TCS gene transcription in murine macrophage-like cells to growth in vitro. This identified six SKs as significantly up-regulated during growth in macrophages. Mutants of these SKs were constructed and their ability to persist in macrophages was determined with one SK, MprB, found to be required for intracellular survival. The attenuation of the mprB- mutant, and its complementation, was confirmed in a mouse virulence assay. In silico analysis of the R. equi genome sequence identified an MprA binding box motif homologous to that of M. tuberculosis, on mprA, pepD, sigB and sigE. The results of this study also show that R. equi responds to the macrophage environment differently from M. tuberculosis. MprB is the first SK identified as required for R. equi virulence and intracellular survival. Copyright © 2010 Elsevier B.V. All rights reserved.
T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.
Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P
1984-09-01
Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.
Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio; Masiello, Francesca; Federici, Giulia; Zingariello, Maria; Girelli, Gabriella; Whitsett, Carolyn; Petricoin, Emanuel F; Moestrup, Søren Kragh; Zeuner, Ann; Migliaccio, Anna Rita
2015-02-01
Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation directly, dexamethasone stimulates expansion of these cells indirectly by stimulating maturation and cytokinesis supporting activity of macrophages. Copyright© Ferrata Storti Foundation.
Ghorpade, Devram Sampat; Holla, Sahana; Sinha, Akhauri Yash; Alagesan, Senthil Kumar; Balaji, Kithiganahalli Narayanaswamy
2013-01-01
Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guérin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-γ-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance. PMID:23733190
Bateman, Stacey L.; Seed, Patrick C.
2013-01-01
Summary Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection, and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor IHF. In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNI), primarily through de-repression of hmpA, encoding a nitric oxide detoxifying flavohemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX. PMID:22221182
The role of macrophage mediators in respirable quartz-elicited inflammation
NASA Astrophysics Data System (ADS)
van Berlo, D.; Albrecht, C.; Knaapen, A. M.; van Schooten, F. J.; Schins, R. P. F.
2009-02-01
The instigation and persistence of an inflammatory response is widely considered to be critically important in quartz-induced lung cancer and fibrosis. Macrophages have been long recognised as a crucial player in pulmonary inflammation, but evidence for the role of type II epithelial cells is accumulating. Investigations were performed in the rat lung type II cell line RLE and the rat alveolar macrophage cell line NR8383 using Western blotting, NF-κB immunohistochemistry and qRT-PCR of the pro-inflammatory genes iNOS and COX-2, as well as the cellular stress gene HO-1. The direct effect of quartz on pro-inflammatory signalling cascades and gene expression in RLE cells was compared to the effect of conditioned media derived from quartz-treated NR8383 cells. Conditioned media activated the NF-κB signalling pathway and induced a far stronger upregulation of iNOS mRNA than quartz itself. Quartz elicited a stronger, progressive induction of COX-2 and HO-1 mRNA. Our results suggest a differentially mediated inflammatory response, in which reactive particles themselves induce oxidative stress and activation of COX-2, while mediators released from particle-activated macrophages trigger NF-κB activation and iNOS expression in type II cells.
Fensterheim, Benjamin A; Young, Jamey D; Luan, Liming; Kleinbard, Ruby R; Stothers, Cody L; Patil, Naeem K; McAtee-Pereira, Allison G; Guo, Yin; Trenary, Irina; Hernandez, Antonio; Fults, Jessica B; Williams, David L; Sherwood, Edward R; Bohannon, Julia K
2018-06-01
Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with Staphylococcus aureus and Candida albicans that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection. Copyright © 2018 by The American Association of Immunologists, Inc.
Inui, Toshio; Kubo, Kentaro; Kuchiike, Daisuke; Uto, Yoshihiro; Nishikata, Takahito; Sakamoto, Norihiro; Mette, Martin
2015-08-01
Gc protein-derived macrophage-activating factor (GcMAF) immunotherapy has been steadily advancing over the last two decades. Oral colostrum macrophage-activating factor (MAF) produced from bovine colostrum has shown high macrophage phagocytic activity. GcMAF-based immunotherapy has a wide application for use in treating many diseases via macrophage activation or for use as supportive therapy. Three case studies demonstrate that oral colostrum MAF can be used for serious infection and chronic fatigue syndrome (CFS) without adverse effects. We demonstrate that colostrum MAF shows promising clinical results in patients with infectious diseases and for symptoms of fatigue, which is common in many chronic diseases. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Penas, Federico; Mirkin, Gerardo A; Vera, Marcela; Cevey, Ágata; González, Cintia D; Gómez, Marisa I; Sales, María Elena; Goren, Nora B
2015-05-01
Trypanosoma cruzi, the etiological agent of Chagas' disease, induces a persistent inflammatory response. Macrophages are a first line cell phenotype involved in the clearance of infection. Upon parasite uptake, these cells increase inflammatory mediators like NO, TNF-α, IL-1β and IL-6, leading to parasite killing. Although desired, inflammatory response perpetuation and exacerbation may lead to tissue damage. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors that, besides regulating lipid and carbohydrate metabolism, have a significant anti-inflammatory effect. This is mediated through the interaction of the receptors with their ligands. PPARγ, one of the PPAR isoforms, has been implicated in macrophage polarization from M1, the classically activated phenotype, to M2, the alternatively activated phenotype, in different models of metabolic disorders and infection. In this study, we show for the first time that, besides PPARγ, PPARα is also involved in the in vitro polarization of macrophages isolated from T. cruzi-infected mice. Polarization was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers like Arginase I, Ym1, mannose receptor and TGF-β. Besides, macrophage phagocytic activity was significantly enhanced, leading to increased parasite load. We suggest that modulation of the inflammatory response by both PPARs might be due, at least in part, to a change in the profile of inflammatory macrophages. The potential use of PPAR agonists as modulators of overt inflammatory response during the course of Chagas' disease deserves further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Rockwell, Cheryl E.; Roth, Katherine J.; Chow, Aaron; O'Brien, Kate M; Albee, Ryan; Kelly, Kara; Towery, Keara; Luyendyk, James P.; Copple, Bryan L.
2014-01-01
Hypoxia-inducible factor-1α (HIF-1α) is activated in hepatic stellate cells (HSCs) by hypoxia, and regulates genes important for tissue repair. Whether HIF-1α is activated in HSCs after acute injury and contributes to liver regeneration, however, is not known. To investigate this, mice were generated with reduced levels of HIF-1α in HSCs by crossing HIF-1α floxed mice with mice that express Cre recombinase under control of the glial fibrillary acidic protein (GFAP) promoter (i.e., HIF-1α-GFAP Cre+ mice). These mice and control mice (i.e., HIF-1α-GFAP Cre- mice) were treated with a single dose of carbon tetrachloride, and liver injury and repair were assessed. After carbon tetrachloride, HIF-1α was activated in HSCs. Although liver injury was not different between the two strains of mice, during resolution of injury, clearance of necrotic cells was decreased in HIF-1α-GFAP Cre+ mice. In these mice, the persistence of necrotic cells stimulated a fibrotic response characterized by extensive collagen deposition. Hepatic accumulation of macrophages, which clear necrotic cells from the liver after carbon tetrachloride, was not affected by HIF-1α deletion in HSCs. Conversion of macrophages to M1-like, pro-inflammatory macrophages, which have increased phagocytic activity, however, was reduced in HIF-1α-GFAP Cre+ mice as indicated by a decrease in pro-inflammatory cytokines, and a decrease in the percentage of Gr1hi macrophages. Collectively, these studies have identified a novel function for HSCs and HIF-1α in orchestrating the clearance of necrotic cells from the liver, and demonstrated a key role for HSCs in modulating macrophage phenotype during acute liver injury. PMID:24639359
Inflammation and wound healing: The role of the macrophage
Koh, Timothy J.; DiPietro, Luisa Ann
2013-01-01
The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have been described to have many functions in wounds, including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound, and that the influence of these cells on each stage of repair varies with the specific phenotypes. While the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation and/or fibrosis in certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing and poorly healing wounds. Due to advances in the understanding of this multi-functional cell, the macrophage continues to be an attractive therapeutic target both to reduce fibrosis and scarring, and to improve healing of chronic wounds. PMID:21740602
Narayan, Nehal; Mandhair, Harpreet; Smyth, Erica; Dakin, Stephanie Georgina; Kiriakidis, Serafim; Wells, Lisa; Owen, David; Sabokbar, Afsie; Taylor, Peter
2017-01-01
The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or 'M1' phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages.
Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu
The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sproutingmore » blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.« less
Samaniego, Rafael; Palacios, Blanca Soler; Domiguez-Soto, Ángeles; Vidal, Carlos; Salas, Azucena; Matsuyama, Takami; Sánchez-Torres, Carmen; de la Torre, Inmaculada; Miranda-Carús, Maria Eugenia; Sánchez-Mateos, Paloma; Puig-Kröger, Amaya
2014-05-01
Vitamin B9, commonly known as folate, is an essential cofactor for one-carbon metabolism that enters cells through three major specialized transporter molecules (RFC, FR, and PCFT), which differ in expression pattern, affinity for substrate, and ligand-binding pH dependency. We now report that the expression of the folate transporters differs between macrophage subtypes and explains the higher accumulation of 5-MTHF-the major folate form found in serum-in M2 macrophages in vitro and in vivo. M1 macrophages display a higher expression of RFC, whereas FRβ and PCFT are preferentially expressed by anti-inflammatory and homeostatic M2 macrophages. These differences are also seen in macrophages from normal tissues involved in folate transit (placenta, liver, colon) and inflamed tissues (ulcerative colitis, RA), as M2-like macrophages from normal tissues express FRβ and PCFT, whereas TNF-α-expressing M1 macrophages from inflamed tissues are RFC+. Besides, we provide evidences that activin A is a critical factor controlling the set of folate transporters in macrophages, as it down-regulates FRβ, up-regulates RFC expression, and modulates 5-MTHF uptake. All of these experiments support the notion that folate handling is dependent on the stage of macrophage polarization. © 2014 Society for Leukocyte Biology.
Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.
2017-01-01
Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory stimulated macrophages and a forced proteolytical quiescence in alternatively polarized macrophages by the expression of PAI-1. PMID:28818858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrick, M.J.; Goldschmidt, M.H.; Shofer, F.S.
1992-10-01
An increase in fibrosarcomas in a biopsy population of cats in the Pennsylvania area appears to be related to the increased vaccination of cats following enactment of a mandatory rabies vaccination law. The majority of fibrosarcomas arose in sites routinely used by veterinarians for vaccination, and 42 of 198 tumors were surrounded by lymphocytes and macrophages containing foreign material identical to that previously described in postvaccinal inflammatory injection site reactions. Some of the vaccines used have aluminum-based adjuvants, and macrophages surrounding three tumors contained aluminum oxide identified by electron probe microanalysis and imaged by energy-filtered electron microscopy. Persistence of inflammatorymore » and immunological reactions associated with aluminum may predispose the cat to a derangement of its fibrous connective tissue repair response, leading to neoplasia.« less
Park, Chung; Arthos, James; Cicala, Claudia; Kehrl, John H
2015-01-01
The HIV-1 envelope protein gp120 is both the target of neutralizing antibodies and a major focus of vaccine efforts; however how it is delivered to B cells to elicit an antibody response is unknown. Here, we show that following local gp120 injection lymph node (LN) SIGN-R1+ sinus macrophages located in interfollicular pockets and underlying SIGN-R1+ macrophages form a cellular network that rapidly captures gp120 from the afferent lymph. In contrast, two other antigens, phycoerythrin and hen egg lysozyme, were not captured by these cells. Intravital imaging of mouse LNs revealed persistent, but transient interactions between gp120 bearing interfollicular network cells and both trafficking and LN follicle resident gp120 specific B cells. The gp120 specific, but not the control B cells repetitively extracted gp120 from the network cells. Our findings reveal a specialized LN antigen delivery system poised to deliver gp120 and likely other pathogen derived glycoproteins to B cells. DOI: http://dx.doi.org/10.7554/eLife.06467.001 PMID:26258881
Atayde, Vanessa Diniz; Hassani, Kasra; da Silva Lira Filho, Alonso; Borges, Andrezza Raposo; Adhikari, Anupam; Martel, Caroline; Olivier, Martin
2016-11-01
Leishmania parasites are the causative agents of the leishmaniases, a collection of vector-borne diseases that range from simple cutaneous to fatal visceral forms. Employing potent immune modulation mechanisms, Leishmania is able to render the host macrophage inactive and persist inside its phagolysosome. In the last few years, the role of exosomes in Leishmania-host interactions has been increasingly investigated. For instance, it was reported that Leishmania exosome release is augmented following temperature shift, a condition mimicking parasite's entry into its mammalian host. Leishmania exosomes were found to strongly affect macrophage cell signaling and functions, similarly to whole parasites. Importantly, these vesicles were shown to be pro-inflammatory, capable to recruit neutrophils at their inoculation site exacerbating the pathology. In this review, we provide the most recent insights on the role of exosomes and other virulence factors, especially the surface protease GP63, in Leishmania-host interactions, deepening our knowledge on leishmaniasis and paving the way for the development of new therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.
Otitis Media and Nasopharyngeal Colonization in ccl3-/- Mice.
Deniffel, Dominik; Nuyen, Brian; Pak, Kwang; Suzukawa, Keigo; Hung, Jun; Kurabi, Arwa; Wasserman, Stephen I; Ryan, Allen F
2017-11-01
We previously found CC chemokine ligand 3 (CCL3) to be a potent effector of inflammation during otitis media (OM): exogenous CCL3 rescues the OM phenotype of tumor necrosis factor-deficient mice and the function of macrophages deficient in several innate immune molecules. To further delineate the role of CCL3 in OM, we evaluated middle ear (ME) responses of ccl3 -/- mice to nontypeable Haemophilus influenzae (NTHi). CCL chemokine gene expression was evaluated in wild-type (WT) mice during the complete course of acute OM. OM was induced in ccl3 -/- and WT mice, and infection and inflammation were monitored for 21 days. Phagocytosis and killing of NTHi by macrophages were evaluated by an in vitro assay. The nasopharyngeal bacterial load was assessed in naive animals of both strains. Many CCL genes showed increased expression levels during acute OM, with CCL3 being the most upregulated, at levels 600-fold higher than the baseline. ccl3 -/- deletion compromised ME bacterial clearance and prolonged mucosal hyperplasia. ME recruitment of leukocytes was delayed but persisted far longer than in WT mice. These events were linked to a decrease in the macrophage capacity for NTHi phagocytosis and increased nasopharyngeal bacterial loads in ccl3 -/- mice. The generalized impairment in inflammatory cell recruitment was associated with compensatory changes in the expression profiles of CCL2, CCL7, and CCL12. CCL3 plays a significant role in the clearance of infection and resolution of inflammation and contributes to mucosal host defense of the nasopharyngeal niche, a reservoir for ME and upper respiratory infections. Therapies based on CCL3 could prove useful in treating or preventing persistent disease. Copyright © 2017 American Society for Microbiology.
Mandhair, Harpreet; Smyth, Erica; Dakin, Stephanie Georgina; Kiriakidis, Serafim; Wells, Lisa; Owen, David; Sabokbar, Afsie; Taylor, Peter
2017-01-01
The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or ‘M1’ phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages. PMID:28968465
Isolation and In Vitro Culture of Murine and Human Alveolar Macrophages.
Nayak, Deepak K; Mendez, Oscar; Bowen, Sara; Mohanakumar, Thalachallour
2018-04-20
Alveolar macrophages are terminally differentiated, lung-resident macrophages of prenatal origin. Alveolar macrophages are unique in their long life and their important role in lung development and function, as well as their lung-localized responses to infection and inflammation. To date, no unified method for identification, isolation, and handling of alveolar macrophages from humans and mice exists. Such a method is needed for studies on these important innate immune cells in various experimental settings. The method described here, which can be easily adopted by any laboratory, is a simplified approach to harvesting alveolar macrophages from bronchoalveolar lavage fluid or from lung tissue and maintaining them in vitro. Because alveolar macrophages primarily occur as adherent cells in the alveoli, the focus of this method is on dislodging them prior to harvest and identification. The lung is a highly vascularized organ, and various cell types of myeloid and lymphoid origin inhabit, interact, and are influenced by the lung microenvironment. By using the set of surface markers described here, researchers can easily and unambiguously distinguish alveolar macrophages from other leukocytes, and purify them for downstream applications. The culture method developed herein supports both human and mouse alveolar macrophages for in vitro growth, and is compatible with cellular and molecular studies.
Macrophages under pressure: the role of macrophage polarization in hypertension.
Harwani, Sailesh C
2018-01-01
Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.
Functional modulation on macrophage by low dose naltrexone (LDN).
Yi, Zhe; Guo, Shengnan; Hu, Xu; Wang, Xiaonan; Zhang, Xiaoqing; Griffin, Noreen; Shan, Fengping
2016-10-01
Previously it was confirmed that naltrexone, a non-peptide δ-opioid receptor selective antagonist is mainly used for alcoholic dependence and opioid addiction treatment. However, there is increasing data on immune regulation of low dose naltrexone (LDN). The aim of this work was to explore the effect of LDN on the phenotype and function of macrophage. The changes of macrophage after treatment with LDN were examined using flow cytometry (FCM); FITC-dextran phagocytosis and enzyme-linked immunosorbent assay (ELISA). We have found that LDN enhances function of macrophage as confirmed by up-regulating MHC II molecule and CD64 on macrophage while down-regulating CD206 expression. Furthermore the productions of TNF-α, IL-6, IL-1β, increased significantly. Macrophages in LDN treated group performed the enhanced phagocytosis. Therefore it is concluded that LDN could promote function of macrophage and this work has provided concrete data of impact on immune system by LDN. Especially the data would support interaction between CD4+T cell and macrophage in AIDS treatment with LDN in Africa (LDN has already been approved in Nigeria for the use in AIDS treatment). Copyright © 2016. Published by Elsevier B.V.
Steiger, Stefanie; Kuhn, Sabine; Ronchese, Franca; Harper, Jacquie L
2015-12-01
Macrophages display phenotypic and functional heterogeneity dependent on the changing inflammatory microenvironment. Under some conditions, macrophages can acquire effector functions commonly associated with NK cells. In the current study, we investigated how the endogenous danger signal monosodium urate (MSU) crystals can alter macrophage functions. We report that naive, primary peritoneal macrophages rapidly upregulate the expression of the NK cell-surface marker NK1.1 in response to MSU crystals but not in response to LPS or other urate crystals. NK1.1 upregulation by macrophages was associated with mechanisms including phagocytosis of crystals, NLRP3 inflammasome activation, and autocrine proinflammatory cytokine signaling. Further analysis demonstrated that MSU crystal-activated macrophages exhibited NK cell-like cytotoxic activity against target cells in a perforin/granzyme B-dependent manner. Furthermore, analysis of tumor hemopoietic cell populations showed that effective, MSU-mediated antitumor activity required coadministration with Mycobacterium smegmatis to induce IL-1β production and significant accumulation of monocytes and macrophages (but not granulocytes or dendritic cells) expressing elevated levels of NK1.1. Our findings provide evidence that MSU crystal-activated macrophages have the potential to develop tumoricidal NK cell-like functions that may be exploited to boost antitumor activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.
Malhotra, Deepti; Thimmulappa, Rajesh K.; Mercado, Nicolas; Ito, Kazuhiro; Kombairaju, Ponvijay; Kumar, Sarvesh; Ma, Jinfang; Feller-Kopman, David; Wise, Robert; Barnes, Peter; Biswal, Shyam
2011-01-01
Chronic obstructive pulmonary disease (COPD), which is caused primarily by cigarette smoking, is a major health problem worldwide. The progressive decline in lung function that occurs in COPD is a result of persistent inflammation of the airways and destruction of the lung parenchyma. Despite the key role of inflammation in the pathogenesis of COPD, treatment with corticosteroids — normally highly effective antiinflammatory drugs — has little therapeutic benefit. This corticosteroid resistance is largely caused by inactivation of histone deacetylase 2 (HDAC2), which is critical for the transrepressive activity of the glucocorticoid receptor (GR) that mediates the antiinflammatory effect of corticosteroids. Here, we show that in alveolar macrophages from patients with COPD, S-nitrosylation of HDAC2 is increased and that this abolishes its GR-transrepression activity and promotes corticosteroid insensitivity. Cys-262 and Cys-274 of HDAC2 were found to be the targets of S-nitrosylation, and exogenous glutathione treatment of macrophages from individuals with COPD restored HDAC2 activity. Treatment with sulforaphane, a small-molecule activator of the transcription factor nuclear factor erythroid 2–related factor 2 (NRF2), was also able to denitrosylate HDAC2, restoring dexamethasone sensitivity in alveolar macrophages from patients with COPD. These effects of sulforaphane were glutathione dependent. We conclude that NRF2 is a novel drug target for reversing corticosteroid resistance in COPD and other corticosteroid-resistant inflammatory diseases. PMID:22005302
Das, Amitabh; Chai, Jin Choul; Yang, Chul-su; Lee, Young Seek; Das, Nando Dulal; Jung, Kyoung Hwa; Chai, Young Gyu
2015-01-01
Persistent macrophage activation is associated with the expression of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify inflammatory disorders. A novel synthetic BET inhibitor, JQ1, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for JQ1 molecular targets has not been undertaken. The present study aimed at evaluating the anti-inflammatory function and underlying genes that are targeted by JQ1 in LPS-stimulated primary bone marrow-derived macrophages (BMDMs) using global transcriptomic RNA sequencing and quantitative real-time PCR. Among the annotated genes, transcriptional sequencing of BMDMs that were treated with JQ1 revealed a selective effect on LPS-induced gene expression in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent (transcription factors) TFs was suppressed. Additionally, we found that JQ1 reduced the expression of previously unidentified genes that are important in inflammation. Importantly, these inflammatory genes were not affected by JQ1 treatment alone. Furthermore, we confirmed that JQ1 reduced cytokines/chemokines in the supernatants of LPS treated BMDMs. Moreover, the biological pathways and gene ontology of the differentially expressed genes were determined in the JQ1 treatment of BMDMs. These unprecedented results suggest that the BET inhibitor JQ1 is a candidate for the prevention or therapeutic treatment of inflammatory disorders. PMID:26582142
Acyloxyacyl hydrolase promotes the resolution of lipopolysaccharide-induced acute lung injury
Tang, Zihui; Yang, Qian; Qian, Guojun; Qian, Jing; Zeng, Wenjiao; Gu, Jie; Chu, Tianqing; Zhu, Ning; Zhang, Wenhong; Yan, Dapeng; He, Rui; Chu, Yiwei
2017-01-01
Pulmonary infection is the most common risk factor for acute lung injury (ALI). Innate immune responses induced by Microbe-Associated Molecular Pattern (MAMP) molecules are essential for lung defense but can lead to tissue injury. Little is known about how MAMP molecules are degraded in the lung or how MAMP degradation/inactivation helps prevent or ameliorate the harmful inflammation that produces ALI. Acyloxyacyl hydrolase (AOAH) is a host lipase that inactivates Gram-negative bacterial endotoxin (lipopolysaccharide, or LPS). We report here that alveolar macrophages increase AOAH expression upon exposure to LPS and that Aoah+/+ mice recover more rapidly than do Aoah-/- mice from ALI induced by nasally instilled LPS or Klebsiella pneumoniae. Aoah-/- mouse lungs had more prolonged leukocyte infiltration, greater pro- and anti-inflammatory cytokine expression, and longer-lasting alveolar barrier damage. We also describe evidence that the persistently bioactive LPS in Aoah-/- alveoli can stimulate alveolar macrophages directly and epithelial cells indirectly to produce chemoattractants that recruit neutrophils to the lung and may prevent their clearance. Distinct from the prolonged tolerance observed in LPS-exposed Aoah-/- peritoneal macrophages, alveolar macrophages that lacked AOAH maintained or increased their responses to bioactive LPS and sustained inflammation. Inactivation of LPS by AOAH is a previously unappreciated mechanism for promoting resolution of pulmonary inflammation/injury induced by Gram-negative bacterial infection. PMID:28622363
Cucak, Helena; Grunnet, Lars Groth; Rosendahl, Alexander
2014-01-01
Human T2D is characterized by a low-grade systemic inflammation, loss of β-cells, and diminished insulin production. Local islet immunity is still poorly understood, and hence, we evaluated macrophage subpopulations in pancreatic islets in the well-established murine model of T2D, the db/db mouse. Already at 8 weeks of disease, on average, 12 macrophages were observed in the diabetic islets, whereas only two were recorded in the nondiabetic littermates. On a detailed level, the islet resident macrophages increased fourfold compared with nondiabetic littermates, whereas a pronounced recruitment (eightfold) of a novel subset of macrophages (CD68+F4/80-) was observed. The majority of the CD68+F4/80+ but only 40% of the CD68+F4/80- islet macrophages expressed CD11b. Both islet-derived macrophage subsets expressed moderate MHC-II, high galectin-3, and low CD80/CD86 levels, suggesting the cells to be macrophages rather than DCs. On a functional level, the vast majority of the macrophages in the diabetic islets was of the proinflammatory, M1-like phenotype. The systemic immunity in diabetic animals was characterized by a low-grade inflammation with elevated cytokine levels and increase of splenic cytokine, producing CD68+F4/80- macrophages. In late-stage diabetes, the cytokine signature changed toward a TGF-β-dominated profile, coinciding with a significant increase of galectin-3-positive macrophages in the spleen. In summary, our results show that proinflammatory M1-like galectin-3+ CD80/CD86(low) macrophages invade diabetic islets. Moreover, the innate immunity matures in a diabetes-dependent manner from an initial proinflammatory toward a profibrotic phenotype, supporting the concept that T2D is an inflammatory disease.
Serda, Rita E.; Blanco, Elvin; Mack, Aaron; Stafford, Susan J.; Amra, Sarah; Li, Qingpo; van de Ven, Anne L.; Tanaka, Takemi; Torchilin, Vladimir P.; Wiktorowicz, John E.; Ferrari, Mauro
2014-01-01
Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution. PMID:21303614
Vpr Promotes Macrophage-Dependent HIV-1 Infection of CD4+ T Lymphocytes
Collins, David R.; Lubow, Jay; Lukic, Zana; Mashiba, Michael; Collins, Kathleen L.
2015-01-01
Vpr is a conserved primate lentiviral protein that promotes infection of T lymphocytes in vivo by an unknown mechanism. Here we demonstrate that Vpr and its cellular co-factor, DCAF1, are necessary for efficient cell-to-cell spread of HIV-1 from macrophages to CD4+ T lymphocytes when there is inadequate cell-free virus to support direct T lymphocyte infection. Remarkably, Vpr functioned to counteract a macrophage-specific intrinsic antiviral pathway that targeted Env-containing virions to LAMP1+ lysosomal compartments. This restriction of Env also impaired virological synapses formed through interactions between HIV-1 Env on infected macrophages and CD4 on T lymphocytes. Treatment of infected macrophages with exogenous interferon-alpha induced virion degradation and blocked synapse formation, overcoming the effects of Vpr. These results provide a mechanism that helps explain the in vivo requirement for Vpr and suggests that a macrophage-dependent stage of HIV-1 infection drives the evolutionary conservation of Vpr. PMID:26186441
Watkins, S. C.; Macaulay, W.; Turner, D.; Kang, R.; Rubash, H. E.; Evans, C. H.
1997-01-01
Exposure of rodent macrophages to certain cytokines and endotoxin results in the synthesis of inducible nitric oxide synthase (iNOS or NOS-II) leading to the production of large amounts of nitric oxide (NO). Cultures of human macrophages, in contrast, do not produce iNOS after cytokine stimulation, and their ability to act as a physiological source of NO remains questionable. Here we have used immunohistochemistry and in situ hybridization to demonstrate the presence of iNOS within human macrophages present in the interfacial membrane and pseudocapsule that surround failed prosthetic hip joints. Synovial tissue recovered from normal human joints did not express iNOS. Many of the iNOS-positive macrophages within the interfacial membrane had phagocytosed large amounts of polyethylene wear debris, suggesting a role for phagocytic stimuli in inducing iNOS in human macrophages. These findings additionally support a role for NO in modulating the localized bone resorption that accompanies the aseptic loosening of prosthetic joints. Images Figure 1 Figure 2 Figure 3 PMID:9094976
Cytoskeletal protein transformation in HIV-1-infected macrophage giant cells.
Kadiu, Irena; Ricardo-Dukelow, Mary; Ciborowski, Pawel; Gendelman, Howard E
2007-05-15
The mechanisms linking HIV-1 replication, macrophage biology, and multinucleated giant cell formation are incompletely understood. With the advent of functional proteomics, the characterization, regulation, and transformation of HIV-1-infected macrophage-secreted proteins can be ascertained. To these ends, we performed proteomic analyses of culture fluids derived from HIV-1 infected monocyte-derived macrophages. Robust reorganization, phosphorylation, and exosomal secretion of the cytoskeletal proteins profilin 1 and actin were observed in conjunction with productive viral replication and giant cell formation. Actin and profilin 1 recruitment to the macrophage plasma membrane paralleled virus-induced cytopathicity, podosome formation, and cellular fusion. Poly-l-proline, an inhibitor of profilin 1-mediated actin polymerization, inhibited cytoskeletal transformations and suppressed, in part, progeny virion production. These data support the idea that actin and profilin 1 rearrangement along with exosomal secretion affect viral replication and cytopathicity. Such events favor the virus over the host cell and provide insights into macrophage defense mechanisms used to contain viral growth and how they may be affected during progressive HIV-1 infection.
NASA Astrophysics Data System (ADS)
Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha
2016-03-01
The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.
Rychli, Kathrin; Grunert, Tom; Ciolacu, Luminita; Zaiser, Andreas; Razzazi-Fazeli, Ebrahim; Schmitz-Esser, Stephan; Ehling-Schulz, Monika; Wagner, Martin
2016-02-02
The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the surface virulence associated protein SvpA. Furthermore proteins involved in cell wall modification, such as the lipoteichonic acid primase LtaP and the N-acetylmuramoyl-l-alanine amidase (Lmo2591) are more abundant in EGDe than in the persistent strains and could indirectly contribute to virulence. In conclusion this study provides information about a set of proteins that could potentially support survival of L. monocytogenes in abiotic niches in food processing environments. Based on these data, a more detailed analysis of the role of the identified proteins under stresses mimicking conditions in food producing environment is essential for further elucidate the mechanism of the phenomenon of persistence of L. monocytogenes. Copyright © 2015 Elsevier B.V. All rights reserved.
Michael, N L; Nelson, J A; KewalRamani, V N; Chang, G; O'Brien, S J; Mascola, J R; Volsky, B; Louder, M; White, G C; Littman, D R; Swanstrom, R; O'Brien, T R
1998-07-01
Individuals who are homozygous for the 32-bp deletion in the gene coding for the chemokine receptor and major human immunodeficiency virus type 1 (HIV-1) coreceptor CCR5 (CCR5 -/-) lack functional cell surface CCR5 molecules and are relatively resistant to HIV-1 infection. HIV-1 infection in CCR5 -/- individuals, although rare, has been increasingly documented. We now report that the viral quasispecies from one such individual throughout disease is homogenous, T cell line tropic, and phenotypically syncytium inducing (SI); exclusively uses CXCR4; and replicates well in CCR5 -/- primary T cells. The recently discovered coreceptors BOB and Bonzo are not used. Although early and persistent SI variants have been described in longitudinal studies, this is the first demonstration of exclusive and persistent CXCR4 usage. With the caveat that the earliest viruses available from this subject were from approximately 4 years following primary infection, these data suggest that HIV-1 infection can be mediated and persistently maintained by viruses which exclusively utilize CXCR4. The lack of evolution toward the available minor coreceptors in this subject underscores the dominant biological roles of the major coreceptors CCR5 and CXCR4. This and two similar subjects (R. Biti, R. Ffrench, J. Young, B. Bennetts, G. Stewart, and T. Liang, Nat. Med. 3:252-253, 1997; I. Theodoreu, L. Meyer, M. Magierowska, C. Katlama, and C. Rouzioux, Lancet 349:1219-1220, 1997) showed relatively rapid CD4+ T-cell declines despite average or low initial viral RNA load. Since viruses which use CXCR4 exclusively cannot infect macrophages, these data have implications for the relative infection of the T-cell compartment versus the macrophage compartment in vivo and for the development of CCR5-based therapeutics.
Innate immune memory in the brain shapes neurological disease hallmarks.
Wendeln, Ann-Christin; Degenhardt, Karoline; Kaurani, Lalit; Gertig, Michael; Ulas, Thomas; Jain, Gaurav; Wagner, Jessica; Häsler, Lisa M; Wild, Katleen; Skodras, Angelos; Blank, Thomas; Staszewski, Ori; Datta, Moumita; Centeno, Tonatiuh Pena; Capece, Vincenzo; Islam, Md Rezaul; Kerimoglu, Cemil; Staufenbiel, Matthias; Schultze, Joachim L; Beyer, Marc; Prinz, Marco; Jucker, Mathias; Fischer, André; Neher, Jonas J
2018-04-01
Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident macrophages (microglia) that persists for at least six months. Strikingly, in a mouse model of Alzheimer's pathology, immune training exacerbates cerebral β-amyloidosis and immune tolerance alleviates it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results identify immune memory in the brain as an important modifier of neuropathology.
Macrophages Inhibit Neovascularization in a Murine Model of Age-Related Macular Degeneration
Apte, Rajendra S; Richter, Jennifer; Herndon, John; Ferguson, Thomas A
2006-01-01
Background Age-related macular degeneration (AMD) is the leading cause of blindness in people over 50 y of age in at least three continents. Choroidal neovascularization (CNV) is the process by which abnormal blood vessels develop underneath the retina. CNV develops in 10% of patients with AMD but accounts for up to 90% of the blindness from AMD. Although the precise etiology of CNV in AMD remains unknown, the macrophage component of the inflammatory response, which has been shown to promote tumor growth and support atherosclerotic plaque formation, is thought to stimulate aberrant angiogenesis in blinding eye diseases. The current theory is that macrophage infiltration promotes the development of neovascularization in CNV. Methods and Findings We examined the role of macrophages in a mouse model of CNV. IL-10 −/− mice, which have increased inflammation in response to diverse stimuli, have significantly reduced CNV with increased macrophage infiltrates compared to wild type. Prevention of macrophage entry into the eye promoted neovascularization while direct injection of macrophages significantly inhibited CNV. Inhibition by macrophages was mediated by the TNF family death molecule Fas ligand (CD95-ligand). Conclusions Immune vascular interactions can be highly complex. Normal macrophage function is critical in controlling pathologic neovascularization in the eye. IL-10 regulates macrophage activity in the eye and is an attractive therapeutic target in order to suppress or inhibit CNV in AMD that can otherwise lead to blindness. PMID:16903779
Zoledronic acid inhibits macrophage/microglia-assisted breast cancer cell invasion
Rietkötter, Eva; Menck, Kerstin; Bleckmann, Annalen; Farhat, Katja; Schaffrinski, Meike; Schulz, Matthias; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias
2013-01-01
The bisphosphonate zoledronic acid (ZA) significantly reduces complications of bone metastasis by inhibiting resident macrophages, the osteoclasts. Recent clinical trials indicate additional anti-metastatic effects of ZA outside the bone. However, which step of metastasis is influenced and whether this is due to direct toxicity on cancer cells or inhibition of the tumor promoting microenvironment, is unknown. In particular, tumor-associated and resident macrophages support each step of organ metastasis and could be a crucial target of ZA. Thus, we comparatively investigate the ZA effects on: i) different types of macrophages, ii) on breast cancer cells but also iii) on macrophage-induced invasion. We demonstrate that ZA concentrations reflecting the plasma level affected viability of human macrophages, murine bone marrow-derived macrophages as well as their resident brain equivalents, the microglia, while it did not influence the tested cancer cells. However, the effects on the macrophages subsequently reduced the macrophage/microglia-induced invasiveness of the cancer cells. In line with this, manipulation of microglia by ZA in organotypic brain slice cocultures reduced the tissue invasion by carcinoma cells. The characterization of human macrophages after ZA treatment revealed a phenotype/response shift, in particular after external stimulation. In conclusion, we show that therapeutic concentrations of ZA affect all types of macrophages but not the cancer cells. Thus, anti-metastatic effects of ZA are predominantly caused by modulating the microenvironment. Most importantly, our findings demonstrate that ZA reduced microglia-assisted invasion of cancer cells to the brain tissue, indicating a potential therapeutic role in the prevention of cerebral metastasis. PMID:24036536
p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β
Hernández-Jiménez, Enrique; Shokri, Rahman; Carmona-Rodríguez, Lorena; Mañes, Santos; Álvarez-Mon, Melchor; López-Collazo, Eduardo; Martínez-A, Carlos
2016-01-01
M1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death. The M1 to M2 macrophage reprogramming that develops during LPS tolerance resembles the pathological antiinflammatory response to sepsis. Here, we determined that p21 regulates macrophage reprogramming by shifting the balance between active p65-p50 and inhibitory p50-p50 NF-κB pathways. p21 deficiency reduced the DNA-binding affinity of the p50-p50 homodimer in LPS-primed and -rechallenged macrophages, impairing their ability to attenuate IFN-β production and acquire an M2-like hyporesponsive status. High p21 levels in sepsis patients correlated with low IFN-β expression, and p21 knockdown in human monocytes corroborated its role in IFN-β regulation. The data demonstrate that p21 adjusts the equilibrium between p65-p50 and p50-p50 NF-κB pathways to mediate macrophage plasticity in LPS tolerance. Identifying p21-related pathways involved in monocyte reprogramming may lead to potential targets for sepsis treatment. PMID:27427981
Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.
Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta
2017-07-04
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.
Hanson, Laura K.; Slater, Jacquelyn S.; Karabekian, Zaruhi; Virgin, Herbert W.; Biron, Christine A.; Ruzek, Melanie C.; van Rooijen, Nico; Ciavarra, Richard P.; Stenberg, Richard M.; Campbell, Ann E.
1999-01-01
Blood monocytes or tissue macrophages play a pivotal role in the pathogenesis of murine cytomegalovirus (MCMV) infection, providing functions beneficial to both the virus and the host. In vitro and in vivo studies have indicated that differentiated macrophages support MCMV replication, are target cells for MCMV infection within tissues, and harbor latent MCMV DNA. However, this cell type presumably initiates early, antiviral immune responses as well. In addressing this paradoxical role of macrophages, we provide evidence that the proficiency of MCMV replication in macrophages positively correlates with virulence in vivo. An MCMV mutant from which the open reading frames M139, M140, and M141 had been deleted (RV10) was defective in its ability to replicate in macrophages in vitro and was highly attenuated for growth in vivo. However, depletion of splenic macrophages significantly enhanced, rather than deterred, replication of both wild-type (WT) virus and RV10 in the spleen. The ability of RV10 to replicate in intact or macrophage-depleted spleens was independent of cytokine production, as this mutant virus was a poor inducer of cytokines compared to WT virus in both intact organs and macrophage-depleted organs. Macrophages were, however, a major contributor to the production of tumor necrosis factor alpha and gamma interferon in response to WT virus infection. Thus, the data indicate that tissue macrophages serve a net protective role and may function as “filters” in protecting other highly permissive cell types from MCMV infection. The magnitude of virus replication in tissue macrophages may dictate the amount of virus accessible to the other cells. Concomitantly, infection of this cell type initiates the production of antiviral immune responses to guarantee efficient clearance of acute MCMV infection. PMID:10364349
Gobert, Alain P.; Semballa, Silla; Daulouede, Sylvie; Lesthelle, Sophie; Taxile, Murielle; Veyret, Bernard; Vincendeau, Philippe
1998-01-01
Reactive nitrogen intermediates were synthesized spontaneously in cultures of macrophages from Trypanosoma brucei brucei-infected mice by an inducible nitric oxide (NO) synthase. This was inhibited by the addition of nitro-l-arginine. In this paper, we report the kinetics of the fixation of macrophage-derived NO on bovine serum albumin by using an enzyme-linked immunosorbent assay. S nitrosylation was confirmed by the Saville reaction, using mercuric chloride. It is known that reactive oxygen intermediates (ROI) are also synthesized by stimulated macrophages. The fact that NO is able to bind cysteine only under aerobic conditions led us to investigate the role of macrophage-derived ROI in the formation of S-nitrosylated proteins by activated macrophages. The immunoenzymatic signal decreased by 66 and 30% when superoxide dismutase and catalase, respectively, were added to the culture medium of macrophages from infected mice. In addition, the decrease in S-nitrosylated albumin formation correlated with the protection of extracellular trypanosomes from the cytostatic and cytotoxic activity of NO. Melatonin, a hydroxyl radical scavenger resulting from the decomposition of peroxynitrous acid, had no effect. All these data support the concept that an interaction between NO and ROI promoted the production of S-nitroso-albumin by activated macrophages from infected mice. PMID:9712749
Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages.
Izzi, Valerio; Chiurchiù, Valerio; D'Aquilio, Fabiola; Palumbo, Camilla; Tresoldi, Ilaria; Modesti, Andrea; Baldini, Patrizia M
2009-02-01
Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols.
Makkawi, Hasnaa; Hoch, Shifra; Burns, Elia; Hosur, Kavita; Hajishengallis, George; Kirschning, Carsten J.; Nussbaum, Gabriel
2017-01-01
Porphyromonas gingivalis is a gram-negative anaerobic periodontal pathogen that persists in dysbiotic mixed-species biofilms alongside a dense inflammatory infiltrate of neutrophils and other leukocytes in the subgingival areas of the periodontium. Toll-like receptor 2 (TLR2) mediates the inflammatory response to P. gingivalis and TLR2-deficient mice resist alveolar bone resorption following oral challenge with this organism. Although, MyD88 is an adaptor protein considered necessary for TLR2-induced inflammation, we now report for the first time that oral challenge with P. gingivalis leads to alveolar bone resorption in the absence of MyD88. Indeed, in contrast to prototypical TLR2 agonists, such as the lipopeptide Pam3CSK4 that activates TLR2 in a strictly MyD88-dependent manner, P. gingivalis strikingly induced TLR2 signaling in neutrophils and macrophages regardless of the presence or absence of MyD88. Moreover, genetic or antibody-mediated inactivation of TLR2 completely reduced cytokine production in P. gingivalis-stimulated neutrophils or macrophages, suggesting that TLR2 plays a non-redundant role in the host response to P. gingivalis. In the absence of MyD88, inflammatory TLR2 signaling in P. gingivalis-stimulated neutrophils or macrophages depended upon PI3K. Intriguingly, TLR2-PI3K signaling was also critical to P. gingivalis evasion of killing by macrophages, since their ability to phagocytose this pathogen was reduced in a TLR2 and PI3K-dependent manner. Moreover, within those cells that did phagocytose bacteria, TLR2-PI3K signaling blocked phago-lysosomal maturation, thereby revealing a novel mechanism whereby P. gingivalis can enhance its intracellular survival. Therefore, P. gingivalis uncouples inflammation from bactericidal activity by substituting TLR2-PI3K in place of TLR2-MyD88 signaling. These findings further support the role of P. gingivalis as a keystone pathogen, which manipulates the host inflammatory response in a way that promotes bone loss but not bacterial clearance. Modulation of these host response factors may lead to novel therapeutic approaches to improve outcomes in disease conditions associated with P. gingivalis. PMID:28848717
Schachtele, Scott J.; Mutnal, Manohar B.; Schleiss, Mark R.; Lokensgard, James R.
2011-01-01
Congenital cytomegalovirus (CMV) infection is the leading cause of sensorineural hearing loss (SNHL) in children. During murine (M)CMV-induced encephalitis, the immune response is important for both the control of viral dissemination and the clearance of virus from the brain. While the importance of CMV-induced SNHL has been described, the mechanisms surrounding its pathogenesis and the role of inflammatory responses remain unclear. This study presents a neonatal mouse model of profound SNHL in which MCMV preferentially infected both cochlear perilymphatic epithelial cells and spiral ganglion neurons. Interestingly, MCMV infection induced cochlear hair cell death by 21 days post-infection, despite a clear lack of direct infection of hair cells and the complete clearance of the virus from the cochlea by 14 dpi. Flow cytometric, immunohistochemical, and quantitative PCR analysis of MCMV-infected cochlea revealed a robust and chronic inflammatory response, including a prolonged increase in reactive oxygen species production by infiltrating macrophages. These data support a pivotal role for inflammation during MCMV-induced SNHL. PMID:21416394
Schachtele, Scott J; Mutnal, Manohar B; Schleiss, Mark R; Lokensgard, James R
2011-06-01
Congenital cytomegalovirus (CMV) infection is the leading cause of sensorineural hearing loss (SNHL) in children. During murine (M)CMV-induced encephalitis, the immune response is important for both the control of viral dissemination and the clearance of virus from the brain. While the importance of CMV-induced SNHL has been described, the mechanisms surrounding its pathogenesis and the role of inflammatory responses remain unclear. This study presents a neonatal mouse model of profound SNHL in which MCMV preferentially infected both cochlear perilymphatic epithelial cells and spiral ganglion neurons. Interestingly, MCMV infection induced cochlear hair cell death by 21 days post-infection, despite a clear lack of direct infection of hair cells and the complete clearance of the virus from the cochlea by 14 dpi. Flow cytometric, immunohistochemical, and quantitative PCR analysis of MCMV-infected cochlea revealed a robust and chronic inflammatory response, including a prolonged increase in reactive oxygen species production by infiltrating macrophages. These data support a pivotal role for inflammation during MCMV-induced SNHL.
Mahata, Denial; Jana, Malabendu; Jana, Arundhuti; Mukherjee, Abhishek; Mondal, Nibendu; Saha, Tilak; Sen, Subhajit; Nando, Golok B.; Mukhopadhyay, Chinmay K.; Chakraborty, Ranadhir; Mandal, Santi M.
2017-01-01
Lignin, one of the most abundant renewable feedstock, is used to develop a biocompatible hydrogel as anti-infective ointment. A hydrophilic polyoxazoline chain is grafted through ring opening polymerization, possess homogeneous spherical nanoparticles of 10–15 nm. The copolymer was covalently modified with triazole moiety to fortify the antimicrobial and antibiofilm activities. The hydrogel was capable of down regulating the expression level of IL-1β in LPS induced macrophage cells, and to cause significant reduction of iNOS production. It supported cellular anti-inflammatory activity which was confirmed with luciferase assay, western blot, and NF-κB analysis. This novel lignin-based hydrogel tested in-vivo has shown the abilities to prevent infection of burn wound, aid healing, and an anti-inflammatory dressing material. The hydrogel reported here provides a new material platform to introduce a cost-effective and efficient ointment option after undertaking further work to look at its use in the area of clinical practice. PMID:28401944
NASA Astrophysics Data System (ADS)
Matthäus, Christian; Dugandžić, Vera; Weber, Karina; Cialla-May, Dana; Popp, Jürgen
2017-02-01
Cardiovascular diseases are the leading cause of death worldwide. Atherosclerosis is closely related to the majority of these diseases, as a process of thickening and stiffening of the arterial walls through accumulation of lipids, which is a consequence of aging and life style. Atherosclerosis affects all people in some extent, but not all arterial plaques will necessarily lead to the complications, such as thrombosis, stroke and heart attack. One of the greatest challenges in the risk assessment of atherosclerotic depositions is the detection and recognition of plaques which are unstable and prone to rupture. These vulnerable plaques usually consist of a lipid core that attracts macrophages, a type of white blood cells that are responsible for the degradation of lipids. It has been hypothesized that the amount of macrophages relates to the overall plaque stability. As phagocytes, macrophages also act as recipients for nanoscale particles or structures. Administered gold nanoparticles are usually rabidly taken up by macrophages residing within arterial walls and can therefore be indirectly detected. A very sensitive strategy for probing gold nanoparticles is by utilizing surface enhanced Raman scattering (SERS). By modifying the surface of these particles with SERS active labels it is possible to generate highly specific signals that exhibit sensitivity comparable to fluorescence. SERS labeled gold nanoparticles have been synthesized and the uptake dynamics and efficiency on macrophages in cell cultures was investigated using Raman microscopic imaging. The results clearly show that nanoparticles are taken up by macrophages and support the potential of SERS spectroscopy for the detection of vulnerable plaques. Acknowledgements: Financial support from the Carl Zeiss Foundation is highly acknowledged. The project "Jenaer Biochip Initiative 2.0" (03IPT513Y) within the framework "InnoProfile Transfer - Unternehmen Region" is supported by the Federal Ministry of Education and Research, Germany (BMBF).
Mandell, Michael A.
2017-01-01
In most natural infections or after recovery, small numbers of Leishmania parasites remain indefinitely in the host. Persistent parasites play a vital role in protective immunity against disease pathology upon reinfection through the process of concomitant immunity, as well as in transmission and reactivation, yet are poorly understood. A key question is whether persistent parasites undergo replication, and we devised several approaches to probe the small numbers in persistent infections. We find two populations of persistent Leishmania major: one rapidly replicating, similar to parasites in acute infections, and another showing little evidence of replication. Persistent Leishmania were not found in “safe” immunoprivileged cell types, instead residing in macrophages and DCs, ∼60% of which expressed inducible nitric oxide synthase (iNOS). Remarkably, parasites within iNOS+ cells showed normal morphology and genome integrity and labeled comparably with BrdU to parasites within iNOS− cells, suggesting that these parasites may be unexpectedly resistant to NO. Nonetheless, because persistent parasite numbers remain roughly constant over time, their replication implies that ongoing destruction likewise occurs. Similar results were obtained with the attenuated lpg2− mutant, a convenient model that rapidly enters a persistent state without inducing pathology due to loss of the Golgi GDP mannose transporter. These data shed light on Leishmania persistence and concomitant immunity, suggesting a model wherein a parasite reservoir repopulates itself indefinitely, whereas some progeny are terminated in antigen-presenting cells, thereby stimulating immunity. This model may be relevant to understanding immunity to other persistent pathogen infections. PMID:28096392
Doctor says you are cured, but you still feel the pain. Borrelia DNA persistence in Lyme disease.
Cervantes, Jorge
Lyme disease is a zoonosis caused by infection with Borrelia burgdorferi (Bb). A great amount of research has attempted to elucidate the mechanisms by which Bb causes inflammation and chronic symptomatology in some patients. Patients often seek unconventional treatments that lack scientific evidence, as medical care is unable to effectively explain and treat their illness. Bb-DNA can persist for long periods of time in some individuals, even after antibiotic therapy. Herein, scientific rationale is presented for a new therapeutic approach against remaining bacterial DNA, and/or increasing the ability of human macrophages to remove extracellular Bb DNA. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Malakoplakia mimics urinary bladder cancer: a case report.
Ristić-Petrović, Ana; Stojnev, Slavica; Janković-Velicković, Ljubinka; Marjanović, Goran
2013-06-01
Malakoplakia is an unusual and very rare chronic inflammatory disease. In bladder especially it can mimic malignancy and lead to serious misdiagnosis. We presented a case of a middle-aged woman with persistent macrohematuria and cystoscopically polypoid bladder mass that resembled a neoplastic process. The final diagnosis was based on cystoscopic biopsy and microscopic findings of acidophilic, foamy histiocytes with the presence of Michaelis-Gutmann inclusions which are characteristic for diagnosis of malakoplakia. Immunohistochemistry confirmed diagnosis by demonstrating CD68-positive macrophages. Urinary bladder malakoplakia should be considered in patients with persistent urinary tract infections and tumor mass at cystoscopy. Early identification with prompt antibiotic treatment can be helpful in avoiding unnecessary surgical interventions and in preventing development of possible complications.
[Regulatory effect of bone marrow mesenchymal stem cells on polarization of macrophages].
Hou, Y; Zhou, X; Cai, W L; Guo, C C; Han, Y
2017-04-20
Objective: To examine the regulatory effect of bone marrow mesenchymal stem cells (BM-MSCs) on the polarization of bone marrow-derived macrophages, and to provide a theoretical support for the application of mesenchymal stem cells in the treatment of liver fibrosis. Methods: MSCs and macrophages were first isolated from the bone marrow of mice. Macrophages were polarized to M1 macrophages with lipopolysaccharide (LPS) and interferon-γ (IFN-γ), and to M2 macrophages with interleukin-4 (IL-4). The macrophages were then co-cultured with BM-MSCs in a Transwell for 24 h, and changes in the percentages of M1 and M2 macrophages were examined using flow cytometry. The mRNA levels of the M1 macrophage-associated cytokines, tumor necrosis factor-α (TNF-α) and interleukin-23a (IL-23a), and M2 macrophage-associated molecules, arginase-1 (Arg-1) and CD163, were measured by real-time quantitative PCR. The two samples were compared using the t test, and P < 0.05 was considered as statistically significant. Results: Flow cytometry showed that the percentage of M1 macrophages was significantly lower in the (macrophage + LPS + IFN-γ + BM-MSC) co-culture group than in the (macrophage + LPS + IFN-γ) group (62.5% ± 4.6% vs 86.6% ± 6.9%, t = 5.034, P = 0.0073). In addition, the relative mRNA expression of TNF-α and IL-23a was also significantly reduced in the co-culture group compared with those in the macrophage control group as measured by RT-qPCR ( t = 11.57 and 10.57, respectively, P < 0.05). Compared with that in the macrophage control group, the percentage of M2 macrophages in the (macrophage+BM-MSC) co-culture group was significantly increased (89.5% ± 5.8% vs 70.1% ± 6.3%, t = 3.924, P = 0.0172), along with significantly elevated relative mRNA expression of Arg1 (14.35±1.05 vs 1.00±0.03, t = 21.96, P < 0.05) and CD163 (3.04 ± 0.27 vs 1.00 ± 0.03, t = 13.14, P < 0.05). Conclusion: BM-MSCs can inhibit LPS + IFN-γ-induced polarization to M1 macrophages and promote polarization to M2 macrophages through the release of paracrine factors.
Furci, Lucinda; Scarlatti, Gabriella; Burastero, Samuele; Tambussi, Giuseppe; Colognesi, Claudia; Quillent, Caroline; Longhi, Renato; Loverro, Patrizia; Borgonovo, Barbara; Gaffi, Davide; Carrow, Emily; Malnati, Mauro; Lusso, Paolo; Siccardi, Antonio G.; Lazzarin, Adriano; Beretta, Alberto
1997-01-01
Despite repeated exposure to HIV-1, certain individuals remain persistently uninfected. Such exposed uninfected (EU) people show evidence of HIV-1–specific T cell immunity and, in rare cases, selective resistance to infection by macrophage-tropic strains of HIV-1. The latter has been associated with a 32–base pair deletion in the C–C chemokine receptor gene CCR-5, the major coreceptor of macrophage-tropic strains of HIV-1. We have undertaken an analysis of the HIV-specific T cell responses in 12 EU individuals who were either homozygous for the wild-type CCR-5 allele or heterozygous for the deletion allele (CCR-5Δ32). We have found evidence of an oligoclonal T cell response mediated by helper T cells specific for a conserved region of the HIV-1 envelope. These cells produce very high levels of C–C chemokines when stimulated by the specific antigen and suppress selectively the replication of macrophage-tropic, but not T cell–tropic, strains of HIV-1. These chemokine-producing helper cells may be part of a protective immune response that could be potentially exploited for vaccine development. PMID:9236198
Gautam, Uma S.; Foreman, Taylor W.; Bucsan, Allison N.; Veatch, Ashley V.; Alvarez, Xavier; Adekambi, Toidi; Golden, Nadia A.; Gentry, Kaylee M.; Doyle-Meyers, Lara A.; Didier, Peter J.; Blanchard, James L.; Kousoulas, K. Gus; Lackner, Andrew A.; Kalman, Daniel; Rengarajan, Jyothi; Khader, Shabaana A.; Kaushal, Deepak
2018-01-01
Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB. PMID:29255022
Prince, Lynne R; Maxwell, Nicola C; Gill, Sharonjit K; Dockrell, David H; Sabroe, Ian; McGreal, Eamon P; Kotecha, Sailesh; Whyte, Moira K
2014-01-01
The etiology of persistent lung inflammation in preterm infants with chronic lung disease of prematurity (CLD) is poorly characterized, hampering efforts to stratify prognosis and treatment. Airway macrophages are important innate immune cells with roles in both the induction and resolution of tissue inflammation. To investigate airway innate immune cellular phenotypes in preterm infants with respiratory distress syndrome (RDS) or CLD. Bronchoalveolar lavage (BAL) fluid was obtained from term and preterm infants requiring mechanical ventilation. BAL cells were phenotyped by flow cytometry. Preterm birth was associated with an increase in the proportion of non-classical CD14(+)/CD16(+) monocytes on the day of delivery (58.9 ± 5.8% of total mononuclear cells in preterm vs 33.0 ± 6.1% in term infants, p = 0.02). Infants with RDS were born with significantly more CD36(+) macrophages compared with the CLD group (70.3 ± 5.3% in RDS vs 37.6 ± 8.9% in control, p = 0.02). At day 3, infants born at a low gestational age are more likely to have greater numbers of CD14(+) mononuclear phagocytes in the airway (p = 0.03), but fewer of these cells are functionally polarized as assessed by HLA-DR (p = 0.05) or CD36 (p = 0.05) positivity, suggesting increased recruitment of monocytes or a failure to mature these cells in the lung. These findings suggest that macrophage polarization may be affected by gestational maturity, that more immature macrophage phenotypes may be associated with the progression of RDS to CLD and that phenotyping mononuclear cells in BAL could predict disease outcome.
Yu, Zhaoxiao; Zhang, Chenhui; Zhou, Mingliang; Li, Qiming; Li, Hui; Duan, Wei; Li, Xue; Feng, Yonghong; Xie, Jianping
2017-09-01
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a formidable threat to global public health. The successful intracellular persistence of M. tuberculosis significantly contributes to the intractability of tuberculosis. Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are mycobacterial exclusive protein families that widely reported to be involved in the bacterial virulence, physiology and interaction with host. Rv2770c (PPE44), a predicted virulence factor, was up-regulated upon the infected guinea pig lungs. To investigate the role of Rv2770c, we heterologously expressed the PPE44 in the nonpathogenic fast-growing M. smegmatis strain. Subcellular location analysis demonstrated that Rv2770c is a cell wall associated protein, suggestive of a potential candidate involved in host-pathogen interaction. The Rv2770c can enhance M. smegmatis survival within macrophages and under stresses such as H 2 O 2 , SDS, diamide exposure, and low pH condition. M. smegmatis expressing Rv2770c is more virulent as testified by the increased death of macrophages and the increased expression of interlukin-6 (IL-6) and interlukin-12p40 (IL-12p40). Moreover, Rv2770c altered the secretion of IL-6 and IL-12p40 of macrophages via NF-κB, ERK1/2 and p38 MAPK axis. Taken together, this study implicated that Rv2770c was a virulent factor actively engaged in the interaction with host macrophage. Copyright © 2017. Published by Elsevier B.V.
Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye
2014-12-01
Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these results suggest that VDAC1 plays a crucial role in ALA-SDT-induced THP-1 macrophages apoptosis, and targeting VDAC1 is a potential way regulating macrophages apoptosis, a finding that may be relevant to therapeutic strategies against atherosclerosis.
Alonso-Hearn, Marta; Abendaño, Naiara; Ruvira, Maria A.; Aznar, Rosa; Landin, Mariana; Juste, Ramon A.
2017-01-01
Johne's disease is a chronic granulomatous enteritis of ruminants caused by the intracellular bacterium Mycobacterium avium subsp. paratuberculosis (Map). We previously demonstrated that Map isolates from sheep persisted within host macrophages in lower CFUs than cattle isolates after 7 days of infection. In the current study, we hypothesize that these phenotypic differences between Map isolates may be driven be the fatty acids (FAs) present on the phosphadidyl-1-myo-inositol mannosides of the Map cell wall that mediate recognition by the mannose receptors of host macrophages. FAs modifications may influence Map's envelope fluidity ultimately affecting pathogenicity. To test this hypothesis, we investigated the responses of two Map isolates from cattle (K10 isolate) and sheep (2349/06-1) to the bovine and ovine macrophage environment by measuring the FAs content of extracellular and intracellular bacteria. For this purpose, macrophages cell lines of bovine (BOMAC) and ovine (MOCL-4) origin were infected with the two isolates of Map for 4 days at 37°C. The relative FAs composition of the two isolates recovered from infected BOMAC and MOCL-4 cells was determined by gas chromatography and compared with that of extracellular bacteria and that of bacteria grown in Middlebrook 7H9 medium. Using this approach, we demonstrated that the FAs composition of extracellular and 7H9-grown bacteria was highly conserved within each Map isolate, and statistically different from that of intracellular bacteria. Analysis of FAs composition from extracellular bacteria enabled the distinction of the two Map strains based on the presence of the tuberculostearic acid (18:0 10Me) exclusively in the K10 strain of Map. In addition, significant differences in the content of Palmitic acid and cis-7 Palmitoleic acid between both isolates harvested from the extracellular environment were observed. Once the infection established itself in BOMAC and MOCL-4 cells, the FAs profiles of both Map isolates appeared conserved. Our results suggest that the FAs composition of Map might influence its recognition by macrophages and influence the survival of the bacillus within host macrophages. PMID:28377904
VIP impairs acquisition of the macrophage proinflammatory polarization profile.
Carrión, Mar; Pérez-García, Selene; Martínez, Carmen; Juarranz, Yasmina; Estrada-Capetillo, Lizbeth; Puig-Kröger, Amaya; Gomariz, Rosa P; Gutiérrez-Cañas, Irene
2016-12-01
This study tested the hypothesis that vasoactive intestinal peptide (VIP) is able to modify the macrophage inflammatory profile, thus supporting its therapeutic role in autoimmune diseases. Macrophages are innate immune cells that display a variety of functions and inflammatory profiles in response to the environment that critically controls their polarization. Deregulation between the pro- and anti-inflammatory phenotypes has been involved in different pathologies. Rheumatoid arthritis (RA) is an autoimmune disease, in which macrophages are considered central effectors of synovial inflammation, displaying a proinflammatory profile. VIP is a pleiotropic neuropeptide with proven anti-inflammatory actions. As modulation of the macrophage phenotype has been implicated in the resolution of inflammatory diseases, we evaluated whether VIP is able to modulate human macrophage polarization. In vitro-polarized macrophages by GM-CSF (GM-MØ), with a proinflammatory profile, expressed higher levels of VIP receptors, vasoactive intestinal polypeptide receptors 1 and 2 (VPAC1 and VPAC2, respectively), than macrophages polarized by M-CSF (M-MØ) with anti-inflammatory activities. RA synovial macrophages, according to their GM-CSF-like polarization state, expressed both VPAC1 and VPAC2. In vitro-generated GM-MØ exposed to VIP exhibited an up-regulation of M-MØ gene marker expression, whereas their proinflammatory cytokine profile was reduced in favor of an anti-inflammatory function. Likewise, in GM-MØ, generated in the presence of VIP, VIP somehow changes the macrophages physiology profile to a less-damaging phenotype. Therefore, these results add new value to VIP as an immunomodulatory agent on inflammatory diseases. © Society for Leukocyte Biology.
Tellechea, Mónica; Buxadé, Maria; Tejedor, Sonia; Aramburu, Jose; López-Rodríguez, Cristina
2018-01-01
Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions. Copyright © 2017 by The American Association of Immunologists, Inc.
Popi, Ana Flavia; Osugui, Lika; Perez, Katia Regina; Longo-Maugéri, Ieda Maria; Mariano, Mario
2012-01-01
The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP), and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/-)) mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11) that is often found in B-1 cells. These results strongly suggest that op/op((-/-)) peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of the LPS-elicited peritoneal macrophage population.
Kim, Jong-Seok; Kim, Woo Sik; Lee, Keehoon; Won, Choul-Jae; Kim, Jin Man; Eum, Seok-Yong; Koh, Won-Jung; Shin, Sung Jae
2013-01-01
Two closely related bacterial species, Segniliparus rotundus and Segniliparus rugosus, have emerged as important human pathogens, but little is known about the immune responses they elicit or their comparative pathophysiologies. To determine the virulence and immune responses of the two species, we compared their abilities to grow in phagocytic and non-phagocytic cells. Both species maintained non-replicating states within A549 epithelial cells. S. rugosus persisted longer and multiplied more rapidly inside murine bone marrow-derived macrophages (BMDMs), induced more pro-inflammatory cytokines, and induced higher levels of macrophage necrosis. Activation of BMDMs by both species was mediated by toll-like receptor 2 (TLR2), followed by mitogen-activated protein kinases (MAPK) and nuclear factor κB (NF-κB) signaling pathways, indicating a critical role for TLR2 in Segniliparus-induced macrophage activation. S. rugosus triggered faster and stronger activation of MAPK signaling and IκB degradation, indicating that S. rugosus induces more pro-inflammatory cytokines than S. rotundus. Multifocal granulomatous inflammations in the liver and lung were observed in mice infected with S. rugosus, but S. rotundus was rapidly cleared from all organs tested within 15 days post-infection. Furthermore, S. rugosus induced faster infiltration of innate immune cells such as neutrophils and macrophages to the lung than S. rotundus. Our results suggest that S. rugosus is more virulent and induces a stronger immune response than S. rotundus.
Kodani, Mio; Fukui, Hirokazu; Tomita, Toshihiko; Oshima, Tadayuki; Watari, Jiro; Miwa, Hiroto
2018-06-01
Irritable bowel syndrome (IBS) frequently occurs after infectious colitis or inflammatory bowel disease in patients with complete remission. This suggests that post‑inflammation‑associated factors may serve a role in the pathophysiology of IBS; however, the mechanism responsible remains unclear. In the present study, the involvement of macrophages and mast cells in alteration of gastrointestinal (GI) motility was investigated in mice in the remission stage after acute colitis. C57BL/6 mice were administered 2% dextran sulfate sodium in drinking water for 5 days and their intestinal tissues were investigated at intervals for up to 24 weeks. Expression of the mannose receptor (MR) and tryptase was examined by immunohistochemistry, and the GI transit time (GITT) was measured by administration of carmine red solution. A minimal degree of inflammatory cell infiltration persisted in the colon and also the small intestine of mice in remission after colitis and the GITT was significantly shorter. The number of muscularis MR‑positive macrophages was significantly increased in the small intestine of mice in remission after colitis and negatively correlated with GITT. Furthermore, results indicated that the number of muscularis tryptase‑positive mast cells was significantly increased throughout the intestine of mice during the healing process after colitis and was positively correlated with GITT. The present findings suggested an increased number of macrophages and/or mast cells in the intestinal muscular layer may be associated with the pathophysiology of GI dysmotility after colitis.
Mycobacterium tuberculosis Hip1 modulates macrophage responses through proteolysis of GroEL2.
Naffin-Olivos, Jacqueline L; Georgieva, Maria; Goldfarb, Nathan; Madan-Lala, Ranjna; Dong, Lauren; Bizzell, Erica; Valinetz, Ethan; Brandt, Gabriel S; Yu, Sarah; Shabashvili, Daniil E; Ringe, Dagmar; Dunn, Ben M; Petsko, Gregory A; Rengarajan, Jyothi
2014-05-01
Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb.
Mycobacterium tuberculosis Hip1 Modulates Macrophage Responses through Proteolysis of GroEL2
Madan-Lala, Ranjna; Dong, Lauren; Bizzell, Erica; Valinetz, Ethan; Brandt, Gabriel S.; Yu, Sarah; Shabashvili, Daniil E.; Ringe, Dagmar; Dunn, Ben M.; Petsko, Gregory A.; Rengarajan, Jyothi
2014-01-01
Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb. PMID:24830429
Xiong, Yong-lao; Liang, Xiao-yan; Yang, Xing; Li, Yi; Wei, Li-na
2011-11-01
The purpose of this study was to investigate chronic inflammation in the peripheral blood and ovaries of patients with polycystic ovary syndrome (PCOS). 86 PCOS patients and 50 controls were randomly enrolled in the study. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), blood routine test, lipid metabolism index, inflammation cytokines were detected. Ovary samples from PCOS group and control group were collected for macrophage and lymphocyte immunohistochemistry staining. Patients with PCOS showed significantly higher serum CRP, lymphocytes, monocytes, eosinophilic granulocytes, as well as higher triglycerides (TG), TNF-α and IL-6. PCOS ovary had greater number of macrophages and lymphocytes immersed throughout. In conclusion, PCOS patients exhibited hypertriglyceridemia and chronic inflammation, with elevated peripheral lymphocytes, monocytes, and eosinophilic granulocytes. In addition, their ovaries showed persistent chronic inflammation with a larger number of inflammatory cells immersed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.
Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia
2017-10-01
Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.
5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells.
von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard
2013-12-01
Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages. © 2013.
Green, Chad E; Liu, Tiffany; Montel, Valerie; Hsiao, Gene; Lester, Robin D; Subramaniam, Shankar; Gonias, Steven L; Klemke, Richard L
2009-08-21
Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1alpha and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis.
2014-01-01
Introduction The mortality of rhabdomyolysis-induced acute kidney injury (AKI) is still high, as there is no effective therapy. It has been shown that bone marrow-derived mesenchymal stem cells (MSCs) can induce M2 macrophages, which mediate MSC protection in other experimental inflammation-related organ injury. This study was designed to investigate the protective effects of macrophage activation in MSC therapy of rhabdomyolysis-induced AKI. Methods MSCs were injected into glycerol-induced rhabdomyolysis mice. Renal injury was evaluated using the serum creatinine, urea nitrogen, renal pathology and acute tubular necrosis score. The distribution of MSCs was detected using two-photon fluorescence confocal imaging. Immunofluorescence of anti-F4/80 and anti-CD206 was performed to determine macrophages and M2 macrophages in the tissues of the kidney, and M2 macrophage infiltration was also evaluated using western blotting analyses. After depletion of macrophages using clodronate liposomes at the phase of kidney repair, renal injury was re-evaluated. RAW 264.7 macrophages were incubated with lipopolysaccharide and co-cultured with MSCs and subsequently visualised using immunofluorescence staining and flow cytometry analysis. Finally, disparate phenotype macrophages, including normal macrophages (M0), lipopolysaccharide-stimulated macrophages (M1), and MSC-co-cultured macrophages (M2), were infused into mice with AKI, which were pre-treated with liposomal clodronate. Results In vivo infusion of MSCs protected AKI mice from renal function impairment and severe tubular injury, which was accompanied by a time-dependent increase in CD206-positive M2 macrophage infiltration. In addition, depleting macrophages with clodronate delayed restoration of AKI. In vitro, macrophages co-cultured with MSCs acquired an anti-inflammatory M2 phenotype, which was characterised by an increased expression of CD206 and the secretory cytokine interleukin (IL)-10. The concentrations of IL-10, IL-6 and tumor necrosis factor α were evaluated using enzyme-linked immunosorbent assay. Furthermore, macrophage-depleted mice with intramuscular injection of glycerol were subjected to a single injection of different types of RAW 264.7 macrophages. Mice infused with M0 and M1 macrophages suffered a more severe histological and functional injury, while mice transfused with MSC-educated M2 macrophages showed reduced kidney injury. Conclusions Our findings suggested that MSCs can ameliorate rhabdomyolysis-induced AKI via the activation of macrophages to a trophic M2 phenotype, which supports the transition from tubule injury to tubule repair. PMID:24961539
Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud
2013-01-01
We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974
Organizing and Typing Persistent Objects Within an Object-Oriented Framework
NASA Technical Reports Server (NTRS)
Madany, Peter W.; Campbell, Roy H.
1991-01-01
Conventional operating systems provide little or no direct support for the services required for an efficient persistent object system implementation. We have built a persistent object scheme using a customization and extension of an object-oriented operating system called Choices. Choices includes a framework for the storage of persistent data that is suited to the construction of both conventional file system and persistent object system. In this paper we describe three areas in which persistent object support differs from file system support: storage organization, storage management, and typing. Persistent object systems must support various sizes of objects efficiently. Customizable containers, which are themselves persistent objects and can be nested, support a wide range of object sizes in Choices. Collections of persistent objects that are accessed as an aggregate and collections of light-weight persistent objects can be clustered in containers that are nested within containers for larger objects. Automated garbage collection schemes are added to storage management and have a major impact on persistent object applications. The Choices persistent object store provides extensible sets of persistent object types. The store contains not only the data for persistent objects but also the names of the classes to which they belong and the code for the operation of the classes. Besides presenting persistent object storage organization, storage management, and typing, this paper discusses how persistent objects are named and used within the Choices persistent data/file system framework.
Almeida, T F; Palma, L C; Mendez, L C; Noronha-Dutra, A A; Veras, P S T
2012-10-01
CBA mouse macrophages effectively control Leishmania major infection, yet are permissive to Leishmania amazonensis. It has been established that some Leishmania species are destroyed by reactive oxygen species (ROS). However, other species of Leishmania exhibit resistance to ROS or even down-modulate ROS production. We hypothesized that L. amazonensis-infected macrophages reduce ROS production soon after parasite-cell interaction. Employing a highly sensitive analysis technique based on chemiluminescence, the production of superoxide (O(·-)(2)) and hydrogen peroxide (H(2)O(2)) by L. major- or L. amazonensis-infected CBA macrophages were measured. L. major induces macrophages to release levels of (O(·-)(2)) 3·5 times higher than in uninfected cells. This (O(·-)(2)) production is partially dependent on NADPH oxidase (NOX) type 2. The level of accumulated H(2)O(2) is 20 times higher in L. major-than in L. amazonensis-infected cells. Furthermore, macrophages stimulated with L. amazonensis release amounts of ROS similar to uninfected cells. These findings support previous studies showing that CBA macrophages are effective in controlling L. major infection by a mechanism dependent on both (O(·-)(2)) production and H(2)O(2) generation. Furthermore, these data reinforce the notion that L. amazonensis survive inside CBA macrophages by reducing ROS production during the phagocytic process. © 2012 Blackwell Publishing Ltd.
Developmental origins of NAFLD: a womb with a clue
Wesolowski, Stephanie R.; El Kasmi, Karim C.; Jonscher, Karen R.; Friedman, Jacob E.
2017-01-01
Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation. PMID:27780972
NASA Astrophysics Data System (ADS)
Kaindl, T.; Oelke, J.; Pasc, A.; Kaufmann, S.; Konovalov, O. V.; Funari, S. S.; Engel, U.; Wixforth, A.; Tanaka, M.
2010-07-01
Highly uniform, strongly correlated domains of synthetically designed lipids can be incorporated into supported lipid membranes. The systematic characterization of membranes displaying a variety of domains revealed that the equilibrium size of domains significantly depends on the length of fluorocarbon chains, which can be quantitatively interpreted within the framework of an equivalent dipole model. A mono-dispersive, narrow size distribution of the domains enables us to treat the inter-domain correlations as two-dimensional colloidal crystallization and calculate the potentials of mean force. The obtained results demonstrated that both size and inter-domain correlation can precisely be controlled by the molecular structures. By coupling α-D-mannose to lipid head groups, we studied the adhesion behavior of the murine macrophage (J774A.1) on supported membranes. Specific adhesion and spreading of macrophages showed a clear dependence on the density of functional lipids. The obtained results suggest that such synthetic lipid domains can be used as a defined platform to study how cells sense the size and distribution of functional molecules during adhesion and spreading.
Ongoing cell death and immune influences on regeneration in the vestibular sensory organs
NASA Technical Reports Server (NTRS)
Warchol, M. E.; Matsui, J. I.; Simkus, E. L.; Ogilive, J. M.
2001-01-01
Hair cells in the vestibular organs of birds have a relatively short life span. Mature hair cells appear to die spontaneously and are then quickly replaced by new hair cells that arise from the division of epithelial supporting cells. A similar regenerative mechanism also results in hair cell replacement after ototoxic damage. The cellular basis of hair cell turnover in the avian ear is not understood. We are investigating the signaling pathways that lead to hair cell death and the relationship between ongoing cell death and cell production. In addition, work from our lab and others has demonstrated that the avian inner ear contains a resident population of macrophages and that enhanced numbers of macrophages are recruited to sites of hair cells lesions. Those observations suggest that macrophages and their secretory products (cytokines) may be involved in hair cell regeneration. Consistent with that suggestion, we have found that treatment with the anti-inflammatory drug dexamethasone reduces regenerative cell proliferation in the avian ear, and that certain macrophage-secreted cytokines can influence the proliferation of vestibular supporting cells and the survival of statoacoustic neurons. Those results suggest a role for the immune system in the process of sensory regeneration in the inner ear.
Vatter, Heather A.; Donaldson, Eric F.; Huynh, Jeremy; Rawlings, Stephanie; Manoharan, Minsha; Legasse, Alfred; Planer, Shannon; Dickerson, Mary F.; Lewis, Anne D.; Colgin, Lois M.A.; Axthelm, Michael K.; Pecotte, Jerilyn K.; Baric, Ralph S.; Wong, Scott W.; Brinton, Margo A.
2014-01-01
Simian hemorrhagic fever virus is an arterivirus that naturally infects species of African nonhuman primates causing acute or persistent asymptomatic infections. Although it was previously estimated that 1% of baboons are SHFV-positive, more than 10% of wild-caught and captive-bred baboons tested were SHFV positive and the infections persisted for more than 10 years with detectable virus in the blood (100–1000 genomes/ml). The sequences of two baboon SHFV isolates that were amplified by a single passage in primary macaque macrophages showed a very high degree of identity to each other as well as to the genome of SHFV-LVR, a laboratory strain isolated in the 1960s. Infection of Japanese macaques with 100 PFU of a baboon isolate consistently produced high level viremia, pro-inflammatory cytokines, elevated tissue factor levels and clinical signs indicating coagulation defects. The baboon virus isolate provides a reliable BSL2 model of viral hemorrhagic fever disease in macaques. PMID:25463617
Vatter, Heather A; Donaldson, Eric F; Huynh, Jeremy; Rawlings, Stephanie; Manoharan, Minsha; Legasse, Alfred; Planer, Shannon; Dickerson, Mary F; Lewis, Anne D; Colgin, Lois M A; Axthelm, Michael K; Pecotte, Jerilyn K; Baric, Ralph S; Wong, Scott W; Brinton, Margo A
2015-01-01
Simian hemorrhagic fever virus is an arterivirus that naturally infects species of African nonhuman primates causing acute or persistent asymptomatic infections. Although it was previously estimated that 1% of baboons are SHFV-positive, more than 10% of wild-caught and captive-bred baboons tested were SHFV positive and the infections persisted for more than 10 years with detectable virus in the blood (100-1000 genomes/ml). The sequences of two baboon SHFV isolates that were amplified by a single passage in primary macaque macrophages had a high degree of identity to each other as well as to the genome of SHFV-LVR, a laboratory strain isolated in the 1960s. Infection of Japanese macaques with 100PFU of a baboon isolate consistently produced high level viremia, pro-inflammatory cytokines, elevated tissue factor levels and clinical signs indicating coagulation defects. The baboon virus isolate provides a reliable BSL2 model of viral hemorrhagic fever disease in macaques. Copyright © 2014 Elsevier Inc. All rights reserved.
Nanomedicine Strategies to Target Tumor-Associated Macrophages
Binnemars-Postma, Karin; Storm, Gert; Prakash, Jai
2017-01-01
In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail. PMID:28471401
Analysis of Ebola Virus Entry Into Macrophages
Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B.; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A.; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike
2015-01-01
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)–driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. PMID:25877552
Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny
Tan, Shumin; Liu, Yancheng
2018-01-01
To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment. PMID:29500179
Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge
Gonzalez-Pena, Dianelys; Nixon, Scott E.; O’Connor, Jason C.; Southey, Bruce R.; Lawson, Marcus A.; McCusker, Robert H.; Borras, Tania; Machuca, Debbie; Hernandez, Alvaro G.; Dantzer, Robert; Kelley, Keith W.; Rodriguez-Zas, Sandra L.
2016-01-01
Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis. PMID:26959683
Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge.
Gonzalez-Pena, Dianelys; Nixon, Scott E; O'Connor, Jason C; Southey, Bruce R; Lawson, Marcus A; McCusker, Robert H; Borras, Tania; Machuca, Debbie; Hernandez, Alvaro G; Dantzer, Robert; Kelley, Keith W; Rodriguez-Zas, Sandra L
2016-01-01
Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis.
Christophi, George P; Panos, Michael; Hudson, Chad A; Christophi, Rebecca L; Gruber, Ross C; Mersich, Akos T; Blystone, Scott D; Jubelt, Burk; Massa, Paul T
2009-07-01
Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that may be important in controlling macrophage-mediated demyelination in MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu
2011-06-15
Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of themore » proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce macrophage ROS production and expression of COX-2, chemokines, and RAGE. > Hepatocyte-mediated macrophage activation involves p44/42 MAP kinase signaling. > HMGB1 is released from acetaminophen-injured hepatocytes and contributes to macrophage activation.« less
Schiechl, Gabriela; Bauer, Bernhard; Fuss, Ivan; Lang, Sven A.; Moser, Christian; Ruemmele, Petra; Rose-John, Stefan; Neurath, Markus F.; Geissler, Edward K.; Schlitt, Hans-Jürgen; Strober, Warren; Fichtner-Feigl, Stefan
2011-01-01
Patients with prolonged ulcerative colitis (UC) frequently develop colorectal adenocarcinoma for reasons that are not fully clear. To analyze inflammation-associated colonic tumorigenesis, we developed a chronic form of oxazolone-induced colitis in mice that, similar to UC, was distinguished by the presence of IL-13–producing NKT cells. In this model, the induction of tumors using azoxymethane was accompanied by the coappearance of F4/80+CD11bhighGr1low M2 macrophages, cells that undergo polarization by IL-13 and are absent in tumors that lack high level IL-13 production. Importantly, this subset of macrophages was a source of tumor-promoting factors, including IL-6. Similar to dextran sodium sulfate–induced colitis, F4/80+CD11bhighGr1intermediate macrophages were present in the mouse model of chronic oxazolone-induced colitis and may influence tumor development through production of TGF-β1, a cytokine that inhibits tumor immunosurveillance. Finally, while robust chronic oxazolone-induced colitis developed in myeloid differentiation primary response gene 88–deficient (Myd88–/–) mice, these mice did not support tumor development. The inhibition of tumor development in Myd88–/– mice correlated with cessation of IL-6 and TGF-β1 production by M2 and F4/80+CD11bhighGr1intermediate macrophages, respectively, and was reversed by exogenous IL-6. These data show that an UC-like inflammation may facilitate tumor development by providing a milieu favoring development of MyD88-dependent tumor-supporting macrophages. PMID:21519141
Slight, J.; Nicholson, W. J.; Mitchell, C. G.; Pouilly, N.; Beswick, P. H.; Seaton, A.; Donaldson, K.
1996-01-01
BACKGROUND: Aspergillus fumigatus is a fungus that grows on dead and decaying organic matter in the environment and whose spores are present ubiquitously in the air. The fungus causes a range of diseases in the human lung. A study was undertaken to demonstrate and partially characterise an inhibitor of the macrophage respiratory burst from the surface of A fumigatus spores that could be an important factor in allowing the fungus to colonise the lung. METHODS: The spore-derived inhibitor of the respiratory burst of rat alveolar macrophages, as measured by generation of superoxide anion, was demonstrated in Hank's balanced salt solution extracts of four clinical isolates and an environmental isolate of A fumigatus. The time course of the release of the inhibitor into aqueous solution was assessed and the cytotoxic potential of the spore-derived inhibitor towards macrophages was tested using the propidium iodide method. An oxygen electrode was used to confirm the superoxide anion measurements. Molecular weight cutoff filters were used to determine the size of the inhibitor as assessed in the respiratory burst assay and also by its ability to inhibit macrophage spreading on glass. The crude diffusate from the spore surface was fractionated by reversed phase high pressure liquid chromatography (HPLC) and the fractions analysed for inhibitory activity, protein, and carbohydrate content. RESULTS: A small molecular weight (< 10 kD) heat stable toxin was released from the spores of clinical and environmental isolates of A fumigatus within minutes of deposition in aqueous solution. The key effect of the toxin demonstrated here was its ability to inhibit the oxidative burst of macrophages as measured by superoxide anion release. The inhibition was not due to cell death or detectable loss of membrane integrity as measured by permeability to propidium iodide. The toxin was not a scavenger of superoxide anion. Oxygen electrode studies suggested indirectly that the inhibitor acted to inhibit the assembly of the macrophage NADPH-oxidase complex. Fractions of < 10 kD also inhibited the spreading of alveolar macrophages, confirming that the toxin had an additional effect on macrophages that leads to loss of adherence or impairment of cytoskeletal function. In reversed phase HPLC fractions the inhibitory activity eluted with an associated carbohydrate, although the exact chemical nature of the toxin remains to be elucidated. CONCLUSIONS: This spore toxin may, through its ability to diffuse rapidly into lung lining fluid, diminish the macrophage respiratory burst and play a part in allowing A fumigatus to persist in the lung and manifest its well known pathogenic effects. Future research will be focused on further molecular characterisation of the toxin and elaboration of the effect of the toxin on intracellular signalling pathways involved in the activation of alveolar macrophages. PMID:8733491
Yi, Yanjie; Isaacs, Stuart N.; Williams, Darlisha A.; Frank, Ian; Schols, Dominique; De Clercq, Erik; Kolson, Dennis L.; Collman, Ronald G.
1999-01-01
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4). PMID:10438797
Lin, Gloria H Y; Chai, Vien; Lee, Vivian; Dodge, Karen; Truong, Tran; Wong, Mark; Johnson, Lisa D; Linderoth, Emma; Pang, Xinli; Winston, Jeff; Petrova, Penka S; Uger, Robert A; Viller, Natasja N
2017-01-01
Tumor-associated macrophages (TAMs) are heterogeneous and can adopt a spectrum of activation states between pro-inflammatory and pro-tumorigenic in response to the microenvironment. We have previously shown that TTI-621, a soluble SIRPαFc fusion protein that blocks the CD47 "do-not-eat" signal, promotes tumor cell phagocytosis by IFN-γ-primed macrophages. To assess the impact of CD47 blockade on diverse types of macrophages that are found within the tumor microenvironment, six different polarized human macrophage subsets (M(-), M(IFN-γ), M(IFN-γ+LPS), M(IL-4), M(HAGG+IL-1β), M(IL-10 + TGFβ)) with distinct cell surface markers and cytokine profiles were generated. Blockade of CD47 using TTI-621 significantly increased phagocytosis of lymphoma cells by all macrophage subsets, with M(IFN-γ), M(IFN-γ+LPS) and M(IL-10 + TGFβ) macrophages having the highest phagocytic response. TTI-621-mediated phagocytosis involves macrophage expression of both the low- and high-affinity Fcγ receptors II (CD32) and I (CD64), respectively. Moreover, macrophages with lower phagocytic capabilities (M(-), M(IL-4), M(HAGG+IL-1β)) could readily be re-polarized into highly phagocytic macrophages using various cytokines or TLR agonists. In line with the in vitro study, we further demonstrate that TTI-621 can trigger phagocytosis of tumor cells by diverse subsets of isolated mouse TAMs ex vivo. These data suggest that TTI-621 may be efficacious in triggering the destruction of cancer cells by a diverse population of TAMs found in vivo and support possible combination approaches to augment the activity of CD47 blockade.
Chai, Vien; Lee, Vivian; Dodge, Karen; Truong, Tran; Wong, Mark; Johnson, Lisa D.; Linderoth, Emma; Pang, Xinli; Winston, Jeff; Petrova, Penka S.; Viller, Natasja N.
2017-01-01
Tumor-associated macrophages (TAMs) are heterogeneous and can adopt a spectrum of activation states between pro-inflammatory and pro-tumorigenic in response to the microenvironment. We have previously shown that TTI-621, a soluble SIRPαFc fusion protein that blocks the CD47 “do-not-eat” signal, promotes tumor cell phagocytosis by IFN-γ-primed macrophages. To assess the impact of CD47 blockade on diverse types of macrophages that are found within the tumor microenvironment, six different polarized human macrophage subsets (M(-), M(IFN-γ), M(IFN-γ+LPS), M(IL-4), M(HAGG+IL-1β), M(IL-10 + TGFβ)) with distinct cell surface markers and cytokine profiles were generated. Blockade of CD47 using TTI-621 significantly increased phagocytosis of lymphoma cells by all macrophage subsets, with M(IFN-γ), M(IFN-γ+LPS) and M(IL-10 + TGFβ) macrophages having the highest phagocytic response. TTI-621-mediated phagocytosis involves macrophage expression of both the low- and high-affinity Fcγ receptors II (CD32) and I (CD64), respectively. Moreover, macrophages with lower phagocytic capabilities (M(-), M(IL-4), M(HAGG+IL-1β)) could readily be re-polarized into highly phagocytic macrophages using various cytokines or TLR agonists. In line with the in vitro study, we further demonstrate that TTI-621 can trigger phagocytosis of tumor cells by diverse subsets of isolated mouse TAMs ex vivo. These data suggest that TTI-621 may be efficacious in triggering the destruction of cancer cells by a diverse population of TAMs found in vivo and support possible combination approaches to augment the activity of CD47 blockade. PMID:29084248
Macrophages and depression - a misalliance or well-arranged marriage?
Roman, Adam; Kreiner, Grzegorz; Nalepa, Irena
2013-01-01
Depression is a severe medical condition with multiple manifestations and diverse, largely unknown etiologies. The immune system, particularly macrophages, plays an important role in the pathology of the illness. Macrophages represent a heterogeneous population of immune cells that is dispersed throughout the body. The central nervous system is populated by several types of macrophages, including microglia, perivascular cells, meningeal and choroid plexus macrophages and pericytes. These cells occupy different brain compartments and have various functions. Under basal conditions, brain macrophages support the proper function of neural cells, organize and preserve the neuronal network and maintain homeostasis. As cells of the innate immune system, they recognize and react to any disturbances in homeostasis, eliminating pathogens or damaged cells, terminating inflammation and proceeding to initiate tissue reconstruction. Disturbances in these processes result in diverse pathologies. In particular, tissue stress or malfunction, both in the brain and in the periphery, produce sustained inflammatory states, which may cause depression. Excessive release of proinflammatory mediators is responsible for alterations of neurotransmitter systems and the occurrence of depressive symptoms. Almost all antidepressive drugs target monoamine or serotonin neurotransmission and also have anti-inflammatory or immunosuppressive properties. In addition, non-pharmacological treatments, such as electroconvulsive shock, can also exert anti-inflammatory effects. Recent studies have shown that antidepressive therapies can affect the functional properties of peripheral and brain macrophages and skew them toward the anti-inflammatory M2 phenotype. Because macrophages can affect outcome of inflammatory diseases, alleviate sickness behavior and improve cognitive function, it is possible that the effects of antidepressive treatments may be, at least in part, mediated by changes in macrophage activity.
Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.
2013-01-01
Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498
2016-08-24
its persistence in vitro, its survival in macrophages, and its cell numbers in the spleen and lungs of guinea pigs (Tiwari et al. 2015). Similarly...O. P. Narayan, and R. Singh. 2015. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs . Nat. Commun... production (Kwan et al. 2013; Wood et al. 2013). The first TA operons were discovered over 30 years ago (Ogura and Hiraga 1983) for stabilizing low
Raggi, Chiara; Correnti, Margherita; Sica, Antonio; Andersen, Jesper B.; Cardinale, Vincenzo; Alvaro, Domenico; Chiorino, Giovanna; Forti, Elisa; Glaser, Shannon; Alpini, Gianfranco; Destro, Annarita; Sozio, Francesca; Di Tommaso, Luca; Roncalli, Massimo; Banales, Jesus M.; Coulouarn, Cédric; Bujanda, Luis; Torzilli, Guido; Invernizzi, Pietro
2017-01-01
Background & Aims A therapeutically challenging subset of cells, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may actively shape their tumor-supportive immune niche. Methods CCA cells were cultured in 3D conditions to generate spheres. CCA sphere analysis of in vivo tumorigenic-engraftment in immune-deficient mice and molecular characterization was performed. The in vitro and in vivo effect of CCA spheres on macrophage precursors was tested after culturing healthy donor cluster of differentiation (CD)14+ with CCA-sphere conditioned medium. Results CCA spheres engrafted in 100% of transplanted mice and revealed a significant 20.3-fold increase in tumor-initiating fraction (p = 0.0011) and a sustained tumorigenic potential through diverse xenograft-generations. Moreover, CCA spheres were highly enriched for CSC, liver cancer and embryonic stem cell markers both at gene and protein levels. Next, fluorescence-activated cell sorting analysis showed that in the presence of CCA sphere conditioned medium, CD14+ macrophages expressed key markers (CD68, CD115, human leukocyte antigen-D related, CD206) indicating that CCA sphere conditioned medium was a strong macrophage-activator. Gene expression profile of CCA sphere activated macrophages revealed unique molecular TAM-like features confirmed by high invasion capacity. Also, freshly isolated macrophages from CCA resections recapitulated a similar molecular phenotype of in vitro-educated macrophages. Consistent with invasive features, the largest CD163+ set was found in the tumor front of human CCA specimens (n = 23) and correlated with a high level of serum cancer antigen 19.9 (n = 17). Among mediators released by CCA spheres, only interleukin (IL)13, IL34 and osteoactivin were detected and further confirmed in CCA patient sera (n = 12). Surprisingly, a significant association of IL13, IL34 and osteoactivin with sphere stem-like genes was provided by a CCA database (n = 104). In vitro combination of IL13, IL34, osteoactivin was responsible for macrophage-differentiation and invasion, as well as for in vivo tumor-promoting effect. Conclusion CCA-CSCs molded a specific subset of stem-like associated macrophages thus providing a rationale for a synergistic therapeutic strategy for CCA-disease. Lay summary Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of the key dysregulated immune subtypes responsible for cooperating in supporting tumor initiation may facilitate the development of new therapeutic approaches. Considering that human cholangiocarcinoma represents a clinical emergency, it is essential to move to predictive models in order to understand the adaptive process of macrophage component (imprinting, polarization and maintenance) engaged by tumor stem-like compartment. PMID:27593106
Detection of AIDS Virus in Macrophages in Brain Tissue from AIDS Patients with Encephalopathy
NASA Astrophysics Data System (ADS)
Koenig, Scott; Gendelman, Howard E.; Orenstein, Jan M.; Canto, Mauro C.; Pezeshkpour, Gholam H.; Yungbluth, Margaret; Janotta, Frank; Aksamit, Allen; Martin, Malcolm A.; Fauci, Anthony S.
1986-09-01
One of the common neurological complications in patients with the acquired immune deficiency syndrome (AIDS) is a subacute encephalopathy with progressive dementia. By using the techniques of cocultivation for virus isolation, in situ hybridization, immunocytochemistry, and transmission electron microscopy, the identity of an important cell type that supports replication of the AIDS retrovirus in brain tissue was determined in two affected individuals. These cells were mononucleated and multinucleated macrophages that actively synthesized viral RNA and produced progeny virions in the brains of the patients. Infected brain macrophages may serve as a reservoir for virus and as a vehicle for viral dissemination in the infected host.
Guo, Xiaofan; Xue, Hao; Shao, Qianqian; Wang, Jian; Guo, Xing; Chen, Xi; Zhang, Jinsen; Xu, Shugang; Li, Tong; Zhang, Ping; Gao, Xiao; Qiu, Wei
2016-01-01
Tumor-associated macrophages (TAMs) are enriched in gliomas and help create a tumor-immunosuppressive microenvironment. A distinct M2-skewed type of macrophages makes up the majority of glioma TAMs, and these cells exhibit pro-tumor functions. Gliomas contain large hypoxic areas, and the presence of a correlation between the density of M2-polarized TAMs and hypoxic areas suggests that hypoxia plays a supportive role during TAM recruitment and induction. Here, we investigated the effects of hypoxia on human macrophage recruitment and M2 polarization. We also investigated the influence of the HIF inhibitor acriflavine (ACF) on M2 TAM infiltration and tumor progression in vivo. We found that hypoxia increased periostin (POSTN) expression in glioma cells and promoted the recruitment of macrophages. Hypoxia-inducible POSTN expression was increased by TGF-α via the RTK/PI3K pathway, and this effect was blocked by treating hypoxic cells with ACF. We also demonstrated that both a hypoxic environment and hypoxia-treated glioma cell supernatants were capable of polarizing macrophages toward a M2 phenotype. ACF partially reversed the M2 polarization of macrophages by inhibiting the upregulation of M-CSFR in macrophages and TGF-β in glioma cells under hypoxic conditions. Administering ACF also ablated tumor progression in vivo. Our findings reveal a mechanism that underlies hypoxia-induced TAM enrichment and M2 polarization and suggest that pharmacologically inhibiting HIFs may reduce M2-polarized TAM infiltration and glioma progression. PMID:27602954
Coates, Philip J; Rundle, Jana K; Lorimore, Sally A; Wright, Eric G
2008-01-15
In addition to the directly mutagenic effects of energy deposition in DNA, ionizing radiation is associated with a variety of untargeted and delayed effects that result in ongoing bone marrow damage. Delayed effects are genotype dependent with CBA/Ca mice, but not C57BL/6 mice, susceptible to the induction of damage and also radiation-induced acute myeloid leukemia. Because macrophages are a potential source of ongoing damaging signals, we have determined their gene expression profiles and we show that bone marrow-derived macrophages show widely different intrinsic expression patterns. The profiles classify macrophages derived from CBA/Ca mice as M1-like (pro-inflammatory) and those from C57BL/6 mice as M2-like (anti-inflammatory); measurements of NOS2 and arginase activity in normal bone marrow macrophages confirm these findings. After irradiation in vivo, but not in vitro, C57BL/6 macrophages show a reduction in NOS2 and an increase in arginase activities, indicating a further M2 response, whereas CBA/Ca macrophages retain an M1 phenotype. Activation of specific signal transducer and activator of transcription signaling pathways in irradiated hemopoietic tissues supports these observations. The data indicate that macrophage activation is not a direct effect of radiation but a tissue response, secondary to the initial radiation exposure, and have important implications for understanding genotype-dependent responses and the mechanisms of the hemotoxic and leukemogenic consequences of radiation exposure.
Bácsi, A; Aranyosi, J; Beck, Z; Ebbesen, P; Andirkó, I; Szabó, J; Lampé, L; Kiss, J; Gergely, L; Tóth, F D
1999-10-01
Although syncytiotrophoblast (ST) cells can be infected by human cytomegalovirus (HCMV), in vitro studies have indicated that ST cells do not support the complete viral reproductive cycle, or HCMV replication may occur in less than 3% of ST cells. The present study tested the possibility that placental macrophages might enhance activation of HCMV carried in ST cells and, further, that infected ST cells would be capable of transmitting virus to neighboring macrophages. For this purpose, we studied HCMV replication in ST cells grown alone or cocultured with uninfected placental macrophages. Our results demonstrated that HCMV gene expression in ST cells was markedly upregulated by coculture with macrophages, resulting in release of substantial amounts of infectious virus from HCMV-infected ST cells. After having become permissive for viral replication, ST cells delivered HCMV to the cocultured macrophages, as evidenced by detection of virus-specific antigens in these cells. The stimulatory effect of coculture on HCMV gene expression in ST cells was mediated by marked interleukin-8 (IL-8) and transforming growth factor-beta1 (TGF-beta1) release from macrophages, an effect caused by contact between the different placental cells. Our findings indicate an interactive role for the ST layer and placental macrophages in the dissemination of HCMV among placental tissue. Eventually, these interactions may contribute to the transmission of HCMV from mother to the fetus.
Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y.; Fong, Guo-Hua; Sakmar, Thomas P.; Rafii, Shahin; Ding, Bi-Sen
2016-01-01
Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin–dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladaptbed hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis. PMID:26779814
Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy
Gill, Alexander J.; Kolson, Dennis L.
2013-01-01
The persistence of chronic immune activation and oxidative stress in human immunodeficiency virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is effective in treating immune-mediated diseases and it also has potential applications to limiting HIV disease progression. Among the relevant effects of DMF and its active metabolite monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes. Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also suppress neurotoxin production from HIV-infected macrophages, which drives CNS neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV infection through its effective suppression of immune activation, oxidative stress, HIV replication, and macrophage-associated neuronal injury. PMID:23971529
Histoplasma capsulatum Depends on De Novo Vitamin Biosynthesis for Intraphagosomal Proliferation
Garfoot, Andrew L.; Zemska, Olga
2014-01-01
During infection of the mammalian host, Histoplasma capsulatum yeasts survive and reside within macrophages of the immune system. Whereas some intracellular pathogens escape into the host cytosol, Histoplasma yeasts remain within the macrophage phagosome. This intracellular Histoplasma-containing compartment imposes nutritional challenges for yeast growth and replication. We identified and annotated vitamin synthesis pathways encoded in the Histoplasma genome and confirmed by growth in minimal medium that Histoplasma yeasts can synthesize all essential vitamins with the exception of thiamine. Riboflavin, pantothenate, and biotin auxotrophs of Histoplasma were generated to probe whether these vitamins are available to intracellular yeasts. Disruption of the RIB2 gene (riboflavin biosynthesis) prevented growth and proliferation of yeasts in macrophages and severely attenuated Histoplasma virulence in a murine model of respiratory histoplasmosis. Rib2-deficient yeasts were not cleared from lung tissue but persisted, consistent with functional survival mechanisms but inability to replicate in vivo. In addition, depletion of Pan6 (pantothenate biosynthesis) but not Bio2 function (biotin synthesis) also impaired Histoplasma virulence. These results indicate that the Histoplasma-containing phagosome is limiting for riboflavin and pantothenate and that Histoplasma virulence requires de novo synthesis of these cofactor precursors. Since mammalian hosts do not rely on vitamin synthesis but instead acquire essential vitamins through diet, vitamin synthesis pathways represent druggable targets for therapeutics. PMID:24191299
Bruno, Federica; Castelli, Germano; Vitale, Fabrizio; Giacomini, Elisa; Roberti, Marinella; Colomba, Claudia; Cascio, Antonio; Tolomeo, Manlio
2018-01-01
Most of the antileishmanial modern therapies are not satisfactory due to high toxicity or emergence of resistance and high cost of treatment. Previously, we observed that two compounds of a small library of trans-stilbene and terphenyl derivatives, ST18 and TR4, presented the best activity and safety profiles against Leishmania infantum promastigotes and amastigotes. In the present study we evaluated the effects of ST18 and the TR4 in 6 different species of Leishmania and the modifications induced by these two compounds in the production of 8 different cytokines from infected macrophages. We observed that TR4 was potently active in all Leishmania species tested in the study showing a leishmanicidal activity higher than that of ST18 and meglumine antimoniate in the most of the species. Moreover, TR4 was able to decrease the levels of IL-10, a cytokine able to render the host macrophage inactive allowing the persistence of parasites inside its phagolysosome, and increase the levels of IL-1β, a cytokine important for host resistance to Leishmania infection by inducible iNOS-mediated production of NO, and IL-18, a cytokine implicated in the development of Th1-type immune response. Copyright © 2017 Elsevier Inc. All rights reserved.
Nagaraja, Sridevi; Reifman, Jaques; Mitrophanov, Alexander Y.
2015-01-01
Timely resolution of inflammation is critical for the restoration of homeostasis in injured or infected tissue. Chronic inflammation is often characterized by a persistent increase in the concentrations of inflammatory cells and molecular mediators, whose distinct amount and timing characteristics offer an opportunity to identify effective therapeutic regulatory targets. Here, we used our recently developed computational model of local inflammation to identify potential targets for molecular interventions and to investigate the effects of individual and combined inhibition of such targets. This was accomplished via the development and application of computational strategies involving the simulation and analysis of thousands of inflammatory scenarios. We found that modulation of macrophage influx and efflux is an effective potential strategy to regulate the amount of inflammatory cells and molecular mediators in both normal and chronic inflammatory scenarios. We identified three molecular mediators − tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and the chemokine CXCL8 − as potential molecular targets whose individual or combined inhibition may robustly regulate both the amount and timing properties of the kinetic trajectories for neutrophils and macrophages in chronic inflammation. Modulation of macrophage flux, as well as of the abundance of TNF-α, TGF-β, and CXCL8, may improve the resolution of chronic inflammation. PMID:26633296
Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y; Fong, Guo-Hua; Sakmar, Thomas P; Rafii, Shahin; Ding, Bi-Sen
2016-02-01
Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin-dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladapted hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis.
Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.
2012-01-01
Our previous work has shown that coarse particulate matter (PM10-2.5) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At one hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2 pg/mL to 83.9±12.2 pg/mL was observed a half-hour after PM instillation. By one hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. PMID:23142465
Williams, Keisha M; Franzi, Lisa M; Last, Jerold A
2013-01-01
Our previous work has shown that coarse particulate matter (PM(10-2.5)) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2pg/mL to 83.9±12.2pg/mL was observed a half-hour after PM instillation. By 1hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. Copyright © 2012 Elsevier Inc. All rights reserved.
Boss, Marcel; Kemmerer, Marina; Brüne, Bernhard; Namgaladze, Dmitry
2015-06-01
Macrophages, converted to lipid-loaded foam cells, accumulate in atherosclerotic lesions. Macrophage lipid metabolism is transcriptionally regulated by peroxisome proliferator-activated receptor gamma (PPARγ), and its target gene fatty acid binding protein 4 (FABP4) accelerates the progression of atherosclerosis in mouse models. Since expression of PPARγ and FABP4 is increased upon interleukin-4 (IL-4)-induced macrophage polarization, we aimed to investigate the role of FABP4 in human IL-4-polarized macrophages. We investigated the impact of FABP4 on PPARγ-dependent gene expression in primary human monocytes differentiated to macrophages in the presence of IL-4. IL-4 increased PPARγ and its target genes lipoprotein lipase (LPL) and FABP4 compared to non-polarized or LPS/interferon γ-stimulated macrophages. LPL expression correlated with increased very low density lipoprotein (VLDL)-induced triglyceride accumulation in IL-4-polarized macrophages, which was sensitive to inhibition of lipolysis or PPARγ antagonism. Inhibition of FABP4 during differentiation using chemical inhibitors BMS309403 and HTS01037 or FABP4 siRNA decreased the expression of FABP4 and LPL, and reduced lipid accumulation in macrophages treated with VLDL. FABP4 or LPL inhibition also reduced the expression of inflammatory mediators chemokine (C-C motif) ligand 2 (CCL2) and IL-1β in response to VLDL in IL-4-polarized macrophages. PPARγ luciferase reporter assays confirmed that FABP4 supports fatty acid-induced PPARγ activation. Our findings suggest that IL-4 induces a lipid-accumulating macrophage phenotype by activating PPARγ and subsequent LPL expression. Inhibition of FABP4 decreases VLDL-induced foam cell formation, indicating that anti-atherosclerotic effects achieved by FABP4 inhibition in mouse models may be feasible in the human system as well. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Melo, Mariane B; Nguyen, Quynh P; Cordeiro, Cynthia; Hassan, Musa A; Yang, Ninghan; McKell, Renée; Rosowski, Emily E; Julien, Lindsay; Butty, Vincent; Dardé, Marie-Laure; Ajzenberg, Daniel; Fitzgerald, Katherine; Young, Lucy H; Saeij, Jeroen P J
2013-01-01
Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.
Macrophage polarization at the crossroad between HIV-1 infection and cancer development.
Alfano, Massimo; Graziano, Francesca; Genovese, Luca; Poli, Guido
2013-06-01
Mononuclear phagocytes play a fundamental role in the tissue homeostasis and innate defenses against viruses and other microbial pathogens. In addition, they are likely involved in several steps of cancer development. Circulating monocytes and tissue macrophages are target cells of viral infections, including human cytomegalovirus, human herpes virus 8, and the HIV, and alterations of their functional and phenotypic properties are likely involved in many tissue-degenerative diseases, including atherosclerosis and cancer. Different tissue microenvironments as well as their pathological alterations can profoundly affect the polarization state of macrophages toward the extreme phenotypes conventionally termed M1 and M2. Thus, targeting disease-associated macrophages is considered a potential approach particularly in the context of cancer-associated tumor-associated macrophages, supporting malignant cell growth and progression toward a metastatic phenotype. Of note is the fact that tumor-associated macrophages isolated from established tumors display phenotypic and functional features similar to those of in vitro-derived M2-polarized cells. Concerning HIV-1 infection, viral eradication strategies in the context of combination antiretroviral therapy should also consider the possibility to deplete, at least transiently, certain mononuclear phagocytes subsets, although the possibility of distinguishing those that are either infected or pathogenically altered remains a goal of future research. In the present review, we will focus on the recent literature concerning the role of human macrophage polarization in viral infections and cancer.
Meeker, Rick B.; Bragg, D. C.; Poulton, Winona; Hudson, Lola
2013-01-01
Although lentiviruses such as human, feline and simian immunodeficiency viruses (HIV, FIV, SIV) rapidly gain access to cerebrospinal fluid (CSF), the mechanisms that control this entry are not well understood. One possibility is that the virus may be carried into the brain by immune cells that traffic across the blood–CSF barrier in the choroid plexus. Since few studies have directly examined macrophage trafficking across the blood–CSF barrier, we established transwell and explant cultures of feline choroid plexus epithelium and measured trafficking in the presence or absence of FIV. Macrophages in co-culture with the epithelium showed significant proliferation and robust trafficking that was dependent on the presence of epithelium. Macrophage migration to the apical surface of the epithelium was particularly robust in the choroid plexus explants where 3-fold increases were seen over the first 24 h. Addition of FIV to the cultures greatly increased the number of surface macrophages without influencing replication. The epithelium in the transwell cultures was also permissive to PBMC trafficking, which increased from 17 to 26% of total cells after exposure to FIV. Thus, the choroid plexus epithelium supports trafficking of both macrophages and PBMCs. FIV significantly enhanced translocation of macrophages and T cells indicating that the choroid plexus epithelium is likely to be an active site of immune cell trafficking in response to infection. PMID:22281685
Dohmen, Luuk C T; Navas, Adriana; Vargas, Deninson Alejandro; Gregory, David J; Kip, Anke; Dorlo, Thomas P C; Gomez, Maria Adelaida
2016-04-29
Within its mammalian host, Leishmania resides and replicates as an intracellular parasite. The direct activity of antileishmanials must therefore depend on intracellular drug transport, metabolism, and accumulation within the host cell. In this study, we explored the role of human macrophage transporters in the intracellular accumulation and antileishmanial activity of miltefosine (MLF), the only oral drug available for the treatment of visceral and cutaneous leishmaniasis (CL). Membrane transporter gene expression in primary human macrophages infected in vitro with Leishmania Viannia panamensis and exposed to MLF showed modulation of ABC and solute liquid carrier transporters gene transcripts. Among these, ABCA3, a lipid transporter, was significantly induced after exposure to MLF, and this induction was confirmed in primary macrophages from CL patients. Functional validation of MLF as a substrate for ABCA3 was performed by shRNA gene knockdown (KD) in THP-1 monocytes. Intracellular accumulation of radiolabeled MLF was significantly higher in ABCA3(KD) macrophages. ABCA3(KD) resulted in increased cytotoxicity induced by MLF exposure. ABCA3 gene expression inversely correlated with intracellular MLF content in primary macrophages from CL patients. ABCA3(KD) reduced parasite survival during macrophage infection with an L. V. panamensis strain exhibiting low in vitro susceptibility to MLF. Confocal microscopy showed ABCA3 to be located in the cell membrane of resting macrophages and in intracellular compartments in L. V. panamensis-infected cells. These results provide evidence of ABCA3 as an MLF efflux transporter in human macrophages and support its role in the direct antileishmanial effect of this alkylphosphocholine drug. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Westerterp, Marit; Murphy, Andrew J; Wang, Mi; Pagler, Tamara A; Vengrenyuk, Yuliya; Kappus, Mojdeh S; Gorman, Darren J; Nagareddy, Prabhakara R; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S; Welch, Carrie; Fisher, Edward A; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R
2013-05-24
Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.
Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu
2013-01-01
BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.
Wang, Ruhung; Lee, Michael; Kinghorn, Karina; Hughes, Tyler; Chuckaree, Ishwar; Lohray, Rishabh; Chow, Erik; Pantano, Paul; Draper, Rockford
2018-05-26
To understand the influence of carboxylation on the interaction of carbon nanotubes with cells, the amount of pristine multi-walled carbon nanotubes (P-MWNTs) or carboxylated multi-walled carbon nanotubes (C-MWNTs) coated with Pluronic ® F-108 that were accumulated by macrophages was measured by quantifying CNTs extracted from cells. Mouse RAW 264.7 macrophages and differentiated human THP-1 (dTHP-1) macrophages accumulated 80-100 times more C-MWNTs than P-MWNTs during a 24-h exposure at 37 °C. The accumulation of C-MWNTs by RAW 264.7 cells was not lethal; however, phagocytosis was impaired as subsequent uptake of polystyrene beads was reduced after a 20-h exposure to C-MWNTs. The selective accumulation of C-MWNTs suggested that there might be receptors on macrophages that bind C-MWNTs. The binding of C-MWNTs to macrophages was measured as a function of concentration at 4 °C in the absence of serum to minimize the potential interference by serum proteins or temperature-dependent uptake processes. The result was that the cells bound 8.7 times more C-MWNTs than P-MWNTs, consistent with the selective accumulation of C-MWNTs at 37 °C. In addition, serum strongly antagonized the binding of C-MWTS to macrophages, suggesting that serum contained inhibitors of binding. Moreover, inhibitors of class A scavenger receptor (SR-As) reduced the binding of C-MWNTs by about 50%, suggesting that SR-As contribute to the binding and endocytosis of C-MWNTs in macrophages but that other receptors may also be involved. Altogether, the evidence supports the hypothesis that macrophages contain binding sites selective for C-MWNTs that facilitate the high accumulation of C-MWNTs compared to P-MWNTs.
CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages.
Gleissner, Christian A; Shaked, Iftach; Erbel, Christian; Böckler, Dittmar; Katus, Hugo A; Ley, Klaus
2010-01-08
CXCL4 is a platelet-derived chemokine that promotes macrophage differentiation from monocytes. Deletion of the PF4 gene that encodes CXCL4 reduces atherosclerotic lesions in ApoE(-/-) mice. We sought to study effects of CXCL4 on macrophage differentiation with possible relevance for atherogenesis. Flow cytometry for expression of surface markers in macrophage colony-stimulating factor (M-CSF)- and CXCL4-induced macrophages demonstrated virtually complete absence of the hemoglobin scavenger receptor CD163 in CXCL4-induced macrophages. mRNA for CD163 was downregulated as early as 2 hours after CXCL4. CD163 protein reached a minimum after 3 days, which was not reversed by treatment of cells with M-CSF. The CXCL4 effect was entirely neutralized by heparin, which bound CXCL4 and prevented CXCL4 surface binding to monocytes. Pretreatment of cells with chlorate, which inhibits glycosaminoglycan synthesis, strongly inhibited CXCL4-dependent downregulation of CD163. Similar to recombinant CXCL4, releasate from human platelets also reduced CD163 expression. CXCL4-differentiated macrophages were unable to upregulate the atheroprotective enzyme heme oxygenase-1 at the RNA and protein level in response to hemoglobin-haptoglobin complexes. Immunofluorescence of human atherosclerotic plaques demonstrated presence of both CD68+CD163+ and CD68+CD163- macrophages. PF4 and CD163 gene expression within human atherosclerotic lesions were inversely correlated, supporting the in vivo relevance of CXCL4-induced downregulation of CD163. CXCL4 may promote atherogenesis by suppressing CD163 in macrophages, which are then unable to upregulate the atheroprotective enzyme heme oxygenase-1 in response to hemoglobin.
CXCL4 Downregulates the Atheroprotective Hemoglobin Receptor CD163 in Human Macrophages
Gleissner, Christian A.; Shaked, Iftach; Erbel, Christian; Böckler, Dittmar; Katus, Hugo A.; Ley, Klaus
2010-01-01
Rationale CXCL4 is a platelet-derived chemokine that promotes macrophage differentiation from monocytes. Deletion of the PF4 gene that encodes CXCL4 reduces atherosclerotic lesions in ApoE−/− mice. Objective We sought to study effects of CXCL4 on macrophage differentiation with possible relevance for atherogenesis. Methods and Results Flow cytometry for expression of surface markers in macrophage colony–stimulating factor (M-CSF)– and CXCL4-induced macrophages demonstrated virtually complete absence of the hemoglobin scavenger receptor CD163 in CXCL4-induced macrophages. mRNA for CD163 was downregulated as early as 2 hours after CXCL4. CD163 protein reached a minimum after 3 days, which was not reversed by treatment of cells with M-CSF. The CXCL4 effect was entirely neutralized by heparin, which bound CXCL4 and prevented CXCL4 surface binding to monocytes. Pretreatment of cells with chlorate, which inhibits glycosaminoglycan synthesis, strongly inhibited CXCL4-dependent downregulation of CD163. Similar to recombinant CXCL4, releasate from human platelets also reduced CD163 expression. CXCL4-differentiated macrophages were unable to upregulate the atheroprotective enzyme heme oxygenase-1 at the RNA and protein level in response to hemoglobin–haptoglobin complexes. Immunofluorescence of human atherosclerotic plaques demonstrated presence of both CD68+CD163+ and CD68+CD163− macrophages. PF4 and CD163 gene expression within human atherosclerotic lesions were inversely correlated, supporting the in vivo relevance of CXCL4-induced downregulation of CD163. Conclusions CXCL4 may promote atherogenesis by suppressing CD163 in macrophages, which are then unable to upregulate the atheroprotective enzyme heme oxygenase-1 in response to hemoglobin. PMID:19910578
Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages.
Ponnusamy, Duraisamy; Clinkenbeard, Kenneth D
2015-01-01
Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage associated stresses.
Collaborating with the enemy: function of macrophages in the development of neoplastic disease.
Eljaszewicz, Andrzej; Wiese, Małgorzata; Helmin-Basa, Anna; Jankowski, Michal; Gackowska, Lidia; Kubiszewska, Izabela; Kaszewski, Wojciech; Michalkiewicz, Jacek; Zegarski, Wojciech
2013-01-01
Due to the profile of released mediators (such as cytokines, chemokines, growth factors, etc.), neoplastic cells modulate the activity of immune system, directly affecting its components both locally and peripherally. This is reflected by the limited antineoplastic activity of the immune system (immunosuppressive effect), induction of tolerance to neoplastic antigens, and the promotion of processes associated with the proliferation of neoplastic tissue. Most of these responses are macrophages dependent, since these cells show proangiogenic properties, attenuate the adaptive response (anergization of naïve T lymphocytes, induction of Treg cell formation, polarization of immune response towards Th2, etc.), and support invasion and metastases formation. Tumor-associated macrophages (TAMs), a predominant component of leukocytic infiltrate, "cooperate" with the neoplastic tissue, leading to the intensified proliferation and the immune escape of the latter. This paper characterizes the function of macrophages in the development of neoplastic disease.
The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages
Daniel, Bence; Hah, Nasun; Horvath, Attila; Czimmerer, Zsolt; Poliska, Szilard; Gyuris, Tibor; Keirsse, Jiri; Gysemans, Conny; Van Ginderachter, Jo A.; Balint, Balint L.; Evans, Ronald M.; Barta, Endre; Nagy, Laszlo
2014-01-01
RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program. PMID:25030696
Bertani, Francesca R; Mozetic, Pamela; Fioramonti, Marco; Iuliani, Michele; Ribelli, Giulia; Pantano, Francesco; Santini, Daniele; Tonini, Giuseppe; Trombetta, Marcella; Businaro, Luca; Selci, Stefano; Rainer, Alberto
2017-08-21
The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs. M2 polarization by Principal Components Analysis (PCA). Following PCA, Linear Discriminant Analysis has been implemented for semi-automatic classification of macrophagic polarization from HSI data. Our results confirm the possibility to perform single-cell-level in vitro classification of M1 vs. M2 macrophages in a non-invasive and label-free manner with a high accuracy (above 98% for cells deriving from the same donor), supporting the idea of applying the technique to the study of complex interacting cellular systems, such in the case of tumour-immunity in vitro models.
Analysis of Ebola Virus Entry Into Macrophages.
Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike
2015-10-01
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)-driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Wising, Catharina; Mölne, Lena; Jonsson, Ing-Marie; Ahlman, Karin; Lagergård, Teresa
2005-05-01
Haemophilus ducreyi, the etiologic agent of the sexually transmitted disease chancroid, produces a cytolethal distending toxin (HdCDT) that inhibits cultured cell proliferation, leading to cell death. A rabbit model of dermal infection was used to investigate the roles of H. ducreyi bacteria and HdCDT in the development, clinical appearance, and persistence of infection. A non-toxin producing H. ducreyi strain, and for comparison purposes a non-capsulated Haemophilus influenzae strain, were inoculated intradermally, with and without co-administration of purified HdCDT. Co-administration of HdCDT resulted in significant aggravation of H. ducreyi-induced inflammatory lesions, and development of ulcers in rabbit skin. Less pronounced inflammatory lesions and lack of epithelial eruption were observed after inoculation with H. influenzae. Histopathological sections of the H. ducreyi-induced lesions, in both the presence and absence of HdCDT, showed dense infiltrates of the same type inflammatory cells, with the exception of a prominent endothelial cell proliferation noted in sections from lesions caused by H. ducreyi and toxin. Signs of chronic inflammation with involvement of T cells, macrophages, eosinophils, and granuloma formation were observed after H. ducreyi inoculation both with and without toxin. In conclusion, H. ducreyi causes a pronounced, chronic inflammation with involvement of T cells and macrophages, and in combination with HdCDT production of ulcers in the rabbit model. These pathogenic mechanisms may promote the development and persistence of chancroid ulcers.
Norrie gene product is necessary for regression of hyaloid vessels.
Ohlmann, Anne V; Adamek, Edith; Ohlmann, Andreas; Lütjen-Drecoll, Elke
2004-07-01
To investigate the nature and origin of the vitreous membranes in mice with knock-out of the Norrie gene product (ND mice). Eighty-two eyes of ND mice of different age groups (postnatal day [P]0-13 months) and 95 age-matched wild-type control mice were investigated. In vitreoretinal wholemounts and in sagittal sections, vessels and free cells were visualized by labeling for lectin. In addition, staining with a marker for macrophages (F4/80) and collagen XVIII/endostatin known to be involved in regression of hyaloid vessels was performed for light and electron microscopic investigations. Endostatin expression was confirmed by Western blot analysis. Wild-type controls showed the typical pattern of hyaloid vessels, their regression and concomitantly retinal vasculogenesis and angiogenesis. Hyaloid vessels all stained for endostatin, whereas retinal vessels remained unstained. In ND mice, 1 to 5 days after birth, the hyaloid and retinal vasculatures were comparable to that in control mice. The hyaloid vessels also stained for endostatin. Numerous F4/80-positive cells were present adjacent to the vessels. With increasing age, only a few connecting branches of the hyaloid vessels regressed. Even in old mice most of the hyaloid vessels persisted. The vessels still stained for endostatin. Retinal angiogenesis was impaired. Retrolental membranes in ND mice consist of persistent hyaloid vessels, indicating that the ND gene product is important for the process of regression of these vessels. The ND gene product neither influences endostatin expression nor the presence of macrophages.
Case of recurrent paracoccidioidomycosis in female. 10 years after initial treatment.
De Azevedo Izidoro, Ana Claudia Santos; Da Silva, Paulo Cesar; De Oliveira Ribas, Marina; De Azevedo, Luciana Reis; Machado, Maria Angela Naval; De Lima, Antonio Adilson Soares
2007-05-01
This report describes a case of recurrence of chronic paracoccidioidomycosis 10 years following the initial diagnosis. A 56-year-old female was admitted to the Dental Clinic of the Pontifical Catholic University of Paraná complaining of oral soreness. Mulberry-like ulcerations were observed on the gingiva, right labial comissura, and vermillion of the lip. The patient reported persistent chronic cough, weight loss, appetite loss and fever. The anamnesis revealed that the patient had developed and been treated for paracoccidioidomycosis 10 years earlier. A biopsy was performed and microscopic examination revealed microabscesses, collections of macrophages organized into granulomas, multinucleated giant cells and Paracoccidioides brasiliensis. The patient was treated with Itraconazole and, the oral lesions disappeared within 3 months. Persistent follow-up examination in patients with a history of paracoccidioidomycosis is essential in the management of this disease.
Colineau, Lucie; Clos, Joachim; Moon, Kyung-Mee; Foster, Leonard J; Reiner, Neil E
2017-06-01
Protozoa of the genus Leishmania infect macrophages in their mammalian hosts causing a spectrum of diseases known as the leishmaniases. The search for leishmania effectors that support macrophage infection is a focus of significant interest. One such candidate is leishmania chaperonin 10 (CPN10) which is secreted in exosomes and may have immunosuppressive properties. Here, we report for the first time that leishmania CPN10 localizes to the cytosol of infected macrophages. Next, we generated two genetically modified strains of Leishmania donovani (Ld): one strain overexpressing CPN10 (CPN10+++) and the second, a CPN10 single allele knockdown (CPN10+/-), as the null mutant was lethal. When compared with the wild-type (WT) parental strain, CPN10+/- Ld showed higher infection rates and parasite loads in human macrophages after 24 h of infection. Conversely, CPN10+++ Ld was associated with lower initial infection rates. This unexpected apparent gain-of-function for the knockdown could have been explained either by enhanced parasite internalization or by enhanced intracellular survival. Paradoxically, we found that CPN10+/- leishmania were more readily internalized than WT Ld, but also displayed significantly impaired intracellular survival. This suggests that leishmania CPN10 negatively regulates the rate of parasite uptake by macrophages while being required for intracellular survival. Finally, quantitative proteomics identified an array of leishmania proteins whose expression was positively regulated by CPN10. In contrast, many macrophage proteins involved in innate immunity were negatively regulated by CPN10. Taken together, these findings identify leishmania CPN10 as a novel effector with broad based effects on macrophage cell regulation and parasite survival.
Sanjurjo, Lucía; Amézaga, Núria; Vilaplana, Cristina; Cáceres, Neus; Marzo, Elena; Valeri, Marta; Cardona, Pere-Joan; Sarrias, Maria-Rosa
2013-01-01
Apoptosis inhibitor of macrophages (AIM), a scavenger protein secreted by tissue macrophages, is transcriptionally regulated by the nuclear receptor Liver X Receptor (LXR) and Retinoid X Receptor (RXR) heterodimer. Given that LXR exerts a protective immune response against M. tuberculosis, here we analyzed whether AIM is involved in this response. In an experimental murine model of tuberculosis, AIM serum levels peaked dramatically early after infection with M. tuberculosis, providing an in vivo biological link to the disease. We therefore studied the participation of AIM in macrophage response to M. tuberculosis in vitro. For this purpose, we used the H37Rv strain to infect THP-1 macrophages transfected to stably express AIM, thereby increasing infected macrophage survival. Furthermore, the expression of this protein enlarged foam cell formation by enhancing intracellular lipid content. Phagocytosis assays with FITC-labeled M. tuberculosis bacilli indicated that this protein was not involved in bacterial uptake; however, AIM expression decreased the number of intracellular cfus by up to 70% in bacterial killing assays, suggesting that AIM enhances macrophage mycobactericidal activity. Accordingly, M. tuberculosis-infected AIM-expressing cells upregulated the production of reactive oxygen species. Moreover, real-time PCR analysis showed increased mRNA levels of the antimicrobial peptides cathelicidin and defensin 4B. These increases were concomitant with greater cellular concentrations of the autophagy-related molecules Beclin 1 and LC3II, as well as enhanced acidification of mycobacterial phagosomes and LC3 co-localization. In summary, our data support the notion that AIM contributes to key macrophage responses to M. tuberculosis. PMID:24223991
Bechor, Sapir; Nachmias, Dikla; Elia, Natalie; Haim, Yulia; Vatarescu, Maayan; Leikin-Frenkel, Alicia; Gericke, Martin; Tarnovscki, Tanya; Las, Guy; Rudich, Assaf
2017-09-01
Obesity promotes the biogenesis of adipose tissue (AT) foam cells (FC), which contribute to AT insulin resistance. Autophagy, an evolutionarily-conserved house-keeping process, was implicated in cellular lipid handling by either feeding and/or degrading lipid-droplets (LDs). We hypothesized that beyond phagocytosis of dead adipocytes, AT-FC biogenesis is supported by the AT microenvironment by regulating autophagy. Non-polarized ("M0") RAW264.7 macrophages exposed to AT conditioned media (AT-CM) exhibited a markedly enhanced LDs biogenesis rate compared to control cells (8.3 Vs 0.3 LDs/cells/h, p<0.005). Autophagic flux was decreased by AT-CM, and fluorescently following autophagosomes over time revealed ~20% decline in new autophagic vesicles' formation rate, and 60-70% decrease in autophagosomal growth rate, without marked alternations in the acidic lysosomal compartment. Suppressing autophagy by either targeting autophagosome formation (pharmacologically, with 3-methyladenine or genetically, with Atg12±Atg7-siRNA), decreased the rate of LD formation induced by oleic acid. Conversely, interfering with late autophago-lysosomal function, either pharmacologically with bafilomycin-A1, chloroquine or leupeptin, enhanced LD formation in macrophages without affecting LD degradation rate. Similarly enhanced LD biogenesis rate was induced by siRNA targeting Lamp-1 or the V-ATPase. Collectively, we propose that secreted products from AT interrupt late autophagosome maturation in macrophages, supporting enhanced LDs biogenesis and AT-FC formation, thereby contributing to AT dysfunction in obesity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Chen, Cang; Li, Xiuhua; Ge, Guo; Liu, Jingwei; Biju, K C; Laing, Suzette D; Qian, Yusheng; Ballard, Cori; He, Zhixu; Masliah, Eliezer; Clark, Robert A; O'Connor, Jason C; Li, Senlin
2018-04-03
Glial cell line-derived neurotrophic factor (GDNF) is the most potent neuroprotective agent tested in cellular and animal models of Parkinson's disease (PD). However, CNS delivery of GDNF is restricted by the blood-brain barrier (BBB). Using total body irradiation as transplant preconditioning, we previously reported that hematopoietic stem cell (HSC) transplantation (HSCT)-based macrophage-mediated gene therapy could deliver GDNF to the brain to prevent degeneration of nigrostriatal dopamine (DA) neurons in an acute murine neurotoxicity model. Here, we validate this therapeutic approach in a chronic progressive PD model - the MitoPark mouse, with head shielding to avoid inducing neuroinflammation and compromising BBB integrity. Bone marrow HSCs were transduced ex vivo with a lentiviral vector expressing macrophage promoter-driven GDNF and transplanted into MitoPark mice exhibiting well developed PD-like impairments. Transgene-expressing macrophages infiltrated the midbrains of MitoPark mice, but not normal littermates, and delivered GDNF locally. Macrophage GDNF delivery markedly improved both motor and non-motor symptoms, and dramatically mitigated the loss of both DA neurons in the substantia nigra and tyrosine hydroxylase-positive axonal terminals in the striatum. Our data support further development of this HSCT-based macrophage-mediated GDNF delivery approach in order to address the unmet need for a disease-modifying therapy for PD.
Bobryshev, Yuri V; Orekhov, Alexander N; Killingsworth, Murray C; Lu, Jinhua
2011-01-01
In in vitro experiments, Chlamydia pneumoniae has been shown to infect macrophages and to accelerate foam cell formation. It has been hypothesized that the C. pneumoniae infection affects foam cell formation by suppressing the expression of liver X receptors (LXR), but whether such an event occurs in human atherosclerosis is not known. In this study we examined carotid artery segments, obtained by endarterectomy, in which the presence of C. pneumoniae was confirmed by both polymerase chain reaction and immunohistochemistry. The expression of LXR-α in macrophages infected with C. pneumoniae and macrophages that were not infected was compared using a quantitative immunohistochemical analysis. The analysis revealed a 2.2-fold reduction in the expression of LXR-α in C. pneumoniae-infected cells around the lipid cores in atherosclerotic plaques. In the cytoplasm of laser-capture microdissected cells that were immunopositive for C. pneumoniae, electron microscopy demonstrated the presence of structures with the appearance of elementary, reticulate and aberrant bodies of C. pneumoniae. We conclude that LXR-α expression is reduced in C. pneumoniae-infected macrophages in human atherosclerotic lesions which supports the hypothesis that C. pneumoniae infection might suppress LXR expression in macrophages transforming into foam cells. Copyright © 2011 S. Karger AG, Basel.
Mussar, Kristin; Tucker, Andrew; McLennan, Linsey; Gearhart, Addie; Jimenez-Caliani, Antonio J; Cirulli, Vincenzo; Crisa, Laura
2014-01-01
Macrophages populate the mesenchymal compartment of all organs during embryogenesis and have been shown to support tissue organogenesis and regeneration by regulating remodeling of the extracellular microenvironment. Whether this mesenchymal component can also dictate select developmental decisions in epithelia is unknown. Here, using the embryonic pancreatic epithelium as model system, we show that macrophages drive the epithelium to execute two developmentally important choices, i.e. the exit from cell cycle and the acquisition of a migratory phenotype. We demonstrate that these developmental decisions are effectively imparted by macrophages activated toward an M2 fetal-like functional state, and involve modulation of the adhesion receptor NCAM and an uncommon "paired-less" isoform of the transcription factor PAX6 in the epithelium. Over-expression of this PAX6 variant in pancreatic epithelia controls both cell motility and cell cycle progression in a gene-dosage dependent fashion. Importantly, induction of these phenotypes in embryonic pancreatic transplants by M2 macrophages in vivo is associated with an increased frequency of endocrine-committed cells emerging from ductal progenitor pools. These results identify M2 macrophages as key effectors capable of coordinating epithelial cell cycle withdrawal and cell migration, two events critical to pancreatic progenitors' delamination and progression toward their differentiated fates.
Forestier, Claire-Lise; Machu, Christophe; Loussert, Celine; Pescher, Pascale; Späth, Gerald F
2011-04-21
Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry. Copyright © 2011 Elsevier Inc. All rights reserved.
Herb, Marc; Gluschko, Alexander; Schramm, Michael
2018-06-20
The macroautophagic/autophagic machinery cannot only target cell-endogenous components but also intracellular pathogenic bacteria such as Listeria monocytogenes. Listeria are targeted both by canonical autophagy and by a noncanonical form of autophagy referred to as LC3-associated phagocytosis (LAP). The molecular mechanisms involved and whether these processes contribute to anti-listerial immunity or rather provide Listeria with a replicative niche for persistent infection, however, remained unknown. Recently, using an in vivo mouse infection model, we have been able to demonstrate that Listeria in tissue macrophages are targeted exclusively by LAP. Furthermore, our data show that LAP is required for killing of Listeria by macrophages and thereby contributes to anti-listerial immunity of mice, whereas canonical autophagy is completely dispensable. Moreover, we have elucidated the molecular mechanisms that trigger LAP of Listeria and identified the integrin ITGAM-ITGB2/Mac-1/CR3/integrin α M ß 2 as the receptor that initiates LAP in response to Listeria infection.
Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells.
Hansen, Erik C; Ransom, Monica; Hesselberth, Jay R; Hosmane, Nina N; Capoferri, Adam A; Bruner, Katherine M; Pollack, Ross A; Zhang, Hao; Drummond, Michael Bradley; Siliciano, Janet M; Siliciano, Robert; Stivers, James T
2016-09-20
We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection.
[Bronchial reactivity and mucosal bioamines as criteria for acute bronchitis becoming chronic].
Artem'eva, E G; Latfullin, I A
2002-01-01
To study bronchial reactivity and sensitivity with consideration of histamine, serotonin and catecholamines concentration in bronchial mucosa in patients with acute bronchitis (AB) as possible criteria of its becoming chronic. Before the treatment 116 patients with verified AB were examined using inhalation provocative tests (IPT) with histamine, serotonin and obsidian in increasing doses. Also, external respiration function was studied. IPT were repeated after the course of treatment. 87 of 116 AB patients exhibited high bronchial sensitivity and reactivity to inhalations of histamine, serotonin, obsidian. In parallel, there was a rise in the levels of histamine and serotonin and a fall in the level of catecholamines in bronchial mucosa (alveolar macrophages, lymphocytes, neutrophils, mast and APUD-cells). Changes in monoamines concentration in bronchial mucosa were relevant to activity of bronchial inflammation and the presence of obstructive syndrome. Persistent bronchial hyperreactivity to inhalations of histamine and obsidian along with high histamine levels and low level of catecholamines in alveolar macrophages, lymphocytes and mucus is a criterion of bronchitis transformation to chronic one.
Grahl, Nora; Dinamarco, Taisa Magnani; Willger, Sven D; Goldman, Gustavo H; Cramer, Robert A
2012-04-01
We previously observed that hypoxia is an important component of host microenvironments during pulmonary fungal infections. However, mechanisms of fungal growth in these in vivo hypoxic conditions are poorly understood. Here, we report that mitochondrial respiration is active in hypoxia (1% oxygen) and critical for fungal pathogenesis. We generated Aspergillus fumigatus alternative oxidase (aoxA) and cytochrome C (cycA) null mutants and assessed their ability to tolerate hypoxia, macrophage killing and virulence. In contrast to ΔaoxA, ΔcycA was found to be significantly impaired in conidia germination, growth in normoxia and hypoxia, and displayed attenuated virulence. Intriguingly, loss of cycA results in increased levels of AoxA activity, which results in increased resistance to oxidative stress, macrophage killing and long-term persistence in murine lungs. Thus, our results demonstrate a previously unidentified role for fungal mitochondrial respiration in the pathogenesis of aspergillosis, and lay the foundation for future research into its role in hypoxia signalling and adaptation. © 2012 Blackwell Publishing Ltd.
van Manen, Daniëlle; Bunnik, Evelien M.; van Sighem, Ard I.; Sieberer, Margit; Boeser-Nunnink, Brigitte; de Wolf, Frank; Schuitemaker, Hanneke; Portegies, Peter; Kootstra, Neeltje A.; van 't Wout, Angélique B.
2012-01-01
Background Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. Methods We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs) affecting HIV-1 replication in macrophages in vitro were also tested. Results The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2×10−5). Prep1 has recently been identified as a transcription factor preferentially binding the −2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. Conclusion These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders. PMID:22347417
Meiß, Thorsten; Eckelt, Elke; Basler, Tina; Meens, Jochen; Heinzmann, Julia; Suwandi, Abdulhadi; Oelemann, Walter M. R.; Trenkamp, Sandra; Holst, Otto; Weiss, Siegfried; Bunk, Boyke; Spröer, Cathrin; Gerlach, Gerald-F.; Goethe, Ralph
2014-01-01
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease, a chronic granulomatous enteritis in ruminants. Furthermore, infections of humans with MAP have been reported and a possible association with Crohn's disease and diabetes type I is currently discussed. MAP owns large sequence polymorphisms (LSPs) that were exclusively found in this mycobacteria species. The relevance of these LSPs in the pathobiology of MAP is still unclear. The mptD gene (MAP3733c) of MAP belongs to a small group of functionally uncharacterized genes, which are not present in any other sequenced mycobacteria species. mptD is part of a predicted operon (mptABCDEF), encoding a putative ATP binding cassette-transporter, located on the MAP-specific LSP14. In the present study, we generated an mptD knockout strain (MAPΔmptD) by specialized transduction. In order to investigate the potential role of mptD in the host, we performed infection experiments with macrophages. By this, we observed a significantly reduced cell number of MAPΔmptD early after infection, indicating that the mutant was hampered with respect to adaptation to the early macrophage environment. This important role of mptD was supported in mouse infection experiments where MAPΔmptD was significantly attenuated after peritoneal challenge. Metabolic profiling was performed to determine the cause for the reduced virulence and identified profound metabolic disorders especially in the lipid metabolism of MAPΔmptD. Overall our data revealed the mptD gene to be an important factor for the metabolic adaptation of MAP required for persistence in the host. PMID:25177550
Meißner, Thorsten; Eckelt, Elke; Basler, Tina; Meens, Jochen; Heinzmann, Julia; Suwandi, Abdulhadi; Oelemann, Walter M R; Trenkamp, Sandra; Holst, Otto; Weiss, Siegfried; Bunk, Boyke; Spröer, Cathrin; Gerlach, Gerald-F; Goethe, Ralph
2014-01-01
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease, a chronic granulomatous enteritis in ruminants. Furthermore, infections of humans with MAP have been reported and a possible association with Crohn's disease and diabetes type I is currently discussed. MAP owns large sequence polymorphisms (LSPs) that were exclusively found in this mycobacteria species. The relevance of these LSPs in the pathobiology of MAP is still unclear. The mptD gene (MAP3733c) of MAP belongs to a small group of functionally uncharacterized genes, which are not present in any other sequenced mycobacteria species. mptD is part of a predicted operon (mptABCDEF), encoding a putative ATP binding cassette-transporter, located on the MAP-specific LSP14. In the present study, we generated an mptD knockout strain (MAPΔmptD) by specialized transduction. In order to investigate the potential role of mptD in the host, we performed infection experiments with macrophages. By this, we observed a significantly reduced cell number of MAPΔmptD early after infection, indicating that the mutant was hampered with respect to adaptation to the early macrophage environment. This important role of mptD was supported in mouse infection experiments where MAPΔmptD was significantly attenuated after peritoneal challenge. Metabolic profiling was performed to determine the cause for the reduced virulence and identified profound metabolic disorders especially in the lipid metabolism of MAPΔmptD. Overall our data revealed the mptD gene to be an important factor for the metabolic adaptation of MAP required for persistence in the host.
Kim, Dong-Hyun; Kim, Baek
2011-01-01
The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors. PMID:21765914
Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B
2015-10-01
What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized macrophages showed enhanced phagocytic activity. They also had higher expression and activity of indoleamine 2,3-dioxygenase 1, a phenotypic marker of decidual macrophages, which inhibited proliferation of autologous T-cells via induction of G0/G1 cell cycle arrest. In addition, sHLAG5-polarized macrophages had an increased secretion of interleukin-6 and C-X-C motif ligand 1, which inhibited interferon-γ production in T-cells and induction of trophoblast invasion, respectively. Most information on the phenotypes and biological activities of human decidual macrophages are based on past literatures. A direct comparison between sHLAG5-polarized macrophages and primary decidual macrophages is required to verify the present observations. This is the first study on the role of sHLAG5 in macrophage differentiation. Further study on the mechanism that regulates the differentiation process of macrophages would enhance our understanding on the physiology of early pregnancy. This work was supported in part by the Hong Kong Research Grant Council Grant HKU774212 and the University of Hong Kong Grant 201309176126. The authors have no competing interests to declare. Nil. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Salmonella Extracellular Matrix Components Influence Biofilm Formation and Gallbladder Colonization.
Adcox, Haley E; Vasicek, Erin M; Dwivedi, Varun; Hoang, Ky V; Turner, Joanne; Gunn, John S
2016-11-01
Salmonella enterica serovar Typhi, the causative agent of typhoid fever in humans, forms biofilms encapsulated by an extracellular matrix (ECM). Biofilms facilitate colonization and persistent infection in gallbladders of humans and mouse models of chronic carriage. Individual roles of matrix components have not been completely elucidated in vitro or in vivo To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typhi, in which various ECM genes were deleted or added, were created to examine biofilm formation, colonization, and persistence in the gallbladder. Studies show that curli contributes most significantly to biofilm formation. Expression of Vi antigen decreased biofilm formation in vitro and virulence and bacterial survival in vivo without altering the examined gallbladder pro- or anti-inflammatory cytokines. Oppositely, loss of all ECM components (ΔwcaM ΔcsgA ΔyihO ΔbcsE) increased virulence and bacterial survival in vivo and reduced gallbladder interleukin-10 (IL-10) levels. Colanic acid and curli mutants had the largest defects in biofilm-forming ability and contributed most significantly to the virulence increase of the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant strain. While the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant was not altered in resistance to complement or growth in macrophages, it attached and invaded macrophages better than the wild-type (WT) strain. These data suggest that ECM components have various levels of importance in biofilm formation and gallbladder colonization and that the ECM diminishes disseminated disease in our model, perhaps by reducing cell attachment/invasion and dampening inflammation by maintaining/inducing IL-10 production. Understanding how ECM components aid acute disease and persistence could lead to improvements in therapeutic treatment of typhoid fever patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
McPeek, Matthew; Malur, Anagha; Tokarz, Debra A; Murray, Gina; Barna, Barbara P; Thomassen, Mary Jane
2018-06-15
Peroxisome proliferator activated receptor gamma (PPARγ), a ligand activated nuclear transcription factor, is constitutively expressed in alveolar macrophages of healthy individuals. PPARγ deficiencies have been noted in several lung diseases including the alveolar macrophages of pulmonary sarcoidosis patients. We have previously described a murine model of multiwall carbon nanotubes (MWCNT) induced pulmonary granulomatous inflammation which bears striking similarities to pulmonary sarcoidosis, including the deficiency of alveolar macrophage PPARγ. Further studies demonstrate alveolar macrophage PPARγ deficiency exacerbates MWCNT-induced pulmonary granulomas. Based on these observations we hypothesized that activation of PPARγ via administration of the PPARγ-specific ligand rosiglitazone would limit MWCNT-induced granuloma formation and promote PPARγ-dependent pathways. Results presented here show that rosiglitazone significantly limits the frequency and severity of MWCNT-induced pulmonary granulomas. Furthermore, rosiglitazone attenuates alveolar macrophage NF-κB activity and downregulates the expression of the pro-inflammatory mediators, CCL2 and osteopontin. PPARγ activation via rosiglitazone also prevents the MWCNT-induced deficiency of PPARγ-regulated ATP-binding cassette lipid transporter-G1 (ABCG1) expression. ABCG1 is crucial to pulmonary lipid homeostasis. ABCG1 deficiency results in lipid accumulation which promotes pro-inflammatory macrophage activation. Our results indicate that restoration of homeostatic ABCG1 levels by rosiglitazone correlates with both reduced pulmonary lipid accumulation, and decreased alveolar macrophage activation. These data confirm and further support our previous observations that PPARγ pathways are critical in regulating MWCNT-induced pulmonary granulomatous inflammation. Copyright © 2018 Elsevier Inc. All rights reserved.
Patel, Sravan Kumar; Zhang, Yang; Pollock, John A.; Janjic, Jelena M.
2013-01-01
Cylcooxgenase-2 (COX-2) expressing macrophages, constituting a major portion of tumor mass, are involved in several pro-tumorigenic mechanisms. In addition, macrophages are actively recruited by the tumor and represent a viable target for anticancer therapy. COX-2 specific inhibitor, celecoxib, apart from its anticancer properties was shown to switch macrophage phenotype from tumor promoting to tumor suppressing. Celecoxib has low aqueous solubility, which may limit its tumor inhibiting effect. As opposed to oral administration, we propose that maximum anticancer effect may be achieved by nanoemulsion mediated intravenous delivery. Here we report multifunctional celecoxib nanoemulsions that can be imaged by both near-infrared fluorescence (NIRF) and 19F magnetic resonance. Celecoxib loaded nanoemulsions showed a dose dependent uptake in mouse macrophages as measured by 19F NMR and NIRF signal intensities of labeled cells. Dramatic inhibition of intracellular COX-2 enzyme was observed in activated macrophages upon nanoemulsion uptake. COX-2 enzyme inhibition was statistically equivalent between free drug and drug loaded nanoemulsion. However, nanoemulsion mediated drug delivery may be advantageous, helping to avoid systemic exposure to celecoxib and related side effects. Dual molecular imaging signatures of the presented nanoemulsions allow for future in vivo monitoring of the labeled macrophages and may help in examining the role of macrophage COX-2 inhibition in inflammation-cancer interactions. These features strongly support the future use of the presented nanoemulsions as anti-COX-2 theranostic nanomedicine with possible anticancer applications. PMID:23409048
Nociceptive Neuropeptide Increases and Periorbital Allodynia in a Model of Traumatic Brain Injury
Elliott, Melanie B.; Oshinsky, Michael L.; Amenta, Peter S.; Awe, Olatilewa O.; Jallo, Jack I.
2014-01-01
Objective This study tests the hypothesis that injury to the somatosensory cortex is associated with periorbital allodynia and increases in nociceptive neuropeptides in the brainstem in a mouse model of controlled cortical impact (CCI) injury. Methods Male C57BL/6 mice received either CCI or craniotomy-only followed by weekly periorbital von Frey (mechanical) sensory testing for up to 28 days post-injury. Mice receiving an incision only and naïve mice were included as control groups. Changes in calcitonin gene-related peptide (CGRP) and substance P (SP) within the brainstem were determined using enzyme-linked immunosorbent assay and immunohistochemistry, respectively. Activation of ionized calcium-binding adaptor molecule-1–labeled macrophages/microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were evaluated using immunohistochemistry because of their potential involvement in nociceptor sensitization. Results Incision-only control mice showed no changes from baseline periorbital von Frey mechanical thresholds. CCI significantly reduced mean periorbital von Frey thresholds (periorbital allodynia) compared with baseline and craniotomy-only at each endpoint, analysis of variance P < .0001. Craniotomy significantly reduced periorbital threshold at 14 days but not 7, 21, or 28 days compared with baseline threshold, P < .01. CCI significantly increased SP immunoreactivity in the brainstem at 7 and 14 days but not 28 days compared with craniotomy-only and controls, P < .001. CGRP levels in brainstem tissues were significantly increased in CCI groups compared with controls (incision-only and naïve mice) or craniotomy-only mice at each endpoint examined, P < .0001. There was a significant correlation between CGRP and periorbital allodynia (P < .0001, r = −0.65) but not for SP (r = 0.20). CCI significantly increased the number of macrophage/microglia in the injured cortex at each endpoint up to 28 days, although cell numbers declined over weeks post-injury, P < .001. GFAP+ immunoreactivity was significantly increased at 7 but not 14 or 28 days after CCI, P < .001. Craniotomy resulted in transient periorbital allodynia accompanied by transient increases in SP, CGRP, and GFAP immunoreactivity compared with control mice. There was no increase in the number of macrophage/microglia cells compared with controls after craniotomy. Conclusion Injury to the somatosensory cortex results in persistent periorbital allodynia and increases in brainstem nociceptive neuropeptides. Findings suggest that persistent allodynia and increased neuropeptides are maintained by mechanisms other than activation of macrophage/microglia or astrocyte in the injured somatosensory cortex. PMID:22568499
PKC-epsilon and TLR4 synergistically regulate resistin-mediated inflammation in human macrophages.
Zuniga, Mary C; Raghuraman, Gayatri; Hitchner, Elizabeth; Weyand, Cornelia; Robinson, William; Zhou, Wei
2017-04-01
Resistin has been associated with atherosclerotic inflammation and cardiovascular complications. We and others have previously shown that PKC-epsilon (PKCε) is involved in resistin-induced smooth muscle cell (VSMC) dysfunction at a high pathological concentration. This study aimed to evaluate the role and potential pathways of resistin at a physiological concentration, in atherosclerosis-related inflammation. Plasma from patients with atherosclerosis was analyzed for resistin concentration. Patients were divided into tertiles based on resistin levels and cytokines were compared between tertiles. Macrophages were then treated with resistin in the presence or absence of PKCε inhibitor and/or TLR4 blocking-antibody, and their inflammatory state was evaluated with ELISA, RT-PCR, immunocytochemistry, and Western blot. We observed significant associations between plasma resistin levels and TNF-α, IL-6, IL-12, MIP-1α, MIP-1β, and CD40L. Our in vitro analyses revealed that resistin activated PKCε via TLR4. This was followed by NF-kB activation and induction of a pro-inflammatory phenotype in macrophages, significantly upregulating CD40, downregulating CD206 and stimulating gene expression and secretion of the inflammatory cytokines, for which we found association in our plasma analysis. Resistin also induced persistent TRAM and CD40L upregulation up to 36 h after resistin treatment. PKCε and TLR4 inhibitors suppressed gene expression to levels similar to control, especially when used in combination. Resistin, at a physiological concentration, exacerbates the inflammatory response of macrophages. PKCε is a key upstream mediator in resistin-induced inflammation that may interact synergistically with TLR4 to promote NF-kB activation, while TRAM is an important signal. PKCε and TRAM may represent novel molecular targets for resistin-associated chronic atherosclerotic inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.
Chowdhury, I H; Chao, W; Potash, M J; Sova, P; Gendelman, H E; Volsky, D J
1996-01-01
The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzyme-linked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the produc- tion of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages. PMID:8764044
Chowdhury, I H; Chao, W; Potash, M J; Sova, P; Gendelman, H E; Volsky, D J
1996-08-01
The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzyme-linked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the produc- tion of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages.
Hosakote, Yashoda M.; Koo, Sue-jie; Dhiman, Monisha; Piñeyro, María Dolores; Parodi-Talice, Adriana; Basombrio, Miguel A.; Robello, Carlos
2016-01-01
Trypanosoma cruzi species is categorized into six discrete typing units (TcI to TcVI) of which TcI is most abundantly noted in the sylvatic transmission cycle and considered the major cause of human disease. In our study, the TcI strains Colombiana (COL), SylvioX10/4 (SYL), and a cultured clone (TCC) exhibited different biological behavior in a murine model, ranging from high parasitemia and symptomatic cardiomyopathy (SYL), mild parasitemia and high tissue tropism (COL), to no pathogenicity (TCC). Proteomic profiling of the insect (epimastigote) and infective (trypomastigote) forms by two-dimensional gel electrophoresis/matrix-assisted laser desorption ionization–time of flight mass spectrometry, followed by functional annotation of the differential proteome data sets (≥2-fold change, P < 0.05), showed that several proteins involved in (i) cytoskeletal assembly and remodeling, essential for flagellar wave frequency and amplitude and forward motility of the parasite, and (ii) the parasite-specific antioxidant network were enhanced in COL and SYL (versus TCC) trypomastigotes. Western blotting confirmed the enhanced protein levels of cytosolic and mitochondrial tryparedoxin peroxidases and their substrate (tryparedoxin) and iron superoxide dismutase in COL and SYL (versus TCC) trypomastigotes. Further, COL and SYL (but not TCC) were resistant to exogenous treatment with stable oxidants (H2O2 and peroxynitrite [ONOO−]) and dampened the intracellular superoxide and nitric oxide response in macrophages, and thus these isolates escaped from macrophages. Our findings suggest that protein expression conducive to increase in motility and control of macrophage-derived free radicals provides survival and persistence benefits to TcI isolates of T. cruzi. PMID:27068090
Zago, María Paola; Hosakote, Yashoda M; Koo, Sue-Jie; Dhiman, Monisha; Piñeyro, María Dolores; Parodi-Talice, Adriana; Basombrio, Miguel A; Robello, Carlos; Garg, Nisha J
2016-06-01
Trypanosoma cruzi species is categorized into six discrete typing units (TcI to TcVI) of which TcI is most abundantly noted in the sylvatic transmission cycle and considered the major cause of human disease. In our study, the TcI strains Colombiana (COL), SylvioX10/4 (SYL), and a cultured clone (TCC) exhibited different biological behavior in a murine model, ranging from high parasitemia and symptomatic cardiomyopathy (SYL), mild parasitemia and high tissue tropism (COL), to no pathogenicity (TCC). Proteomic profiling of the insect (epimastigote) and infective (trypomastigote) forms by two-dimensional gel electrophoresis/matrix-assisted laser desorption ionization-time of flight mass spectrometry, followed by functional annotation of the differential proteome data sets (≥2-fold change, P < 0.05), showed that several proteins involved in (i) cytoskeletal assembly and remodeling, essential for flagellar wave frequency and amplitude and forward motility of the parasite, and (ii) the parasite-specific antioxidant network were enhanced in COL and SYL (versus TCC) trypomastigotes. Western blotting confirmed the enhanced protein levels of cytosolic and mitochondrial tryparedoxin peroxidases and their substrate (tryparedoxin) and iron superoxide dismutase in COL and SYL (versus TCC) trypomastigotes. Further, COL and SYL (but not TCC) were resistant to exogenous treatment with stable oxidants (H2O2 and peroxynitrite [ONOO(-)]) and dampened the intracellular superoxide and nitric oxide response in macrophages, and thus these isolates escaped from macrophages. Our findings suggest that protein expression conducive to increase in motility and control of macrophage-derived free radicals provides survival and persistence benefits to TcI isolates of T. cruzi. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bas, Esperanza; Goncalves, Stefania; Adams, Michelle; Dinh, Christine T.; Bas, Jose M.; Van De Water, Thomas R.; Eshraghi, Adrien A.
2015-01-01
Conservation of a patient's residual hearing and prevention of fibrous tissue/new bone formation around an electrode array are some of the major challenges in cochlear implant (CI) surgery. Although it is well-known that fibrotic tissue formation around the electrode array can interfere with hearing performance in implanted patients, and that associated intracochlear inflammation can initiate loss of residual hearing, little is known about the molecular and cellular mechanisms that promote this response in the cochlea. In vitro studies in neonatal rats and in vivo studies in adult mice were performed to gain insight into the pro-inflammatory, proliferative, and remodeling phases of pathological wound healing that occur in the cochlea following an electrode analog insertion. Resident Schwann cells (SC), macrophages, and fibroblasts had a prominent role in the inflammatory process in the cochlea. Leukocytes were recruited to the cochlea following insertion of a nylon filament in adult mice, where contributed to the inflammatory response. The reparative stages in wound healing are characterized by persistent neuro-inflammation of spiral ganglion neurons (SGN) and expression of regenerative monocytes/macrophages in the cochlea. Accordingly, genes involved in extracellular matrix (ECM) deposition and remodeling were up-regulated in implanted cochleae. Maturation of scar tissue occurs in the remodeling phase of wound healing in the cochlea. Similar to other damaged peripheral nerves, M2 macrophages and de-differentiated SC were observed in damaged cochleae and may play a role in cell survival and axonal regeneration. In conclusion, the insertion of an electrode analog into the cochlea is associated with robust early and chronic inflammatory responses characterized by recruitment of leukocytes and expression of pro-inflammatory cytokines that promote intracochlear fibrosis and loss of the auditory hair cells (HC) and SGN important for hearing after CI surgery. PMID:26321909
[Protective immunity against Mycobacterium tuberculosis].
Kawamura, Ikuo
2006-11-01
Mycobacterium tuberculosis (MTB) is a facultative intracellular pathogen with which over a billion people have been infected and 3 million people die annually. The bacterium induces vigorous immune responses, yet evades host immunity, persisting within phagosomes of the infected macrophages. Thus, it is necessary to delineate that the virulence-related intracellular survival mechanism and the host immune responses to eradicate M. tuberculosis on the molecular basis. In this regard, recent findings clearly indicated that Toll-like receptors (TLRs) play an essential role in the recognition of MTB components by macrophages and dendritic cells, resulting in not only activation of innate immunity but also development of antigen-specific adaptive immunity. It has been also reported that induction of early death of the infected cells may be one of the strategy of host defense against MTB because macrophages go into apoptosis upon infection with MTB, resulting in suppression of the intracellular replication. Furthermore, recent report has shown that autophagy is induced by IFN-gamma and suppress intracellular survival of mycobacteria, suggesting that activation of autophagy pathway is required to overcome phagosome maturation arrest induced by MTB. In addition, it is known that IFN-gamma plays an important role in protection. The cytokine that is produced from NK cells and dendritic cells at the early period of infection strongly induces not only macrophage activation but also development of antigen-specific IFN-gamma-producing CD4+T cells. Since antigen-specific CD8+ T cells and CD1-restricted T cells are also reported to contribute to the protective immunity, cooperation of these T cells is essential for the host resistance. In this paper, I am going to summarize the recent progress of the understanding of protective immunity against MTB.
Ponce, Nicolás Eric; Sanmarco, Liliana Maria; Eberhardt, Natalia; García, Mónica Cristina; Rivarola, Héctor Walter; Cano, Roxana Carolina; Aoki, Maria Pilar
2016-08-01
Increasing evidence demonstrates that generation of extracellular adenosine from ATP, which is hydrolyzed by the CD39/CD73 enzyme pair, attenuates the inflammatory response and deactivates macrophage antimicrobial mechanisms. Although CD73 is emerging as a critical pathway and therapeutic target in cardiovascular disorders, the involvement of this ectonucleotidase during myocardial infection has not been explored. Using a murine model of infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy, we observed a sudden switch from the classical M1 macrophage (microbicidal) phenotype toward an alternative M2 (repairing/anti-inflammatory) phenotype that occurred within the myocardium very shortly after BALB/c mice infection. The observed shift in M1/M2 rate correlated with the cardiac cytokine milieu. Considering that parasite persistence within myocardium is a necessary and sufficient condition for the development of the chronic myocarditis, we hypothesized that CD73 activity may counteract cardiac macrophage microbicidal polarization, rendering the local immune response less effective. In fact, a transient treatment with a specific CD73 inhibitor (adenosine 5'-α,β-methylene-diphosphate) enhanced the microbicidal M1 subset predominance, diminished IL-4- and IL-10-producing CD4(+) T cells, promoted a proinflammatory cytokine milieu, and reduced parasite load within the myocardium during the acute phase. As a direct consequence of these events, there was a reduction in serum levels of creatine kinase muscle-brain isoenzyme, a myocardial-specific injury marker, and an improvement in the electrocardiographic characteristics during the chronic phase. Our results demonstrate that this purinergic system drives the myocardial immune response postinfection and harbors a promising potential as a therapeutic target. Copyright © 2016 by The American Association of Immunologists, Inc.
Leishmania Hijacks Myeloid Cells for Immune Escape
Martínez-López, María; Soto, Manuel; Iborra, Salvador; Sancho, David
2018-01-01
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited. PMID:29867798
Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose; Segura, Mariela
2012-02-01
Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes.
Pozzi, Clarissa; Lofano, Giuseppe; Mancini, Francesca; Soldaini, Elisabetta; Speziale, Pietro; De Gregorio, Ennio; Rappuoli, Rino; Bertholet, Sylvie; Grandi, Guido; Bagnoli, Fabio
2015-09-01
Lack of known mechanisms of protection against Staphylococcus aureus in humans is hindering development of efficacious vaccines. Preclinical as well as clinical data suggest that antibodies play an important role against S. aureus. For instance, certain hypogammaglobulinaemic patients are at increased risk of staphylococcal infections. However, development of effective humoral response may be dampened by converging immune-evasion mechanisms of S. aureus. We hypothesize that B-cell proliferation induced by staphylococcal protein A (SpA) and continuous antigen exposure, without the proper T-cell help and cytokine stimuli, leads to antigen-activated B-cell deletion and anergy. Recent findings suggest an important role of type I neutrophils (PMN-I) and conventionally activated macrophages (M1) against S. aureus, while alternatively activated macrophages (M2) favour biofilm persistence and sepsis. In addition, neutrophil-macrophage cooperation promotes extravasation and activation of neutrophils as well as clearance of bacteria ensnared in neutrophil extracellular traps. Activation of these processes is modulated by cytokines and T cells. Indeed, low CD4(+) T-cell counts represent an important risk factor for skin infections and bacteraemia in patients. Altogether, these observations could lead to the identification of predictive correlates of protection and ways for shifting the balance of the response to the benefit of the host through vaccination. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lemaire, Sandrine; Kosowska-Shick, Klaudia; Appelbaum, Peter C; Verween, Gunther; Tulkens, Paul M; Van Bambeke, Françoise
2010-06-01
Radezolid is a novel biaryloxazolidinone in clinical development which shows improved activity, including against linezolid-resistant strains. In a companion paper (29), we showed that radezolid accumulates about 11-fold in phagocytic cells, with approximately 60% of the drug localized in the cytosol and approximately 40% in the lysosomes of the cells. The present study examines its activity against (i) bacteria infecting human THP-1 macrophages and located in different subcellular compartments (Listeria monocytogenes, cytosol; Legionella pneumophila, vacuoles; Staphylococcus aureus and Staphylococcus epidermidis, mainly phagolysosomal), (ii) strains of S. aureus with clinically relevant mechanisms of resistance, and (iii) isogenic linezolid-susceptible and -resistant S. aureus strains infecting a series of phagocytic and nonphagocytic cells. Radezolid accumulated to similar levels ( approximately 10-fold) in all cell types (human keratinocytes, endothelial cells, bronchial epithelial cells, osteoblasts, macrophages, and rat embryo fibroblasts). At equivalent weight concentrations, radezolid proved consistently 10-fold more potent than linezolid in all these models, irrespective of the bacterial species and resistance phenotype or of the cell type infected. This results from its higher intrinsic activity and higher cellular accumulation. Time kill curves showed that radezolid's activity was more rapid than that of linezolid both in broth and in infected macrophages. These data suggest the potential interest of radezolid for recurrent or persistent infections where intracellular foci play a determinant role.
Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.
Soni, Shivani; Bala, Shashi; Hanspal, Manjit
2008-01-01
Emp, erythroblast-macrophage protein was initially identified as a mediator of erythroblast-macrophage interactions during erythroid differentiation. More recent studies have shown that targeted disruption of Emp leads to abnormal erythropoiesis in the fetal liver, and fetal demise. To further address the activity of Emp in the hematopoietic lineage in adult bone marrow, we conducted fetal liver HSC reconstitution assay. Emp null fetal liver cells were transplanted into lethally irradiated wild-type sibling mice, and assessed the erythropoietic activity. We found that Emp null cells rescued lethally irradiated mice with efficiency comparable to that of wild-type cells. However, the recipients of Emp null cells showed abnormal erythropoiesis as indicated by the presence of persistent anemia, extensive extramedullary erythropoiesis, and increased apoptosis of erythroid precursors. Extramedullary erythropoiesis suggests perturbed interactions between the Emp-deficient hematopoietic cells and the wild-type niche. Furthermore, in spleen colony-forming unit assays, proliferation rates of the Emp null cells were greater than those of the wild-type cells. Similarly, in vitro burst-forming unit-erythroid and colony-forming unit-erythroid assays showed increased erythroid colony numbers from Emp null livers. Morphologic examination showed that Emp null CFU-E-derived erythroblasts were immature compared to those derived from wild-type CFU-Es, suggesting that loss of Emp function in erythroid cells results in impaired proliferation and terminal differentiation. These results demonstrate that Emp plays a cell intrinsic role in the erythroid lineage.
Zheng, Zhao-Guang; Duan, Ting-Ting; He, Bao; Tang, Dan; Jia, Xiao-Bin; Wang, Ru-Shang; Zhu, Jia-Xiao; Xu, You-Hua; Zhu, Quan; Feng, Liang
2013-04-15
A cell-permeable membrane, as typified by Transwell insert Permeable Supports, permit accurate repeatable invasion assays, has been developed as a tool for screening immunological active components in Smilacis Glabrae Rhizoma (SGR). In this research, components in the water extract of SGR (ESGR) might conjugate with the receptors or other targets on macrophages which invaded Transwell inserts, and then the eluate which contained components biospecific binding to macrophages was identified by HPLC-ESI-MS(n) analysis. Six compounds, which could interact with macrophages, were detected and identified. Among these compounds, taxifolin (2) and astilbin (4) were identified by comparing with the chromatography of standards, while the four others including 5-O-caffeoylshikimic acid (1), neoastilbin (3), neoisoastilbin (5) and isoastilbin (6), were elucidated by their structure clearage characterizations of tandem mass spectrometry. Then compound 1 was isolated and purified from SGR, along with 2 and 4, was applied to the macrophage migration and adhesion assay in HUVEC (Human Umbilical Vein Endothelial Cells) -macrophages co-incultured Transwell system for immunological activity assessment. The results showed that compounds 1, 2 and 4 with concentration of 5μM (H), 500nM (M) and 50nM (L) could remarkably inhibit the macrophage migration and adhesion (Vs AGEs (Advanced Glycation End Produces) group, 1-L, 2-H and 4-L groups: p<0.05; other groups: p<0.01). Moreover, 1 and 4 showed satisfactory dose-effect relationship. In conclusion, the application of macrophage biospecific extraction coupled with HPLC-ESI-MS(n) analysis is a rapid, simple and reliable method for screening immunological active components from Traditional Chinese Medicine. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, Chen-Ting; Zhong, Lingwen; Mace, Thomas A.; Repasky, Elizabeth A.
2012-01-01
Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection. PMID:22253887
Lima, Patricia D A; Nivet, Anne-Laure; Wang, Qi; Chen, Yi-An; Leader, Arthur; Cheung, Annie; Tzeng, Chii-Ruey; Tsang, Benjamin K
2018-04-24
Polycystic ovary syndrome (PCOS) is a continuum of endocrine and reproductive disorders characterized by hyperandrogenism, antral follicle growth arrest and chronic inflammation. Macrophages play key role in inflammation and the balance between M1 (inflammatory) and M2 (anti-inflammatory) macrophages determines physiological/pathological outcomes. Here, we investigated if hyperandrogenism increases ovarian chemerin altering the balance of M1 and M2 macrophages and the granulosa cell death. Ovarian chemerin was up-regulated by 5α-dihydrotestosterone (DHT) in lean and overweight rats; while increased serum chemerin levels were only evident in overweight rats, suggesting that the serum chemerin may be reflective of a systemic response and associated with obesity, whereas increased ovarian chemerin expression is a localized response independent of the metabolic status. DHT altered follicle dynamics while increased the M1: M2 macrophages ratio in antral and pre-ovulatory follicles. While ovarian M1 macrophages expressing chemokine-like receptor 1 (CMKLR1) were increased, CMKLR1 + monocytes, which migrated towards chemerin-rich environment, were markedly decreased after 15 days of DHT. Androgen-induced granulosa cell apoptosis was dependent on the presence of macrophages. In humans, chemerin levels in follicular fluid, but not in serum, was higher in lean PCOS patients compared to BMI-matched controls and was associated with increased M1: M2 ratio. Our results support the concept that in PCOS, hyperandrogenemia increases chemerin expression while promotes CMKLR1 + monocytes recruitment and deregulates the immunological niche of ovaries. This study established a new immunological perspective in PCOS at the ovarian level. Hyperandrogenism is associated with up-regulation of chemerin and macrophage unbalance in the ovaries.
Ronca, Roberto; Van Ginderachter, Jo A; Turtoi, Andrei
2018-01-01
Tumor stroma is composed of many cellular subtypes, of which the most abundant are fibroblasts, macrophages and endothelial cells. During the process of tissue injury, these three cellular subtypes must coordinate their activity to efficiently contribute to tissue regeneration. In tumor, this mechanism is hijacked by cancer cells, which rewire the interaction of stromal cells to benefit tumor development. The present review aims at summarizing most relevant information concerning both pro-tumorigenic and anti-tumorigenic actions implicating the three stromal cell subtypes as well as their mutual interactions. Although stromal cells are generally regarded as tumor-supportive and at will manipulated by cancer cells, several novel studies point at many defaults in cancer cell-mediated stromal reprograming. Indeed, parts of initial tissue-protective and homeostatic functions of the stromal cells remain in place even after tumor development. Both tumor-supportive and tumor-suppressive functions have been well described for macrophages, whereas similar results are emerging for fibroblasts and endothelial cells. Recent success of immunotherapies have finally brought the long awaited proof that stroma is key for efficient tumor targeting. However, a better understanding of paracrine stromal interactions is needed in order to encourage drug development not only aiming at disruption of tumor-supportive communication but also re-enforcing, existing, tumor-suppressive mechanisms.
Redox regulation in metabolic programming and inflammation.
Griffiths, Helen R; Gao, Dan; Pararasa, Chathyan
2017-08-01
Energy metabolism and redox state are intrinsically linked. In order to mount an adequate immune response, cells must have an adequate and rapidly available energy resource to migrate to the inflammatory site, to generate reactive oxygen species using NADPH as a cofactor and to engulf bacteria or damaged tissue. The first responder cells of the innate immune response, neutrophils, are largely dependent on glycolysis. Neutrophils are relatively short-lived, dying via apoptosis in the process of bacterial killing through production of hypochlorous acid and release of extracellular NETs. Later on, the most prevalent recruited innate immune cells are monocytes. Their role is to complete a damage limitation exercise initiated by neutrophils and then, as re-programmed M2 macrophages, to resolve the inflammatory event. Almost twenty five years ago, it was noted that macrophages lose their glycolytic capacity and become anti-inflammatory after treatment with corticosteroids. In support of this we now understand that, in contrast to early responders, M2 macrophages are predominantly dependent on oxidative phosphorylation for energy. During early inflammation, polarisation towards M1 macrophages is dependent on NOX2 activation which, via protein tyrosine phosphatase oxidation and AKT activation, increases trafficking of glucose transporters to the membrane and consequently increases glucose uptake for glycolysis. In parallel, mitochondrial efficiency is likely to be compromised via nitrosylation of the electron transport chain. Resolution of inflammation is triggered by encounter with apoptotic membranes exposing oxidised phosphatidylserine that interact with the scavenger receptor, CD36. Downstream of CD36, activation of AMPK and PPARγ elicits mitochondrial biogenesis, arginase expression and a switch towards oxidative phosphorylation in the M2 macrophage. Proinflammatory cytokine production by M2 cells decreases, but anti-inflammatory and wound healing growth factor production is maintained to support restoration of normal function. Copyright © 2017. Published by Elsevier B.V.
A nonhuman primate model of chikungunya disease
Higgs, Stephen; Ziegler, Sarah A.
2010-01-01
Chikungunya disease is a severely debilitating, mosquito-borne, viral illness that has reached epidemic proportions in Africa, Asia, and the islands of the Indian Ocean. A mutation enhancing the ability of the chikungunya virus (CHIKV) to infect and be transmitted by Aedes albopictus has increased the geographical range at risk for infection due to the continuing global spread of this mosquito. Research into disease pathogenesis, vaccine development, and therapeutic design has been hindered by the lack of appropriate animal models of this disease. The meticulous study reported in this issue of the JCI by Labadie et al. is one of the first reports describing CHIKV infection of adult immunocompetent nonhuman primates. Using traditional and modern molecular and immunological approaches, the authors demonstrate that macaques infected with CHIKV are a good model of human CHIKV infection and also show that persistent arthralgia in humans may be caused by persistent CHIKV infection of macrophages. PMID:20179348
Riklis, I; Kletter, Y; Bleiberg, I; Fabian, I
1989-04-01
The effect of recombinant murine interleukin-3 (rIL-3) and recombinant murine granulocyte-macrophage colony-stimulating factor (rGM-CSF) on in vitro murine myeloid progenitor cell (CFU-C) growth and on the function of murine resident peritoneal macrophages was investigated. Both rIL-3 and rGM-CSF are known to support the growth of CFU-C and, when combined, were found to act synergistically to induce the development of an increased number of CFU-C. The distribution pattern of myeloid colonies in the presence of these two growth factors was in general similar to that in the presence of rGM-CSF alone. Both rGM-CSF and rIL-3 enhanced the phagocytosis of Candida albicans (CA) by mature macrophages producing an increase in the percentage of phagocytosing cells as well as an increase in the number of yeast particles ingested per cell. No additive effect on the phagocytosis was observed when the two growth factors were added concurrently. rGM-CSF, but not rIL-3, enhanced the killing of CA by macrophages. This killing was inhibited by scavengers of oxygen radicals.
Bromberek, B A; Enever, P A J; Shreiber, D I; Caldwell, M D; Tranquillo, R T
2002-05-01
Rat dermal fibroblasts were dispersed initially in the outer shell of a fibrin gel sphere, while the inner core either was devoid of cells or contained peritoneal exudate cells (primarily macrophages), thereby mimicking the inflammatory phase of wound healing. The fibroblasts compacted floating fibrin microspheres over time. In the absence of macrophages, the initial distribution of fibroblasts (only in the shell) induced circumferential alignment of fibrin fibrils via compaction of the shell relative to the core. The aligned fibrils created a contact guidance field, which was manifested by strong circumferential alignment of the fibroblasts. However, in the presence of macrophages, the fibroblasts exhibited more radial alignment despite the simultaneous contact guidance field in the circumferential direction associated with compaction. This was attributed to a chemotactic gradient emanating from the core due to a putative factor(s) released by the macrophages. The presence of a radial chemotactic stimulus was supported by the finding of even greater radial alignment when fibrin microspheres were embedded in an agarose-fibrin gel that abolished compaction and consequently the contact guidance field. Our assay permits the simulation of tissue morphogenetic processes that involve cell guidance phenomena and tractional restructuring of the extracellular matrix.
Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E
2015-11-11
Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after selective hair cell lesion. Because these afferent neurons carry sound information from the cochlea to the auditory brainstem, their survival is a key determinant of the success of cochlear prosthetics. Our data suggest that fractalkine signaling in the cochlea is neuroprotective, and reveal a previously uncharacterized interaction between cells of the cochlea and the innate immune system. Copyright © 2015 the authors 0270-6474/15/3515050-12$15.00/0.
Mills, Evanna L; Kelly, Beth; Logan, Angela; Costa, Ana S H; Varma, Mukund; Bryant, Clare E; Tourlomousis, Panagiotis; Däbritz, J Henry M; Gottlieb, Eyal; Latorre, Isabel; Corr, Sinéad C; McManus, Gavin; Ryan, Dylan; Jacobs, Howard T; Szibor, Marten; Xavier, Ramnik J; Braun, Thomas; Frezza, Christian; Murphy, Michael P; O'Neill, Luke A
2016-10-06
Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi
2002-01-01
Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.
Fu, Jiafang; Zong, Gongli; Zhang, Peipei; Gu, Yuanxin; Cao, Guangxiang
2018-04-01
Rv1057 is the only β-propeller protein in Mycobacterium tuberculosis, but its biological function is still unclear. In this study, we generated a deletion mutant of Rv1057 (D1057) in the virulent M. tuberculosis strain H37Rv and examined the characteristics of the mutant in vitro and in macrophages. We found that deletion of Rv1057 reduces secretion of the major virulence factor ESAT-6 and ESAT-6 stops in the cell envelope fraction during secretion, although ESAT-6 levels were similar in lysates of the mutant and control strains. In infected macrophages, Rv1057 deletion significantly reduced the secretion levels of cytokines IL-1β, IL-10, TNF-α, and INF-γ, but did not affect IL-4 and IL-8. D1057-infected macrophages also release less LDH and produce more nitric oxide (NO) than H37Rv- and D1057com (Rv1057 complemented strain of D1057com)-infected macrophages, indicating that D1057 has the decreased cytotoxicity compared to H37Rv or D1057com. In addition, the capacity of the Rv1057 deletion mutant to grow in macrophages was significantly lower than that of H37Rv and D1057com. Our findings support a role for Rv1057 in ESAT-6 secretion and in modulating the interactions between M. tuberculosis and macrophages.
Ortega, Ryan A; Barham, Whitney; Sharman, Kavya; Tikhomirov, Oleg; Giorgio, Todd D; Yull, Fiona E
2016-01-01
Tumor-associated macrophages (TAMs) are critically important in the context of solid tumor progression. Counterintuitively, these host immune cells can often support tumor cells along the path from primary tumor to metastatic colonization and growth. Thus, the ability to transform protumor TAMs into antitumor, immune-reactive macrophages would have significant therapeutic potential. However, in order to achieve these effects, two major hurdles would need to be overcome: development of a methodology to specifically target macrophages and increased knowledge of the optimal targets for cell-signaling modulation. This study addresses both of these obstacles and furthers the development of a therapeutic agent based on this strategy. Using ex vivo macrophages in culture, the efficacy of mannosylated nanoparticles to deliver small interfering RNA specifically to TAMs and modify signaling pathways is characterized. Then, selective small interfering RNA delivery is tested for the ability to inhibit gene targets within the canonical or alternative nuclear factor-kappaB pathways and result in antitumor phenotypes. Results confirm that the mannosylated nanoparticle approach can be used to modulate signaling within macrophages. We also identify appropriate gene targets in critical regulatory pathways. These findings represent an important advance toward the development of a novel cancer therapy that would minimize side effects because of the targeted nature of the intervention and that has rapid translational potential.
Saborano, Raquel; Wongpinyochit, Thidarat; Totten, John D; Johnston, Blair F; Seib, F Philipp; Duarte, Iola F
2017-07-01
Monitoring macrophage metabolism in response to nanoparticle exposure provides new insights into biological outcomes, such as inflammation or toxicity, and supports the design of tailored nanomedicines. This paper describes the metabolic signature of macrophages exposed to nanoparticles ranging in diameter from 100 to 125 nm and made from silk, poly(lactic-co-glycolic acid) or silica. Nanoparticles of this size and type are currently at various stages of preclinical and clinical development for drug delivery applications. 1 H NMR analysis of cell extracts and culture media is used to quantify the changes in the intracellular and extracellular metabolomes of macrophages in response to nanoparticle exposure. Increased glycolytic activity, an altered tricarboxylic acid cycle, and reduced ATP generation are consistent with a proinflammatory phenotype. Furthermore, amino acids possibly arising from autophagy, the creatine kinase/phosphocreatine system, and a few osmolytes and antioxidants emerge as important players in the metabolic reprogramming of macrophages exposed to nanoparticles. This metabolic signature is a common response to all nanoparticles tested; however, the direction and magnitude of some variations are clearly nanoparticle specific, indicating material-induced biological specificity. Overall, metabolic reprogramming of macrophages can be achieved with nanoparticle treatments, modulated through the choice of the material, and monitored using 1 H NMR metabolomics. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Wei; Molnar, Matyas; Garnham, Carolyn; Benav, Heval; Rask-Andersen, Helge
2018-01-01
The human inner ear, which is segregated by a blood/labyrinth barrier, contains resident macrophages [CD163, ionized calcium-binding adaptor molecule 1 (IBA1)-, and CD68-positive cells] within the connective tissue, neurons, and supporting cells. In the lateral wall of the cochlea, these cells frequently lie close to blood vessels as perivascular macrophages. Macrophages are also shown to be recruited from blood-borne monocytes to damaged and dying hair cells induced by noise, ototoxic drugs, aging, and diphtheria toxin-induced hair cell degeneration. Precise monitoring may be crucial to avoid self-targeting. Macrophage biology has recently shown that populations of resident tissue macrophages may be fundamentally different from circulating macrophages. We removed uniquely preserved human cochleae during surgery for treating petroclival meningioma compressing the brain stem, after ethical consent. Molecular and cellular characterization using immunofluorescence with antibodies against IBA1, TUJ1, CX3CL1, and type IV collagen, and super-resolution structured illumination microscopy (SR-SIM) were made together with transmission electron microscopy. The super-resolution microscopy disclosed remarkable phenotypic variants of IBA1 cells closely associated with the spiral ganglion cells. Monitoring cells adhered to neurons with “synapse-like” specializations and protrusions. Active macrophages migrated occasionally nearby damaged hair cells. Results suggest that the human auditory nerve is under the surveillance and possible neurotrophic stimulation of a well-developed resident macrophage system. It may be alleviated by the non-myelinated nerve soma partly explaining why, in contrary to most mammals, the human’s auditory nerve is conserved following deafferentiation. It makes cochlear implantation possible, for the advantage of the profoundly deaf. The IBA1 cells may serve additional purposes such as immune modulation, waste disposal, and nerve regeneration. Their role in future stem cell-based therapy needs further exploration. PMID:29487598
Regenboog, Martine; Bohte, Anneloes E; Akkerman, Erik M; Stoker, Jaap; Hollak, Carla E M
2017-11-01
Gaucher disease (GD) is a lysosomal storage disorder characterized by the storage of glycosphingolipids in macrophages. Despite effective therapy, residual disease is present in varying degrees and may be associated with late complications, such as persistent bone or liver disease and increased cancer risk. Gaucher macrophages are capable of storing iron and locations of residual disease may thus be detectable with iron imaging. Forty type 1 GD (GD1) patients and 40 matched healthy controls were examined using a whole-body magnetic resonance imaging protocol consisting of standard sequences, allowing analysis of iron content per organ, expressed as R2* (Hz). Median R2* values were significantly elevated in GD1 patients as compared to healthy controls in liver [41 Hz (range 29-165) vs. 38 Hz (range 28-53), P < 0·01], femoral bone marrow [54 Hz (range 37-129) vs. 49 Hz (range 39-69), P = 0·036] and vertebral bone marrow (118 Hz (range 82-210) vs. 105 Hz (range 76-149), P < 0·01). In the spleen, primarily focal Gaucher lesions known as Gaucheroma were found to have increased R2* values. R2* values of liver, spleen and vertebral bone marrow strongly correlated with serum ferritin levels. GD1 patients with persistent hyperferritinaemia demonstrate increased iron levels in liver and bone marrow, which may carry a risk for liver fibrosis and cancer. © 2017 John Wiley & Sons Ltd.
Lam, Grace Y; Cemma, Marija; Muise, Aleixo M; Higgins, Darren E; Brumell, John H
2013-07-01
Listeria monocytogenes is a bacterial pathogen that can escape the phagosome and replicate in the cytosol of host cells during infection. We previously observed that a population (up to 35%) of L. monocytogenes strain 10403S colocalize with the macroautophagy marker LC3 at 1 h postinfection. This is thought to give rise to spacious Listeria-containing phagosomes (SLAPs), a membrane-bound compartment harboring slow-growing bacteria that is associated with persistent infection. Here, we examined the host and bacterial factors that mediate LC3 recruitment to bacteria at 1 h postinfection. At this early time point, LC3(+) bacteria were present within single-membrane phagosomes that are LAMP1(+). Protein ubiquitination is known to play a role in targeting cytosolic L. monocytogenes to macroautophagy. However, we found that neither protein ubiquitination nor the ubiquitin-binding adaptor SQSTM1/p62 are associated with LC3(+) bacteria at 1 h postinfection. Reactive oxygen species (ROS) production by the CYBB/NOX2 NADPH oxidase was also required for LC3 recruitment to bacteria at 1 h postinfection and for subsequent SLAP formation. Diacylglycerol is an upstream activator of the CYBB/NOX2 NADPH oxidase, and its production by both bacterial and host phospholipases was required for LC3 recruitment to bacteria. Our data suggest that the LC3-associated phagocytosis (LAP) pathway, which is distinct from macroautophagy, targets L. monocytogenes during the early stage of infection within host macrophages and allows establishment of an intracellular niche (SLAPs) associated with persistent infection.
Guedj, Anne-Sophie; Kell, Arnold J; Barnes, Michael; Stals, Sandra; Gonçalves, David; Girard, Denis; Lavigne, Carole
2015-01-01
Following infection, HIV establishes reservoirs within tissues that are inaccessible to optimal levels of antiviral drugs or within cells where HIV lies latent, thus escaping the action of anti-HIV drugs. Macrophages are a persistent reservoir for HIV and may contribute to the rebound viremia observed after antiretroviral treatment is stopped. In this study, we further investigate the potential of poly(lactic-co-glycolic) acid (PLGA)-based nanocarriers as a new strategy to enhance penetration of therapeutic molecules into macrophages. We have prepared stable PLGA nanoparticles (NPs) and evaluated their capacity to transport an active molecule into the human monocyte/macrophage cell line THP-1 using bovine serum albumin (BSA) as a proof-of-concept compound. Intracellular localization of fluorescent BSA molecules encapsulated into PLGA NPs was monitored in live cells using confocal microscopy, and cellular uptake was quantified by flow cytometry. In vitro and in vivo toxicological studies were performed to further determine the safety profile of PLGA NPs including inflammatory effects. The size of the PLGA NPs carrying BSA (PLGA-BSA) in culture medium containing 10% serum was ~126 nm in diameter, and they were negatively charged at their surface (zeta potential =-5.6 mV). Our confocal microscopy studies and flow cytometry data showed that these PLGA-BSA NPs are rapidly and efficiently taken up by THP-1 monocyte-derived macrophages (MDMs) at low doses. We found that PLGA-BSA NPs increased cellular uptake and internalization of the protein in vitro. PLGA NPs were not cytotoxic for THP-1 MDM cells, did not modulate neutrophil apoptosis in vitro, and did not show inflammatory effect in vivo in the murine air pouch model of acute inflammation. In contrast to BSA alone, BSA encapsulated into PLGA NPs increased leukocyte infiltration in vivo, suggesting the in vivo enhanced delivery and protection of the protein by the polymer nanocarrier. We demonstrated that PLGA-based nanopolymer carriers are good candidates to efficiently and safely enhance the transport of active molecules into human MDMs. In addition, we further investigated their inflammatory profile and showed that PLGA NPs have low inflammatory effects in vitro and in vivo. Thus, PLGA nanocarriers are promising as a drug delivery strategy in macrophages for prevention and eradication of intracellular pathogens such as HIV and Mycobacterium tuberculosis.
Guedj, Anne-Sophie; Kell, Arnold J; Barnes, Michael; Stals, Sandra; Gonçalves, David; Girard, Denis; Lavigne, Carole
2015-01-01
Following infection, HIV establishes reservoirs within tissues that are inaccessible to optimal levels of antiviral drugs or within cells where HIV lies latent, thus escaping the action of anti-HIV drugs. Macrophages are a persistent reservoir for HIV and may contribute to the rebound viremia observed after antiretroviral treatment is stopped. In this study, we further investigate the potential of poly(lactic-co-glycolic) acid (PLGA)-based nanocarriers as a new strategy to enhance penetration of therapeutic molecules into macrophages. We have prepared stable PLGA nanoparticles (NPs) and evaluated their capacity to transport an active molecule into the human monocyte/macrophage cell line THP-1 using bovine serum albumin (BSA) as a proof-of-concept compound. Intracellular localization of fluorescent BSA molecules encapsulated into PLGA NPs was monitored in live cells using confocal microscopy, and cellular uptake was quantified by flow cytometry. In vitro and in vivo toxicological studies were performed to further determine the safety profile of PLGA NPs including inflammatory effects. The size of the PLGA NPs carrying BSA (PLGA-BSA) in culture medium containing 10% serum was ~126 nm in diameter, and they were negatively charged at their surface (zeta potential =−5.6 mV). Our confocal microscopy studies and flow cytometry data showed that these PLGA-BSA NPs are rapidly and efficiently taken up by THP-1 monocyte-derived macrophages (MDMs) at low doses. We found that PLGA-BSA NPs increased cellular uptake and internalization of the protein in vitro. PLGA NPs were not cytotoxic for THP-1 MDM cells, did not modulate neutrophil apoptosis in vitro, and did not show inflammatory effect in vivo in the murine air pouch model of acute inflammation. In contrast to BSA alone, BSA encapsulated into PLGA NPs increased leukocyte infiltration in vivo, suggesting the in vivo enhanced delivery and protection of the protein by the polymer nanocarrier. We demonstrated that PLGA-based nanopolymer carriers are good candidates to efficiently and safely enhance the transport of active molecules into human MDMs. In addition, we further investigated their inflammatory profile and showed that PLGA NPs have low inflammatory effects in vitro and in vivo. Thus, PLGA nanocarriers are promising as a drug delivery strategy in macrophages for prevention and eradication of intracellular pathogens such as HIV and Mycobacterium tuberculosis. PMID:26445538
Ding, Jinping; Chen, Bo; Lv, Tao; Liu, Xia; Fu, Xin; Wang, Qian; Yan, Li; Kang, Ning; Cao, Yilin; Xiao, Ran
2016-08-01
: The regeneration of tissue-engineered cartilage in an immunocompetent environment usually fails due to severe inflammation induced by the scaffold and their degradation products. In the present study, we compared the tissue remodeling and the inflammatory responses of engineered cartilage constructed with bone marrow mesenchymal stem cells (BMSCs), chondrocytes, or both and scaffold group in pigs. The cartilage-forming capacity of the constructs in vitro and in vivo was evaluated by histological, biochemical, and biomechanical analyses, and the inflammatory response was investigated by quantitative analysis of foreign body giant cells and macrophages. Our data revealed that BMSC-based engineered cartilage suppressed in vivo inflammation through the alteration of macrophage phenotype, resulting in better tissue survival compared with those regenerated with chondrocytes alone or in combination with BMSCs. To further confirm the macrophage phenotype, an in vitro coculture system established by engineered cartilage and macrophages was studied using immunofluorescence, enzyme-linked immunosorbent assay, and gene expression analysis. The results demonstrated that BMSC-based engineered cartilage promoted M2 polarization of macrophages with anti-inflammatory phenotypes including the upregulation of CD206, increased IL-10 synthesis, decreased IL-1β secretion, and alterations in gene expression indicative of M1 to M2 transition. It was suggested that BMSC-seeded constructs have the potential to ameliorate scaffold-induced inflammation and improve cartilaginous tissue regeneration through M2 polarization of macrophages. Finding a strategy that can prevent scaffold-induced inflammation is of utmost importance for the regeneration of tissue-engineered cartilage in an immunocompetent environment. This study demonstrated that bone marrow mesenchymal stem cell (BMSC)-based engineered cartilage could suppress inflammation by increasing M2 polarization of macrophages, resulting in better tissue survival in a pig model. Additionally, the effect of BMSC-based cartilage on the phenotype conversion of macrophages was further studied through an in vitro coculture system. This study could provide further support for the regeneration of cartilage engineering in immunocompetent animal models and provide new insight into the interaction of tissue-engineered cartilage and macrophages. ©AlphaMed Press.
Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds.
Chanput, Wasaporn; Mes, Jurriaan J; Savelkoul, Huub F J; Wichers, Harry J
2013-02-01
Little is known about the polarizing potential of currently used human macrophage cell lines, while a better understanding phenomena can support the prediction of effects in vivo based on in vitro analysis. To test the polarization capability of PMA differentiated-THP-1 macrophages (M0), cells were stimulated with 20 ng ml(-1) IFNγ + 1 μg ml(-1) LPS and 20 ng ml(-1) IL-4, which are known to influence macrophage polarization in vivo and ex vivo into the M1 and M2 state, respectively. Apart from several well-known M1 and M2 markers, also new possible markers for M1 and M2 polarization were analysed in this study. The expression of M1 marker genes was up-regulated in IFNγ + LPS stimulated-M0 THP-1 macrophages. The IL-4 stimulated-M0 THP-1 macrophages expressed M2 cell membrane receptor genes. However, M2 chemokine and their receptor genes were only slightly up-regulated which might be due to the complexity of the secondary cell-cell interaction of the chemokine system. Lipopolysaccharides from E. coli (LPS) and food compounds [lentinan, vitamin D3 (vD3) and the combination of lentinan + vitamin D3 (Len + vD3)] were investigated for their polarizing ability on M0 THP-1 macrophages towards either the M1 or M2 state. LPS (700 ng ml(-1)) was able to skew M0 THP-1 macrophages towards the M1 direction since all analysed M1 marker genes were strongly expressed. Lentinan, vD3 and Len + vD3 did not induce expression of either M1 or M2 markers, indicating no polarizing ability of these compounds. Based on the expression of M1 and M2 marker genes we concluded that THP-1 macrophages could be successfully polarized into either the M1 or M2 state. Therefore, they can be used as a new macrophage polarizing model to estimate the polarizing/switching ability of test food compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Patricia C., E-mail: ryanp@medimmune.com; Sleeman, Matthew A.; Rebelatto, Marlon
Mavrilimumab (CAM-3001) is an investigational human IgG4 monoclonal antibody (MAb) targeting GM-CSF receptor alpha which is currently being developed for the treatment of RA. GM-CSF plays a central role in the pathogenesis of rheumatoid arthritis (RA) through the activation, differentiation, and survival of macrophages and neutrophils. To support clinical development, the nonclinical safety of mavrilimumab was evaluated in several studies with cynomolgus monkeys as the pharmacologically relevant species. Comprehensive toxicity parameters were assessed in each study, and treatment duration ranged from 4 to 26 weeks. Mavrilimumab has an acceptable safety profile in monkeys with no changes in any parameters othermore » than microscopic findings in lung. In several studies, minimal accumulation of foamy alveolar macrophages was observed. This finding was only seen in studies of at least 11 weeks duration, was reversible following a dose-free recovery period and was considered non-adverse. At higher dose levels (≥ 30 mg/kg/week), in a 26-week repeat-IV dose study, the presence of lung foreign material, cholesterol clefts, and granulomatous inflammation was also observed in a few animals and was considered adverse. The dose- and time-related accumulation of foamy macrophages in lung following exposure to mavrilimumab observed in several NHP studies was expected based upon the known role of GM-CSFRα signaling in the function of alveolar macrophages. Overall, a clean no-observed-adverse-effect-level (NOAEL) without any effects in lung was established and provided adequate clinical safety margins. In clinical studies in RA patients, mavrilimumab has demonstrated good clinical activity with adequate safety to support further clinical development. A Phase 2b study of mavrilimumab in subjects with RA is in progress. - Highlights: • Mavrilimumab is a MAB targeting GM-CSFRα being developed for RA therapy. • Mavrilimumab has an acceptable safety profile in cynomolgus monkeys. • Lung changes observed reflect role of GM-CSF in alveolar macrophage function. • High safety margins support continued clinical development of mavrilimumab.« less
McFadden, Nora; Arias, Armando; Dry, Inga; Bailey, Dalan; Witteveldt, Jeroen; Evans, David J.; Goodfellow, Ian; Simmonds, Peter
2013-01-01
Mechanisms by which certain RNA viruses, such as hepatitis C virus, establish persistent infections and cause chronic disease are of fundamental importance in viral pathogenesis. Mammalian positive-stranded RNA viruses establishing persistence typically possess genome-scale ordered RNA secondary structure (GORS) in their genomes. Murine norovirus (MNV) persists in immunocompetent mice and provides an experimental model to functionally characterize GORS. Substitution mutants were constructed with coding sequences in NS3/4- and NS6/7-coding regions replaced with sequences with identical coding and (di-)nucleotide composition but disrupted RNA secondary structure (F1, F2, F1/F2 mutants). Mutants replicated with similar kinetics to wild-type (WT) MNV3 in RAW264.7 cells and primary macrophages, exhibited similar (highly restricted) induction and susceptibility to interferon-coupled cellular responses and equal replication fitness by serial passaging of co-cultures. In vivo, both WT and F1/F2 mutant viruses persistently infected mice, although F1, F2 and F1/F2 mutant viruses were rapidly eliminated 1–7 days post-inoculation in competition experiments with WT. F1/F2 mutants recovered from tissues at 9 months showed higher synonymous substitution rates than WT and nucleotide substitutions that potentially restored of RNA secondary structure. GORS plays no role in basic replication of MNV but potentially contributes to viral fitness and persistence in vivo. PMID:23630317
Bacterial killing in macrophages and amoeba: do they all use a brass dagger?
German, Nadezhda; Doyscher, Dominik; Rensing, Christopher
2013-10-01
Macrophages are immune cells that are known to engulf pathogens and destroy them by employing several mechanisms, including oxidative burst, induction of Fe(II) and Mn(II) efflux, and through elevation of Cu(I) and Zn(II) concentrations in the phagosome ('brass dagger'). The importance of the latter mechanism is supported by the presence of multiple counteracting efflux systems in bacteria, responsible for the efflux of toxic metals. We hypothesize that similar bacteria-killing mechanisms are found in predatory protozoa/amoeba species. Here, we present a brief summary of soft metal-related mechanisms used by macrophages, and perhaps amoeba, to inactivate and destroy bacteria. Based on this, we think it is likely that copper resistance is also selected for by protozoan grazing in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it; Germini, Diego; Rodighiero, Isabella
2013-05-25
Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promotingmore » cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.« less
Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ruochan; Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008; Fu, Sha
High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis andmore » necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.« less
Steiger, Stefanie; Kumar, Santhosh V; Honarpisheh, Mohsen; Lorenz, Georg; Günthner, Roman; Romoli, Simone; Gröbmayr, Regina; Susanti, Heni-Eka; Potempa, Jan; Koziel, Joanna; Lech, Maciej
2017-08-15
Activation of various innate immune receptors results in IL-1 receptor-associated kinase (IRAK)-1/IRAK-4-mediated signaling and secretion of proinflammatory cytokines such as IL-12, IL-6, or TNF-α, all of which are implicated in tissue injury and elevated during tissue remodeling processes. IRAK-M, also known as IRAK-3, is an inhibitor of proinflammatory cytokine and chemokine expression in intrarenal macrophages. Innate immune activation contributes to both acute kidney injury and tissue remodeling that is associated with chronic kidney disease (CKD). Our study assessed the contribution of macrophages in CKD and the role of IRAK-M in modulating disease progression. To evaluate the effect of IRAK-M in chronic renal injury in vivo, a mouse model of unilateral ureteral obstruction (UUO) was employed. The expression of IRAK-M increased within 2 d after UUO in obstructed compared with unobstructed kidneys. Mice deficient in IRAK-M were protected from fibrosis and displayed a diminished number of alternatively activated macrophages. Compared to wild-type mice, IRAK-M-deficient mice showed reduced tubular injury, leukocyte infiltration, and inflammation following renal injury as determined by light microscopy, immunohistochemistry, and intrarenal mRNA expression of proinflammatory and profibrotic mediators. Taken together, these results strongly support a role for IRAK-M in renal injury and identify IRAK-M as a possible modulator in driving an alternatively activated profibrotic macrophage phenotype in UUO-induced CKD. Copyright © 2017 by The American Association of Immunologists, Inc.
Willinger, Tim; Rongvaux, Anthony; Takizawa, Hitoshi; Yancopoulos, George D.; Valenzuela, David M.; Murphy, Andrew J.; Auerbach, Wojtek; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.
2011-01-01
Mice with a functional human immune system have the potential to allow in vivo studies of human infectious diseases and to enable vaccine testing. To this end, mice need to fully support the development of human immune cells, allow infection with human pathogens, and be capable of mounting effective human immune responses. A major limitation of humanized mice is the poor development and function of human myeloid cells and the absence of human immune responses at mucosal surfaces, such as the lung. To overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/GM-CSF KI) mice. These mice faithfully expressed human GM-CSF and IL-3 and developed pulmonary alveolar proteinosis because of elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF KI mice engrafted with human CD34+ hematopoietic cells had improved human myeloid cell reconstitution in the lung. In particular, hIL-3/GM-CSF KI mice supported the development of human alveolar macrophages that partially rescued the pulmonary alveolar proteinosis syndrome. Moreover, human alveolar macrophages mounted correlates of a human innate immune response against influenza virus. The hIL-3/GM-CSF KI mice represent a unique mouse model that permits the study of human mucosal immune responses to lung pathogens. PMID:21262803
Preferential silent survival of intracellular bacteria in hemoglobin-primed macrophages.
Subramanian, Karthik; Winarsih, Imelda; Keerthani, Chandrakumaran; Ho, Bow; Ding, Jeak Ling
2014-01-01
Hemolysis releases hemoglobin (Hb), a prooxidant, into circulation. While the heme iron is a nutrient for the invading pathogens, it releases ROS, which is both microbicidal and cytotoxic, making it a double-edged sword. Previously, we found a two-pass detoxification mechanism involving the endocytosis of Hb into monocytes in collaboration with vascular endothelial cells to overcome oxidative damage. This prompted us to examine the effect of Hb priming on host cell viability and intracellular bacterial clearance during a hemolytic infection. Here, we demonstrate that Hb-primed macrophages harbor a higher intracellular bacterial load but with suppressed apoptosis. p-ERK and p-p38 MAPK were significantly downregulated, with concomitant impairment of Bax and downstream caspases. The Hb-primed cells harboring intracellular bacteria upregulated anti-inflammatory IL-10 and downregulated proinflammatory TNF-α, which further enhanced the infectivity of the neighboring cells. Our findings suggest that opportunistic intracellular pathogens exploit the Hb-scavenging machinery of the host to silently persist within the circulating phagocytes by suppressing apoptosis while escaping immune surveillance. © 2014 S. Karger AG, Basel.
Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells
NASA Astrophysics Data System (ADS)
Fu, Yan; Glaros, Trevor; Zhu, Meng; Wang, Ping; Wu, Zhanghan; Tyson, John; Li, Liwu; Xing, Jianhua
2012-01-01
The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.
Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells
Hansen, Erik C; Ransom, Monica; Hesselberth, Jay R; Hosmane, Nina N; Capoferri, Adam A; Bruner, Katherine M; Pollack, Ross A; Zhang, Hao; Drummond, Michael Bradley; Siliciano, Janet M; Siliciano, Robert; Stivers, James T
2016-01-01
We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection. DOI: http://dx.doi.org/10.7554/eLife.18447.001 PMID:27644592
Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity
Schnell, Barbara; Staubli, Titu; Harris, Nicola L.; Rogler, Gerhard; Kopf, Manfred; Loessner, Martin J.; Schuppler, Markus
2014-01-01
Stable L-forms are cell wall-deficient bacteria which are able to multiply and propagate indefinitely, despite the absence of a rigid peptidoglycan cell wall. We investigated whether L-forms of the intracellular pathogen L. monocytogenes possibly retain pathogenicity, and if they could trigger an innate immune response. While phagocytosis of L. monocytogenes L-forms by non-activated macrophages sometimes resulted in an unexpected persistence of the bacteria in the phagocytes, they were effectively eliminated by IFN-γ preactivated or bone marrow-derived macrophages (BMM). These findings were in line with the observed down-regulation of virulence factors in the cell-wall deficient L. monocytogenes. Absence of Interferon-β (IFN-β) triggering indicated inability of L-forms to escape from the phagosome into the cytosol. Moreover, abrogated cytokine response in MyD88-deficient dendritic cells (DC) challenged with L. monocytogenes L-forms suggested an exclusive TLR-dependent host response. Taken together, our data demonstrate a strong attenuation of Listeria monocytogenes L-form pathogenicity, due to diminished expression of virulence factors and innate immunity recognition, eventually resulting in elimination of L-form bacteria from phagocytes. PMID:24904838
Zordan, P; Rigamonti, E; Freudenberg, K; Conti, V; Azzoni, E; Rovere-Querini, P; Brunelli, S
2014-01-30
The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases.
Tumor Tension Induces Persistent Inflammation and Promotes Breast Cancer Aggression
2015-10-01
assessing collagen crosslinking, fibrillar collagen I deposition, and macrophage infiltration in a pilot study using MMTV-PyMT; Col1a1 -tTA;TetO_mLOX model...where LOX was overexpressed in Col1a1 + activated fibroblasts (Figure 4B-C). The second model is an inducible LOX knockout model: MMTV-PyMT; Col1a1 ...cells were isolated and analyzed using flow cytometry. (B) MMTV-PyMT; Col1a1 -tTA;TetO_mLOX mice have been taken off DOX treatment at 6 weeks of age
Dual Roles for Ikaros in Regulation of Macrophage Chromatin State and Inflammatory Gene Expression.
Oh, Kyu-Seon; Gottschalk, Rachel A; Lounsbury, Nicolas W; Sun, Jing; Dorrington, Michael G; Baek, Songjoon; Sun, Guangping; Wang, Ze; Krauss, Kathleen S; Milner, Joshua D; Dutta, Bhaskar; Hager, Gordon L; Sung, Myong-Hee; Fraser, Iain D C
2018-06-13
Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1 -/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1 +/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.
Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice.
Martel, Catherine; Li, Wenjun; Fulp, Brian; Platt, Andrew M; Gautier, Emmanuel L; Westerterp, Marit; Bittman, Robert; Tall, Alan R; Chen, Shu-Hsia; Thomas, Michael J; Kreisel, Daniel; Swartz, Melody A; Sorci-Thomas, Mary G; Randolph, Gwendalyn J
2013-04-01
Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin--1 surgical and the other genetic--to quantitatively track RCT following injection of [3H]-cholesterol-loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti-VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis.
Wiggers, Erin Callie; Johnson, William; Tucci, Michelle; Benghuzzi, Hamed
2011-01-01
Osteomyelitis is a bacterial infection of the bone that occurs frequently as a complication of open fractures and various kinds of orthopedic surgery. This infection can often lead to more extensive surgeries and even death of the patient. In animal models of osteomyelitis, the site of infection by Staphylococcus aureus was observed to have high numbers of both macrophages and osteoclasts, both of which may contribute to large amounts of osteolysis and tissue damage. In order to evaluate the immune response in both types of cells, two cells lines, a macrophage cell line and a macrophage cell line stimulated to become osteoclasts by the addition of receptor activator of nuclear-factor B (RANKL), were exposed to lipopolysaccharides, opsonized S. aureus, and unopsonized S. aureus. The results showed that both cell types activated a biochemical cascade that included the release of cytokines and nitric oxide associated with cell damage and death in response to infection. However, macrophages and osteoclasts differed in response magnitude, most likely due to differences in cell-membrane receptors. This data supports the growing body of research that links the immune and skeletal systems. Further understanding of biochemical pathways shared by the two systems could lead to significant advances in the treatment of osteomyelitis and the success of prostheses.
Dockrell, D H; Badley, A D; Villacian, J S; Heppelmann, C J; Algeciras, A; Ziesmer, S; Yagita, H; Lynch, D H; Roche, P C; Leibson, P J; Paya, C V
1998-01-01
Fas/Fas Ligand (FasL) interactions play a significant role in peripheral T lymphocyte homeostasis and in certain pathological states characterized by T cell depletion. In this study, we demonstrate that antigen-presenting cells such as monocyte-derived human macrophages (MDM) but not monocyte-derived dendritic cells express basal levels of FasL. HIV infection of MDM increases FasL protein expression independent of posttranslational mechanisms, thus highlighting the virus-induced transcriptional upregulation of FasL. The in vitro relevance of these observations is confirmed in human lymphoid tissue. FasL protein expression is constitutive and restricted to tissue macrophages and not dendritic cells. Moreover, a significant increase in macrophage-associated FasL is observed in lymphoid tissue from HIV (+) individuals (P < 0.001), which is further supported by increased levels of FasL mRNA using in situ hybridization. The degree of FasL protein expression in vivo correlates with the degree of tissue apoptosis (r = 0.761, P < 0. 001), which is significantly increased in tissue from HIV-infected patients (P < 0.001). These results identify human tissue macrophages as a relevant source for FasL expression in vitro and in vivo and highlight the potential role of FasL expression in the immunopathogenesis of HIV infection. PMID:9616211
Modeling early events in Francisella tularensis pathogenesis.
Gillard, Joseph J; Laws, Thomas R; Lythe, Grant; Molina-París, Carmen
2014-01-01
Computational models can provide valuable insights into the mechanisms of infection and be used as investigative tools to support development of medical treatments. We develop a stochastic, within-host, computational model of the infection process in the BALB/c mouse, following inhalational exposure to Francisella tularensis SCHU S4. The model is mechanistic and governed by a small number of experimentally verifiable parameters. Given an initial dose, the model generates bacterial load profiles corresponding to those produced experimentally, with a doubling time of approximately 5 h during the first 48 h of infection. Analytical approximations for the mean number of bacteria in phagosomes and cytosols for the first 24 h post-infection are derived and used to verify the stochastic model. In our description of the dynamics of macrophage infection, the number of bacteria released per rupturing macrophage is a geometrically-distributed random variable. When combined with doubling time, this provides a distribution for the time taken for infected macrophages to rupture and release their intracellular bacteria. The mean and variance of these distributions are determined by model parameters with a precise biological interpretation, providing new mechanistic insights into the determinants of immune and bacterial kinetics. Insights into the dynamics of macrophage suppression and activation gained by the model can be used to explore the potential benefits of interventions that stimulate macrophage activation.
NASA Technical Reports Server (NTRS)
Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)
1999-01-01
Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A., E-mail: jalast@ucdavis.edu
2013-01-01
Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stressmore » in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after giving wildfire PM{sub 10-2.5} to mice. ► Wildfire PM{sub 10-2.5} rapidly kills lung macrophages in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits oxidative stress in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits Clara cell CCSP secretion in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits TNF-α secretion into BALF in mice.« less
Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O
2017-09-01
Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.
Frasch, S. Courtney; Fernandez-Boyanapalli, Ruby F.; Berry, Karin A. Zemski; Murphy, Robert C.; Leslie, Christina C.; Nick, Jerry A.; Henson, Peter M.; Bratton, Donna L.
2013-01-01
Resolution of neutrophilia characteristic of acute inflammation requires cessation of neutrophil recruitment and removal of tissue neutrophils. Based on in vitro studies, a role in these events was hypothesized for oxidant-generated lysophosphatidylserine (lyso-PS) on recruited neutrophils signaling via the G2A receptor on macrophages. Peritoneal exudate neutrophils harvested from wild type (WT) mice had 5-fold more lyso-PS (lyso-PShigh) than those of gp91phox−/− (lyso-PSlow) mice. Ex vivo engulfment of lyso-PShigh neutrophils (95% viable) by WT peritoneal macrophages was quantitatively similar to UV-irradiated apoptotic blood neutrophils, although the signaling pathway for the former was uniquely dependent on macrophage G2A. In contrast, lyso-PSlow neutrophils were poorly engulfed unless presented with exogenous lyso-PS. Enhanced clearance of lyso-PShigh neutrophils was also seen in vivo following their adoptive transfer into inflamed peritonea of WT but not G2A−/− mice, further supporting a requirement for signaling via G2A. To investigate downstream effects of lyso-PS/G2A signaling, antibody blockade of G2A in WT mice reduced macrophage CD206 expression and efferocytosis during peritonitis. Conversely, adoptive transfer of lyso-PShigh neutrophils early in inflammation in gp91phox−/− mice led to accelerated development of efferocytichigh and CD206high macrophages. This macrophage reprogramming was associated with suppressed production of pro-inflammatory mediators and reduced neutrophilia. These effects were not seen if G2A was blocked or lyso-PSlow neutrophils were transferred. Taken together, the results demonstrate that oxidant-generated lyso-PS made by viable tissue neutrophils is an endogenous anti-inflammatory mediator working in vivo to orchestrate the “early” and rapid clearance of recruited neutrophils as well as the reprogramming of “resolving” macrophages. PMID:23293064
Lishko, Valeryi K.; Moreno, Benjamin; Podolnikova, Nataly P.; Ugarova, Tatiana P.
2016-01-01
LL-37, a cationic antimicrobial peptide, has numerous immune-modulating effects. However, the identity of a receptor(s) mediating the responses in immune cells remains uncertain. We have recently demonstrated that LL-37 interacts with the αMI-domain of integrin αMβ2 (Mac-1), a major receptor on the surface of myeloid cells, and induces a migratory response in Mac-1-expressing monocyte/macrophages as well as activation of Mac-1 on neutrophils. Here, we show that LL-37 and its C-terminal derivative supported strong adhesion of various Mac-1-expressing cells, including HEK293 cells stably transfected with Mac-1, human U937 monocytic cells and murine IC-21 macrophages. The cell adhesion to LL-37 was partially inhibited by specific Mac-1 antagonists, including mAb against the αM integrin subunit and neutrophil inhibitory factor, and completely blocked when anti-Mac-1 antibodies were combined with heparin, suggesting that cell surface heparan sulfate proteoglycans act cooperatively with integrin Mac-1. Coating both Gram-negative and Gram-positive bacteria with LL-37 significantly potentiated their phagocytosis by macrophages, and this process was blocked by a combination of anti-Mac-1 mAb and heparin. Furthermore, phagocytosis by wild-type murine peritoneal macrophages of LL-37-coated latex beads, a model of foreign surfaces, was several fold higher than that of untreated beads. By contrast, LL-37 failed to augment phagocytosis of beads by Mac-1-deficient macrophages. These results identify LL-37 as a novel ligand for integrin Mac-1 and demonstrate that the interaction between Mac-1 on macrophages and bacteria-bound LL-37 promotes phagocytosis. PMID:27990411
Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N
2004-12-01
The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.
Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim
2012-01-01
Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037
Srinivasan, Mythily; Blackburn, Corinne; Lahiri, Debomoy K
2014-01-01
Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid responsive protein that links the nuclear factor-kappa B (NFκB) and the glucocorticoid signaling pathways. Functional and binding studies suggest that the proline-rich region at the carboxy terminus of GILZ binds the p65 subunit of NFκB and suppresses the immunoinflammatory response. A widely-used strategy in the discovery of peptide drugs involves exploitation of the complementary surfaces of naturally occurring binding partners. Previously, we observed that a synthetic peptide (GILZ-P) derived from the proline-rich region of GILZ bound activated p65 and ameliorated experimental encephalomyelitis. Here we characterize the secondary structure of GILZ-P by circular dichroic analysis. GILZ-P adopts an extended polyproline type II helical conformation consistent with the structural conformation commonly observed in interfaces of transient intermolecular interactions. To determine the potential application of GILZ-P in humans, we evaluated the toxicity and efficacy of the peptide drug in mature human macrophage-like THP-1 cells. Treatment with GILZ-P at a wide range of concentrations commonly used for peptide drugs was nontoxic as determined by cell viability and apoptosis assays. Functionally, GILZ-P suppressed proliferation and glutamate secretion by activated macrophages by inhibiting nuclear translocation of p65. Collectively, our data suggest that the GILZ-P has therapeutic potential in chronic CNS diseases where persistent inflammation leads to neurodegeneration such as multiple sclerosis and Alzheimer’s disease. PMID:25584020
Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose
2012-01-01
Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes. PMID:22124659
CELLULAR REACTIONS TO REINJECTION OF ANTIGEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speirs, R.S.; Speirs, E.E.
1963-01-01
Studies in mice showed that an injection of tritiated antigen resulted in an incorporation of radioactivity in neutrophils, eosinophils, and macrophages at different times during the inflammatory cycle. Necrosis of labeled cells was frequently observed, and the incorporated radioactive material was passed from cell to cell by phagocytosis. As the inflammation subsided, there was a marked decrease in the number of labeled cells in the exudate, and a concomitant appearance and persistence of labeled cells in lymph nodes, spleen, and bone marrow. The fate of these labeled cells was followed after re-exposure to antigen, using autoradiographic procedures. An intraperitoneal injectionmore » of tetanus or diphtheria toxoid at 10, 30, or 60 days after sensitization produced an increase in the total number of mononuclear cells and an increase in the mononuclear cells containing radioactive material. The labeled cells were found in all animals autopsied within 70 days of sensitization and in several animals autopsied approximately 270 days after sensitization. The labeled cells were macrophages or large lymphoid cells. Approximately 12% of these cells were multinucleated, usually binucleated. An attempt was made to develop a concept of antibody formation on a molecular level. It is postulated that lymphocytes, macrophages, and plasma cells act as carriers for the necessary template RNA and associated microsomes, whereas the eosinophiles, and possibly the neutrophiles, supply a means of transporting antigen and specific enzymatic material to the reacting cells, thereby initiating changes leading to hypersensitivity and antibody formation. (C.H.)« less
Chen, Maria F; Gill, Alexander J; Kolson, Dennis L
2014-11-01
The purpose of this study is to discuss why HIV-associated neurocognitive disorders (HAND) persist despite apparently effective HIV suppression by highly active antiretroviral therapy (ART). As many as 50% of HIV-infected individuals suffer from HAND despite ART suppression of HIV replication to apparently undetectable levels in most treated individuals. Prior to ART, HIV-associated dementia (HAD), the severest form of HAND, affected nearly 20% of infected individuals; HAD now affects only nearly 2% of ART-treated persons, although less severe HAND forms persist. Recent studies link persistent immune activation, inflammation and viral escape/blipping in ART-treated individuals, as well as comorbid conditions, to HIV disease progression and increased HAND risk. Despite sustained HIV suppression in most ART-treated individuals, indicated by routine plasma monitoring and occasional cerebrospinal fluid (CSF) monitoring, 'blips' of HIV replication are often detected with more frequent monitoring, thus challenging the concept of viral suppression. Although the causes of HIV blipping are unclear, CSF HIV blipping associates with neuroinflammation and, possibly, central nervous system (CNS) injury. The current theory that macrophage-tropic HIV strains within the CNS predominate in driving HAND and these associated factors is now also challenged. Protection of the CNS by ART is incomplete, probably due to combined effects of incomplete HIV suppression, persistent immune activation and host comorbidity factors. Adjunctive therapies to ART are necessary for more effective protection.
Gemensky-Metzler, Anne J; Wilkie, David A
2004-01-01
The objective of this study was to describe the clinical, histologic and immunohistochemical features, the surgical treatment, and outcome of a cataract secondary to persistent hyperplastic tunica vasculosa lentis/persistent hyperplastic primary vitreous (PHTVL/PHPV) in a dog. A 4-month-old male Bloodhound dog presented for evaluation of a cataract. A complete ophthalmic examination and ocular ultrasonography were performed. A resorbing cataract with intralenticular hemorrhage, lens induced uveitis, and PHTVL/PHPV were diagnosed. Extracapsular cataract extraction using phacoemulsification was performed. A primary posterior capsulectomy was performed to remove a retrolental plaque with the posterior capsule; the excised plaque was submitted for histopathology and immunohistochemical staining. A 41-Diopter intraocular lens (IOL) was implanted. Functional vision was maintained postoperatively during the 21-month follow-up period. Histologically, the posterior capsule was coiled and exhibited duplication. The retrolental plaque was comprised of dense fibrous connective tissue, blood vessels, free red blood cells, hemosiderin-laden macrophages, a pocket of neural tissue and numerous perivascular mast cells. With immunohistochemical staining, the neural elements were determined to be glial cells compatible with astrocytes. Cataract secondary to PHTVL/PHPV can be successfully treated using phacoemulsification and planned posterior capsulectomy. Posterior lens capsule duplication, mast cells and astrocytic glial cells may be normal components of the fibrovascular retrolental plaque associated with PHTVL/PHPV.
Nandi, Bisweswar; Shapiro, Mia; Samur, Mehmet K.; Pai, Christine; Frank, Natasha Y.; Yoon, Charles; Prabhala, Rao H.; Munshi, Nikhil C.; Gold, Jason S.
2016-01-01
ABSTRACT Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been implicated in promoting colon cancer; however, the mechanisms behind this effect are poorly understood. We have previously demonstrated that deficiency of CCR6 is associated with decreased tumor macrophage accumulation in a model of sporadic intestinal tumorigenesis. In this study, we aimed to determine the role of stromal CCR6 expression in a murine syngeneic transplantable colon cancer model. We show that deficiency of host CCR6 is associated with decreased growth of syngeneic CCR6-expressing colon cancers. Colon cancers adoptively transplanted into CCR6-deficient mice have decreased tumor-associated macrophages without alterations in the number of monocytes in blood or bone marrow. CCL20, the unique ligand for CCR6, promotes migration of monocytes in vitro and promotes accumulation of macrophages in vivo. Depletion of tumor-associated macrophages decreases the growth of tumors in the transplantable tumor model. Macrophages infiltrating the colon cancers in this model secrete the inflammatory mediators CCL2, IL-1α, IL-6 and TNFα. Ccl2, Il1α and Il6 are consequently downregulated in tumors from CCR6-deficient mice. CCL2, IL-1α and IL-6 also promote proliferation of colon cancer cells, linking the decreased macrophage migration into tumors mediated by CCL20–CCR6 interactions to the delay in tumor growth in CCR6-deficient hosts. The relevance of these findings in human colon cancer is demonstrated through correlation of CCR6 expression with that of the macrophage marker CD163 as well as that of CCL2, IL1α and TNFα. Our findings support the exploration of targeting the CCL20–CCR6 pathway for the treatment of colon cancer. PMID:27622061
Tabarkiewicz, Jacek; Postępski, Jacek; Olesińska, Edyta; Roliński, Jacek; Tuszkiewicz-Misztal, Ewa
2011-01-01
Childhood chronic arthritis of unknown etiology is known collectively as juvenile idiopathic arthritis (JIA) and consists of heterogeneous subtypes with unique clinical patterns of disease. JIA is the commonest rheumatic disease in children and may still result in significant disability, with joint deformity, growth impairment, and persistence of active arthritis into adulthood. Basic research is rather focused on rheumatoid arthritis, and this lead to small number of publications considering JIA. In this study we examine, by flow cytometry, the expression of dendritic cells (DCs) in the peripheral blood and synovial fluid of children with active JIA in a group of 220 patients. We reveal a significant decrease in the percentage of immature DCs in the blood of patients compared to control children. Surprisingly, we found higher percentages of mature circulating dendritic cells. Both populations of DCs, immature and mature, were accumulated in patients' synovial fluid. We also confirmed the presence of CD206+/CD209+ in JIA samples, which can represent a population of macrophages with dendritic cells morphology. Our results support the thesis that dendritic cells are crucial in the induction and maintenance of autoimmune response and local inflammation during juvenile idiopathic arthritis.
Biology and function of adipose tissue macrophages, dendritic cells and B cells.
Ivanov, Stoyan; Merlin, Johanna; Lee, Man Kit Sam; Murphy, Andrew J; Guinamard, Rodolphe R
2018-04-01
The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity. Copyright © 2018 Elsevier B.V. All rights reserved.
Maina, J. N.; Cowley, H. M.
1998-01-01
Free (surface) avian respiratory macrophages (FARMs) were harvested by lavage of the lung/air-sac system of the rock dove, Columba livia. The presence of FARMs in the atria and infundibula was confirmed by scanning electron microscopy. The respiratory system has developed several cellular defence lines that include surface macrophages, epithelial, subepithelial and interstitial phagocytes, and pulmonary intravascular macrophages (PIMs). Hence, C. livia appears to have a multiple pulmonary cellular protective armoury. Ultrastructurally, the FARMs and the PIMs were similar to the corresponding cells of mammals. The purported high susceptibility of birds to respiratory diseases, a state that has largely been deduced from morbidities and mortalities of commercial birds, and which has chiefly been attributed to paucity of the FARMs, is not supported by the present observations.
Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.
2013-01-01
Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152
Gossypol induces pyroptosis in mouse macrophages via a non-canonical inflammasome pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qiu-Ru; Li, Chen-Guang; Zha, Qing-Bing
Gossypol, a polyphenolic compound isolated from cottonseeds, has been reported to possess many pharmacological activities, but whether it can influence inflammasome activation remains unclear. In this study, we found that in mouse macrophages, gossypol induced cell death characterized by rapid membrane rupture and robust release of HMGB1 and pro-caspase-11 comparable to ATP treatment, suggesting an induction of pyroptotic cell death. Unlike ATP, gossypol induced much low levels of mature interleukin-1β (IL-1β) secretion from mouse peritoneal macrophages primed with LPS, although it caused pro-IL-1β release similar to that of ATP. Consistent with this, activated caspase-1 responsible for pro-IL-1β maturation was undetectablemore » in gossypol-treated peritoneal macrophages. Besides, RAW 264.7 cells lacking ASC expression and caspase-1 activation also underwent pyroptotic cell death upon gossypol treatment. In further support of pyroptosis induction, both pan-caspase inhibitor and caspase-1 subfamily inhibitor, but not caspase-3 inhibitor, could sharply suppress gossypol-induced cell death. Other canonical pyroptotic inhibitors, including potassium chloride and N-acetyl-L-cysteine, could suppress ATP-induced pyroptosis but failed to inhibit or even enhanced gossypol-induced cell death, whereas nonspecific pore-formation inhibitor glycine could attenuate this process, suggesting involvement of a non-canonical pathway. Of note, gossypol treatment eliminated thioglycollate-induced macrophages in the peritoneal cavity with recruitment of other leukocytes. Moreover, gossypol administration markedly decreased the survival of mice in a bacterial sepsis model. Collectively, these results suggested that gossypol induced pyroptosis in mouse macrophages via a non-canonical inflammasome pathway, which raises a concern for its in vivo cytotoxicity to macrophages. - Highlights: • Gossypol induces pyroptosis in mouse peritoneal and RAW 264.7 macrophages. • In LPS-primed macrophages, gossypol induces lower levels of mature IL-1β than ATP does. • Gossypol-induced pyroptosis does not rely on canonical caspase-1 activation. • Gossypol probably induces pyroptosis via a non-canonical inflammasome pathway. • Gossypol decreases the survival of mice in a bacterial sepsis model.« less
Prolo, Carolina; Álvarez, María Noel; Ríos, Natalia; Peluffo, Gonzalo; Radi, Rafael; Romero, Natalia
2015-10-01
Macrophage-derived nitric oxide ((•)NO) participates in cytotoxic mechanisms against diverse microorganisms and tumor cells. These effects can be mediated by (•)NO itself or (•)NO-derived species such as peroxynitrite formed by its diffusion-controlled reaction with NADPH oxidase-derived superoxide radical anion (O(2)(•-)). In vivo, the facile extracellular diffusion of (•)NO as well as different competing consumption routes limit its bioavailability for the reaction with O(2)(•-) and, hence, peroxynitrite formation. In this work, we evaluated the extent by which (•)NO diffusion to red blood cells (RBC) can compete with activated macrophages-derived O(2)(•-) and affect peroxynitrite formation yields. Macrophage-dependent peroxynitrite production was determined by boron-based probes that react directly with peroxynitrite, namely, coumarin-7-boronic acid (CBA) and fluorescein-boronate (Fl-B). The influence of (•)NO diffusion to RBC on peroxynitrite formation was experimentally analyzed in co-incubations of (•)NO and O(2)(•-)-forming macrophages with erythrocytes. Additionally, we evaluated the permeation of (•)NO to RBC by measuring the intracellular oxidation of oxyhemoglobin to methemoglobin. Our results indicate that diluted RBC suspensions dose-dependently inhibit peroxynitrite formation, outcompeting the O(2)(•-) reaction. Computer-assisted kinetic studies evaluating peroxynitrite formation by its precursor radicals in the presence of RBC are in accordance with experimental results. Moreover, the presence of erythrocytes in the proximity of (•)NO and O(2)(•-)-forming macrophages prevented intracellular Fl-B oxidation pre-loaded in L1210 cells co-cultured with activated macrophages. On the other hand, Fl-B-coated latex beads incorporated in the macrophage phagocytic vacuole indicated that intraphagosomal probe oxidation by peroxynitrite was not affected by nearby RBC. Our data support that in the proximity of a blood vessel, (•)NO consumption by RBC will limit the extracellular formation (and subsequent cytotoxic effects) of peroxynitrite by activated macrophages, while the intraphagosomal yield of peroxynitrite will remain unaffected. Copyright © 2015. Published by Elsevier Inc.
YIP: Generic Environment Models (GEMs) for Agile Marine Autonomy
2013-09-30
2012, and spring 2013, SC for a related NSF project: “Mechanisms of nutrient input at the shelf margin supporting persistent winter phytoplankton blooms...the Shelf Margin Supporting Persistent Winter Phytoplankton Blooms Downstream of the Charleston Bump. We will deploy underwater gliders in Long Bay...SC to study mechanisms of nutrient input at the shelf margin supporting persistent winter phytoplankton blooms downstream of the Charleston Bump. GEM
Supporting Academic Persistence in Low-Skilled Adult Learners
ERIC Educational Resources Information Center
O'Neill, Susan; Thomson, Margareta Maria
2013-01-01
The current literature review explores the factors that contribute to academic persistence for adult learners. The aim of the study is to identify current research-based strategies aimed at supporting learner persistence, particularly for low-skilled adults. Elements of three theoretical frameworks, namely, expectancy-value theory (EVT), goal…
Lymph Node Macrophages Restrict Murine Cytomegalovirus Dissemination
Farrell, Helen E.; Davis-Poynter, Nick; Bruce, Kimberley; Lawler, Clara; Dolken, Lars; Mach, Michael
2015-01-01
ABSTRACT Cytomegaloviruses (CMVs) establish chronic infections that spread from a primary entry site to secondary vascular sites, such as the spleen, and then to tertiary shedding sites, such as the salivary glands. Human CMV (HCMV) is difficult to analyze, because its spread precedes clinical presentation. Murine CMV (MCMV) offers a tractable model. It is hypothesized to spread from peripheral sites via vascular endothelial cells and associated monocytes. However, viral luciferase imaging showed footpad-inoculated MCMV first reaching the popliteal lymph nodes (PLN). PLN colonization was rapid and further spread was slow, implying that LN infection can be a significant bottleneck. Most acutely infected PLN cells were CD169+ subcapsular sinus macrophages (SSM). Replication-deficient MCMV also reached them, indicating direct infection. Many SSM expressed viral reporter genes, but few expressed lytic genes. SSM expressed CD11c, and MCMV with a cre-sensitive fluorochrome switch showed switched infected cells in PLN of CD11c-cre mice but yielded little switched virus. SSM depletion with liposomal clodronate or via a CD169-diphtheria toxin receptor transgene shifted infection to ER-TR7+ stromal cells, increased virus production, and accelerated its spread to the spleen. Therefore, MCMV disseminated via LN, and SSM slowed this spread by shielding permissive fibroblasts and poorly supporting viral lytic replication. IMPORTANCE HCMV chronically infects most people, and it can cause congenital disability and harm the immunocompromised. A major goal of vaccination is to prevent systemic infection. How this is established is unclear. Restriction to humans makes HCMV difficult to analyze. We show that peripheral MCMV infection spreads via lymph nodes. Here, MCMV infected filtering macrophages, which supported virus replication poorly. When these macrophages were depleted, MCMV infected susceptible fibroblasts and spread faster. The capacity of filtering macrophages to limit MCMV spread argued that their infection is an important bottleneck in host colonization and might be a good vaccine target. PMID:25926638
Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.
Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E
2017-11-01
Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hypergravity-induced immunomodulation in a rodent model: lymphocytes and lymphoid organs
NASA Technical Reports Server (NTRS)
Gridley, Daila S.; Pecaut, Michael J.; Green, Lora M.; Miller, Glen M.; Nelson, Gregory A.
2002-01-01
The major goal of this study was to quantify changes in lymphoid organs and cells over time due to centrifugation-induced hypergravity. C57BL/6 mice were exposed to 1, 2 and 3 G and the following assays were performed on days 1, 4, 7, 10, and 21: spleen, thymus, lung, and liver masses; total leukocyte, lymphocyte, monocyte/macrophage, and granulocyte counts; level of splenocyte apoptosis; enumeration of CD3+ T, CD3+/CD4+ T helper, CD3+/CD8+ T cytotoxic, B220+ B, and NK1.1+ natural killer cells; and quantification of cells expressing CD25, CD69, and CD71 activation markers. The data show that increased gravity resulted in decreased body, spleen, thymus, and liver, but not lung, mass. Significant reductions were noted in all three major leukocyte populations (lymphocytes, granulocytes, monocyte/macrophages) [correction of macrphages] with increased gravity; persistent depletion was noted in blood but not spleen. Among the various lymphocyte populations, the CD3+/CD8+ T cells and B220+ B cells were the most affected and NK1.1+ NK cells the least affected. Overall, the changes were most evident during the first week, with a greater influence noted for cells in the spleen. A linear relationship was found between some of the measurements and the level of gravity, especially on day 4. These findings indicate that hypergravity profoundly alters leukocyte number and distribution in a mammalian model and that some aberrations persisted throughout the three weeks of the study. In certain cases, the detected changes were similar to those observed after whole-body irradiation. In future investigations we hope to combine hypergravity with low-dose rate irradiation and immune challenge.
Clearance of Aspergillus fumigatus is impaired in the airway in allergic inflammation.
Fukahori, Susumu; Matsuse, Hiroto; Tsuchida, Tomoko; Kawano, Tetsuya; Nishino, Tomoya; Fukushima, Chizu; Kohno, Shigeru
2014-08-01
Aspergillus fumigatus (Af) sometimes colonizes and persists within the respiratory tree in some patients with asthma. To date, the precise reasons why the clearance of Af is impaired in patients with asthma remain unknown. To characterize the effects of allergic airway inflammation on clearance of Af. Control and Dermatophagoides farinae (Df) allergen-sensitized BALB/c mice were intranasally infected with Af. After 2 and 9 days of infection, the pathology, fungal burden, and cytokine profile in lung tissue were compared. In a different set of experiments, the phagocytotic activity of alveolar macrophages and the expression of their pathogen recognition receptors also were determined. The Af conidia and neutrophilic airway inflammation disappeared by day 9 after infection in control mice. In Df-sensitized mice, Af conidia and neutrophilic and eosinophilic airway inflammation persisted at day 9 after infection. Compared with control mice, Df allergen-sensitized mice showed significant increases in interleukin (IL)-5 and decreases in IL-12 and interferon-γ in lung tissues at day 2 after infection. Most importantly, compared with Af-infected non-Df-sensitized mice, IL-17 in lung tissues was significantly decreased in Df allergen-sensitized Af-infected mice at day 2 after infection but was significantly increased at day 9. Alveolar macrophages isolated from Df allergen-sensitized mice exhibited significant decreases in phagocytotic activity and expression of Toll-like receptor-4 and dectin-1 compared with those from control mice. In the airway of patients with allergy, T-helper cell type 2-dominant immunity potentially affects the expression of pathogen recognition receptors and attenuates cellular defense against Af. Prolonged IL-17 production also could play an important role. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Innate but not Adaptive Immune Responses Contribute to Behavioral Seizures Following Viral Infection
Kirkman, Nikki J.; Libbey, Jane E.; Wilcox, Karen S.; White, H. Steve; Fujinami, Robert S.
2011-01-01
SUMMARY Purpose To examine the role of innate immunity in a novel viral infection-induced seizure model. Methods C57BL/6 mice, mouse strains deficient in interleukin (IL)-1RI, IL-6, tumor necrosis factor (TNF)-RI, or myeloid differentiation primary response gene 88 (MyD88), or transgenic mice (OT-I) were infected with Theiler’s murine encephalomyelitis virus (TMEV) or mock-infected. Mice were followed for acute seizures. Tissues were examined for neuron loss, the presence of virus (viral RNA and antigen), perivascular cuffs, macrophages/microglia and gliosis, and mRNA expression of IL-1, TNF-α and IL-6. Results IL-1 does not play a major role in seizures as IL-1RI and MyD88 deficient mice displayed a comparable seizure frequency relative to controls. In contrast, TNF-α and IL-6 appear to be important in the development of seizures as only 10% and 15% of TNF-RI and IL-6 deficient mice showed signs of seizure activity, respectively. TNF-α and IL-6 mRNA levels also increased in mice with seizures. Inflammation (perivascular cuffs, macrophages/microglia and gliosis) was greater in mice with seizures. OT-I mice (virus persists) had a seizure rate that was comparable to controls (no viral persistence) thereby discounting a role for TMEV-specific T–cells in seizures. Discussion We have implicated the innate immune response to viral infection, specifically TNF-α and IL-6, and concomitant inflammatory changes in the brain as contributing to the development of acute seizures. This model is a potential infection-driven model of mesial temporal lobe epilepsy with hippocampal sclerosis. PMID:19845729
Engineering success: Undergraduate Latina women's persistence in an undergradute engineering program
NASA Astrophysics Data System (ADS)
Rosbottom, Steven R.
The purpose and focus of this narrative inquiry case study were to explore the personal stories of four undergraduate Latina students who persist in their engineering programs. This study was guided by two overarching research questions: a) What are the lived experiences of undergraduate Latina engineering students? b) What are the contributing factors that influence undergraduate Latina students to persist in an undergraduate engineering program? Yosso's (2005) community cultural wealth was used to the analyze data. Findings suggest through Yosso's (2005) aspirational capital, familial capital, social capital, navigational capital, and resistant capital the Latina student persisted in their engineering programs. These contributing factors brought to light five themes that emerged, the discovery of academic passions, guidance and support of family and teachers, preparation for and commitment to persistence, the power of community and collective engagement, and commitment to helping others. The themes supported their persistence in their engineering programs. Thus, this study informs policies, practices, and programs that support undergraduate Latina engineering student's persistence in engineering programs.
Benis, K A; Schneider, G B
1996-10-15
Osteopetrosis is a heterogeneous group of bone disorders characterized by the failure of osteoclasts to resorb bone and by several immunological defects including macrophage dysfunction. Two compounds, colony-stimulating factor-1 (CSF-1) and vitamin D-binding protein-macrophage activating factor (DBP-MAF) were used in the present study to evaluate their effects on the peritoneal population of cells and on cells within the bone marrow microenvironment in normal and incisors absent (ia) osteopetrotic rats. Previous studies in this laboratory have demonstrated that administration of DBP-MAF to newborn ia animals results in a substantial increase in bone marrow cavity size due to upregulated osteoclast function. To study the effects of these compounds on the macrophage/osteoclast precursors, DBP-MAF, CSF-1, and the combination of these compounds were given to newborn ia and normal littermate animals. Both the normal and mutant phenotypes responded similarly when treated with these compounds. Rats exhibited a profound shift toward the macrophage lineage from the neutrophil lineage when compared with vehicle-treated control animals after treatment with these compounds. In the in vivo peritoneal lavage study, animals received injections of CSF-1, DBP-MAF or DBP-MAF/CSF-1 over a 4-week period. The various types of cells in the peritoneal cavity were then enumerated. The in vitro study consisted of cells isolated from the bone marrow microenvironment and cultured on feeder layers of CSF-1, DBP-MAF, or DBP-MAF/CSF-1 for colony enumeration. The increase in macrophage numbers at the expense of neutrophil numbers could be seen in both the in vivo and in vitro experiments. The macrophage/osteoclast and neutrophil lineages have a common precursor, the granulocyte/macrophage colony-forming cell (GM-CFC). With the addition of CSF-1, the GM-CFC precursor may be induced into the macrophage/osteoclast lineage rather than the granulocyte lineage. This increased pool of cells in the macrophage/osteoclast lineage can be functionally upregulated with the subsequent addition of DBP-MAF to perform the activities of phagocytosis and bone resorption. The in vitro data also showed that DBP-MAF did not support colony development as in CSF-1 or the combination treatment. The recruitment and activation of cells into the macrophage/ osteoclast lineage may help to correct the bone and immune defects found in diseases demonstrating a significant lack of myeloid cells, as well as neutrophilia disorders and the disease, osteopetrosis.
Gilmore, Linda; Cuskelly, Monica; Jobling, Anne; Hayes, Alan
2009-01-01
Maternal behaviors and child mastery behaviors were examined in 25 children with Down syndrome and 43 typically developing children matched for mental age (24-36 months). During a shared problem-solving task, there were no group differences in maternal directiveness or support for autonomy, and mothers in the two groups used similar verbal strategies when helping their child. There were also no group differences in child mastery behaviors, measured as persistence with two optimally challenging tasks. However, the two groups differed in the relationships of maternal style with child persistence. Children with Down syndrome whose mothers were more supportive of their autonomy in the shared task displayed greater persistence when working independently on a challenging puzzle, while children of highly directive mothers displayed lower levels of persistence. For typically developing children, persistence was unrelated to maternal style, suggesting that mother behaviors may have different causes or consequences in the two groups.
Lukashevich, I S; Maryankova, R; Vladyko, A S; Nashkevich, N; Koleda, S; Djavani, M; Horejsh, D; Voitenok, N N; Salvato, M S
1999-12-01
Cells of the mononuclear and endothelial lineages are targets for viruses which cause hemorrhagic fevers (HF) such as the filoviruses Marburg and Ebola, and the arenaviruses Lassa and Junin. A recent model of Marburg HF pathogenesis proposes that virus directly causes endothelial cell damage and macrophage release of TNF-alpha which increases the permeability of endothelial monolayers [Feldmann et al. , 1996]. We show that Lassa virus replicates in human monocytes/macrophages and endothelial cells without damaging them. Human endothelial cells (HUVEC) are highly susceptible to infection by both Lassa and Mopeia (a non-pathogenic Lassa-related arenavirus). Whereas monocytes must differentiate into macrophages before supporting even low level production of these viruses, the virus yields in the culture medium of infected HUVEC cells reach more than 7 log10 PFU/ml without cellular damage. In contrast to filovirus, Lassa virus replication in monocytes/macrophages fails to stimulate TNF-alpha gene expression and even down-regulates LPS-stimulated TNF-alpha mRNA synthesis. The expression of IL-8, a prototypic proinflammatory CXC chemokine, was also suppressed in Lassa virus infected monocytes/macrophages and HUVEC on both the protein and mRNA levels. This contrasts with Mopeia virus infection of HUVEC in which neither IL-8 mRNA nor protein are reduced. The cumulative down-regulation of TNF-alpha and IL-8 expression could explain the absence of inflammatory and effective immune responses in severe cases of Lassa HF. Copyright 1999 Wiley-Liss, Inc.
Sousa, Jeremy; McNab, Finlay W.; Torrado, Egídio; Cardoso, Filipa; Machado, Henrique; Castro, Flávia; Cardoso, Vânia; Gaifem, Joana; Wu, Xuemei; Appelberg, Rui; Castro, António Gil; O’Garra, Anne; Saraiva, Margarida
2016-01-01
Tuberculosis causes ∼1.5 million deaths every year, thus remaining a leading cause of death from infectious diseases in the world. A growing body of evidence demonstrates that type I IFN plays a detrimental role in tuberculosis pathogenesis, likely by interfering with IFN-γ–dependent immunity. In this article, we reveal a novel mechanism by which type I IFN may confer protection against Mycobacterium tuberculosis infection in the absence of IFN-γ signaling. We show that production of type I IFN by M. tuberculosis–infected macrophages induced NO synthase 2 and inhibited arginase 1 gene expression. In vivo, absence of both type I and type II IFN receptors led to strikingly increased levels of arginase 1 gene expression and protein activity in infected lungs, characteristic of alternatively activated macrophages. This correlated with increased lung bacterial burden and pathology and decreased survival compared with mice deficient in either receptor. Increased expression of other genes associated with alternatively activated macrophages, as well as increased expression of Th2-associated cytokines and decreased TNF expression, were also observed. Thus, in the absence of IFN-γ signaling, type I IFN suppressed the switching of macrophages from a more protective classically activated phenotype to a more permissive alternatively activated phenotype. Together, our data support a model in which suppression of alternative macrophage activation by type I IFN during M. tuberculosis infection, in the absence of IFN-γ signaling, contributes to host protection. PMID:27849167
Quan, Hongxuan; Park, Hee Chul; Kim, Yongjoon; Yang, Hyeong-Cheol
2017-05-01
Inhibiting liposome uptake by macrophages using polyethylene glycol (PEG) surface modifications is a widely used approach for extending the half-life of liposomes circulating in the blood. However, the biological effects of PEGylated liposomes on macrophages have not yet been thoroughly investigated. The purpose of this study was to examine the effects of PEGylated phosphatidylserine-containing liposomes (PEG-PSLs) on the expression of two inflammation-associated cytokines, tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β), in the murine macrophage-like cell line RAW 264.7. Previous studies have demonstrated that PSLs inhibit TNF-α secretion and enhance TGF-β synthesis in macrophages by mimicking apoptotic cells. We found that PEGylation differentially affected the TNF-α and TGF-β levels. The PSL-mediated inhibitory effect on TNF-α secretion was enhanced by PEGylation, and PEG-PSLs decreased TGF-β levels compared with non-PEGylated PSLs. Fluorescence-activated cell sorting analysis demonstrated that 1% PEGylation disturbed the incorporation of PSLs into macrophages. The interference of uptake is thought to extend the binding interaction between PS to PS receptors for PSL-mediated inhibition of TNF-α expression. Together, these findings indicate that PEG-PSLs can prevent TNF-α secretion without increasing TGF-β levels in macrophages, and they support the potential clinical use of PEG-PSLs as anti-inflammatory agents with a relatively low potential to induce tissue fibrosis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1479-1486, 2017. © 2017 Wiley Periodicals, Inc.
Pereira, Marcelo S. F.; Manin, Graziele Z.; Cunha, Larissa D.
2017-01-01
Legionella pneumophila is a Gram-negative, flagellated bacterium that survives in phagocytes and causes Legionnaires’ disease. Upon infection of mammalian macrophages, cytosolic flagellin triggers the activation of Naip/NLRC4 inflammasome, which culminates in pyroptosis and restriction of bacterial replication. Although NLRC4 and caspase-1 participate in the same inflammasome, Nlrc4-/- mice and their macrophages are more permissive to L. pneumophila replication compared with Casp1/11-/-. This feature supports the existence of a pathway that is NLRC4-dependent and caspase-1/11-independent. Here, we demonstrate that caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in response to flagellin-positive bacteria. Accordingly, caspase-8 is activated in Casp1/11-/- macrophages in a process dependent on flagellin, Naip5, NLRC4 and ASC. Silencing caspase-8 in Casp1/11-/- cells culminated in macrophages that were as susceptible as Nlrc4-/- for the restriction of L. pneumophila replication. Accordingly, macrophages and mice deficient in Asc/Casp1/11-/- were more susceptible than Casp1/11-/- and as susceptible as Nlrc4-/- for the restriction of infection. Mechanistically, we found that caspase-8 activation triggers gasdermin-D-independent pore formation and cell death. Interestingly, caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in wild-type macrophages, but it is only activated when caspase-1 or gasdermin-D is inhibited. Our data suggest that caspase-8 activation in the Naip5/NLRC4/ASC inflammasome enable induction of cell death when caspase-1 or gasdermin-D is suppressed. PMID:28771586
Mascarenhas, Danielle P A; Cerqueira, Daiane M; Pereira, Marcelo S F; Castanheira, Fernanda V S; Fernandes, Talita D; Manin, Graziele Z; Cunha, Larissa D; Zamboni, Dario S
2017-08-01
Legionella pneumophila is a Gram-negative, flagellated bacterium that survives in phagocytes and causes Legionnaires' disease. Upon infection of mammalian macrophages, cytosolic flagellin triggers the activation of Naip/NLRC4 inflammasome, which culminates in pyroptosis and restriction of bacterial replication. Although NLRC4 and caspase-1 participate in the same inflammasome, Nlrc4-/- mice and their macrophages are more permissive to L. pneumophila replication compared with Casp1/11-/-. This feature supports the existence of a pathway that is NLRC4-dependent and caspase-1/11-independent. Here, we demonstrate that caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in response to flagellin-positive bacteria. Accordingly, caspase-8 is activated in Casp1/11-/- macrophages in a process dependent on flagellin, Naip5, NLRC4 and ASC. Silencing caspase-8 in Casp1/11-/- cells culminated in macrophages that were as susceptible as Nlrc4-/- for the restriction of L. pneumophila replication. Accordingly, macrophages and mice deficient in Asc/Casp1/11-/- were more susceptible than Casp1/11-/- and as susceptible as Nlrc4-/- for the restriction of infection. Mechanistically, we found that caspase-8 activation triggers gasdermin-D-independent pore formation and cell death. Interestingly, caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in wild-type macrophages, but it is only activated when caspase-1 or gasdermin-D is inhibited. Our data suggest that caspase-8 activation in the Naip5/NLRC4/ASC inflammasome enable induction of cell death when caspase-1 or gasdermin-D is suppressed.
Bakker, D; van Blitterswijk, C A; Hesseling, S C; Koerten, H K; Kuijpers, W; Grote, J J
1990-04-01
The biocompatibility of porous implants made of Estane 5714 F1 polyether urethane, polypropylene oxide, and a poly(ethylene oxide hydantoin) and poly(tetramethylene terephthalate) segmented polyether polyester copolymer (HPOE/PBT copolymer), which were selected as candidates for an alloplastic tympanic membrane, was assessed after implantation in rat middle ears for periods of up to 1 year. Implantation of the materials led to tissue reactions initially associated with the wound-healing process, whereas after 1 month not only the presence of macrophages and foreign-body giant cells surrounding the implant materials but also implant degradation were characteristic for a foreign-body reaction. Macrophages and foreign-body giant cells dominated the picture of the tissue surrounding polypropylene oxide. The altered morphology of these cells, the persistent infiltration of the implantation sites by exudate cells, and the premature death of five rats in the 1-year group suggest that polypropylene oxide degradation was accompanied by the release of toxic substances. Estane and copolymer degradation did not induce tissue responses reflecting implant toxicity, and tympanic membranes given these alloplasts showed a normal healing pattern. Inclusions in the cytoplasm of macrophages associated with degradation and phagocytosis of all of the polymers under study were found to contain iron, silicon, titanium, and aluminum. Growth of fibrous tissue and bone, the latter into Estane and HPOE/PBT copolymer implants, indicated appropriate implant fixation by tissue, although macrophages and foreign-body giant cells were present as well. Especially the fixation of copolymer by ingrowth of bone seems promising in terms of the amount of bone in the pores and the electron-dense bone/copolymer interface. The latter is indicative for bonding osteogenesis. The HPOE/PBT copolymer is a better candidate for alloplastic tympanic membrane than Estane, and the use of polypropylene oxide cannot be recommended.
A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials
2011-01-01
Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90) and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs). Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2) of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1) as well as profibrotic (M2) phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model offers a time- and cost-effective platform to evaluate the potential of engineered high aspect ratio nanomaterials, including carbon nanotubes, nanofibers, nanorods and metallic nanowires, to induce granulomas following inhalation. PMID:21592387
Schumann, Tim; Adhikary, Till; Wortmann, Annika; Finkernagel, Florian; Lieber, Sonja; Schnitzer, Evelyn; Legrand, Nathalie; Schober, Yvonne; Nockher, W Andreas; Toth, Philipp M; Diederich, Wibke E; Nist, Andrea; Stiewe, Thorsten; Wagner, Uwe; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf
2015-05-30
The nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor associated with macrophage polarization. However, its function in tumor-associated macrophages (TAMs) has not been investigated to date. Here, we report the PPARβ/δ-regulated transcriptome and cistrome for TAMs from ovarian carcinoma patients. Comparison with monocyte-derived macrophages shows that the vast majority of direct PPARβ/δ target genes are upregulated in TAMs and largely refractory to synthetic agonists, but repressible by inverse agonists. Besides genes with metabolic functions, these include cell type-selective genes associated with immune regulation and tumor progression, e.g., LRP5, CD300A, MAP3K8 and ANGPTL4. This deregulation is not due to increased expression of PPARβ/δ or its enhanced recruitment to target genes. Instead, lipidomic analysis of malignancy-associated ascites revealed high concentrations of polyunsaturated fatty acids, in particular linoleic acid, acting as potent PPARβ/δ agonists in macrophages. These fatty acid ligands accumulate in lipid droplets in TAMs, thereby providing a reservoir of PPARβ/δ ligands. These observations suggest that the deregulation of PPARβ/δ target genes by ligands of the tumor microenvironment contributes to the pro-tumorigenic polarization of ovarian carcinoma TAMs. This conclusion is supported by the association of high ANGPTL4 expression with a shorter relapse-free survival in serous ovarian carcinoma.
Finkernagel, Florian; Lieber, Sonja; Schnitzer, Evelyn; Legrand, Nathalie; Schober, Yvonne; Nockher, W. Andreas; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Wagner, Uwe; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf
2015-01-01
The nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor associated with macrophage polarization. However, its function in tumor-associated macrophages (TAMs) has not been investigated to date. Here, we report the PPARβ/δ-regulated transcriptome and cistrome for TAMs from ovarian carcinoma patients. Comparison with monocyte-derived macrophages shows that the vast majority of direct PPARβ/δ target genes are upregulated in TAMs and largely refractory to synthetic agonists, but repressible by inverse agonists. Besides genes with metabolic functions, these include cell type-selective genes associated with immune regulation and tumor progression, e.g., LRP5, CD300A, MAP3K8 and ANGPTL4. This deregulation is not due to increased expression of PPARβ/δ or its enhanced recruitment to target genes. Instead, lipidomic analysis of malignancy-associated ascites revealed high concentrations of polyunsaturated fatty acids, in particular linoleic acid, acting as potent PPARβ/δ agonists in macrophages. These fatty acid ligands accumulate in lipid droplets in TAMs, thereby providing a reservoir of PPARβ/δ ligands. These observations suggest that the deregulation of PPARβ/δ target genes by ligands of the tumor microenvironment contributes to the pro-tumorigenic polarization of ovarian carcinoma TAMs. This conclusion is supported by the association of high ANGPTL4 expression with a shorter relapse-free survival in serous ovarian carcinoma. PMID:25968567
Li, Hui; Sun, Jingjing; Li, Jie; Yang, Hefeng; Luo, Xiangyou; Chen, Jinlong; Xie, Li; Huo, Fangjun; Zhu, Tian; Guo, Weihua; Tian, Weidong
2017-03-01
Tissue or organ regeneration using xenogeneic matrices is a promising approach to address the shortage of donor matrices for allotransplantation. Success of such approach has been demonstrated to correlate with macrophage-mediated fibrotic homeostasis and tissue remodeling. The previous studies have demonstrated that treated dentin matrix (TDM) could be a suitable bioactive substrate for allogeneic tooth root regeneration. This study constructed xenogeneic bioengineered tooth root (bio-root) via a combination of porcine TDM (pTDM) with allogeneic dental follicle cells (DFCs). Macrophage phenotypes are used to evaluate the remodeling process of xenogeneic bio-roots in vitro and in vivo. pTDM can facilitate odontoblast differentiation of human derived DFCs. Xenogeneic bio-roots in rat subcutaneous tissue prompt constructive response via M1 macrophage infiltration during early postimplantation stages and increase restorative M2 phenotype at later stages. After implantation of bio-roots into jaws of rhesus monkeys for six months, periodontal ligament-like fibers accompanied by macrophage polarization are observed, which are positive for COL-1, Periostin, βIII-tubulin and display such structures as fibroblasts and blood vessels. The reconstructed bio-root possesses biomechanical properties for the dissipation of masticatory forces. These results support that xenogeneic bio-root could maintain fibrotic homeostasis during remodeling process and highlight the potential application of xenogeneic matrices in regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Qinglin; Shi, Hongguang; Liu, Fan
2016-05-01
Osteosarcoma is one of the most common childhood cancers with high numbers of cancer-related deaths. Progress in conventional therapies is showing limited improvement. An adaptive T cell-based immunotherapy represents a promising new therapeutic option, but to improve its efficacy, regulatory mechanisms in osteosarcoma need further elucidation. Here, to evaluate the regulatory effect of tumor microenvironment of T cells in osteosarcoma, we examined the peripheral blood (PB) and tumor infiltrating (TI) T cells, and their correlations with PB and tumor immune characteristics. We found that TI T cells contained significantly higher levels of TIM-3(+)PD-1(-) and TIM-3(+)PD-1(+) cells than their PB counterparts. Similar to that in chronic HIV and HCV infections, these TIM-3(+)PD-1(-) and TIM-3(+)PD-1(+) T cells presented reduced proliferation and proinflammatory cytokine secretion in response to stimulation. Presence of M2-type (CD163(+)) macrophages exacerbated T cell immunosuppression, since frequencies of CD163(+) tumor-associated macrophages were directly correlated with the frequencies of suppressed TIM-3(+)PD-1(+) T cells. Moreover, depletion of CD163(+) macrophages significantly improved T cell proliferation and proinflammatory cytokine production. Overall, our data presented an intratumoral T cell-specific immunosuppression that was amplified by M2-type tumor-associated macrophages. Copyright © 2016. Published by Elsevier B.V.
Wang, Ting; Park, Yeojin; Hao, Jia; Lepist, Eve-Irene; Babusis, Darius; Ray, Adrian S.
2015-01-01
Tenofovir alafenamide (TAF) is a prodrug of tenofovir (TFV) currently in clinical evaluation for treatment for HIV and hepatitis B virus (HBV) infections. Since the target tissue for HBV is the liver, the hepatic delivery and metabolism of TAF in primary human hepatocytes in vitro and in dogs in vivo were evaluated here. Incubation of primary human hepatocytes with TAF resulted in high levels of the pharmacologically active metabolite tenofovir diphosphate (TFV-DP), which persisted in the cell with a half-life of >24 h. In addition to passive permeability, studies of transfected cell lines suggest that the hepatic uptake of TAF is also facilitated by the organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3, respectively). In order to inhibit HBV reverse transcriptase, TAF must be converted to the pharmacologically active form, TFV-DP. While cathepsin A is known to be the major enzyme hydrolyzing TAF in cells targeted by HIV, including lymphocytes and macrophages, TAF was primarily hydrolyzed by carboxylesterase 1 (CES1) in primary human hepatocytes, with cathepsin A making a small contribution. Following oral administration of TAF to dogs for 7 days, TAF was rapidly absorbed. The appearance of the major metabolite TFV in plasma was accompanied by a rapid decline in circulating TAF. Consistent with the in vitro data, high and persistent levels of TFV-DP were observed in dog livers. Notably, higher liver TFV-DP levels were observed after administration of TAF than those given TDF. These results support the clinical testing of once-daily low-dose TAF for the treatment of HBV infection. PMID:25870059
Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity.
Phan, Anthony T; Goldrath, Ananda W; Glass, Christopher K
2017-05-16
Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Metabolic and epigenetic coordination of T cell and Macrophage immunity
Phan, Anthony T.; Goldrath, Ananda W.; Glass, Christopher K.
2017-01-01
Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. PMID:28514673
Steinert, Anna; Linas, Ioannis; Kaya, Berna; Ibrahim, Mohamed; Schlitzer, Andreas; Hruz, Petr; Radulovic, Katarina; Terracciano, Luigi; Macpherson, Andrew J; Niess, Jan Hendrik
2017-10-01
IL-19, a member of the IL-10 cytokine family that signals through the IL-20 receptor type I (IL-20Rα:IL-20Rβ), is a cytokine whose function is not completely known. In this article, we show that the expression of IL19 in biopsies of patients with active ulcerative colitis was increased compared with patients with quiescent ulcerative colitis and that colitis was attenuated in IL-19-deficient mice. The disruption of the epithelial barrier with dextran sodium sulfate leads to increased IL-19 expression. Attenuated colitis in IL-19-deficient animals was associated with reduced numbers of IL-6-producing macrophages in the inflamed colonic lamina propria. Microbial-driven expression of IL-19 by intestinal macrophages may contribute to the pathogenesis of inflammatory bowel disease. Copyright © 2017 by The American Association of Immunologists, Inc.
Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses
Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl
2014-01-01
Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209
Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays
NASA Astrophysics Data System (ADS)
Yao, Shenglian; Feng, Xujia; Li, Wenhao; Wang, Lu-Ning; Wang, Xiumei
2017-12-01
Titanium (Ti) implants with TiO2 nanotubular arrays on the surface could regulate cells adhesion, proliferation and differentiation to determine the bone integration. Additionally, the regulation of immune cells could improve osteogenesis or lead in appropriate immune reaction. Thus, we evaluate the behavior of RAW264.7 macrophages on TiO2 nanotubular arrays with a wide range diameter (from 20 to 120 nm) fabricated by an electrochemical anodization process. In this work, the proliferation, cell viability and cytokine/chemokine secretion were evaluated by CCK-8, live/dead staining and ELISA, respectively. SEM and confocal microscopy were used to observe the adhesion morphology. Results showed that the small size nanotube surface was benefit for the macrophages adhesion and proliferation, while larger size surface could reduce the inflammatory response. These findings contribute to the design of immune-regulating Ti implants surface that supports successful implantation.
Role of inflammation in the aging bones.
Abdelmagid, Samir M; Barbe, Mary F; Safadi, Fayez F
2015-02-15
Chronic inflammation in aging is characterized by increased inflammatory cytokines, bone loss, decreased adaptation, and defective tissue repair in response to injury. Aging leads to inherent changes in mesenchymal stem cell (MSC) differentiation, resulting in impaired osteoblastogenesis. Also, the pro-inflammatory cytokines increase with aging, leading to enhanced myelopoiesis and osteoclastogenesis. Bone marrow macrophages (BMMs) play pivotal roles in osteoblast differentiation, the maintenance of hematopoietic stem cells (HSCs), and subsequent bone repair. However, during aging, little is known about the role of macrophages in the differentiation and function of MSC and HSC. Aged mammals have higher circulating pro-inflammatory cytokines than young adults, supporting the hypothesis of increased inflammation with aging. This review will aid in the understanding of the potential role(s) of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in differentiation and function of osteoblasts and osteoclasts in relation to aging. Copyright © 2014 Elsevier Inc. All rights reserved.
PPARgamma is not a critical mediator of primary monocyte differentiation or foam cell formation.
Patel, Lisa; Charlton, Steven J; Marshall, Ian C; Moore, Gary B T; Coxon, Phil; Moores, Kitty; Clapham, John C; Newman, Suzanna J; Smith, Stephen A; Macphee, Colin H
2002-01-18
In the present report we clarify the role of PPARgamma in differentiation and function of human-derived monocyte/macrophages in vitro. Rosiglitazone, a selective PPARgamma activator, had no effect on the kinetics of appearance of monocyte/macrophage differentiation markers or on cell size or granularity. Depletion of PPARgamma by more than 90% using antisense oligonucleotides did not influence accumulation of oxidized LDL or prevent the upregulation of CD36 that normally accompanies oxLDL treatment. In contrast, PPARgamma depletion reduced the expression of ABCA1 and LXRalpha mRNAs. Metalloproteinase-9 expression, a marker of atherosclerotic plaque vulnerability, was suppressed by rosiglitazone. We conclude that activation of PPARgamma does not affect monocyte/macrophage differentiation. In addition, PPARgamma is not absolutely required for oxLDL-driven lipid accumulation, but is required for full expression of ABCA1 and LXRalpha. Our data support a role for rosiglitazone as a potential directly acting antiatherosclerotic agent.
Li, Jinpeng; Bach, Anthony; Crawford, Robert B; Phadnis-Moghe, Ashwini S; Chen, Weimin; D'Ingillo, Shawna; Kovalova, Natalia; Suarez-Martinez, Jose E; Zhou, Jiajun; Kaplan, Barbara L F; Kaminski, Norbert E
2018-03-01
Bisphenol A (BPA) is extensively used in manufacturing of a broad range of consumer products worldwide. Due to its widespread use, human exposure to BPA is virtually ubiquitous. Broad human exposure coupled with a large scientific literature describing estrogenic activity of BPA in animals has raised public health concerns. To comprehensively evaluate the health effects of BPA exposure, a chronic toxicity study using a wide-range of BPA doses (2.5-25000 μg/kg bw/day) was conducted jointly by the NTP, thirteen NIEHS-supported grantees, and the FDA, which is called the Consortium Linking Academic and Regulatory Insights on Toxicity of BPA (CLARITY-BPA). As a participant in the CLARITY-BPA project, the objective of the current study was to evaluate the effects of chronic BPA exposure in Sprague-Dawley rats on the relative number and proportion of defined leukocyte populations in the spleen and the thymus. Toward this end, lymphoid tissues from a total of 641 rats were assayed after being continuously dosed with BPA or controls for up to one year. To comprehensively evaluate the effects of BPA on leukocyte compositions, extensive endpoints that cover major populations of leukocytes were assessed, including B cells, T cells, NK cells, granulocytes, monocytes, macrophages and dendritic cells. In total, of the 530 measurements in BPA-treated rats, 10 measurements were statistically different from vehicle controls and were mainly associated with either the macrophage or dendritic cell populations. Most, if not all, of these alterations were found to be transient with no persistent trend over the one-year time period. In addition, the observed BPA-associated alterations were mostly moderate in magnitude and not dose-dependent. Due to the aforementioned, it is unlikely that the observed BPA-mediated changes alone would adversely affect immune competence. Copyright © 2018 Elsevier B.V. All rights reserved.
Vansteenkiste, Maarten; Simons, Joke; Lens, Willy; Sheldon, Kennon M; Deci, Edward L
2004-08-01
Three field experiments with high school and college students tested the self-determination theory hypotheses that intrinsic (vs. extrinsic) goals and autonomy-supportive (vs. controlling) learning climates would improve students' learning, performance, and persistence. The learning of text material or physical exercises was framed in terms of intrinsic (community, personal growth, health) versus extrinsic (money, image) goals, which were presented in an autonomy-supportive versus controlling manner. Analyses of variance confirmed that both experimentally manipulated variables yielded main effects on depth of processing, test performance, and persistence (all ps <.001), and an interaction resulted in synergistically high deep processing and test performance (but not persistence) when both intrinsic goals and autonomy support were present. Effects were significantly mediated by autonomous motivation.
The Intracellular Life of Cryptococcus neoformans
Coelho, Carolina; Bocca, Anamelia L.; Casadevall, Arturo
2016-01-01
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells. PMID:24050625
A free boundary problem for steady small plaques in the artery and their stability
NASA Astrophysics Data System (ADS)
Friedman, Avner; Hao, Wenrui; Hu, Bei
2015-08-01
Atherosclerosis is a leading cause of death in the United States and worldwide; it originates from a plaque which builds up in the artery. In this paper, we consider a simplified model of plaque growth involving LDL and HDL cholesterols, macrophages and foam cells, which satisfy a coupled system of PDEs with a free boundary, the interface between the plaque and the blood flow. We prove that there exist small radially symmetric stationary plaques and establish a sharp condition that ensures their stability. We also determine necessary and sufficient conditions under which a small initial plaque will shrink and disappear, or persist for all times.
Ontology-based representation and analysis of host-Brucella interactions.
Lin, Yu; Xiang, Zuoshuang; He, Yongqun
2015-01-01
Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host-Brucella interactions and implemented in IDOBRU. Current IDOBRU includes 3611 ontology terms. SPARQL queries identified many results that are critical to the host-Brucella interactions. For example, out of 269 protein virulence factors related to macrophage-Brucella interactions, 81 are critical to Brucella intracellular replication inside macrophages. A SPARQL query also identified 11 biological processes important for Brucella virulence. To systematically represent and analyze fundamental host-pathogen interaction mechanisms, we provided for the first time comprehensive ontological modeling of host-pathogen interactions using Brucella as the pathogen model. The methods and ontology representations used in our study are generic and can be broadened to study the interactions between hosts and other pathogens.
Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications
Torossian, Frédéric; Guerton, Bernadette; Anginot, Adrienne; Alexander, Kylie A.; Desterke, Christophe; Soave, Sabrina; Tseng, Hsu-Wen; Arouche, Nassim; Boutin, Laetitia; Kulina, Irina; Salga, Marjorie; Jose, Beulah; Pettit, Allison R.; Clay, Denis; Vlachos, Erica; Genet, Guillaume; Debaud, Charlotte; Denormandie, Philippe; Genet, François; Sims, Natalie A.; Banzet, Sébastien; Levesque, Jean-Pierre; Lataillade, Jean-Jacques; Le Bousse-Kerdilès, Marie-Caroline
2017-01-01
Neurogenic heterotopic ossification (NHO) is the formation of ectopic bone generally in muscles surrounding joints following spinal cord or brain injury. We investigated the mechanisms of NHO formation in 64 patients and a mouse model of spinal cord injury–induced NHO. We show that marrow from human NHOs contains hematopoietic stem cell (HSC) niches, in which mesenchymal stromal cells (MSCs) and endothelial cells provide an environment supporting HSC maintenance, proliferation, and differentiation. The transcriptomic signature of MSCs from NHOs shows a neuronal imprinting associated with a molecular network required for HSC support. We demonstrate that oncostatin M (OSM) produced by activated macrophages promotes osteoblastic differentiation and mineralization of human muscle-derived stromal cells surrounding NHOs. The key role of OSM was confirmed using an experimental model of NHO in mice defective for the OSM receptor (OSMR). Our results provide strong evidence that macrophages contribute to NHO formation through the osteogenic action of OSM on muscle cells within an inflammatory context and suggest that OSM/OSMR could be a suitable therapeutic target. Altogether, the evidence of HSCs in ectopic bones growing at the expense of soft tissue in spinal cord/brain-injured patients indicates that inflammation and muscle contribute to HSC regulation by the brain-bone-blood triad. PMID:29093266
Silicosis and coal workers' pneumoconiosis.
Castranova, V; Vallyathan, V
2000-01-01
Exposure to coal mine dust and/or crystalline silica results in pneumoconiosis with initiation and progression of pulmonary fibrosis. This review presents characteristics of simple and complicated coal workers' pneumoconiosis (CWP) as well as pathologic indices of acute and chronic silicosis by summarizing results of in vitro, animal, and human investigations. These results support four basic mechanisms in the etiology of CWP and silicosis: a) direct cytotoxicity of coal dust or silica, resulting in lung cell damage, release of lipases and proteases, and eventual lung scarring; b) activation of oxidant production by pulmonary phagocytes, which overwhelms the antioxidant defenses and leads to lipid peroxidation, protein nitrosation, cell injury, and lung scarring; c) activation of mediator release from alveolar macrophages and epithelial cells, which leads to recruitment of polymorphonuclear leukocytes and macrophages, resulting in the production of proinflammatory cytokines and reactive species and in further lung injury and scarring; d) secretion of growth factors from alveolar macrophages and epithelial cells, stimulating fibroblast proliferation and eventual scarring. Results of in vitro and animal studies provide a basis for proposing these mechanisms for the initiation and progression of pneumoconiosis. Data obtained from exposed workers lend support to these mechanisms. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10931786
Hermeyer, K; Jacobsen, B; Spergser, J; Rosengarten, R; Hewicker-Trautwein, M
2011-01-01
Pneumonic lesions occurring in calves after respiratory infection with Mycoplasma bovis are characterized by subacute or chronic suppurative bronchopneumonia with multiple foci of necrosis and by persistence of M. bovis antigen, which is frequently associated with phagocytes at the periphery of the necrotic foci. The aims of this study were: (1) to investigate the expression of inducible nitric oxide synthase (iNOS), nitrotyrosine (NT) and manganese superoxide dismutase (Mn-SOD) in the lung lesions of calves infected experimentally with M. bovis, and (2) to analyse the distribution and localization of M. bovis DNA by in-situ hybridization and correlate these findings with the immunohistochemical detection of M. bovis antigen. Phagocytic cells infiltrating the lung tissue were characterized using the markers CD68, S100A8 and S100A9. Lung tissue from 18 infected calves and three non-infected controls were examined. All infected calves had an increased number of cells expressing iNOS, NT and Mn-SOD in the inflamed lung tissue. These molecules were most strongly expressed by macrophages demarcating necrotic areas, by altered bronchiolar epithelial cells and by macrophages within obliterated bronchioles. Co-localization of M. bovis DNA, M. bovis antigen and macrophages expressing iNOS, NT and Mn-SOD was observed. These findings suggest that the generation of reactive oxygen and nitrogen species is involved in the development of severe chronic lung damage in M. bovis infection. Copyright © 2010 Elsevier Ltd. All rights reserved.
HIV-Derived ssRNA Binds to TLR8 to Induce Inflammation-Driven Macrophage Foam Cell Formation
Bernard, Mark A.; Han, Xinbing; Inderbitzin, Sonya; Agbim, Ifunanya; Zhao, Hui; Koziel, Henry; Tachado, Souvenir D.
2014-01-01
Even though combined anti-retroviral therapy (cART) dramatically improves patient survival, they remain at a higher risk of being afflicted with non-infectious complications such as cardiovascular disease (CVD). This increased risk is linked to persistent inflammation and chronic immune activation. In this study, we assessed whether this complication is related to HIV-derived ssRNAs inducing in macrophages increases in TNFα release through TLR8 activation leading to foam cell formation. HIV ssRNAs induced foam cell formation in monocyte-derived macrophages (MDMs) in a dose-dependent manner. This response was reduced when either endocytosis or endosomal acidification was inhibited by dynasore or chloroquine, respectively. Using a flow cytometry FRET assay, we demonstrated that ssRNAs bind to TLR8 in HEK cells. In MDMs, ssRNAs triggered a TLR8-mediated inflammatory response that ultimately lead to foam cell formation. Targeted silencing of the TLR8 and MYD88 genes reduced foam cell formation. Furthermore, foam cell formation induced by these ssRNAs was blocked by an anti-TNFα neutralizing antibody. Taken together in MDMs, HIV ssRNAs are internalized; bind TLR8 in the endosome followed by endosomal acidification. TLR8 signaling then triggers TNFα release and ultimately leads to foam cell formation. As this response was inhibited by a blocking anti-TNFα antibody, drug targeting HIV ssRNA-driven TLR8 activation may serve as a potential therapeutic target to reduce chronic immune activation and inflammation leading to CVD in HIV+ patients. PMID:25090652
Londrigan, Sarah L.; Short, Kirsty R.; Ma, Joel; Gillespie, Leah; Rockman, Steven P.; Brooks, Andrew G.
2015-01-01
ABSTRACT Airway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle. IMPORTANCE Seasonal influenza A viruses (IAV) and highly pathogenic avian influenza viruses (HPAI) infect macrophages, but only HPAI replicate productively in these cells. Herein, we demonstrate that impaired virus uptake into macrophages represents one level of restriction limiting infection by seasonal IAV. Following uptake, seasonal IAV do not complete productive replication in macrophages, representing a second level of restriction. Using murine macrophages, we demonstrate that productive infection is blocked late in the virus life cycle, such that virus assembly is defective and newly synthesized virions are not released. These studies represent an important step toward identifying host-encoded factors that block replication of seasonal IAV, but not HPAI, in macrophages. PMID:26423941
Londrigan, Sarah L; Short, Kirsty R; Ma, Joel; Gillespie, Leah; Rockman, Steven P; Brooks, Andrew G; Reading, Patrick C
2015-12-01
Airway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle. Seasonal influenza A viruses (IAV) and highly pathogenic avian influenza viruses (HPAI) infect macrophages, but only HPAI replicate productively in these cells. Herein, we demonstrate that impaired virus uptake into macrophages represents one level of restriction limiting infection by seasonal IAV. Following uptake, seasonal IAV do not complete productive replication in macrophages, representing a second level of restriction. Using murine macrophages, we demonstrate that productive infection is blocked late in the virus life cycle, such that virus assembly is defective and newly synthesized virions are not released. These studies represent an important step toward identifying host-encoded factors that block replication of seasonal IAV, but not HPAI, in macrophages. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Silvis, Melanie R.; Luo, Samantha S.; Sogi, Kimberly; Vokes, Martha; Bray, Mark-Anthony; Carpenter, Anne E.; Moore, Christopher B.; Siddiqi, Noman; Rubin, Eric J.; Hung, Deborah T.
2014-01-01
Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by modulating host pathways. Given the existing experience with some of our identified compounds for other therapeutic indications, further clinically-directed study of these compounds is merited. PMID:24586159
Wnt5a Signaling Promotes Host Defense against Leishmania donovani Infection.
Chakraborty, Arijit; Kurati, Sony Priya; Mahata, Sushil K; Sundar, Shyam; Roy, Syamal; Sen, Malini
2017-08-01
Leishmania donovani infects macrophages, disrupting immune homeostasis. The underlying mechanism that sustains infection remains unresolved. In view of the potential of Wnt5a signaling to support immune homeostasis, we evaluated the interrelationship of Wnt5a signaling and Leishmania donovani infection. Upon infecting macrophages separately with antimony drug-sensitive and -resistant L. donovani , we noted disruption in the steady-state level of Wnt5a. Moreover, inhibition of Wnt5a signaling by small interfering RNA transfection in vitro or by use of inhibitor of Wnt production in vivo led to an increase in cellular parasite load. In contrast, treatment of macrophages with recombinant Wnt5a caused a decrease in the load of antimony-sensitive and -resistant parasites, thus confirming that Wnt5a signaling antagonizes L. donovani infection. Using inhibitors of the Wnt5a signaling intermediates Rac1 and Rho kinase, we demonstrated that Wnt5a-mediated inhibition of parasite infection in macrophages is Rac1/Rho dependent. Furthermore, phalloidin staining and reactive oxygen species estimation of Wnt5a-treated macrophages suggested that a Wnt5a-Rac/Rho-mediated decrease in parasite load is associated with an increase in F- actin assembly and NADPH oxidase activity. Moreover, live microscopy of L. donovani -infected macrophages treated with Wnt5a demonstrated increased endosomal/lysosomal fusions with parasite-containing vacuoles (parasitophorous vacuoles [PV]). An increase in PV-endosomal/lysosomal fusion accompanied by augmented PV degradation in Wnt5a-treated macrophages was also apparent from transmission electron microscopy of infected cells. Our results suggest that, although L. donovani evades host immune response, at least in part through inhibition of Wnt5a signaling, revamping Wnt5a signaling can inhibit L. donovani infection, irrespective of drug sensitivity or resistance. Copyright © 2017 by The American Association of Immunologists, Inc.
Shin, Ji-Sun; Cho, Eu-Jin; Choi, Hye-Eun; Seo, Ji-Hyung; An, Hyo-Jin; Park, Hee-Juhn; Cho, Young-Wuk; Lee, Kyung-Tae
2014-12-02
Rubus coreanus Miquel (Rosaceae), the Korean black raspberry, has traditionally been used to treat inflammatory diseases including diarrhea, asthma, stomach ailment, and cancer. Although previous studies showed that the 19α-hydroxyursane-type triterpenoids isolated from Rubus coreanus exerted anti-inflammatory activities, their effects on ulcerative colitis and mode of action have not been explored. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms involving19α-hydroxyursane-type triterpenoid-rich fraction from Rubus coreanus (TFRC) on a mice model of colitis and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Experimental colitis was induced by DSS for 7 days in ICR mice. Disease activity indices (DAI) took into account body weight, stool consistency, and gross bleeding. Histological changes and macrophage accumulation were observed by immunohistochemical analysis. Pro-inflammatory markers were determined using immunoassays, RT-PCR, and real time PCR. Signaling pathway involving nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation was determined by luciferase assay and Western blotting. In DSS-induced colitis mice, TFRC improved DAIs and pathological characteristics including colon shortening and colonic epithelium injury. TFRC suppressed tissue levels of pro-inflammatory cytokines and reduced macrophage infiltration into colonic tissues. In LPS-induced RAW 264.7 macrophages, TFRC inhibited the production of NO, PGE2, and pro-inflammatory cytokines by down-regulating the activation of NF-κB and p38 MAPK signaling. The study demonstrates that TFRC has potent anti-inflammatory effects on DSS-induced colonic injury and LPS-induced macrophage activation, and supports its possible therapeutic and preventive roles in colitis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Mukaro, Violet R.; Bylund, Johan; Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N.; Hodge, Sandra
2013-01-01
We have previously shown that the defective ability of alveolar macrophages (AM) to phagocytose apoptotic cells (‘efferocytosis’) in chronic obstructive pulmonary disease/emphysema (COPD) could be therapeutically improved using the C-type lectin, mannose binding lectin (MBL), although the exact mechanisms underlying this effect are unknown. An S-type lectin, galectin-3, is also known to regulate macrophage phenotype and function, via interaction with its receptor CD98. We hypothesized that defective expression of galectin/CD98 would be associated with defective efferocytosis in COPD and that mechanisms would include effects on cytoskeletal remodeling and macrophage phenotype and glutathione (GSH) availability. Galectin-3 was measured by ELISA in BAL from controls, smokers and current/ex-smokers with COPD. CD98 was measured on AM using flow cytometry. We assessed the effects of galectin-3 on efferocytosis, CD98, GSH, actin polymerisation, rac activation, and the involvement of PI3K (using β-actin probing and wortmannin inhibition) in vitro using human AM and/or MH-S macrophage cell line. Significant decreases in BAL galectin-3 and AM CD98 were observed in BAL from both current- and ex-smoker COPD subjects vs controls. Galectin 3 increased efferocytosis via an increase in active GTP bound Rac1. This was confirmed with β-actin probing and the role of PI3K was confirmed using wortmannin inhibition. The increased efferocytosis was associated with increases in available glutathione and expression of CD98. We provide evidence for a role of airway lectins in the failed efferocytosis in COPD, supporting their further investigation as potential macrophage-targeted therapies. PMID:23441163
Sieve, Irina; Ricke-Hoch, Melanie; Kasten, Martina; Battmer, Karin; Stapel, Britta; Falk, Christine S; Leisegang, Matthias S; Haverich, Axel; Scherr, Michaela; Hilfiker-Kleiner, Denise
2018-04-01
Inflammation plays an important role in atherosclerosis, a notion supported by the beneficial effects of the IL-1β inhibitor canakinumab in the CANTOS trial. Sialic acids (Sias), components of the surface glycocalyx, regulate intercellular and intermolecular interactions. We investigated the expression of the Sia cleaving enzyme neuraminidase-1 (NEU1) in atherosclerotic plaques and its potential role in inflammatory processes. In isolated mononuclear blood cells from patients with myocardial infarction, NEU1 expression was increased compared to healthy controls. High expression of NEU1 in macrophages located on the intima layer, in calcified regions and the adventitia of the plaque was observed in human carotid arteries' atherectomies. IL-1β and LPS induced NEU1 expression in THP-1 monocytic cells. Lentiviral NEU1-overexpression in THP-1-cells enhanced expression of CD80, TNF-α, IL-1β, number of multinuclear cells, phagocytosis and chemotaxis indicative for M1 monocyte/macrophage polarization. CRISPR/Cas9-mediated knock-out of NEU1 in THP-1-cells did not affect differentiation of monocytes to macrophages but attenuated LPS- and IL-1β -induced TNF-α and IL-1β expression. SiRNA-mediated knock-down of NEU1 in M1-macrophages differentiated from primary human CD14 + monocytes reduced the expression of TNF-α and IL-1β. Thus, in monocytes/macrophages, LPS, NEU1 and IL-1β act in a positive feedback loop as enhancers of inflammation and may therefore promote atherosclerosis and plaque instability. Copyright © 2018 Elsevier Inc. All rights reserved.
Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko
2008-07-01
Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients.
Yang, Li; Yang, Jin Bo; Chen, Jia; Yu, Guang Yao; Zhou, Pei; Lei, Lei; Wang, Zhen Zhen; Cy Chang, Catherine; Yang, Xin Ying; Chang, Ta Yuan; Li, Bo Liang
2004-08-01
In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study, with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP-1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-1-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP-1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner. Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1 gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex, which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.
Makela, Ashley V; Foster, Paula J
2018-09-01
The presence of tumor-associated macrophages (TAMs) correlates with breast cancer progression and metastatic spread. Metastasis-associated macrophages (MAMs) are also recruited to distant sites, where they support metastatic growth. In this study, we demonstrate that in vivo fluorine-19 ( 19 F)-based MRI cell tracking can evaluate the density and distribution of macrophages within murine breast cancer tumors and associated metastases. Three murine breast cancer cell lines with different metastatic potentials (4T1, 168FARN, and 67NR) were implanted into the mammary fat pad in mice. In vivo whole body 19 F MRI was performed on tumor-bearing mice 24 hours post-intravenous injection of a perfluorocarbon (PFC) agent, which was taken up by macrophages in situ. TAMs were detected mainly in the periphery of primary tumors, and higher numbers of TAMs were detected in the more aggressive 4T1 tumors. Tumors had significantly greater 19 F spins/mm 3 when they were smaller, suggesting more TAM infiltration in early-stage tumors. 19 F signal was observed within lung metastases in mice with 4T1 tumors, and fluorescence microscopy confirmed the presence of PFC-positive macrophages. This study shows for the first time proof of the ability to use MRI cell tracking to visualize MAMs in the lungs. The ability to detect and monitor the number of TAMs in individual tumors with 19 F MRI would allow for identification of breast tumors with heavy infiltration of TAMs and could be used as a biomarker for decisions about how to best treat these patients as well as for monitoring responses to therapy. Magn Reson Med 80:1138-1147, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Marinković, Goran; Hamers, Anouk A J; de Vries, Carlie J M; de Waard, Vivian
2014-09-01
Inflammatory bowel disease is characterized by chronic intestinal inflammation. Azathioprine and its metabolite 6-mercaptopurine (6-MP) are effective immunosuppressive drugs that are widely used in patients with inflammatory bowel disease. However, established understanding of their immunosuppressive mechanism is limited. Azathioprine and 6-MP have been shown to affect small GTPase Rac1 in T cells and endothelial cells, whereas the effect on macrophages and gut epithelial cells is unknown. Macrophages (RAW cells) and gut epithelial cells (Caco-2 cells) were activated by cytokines and the effect on Rac1 signaling was assessed in the presence or absence of 6-MP. Rac1 is activated in macrophages and epithelial cells, and treatment with 6-MP resulted in Rac1 inhibition. In macrophages, interferon-γ induced downstream signaling through c-Jun-N-terminal Kinase (JNK) resulting in inducible nitric oxide synthase (iNOS) expression. iNOS expression was reduced by 6-MP in a Rac1-dependent manner. In epithelial cells, 6-MP efficiently inhibited tumor necrosis factor-α-induced expression of the chemokines CCL2 and interleukin-8, although only interleukin-8 expression was inhibited in a Rac1-dependent manner. In addition, activation of the transcription factor STAT3 was suppressed in a Rac1-dependent fashion by 6-MP, resulting in reduced proliferation of the epithelial cells due to diminished cyclin D1 expression. These data demonstrate that 6-MP affects macrophages and gut epithelial cells beneficially, in addition to T cells and endothelial cells. Furthermore, mechanistic insight is provided to support development of Rac1-specific inhibitors for clinical use in inflammatory bowel disease.
Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment.
Mahlbacher, Grace; Curtis, Louis T; Lowengrub, John; Frieboes, Hermann B
2018-01-30
Immuno-oncotherapy has emerged as a promising means to target cancer. In particular, therapeutic manipulation of tumor-associated macrophages holds promise due to their various and sometimes opposing roles in tumor progression. It is established that M1-type macrophages suppress tumor progression while M2-types support it. Recently, Tie2-expressing macrophages (TEM) have been identified as a distinct sub-population influencing tumor angiogenesis and vascular remodeling as well as monocyte differentiation. This study develops a modeling framework to evaluate macrophage interactions with the tumor microenvironment, enabling assessment of how these interactions may affect tumor progression. M1, M2, and Tie2 expressing variants are integrated into a model of tumor growth representing a metastatic lesion in a highly vascularized organ, such as the liver. Behaviors simulated include M1 release of nitric oxide (NO), M2 release of growth-promoting factors, and TEM facilitation of angiogenesis via Angiopoietin-2 and promotion of monocyte differentiation into M2 via IL-10. The results show that M2 presence leads to larger tumor growth regardless of TEM effects, implying that immunotherapeutic strategies that lead to TEM ablation may fail to restrain growth when the M2 represents a sizeable population. As TEM pro-tumor effects are less pronounced and on a longer time scale than M1-driven tumor inhibition, a more nuanced approach to influence monocyte differentiation taking into account the tumor state (e.g., under chemotherapy) may be desirable. The results highlight the dynamic interaction of macrophages within a growing tumor, and, further, establish the initial feasibility of a mathematical framework that could longer term help to optimize cancer immunotherapy.
Polarization of immune responses in fish: The 'macrophages first' point of view.
Wiegertjes, Geert F; Wentzel, Annelieke S; Spaink, Herman P; Elks, Philip M; Fink, Inge R
2016-01-01
In this review, we support taking polarized immune responses in teleost fish from a 'macrophage first' point of view, a hypothesis that reverts the dichotomous T helper (TH)1 and TH2 driving forces by building on the idea of conservation of innate immune responses in lower vertebrates. It is plausible that the initial trigger for macrophage polarization into M1 (inflammation) or M2 (healing) could rely only on sensing microbial/parasite infection or other innate danger signals, without the influence of adaptive immunity. Given the long and ongoing debate on the presence/absence of a typical TH1 cytokine environment and, in particular, TH2 cytokine environment in fish immune responses, it stands out that the presence of macrophages with polarized phenotypes, alike M1 and M2, have been relatively easy to demonstrate for fish. We summarize in short present knowledge in teleost fish on those cytokines considered most critical to the dichotomous development of TH1/M1 and TH2/M2 polarization, in particular, but not exclusively, interferon-γ and interleukin (IL)-4/IL-13. We review, in more detail, polarization of fish immune responses taken from the macrophage point of view for which we adopted the simple nomenclature of M1 and M2. We discuss inducible nitric oxide synthase, or NOS-2, as a reliable M1 marker and arginase-2 as a reliable M2 marker for teleost fish and discuss the value of these macrophage markers for the generation of zebrafish reporter lines to study M1/M2 polarization in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida
2015-01-01
Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794
Sun, Jim; Wang, Xuetao; Lau, Alice; Liao, Ting-Yu Angela; Bucci, Cecilia; Hmama, Zakaria
2010-01-01
Background Microorganisms capable of surviving within macrophages are rare, but represent very successful pathogens. One of them is Mycobacterium tuberculosis (Mtb) whose resistance to early mechanisms of macrophage killing and failure of its phagosomes to fuse with lysosomes causes tuberculosis (TB) disease in humans. Thus, defining the mechanisms of phagosome maturation arrest and identifying mycobacterial factors responsible for it are key to rational design of novel drugs for the treatment of TB. Previous studies have shown that Mtb and the related vaccine strain, M. bovis bacille Calmette-Guérin (BCG), disrupt the normal function of host Rab5 and Rab7, two small GTPases that are instrumental in the control of phagosome fusion with early endosomes and late endosomes/lysosomes respectively. Methodology/Principal Findings Here we show that recombinant Mtb nucleoside diphosphate kinase (Ndk) exhibits GTPase activating protein (GAP) activity towards Rab5 and Rab7. Then, using a model of latex bead phagosomes, we demonstrated that Ndk inhibits phagosome maturation and fusion with lysosomes in murine RAW 264.7 macrophages. Maturation arrest of phagosomes containing Ndk-beads was associated with the inactivation of both Rab5 and Rab7 as evidenced by the lack of recruitment of their respective effectors EEA1 (early endosome antigen 1) and RILP (Rab7-interacting lysosomal protein). Consistent with these findings, macrophage infection with an Ndk knocked-down BCG strain resulted in increased fusion of its phagosome with lysosomes along with decreased survival of the mutant. Conclusion Our findings provide evidence in support of the hypothesis that mycobacterial Ndk is a putative virulence factor that inhibits phagosome maturation and promotes survival of mycobacteria within the macrophage. PMID:20098737
ERIC Educational Resources Information Center
Wu, Yelena P.; Reiter-Purtill, Jennifer; Zeller, Meg H.
2014-01-01
Background: Despite school-based and other interventions for pediatric obesity, many obese youth of the present generation will persist in their obesity into adolescence and adulthood. Thus, understanding not only how better to tailor weight interventions but how to promote overall adjustment for persistently obese youth is of utmost importance.…
Sugimoto, Chie; Merino, Kristen M; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A; Wakao, Hiroshi; Mori, Kazuyasu; Kim, Woong-Ki; Veazey, Ronald S; Didier, Elizabeth S; Kuroda, Marcelo J
2017-09-01
Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4 + T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU + ] CD163 + ), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model, this work was performed to address why infants infected with SIV progress more quickly to AIDS than do adults. Earlier we reported that in adult rhesus macaques, increasing monocyte turnover reflected tissue macrophage damage by SIV and was predictive of terminal disease progression to AIDS. Here we report that uninfected infant rhesus macaques exhibited a higher physiological baseline monocyte turnover rate than adults. Furthermore, once infected with SIV, infants displayed further increased monocyte turnover that may have facilitated the accelerated progression to AIDS. These results support a role for monocytes and macrophages in the pathogenesis of SIV/HIV and begin to explain why infants are more prone to rapid disease progression. Copyright © 2017 American Society for Microbiology.
Sugimoto, Chie; Merino, Kristen M.; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A.; Wakao, Hiroshi; Kim, Woong-Ki; Veazey, Ronald S.; Didier, Elizabeth S.
2017-01-01
ABSTRACT Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4+ T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU+] CD163+), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model, this work was performed to address why infants infected with SIV progress more quickly to AIDS than do adults. Earlier we reported that in adult rhesus macaques, increasing monocyte turnover reflected tissue macrophage damage by SIV and was predictive of terminal disease progression to AIDS. Here we report that uninfected infant rhesus macaques exhibited a higher physiological baseline monocyte turnover rate than adults. Furthermore, once infected with SIV, infants displayed further increased monocyte turnover that may have facilitated the accelerated progression to AIDS. These results support a role for monocytes and macrophages in the pathogenesis of SIV/HIV and begin to explain why infants are more prone to rapid disease progression. PMID:28566378
The resolution of inflammation: Principles and challenges.
Headland, Sarah E; Norling, Lucy V
2015-05-01
The concept that chemokines, cytokines and pro-inflammatory mediators act in a co-ordinated fashion to drive the initiation of the inflammatory reaction is well understood. The significance of such networks acting during the resolution of inflammation however is poorly appreciated. In recent years, specific pro-resolving mediators were discovered which activate resolution pathways to return tissues to homeostasis. These mediators are diverse in nature, and include specialized lipid mediators (lipoxins, resolvins, protectins and maresins) proteins (annexin A1, galectins) and peptides, gaseous mediators including hydrogen sulphide, a purine (adenosine), as well as neuromodulator release under the control of the vagus nerve. Functionally, they can act to limit further leukocyte recruitment, induce neutrophil apoptosis and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to the lymphatics and help initiate tissue repair mechanisms and healing. Within this review we highlight the essential cellular aspects required for successful tissue resolution, briefly discuss the pro-resolution mediators that drive these processes and consider potential challenges faced by researchers in the quest to discover how inflammation resolves and why chronic inflammation persists. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Zehua; Dai, Fei; Cheng, Peng; Luo, Fei; Hou, Tianyong; Zhou, Qiang; Xie, Zhao; Deng, Moyuan; Xu, Jian-Zhong
2015-11-01
Aseptic loosening secondary to particle‑induced periprosthetic osteolysis is considered to be the primary cause of long‑term implant failure in orthopedic surgery. Implant‑derived wear particles activate and recruit macrophages and osteoclasts, which cause a persistent inflammatory response with bone destruction that is followed by a loosening of the implant. Thus, strategies for inhibiting macrophage and osteoclast function may provide a therapeutic benefit for preventing aseptic loosening. The aim of the present study was to determine the effects of pitavastatin on the activation and cytokine response of polymethyl methacrylate (PMMA) particle‑induced monocytes. Peripheral blood monocytes were obtained and treated with PMMA and pitavastatin. ELISA demonstrated that pitavastatin inhibited mRNA and protein expression of interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α. Western blot analysis and immunofluorescence staining demonstrated that pitavastatin downregulated inhibitor of κB phosphorylation and degradation, and nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) p65 translocation. Together, these results indicate that pitavastatin may attenuate monocyte activation in response to orthopedic implant wear particles by suppression of the NF‑κB signaling pathway.
CD14 Signaling Restrains Chronic Inflammation through Induction of p38-MAPK/SOCS-Dependent Tolerance
Sahay, Bikash; Patsey, Rebeca L.; Eggers, Christian H.; Salazar, Juan C.; Radolf, Justin D.; Sellati, Timothy J.
2009-01-01
Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in part, a consequence of altered PI3K/AKT/p38-MAPK signaling and impaired negative regulation of TLR2. CD14 deficiency results in increased localization of PI3K to lipid rafts, hyperphosphorylation of AKT, and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS, thereby compromising the induction of tolerance in macrophages and engendering more severe and persistent inflammatory responses to B. burgdorferi. Importantly, these altered signaling events and the higher cytokine production observed can be mimicked through shRNA and pharmacological inhibition of p38 activity in CD14-expressing macrophages. Perturbation of this CD14/p38-MAPK-dependent immune regulation may underlie development of infectious chronic inflammatory syndromes. PMID:20011115
Substance P Promotes Wound Healing in Diabetes by Modulating Inflammation and Macrophage Phenotype
Leal, Ermelindo C.; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E.; Kokkotou, Efi; Mooney, David J.; LoGerfo, Frank W.; Pradhan-Nabzdyk, Leena; Veves, Aristidis
2016-01-01
Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. PMID:25871534
Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit
2010-08-15
The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.
Verhoeckx, Kitty C M; Korthout, Henrie A A J; van Meeteren-Kreikamp, A P; Ehlert, Karl A; Wang, Mei; van der Greef, Jan; Rodenburg, Richard J T; Witkamp, Renger F
2006-04-01
There is a great interest in the pharmacological properties of cannabinoid like compounds that are not linked to the adverse effects of Delta(9)-tetrahydrocannabinol (THC), e.g. psychoactive properties. The present paper describes the potential immuno-modulating activity of unheated Cannabis sativa extracts and its main non-psychoactive constituent Delta(9)-tetrahydrocanabinoid acid (THCa). By heating Cannabis extracts, THCa was shown to be converted into THC. Unheated Cannabis extract and THCa were able to inhibit the tumor necrosis factor alpha (TNF-alpha) levels in culture supernatants from U937 macrophages and peripheral blood macrophages after stimulation with LPS in a dose-dependent manner. This inhibition persisted over a longer period of time, whereas after prolonged exposure time THC and heated Cannabis extract tend to induce the TNF-alpha level. Furthermore we demonstrated that THCa and THC show distinct effects on phosphatidylcholine specific phospholipase C (PC-PLC) activity. Unheated Cannabis extract and THCa inhibit the PC-PLC activity in a dose-dependent manner, while THC induced PC-PLC activity at high concentrations. These results suggest that THCa and THC exert their immuno-modulating effects via different metabolic pathways.
Goodman, S. B.; Gibon, E.; Pajarinen, J.; Lin, T.-H.; Keeney, M.; Ren, P.-G.; Nich, C.; Yao, Z.; Egashira, K.; Yang, F.; Konttinen, Y. T.
2014-01-01
Wear particles and by-products from joint replacements and other orthopaedic implants may result in a local chronic inflammatory and foreign body reaction. This may lead to persistent synovitis resulting in joint pain and swelling, periprosthetic osteolysis, implant loosening and pathologic fracture. Strategies to modulate the adverse effects of wear debris may improve the function and longevity of joint replacements and other orthopaedic implants, potentially delaying or avoiding complex revision surgical procedures. Three novel biological strategies to mitigate the chronic inflammatory reaction to orthopaedic wear particles are reported. These include (i) interference with systemic macrophage trafficking to the local implant site, (ii) modulation of macrophages from an M1 (pro-inflammatory) to an M2 (anti-inflammatory, pro-tissue healing) phenotype in the periprosthetic tissues, and (iii) local inhibition of the transcription factor nuclear factor kappa B (NF-κB) by delivery of an NF-κB decoy oligodeoxynucleotide, thereby interfering with the production of pro-inflammatory mediators. These three approaches have been shown to be viable strategies for mitigating the undesirable effects of wear particles in preclinical studies. Targeted local delivery of specific biologics may potentially extend the lifetime of orthopaedic implants. PMID:24478281
Dynamic interactions between dermal macrophages and Staphylococcus aureus.
Feuerstein, Reinhild; Kolter, Julia; Henneke, Philipp
2017-01-01
The dermis, a major reservoir of immune cells in immediate vicinity to the colonizing skin microflora, serves as an important site of host-pathogen interactions. Macrophages (Mϕ) are the most frequent resident immune cell type in the dermis. They protect the host from invasive infections by highly adapted bacteria, such as staphylococci via pattern recognition of bacterial effectors, phagocytosis, and recruitment of other myeloid cells from the blood. Already under homeostatic conditions, the dermal Mϕ population receives a dynamic input of monocytes invading from the bloodstream. This quantitative renewal is promoted further at the beginning of life, when prenatally seeded cells are rapidly replaced and in healing phases after injuries or infections. Here, we discuss the potential implications of the dynamic dermal Mϕ biology on the establishment and maintenance of immunity against Staphylococcus aureus, which can either be a harmless colonizer or an invasive pathogen. The understanding of the heterogeneity of the "mature" dermal Mϕ compartment driven both by the influx of differentiating monocytes and by a bone marrow-independent Mϕ persistence and expansion may help to explain failing immunity and immunopathology originating from the skin, the important interface between host and environment. © Society for Leukocyte Biology.
Mohamad, Safa F; Xu, Linlin; Ghosh, Joydeep; Childress, Paul J; Abeysekera, Irushi; Himes, Evan R; Wu, Hao; Alvarez, Marta B; Davis, Korbin M; Aguilar-Perez, Alexandra; Hong, Jung Min; Bruzzaniti, Angela; Kacena, Melissa A; Srour, Edward F
2017-12-12
Networking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)-derived macrophages. OMs, identified as CD45 + F4/80 + cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell-associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase-positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function.
Kim, J H; Harvey, L A; Evans, A L; Byfield, G E; Betancourt, D A; Dean, T R
2016-06-01
The many benefits of building "green" have motivated the use of sustainable products in the design and execution of the built environment. However, the use of these natural or recycled materials, some of which have been treated with antimicrobials, provides a growth opportunity for microorganisms with the potential to elicit adverse health effects especially in the presence of an antimicrobial. The focus of this research was to determine the effects of Stachybotrys chartarum (strains Houston and 51-11) grown under different conditions on a macrophage cell line (Raw 264.7) using endpoints, including cytotoxicity, and those associated with immunity specifically inflammation and MHC class II expression. The fungi were grown on four different gypsum products, and macrophages were exposed to whole spores of both strains and fragmented spores of strain 51-11. Whole spores of the Houston strain elicited no cytotoxicity with some level of inflammation, while exposure to whole spores of 51-11 caused variable responses depending on the wallboard type supporting the fungal growth. High concentrations of fragmented 51-11 spores primarily resulted in the apoptosis of macrophage with no inflammation. None of the fungal strains caused elevated levels of major histocompatibility complex (MHC) class II expression on the surface of Raw cells. Mycotoxin levels of 51-11 spores from all of the wallboard types measured >250 ng/μL of T2 equivalent toxin based on activity. Collectively, the data demonstrated that all of the wallboard types supported growth of fungi with the ability to elicit harmful biological responses with the potential to negatively impact human health.
Frascaroli, Giada; Lecher, Carina; Varani, Stefania; Setz, Corinna; van der Merwe, Johannes; Brune, Wolfram; Mertens, Thomas
2018-01-01
Human cytomegalovirus (HCMV) persistently infects 40-90% of the human population but in the face of a normal immune system, viral spread and dissemination are efficiently controlled thus preventing clinically signs and disease. HCMV-infected hosts produce a remarkably large amount of HCMV-specific CD4 + and CD8 + T cells that can even reach 20-50% of total T memory cells in the elderly. How HCMV may elicit such large and long-lasting T-cell responses in the absence of detectable viremia has not been elucidated yet. Additionally, HCMV is known to encode several gene products that potently inhibit T-cell recognition of infected cells. The best characterized are the four immune evasive US2, US3, US6, and US11 genes that by different mechanisms account for major histocompatibility complex (MHC) class I and class II degradation and intracellular retention in infected cells. By infecting M1 and M2 human macrophages (Mφ) with the wild-type HCMV strain TB40E or a mutant virus deleted of the four immune evasive genes US2, US3, US6, and US11, we demonstrated that human Mφ counteract the inhibitory potential of the US2-11 genes and remain capable to present peptides via MHC class I and class II molecules. Moreover, by sorting the infected and bystander cells, we provide evidence that both infected and bystander Mφ contribute to antigen presentation to CD4 + and CD8 + T cells. The T cells responding to TB40E-infected Mφ show markers of the T effector memory compartment, produce interferon-γ, and express the lytic granule marker CD107a on the cell surface, thus mirroring the HCMV-specific T cells present in healthy seropositive individuals. All together, our findings reveal that human Mφ escape inhibition of MHC-dependent antigen presentation by HCMV and continue to support T cell proliferation and activation after HCMV infection. Taking into account that Mφ are natural targets of HCMV infection and a site of viral reactivation from latency, our findings support the hypothesis that Mφ play crucial roles for the lifelong maintenance and expansion of HCMV-committed T cells in the human host.
Sun, Xin; Xu, Haobo; Shen, Jing; Guo, Shuyuan; Shi, Sa; Dan, Juhua; Tian, Fang; Tian, Yanfeng; Tian, Ye
2015-01-01
Reactive oxygen species (ROS) elevation and mitochondrial membrane potential (MMP) loss have been proven recently to be involved in sonodynamic therapy (SDT)-induced macrophage apoptosis and necrosis. This study aims to develop an experimental system to monitor intracellular ROS and MMP in real-time during ultrasonic irradiation in order to achieve optimal effect in SDT. Cultured THP-1 derived macrophages were incubated with 5-aminolevulinic acid (ALA), and then sonicated at different intensities. Intracellular ROS elevation and MMP loss were detected in real-time by fluorospectrophotometer using fluorescence probe DCFH-DA and jc-1, respectively. Ultrasound at low intensities (less than 0.48W/cm(2)) had no influence on ROS and MMP in macrophages, whereas at an intensity of 0.48W/cm(2), ROS elevation and MMP loss were observed during ultrasonic irradiation. These effects were strongly enhanced in the presence of ALA. Quantitative analysis showed that ROS elevation and MMP loss monotonically increased with the rise of ultrasonic intensity between 0.48 and 1.16W/cm(2). SDT at 0.48 and 0.84W/cm(2) induced mainly apoptosis in THP-1 macrophages while SDT at 1.16W/cm(2) mainly cell necrosis. This study supports the validity and potential utility of real-time ROS and MMP detection as a dosimetric tool for the determination of optimal SDT. Copyright © 2014 Elsevier B.V. All rights reserved.
Onfelt, Björn; Nedvetzki, Shlomo; Benninger, Richard K P; Purbhoo, Marco A; Sowinski, Stefanie; Hume, Alistair N; Seabra, Miguel C; Neil, Mark A A; French, Paul M W; Davis, Daniel M
2006-12-15
We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.
Jäger, Jens; Keese, Susanne; Roessle, Manfred; Steinert, Michael; Schromm, Andra B
2015-05-01
The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane-bound compartment termed Legionella-containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small-angle X-ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co-incubation experiments showed a dose- and time-dependent binding of fluorophore-labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4 °C. Purified OMVs induced tumour necrosis factor-α production in human macrophages at concentrations starting at 300 ng ml(-1). Experiments on HEK293-TLR2 and TLR4/MD-2 cell lines demonstrated a dominance of TLR2-dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells. © 2014 John Wiley & Sons Ltd.
Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania
2013-07-08
The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects.
Ali, Ramadan A; Wuescher, Leah M; Dona, Keith R; Worth, Randall G
2017-01-01
Platelets are the chief effector cells in hemostasis. However, recent evidence suggests they have multiple roles in host defense against infection. Reports by us and others showed that platelets functionally contribute to protection against Staphylococcus aureus infection. In the current study, the capacity of mouse platelets to participate in host defense against S. aureus infection was determined by assessing two possibilities. First, we determined the ability of platelets to kill S. aureus directly; and, second, we tested the possibility that platelets enhance macrophage phagocytosis and intracellular killing of S. aureus In this study we report evidence in support of both mechanisms. Platelets effectively killed two different strains of S. aureus. A clinical isolate of methicillin-resistant S. aureus was killed by platelets (>40% killing in 2 h) in a thrombin-dependent manner whereas a methicillin-sensitive strain was killed to equal extent but did not require thrombin. Interestingly, thrombin-stimulated platelets also significantly enhanced peritoneal macrophage phagocytosis of both methicillin-resistant S. aureus and methicillin-sensitive S. aureus by >70%, and restricted intracellular growth by >40%. Enhancement of macrophage anti-S. aureus activities is independent of contact with platelets but is mediated through releasable products, namely IL-1β. These data confirm our hypothesis that platelets participate in host defense against S. aureus both through direct killing of S. aureus and enhancing the antimicrobial function of macrophages in protection against S. aureus infection. Copyright © 2016 by The American Association of Immunologists, Inc.
Cheng, Qi; Carlson, Brian; Pillai, Sub; Eby, Ron; Edwards, Lorri; Olmsted, Stephen B.; Cleary, Patrick
2001-01-01
The capsular polysaccharides of group B streptococci (GBS) are a primary focus of vaccine development. Immunogenicity and long-lasting protection are best achieved by conjugating polysaccharides to a T-cell-dependent protein antigen. Streptococcal C5a peptidase (SCPB) is a conserved surface protein that is expressed by all streptococcal serotypes tested to date, and it is a possible carrier protein that could itself induce a protective immune response. Clearance of GBS from lungs, mucosal surfaces, or blood probably depends on the opsonophagocytic response of tissue-specific macrophages and polymorphonuclear leukocytes (PMNs). In this study, we examined the potential of antibody directed against SCPB from a serotype II strain to enhance the capacity of mouse bone marrow macrophages (from primary cultures) and human PMNs in whole blood to kill GBS in vitro. Our experiments demonstrated that Streptococcus serotypes Ia, Ib, II, III, and V, preopsonized with anti-SCPB antibody, were killed more rapidly by cultured macrophages and PMNs in whole blood than were nonopsonized GBS. The increased rate of killing was accompanied by an increased macrophage oxidative burst. Furthermore, opsonization was serotype transparent. Immunization with SCPB conjugated to capsular polysaccharide type III produced polysaccharide-specific antibodies. It is interesting that this antiserum promoted serotype-independent killing of streptococci. These data support the use of SCPB in a GBS polysaccharide conjugate vaccine. SCPB not only enhanced the immunogenicity of polysaccharide components of the vaccine, but it might also induce additional serotype-independent protective antibodies. PMID:11254587
Cheng, Q; Carlson, B; Pillai, S; Eby, R; Edwards, L; Olmsted, S B; Cleary, P
2001-04-01
The capsular polysaccharides of group B streptococci (GBS) are a primary focus of vaccine development. Immunogenicity and long-lasting protection are best achieved by conjugating polysaccharides to a T-cell-dependent protein antigen. Streptococcal C5a peptidase (SCPB) is a conserved surface protein that is expressed by all streptococcal serotypes tested to date, and it is a possible carrier protein that could itself induce a protective immune response. Clearance of GBS from lungs, mucosal surfaces, or blood probably depends on the opsonophagocytic response of tissue-specific macrophages and polymorphonuclear leukocytes (PMNs). In this study, we examined the potential of antibody directed against SCPB from a serotype II strain to enhance the capacity of mouse bone marrow macrophages (from primary cultures) and human PMNs in whole blood to kill GBS in vitro. Our experiments demonstrated that Streptococcus serotypes Ia, Ib, II, III, and V, preopsonized with anti-SCPB antibody, were killed more rapidly by cultured macrophages and PMNs in whole blood than were nonopsonized GBS. The increased rate of killing was accompanied by an increased macrophage oxidative burst. Furthermore, opsonization was serotype transparent. Immunization with SCPB conjugated to capsular polysaccharide type III produced polysaccharide-specific antibodies. It is interesting that this antiserum promoted serotype-independent killing of streptococci. These data support the use of SCPB in a GBS polysaccharide conjugate vaccine. SCPB not only enhanced the immunogenicity of polysaccharide components of the vaccine, but it might also induce additional serotype-independent protective antibodies.
In vitro cytotoxicity and quantitative silica analysis of diatomaceous earth products.
Bye, E; Davies, R; Griffiths, D M; Gylseth, B; Moncrieff, C B
1984-05-01
Mouse peritoneal macrophages were used to evaluate the relative cytotoxicity of a series of diatomaceous earth products in vitro. The amorphous and crystalline silica content of the products was determined by a combination of infrared spectroscopy and x ray powder diffraction techniques. The cytotoxicities of the high cristobalite content flux calcined materials were similar to that of the standard cristobalite ; both the natural and straight calcined materials had significantly greater activities than the flux calcined materials. Thus within the limitations of the macrophage cytotoxicity test the hypothesis that crystalline content is the only determinant of fibrogenicity of diatomaceous earth is not supported.
In vitro cytotoxicity and quantitative silica analysis of diatomaceous earth products.
Bye, E; Davies, R; Griffiths, D M; Gylseth, B; Moncrieff, C B
1984-01-01
Mouse peritoneal macrophages were used to evaluate the relative cytotoxicity of a series of diatomaceous earth products in vitro. The amorphous and crystalline silica content of the products was determined by a combination of infrared spectroscopy and x ray powder diffraction techniques. The cytotoxicities of the high cristobalite content flux calcined materials were similar to that of the standard cristobalite ; both the natural and straight calcined materials had significantly greater activities than the flux calcined materials. Thus within the limitations of the macrophage cytotoxicity test the hypothesis that crystalline content is the only determinant of fibrogenicity of diatomaceous earth is not supported. Images PMID:6326795
The Roles of Autonomy Support and Harmonious and Obsessive Passions in Educational Persistence
ERIC Educational Resources Information Center
Bonneville-Roussy, Arielle; Vallerand, Robert J.; Bouffard, Therese
2013-01-01
This research aims at examining the role of autonomy support and passion in the persistence of students involved in higher education. In academic settings, autonomy-supportive environments consider students as self-determined individuals who are capable of making choices. In contrast, controlling academic environments impose pressure on students…
Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages
Stout, Robert D.; Watkins, Stephanie K.; Suttles, Jill
2009-01-01
The extent to which the functional heterogeneity of Mϕs is dependent on the differentiation of functional sublineages remains unresolved. One alternative hypothesis proposes that Mϕs are functionally plastic cells, which are capable of altering their functional activities progressively in response to progressively changing signaling molecules generated in their microenvironment. This “functional plasticity” hypothesis predicts that the functionally polarized Mϕs in chronic pathologies do not represent Mϕ sublineages but rather, are mutable phenotypes sustained by chronic signaling from the pathological environment. Solid TAMϕs are chronically polarized to provide activities that support tumor growth and metastasis and suppress adaptive immune responses. In support of the functional plasticity hypothesis, administration of slow-release microsphere-encapsulated IL-12 successfully reprogrammed TAMϕs in situ, reducing Mϕ support of tumor growth and metastasis and enhancing Mϕ proimmunogenic activities. Increased knowledge of how Mϕ function is regulated and how polarized Mϕs can be reprogrammed in situ will increase our ability to control Mϕ function in a variety of pathological states, including cancer and chronic inflammatory disease. PMID:19605698
Langdon, Kristopher D; Maclellan, Crystal L; Corbett, Dale
2010-08-01
The incidence of infection among stroke patients is alarmingly high and both acute and delayed infections increase morbidity and mortality. Experimental studies support the acute clinical data, but little attention has focused on delayed systemic infections. Here, we investigated the effects of prolonged systemic inflammation either before or 24-h after ischemia. Systemic inflammation was induced by injecting rats with three separate doses of lipopolysaccharide (LPS; 50 mug/kg, i.p.) with core temperature monitoring for 48-h after middle cerebral artery occlusion (MCAo). Lipopolysaccharide injected before MCAo increased injury by approximately 30%, whereas delayed injection increased injury by approximately 85% (30-day survival). Proinflammatory cytokines assessed repeatedly for 72 h were significantly and persistently elevated with inflammation. This was accompanied by increases in microglia/macrophage and infiltrating leukocyte numbers in delayed LPS-treated animals. Behavioral assessments at 7 and 30 days revealed approximately 15% deficit in hindlimb function in animals treated with LPS 24-h after ischemia. Clearly, delayed and prolonged postischemic systemic inflammation has devastating effects on stroke outcome, in the absence of a prolonged febrile response. These findings, together with corroborative clinical data, emphasize the importance of early intervention to counteract the deleterious consequences of stroke-associated inflammation and infection.
Cytomegalovirus infection of the BS-1 human stroma cell line: effect on murine hemopoiesis.
Steinberg, H N; Anderson, J; Lim, B; Chatis, P A
1993-10-01
BS-1, a stromal cell line derived from human bone marrow, can support the growth of murine erythroid (BFU-E), granulocyte-macrophage (CFU-GM), and megakaryocyte (CFU-M) progenitor cells in a short term in vitro coculture system. Exposure of BS-1 cells to cytomegalovirus (CMV) for 3 hr prior to coculture results in a marked reduction in the stroma cell's ability to support murine hemopoiesis. CMV's effect on the BS-1 cell's hematopoietic support function is dependent on the multiplicity of infection with total suppression of BFU-E observed at a 1:1 ratio of virus to bone marrow cells. A 50% loss in the ability of BS-1 cells to support BFU-E is observed at a 0.1:1 ratio. No effect of CMV is observed with further log dilutions of virus. CMV infection of BS-1 cells affects its support of erythroid progenitor cell growth to a greater extent than its influence on the development of granulocyte-macrophage colonies. Antibody to CMV or heat inactivation of the virus reverses the inhibitory affect on BS-1 cells. The results suggest that CMV can infect a cell that constitutes one of the cellular elements of the normal bone marrow microenvironment causing a decrease in the stroma's ability to support the growth and development of normal progenitor cells.
Persistently active neurons in human medial frontal and medial temporal lobe support working memory
Kamiński, J; Sullivan, S; Chung, JM; Ross, IB; Mamelak, AN; Rutishauser, U
2017-01-01
Persistent neural activity is a putative mechanism for the maintenance of working memories. Persistent activity relies on the activity of a distributed network of areas, but the differential contribution of each area remains unclear. We recorded single neurons in the human medial frontal cortex and the medial temporal lobe while subjects held up to three items in memory. We found persistently active neurons in both areas. Persistent activity of hippocampal and amygdala neurons was stimulus-specific, formed stable attractors, and was predictive of memory content. Medial frontal cortex persistent activity, on the other hand, was modulated by memory load and task set but was not stimulus-specific. Trial-by-trial variability in persistent activity in both areas was related to memory strength, because it predicted the speed and accuracy by which stimuli were remembered. This work reveals, in humans, direct evidence for a distributed network of persistently active neurons supporting working memory maintenance. PMID:28218914
Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration
Williams, Julie C.; Lee, Rebecca D.; Doerschuk, Claire M.; Mackman, Nigel
2011-01-01
Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages. PMID:22175012
Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration.
Williams, Julie C; Lee, Rebecca D; Doerschuk, Claire M; Mackman, Nigel
2011-01-01
Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.
Case Report: GcMAF Treatment in a Patient with Multiple Sclerosis.
Inui, Toshio; Katsuura, Goro; Kubo, Kentaro; Kuchiike, Daisuke; Chenery, Leslye; Uto, Yoshihiro; Nishikata, Takahito; Mette, Martin
2016-07-01
Gc protein-derived macrophage-activating factor (GcMAF) has various functions as an immune modulator, such as macrophage activation, anti-angiogenic activity and anti-tumor activity. Clinical trials of second-generation GcMAF demonstrated remarkable clinical effects in several types of cancers. Thus, GcMAF-based immunotherapy has a wide application for use in the treatment of many diseases via macrophage activation that can be used as a supportive therapy. Multiple sclerosis (MS) is considered to be an autoimmune disorder that affects the myelinated axons in the central nervous system (CNS). This study was undertaken to examine the effects of second-generation GcMAF in a patient with MS. This case study demonstrated that treatments of GcMAF in a patient with MS have potent therapeutic actions with early beneficial responses, especially improvement of motor dysfunction. GcMAF shows therapeutic potency in the treatment of MS. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion
Strasser, Rona; Zeituni-Molad, Michal; Bendelak, Keren; Rentsch, Doris; Ephros, Moshe; Wiese, Martin; Jardim, Armando; Myler, Peter J.; Zilberstein, Dan
2016-01-01
Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. PMID:27043018
Brain perivascular macrophages: characterization and functional roles in health and disease.
Faraco, Giuseppe; Park, Laibaik; Anrather, Josef; Iadecola, Costantino
2017-11-01
Perivascular macrophages (PVM) are a distinct population of resident brain macrophages characterized by a close association with the cerebral vasculature. PVM migrate from the yolk sac into the brain early in development and, like microglia, are likely to be a self-renewing cell population that, in the normal state, is not replenished by circulating monocytes. Increasing evidence implicates PVM in several disease processes, ranging from brain infections and immune activation to regulation of the hypothalamic-adrenal axis and neurovascular-neurocognitive dysfunction in the setting of hypertension, Alzheimer disease pathology, or obesity. These effects involve crosstalk between PVM and cerebral endothelial cells, interaction with circulating immune cells, and/or production of reactive oxygen species. Overall, the available evidence supports the idea that PVM are a key component of the brain-resident immune system with broad implications for the pathogenesis of major brain diseases. A better understanding of the biology and pathobiology of PVM may lead to new insights and therapeutic strategies for a wide variety of brain diseases.
In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells.
Lin, Hsin-Yi; Bumgardner, Joel D
2004-11-01
We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect Co-Cr-Mo alloy's corrosion properties and that alloy corrosion products change macrophage cell behavior. A custom cell culture corrosion cell was used to evaluate how culture medium, cells, and RCS altered alloy corrosion in 3-day tests. Corrosion was evaluated by measuring total charge transfer at a constant potential using a potentiostat and metal ion release by atomic emission spectroscopy. Viability, proliferation, and NO (nitric oxide) and IL-1beta (interlukin-1beta) release were used to assess cellular response to alloy corrosion products. In the presence of activated cells, total charge transfers and Co ion release were the lowest (p < 0.05). This was attributed to an enhancement of the surface oxide by RCS. Cr and Mo release were not different between cells and activated cells. Low levels of metal ions did not affect cell viability, proliferation, or NO release, though IL-1beta released from the activated cells was higher on the alloy compared to the controls. These data support the hypothesis that macrophage cells and their RCS affect alloy corrosion. Changes in alloy corrosion by cells may be important to the development of host responses to the alloy and its corrosion products.
Oronsky, Bryan; Paulmurugan, Ramasamy; Foygel, Kira; Scicinski, Jan; Knox, Susan J; Peehl, Donna; Zhao, Hongjuan; Ning, Shoucheng; Cabrales, Pedro; Summers, Thomas A; Reid, Tony R; Fitch, William L; Kim, Michelle M; Trepel, Jane B; Lee, Min-Jung; Kesari, Santosh; Abrouk, Nacer D; Day, Regina M; Oronsky, Arnold; Ray, Carolyn M; Carter, Corey A
2017-01-01
According to Hanahan and Weinberg, cancer manifests as six essential physiologic hallmarks: (1) self-sufficiency in growth signals, (2) insensitivity to growth-inhibitory signals, (3) evasion of programmed cell death, (4) limitless replicative potential, (5) sustained angiogenesis, and (6) invasion and metastasis. As a facilitator of these traits as well as immunosuppression and chemoresistance, the presence of tumor-associated macrophages (TAMs) may serve as the seventh hallmark of cancer. Anticancer agents that successfully reprogram TAMs to target rather than support tumor cells may hold the key to better therapeutic outcomes. Areas covered: This article summarizes the characteristics of the macrophage-stimulating agent RRx-001, a molecular iconoclast, sourced from the aerospace industry, with a particular emphasis on the cell-to-cell transfer mechanism of action (RBCs to TAMs) underlying its antitumor activity as well as its chemo and radioprotective properties, consolidated from various preclinical and clinical studies. Expert opinion: RRx-001 is macrophage-stimulating agent with the potential to synergize with chemotherapy, radiotherapy and immunotherapy while simultaneously protecting normal tissues from their cytotoxic effects. Given the promising indications of activity in multiple tumor types and these normal tissue protective properties, RRx-001 may be used to treat a broad spectrum of malignancies, if it is approved in the future.
Perrotta, Cristiana; De Palma, Clara; Clementi, Emilio; Cervia, Davide
2015-01-01
Accumulating evidence indicates that the endocrine and immune systems engage in complex cross-talks in which a prominent role is played by thyroid hormones (THs). The increase of resident vs. monocyte recruited macrophages was shown to be an important effector of the TH 3,3′,5′-Triiodo-L-thyronine (T3)-induced protection against inflammation and a key role of T3 in inhibiting the differentiation of peripheral monocytes into macrophages was observed. Herein, we report on the role of T3 as a modulator of microglia, the specialized macrophages of the central nervous system (CNS). Mounting evidence supports a role of microglia and macrophages in the growth and invasion of malignant glioma. In this respect, we unveil the putative involvement of T3 in the microglia/glioma cell communication. Since THs are known to cross the blood-brain barrier, we suggest that T3 not only exerts a direct modulation of brain cancer cell itself but also indirectly promotes glioma growth through a modulation of microglia. Our observations expand available information on the role of TH system in glioma and its microenvironment and highlight the endocrine modulation of microglia as an important target for future therapeutic development of glioma treatments. PMID:26157361
Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction
NASA Astrophysics Data System (ADS)
Khajanchi, Subhas
This paper describes the synergistic interaction between the growth of malignant gliomas and the immune system interactions using a system of coupled ordinary differential equations (ODEs). The proposed mathematical model comprises the interaction of glioma cells, macrophages, activated Cytotoxic T-Lymphocytes (CTLs), the immunosuppressive factor TGF-β and the immuno-stimulatory factor IFN-γ. The dynamical behavior of the proposed system both analytically and numerically is investigated from the point of view of stability. By constructing Lyapunov functions, the global behavior of the glioma-free and the interior equilibrium point have been analyzed under some assumptions. Finally, we perform numerical simulations in order to illustrate our analytical findings by varying the system parameters.
a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut
2016-05-01
Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context. © 2016 American Association of Neuropathologists, Inc. All rights reserved.
ERIC Educational Resources Information Center
Getzel, Elizabeth Evans
2008-01-01
This article explores the key characteristics of postsecondary education programs that help youth and young adults with disabilities persist and remain in college. Student support factors include services that develop stronger self-determination skills, teach and support young adults' self-management skills, expose students to assistive…
ERIC Educational Resources Information Center
Rayle, Andrea Dixon; Kurpius, Sharon E. Robinson; Arredondo, Patricia
2007-01-01
The relationships of self-beliefs, social support, and university comfort with the academic persistence decisions and first-year grade point averages of 527 first semester female undergraduates were examined. Data were gathered in 56 classes or group meetings. These three constructs predicted academic persistence decisions, with social support as…
Choe, Chi-un; Lardong, Kerstin; Gelderblom, Mathias; Ludewig, Peter; Leypoldt, Frank; Koch-Nolte, Friedrich; Gerloff, Christian; Magnus, Tim
2011-01-01
Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion. We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8(+) cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model. CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.
Yang, Mu; Shi, Xiang Qun; Peyret, Corentin; Oladiran, Oladayo; Wu, Sonia; Chambon, Julien; Fournier, Sylvie; Zhang, Ji
2018-04-05
Autoimmune peripheral neuropathy (APN) such as Guillain Barre Syndrome (GBS) is a debilitating illness and sometimes life threatening. The molecular and cellular mechanisms remain elusive but exposure to environmental factors including viral/bacterial infection and injury is highly associated with disease incidence. We demonstrated previously that both male and female B7.2 (CD86) transgenic L31 and L31/CD4KO mice develop spontaneous APN. Here we further reveal that CD8 + T cells in these mice exhibit an effector/memory phenotype, which bears a resemblance to the CD8 + T cell response following persistent cytomegalovirus (CMV) infection in humans and mice, whilst CMV has been considered as one of the most relevant pathogens in APN development. These activated, peripheral myelin Ag specific CD8 + T cells are required for the disease initiation. While an injury to a peripheral nerve results in Wallerian degeneration in control littermates, the same injury accelerates the development of APN in other non-injured nerves of L31 mice which have a predisposed inflammatory background consisting of effector/memory CD8 + T (CD8 + T EM ) cells. However, CD8 + T EM cells alone are not sufficient. A certain threshold of B7.2 expression on nerve macrophages is an additional requisite. Our findings reveal that indeed, the synergism between CD8 + T EM cells and co-stimulation competent macrophages is crucial in inducing autoimmune-mediated peripheral neuropathy. The identification of decisive molecular/cellular players connecting environmental triggers and the occurrence of APN provides opportunities to prevent disease onset, reduce relapses and develop new therapeutic strategies. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Weiser, Julian; Henke, Hanae A; Hector, Nina; Both, Anna; Christner, Martin; Büttner, Henning; Kaplan, Jeffery B; Rohde, Holger
2016-09-01
Biofilm-associated Staphylococcus epidermidis implant infections are notoriously reluctant to antibiotic treatment. Here we studied the effect of sub-inhibitory concentrations of penicillin, oxacillin, vancomycin, daptomycin, linezolid and tigecycline on S. epidermidis 1585 biofilm formation, expression of extracellular matrix binding protein (Embp) and potential implications for S. epidermidis - macrophage interactions. Penicillin, vancomycin, daptomycin, and linezolid had no biofilm augmenting effect at any of the concentrations tested. In contrast, at sub-inhibitory concentrations tigecycline and oxacillin exhibited significant biofilm inducing activity. In S. epidermidis 1585, SarA is a negative regulator of giant 1 MDa Embp, and down regulation of sarA induces Embp-dependent assembly of a multi-layered biofilm architecture. Dot blot immune assays, confocal laser scanning microscopy, and qPCR showed that under biofilm inducing conditions, tigecycline augmented embp expression compared to the control grown without antibiotics. Conversely, expression of regulator sarA was suppressed, suggesting that tigecycline exerts its effects on embp expression through SarA. Tigecycline failed to induce biofilm formation in embp transposon mutant 1585-M135, proving that under these conditions Embp up-regulation is necessary for biofilm accumulation. As a functional consequence, tigecycline induced biofilm formation significantly impaired the up-take of S. epidermidis by mouse macrophage-like cell line J774A.1. Our data provide novel evidence for the molecular basis of antibiotic induced biofilm formation, a phenotype associated with inherently increased antimicrobial tolerance. While this could explain failure of antimicrobial therapies, persistence of S. epidermidis infections in the presence of sub-inhibitory antimicrobials is additionally propelled by biofilm-related impairment of macrophage-mediated pathogen eradication. Copyright © 2016 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.-S.; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan; Chen, F.-H.
2007-06-01
Purpose: To investigate the effects of single and fractionated doses of radiation on tumors and tumor-associated macrophages (TAMs), and to elucidate the potential of TAMs to influence tumor growth. Methods and Materials: A murine prostate cell line, TRAMP-C1, was grown in C57Bl/6J mice to 4-mm tumor diameter and irradiated with either 25 Gy in a single dose, or 60 Gy in 15 fractions. The tumors were removed at the indicated times and assessed for a variety of markers related to TAM content, activation status, and function. Results: In tumors receiving a single radiation dose, arginase (Arg-I), and cycloxygenase-2 (COX-2) mRNAmore » expression increased as a small transient wave within 24 h and a larger persistent wave starting after 3 days. Inducible nitric oxide synthase (iNOS) mRNA was elevated only after 3 days and continued to increase up to 3 weeks. After fractionated irradiation, Arg-1 and COX-2 mRNA levels increased within 5 days, whereas iNOS was increased only after 10 fractions of irradiation had been given. Increased levels of Arg-I, COX-2, and, to a lesser extent, iNOS protein were found to associate with TAMs 1-2 weeks after tumor irradiation. Function of TAMs were compared by mixing them with TRAMP-C1 cells and injecting them into mice; TRAMP-C1 cells mixed with TAMs from irradiated tumors appeared earlier and grew significantly faster than those mixed with TAMs from unirradiated tumors or TRAMP-C1 alone. Conclusions: Tumor-associated macrophages in the postirradiated tumor microenvironment express higher levels of Arg-1, COX-2, and iNOS, and promote early tumor growth in vivo.« less
Choudhry, Naheed; Li, Ke; Zhang, Ting; Wu, Kun-Yi; Song, Yun; Farrar, Conrad A; Wang, Na; Liu, Cheng-Fei; Peng, Qi; Wu, Weiju; Sacks, Steven H; Zhou, Wuding
2016-09-01
Complement factor 5a (C5a) interaction with its receptor (C5aR1) contributes to the pathogenesis of inflammatory diseases, including acute kidney injury. However, its role in chronic inflammation, particularly in pathogen-associated disorders, is largely unknown. Here we tested whether the development of chronic inflammation and renal fibrosis is dependent on C5aR1 in a murine model of chronic pyelonephritis. C5aR1-deficient (C5aR1-/-) mice showed a significant reduction in bacterial load, tubule injury and tubulointerstitial fibrosis in the kidneys following infection, compared with C5aR1-sufficient mice. This was associated with reduced renal leukocyte infiltration specifically for the population of Ly6Chi proinflammatory monocytes/macrophages and reduced intrarenal gene expression of key proinflammatory and profibrogenic factors in C5aR1-/- mice following infection. Antagonizing C5aR1 decreased renal bacterial load, tissue inflammation and tubulointerstitial fibrosis. Ex vivo and in vitro studies showed that under infection conditions, C5a/C5aR1 interaction upregulated the production of proinflammatory and profibrogenic factors by renal tubular epithelial cells and monocytes/macrophages, whereas the phagocytic function of monocytes/macrophages was down-regulated. Thus, C5aR1-dependent bacterial colonization of the tubular epithelium, C5a/C5aR1-mediated upregulation of local inflammatory responses to uropathogenic E. coli and impairment of phagocytic function of phagocytes contribute to persistent bacterial colonization of the kidney, chronic renal inflammation and subsequent tubulointerstitial fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Wohleb, Eric S.; McKim, Daniel B.; Shea, Daniel T.; Powell, Nicole D.; Tarr, Andrew J.; Sheridan, John F.; Godbout, Jonathan P.
2014-01-01
Background Persistent anxiety-like symptoms may have an inflammatory-related pathophysiology. Our previous work using repeated social defeat (RSD) in mice showed that recruitment of peripheral myeloid cells to the brain is required for the development of anxiety. Here, we aimed to determine if 1) RSD promotes prolonged anxiety through redistribution of myeloid cells and 2) prior exposure to RSD sensitizes the neuroimmune axis to secondary subthreshold stress. Methods Mice were subjected to RSD and several immune and behavioral parameters were determined 0.5, 8, or 24 days later. In follow-up studies, control and RSD mice were subjected to subthreshold stress at 24 days. Results Repeated social defeat-induced macrophage recruitment to the brain corresponded with development and maintenance of anxiety-like behavior 8 days after RSD, but neither remained at 24 days. Nonetheless, social avoidance and an elevated neuroinflammatory profile were maintained at 24 days. Subthreshold social defeat in RSD-sensitized mice increased peripheral macrophage trafficking to the brain that promoted re-establishment of anxiety. Moreover, subthreshold social defeat increased social avoidance in RSD-sensitized mice compared with naïve mice. Stress-induced monocyte trafficking was linked to redistribution of myeloid progenitor cells in the spleen. Splenectomy before subthreshold stress attenuated macrophage recruitment to the brain and prevented anxiety-like behavior in RSD-sensitized mice. Conclusions These data indicate that monocyte trafficking from the spleen to the brain contributes re-establishment of anxiety in stress-sensitized mice. These findings show that neuroinflammatory mechanisms promote mood disturbances following stress-sensitization and outline novel neuroimmune interactions that underlie recurring anxiety disorders such as posttraumatic stress disorder. PMID:24439304
Wohleb, Eric S; McKim, Daniel B; Shea, Daniel T; Powell, Nicole D; Tarr, Andrew J; Sheridan, John F; Godbout, Jonathan P
2014-06-15
Persistent anxiety-like symptoms may have an inflammatory-related pathophysiology. Our previous work using repeated social defeat (RSD) in mice showed that recruitment of peripheral myeloid cells to the brain is required for the development of anxiety. Here, we aimed to determine if 1) RSD promotes prolonged anxiety through redistribution of myeloid cells and 2) prior exposure to RSD sensitizes the neuroimmune axis to secondary subthreshold stress. Mice were subjected to RSD and several immune and behavioral parameters were determined .5, 8, or 24 days later. In follow-up studies, control and RSD mice were subjected to subthreshold stress at 24 days. Repeated social defeat-induced macrophage recruitment to the brain corresponded with development and maintenance of anxiety-like behavior 8 days after RSD, but neither remained at 24 days. Nonetheless, social avoidance and an elevated neuroinflammatory profile were maintained at 24 days. Subthreshold social defeat in RSD-sensitized mice increased peripheral macrophage trafficking to the brain that promoted re-establishment of anxiety. Moreover, subthreshold social defeat increased social avoidance in RSD-sensitized mice compared with naïve mice. Stress-induced monocyte trafficking was linked to redistribution of myeloid progenitor cells in the spleen. Splenectomy before subthreshold stress attenuated macrophage recruitment to the brain and prevented anxiety-like behavior in RSD-sensitized mice. These data indicate that monocyte trafficking from the spleen to the brain contributes re-establishment of anxiety in stress-sensitized mice. These findings show that neuroinflammatory mechanisms promote mood disturbances following stress-sensitization and outline novel neuroimmune interactions that underlie recurring anxiety disorders such as posttraumatic stress disorder. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Cooke, Esther J; Zhou, Jenny Y; Wyseure, Tine; Joshi, Shweta; Bhat, Vikas; Durden, Donald L; Mosnier, Laurent O; Drygalski, Annette von
2018-06-01
Vascular remodelling is a prominent feature of haemophilic arthropathy (HA) that may underlie re-bleeding, yet the nature of vascular changes and underlying mechanisms remain largely unknown. Here, we aimed to characterize synovial vascular remodelling and vessel integrity after haemarthrosis, as well as temporal changes in inflammatory and tissue-reparative pathways. Thirty acutely painful joints in patients with haemophilia (PWH) were imaged by musculoskeletal ultrasound with Power Doppler (MSKUS/PD) to detect vascular abnormalities and bloody effusions. Nineteen out of 30 painful joint episodes in PWH were associated with haemarthrosis, and abnormal vascular perfusion was unique to bleeding joints. A model of induced haemarthrosis in factor VIII (FVIII)-deficient mice was used for histological assessment of vascular remodelling (α-smooth muscle actin [αSMA] expression), and monitoring of in vivo vascular perfusion and permeability by MSKUS/PD and albumin extravasation, respectively. Inflammatory (M1) and reparative (M2) macrophage markers were quantified in murine synovium over a 10-week time course by real-time polymerase chain reaction. The abnormal vascular perfusion observed in PWH was recapitulated in FVIII-deficient mice after induced haemarthrosis. Neovascularization and increased vessel permeability were apparent 2 weeks post-bleed in FVIII-deficient mice, after a transient elevation of inflammatory macrophage M1 markers. These vascular changes subsided by week 4, while vascular remodelling, evidenced by architectural changes and pronounced αSMA expression, persisted alongside a reparative macrophage M2 response. In conclusion, haemarthrosis leads to transient inflammation coupled with neovascularization and associated vascular permeability, while subsequent tissue repair mechanisms coincide with vascular remodelling. Together, these vascular changes may promote re-bleeding and HA progression. Schattauer GmbH Stuttgart.
Dietary modification dampens liver inflammation and fibrosis in obesity-related fatty liver disease.
Larter, Claire Z; Yeh, Matthew M; Haigh, W Geoffrey; Van Rooyen, Derrick M; Brooling, John; Heydet, Deborah; Nolan, Christopher J; Teoh, Narci C; Farrell, Geoffrey C
2013-06-01
Alms1 mutant (foz/foz) mice develop hyperphagic obesity, diabetes, metabolic syndrome, and fatty liver (steatosis). High-fat (HF) feeding converts pathology from bland steatosis to nonalcoholic steatohepatitis (NASH) with fibrosis, which leads to cirrhosis in humans. We sought to establish how dietary composition contributes to NASH pathogenesis. foz/foz mice were fed HF diet or chow 24 weeks, or switched HF to chow after 12 weeks. Serum ALT, NAFLD activity score (NAS), fibrosis severity, neutrophil, macrophage and apoptosis immunohistochemistry, uncoupling protein (UCP)2, ATP, NF-κB activation/expression of chemokines/adhesion molecules/fibrogenic pathways were determined. HF intake upregulated liver fatty acid and cholesterol transporter, CD36. Dietary switch expanded adipose tissue and decreased hepatomegaly by lowering triglyceride, cholesterol ester, free cholesterol and diacylglyceride content of liver. There was no change in lipogenesis or fatty acid oxidation pathways; instead, CD36 was suppressed. These diet-induced changes in hepatic lipids improved NAS, reduced neutrophil infiltration, normalized UCP2 and increased ATP; this facilitated apoptosis with a change in macrophage phenotype favoring M2 cells. Dietary switch also abrogated NF-κB activation and chemokine/adhesion molecule expression, and arrested fibrosis by dampening stellate cell activation. Reversion to a physiological dietary composition after HF feeding in foz/foz mice alters body weight distribution but not obesity. This attenuates NASH severity and fibrotic progression by suppressing NF-κB activation and reducing neutrophil and macrophage activation. However, adipose inflammation persists and is associated with continuing apoptosis in the residual fatty liver disease. Taken together, these findings indicate that other measures, such as weight reduction, may be required to fully reverse obesity-related NASH. Copyright © 2013 The Obesity Society.
Absher, M. P.; Trombley, L.; Hemenway, D. R.; Mickey, R. M.; Leslie, K. O.
1989-01-01
Cristobalite is a crystalline silicon dioxide that elicits pulmonary inflammation and fibrosis in humans and experimental animals. Exposure of rats to aerosols of respirable cristobalite for 8 days led to a rapid influx of neutrophils and macrophages into alveolar and tissue compartments of the lung followed by a more gradual accumulation of T lymphocytes. This inflammatory response persisted throughout 52 weeks after the end of the exposure. For some variables studied there appeared to be a cyclical nature to the response. Statistical analysis of alveolar cell populations and lung tissue weight, protein, and hydroxyproline showed significant time-dependent fluctuations. Histologic analysis revealed a progressive deposition of collagen and type II cell hyperplasia centered on airways, however, there appeared to be some correlation between fluctuations in alveolar cell populations and overall tissue pathology. The observed cellular and biochemical fluctuations and the persistence of the inflammatory response may be due to the presence of silica in the lung, which serves as a source of repetitive stimulation of lung cells. Images Figure 4 Figure 5 PMID:2547319
NASA Astrophysics Data System (ADS)
Magombedze, Gesham; Shiri, Tinevimbo; Eda, Shigetoshi; Stabel, Judy R.
2017-03-01
Available diagnostic assays for Mycobacterium avium subsp. paratuberculosis (MAP) have poor sensitivities and cannot detect early stages of infection, therefore, there is need to find new diagnostic markers for early infection detection and disease stages. We analyzed longitudinal IFN-γ, ELISA-antibody and fecal shedding experimental sensitivity scores for MAP infection detection and disease progression. We used both statistical methods and dynamic mathematical models to (i) evaluate the empirical assays (ii) infer and explain biological mechanisms that affect the time evolution of the biomarkers, and (iii) predict disease stages of 57 animals that were naturally infected with MAP. This analysis confirms that the fecal test is the best marker for disease progression and illustrates that Th1/Th2 (IFN-γ/ELISA antibodies) assays are important for infection detection, but cannot reliably predict persistent infections. Our results show that the theoretical simulated macrophage-based assay is a potential good diagnostic marker for MAP persistent infections and predictor of disease specific stages. We therefore recommend specifically designed experiments to test the use of a based assay in the diagnosis of MAP infections.
Okada, Kohki; Arai, Satoshi; Itoh, Hiroshi; Adachi, Souichi; Hayashida, Masahiko; Nakase, Hiroshi; Ikemoto, Masaki
2016-11-01
S100A8 and S100A9 (S100 proteins) are regulators of immune cells of myeloid origin. Whereas S100 proteins are found at high concentrations in such cells, their immunologic roles remain unclear. We focused on cluster of differentiation 68 (CD68). The aim of this study is to investigate whether CD68 binds to extracellular S100A8 and/or S100A9 and subsequently participates in the regulation of the cells' immune functions. ELISA and affinity chromatography showed that both recombinant rat S100A8 (r-S100A8) and r-S100A9 bound to r-CD68, but not to r-CD14. Flow cytometry clearly showed evidences supporting above the 2 results. As analyzed by flow cytometry, a less amount of r-S100A8 or r-S100A9 bound to the macrophages treated with some deglycosylation enzymes. In an in vitro assay, the expression levels of S100A8 and S100A9 were significantly suppressed after the macrophages had been treated with an anti-CD68 antibody (ED1). As stimulated macrophages with r-S100A9, the expression of IL-1β mRNA in macrophages, which were treated with anti-TLR4 or -RAGE antibodies, was significantly suppressed. r-S100A8 up-regulated IL-6 and IL-10 mRNAs, while r-S100A9 did TNF-α and IL-6 mRNAs, although these regulations were not statistically significant. Small interfering CD68 also significantly suppressed activation of macrophages through an autocrine pathway by r-S100A8 or r-S100A9. In macrophages stimulated with LPS, fluorescent immunologic staining showed that most CD68 colocalized with S100A8 or S100A9 and that the levels of all 3 molecules were markedly increased. In conclusion, CD68 on macrophages binds to S100A8 and S100A9 and thereby, plays a role in the regulation of the cells' immune functions. © Society for Leukocyte Biology.
Blykers, Anneleen; Schoonooghe, Steve; Xavier, Catarina; D'hoe, Kevin; Laoui, Damya; D'Huyvetter, Matthias; Vaneycken, Ilse; Cleeren, Frederik; Bormans, Guy; Heemskerk, Johannes; Raes, Geert; De Baetselier, Patrick; Lahoutte, Tony; Devoogdt, Nick; Van Ginderachter, Jo A; Caveliers, Vicky
2015-08-01
Tumor-associated macrophages constitute a major component of the stroma of solid tumors, encompassing distinct subpopulations with different characteristics and functions. We aimed to identify M2-oriented tumor-supporting macrophages within the tumor microenvironment as indicators of cancer progression and prognosis, using PET imaging. This can be realized by designing (18)F-labeled camelid single-domain antibody fragments (sdAbs) specifically targeting the macrophage mannose receptor (MMR), which has been identified as an important biomarker on this cell population. Cross-reactive anti-MMR sdAbs were generated after immunization of an alpaca with the extracellular domains of both human and mouse MMR. The lead binder was chosen on the basis of comparisons of binding affinity and in vivo pharmacokinetics. The PET tracer (18)F-fluorobenzoate (FB)-anti-MMR sdAb was developed using the prosthetic group N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB), and its biodistribution, tumor-targeting potential, and specificity in terms of macrophage and MMR targeting were evaluated in mouse tumor models. Four sdAbs were selected after affinity screening, but only 2 were found to be cross-reactive for human and mouse MMR. The lead anti-MMR 3.49 sdAb, bearing an affinity of 12 and 1.8 nM for mouse and human MMR, respectively, was chosen for its favorable in vivo biodistribution profile and tumor-targeting capacity. (18)F-FB-anti-MMR 3.49 sdAb was synthesized with a 5%-10% radiochemical yield using an automated and optimized protocol. In vivo biodistribution analyses showed fast clearance via the kidneys and retention in MMR-expressing organs and tumor. The kidney retention of the fluorinated sdAb was 20-fold lower than a (99m)Tc-labeled counterpart. Compared with MMR- and C-C chemokine receptor 2-deficient mice, significantly higher uptake was observed in tumors grown in wild-type mice, demonstrating the specificity of the (18)F tracer for MMR and macrophages, respectively. Anti-MMR 3.49 was denoted as the lead cross-reactive MMR-targeting sdAb. (18)F radiosynthesis was optimized, providing an optimal probe for PET imaging of the tumor-promoting macrophage subpopulation in the tumor stroma. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.