Sample records for macropus eugenii transcript

  1. Seroprevalence of retrovirus in North American captive macropodidae.

    PubMed

    Georoff, Timothy A; Joyner, Priscilla H; Hoover, John P; Payton, Mark E; Pogranichniy, Roman M

    2008-09-01

    Laboratory records of serology results from captive macropodidae sampled between 1997 and 2005 were reviewed to assess the seroprevalence of retrovirus exposure. Serum samples from 269 individuals (136 males, 133 females) representing 10 species of macropods housed in 31 North American captive collections were analyzed for retrovirus antibody using an indirect immunofluorescent assay. The prevalence of positive antibody titers comparing male versus female, between species, between age groups, and among animals with identified parentage was examined by nonparametric statistical analyses. Median age of animals at time of sample collection was 36 mo (range 2-201 mo). Total percentage seropositive was 20.4%. Serum antibody was detected in 31 of 47 (66.0%) tammar wallaby (Macropus eugenii), nine of 24 (37.5%) yellow-footed rock wallaby (Petrogale xanthopus), four of 11 (36.4%) swamp wallaby (Wallabia bicolor), 10 of 80 (12.5%) red-necked wallaby (Macropus rufogriseus), and one of 54 (1.9%) parma wallaby (Macropus parma). No individuals of western gray kangaroo (n=3) (Macropus fuliginosus), eastern gray kangaroo (n=19) (Macropus giganteus), common wallaroo (n=6) (Macropus robustus), red kangaroo (n=11) (Macropus rufus), or Matschie's tree kangaroo (n=14) (Dendrolagus matschiei) were positive for retrovirus antibody. These results demonstrate that five species of captive macropods have a history of exposure to retrovirus, with the highest percentage seropositive and highest statistical correlation in M. eugenii (pair-wise Fisher's exact test, alpha = 0.05). Additionally, one wild-caught M. eugenii was confirmed seropositive during quarantine period, indicating that retrovirus exposure may exist in wild populations.

  2. Community Composition and Density of Methanogens in the Foregut of the Tammar Wallaby (Macropus eugenii)▿

    PubMed Central

    Evans, Paul N.; Hinds, Lyn A.; Sly, Lindsay I.; McSweeney, Christopher S.; Morrison, Mark; Wright, André-Denis G.

    2009-01-01

    The composition of the methanogenic archaeal community in the foregut contents of Tammar wallabies (Macropus eugenii) was studied using 16S rRNA and methyl coenzyme reductase subunit A (mcrA) gene clone libraries. Methanogens belonging to the Methanobacteriales and a well-supported cluster of uncultivated archaeon sequences previously observed in the ovine and bovine rumens were found. Methanogen densities ranged from 7.0 × 105 and 3.9 × 106 cells per gram of wet weight. PMID:19218421

  3. FOXA1 and SOX9 Expression in the Developing Urogenital Sinus of the Tammar Wallaby (Macropus eugenii).

    PubMed

    Gamat, Melissa; Chew, Keng Yih; Shaw, Geoffrey; Renfree, Marilyn B

    2015-01-01

    The mammalian prostate is a compact structure in humans but multi-lobed in mice. In humans and mice, FOXA1 and SOX9 play pivotal roles in prostate morphogenesis, but few other species have been examined. We examined FOXA1 and SOX9 in the marsupial tammar wallaby, Macropus eugenii, which has a segmented prostate more similar to human than to mouse. In males, prostatic budding in the urogenital epithelium (UGE) was initiated by day 24 postpartum (pp), but in the female the UGE remained smooth and had begun forming the marsupial vaginal structures. FOXA1 was upregulated in the male urogenital sinus (UGS) by day 51 pp, whilst in the female UGS FOXA1 remained basal. FOXA1 was localised in the UGE in both sexes between day 20 and 80 pp. SOX9 was upregulated in the male UGS at day 21-30 pp and remained high until day 51-60 pp. SOX9 protein was localised in the distal tips of prostatic buds which were highly proliferative. The persistent upregulation of the transcription factors SOX9 and FOXA1 after the initial peak and fall of androgen levels suggest that in the tammar, as in other mammals, these factors are required to sustain prostate differentiation, development and proliferation as androgen levels return to basal levels. © 2015 S. Karger AG, Basel.

  4. Immunohistochemistry of the lymphoid tissues of the tammar wallaby, Macropus eugenii

    PubMed Central

    Old, Julie M; Deane, Elizabeth M

    2002-01-01

    The lymphoid tissues of the metatherian mammal, the adult tammar wallaby, Macropus eugenii, were investigated using immunohistochemical techniques. Five cross-reactive antibodies previously shown to recognize surface markers in marsupial tissues and five previously untested antibodies were used. The distribution of T-cells in the tissue beds of spleen, lymph node, thymus, gut-associated lymphoid tissue (GALT) and bronchus-associated lymphoid tissue (BALT) was documented using antibodies to CD3 and CD5. Similarly, B-cells were identified in the same tissues using anti-CD79b. Antibodies to CD8, CD31, CD79a and CD68 failed to recognize cells in these tissue beds. In general the pattern of cellular distribution identified using these antibodies was similar to that observed in other marsupial and eutherian lymphoid tissues. This study provides further information on the commonality of lymphoid tissue structure in the two major groups of extant mammals, metatherians and eutherians. PMID:12363276

  5. Uterine molecular changes for non-invasive embryonic attachment in the marsupials Macropus eugenii (Macropodidae) and Trichosurus vulpecula (Phalangeridae).

    PubMed

    Laird, Melanie K; Dargan, Jessica R; Paterson, Lillian; Murphy, Christopher R; McAllan, Bronwyn M; Shaw, Geoff; Renfree, Marilyn B; Thompson, Michael B

    2017-10-01

    Pregnancy in mammals requires remodeling of the uterus to become receptive to the implanting embryo. Remarkably similar morphological changes to the uterine epithelium occur in both eutherian and marsupial mammals, irrespective of placental type. Nevertheless, molecular differences in uterine remodeling indicate that the marsupial uterus employs maternal defences, including molecular reinforcement of the uterine epithelium, to regulate embryonic invasion. Non-invasive (epitheliochorial) embryonic attachment in marsupials likely evolved secondarily from invasive attachment, so uterine defences in these species may prevent embryonic invasion. We tested this hypothesis by identifying localization patterns of Talin, a key basal anchoring molecule, in the uterine epithelium during pregnancy in the tammar wallaby (Macropus eugenii; Macropodidae) and the brush tail possum (Trichosurus vulpecula; Phalangeridae). Embryonic attachment is non-invasive in both species, yet Talin undergoes a clear distributional change during pregnancy in M. eugenii, including recruitment to the base of the uterine epithelium just before attachment, that closely resembles that of invasive implantation in the marsupial species Sminthopsis crassicaudata. Basal localization occurs throughout pregnancy in T. vulpecula, although, as for M. eugenii, this pattern is most specific prior to attachment. Such molecular reinforcement of the uterine epithelium for non-invasive embryonic attachment in marsupials supports the hypothesis that less-invasive and non-invasive embryonic attachment in marsupials may have evolved via accrual of maternal defences. Recruitment of basal molecules, including Talin, to the uterine epithelium may have played a key role in this transition. © 2017 Wiley Periodicals, Inc.

  6. Oral toxicity of p-aminopropiophenone to brushtail possums (Trichosurus vulpecula), dama wallabies (Macropus eugenii), and mallards (Anas platyrhynchos).

    PubMed

    Fisher, P; O'Connor, C E; Morriss, G

    2008-07-01

    Development of p-aminopropiophenone (PAPP) as a toxicant for pest predator management in New Zealand and Australia prompted investigation of its toxicity to potential nontarget species. Acute oral toxicity of PAPP in brushtail possums (Trichosurus vulpecula), dama wallabies (Macropus eugenii), and Mallards (Anas platyrhynchos) was estimated in pen trials, carried out between February 2000 and September 2001. The susceptibility of possums (LD50>or=500 mg kg(-1)) and wallabies (LD50 89 mg kg(-1)) to PAPP was low in comparison to noncarnivorous placental mammal species, but ducks (LD50 38 mg kg(-1)) were more susceptible than other bird species. These results suggest that the nontarget hazard to possums and wallabies from PAPP bait applied for pest predator control would be low. However, future development of PAPP as a vertebrate pest control agent should include rigorous assessments of the hazard posed by bait formulations to bird species and provision for delivery techniques that could mitigate exposure of nontarget birds.

  7. Effects of nutritional manipulation on body composition in the developing marsupial, Macropus eugenii.

    PubMed

    Hetz, Jennifer A; Menzies, Brandon R; Shaw, Geoffrey; Stefanidis, Aneta; Cowley, Michael A; Renfree, Marilyn B

    2016-06-15

    When 60-day-old tammar wallaby pouch young (Macropus eugenii) are fostered to mothers at 120 days of lactation, their growth, developmental rate and maturation of their GH/IGF axes are markedly accelerated. To determine the effect of fostering on energy intake, body composition and fat accretion, we first measured total body fat and lean mass in these young. Next, we mimicked the triglyceride oleic and palmitic acid composition of 120-day milk by supplementing 60 day young with these fatty acids and comparing their growth with that of growth accelerated young. There was no difference in the weight or growth axis maturation of supplemented young but there was significantly more body fat in these and in the growth-accelerated fostered young than in controls. We conclude that the accelerated growth and GH/IGF axis maturation observed previously in fostered young is most likely due to increased milk consumption and earlier access to specific nutrients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Mammary cell-activating factor regulates the hormone-independent transcription of the early lactation protein (ELP) gene in a marsupial.

    PubMed

    Pharo, Elizabeth A; Renfree, Marilyn B; Cane, Kylie N

    2016-11-15

    The regulation of the tammar wallaby (Macropus eugenii) early lactation protein (ELP) gene is complex. ELP is responsive to the lactogenic hormones; insulin (I), hydrocortisone (HC) and prolactin (PRL) in mammary gland explants but could not be induced with lactogenic hormones in tammar primary mammary gland cells, nor in KIM-2 conditionally immortalised murine mammary epithelial cells. Similarly, ELP promoter constructs transiently-transfected into human embryonic kidney (HEK293T) cells constitutively expressing the prolactin receptor (PRLR) and Signal Transducer and Activator of Transcription (STAT)5A were unresponsive to prolactin, unlike the rat and mouse β-casein (CSN2) promoter constructs. Identification of the minimal promoter required for the hormone-independent transcription of tammar ELP in HEK293Ts and comparative analysis of the proximal promoters of marsupial ELP and the orthologous eutherian colostrum trypsin inhibitor (CTI) gene suggests that mammary cell-activating factor (MAF), an E26 transformation-specific (ETS) factor, may bind to an AGGAAG motif and activate tammar ELP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. CD14 and TLR4 are expressed early in tammar (Macropus eugenii) neonate development.

    PubMed

    Daly, Kerry A; Lefévre, Christophe; Nicholas, Kevin; Deane, Elizabeth; Williamson, Peter

    2008-04-01

    Marsupials are born in a relatively underdeveloped state and develop during a period of intensive maturation in the postnatal period. During this period, the young marsupial lacks a competent immune system, but manages to survive despite the potential of exposure to environmental pathogens. Passive immune transfer via the milk is one well-recognised strategy to compensate the neonate, but there also may be innate immune mechanisms in place. In this study, CD14 and Toll-like receptor 4 (TLR4), integral molecular components of pathogen recognition, were identified and characterised for the first time in a marsupial, the tammar wallaby (Macropus eugenii). Functional motifs of tammar CD14 and the toll/interleukin receptor (TIR) domain of TLR4 were highly conserved. The lipopolysaccharide (LPS) binding residues and the TLR4 interaction site of CD14 were conserved in all marsupials. The TIR signalling domain had 84% identity within marsupials and 77% with eutherians. Stimulation of adult tammar leukocytes resulted in the induction of a biphasic pattern of CD14 and TLR4 expression, and coincided with increased production of the pro-inflammatory cytokine TNF-alpha. Differential patterns of expression of CD14 and TLR4 were observed in tammar pouch young early in development, suggesting that early maturation of the innate immune system in these animals may have developed as an immune survival strategy to protect the marsupial neonate from exposure to microbial pathogens.

  10. Resolving kangaroo phylogeny and overcoming retrotransposon ascertainment bias.

    PubMed

    Dodt, William G; Gallus, Susanne; Phillips, Matthew J; Nilsson, Maria A

    2017-12-01

    Reconstructing phylogeny from retrotransposon insertions is often limited by access to only a single reference genome, whereby support for clades that do not include the reference taxon cannot be directly observed. Here we have developed a new statistical framework that accounts for this ascertainment bias, allowing us to employ phylogenetically powerful retrotransposon markers to explore the radiation of the largest living marsupials, the kangaroos and wallabies of the genera Macropus and Wallabia. An exhaustive in silico screening of the tammar wallaby (Macropus eugenii) reference genome followed by experimental screening revealed 29 phylogenetically informative retrotransposon markers belonging to a family of endogenous retroviruses. We identified robust support for the enigmatic swamp wallaby (Wallabia bicolor) falling within a paraphyletic genus, Macropus. Our statistical approach provides a means to test for incomplete lineage sorting and introgression/hybridization in the presence of the ascertainment bias. Using retrotransposons as "molecular fossils", we reveal one of the most complex patterns of hemiplasy yet identified, during the rapid diversification of kangaroos and wallabies. Ancestral state reconstruction incorporating the new retrotransposon phylogenetic information reveals multiple independent ecological shifts among kangaroos into more open habitats, coinciding with the Pliocene onset of increased aridification in Australia from ~3.6 million years ago.

  11. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development

    PubMed Central

    2011-01-01

    Background We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. Results The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. Conclusions Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution. PMID:21854559

  12. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    PubMed

    Renfree, Marilyn B; Papenfuss, Anthony T; Deakin, Janine E; Lindsay, James; Heider, Thomas; Belov, Katherine; Rens, Willem; Waters, Paul D; Pharo, Elizabeth A; Shaw, Geoff; Wong, Emily S W; Lefèvre, Christophe M; Nicholas, Kevin R; Kuroki, Yoko; Wakefield, Matthew J; Zenger, Kyall R; Wang, Chenwei; Ferguson-Smith, Malcolm; Nicholas, Frank W; Hickford, Danielle; Yu, Hongshi; Short, Kirsty R; Siddle, Hannah V; Frankenberg, Stephen R; Chew, Keng Yih; Menzies, Brandon R; Stringer, Jessica M; Suzuki, Shunsuke; Hore, Timothy A; Delbridge, Margaret L; Patel, Hardip R; Mohammadi, Amir; Schneider, Nanette Y; Hu, Yanqiu; O'Hara, William; Al Nadaf, Shafagh; Wu, Chen; Feng, Zhi-Ping; Cocks, Benjamin G; Wang, Jianghui; Flicek, Paul; Searle, Stephen M J; Fairley, Susan; Beal, Kathryn; Herrero, Javier; Carone, Dawn M; Suzuki, Yutaka; Sugano, Sumio; Toyoda, Atsushi; Sakaki, Yoshiyuki; Kondo, Shinji; Nishida, Yuichiro; Tatsumoto, Shoji; Mandiou, Ion; Hsu, Arthur; McColl, Kaighin A; Lansdell, Benjamin; Weinstock, George; Kuczek, Elizabeth; McGrath, Annette; Wilson, Peter; Men, Artem; Hazar-Rethinam, Mehlika; Hall, Allison; Davis, John; Wood, David; Williams, Sarah; Sundaravadanam, Yogi; Muzny, Donna M; Jhangiani, Shalini N; Lewis, Lora R; Morgan, Margaret B; Okwuonu, Geoffrey O; Ruiz, San Juana; Santibanez, Jireh; Nazareth, Lynne; Cree, Andrew; Fowler, Gerald; Kovar, Christie L; Dinh, Huyen H; Joshi, Vandita; Jing, Chyn; Lara, Fremiet; Thornton, Rebecca; Chen, Lei; Deng, Jixin; Liu, Yue; Shen, Joshua Y; Song, Xing-Zhi; Edson, Janette; Troon, Carmen; Thomas, Daniel; Stephens, Amber; Yapa, Lankesha; Levchenko, Tanya; Gibbs, Richard A; Cooper, Desmond W; Speed, Terence P; Fujiyama, Asao; Graves, Jennifer A M; O'Neill, Rachel J; Pask, Andrew J; Forrest, Susan M; Worley, Kim C

    2011-08-29

    We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.

  13. Trophoblast specialisations during pregnancy in the tammar wallaby, Macropus eugenii: a morphological and lectin histochemical study.

    PubMed

    Jones, C J P; Skepper, J N; Renfree, M B; Aplin, J D

    2014-07-01

    The tammar wallaby has a short gestation (26.5 days) and vascular modifications to expedite transport during that brief pregnancy. Here we examine trophoblast structural attributes that would facilitate materno-fetal exchange. Four specimens of Macropus eugenii between days 23 and 26 gestation were examined using electron microscopy and 24 lectins to characterise glycosylated secretions and their internalisation. Two trophoblast phenotypes were found, flattened cells generally in contact with the underlying uterine epithelium and giant cells associated with histiotrophe. The latter appeared to penetrate uterine clefts, occasionally detach and become necrotic. Lectin histochemistry and ultrastructure indicated the presence of many lysosomes and residual bodies especially in trophoblast giant cells; these contained glycans, mainly apically, which were also detected in secretions and cell debris. Trophoblast basal membranes bore extensive filopodia. Giant cells were less common in vascular trilaminar areas and here the trophoblast barrier became thinner near term. Loss of Maackia amurensis agglutinin binding suggested cleavage of terminal sialic acid residues as an early post-internalisation event in the trophoblast. Lectin staining indicated degradation occurred in an apical-basal direction, and the heavily glycosylated basal membrane appeared specialised for transport out of the cell. Granules seen ultrastructurally and histochemically, particularly in giant trophoblast cells of the bilaminar area, suggest that internalised histiotrophe is broken down here and nutrients transferred to the embryo via the specialised basal plasma membrane. The trilaminar vascular area contained mostly flattened trophoblast cells, supporting the suggestion that gaseous exchange is its primary function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity.

    PubMed

    Wanyonyi, Stephen S; Sharp, Julie A; Khalil, Elie; Lefevre, Christophe; Nicholas, Kevin R

    2011-11-01

    Cathelicidins secreted in milk may be central to autocrine feedback in the mammary gland for optimal development in addition to conferring innate immunity to both the mammary gland and the neonate. This study exploits the unique reproductive strategy of the tammar wallaby (Macropus eugenii) model to analyse differential splicing of cathelicidin genes and to evaluate the bactericidal activity and effect of the protein on mammary epithelial cell proliferation. Two linear peptides, Con73 and Con218, derived from the heterogeneous carboxyl end of cathelicidin transcripts, MaeuCath1 and MaeuCath7 respectively, were evaluated for antimicrobial activity. Both Con73 and Con218 significantly inhibited the growth of Staphylococcus aureus, Pseudomonas aureginosa, Enterococcus faecalis and Salmonella enterica. In addition both MaeuCath1 and MaeuCath7 stimulated proliferation of primary tammar wallaby mammary epithelial cells (WallMEC). Lactation-phase specific alternate spliced transcripts were determined for MaeuCath1 showing utilisation of both antimicrobial and proliferative functions are required by the mammary gland and the suckled young. The study has shown for the first time that temporal regulation of milk cathelicidins may be crucial in antimicrobial protection of the mammary gland and suckled young and mammary cell proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Promoter-Specific Expression and Imprint Status of Marsupial IGF2

    PubMed Central

    Stringer, Jessica M.; Suzuki, Shunsuke; Pask, Andrew J.; Shaw, Geoff; Renfree, Marilyn B.

    2012-01-01

    In mice and humans, IGF2 has multiple promoters to maintain its complex tissue- and developmental stage-specific imprinting and expression. IGF2 is also imprinted in marsupials, but little is known about its promoter region. In this study, three IGF2 transcripts were isolated from placental and liver samples of the tammar wallaby, Macropus eugenii. Each transcript contained a unique 5' untranslated region, orthologous to the non-coding exons derived from promoters P1–P3 in the human and mouse IGF2 locus. The expression of tammar IGF2 was predominantly from the P2 promoter, similar to humans. Expression of IGF2 was higher in pouch young than in the adult and imprinting was highly tissue and developmental-stage specific. Interestingly, while IGF2 was expressed throughout the placenta, imprinting seemed to be restricted to the vascular, trilaminar region. In addition, IGF2 was monoallelically expressed in the adult mammary gland while in the liver it switched from monoalleleic expression in the pouch young to biallelic in the adult. These data suggest a complex mode of IGF2 regulation in marsupials as seen in eutherian mammals. The conservation of the IGF2 promoters suggests they originated before the divergence of marsupials and eutherians, and have been selectively maintained for at least 160 million years. PMID:22848567

  16. Recent Amplification of the Kangaroo Endogenous Retrovirus, KERV, Limited to the Centromere▿

    PubMed Central

    Ferreri, Gianni C.; Brown, Judith D.; Obergfell, Craig; Jue, Nathaniel; Finn, Caitlin E.; O'Neill, Michael J.; O'Neill, Rachel J.

    2011-01-01

    Mammalian retrotransposons, transposable elements that are processed through an RNA intermediate, are categorized as short interspersed elements (SINEs), long interspersed elements (LINEs), and long terminal repeat (LTR) retroelements, which include endogenous retroviruses. The ability of transposable elements to autonomously amplify led to their initial characterization as selfish or junk DNA; however, it is now known that they may acquire specific cellular functions in a genome and are implicated in host defense mechanisms as well as in genome evolution. Interactions between classes of transposable elements may exert a markedly different and potentially more significant effect on a genome than interactions between members of a single class of transposable elements. We examined the genomic structure and evolution of the kangaroo endogenous retrovirus (KERV) in the marsupial genus Macropus. The complete proviral structure of the kangaroo endogenous retrovirus, phylogenetic relationship among relative retroviruses, and expression of this virus in both Macropus rufogriseus and M. eugenii are presented for the first time. In addition, we show the relative copy number and distribution of the kangaroo endogenous retrovirus in the Macropus genus. Our data indicate that amplification of the kangaroo endogenous retrovirus occurred in a lineage-specific fashion, is restricted to the centromeres, and is not correlated with LINE depletion. Finally, analysis of KERV long terminal repeat sequences using massively parallel sequencing indicates that the recent amplification in M. rufogriseus is likely due to duplications and concerted evolution rather than a high number of independent insertion events. PMID:21389136

  17. Lysine and glutamate transport in the erythrocytes of common brushtail possum, Tammar Wallaby and eastern grey, kangaroo.

    PubMed

    Ogawa, E; Kuchel, P W; Agar, N S

    1998-04-01

    It was recently coincidentally discovered, using 1H NMR spectroscopy, that the erythrocytes of two species of Australian marsupials, Tammar Wallaby (Macropus eugenii) and Bettong (Bettongia penicillata), contain relatively high concentrations of the essential amino acid lysine (Agar NS, Rae CD, Chapman BE, Kuchel PW. Comp Biochem Physiol 1991;99B:575-97). Hence, in the present work the rates of transport of lysine into the erythrocytes from the Common Brushtail Possum (Dactylopsilia trivirgata) and Eastern Grey Kangaroo (Macropus giganteus) (which both have low lysine concentrations), and Tammar Wallaby were studied, to explore the mechanistic basis of this finding. The concentration-dependence of the uptake was studied with lysine alone and in the presence of arginine, which may be a competitor of the transport in some species. In relation to GSH metabolism, glutamate uptake was determined in the presence and absence of Na+. The data was analysed to yield estimates of the maximal velocity (Vmax) and the Km in each of the species. Erythrocytes from Tammar Wallaby lacked saturable lysine transport in contrast to the other two species. The glutamate uptake was normal in all three animals for adequate GSH biosynthesis.

  18. Inducing Sex Reversal in Marsupial Mammals.

    PubMed

    Chew, Keng Y; Renfree, Marilyn B

    2016-01-01

    Marsupials are born with undifferentiated gonads, and their reproductive organs differentiate consecutively, not simultaneously as in eutherian mammals. Thus, in the main marsupial model, the tammar wallaby, Macropus eugenii, the testis forms cords 2 days after birth, the ovary develops cortex and medulla about 8 days after birth, the Wolffian duct enlarges from day 10, the prostate begins to form prostatic buds about 25 days after birth, and the phallus does not become sexually dimorphic until after 50 days postpartum (pp). The brain responses also become sexually dimorphic relatively late in development, after day 25 pp. This relatively elongated period of differentiation has allowed experimental manipulation at each stage of development to induce often dramatic sex reversal of both internal and external genitalia. © 2016 S. Karger AG, Basel.

  19. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies.

    PubMed

    Pope, P B; Smith, W; Denman, S E; Tringe, S G; Barry, K; Hugenholtz, P; McSweeney, C S; McHardy, A C; Morrison, M

    2011-07-29

    The Tammar wallaby (Macropus eugenii) harbors unique gut bacteria and produces only one-fifth the amount of methane produced by ruminants per unit of digestible energy intake. We have isolated a dominant bacterial species (WG-1) from the wallaby microbiota affiliated with the family Succinivibrionaceae and implicated in lower methane emissions from starch-containing diets. This was achieved by using a partial reconstruction of the bacterium's metabolism from binned metagenomic data (nitrogen and carbohydrate utilization pathways and antibiotic resistance) to devise cultivation-based strategies that produced axenic WG-1 cultures. Pure-culture studies confirm that the bacterium is capnophilic and produces succinate, further explaining a microbiological basis for lower methane emissions from macropodids. This knowledge also provides new strategic targets for redirecting fermentation and reducing methane production in livestock.

  20. Histone underacetylation is an ancient component of mammalian X chromosome inactivation

    PubMed Central

    Wakefield, Matthew J.; Keohane, Ann M.; Turner, Bryan M.; Graves, Jennifer A. Marshall

    1997-01-01

    Underacetylation of histone H4 is thought to be involved in the molecular mechanism of mammalian X chromosome inactivation, which is an important model system for large-scale genetic control in eukaryotes. However, it has not been established whether histone underacetylation plays a critical role in the multistep inactivation pathway. Here we demonstrate differential histone H4 acetylation between the X chromosomes of a female marsupial, Macropus eugenii. Histone underacetylation is the only molecular aspect of X inactivation known to be shared by marsupial and eutherian mammals. Its strong evolutionary conservation implies that, unlike DNA methylation, histone underacetylation was a feature of dosage compensation in a common mammalian ancestor, and is therefore likely to play a central role in X chromosome inactivation in all mammals. PMID:9275180

  1. A second-generation anchored genetic linkage map of the tammar wallaby (Macropus eugenii)

    PubMed Central

    2011-01-01

    Background The tammar wallaby, Macropus eugenii, a small kangaroo used for decades for studies of reproduction and metabolism, is the model Australian marsupial for genome sequencing and genetic investigations. The production of a more comprehensive cytogenetically-anchored genetic linkage map will significantly contribute to the deciphering of the tammar wallaby genome. It has great value as a resource to identify novel genes and for comparative studies, and is vital for the ongoing genome sequence assembly and gene ordering in this species. Results A second-generation anchored tammar wallaby genetic linkage map has been constructed based on a total of 148 loci. The linkage map contains the original 64 loci included in the first-generation map, plus an additional 84 microsatellite loci that were chosen specifically to increase coverage and assist with the anchoring and orientation of linkage groups to chromosomes. These additional loci were derived from (a) sequenced BAC clones that had been previously mapped to tammar wallaby chromosomes by fluorescence in situ hybridization (FISH), (b) End sequence from BACs subsequently FISH-mapped to tammar wallaby chromosomes, and (c) tammar wallaby genes orthologous to opossum genes predicted to fill gaps in the tammar wallaby linkage map as well as three X-linked markers from a published study. Based on these 148 loci, eight linkage groups were formed. These linkage groups were assigned (via FISH-mapped markers) to all seven autosomes and the X chromosome. The sex-pooled map size is 1402.4 cM, which is estimated to provide 82.6% total coverage of the genome, with an average interval distance of 10.9 cM between adjacent markers. The overall ratio of female/male map length is 0.84, which is comparable to the ratio of 0.78 obtained for the first-generation map. Conclusions Construction of this second-generation genetic linkage map is a significant step towards complete coverage of the tammar wallaby genome and considerably extends that of the first-generation map. It will be a valuable resource for ongoing tammar wallaby genetic research and assembling the genome sequence. The sex-pooled map is available online at http://compldb.angis.org.au/. PMID:21854616

  2. A second-generation anchored genetic linkage map of the tammar wallaby (Macropus eugenii).

    PubMed

    Wang, Chenwei; Webley, Lee; Wei, Ke-jun; Wakefield, Matthew J; Patel, Hardip R; Deakin, Janine E; Alsop, Amber; Marshall Graves, Jennifer A; Cooper, Desmond W; Nicholas, Frank W; Zenger, Kyall R

    2011-08-19

    The tammar wallaby, Macropus eugenii, a small kangaroo used for decades for studies of reproduction and metabolism, is the model Australian marsupial for genome sequencing and genetic investigations. The production of a more comprehensive cytogenetically-anchored genetic linkage map will significantly contribute to the deciphering of the tammar wallaby genome. It has great value as a resource to identify novel genes and for comparative studies, and is vital for the ongoing genome sequence assembly and gene ordering in this species. A second-generation anchored tammar wallaby genetic linkage map has been constructed based on a total of 148 loci. The linkage map contains the original 64 loci included in the first-generation map, plus an additional 84 microsatellite loci that were chosen specifically to increase coverage and assist with the anchoring and orientation of linkage groups to chromosomes. These additional loci were derived from (a) sequenced BAC clones that had been previously mapped to tammar wallaby chromosomes by fluorescence in situ hybridization (FISH), (b) End sequence from BACs subsequently FISH-mapped to tammar wallaby chromosomes, and (c) tammar wallaby genes orthologous to opossum genes predicted to fill gaps in the tammar wallaby linkage map as well as three X-linked markers from a published study. Based on these 148 loci, eight linkage groups were formed. These linkage groups were assigned (via FISH-mapped markers) to all seven autosomes and the X chromosome. The sex-pooled map size is 1402.4 cM, which is estimated to provide 82.6% total coverage of the genome, with an average interval distance of 10.9 cM between adjacent markers. The overall ratio of female/male map length is 0.84, which is comparable to the ratio of 0.78 obtained for the first-generation map. Construction of this second-generation genetic linkage map is a significant step towards complete coverage of the tammar wallaby genome and considerably extends that of the first-generation map. It will be a valuable resource for ongoing tammar wallaby genetic research and assembling the genome sequence. The sex-pooled map is available online at http://compldb.angis.org.au/.

  3. Further characterisation of two Eimeria species (Eimeria quokka and Eimeria setonicis) in quokkas (Setonix brachyurus).

    PubMed

    Austen, J M; Friend, J A; Yang, R; Ryan, U M

    2014-03-01

    The identification and characterisation of novel Eimeria species has largely been based on sporulated oocyst and sporocyst morphology, the host species and the geographical range. Variation in the size and shape of Eimeria oocysts across their host range however, make the identification and characterisation of novel species using traditional methodologies alone problematic. The use of molecular markers and phylogenetic analysis has greatly advanced our ability to characterise Eimeria species and has recently been applied to understand evolutionary relationships among Eimeria species from Australian marsupials. In the present study, Eimeria species isolated from quokkas (Setonix brachyurus) captured from Two Peoples Bay, Bald Island and Rottnest Island, Western Australia, were morphologically identified as Eimeria quokka and Eimeria setonicis. Both Eimeria species were identified as being polymorphic in nature with regards to sporulated oocyst and sporocyst morphometrics. Phylogenetic analysis using 18S rRNA and COI (cytochrome c oxidase subunit 1) genes, grouped E. quokka and E. setonicis within the Eimeria marsupial clade together with Eimeria trichosuri from brushtail possums, Eimeria macropodis from tammar wallabies (Macropus eugenii) and several unidentified macropod Eimeria species from western grey kangaroos (Macropus fuliginosus). This study is the first to characterise E. quokka and E. setonicis by molecular analysis, enabling more extensive resolution of evolutionary relationships among marsupial-derived Eimeria species. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Seroepidemiology of Toxoplasma gondii in zoo animals in selected zoos in the midwestern United States.

    PubMed

    de Camps, Silvia; Dubey, J P; Saville, W J A

    2008-06-01

    Toxoplasma gondii infections in zoo animals are of interest because many captive animals die of clinical toxoplasmosis and because of the potential risk of exposure of children and elderly to T. gondii oocysts excreted by cats in the zoos. Seroprevalence of T. gondii antibodies in wild zoo felids, highly susceptible zoo species, and feral cats from 8 zoos of the midwestern United States was determined by using the modified agglutination test (MAT). A titer of 1:25 was considered indicative of T. gondii exposure. Among wild felids, antibodies to T. gondii were found in 6 (27.3%) of 22 cheetahs (Acynonyx jubatus jubatus), 2 of 4 African lynx (Caracal caracal), 1 of 7 clouded leopards (Neofelis nebulosa), 1 of 5 Pallas cats (Otocolobus manul), 12 (54.5%) of 22 African lions (Panthera leo), 1 of 1 jaguar (Panthera onca), 1 of 1 Amur leopard (Panthera pardus orientalis), 1 of 1 Persian leopard (Panthera pardus saxicolor), 5 (27.8%) of 18 Amur tigers (Panthera tigris altaica), 1 of 4 fishing cats (Prionailurus viverrinus), 3 of 6 pumas (Puma concolor), 2 of 2 Texas pumas (Puma concolor stanleyana), and 5 (35.7%) of 14 snow leopards (Uncia uncia). Antibodies were found in 10 of 34 feral domestic cats (Felis domesticus) trapped in 3 zoos. Toxoplasma gondii oocysts were not found in any of the 78 fecal samples from wild and domestic cats. Among the macropods, antibodies were detected in 1 of 3 Dama wallabies (Macropus eugenii), 1 of 1 western grey kangaroo (Macropus fuliginosus), 1 of 2 wallaroos (Macropus robustus), 6 of 8 Bennett's wallabies (Macropus rufogriseus), 21 (61.8%) of 34 red kangaroos (Macropus rufus), and 1 of 1 dusky pademelon (Thylogale brunii). Among prosimians, antibodies were detected in 1 of 3 blue-eyed black lemurs (Eulemur macaco flavifrons), 1 of 21 ring-tailed lemurs (Lemur catta), 2 of 9 red-ruffed lemurs (Varecia variegata rubra), and 2 of 4 black- and white-ruffed lemurs (Varecia variegata variegata). Among the avian species tested, 2 of 3 bald eagles (Haliaeetus leucocephalus) were seropositive. Among 7 possible risk factors, sex, freezing meat temperature (above -13 C vs. below -13 C), washing vegetables thoroughly, frequency of feral cat sightings on zoo grounds (occasionally vs. frequently), frequency of feral cat control programs, capability of feral cats to enter hay/grain barn, and type of animal exhibit, exhibiting animals in open enclosures was the only factor identified as a significant risk (OR 3.22, P = 0.00).

  5. Growth axis maturation is linked to nutrition, growth and developmental rate.

    PubMed

    Hetz, Jennifer A; Menzies, Brandon R; Shaw, Geoffrey; Rao, Alexandra; Clarke, Iain J; Renfree, Marilyn B

    2015-08-15

    Maturation of the mammalian growth axis is thought to be linked to the transition from fetal to post-natal life at birth. However, in an altricial marsupial, the tammar wallaby (Macropus eugenii), this process occurs many months after birth but at a time when the young is at a similar developmental stage to that of neonatal eutherian mammals. Here we manipulate growth rates and demonstrate in slow, normal and fast growing tammar young that nutrition and growth rate affect the time of maturation of the growth axis. Maturation of GH/IGF-I axis components occurred earlier in fast growing young, which had significantly increased hepatic GHR, IGF1 and IGFALS expression, plasma IGF-I concentrations, and significantly decreased plasma GH concentrations compared to age-matched normal young. These data support the hypothesis that the time of maturation of the growth axis depends on the growth rate and maturity of the young, which can be accelerated by changing their nutritional status. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Heterochrony in the regulation of the developing marsupial limb.

    PubMed

    Chew, Keng Yih; Shaw, Geoffrey; Yu, Hongshi; Pask, Andrew J; Renfree, Marilyn B

    2014-02-01

    At birth, marsupial neonates have precociously developed forelimbs. The development of the tammar wallaby (Macropus eugenii) hindlimbs lags significantly behind that of the forelimbs. This differs from the grey short-tailed opossum, Monodelphis domestica, which has relatively similar fore- and hindlimbs at birth. This study examines the expression of the key patterning genes TBX4, TBX5, PITX1, FGF8, and SHH in developing limb buds in the tammar wallaby. All genes examined were highly conserved with orthologues from opossum and mouse. TBX4 expression appeared earlier in development than in the mouse, but later than in the opossum. SHH expression is restricted to the zone of polarising activity, while TBX5 (forelimb) and PITX1 (hindlimb) showed diffuse mRNA expression. FGF8 is specifically localised to the apical ectodermal ridge, which is more prominent than in the opossum. The most marked divergence in limb size in marsupials occurs in the kangaroos and wallabies. The faster development of the fore limb compared to that of the hind limb correlates with the early timing of the expression of the key patterning genes in these limbs. Copyright © 2013 Wiley Periodicals, Inc.

  7. Rhythmic motor activity and interlimb co-ordination in the developing pouch young of a wallaby (Macropus eugenii).

    PubMed Central

    Ho, S M

    1997-01-01

    1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones. PMID:9218221

  8. Isolation, X location and activity of the marsupial homologue of SLC16A2, an XIST-flanking gene in eutherian mammals

    PubMed Central

    Wakefield, Matthew J.; Walcher, Cristina; Disteche, Christine M.; Whitehead, Siobhan; Ross, Mark; Marshall Graves, Jennifer A.

    2010-01-01

    X chromosome inactivation (XCI) achieves dosage compensation between males and females for most X-linked genes in eutherian mammals. It is a whole-chromosome effect under the control of the XIST locus, although some genes escape inactivation. Marsupial XCI differs from the eutherian process, implying fundamental changes in the XCI mechanism during the evolution of the two lineages. There is no direct evidence for the existence of a marsupial XIST homologue. XCI has been studied for only a handful of genes in any marsupial, and none in the model kangaroo Macropus eugenii (the tammar wallaby). We have therefore studied the sequence, location and activity of a gene SLC16A2 (solute carrier, family 16, class A, member 2) that flanks XIST on the human and mouse X chromosomes. A BAC clone containing the marsupial SLC16A2 was mapped to the end of the long arm of the tammar X chromosome and used in RNA FISH experiments to determine whether one or both loci are transcribed in female cells. In male and female cells, only a single signal was found, indicating that the marsupial SLC16A2 gene is silenced on the inactivated X. PMID:16235118

  9. Prostaglandin D2 Regulates SOX9 Nuclear Translocation during Gonadal Sex Determination in Tammar Wallaby, Macropus eugenii.

    PubMed

    Chen, Yu; Yu, Hongshi; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B

    2017-01-01

    Sex determination and sexual differentiation pathways are highly conserved between marsupials and eutherians. There are 2 different pathways of prostaglandin D2 (PGD2) synthesis: prostaglandin D synthase (PTGDS) and haematopoietic prostaglandin D synthase (HPGDS). PGD2 regulates the subcellular localization of SOX9 during gonadal sexual differentiation. To investigate the function of PGD2 in the tammar gonad, we cultured undifferentiated male gonads in the presence of the HPGDS inhibitor HQL-79 and female gonads with exogenous PGD2 to mimic activation of the PTGDS-PGD2 pathway. Tammar PTGDS and HPGDS have only 50% similarity with mouse and human orthologues, but functional domains are conserved. The expression of SOX9 was unchanged by the treatments in cultured gonads, but its subcellular localization was markedly affected. SOX9 remained cytoplasmic in the Sertoli cells of testes treated with HQL-79. Treated testes developed a thickened ovary-like surface epithelium. In contrast, SOX9 became nuclear in the granulosa cells of developing ovaries treated with PGD2 and the surface epithelium was thin, as in testes. These results demonstrate that PGD2 regulates the subcellular localization of SOX9 and subsequent gonadal development in the developing marsupial gonads, as it does in mice, and that it must have been an ancestral mechanism. © 2017 S. Karger AG, Basel.

  10. Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause.

    PubMed

    Fenelon, Jane C; Shaw, Geoff; O'Neill, Chris; Frankenberg, Stephen; Renfree, Marilyn B

    2014-01-01

    The control of reactivation from embryonic diapause in the tammar wallaby (Macropus eugenii) involves sequential activation of the corpus luteum, secretion of progesterone that stimulates endometrial secretion and subsequent changes in the uterine environment that activate the embryo. However, the precise signals between the endometrium and the blastocyst are currently unknown. In eutherians, both the phospholipid Paf and its receptor, platelet-activating factor receptor (PTAFR), are present in the embryo and the endometrium. In the tammar, endometrial Paf release in vitro increases around the time of the early progesterone pulse that occurs around the time of reactivation, but whether Paf can reactivate the blastocyst is unknown. We cloned and characterised the expression of PTAFR in the tammar embryo and endometrium at entry into embryonic diapause, during its maintenance and after reactivation. Tammar PTAFR sequence and protein were highly conserved with mammalian orthologues. In the endometrium, PTAFR was expressed at a constant level in the glandular epithelium across all stages and in the luminal epithelium during both diapause and reactivation. Thus, the presence of the receptor appears not to be a limiting factor for Paf actions in the endometrium. However, the low levels of PTAFR in the embryo during diapause, together with its up-regulation and subsequent internalisation at reactivation, supports earlier results suggesting that endometrial Paf could be involved in reactivation of the tammar blastocyst from embryonic diapause.

  11. A retrospective study of Babesia macropus associated with morbidity and mortality in eastern grey kangaroos (Macropus giganteus) and agile wallabies (Macropus agilis)

    PubMed Central

    Donahoe, Shannon L.; Peacock, Christopher S.; Choo, Ace Y.L.; Cook, Roger W.; O'Donoghue, Peter; Crameri, Sandra; Vogelnest, Larry; Gordon, Anita N.; Scott, Jenni L.; Rose, Karrie

    2015-01-01

    This is a retrospective study of 38 cases of infection by Babesia macropus, associated with a syndrome of anaemia and debility in hand-reared or free-ranging juvenile eastern grey kangaroos (Macropus giganteus) from coastal New South Wales and south-eastern Queensland between 1995 and 2013. Infection with B. macropus is recorded for the first time in agile wallabies (Macropus agilis) from far north Queensland. Animals in which B. macropus infection was considered to be the primary cause of morbidity had marked anaemia, lethargy and neurological signs, and often died. In these cases, parasitised erythrocytes were few or undetectable in peripheral blood samples but were sequestered in large numbers within small vessels of visceral organs, particularly in the kidney and brain, associated with distinctive clusters of extraerythrocytic organisms. Initial identification of this piroplasm in peripheral blood smears and in tissue impression smears and histological sections was confirmed using transmission electron microscopy and molecular analysis. Samples of kidney, brain or blood were tested using PCR and DNA sequencing of the 18S ribosomal RNA and heat shock protein 70 gene using primers specific for piroplasms. The piroplasm detected in these samples had 100% sequence identity in the 18S rRNA region with the recently described Babesia macropus in two eastern grey kangaroos from New South Wales and Queensland, and a high degree of similarity to an unnamed Babesia sp. recently detected in three woylies (Bettongia penicillata ogilbyi) in Western Australia. PMID:26106576

  12. A retrospective study of Babesia macropus associated with morbidity and mortality in eastern grey kangaroos (Macropus giganteus) and agile wallabies (Macropus agilis).

    PubMed

    Donahoe, Shannon L; Peacock, Christopher S; Choo, Ace Y L; Cook, Roger W; O'Donoghue, Peter; Crameri, Sandra; Vogelnest, Larry; Gordon, Anita N; Scott, Jenni L; Rose, Karrie

    2015-08-01

    This is a retrospective study of 38 cases of infection by Babesia macropus, associated with a syndrome of anaemia and debility in hand-reared or free-ranging juvenile eastern grey kangaroos (Macropus giganteus) from coastal New South Wales and south-eastern Queensland between 1995 and 2013. Infection with B. macropus is recorded for the first time in agile wallabies (Macropus agilis) from far north Queensland. Animals in which B. macropus infection was considered to be the primary cause of morbidity had marked anaemia, lethargy and neurological signs, and often died. In these cases, parasitised erythrocytes were few or undetectable in peripheral blood samples but were sequestered in large numbers within small vessels of visceral organs, particularly in the kidney and brain, associated with distinctive clusters of extraerythrocytic organisms. Initial identification of this piroplasm in peripheral blood smears and in tissue impression smears and histological sections was confirmed using transmission electron microscopy and molecular analysis. Samples of kidney, brain or blood were tested using PCR and DNA sequencing of the 18S ribosomal RNA and heat shock protein 70 gene using primers specific for piroplasms. The piroplasm detected in these samples had 100% sequence identity in the 18S rRNA region with the recently described Babesia macropus in two eastern grey kangaroos from New South Wales and Queensland, and a high degree of similarity to an unnamed Babesia sp. recently detected in three woylies (Bettongia penicillata ogilbyi) in Western Australia.

  13. Pepper Weevil (Coleoptera: Curculionidae) Preferences for Specific Pepper Cultivars, Plant Parts, Fruit Colors, Fruit Sizes, and Timing

    PubMed Central

    Seal, Dakshina R.; Martin, Cliff G.

    2016-01-01

    Peppers (Capsicum spp.) are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the most troublesome insect pest of peppers in the southern United States. It is therefore urgent to find different vulnerabilities of pepper cultivars, fruit and plants parts, fruit colors and sizes, and timing to infestation by A. eugenii. Also relevant is testing whether fruit length and infestation state affect fruit numbers, weights, and proportions of fruit that are infested. Counts of A. eugenii adults and marks from oviposition and feeding suggested that C. chinense Jacquin “Habanero” was least susceptible, and C. annuum L. cultivars “SY” and “SR” were most susceptible. Comparison of plant parts and fruit sizes revealed that A. eugenii preferred the peduncle, calyx, and top of pepper fruits over the middle, bottom, leaves, or remainder of flowers. Anthonomus eugenii does not discriminate between green or yellow fruit color nor vary diurnally in numbers. Based on adult counts, medium to extra-large fruits (≥1.5 cm long) attracted more weevils than small fruits (<1.5 cm). However based on proportions of fruit numbers or fruit weights that were infested, there were no differences between large and small fruits. Choice of pepper cultivar can thus be an important part of an IPM cultural control program designed to combat A. eugenii by reduced susceptibility or by synchronous fruit drop of infested fruits. Our results are potentially helpful in developing scouting programs including paying particular attention to the preferred locations of adults and their sites of feeding and oviposition on the fruit. The results also suggested the potential value of spraying when the fruits are still immature to prevent and control infestation. PMID:26959066

  14. The morphology and innervation of facial vibrissae in the tammar wallaby, Macropus eugenii.

    PubMed Central

    Marotte, L R; Rice, F L; Waite, P M

    1992-01-01

    The morphology of the vibrissal follicles on the mystacial pad of the tammar wallaby is similar to that seen in other species except that the follicles lack a ringwulst or ring sinus. Instead, the mesenchymal sheath is thickened around the central region of the hair shaft. The follicle is innervated by both deep and superficial vibrissal nerves. The deep nerve enters as 4-11 fascicles which can be in close proximity or widely distributed around the hair. C1 follicles received more myelinated nerve fibres (252 +/- 31) than the smaller C4 follicles (174 +/- 43). The deep vibrissal nerve supplies the thickened mesenchymal sheath, the narrow 'waist' region above and the majority of endings in the inner conical body (ICB), while the superficial nerves provide a sparse innervation to the ICB and rete ridge. Receptors present in the follicle were of 4 types: (1) Merkel cells, especially numerous in the outer root sheath of the 'waist' region and occasionally in the ICB and rete ridge; (2) and (3) lanceolate and lamellated endings parallel to the hair shaft in both the mesenchymal thickening and the 'waist' region where they were particularly dense; (4) free nerve endings in the mesenchymal thickening, 'waist' region and ICB. No corpuscular, bulbous or Ruffini endings were seen. The innervation of the intervibrissal fur was similar to that described in other species. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:1487434

  15. Sex-linked and autosomal microsatellites provide new insights into island populations of the tammar wallaby.

    PubMed

    MacDonald, A J; Fitzsimmons, N N; Chambers, B; Renfree, M B; Sarre, S D

    2014-03-01

    The emerging availability of microsatellite markers from mammalian sex chromosomes provides opportunities to investigate both male- and female-mediated gene flow in wild populations, identifying patterns not apparent from the analysis of autosomal markers alone. Tammar wallabies (Macropus eugenii), once spread over the southern mainland, have been isolated on several islands off the Western Australian and South Australian coastlines for between 10,000 and 13,000 years. Here, we combine analyses of autosomal, Y-linked and X-linked microsatellite loci to investigate genetic variation in populations of this species on two islands (Kangaroo Island, South Australia and Garden Island, Western Australia). All measures of diversity were higher for the larger Kangaroo Island population, in which genetic variation was lowest at Y-linked markers and highest at autosomal markers (θ=3.291, 1.208 and 0.627 for autosomal, X-linked and Y-linked data, respectively). Greater relatedness among females than males provides evidence for male-biased dispersal in this population, while sex-linked markers identified genetic lineages not apparent from autosomal data alone. Overall genetic diversity in the Garden Island population was low, especially on the Y chromosome where most males shared a common haplotype, and we observed high levels of inbreeding and relatedness among individuals. Our findings highlight the utility of this approach for management actions, such as the selection of animals for translocation or captive breeding, and the ecological insights that may be gained by combining analyses of microsatellite markers on sex chromosomes with those derived from autosomes.

  16. The extracellular matrix locally regulates asynchronous concurrent lactation in tammar wallaby (Macropus eugenii).

    PubMed

    Wanyonyi, Stephen S; Lefevre, Christophe; Sharp, Julie A; Nicholas, Kevin R

    2013-08-08

    Asynchronous concurrent lactation (ACL) is an extreme lactation strategy in macropod marsupials including the tammar wallaby, that may hold the key to understanding local control of mammary epithelial cell function. Marsupials have a short gestation and a long lactation consisting of three phases; P2A, P2B and P3, representing early, mid and late lactation respectively and characterised by profound changes in milk composition. A lactating tammar is able to concurrently produce phase 2A and 3 milk from adjacent glands in order to feed a young newborn and an older sibling at heel. Physiological effectors of ACL remain unknown and in this study the extracellular matrix (ECM) is investigated for its role in switching mammary phenotypes between phases of tammar wallaby lactation. Using the level of expression of the genes for the phase specific markers tELP, tWAP, and tLLP-B representing phases 2A, 2B and 3 respectively we show for the first time that tammar wallaby mammary epithelial cells (WallMECs) extracted from P2B acquire P3 phenotype when cultured on P3 ECM. Similarly P2A cells acquire P2B phenotype when cultured on P2B ECM. We further demonstrate that changes in phase phenotype correlate with phase-specific changes in ECM composition. This study shows that progressive changes in ECM composition in individual mammary glands provide a local regulatory mechanism for milk protein gene expression thereby enabling the mammary glands to lactate independently. Copyright © 2013. Published by Elsevier B.V.

  17. Actin localisation and the effect of cytochalasin D on the osmotic tolerance of cauda epididymidal kangaroo spermatozoa.

    PubMed

    McClean, R; MacCallum, C; Blyde, D; Holt, W; Johnston, S

    2006-01-01

    This study examined the hypothesis that filamentous actin associated with the complex cytoskeleton of the kangaroo sperm head and tail may be contributing to lack of plasma membrane plasticity and a consequent loss of membrane integrity during cryopreservation. In the first study, the distribution of G and F actin within Eastern Grey Kangaroo (EGK, Macropus giganteus) cauda epididymidal spermatozoa was successfully detected using DNAse-FITC and a monoclonal F-actin antibody (ab205, Abcam), respectively. G-actin staining was most intense in the acrosome but was also observed with less intensity over the nucleus and mid-piece. F-actin was located in the sperm nucleus but was not discernable in the acrosome or sperm tail. To investigate whether cytochalasin D (a known F-actin depolymerising agent) was capable of improving the osmotic tolerance of EGK cauda epididymal spermatozoa, sperm were incubated in hypo-osmotic media (61 and 104 mOsm) containing a range of cytochalasin D concentrations (0-200 microM). Cytochalasin D had no beneficial effect on plasma membrane integrity of sperm incubated in hypo-osmotic media. However, when EGK cauda epididymidal sperm were incubated in isosmotic media, there was a progressive loss of sperm motility with increasing cytochalasin D concentration. The results of this study indicated that the F-actin distribution in cauda epididymidal spermatozoa of the EGK was surprisingly different from that of the Tammar Wallaby (M. eugenii) and that cytochalasin-D does not appear to improve the tolerance of EGK cauda epididymidal sperm to osmotically induced injury.

  18. Extensive genetic differentiation detected within a model marsupial, the tammar wallaby (Notamacropus eugenii)

    PubMed Central

    Miller, Emily J.; Neaves, Linda E.; Zenger, Kyall R.; Herbert, Catherine A.

    2017-01-01

    The tammar wallaby (Notamacropus eugenii) is one of the most intensively studied of all macropodids and was the first Australasian marsupial to have its genome sequenced. However, comparatively little is known about genetic diversity and differentiation amongst the morphologically distinct allopatric populations of tammar wallabies found in Western (WA) and South Australia (SA). Here we compare autosomal and Y-linked microsatellite genotypes, as well as sequence data (~600 bp) from the mitochondrial DNA (mtDNA) control region (CR) in tammar wallabies from across its distribution. Levels of diversity at autosomal microsatellite loci were typically high in the WA mainland and Kangaroo Island (SA) populations (A = 8.9–10.6; He = 0.77–0.78) but significantly reduced in other endemic island populations (A = 3.8–4.1; He = 0.41–0.48). Autosomal and Y-linked microsatellite loci revealed a pattern of significant differentiation amongst populations, especially between SA and WA. The Kangaroo Island and introduced New Zealand population showed limited differentiation. Multiple divergent mtDNA CR haplotypes were identified within both SA and WA populations. The CR haplotypes of tammar wallabies from SA and WA show reciprocal monophyly and are highly divergent (14.5%), with levels of sequence divergence more typical of different species. Within WA tammar wallabies, island populations each have unique clusters of highly related CR haplotypes and each is most closely related to different WA mainland haplotypes. Y-linked microsatellite haplotypes show a similar pattern of divergence although levels of diversity are lower. In light of these differences, we suggest that two subspecies of tammar wallaby be recognized; Notamacropus eugenii eugenii in SA and N. eugenii derbianus in WA. The extensive neutral genetic diversity and inter-population differentiation identified within tammar wallabies should further increase the species value and usefulness as a model organism. PMID:28257440

  19. Contrasting activity patterns of two related octopus species, Octopus macropus and Octopus vulgaris.

    PubMed

    Meisel, Daniela V; Byrne, Ruth A; Kuba, Michael; Mather, Jennifer; Ploberger, Werner; Reschenhofer, Erhard

    2006-08-01

    Octopus macropus and Octopus vulgaris have overlapping habitats and are exposed to similar temporal changes. Whereas the former species is described as nocturnal in the field, there are conflicting reports about the activity time of the latter one. To compare activity patterns, the authors tested both species in the laboratory. Octopuses were exposed to a light-dark cycle and held under constant dim light for 7 days each. O. macropus showed nocturnal and light-cued activity. According to casual observations, O. vulgaris started out nocturnal but had switched to mostly diurnal when the experiment began. Individual variation of its activity was found. The different activity patterns of O. macropus and O. vulgaris might reflect their lifestyles, the latter species being more generalist. ((c) 2006 APA, all rights reserved).

  20. Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty

    PubMed Central

    Longo, Mark S; Carone, Dawn M; Green, Eric D; O'Neill, Michael J; O'Neill, Rachel J

    2009-01-01

    Background Large-scale genome rearrangements brought about by chromosome breaks underlie numerous inherited diseases, initiate or promote many cancers and are also associated with karyotype diversification during species evolution. Recent research has shown that these breakpoints are nonrandomly distributed throughout the mammalian genome and many, termed "evolutionary breakpoints" (EB), are specific genomic locations that are "reused" during karyotypic evolution. When the phylogenetic trajectory of orthologous chromosome segments is considered, many of these EB are coincident with ancient centromere activity as well as new centromere formation. While EB have been characterized as repeat-rich regions, it has not been determined whether specific sequences have been retained during evolution that would indicate previous centromere activity or a propensity for new centromere formation. Likewise, the conservation of specific sequence motifs or classes at EBs among divergent mammalian taxa has not been determined. Results To define conserved sequence features of EBs associated with centromere evolution, we performed comparative sequence analysis of more than 4.8 Mb within the tammar wallaby, Macropus eugenii, derived from centromeric regions (CEN), euchromatic regions (EU), and an evolutionary breakpoint (EB) that has undergone convergent breakpoint reuse and past centromere activity in marsupials. We found a dramatic enrichment for long interspersed nucleotide elements (LINE1s) and endogenous retroviruses (ERVs) and a depletion of short interspersed nucleotide elements (SINEs) shared between CEN and EBs. We analyzed the orthologous human EB (14q32.33), known to be associated with translocations in many cancers including multiple myelomas and plasma cell leukemias, and found a conserved distribution of similar repetitive elements. Conclusion Our data indicate that EBs tracked within the class Mammalia harbor sequence features retained since the divergence of marsupials and eutherians that may have predisposed these genomic regions to large-scale chromosomal instability. PMID:19630942

  1. Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic

    PubMed Central

    2010-01-01

    Background X chromosome inactivation is a spectacular example of epigenetic silencing. In order to deduce how this complex system evolved, we examined X inactivation in a model marsupial, the tammar wallaby (Macropus eugenii). In marsupials, X inactivation is known to be paternal, incomplete and tissue-specific, and occurs in the absence of an XIST orthologue. Results We examined expression of X-borne genes using quantitative PCR, revealing a range of dosage compensation for different loci. To assess the frequency of 1X- or 2X-active fibroblasts, we investigated expression of 32 X-borne genes at the cellular level using RNA-FISH. In female fibroblasts, two-color RNA-FISH showed that genes were coordinately expressed from the same X (active X) in nuclei in which both loci were inactivated. However, loci on the other X escape inactivation independently, with each locus showing a characteristic frequency of 1X-active and 2X-active nuclei, equivalent to stochastic escape. We constructed an activity map of the tammar wallaby inactive X chromosome, which identified no relationship between gene location and extent of inactivation, nor any correlation with the presence or absence of a Y-borne paralog. Conclusions In the tammar wallaby, one X (presumed to be maternal) is expressed in all cells, but genes on the other (paternal) X escape inactivation independently and at characteristic frequencies. The paternal and incomplete X chromosome inactivation in marsupials, with stochastic escape, appears to be quite distinct from the X chromosome inactivation process in eutherians. We find no evidence for a polar spread of inactivation from an X inactivation center. PMID:21182760

  2. Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal.

    PubMed

    Dimovski, Alicia M; Robert, Kylie A

    2018-05-02

    The focus of sustainable lighting tends to be on reduced CO 2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m 2 ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m 2 ), and no lighting (irradiance from sky glow < 0.37 × 10 -3 W/m 2 ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. © 2018 Wiley Periodicals, Inc.

  3. Single nucleotide primer extension (SNuPE) analysis of the G6PD gene in somatic cells and oocytes of a kangaroo (Macropus robustus).

    PubMed

    Watson, D; Jacombs, A S; Loebel, D A; Robinson, E S; Johnston, P G

    2000-06-01

    cDNA sequence analysis of the X-linked glucose-6-phosphate dehydrogenase (G6PD) gene has shown a base difference between two subspecies of the kangaroo, Macropus robustus robustus (wallaroo) and M. r. erubescens (euro). A thymine residue in the wallaroo at position 358 in exon 5 has been replaced by a cytosine residue in the euro, which accounts for the previously reported electrophoretic difference between the two subspecies. This base difference allowed use of the Single Nucleotide Primer Extension (SNuPE) technique to study allele-specific expression of G6PD at the transcriptional level. We began by examining G6PD expression in somatic cells and observed complete paternal X inactivation in all somatic tissues of adult female heterozygotes, whereas we found partial paternal allele activity in cultured fibroblasts, thus confirming previous allozyme electrophoresis studies. In late dictyate oocytes from an adult heterozygote, the assay also detected expression of both the maternal and paternal alleles at the G6PD locus, with the maternal allele showing preferential expression. Thus reactivation of the inactive paternally derived X chromosome occurs during oogenesis in M. robustus, although the exact timing of reactivation remains to be determined.

  4. Esophageal diverticula in Parma wallabies (Macropus parma).

    PubMed

    Okeson, Danelle M; Esterline, Meredith L; Coke, Rob L

    2009-03-01

    Four adult, wild caught Parma wallabies (Macropus parma) presented with intermittent, postprandial, midcervical swellings. Esophageal diverticula were discovered in the four animals. One of two wallabies was managed successfully with surgery. A third animal died of other causes. The fourth animal died with possible complications from the diverticulum. This is the first published report of esophageal diverticula in macropods.

  5. Fatal toxoplasmosis associated with an atypical Toxoplasma gondii strain in a Bennett’s wallaby (Macropus rufogriseus) in Spain

    USDA-ARS?s Scientific Manuscript database

    Toxoplasmosis is often fatal in captive wallabies, but the causes of this high susceptibility are not well understood. Here, we report fatal toxoplasmosis in a Bennet´s wallaby (Macropus rufogriseus) due to an atypical T. gondii strain for the first time in Europe. The wallaby was one of a colony of...

  6. Magnetic resonance imaging findings in a red kangaroo (Macropus rufus) with otitis.

    PubMed

    Okeson, Danelle M; Coke, Rob L; Kochunov, Peter; Davis, M Duff

    2008-12-01

    Magnetic resonance imaging (MRI) was performed on an adult, male Red kangaroo (Macropus rufus) with a history of nonspecific neurologic signs and acute discharge from the left ear. MRI revealed findings consistent with otitis and possible osteomyelitis of the temporal and mastoid bones. To the authors' knowledge, this is the first report of otitis and MRI findings in a kangaroo.

  7. CLINICOPATHOLOGIC CORRELATES OF FASCIOLIASIS IN TWO EASTERN GREY KANGAROOS (MACROPUS GIGANTEUS).

    PubMed

    Portas, Timothy J; Taylor, David

    2015-12-01

    Infection with the introduced trematode Fasciola hepatica was associated with anemia, mild to moderate azotemia, hypoalbuminemia, and elevated liver enzymes and creatine kinase values in two free-ranging eastern grey kangaroos (Macropus giganteus). Both kangaroos were euthanized because of the severity of clinical signs associated with infection. Histopathologic changes included severe cholangiohepatitis, biliary hyperplasia, and fibrosis. Hepatic, splenic, and intestinal amyloidosis was present in one kangaroo and hepatic abscessation in the other; neither histologic change has been reported in macropodids with fascioliasis previously.

  8. Ventilatory accommodation of oxygen demand and respiratory water loss in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus).

    PubMed

    Dawson, T J; Munn, A J; Blaney, C E; Krockenberger, A; Maloney, S K

    2000-01-01

    We studied ventilation in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus), respectively, within the range of ambient temperatures (T(a)) from -5 degrees to 45 degrees C. At thermoneutral temperatures (Ta=25 degrees C), there were no differences between the species in respiratory frequency, tidal volume, total ventilation, or oxygen extraction. The ventilatory patterns of the kangaroos were markedly different from those predicted from the allometric equation derived for placentals. The kangaroos had low respiratory frequencies and higher tidal volumes, even when adjustment was made for their lower basal metabolism. At Ta>25 degrees C, ventilation was increased in the kangaroos to facilitate respiratory water loss, with percent oxygen extraction being markedly lowered. Ventilation was via the nares; the mouth was closed. Differences in ventilation between the two species occurred at higher temperatures, and at 45 degrees C were associated with differences in respiratory evaporative heat loss, with that of M. giganteus being higher. Panting in kangaroos occurred as a graded increase in respiratory frequency, during which tidal volume was lowered. When panting, the desert red kangaroo had larger tidal volumes and lower respiratory frequencies at equivalent T(a) than the eastern grey kangaroo, which generally inhabits mesic forests. The inference made from this pattern is that the red kangaroo has the potential to increase respiratory evaporative heat loss to a greater level.

  9. HOXA13 and HOXD13 expression during development of the syndactylous digits in the marsupial Macropus eugenii

    PubMed Central

    2012-01-01

    Background Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby. Results We describe the development of the tammar limbs at key stages before birth. There was marked heterochrony and the hindlimb developed more slowly than the forelimb. Both tammar HOXA13 and HOXD13 have two exons as in humans, mice and chickens. HOXA13 had an early and distal mRNA distribution in the tammar limb bud as in the mouse, but forelimb expression preceded that in the hindlimb. HOXD13 mRNA was expressed earlier in the forelimb than the hindlimb and was predominantly detected in the interdigital tissues of the forelimb. In contrast, the hindlimb had a more restricted expression pattern that appeared to be expressed at discrete points at both posterior and anterior margins of the limb bud, and was unlike expression seen in the mouse and the chicken. Conclusions This is the first examination of HOXA and HOXD gene expression in a marsupial. The gene structure and predicted proteins were highly conserved with their eutherian orthologues. Interestingly, despite the morphological differences in hindlimb patterning, there were no modifications to the polyalanine tract of either HOXA13 or HOXD13 when compared to those of the mouse and bat but there was a marked difference between the tammar and the other mammals in the region of the first polyserine tract of HOXD13. There were also altered expression domains for both genes in the developing tammar limbs compared to the chicken and mouse. Together these findings suggest that the timing of HOX gene expression may contribute to the heterochrony of the forelimb and hindlimb and that alteration to HOX domains may influence phenotypic differences that lead to the development of marsupial syndactylous digits. PMID:22235805

  10. Chemical characterization of milk oligosaccharides of the eastern quoll (Dasyurus viverrinus).

    PubMed

    Urashima, Tadasu; Sun, Yiliang; Fukuda, Kenji; Hirayama, Kentaro; Taufik, Epi; Nakamura, Tadashi; Saito, Tadao; Merchant, Jim; Green, Brian; Messer, Michael

    2015-08-01

    Structural characterizations of marsupial milk oligosaccharides have been performed in four species to date: the tammar wallaby (Macropus eugenii), the red kangaroo (Macropus rufus), the koala (Phascolarctos cinereus) and the common brushtail possum (Trichosurus vulpecula). To clarify the homology and heterogeneity of milk oligosaccharides among marsupials, the oligosaccharides in the carbohydrate fraction of eastern quoll milk were characterized in this study. Neutral and acidic oligosaccharides were separated and characterized by (1)H-nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The structures of the neutral oligosaccharides were Gal(β1-3)Gal(β1-4)Glc (3'-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3",3'-digalactosyllactose), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I), Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose I), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)Gal(β1-4)Glc (galactosyl lacto-N-novopentaose II), Gal(β1-3)[Gal(β1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose III) and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novooctaose). The structures of the acidic oligosaccharides detected are Neu5Ac(α2-3)Gal(β1-4)Glc (3'-sialyllactose), Gal(β1-3)(O-3-sulfate)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate a), Gal(β1-3)[Gal(β1-4)(O-3-sulfate)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate b), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose c), Neu5Ac(α2-3) Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc with an α(2-3) Neu5Ac linked to β(1-4)Gal residue of either branch of Gal(β1-4)GlcNAc(β1-6) units. The most predominant oligosaccharides in the carbohydrate fraction of mid-lactation milk were found to be lacto-N-novopentaose I and lacto-N-novooctaose, i.e., branched oligosaccharides that contain N-acetylglucosamine. The predominance of these branched oligosaccharides, rather than of a series of linear β(1-3) linked galacto oligosaccharides, appears to be the main feature of the eastern quoll milk oligosaccharides that differentiates them from those of the tammar wallaby and the brushtail possum.

  11. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    NASA Astrophysics Data System (ADS)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  12. Calcium carbonate obstructive urolithiasis in a red kangaroo (Macropus rufus).

    PubMed

    Lindemann, Dana M; Gamble, Kathryn C; Corner, Sarah

    2013-03-01

    A 6-yr-old male red kangaroo (Macropus rufus) presented for a history of inappetance, abnormal behavior, and unconfirmed elimination for 6 hr prior to presentation. Based on abdominal ultrasound, abdominocentesis, and cystocentesis, a presumptive diagnosis of urinary tract obstruction with uroabdomen and hydronephrosis was reached. Abdominal radiographs did not assist in reaching an antemortem diagnosis. Postmortem examination confirmed a urinary bladder rupture secondary to urethral obstruction by a single urethrolith. Bilateral hydronephrosis and hydroureter were identified and determined to be a result of bilateral ureteroliths. Urolith analysis revealed a composition of 100% calcium carbonate. A dietary analysis was performed, implicating an increased Ca:P ratio from a food preparation miscommunication as a contributing factor. Appropriate husbandry changes were made, and mob surveillance procedures were performed, which resolved the urolithiasis risk for the remaining five animals.

  13. Shedding Light on the Microbial Community of the Macropod Foregut Using 454-Amplicon Pyrosequencing

    PubMed Central

    Gulino, Lisa-Maree; Ouwerkerk, Diane; Kang, Alicia Y. H.; Maguire, Anita J.; Kienzle, Marco; Klieve, Athol V.

    2013-01-01

    Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as ‘shared’ OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry. PMID:23626688

  14. Shedding light on the microbial community of the macropod foregut using 454-amplicon pyrosequencing.

    PubMed

    Gulino, Lisa-Maree; Ouwerkerk, Diane; Kang, Alicia Y H; Maguire, Anita J; Kienzle, Marco; Klieve, Athol V

    2013-01-01

    Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as 'shared' OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry.

  15. Reproductive implications of exposure to Toxoplasma gondii and Neospora caninum in western grey kangaroos (Macropus fuliginosus ocydromus).

    PubMed

    Mayberry, Chris; Maloney, Shane K; Mitchell, Jeff; Mawson, Peter R; Bencini, Roberta

    2014-04-01

    Australian marsupials are thought to be particularly vulnerable to pathologic impacts of Toxoplasma gondii, and they may be similarly affected by Neospora caninum. Pathology due to either organism could be expressed as reduced female reproductive performance. We studied adult female western grey kangaroos (Macropus fuliginosus ocydromus) from suburban Perth, Western Australia, between May 2006 and October 2008. We used indirect fluorescent antibody tests to look for evidence of exposure to T. gondii and N. caninum in M. fuliginosus ocydromus and tested the association between their reproductive performance and a positive test result. Although 20% of plasma samples collected from 102 female kangaroos were positive for T. gondii and 18% were positive for N. caninum, we found no association between positive results and reproductive performance. Further study will be required to clarify if, and under what circumstances, T. gondii and N. caninum are pathogenic to macropod marsupials.

  16. The seroprevalence and factors associated with Ross river virus infection in western grey kangaroos (Macropus fuliginosus) in Western Australia.

    PubMed

    Potter, Abbey; Johansen, Cheryl A; Fenwick, Stan; Reid, Simon A; Lindsay, Michael D A

    2014-10-01

    A serosurvey was undertaken in 15 locations in the midwest to southwest of Western Australia (WA) to investigate the seroprevalence of Ross River virus (RRV) neutralizing antibodies and factors associated with infection in western grey kangaroos (Macropus fuliginosus). The estimated seroprevalence in 2632 kangaroo samples, using a serum neutralization test, was 43.9% (95% CI 42.0, 45.8). Location was significantly associated with seroprevalence (p<0.001). There was a strong positive correlation between seroprevalence and the average log-transformed neutralizing antibody titer (r=0.98, p<0.001). The seroprevalence among adult kangaroos was significantly higher than in subadult kangaroos (p<0.05). No significant association was observed between seroprevalence and the sex of kangaroos (p>0.05). The results of this study indicate that kangaroos in WA are regularly infected with RRV and may be involved in the maintenance and transmission of RRV.

  17. Comparative NMR studies of diffusional water permeability of red blood cells from different species: XV. Agile wallaby (Macropus agilis), red-necked wallaby (Macropus rufogriseus) and Goodfellow's tree kangaroo (Dendrolagus goodfellowi).

    PubMed

    Benga, Gheorghe; Chapman, Bogdan E; Kuchel, Philip W

    2009-09-01

    The water diffusional permeability (P(d)) of red blood cells (RBC) from agile wallaby (Macropus agilis), red-necked wallaby (Macropus rufogriseus) and Goodfellow's tree kangaroo (Dendrolagus goodfellowi) was monitored using an Mn(2+)-doping (1)H nuclear magnetic resonance (NMR) technique at 400 MHz. The P(d) (cm s(-1)) values of agile wallaby RBCs were 7.5 x 10(-3) at 25 degrees C, 9 x 10(-3) at 30 degrees C, 11 x 10(-3) at 37 degrees C, and 13 x 10(-3) at 42 degrees C. The inhibitory effect of a mercury-containing sulfhydryl (SH)-modifying reagent p-chloromercuribenzoate (PCMB) on agile wallaby RBCs was investigated. The maximal inhibition was reached in 90 min at 37 degrees C with 2 mmol L(-1) PCMB. The value of maximal inhibition was approximately 63% when measured at 25 degrees C, approximately 52% at 37 degrees C and approximately 45% at 42 degrees C. The lowest value of P(d) (corresponding to the basal permeability to water) was approximately 3 x 10(-3) cm s(-1) at 25 degrees C. For the RBCs from red-necked wallaby (M. rufogriseus) the values of P(d) (cm s(-1)) were 7 x 10(-3) at 25 degrees C, 8 x 10(-3) at 30 degrees C, 10 x 10(-3) at 37 degrees C, and 12 x 10(-3) at 42 degrees C. Higher values of P(d) (cm s(-1)) were found for the RBCs from Goodfellow's tree kangaroo (D. goodfellowi): 8.5 x 10(-3) at 25 degrees C, 10 x 10(-3) at 30 degrees C, 13 x 10(-3) at 37 degrees C, and 15 x 10(-3) at 42 degrees C. The mean values of the activation energy of water diffusion (E(a,d)) were approximately 25 kJ mol(-1) for RBCs from the agile wallaby and tree kangaroo, respectively, and approximately 23 kJ mol(-1) for RBCs from red-necked wallaby. The values of E(a,d) increased after exposure of agile wallaby RBCs to PCMB, reaching a value of approximately 43-46 kJ mol(-1) when the maximal inhibition of P(d) was achieved.

  18. Enhancing genome assemblies by integrating non-sequence based data

    PubMed Central

    2011-01-01

    Introduction Many genome projects were underway before the advent of high-throughput sequencing and have thus been supported by a wealth of genome information from other technologies. Such information frequently takes the form of linkage and physical maps, both of which can provide a substantial amount of data useful in de novo sequencing projects. Furthermore, the recent abundance of genome resources enables the use of conserved synteny maps identified in related species to further enhance genome assemblies. Methods The tammar wallaby (Macropus eugenii) is a model marsupial mammal with a low coverage genome. However, we have access to extensive comparative maps containing over 14,000 markers constructed through the physical mapping of conserved loci, chromosome painting and comprehensive linkage maps. Using a custom Bioperl pipeline, information from the maps was aligned to assembled tammar wallaby contigs using BLAT. This data was used to construct pseudo paired-end libraries with intervals ranging from 5-10 MB. We then used Bambus (a program designed to scaffold eukaryotic genomes by ordering and orienting contigs through the use of paired-end data) to scaffold our libraries. To determine how map data compares to sequence based approaches to enhance assemblies, we repeated the experiment using a 0.5× coverage of unique reads from 4 KB and 8 KB Illumina paired-end libraries. Finally, we combined both the sequence and non-sequence-based data to determine how a combined approach could further enhance the quality of the low coverage de novo reconstruction of the tammar wallaby genome. Results Using the map data alone, we were able order 2.2% of the initial contigs into scaffolds, and increase the N50 scaffold size to 39 KB (36 KB in the original assembly). Using only the 0.5× paired-end sequence based data, 53% of the initial contigs were assigned to scaffolds. Combining both data sets resulted in a further 2% increase in the number of initial contigs integrated into a scaffold (55% total) but a 35% increase in N50 scaffold size over the use of sequence-based data alone. Conclusions We provide a relatively simple pipeline utilizing existing bioinformatics tools to integrate map data into a genome assembly which is available at http://www.mcb.uconn.edu/fac.php?name=paska. While the map data only contributed minimally to assigning the initial contigs to scaffolds in the new assembly, it greatly increased the N50 size. This process added structure to our low coverage assembly, greatly increasing its utility in further analyses. PMID:21554765

  19. Enhancing genome assemblies by integrating non-sequence based data.

    PubMed

    Heider, Thomas N; Lindsay, James; Wang, Chenwei; O'Neill, Rachel J; Pask, Andrew J

    2011-05-28

    Many genome projects were underway before the advent of high-throughput sequencing and have thus been supported by a wealth of genome information from other technologies. Such information frequently takes the form of linkage and physical maps, both of which can provide a substantial amount of data useful in de novo sequencing projects. Furthermore, the recent abundance of genome resources enables the use of conserved synteny maps identified in related species to further enhance genome assemblies. The tammar wallaby (Macropus eugenii) is a model marsupial mammal with a low coverage genome. However, we have access to extensive comparative maps containing over 14,000 markers constructed through the physical mapping of conserved loci, chromosome painting and comprehensive linkage maps. Using a custom Bioperl pipeline, information from the maps was aligned to assembled tammar wallaby contigs using BLAT. This data was used to construct pseudo paired-end libraries with intervals ranging from 5-10 MB. We then used Bambus (a program designed to scaffold eukaryotic genomes by ordering and orienting contigs through the use of paired-end data) to scaffold our libraries. To determine how map data compares to sequence based approaches to enhance assemblies, we repeated the experiment using a 0.5× coverage of unique reads from 4 KB and 8 KB Illumina paired-end libraries. Finally, we combined both the sequence and non-sequence-based data to determine how a combined approach could further enhance the quality of the low coverage de novo reconstruction of the tammar wallaby genome. Using the map data alone, we were able order 2.2% of the initial contigs into scaffolds, and increase the N50 scaffold size to 39 KB (36 KB in the original assembly). Using only the 0.5× paired-end sequence based data, 53% of the initial contigs were assigned to scaffolds. Combining both data sets resulted in a further 2% increase in the number of initial contigs integrated into a scaffold (55% total) but a 35% increase in N50 scaffold size over the use of sequence-based data alone. We provide a relatively simple pipeline utilizing existing bioinformatics tools to integrate map data into a genome assembly which is available at http://www.mcb.uconn.edu/fac.php?name=paska. While the map data only contributed minimally to assigning the initial contigs to scaffolds in the new assembly, it greatly increased the N50 size. This process added structure to our low coverage assembly, greatly increasing its utility in further analyses.

  20. Molecular evolution of a novel marsupial S100 protein (S100A19) which is expressed at specific stages of mammary gland and gut development.

    PubMed

    Kwek, Joly H L; Wynne, Alicia; Lefèvre, Christophe; Familari, Mary; Nicholas, Kevin R; Sharp, Julie A

    2013-10-01

    S100 proteins are calcium-binding proteins involved in controlling diverse intracellular and extracellular processes such as cell growth, differentiation, and antimicrobial function. We recently identified a S100-like cDNA from the tammar wallaby (Macropus eugenii) stomach. Phylogentic analysis shows wallaby S100A19 forms a new clade with other marsupial and monotreme S100A19, while this group shows similarity to eutherian S100A7 and S100A15 genes. This is also supported by amino acid and domain comparisons. We show S100A19 is developmentally-regulated in the tammar wallaby gut by demonstrating the gene is expressed in the forestomach of young animals at a time when the diet consists of only milk, but is absent in older animals when the diet is supplemented with herbage. During this transition the forestomach phenotype changes from a gastric stomach into a fermentation sac and intestinal flora changes with diet. We also show that S100A19 is expressed in the mammary gland of the tammar wallaby only during specific stages of lactation; the gene is up-regulated during pregnancy and involution and not expressed during the milk production phase of lactation. Comparison of the tammar wallaby S100A19 protein sequence with S100 protein sequences from eutherian, monotreme and other marsupial species suggest the marsupial S100A19 has two functional EF hand domains, and an extended His tail. An evolutionary analysis of S100 family proteins was carried out to gain a better understanding of the relationship between the S100 family member functions. We propose that S100A19 gene/protein is the ancestor of the eutherian S100A7 gene/protein, which has subsequently modified its original function in eutherians. This modified function may have arisen due to differentiation of evolutionary pressures placed on gut and mammary gland developmental during mammal evolution. The highly regulated differential expression patterns of S100A19 in the tammar wallaby suggests that S100A19 may play a role in gut development, which differs between metatherians and eutherians, and/or include a potential antibacterial role in order to establish the correct flora and protect against spiral bacteria in the immature forestomach. In the mammary gland it may protect the tissue from infection at times of vulnerability during the lactation cycle. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  1. Water use and the thermoregulatory behaviour of kangaroos in arid regions: insights into the colonisation of arid rangelands in Australia by the Eastern Grey Kangaroo (Macropus giganteus).

    PubMed

    Dawson, Terence J; McTavish, Kirsten J; Munn, Adam J; Holloway, Joanne

    2006-01-01

    The Eastern Grey Kangaroo (Macropus giganteus) occurs mostly in the wetter regions of eastern Australia. However, in the past 30-40 years it has moved into more arid regions (rainfall < 250 mm), thus increasing its overlap zone with the xeric adapted Red Kangaroo (Macropus rufus). An increased access to water (supplied for domestic stock) may explain this range extension, but changes in the availability of preferred feed could also be involved. The water use, drinking patterns and thermoregulatory behaviour of these two species of kangaroo have been examined in a semi-free range study, during summer at an arid rangeland site. Foraging was largely nocturnal in both species and during the day they behaved to reduce heat loads. This was especially so for M. giganteus, which showed greater shade seeking. However, it still used more water (72 +/- 2.6 mL kg(-1) day(-1), mean +/- SE) than M. rufus (56 +/- 7.6 mL kg(-1) day(-1)) and drank twice as frequently. Although M. giganteus produced a less concentrated urine (1422 +/- 36 mosmol kg(-1)) than M. rufus (1843 +/- 28 mosmol kg(-1)), kidney physiology did not explain all of the differences in water metabolism between the species. Water from the feed and faecal water retention also appear to be involved. Broadly, a better access to reliable water and the utilisation of mesic microhabitats has enabled M. giganteus to make inroads into the changing rangelands of eastern Australia. However, changes in the vegetation, due to stock grazing, have also favoured M. giganteus, which is a grass eating specialist.

  2. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Factors Affecting Pheromone Production by the Pepper Weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae) and Collection Efficiency

    PubMed Central

    Eller, Fred J.; Palmquist, Debra E.

    2014-01-01

    Several factors affecting pheromone production by male pepper weevils, Anthonomus eugenii Cano (Coleoptera: Curculionidae) as well as collection efficiency were investigated. Factors studied included: porous polymer adsorbents (Tenax versus Super Q), male age, time of day, male density, and male diet. Super Q was found to be a superior adsorbent for the male-produced alcohols and geranic acid as well as the plant-produced E-β-ocimene. Pheromone production increased with male age up to about age 15 days old and then tapered off. Male pepper weevils produced the highest amount of pheromone between noon and 2 pm (i.e., 4 to 6 h after “lights on”) and were producing ca. 800 ng/h during this period. Thereafter, pheromone production decreased and was extremely low during the scotophase (i.e., ca. 12 ng/h). Male pepper weevil density had a significant effect on both release rate and pheromone composition. Pheromone production on a per male basis was highest for individual males and the percentage of geranic acid in the blend was lowest for individual males. Male pepper weevils produced only extremely low amounts of pheromone when feeding on artificial diet; however, they produced very high amounts when on fresh peppers. Together, this information will be useful in designing better attractant lures for pepper weevils. PMID:26462948

  4. Isolation and characterization of a novel herpesvirus from a free-ranging eastern grey kangaroo (Macropus giganteus).

    PubMed

    Vaz, Paola Karinna; Motha, Julian; McCowan, Christina; Ficorilli, Nino; Whiteley, Pam Lizette; Wilks, Colin Reginald; Hartley, Carol Anne; Gilkerson, James Rudkin; Browning, Glenn Francis; Devlin, Joanne Maree

    2013-01-01

    We isolated a macropodid herpesvirus from a free-ranging eastern grey kangaroo (Macropus giganteous) displaying clinical signs of respiratory disease and possibly neurologic disease. Sequence analysis of the herpesvirus glycoprotein G (gG) and glycoprotein B (gB) genes revealed that the virus was an alphaherpesvirus most closely related to macropodid herpesvirus 2 (MaHV-2) with 82.7% gG and 94.6% gB amino acid sequence identity. Serologic analyses showed similar cross-neutralization patterns to those of MaHV-2. The two viruses had different growth characteristics in cell culture. Most notably, this virus formed significantly larger plaques and extensive syncytia when compared with MaHV-2. No syncytia were observed for MaHV-2. Restriction endonuclease analysis of whole viral genomes demonstrated distinct restriction endonuclease cleavage patterns for all three macropodid herpesviruses. These studies suggest that a distinct macropodid alphaherpesvirus may be capable of infecting and causing disease in eastern grey kangaroos.

  5. CRYPTOCOCCUS NEOFORMANS VAR. GRUBII-ASSOCIATED RENAL AMYLOIDOSIS CAUSING PROTEIN-LOSING NEPHROPATHY IN A RED KANGAROO (MACROPUS RUFUS).

    PubMed

    Thurber, Mary Irene; Gjeltema, Jenessa; Sheley, Matthew; Wack, Ray F

    2017-09-01

    A 10-year-old male castrated red kangaroo (Macropus rufus) presented with mandibular swelling. Examination findings included pitting edema with no dental disease evident on examination or radiographs. The results of blood work were moderate azotemia, hypoalbuminemia, and severely elevated urine protein:creatinine ratio (9.9). Radiographs showed an interstitial pattern of the caudal right lung, and an abdominal ultrasound demonstrated scant effusion. Symptomatic and empirical therapy with antibiotics, anti-inflammatory drugs, and an angiotensin-converting enzyme (ACE) inhibitor did not resolve clinical signs. Due to poor prognosis and declining quality of life, euthanasia was elected. Necropsy revealed chronic granulomatous pneumonia of the caudal right lung lobe with intralesional Cryptococcus, identified as C. neoformans var. grubii by DNA sequencing. Severe bilateral glomerular and tubulointerstitial amyloidosis induced protein-losing nephropathy, leading to tri-cavitary effusion, subcutaneous edema, and cachexia. The authors speculate that renal amyloidosis was associated with chronic cryptococcal pneumonia in this red kangaroo.

  6. Characterization of culturable anaerobic bacteria from the forestomach of an eastern grey kangaroo, Macropus giganteus.

    PubMed

    Ouwerkerk, D; Klieve, A V; Forster, R J; Templeton, J M; Maguire, A J

    2005-01-01

    To determine the culturable biodiversity of anaerobic bacteria isolated from the forestomach contents of an eastern grey kangaroo, Macropus giganteus, using phenotypic characterization and 16S rDNA sequence analysis. Bacteria from forestomach contents of an eastern grey kangaroo were isolated using anaerobic media containing milled curly Mitchell grass (Astrebla lappacea). DNA was extracted and the 16S rDNA sequenced for phylogenetic analysis. Forty bacterial isolates were obtained and placed in 17 groups based on phenotypic characteristics and restriction enzyme digestion of 16S rDNA PCR products. DNA sequencing revealed that the 17 groups comprised five known species (Clostridium butyricum, Streptococcus bovis, Clostridium sporogenes, Clostridium paraputrificum and Enterococcus avium) and 12 groups apparently representing new species, all within the phylum Firmicutes. Foregut contents from Australian macropod marsupials contain a microbial ecosystem with a novel bacterial biodiversity comprising a high percentage of previously unrecognized species. This study adds to knowledge of Australia's unique biodiversity, which may provide a future bioresource of genetic information and bacterial species of benefit to agriculture.

  7. Postnatal development of orexin-A and orexin-B like immunoreactivities in the Eastern grey kangaroo (Macropus giganteus) hypothalamus.

    PubMed

    Yamamoto, Yukiyo; McKinley, Michael J; Nakazato, Masamitsu; Yamashita, Hiroshi; Shirahata, Akira; Ueta, Yoichi

    2006-01-09

    The Eastern grey kangaroo (Macropus giganteus) is a marsupial, which is born in an extremely undeveloped state and has a long suckling period in the mother's pouch. In the present study, we examined the immunoreactivities of orexin-A (OXA) and orexin-B (OXB) in the hypothalamus of the Eastern grey kangaroo during the preweaning period, postweaning period and adulthood. In the preweaning period, only a few OXA- and OXB-like immunoreactive (LI) neurons and fibers were present and the intensity of staining was very weak. In the postweaning period, there was a pronounced increase in the numbers of OXA- and OXB-LI neurons and fibers and the intensity of the immunoreactivity was considerably stronger in comparison to the preweaning period. In the adult, the numbers of OXA- and OXB-LI neurons and fibers appeared to be slightly increased and the intensity was slightly stronger in comparison to the postweaning period. At all time periods, the distributions of OXA- and OXB-LI neurons was similar. The postnatal development of hypothalamic orexin neurons may be associated with developmental changes, including feeding behavior.

  8. Molecular diagnostic for boll weevil (Coleoptera: Curculionidae) based on amplification of three species-specific microsatellites.

    PubMed

    Kim, Kyung Seok; Szendrei, Zsofia; Rodriguez-Saona, Cesar; Mulder, Phillip G; Sappington, Thomas W

    2009-04-01

    The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is a serious pest of cultivated cotton, Gossypium hirsutum L., in the Americas, and reinfestation of zones from which they have been eradicated is of perpetual concern. Extensive arrays of pheromone traps monitor for reintroductions, but occasionally the traps collect nontarget weevils that can be misidentified by scouts. For example, the congeneric pepper weevil, Anthonomus eugenii Cano, and other superficially similar weevils are attracted to components of the boll weevil lure or trap color. Although morphologically distinguishable by trained personnel, the potential for misidentification is compounded when captured weevils are dismembered or partially consumed by ants or ground beetles that sometimes feed on them in the traps. Because misidentification can have expensive consequences, a molecular diagnostic tool would be of great value to eradication managers. We demonstrate that a cocktail of three primer pairs in a single polymerase chain reaction (PCR) amplify species-specific microsatellites that unambiguously distinguish the boll weevil from three other weevil species tested, including pepper weevil; cranberry weevil, Anthonomus eugenii musculus Say; and pecan weevil, Curculio caryae Horn. However, it does not distinguish the boll weevil from the subspecific "thurberia" weevil. A universal internal transcribed spacer primer pair included in the cocktail cross-amplifies DNA from all species, serving as a positive control. Furthermore, the diagnostic primers amplified the target microsatellites from various boll weevil adult body parts, indicating that the PCR technology using the primer cocktail is sensitive enough to positively identify a boll weevil even when the body is partly degraded.

  9. Development of a Dynamic Biomechanical Model for Load Carriage: Phase 1 Part A: Equipment Upgrades to Accommodate Dynamic Biomechanical Modeling

    DTIC Science & Technology

    2005-08-01

    of a magnetic tracking device to kinesiology studies. J. Biomech. 21(7), 613-620, 1988. Bryant, J.T. Stevenson, J.M., Pelot, R.P., Reid, S.A...kangaroos (Macropus rufus). Comparative Biochemistry and Physiology, Part B 120:41-49, 1998. Kram, R. Are efficiency and the cost of generating force both

  10. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (marsupialia: macropodoidea).

    PubMed

    Warburton, Natalie Marina

    2009-06-01

    The jaw muscles were studied in seven genera of macropodoid marsupials with diets ranging from mainly fungi in Potorous to grass in Macropus. Relative size, attachments, and lamination within the jaw adductor muscles varied between macropodoid species. Among macropodine species, the jaw adductor muscle proportions vary with feeding type. The relative mass of the masseter is roughly consistent, but grazers and mixed-feeders (Macropus and Lagostrophus) had relatively larger medial pterygoids and smaller temporalis muscles than the browsers (Dendrolagus, Dorcopsulus, and Setonix). Grazing macropods show similar jaw muscle proportions to "ungulate-grinding" type placental mammals. The internal architecture of the jaw muscles also varies between grazing and browsing macropods, most significantly, the anatomy of the medial pterygoid muscle. Potoroines have distinctly different jaw muscle proportions to macropodines. The masseter muscle group, in particular, the superficial masseter is enlarged, while the temporalis group is relatively reduced. Lagostrophus fasciatus is anatomically distinct from other macropods with respect to its masticatory muscle anatomy, including enlarged superficial medial pterygoid and deep temporalis muscles, an anteriorly inflected masseteric process, and the shape of the mandibular condyle. The enlarged triangular pterygoid process of the sphenoid bone, in particular, is distinctive of Lagsotrophus. (c) 2009 Wiley-Liss, Inc.

  11. Familiarity breeds contempt: kangaroos persistently avoid areas with experimentally deployed dingo scents.

    PubMed

    Parsons, Michael H; Blumstein, Daniel T

    2010-05-05

    Whether or not animals habituate to repeated exposure to predator scents may depend upon whether there are predators associated with the cues. Understanding the contexts of habituation is theoretically important and has profound implication for the application of predator-based herbivore deterrents. We repeatedly exposed a mixed mob of macropod marsupials to olfactory scents (urine, feces) from a sympatric predator (Canis lupus dingo), along with a control (water). If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous), western grey kangaroos (Macropus fuliginosus) and agile wallabies (Macropus agilis) would elect to not participate in cafeteria trials because the scents provided information about the riskiness of the area. We evaluated the effects of urine and feces independently and expected that urine would elicit a stronger reaction because it contains a broader class of infochemicals (pheromones, kairomones). Finally, we scored non-invasive indicators (flight and alarm stomps) to determine whether fear or altered palatability was responsible for the response. Repeated exposure reduced macropodid foraging on food associated with 40 ml of dingo urine, X = 986.75+/-3.97 g food remained as compared to the tap water control, X = 209.0+/-107.0 g (P<0.001). Macropodids fled more when encountering a urine treatment, X = 4.50+/-2.08 flights, as compared to the control, X = 0 flights (P<0.001). There was no difference in effect between urine or feces treatments (P>0.5). Macropodids did not habituate to repeated exposure to predator scents, rather they avoided the entire experimental area after 10 days of trials (R(2) = 83.8; P<0.001). Responses to urine and feces were indistinguishable; both elicited fear-based responses and deterred foraging. Despite repeated exposure to predator-related cues in the absence of a predator, macropodids persistently avoided an area of highly palatable food. Area avoidance is consistent with that observed from other species following repeated anti-predator conditioning, However, this is the first time this response has been experimentally observed among medium or large vertebrates - where a local response is observed spatially and an area effect is revealed over time.

  12. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of α-lactalbumin, β-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young.

  13. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of ??-lactalbumin, ??-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young. ?? 2001 Elsevier Science Inc.

  14. Familiarity Breeds Contempt: Kangaroos Persistently Avoid Areas with Experimentally Deployed Dingo Scents

    PubMed Central

    Parsons, Michael H.; Blumstein, Daniel T.

    2010-01-01

    Background Whether or not animals habituate to repeated exposure to predator scents may depend upon whether there are predators associated with the cues. Understanding the contexts of habituation is theoretically important and has profound implication for the application of predator-based herbivore deterrents. We repeatedly exposed a mixed mob of macropod marsupials to olfactory scents (urine, feces) from a sympatric predator (Canis lupus dingo), along with a control (water). If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous), western grey kangaroos (Macropus fuliginosus) and agile wallabies (Macropus agilis) would elect to not participate in cafeteria trials because the scents provided information about the riskiness of the area. Methodology/Principal Findings We evaluated the effects of urine and feces independently and expected that urine would elicit a stronger reaction because it contains a broader class of infochemicals (pheromones, kairomones). Finally, we scored non-invasive indicators (flight and alarm stomps) to determine whether fear or altered palatability was responsible for the response. Repeated exposure reduced macropodid foraging on food associated with 40 ml of dingo urine, X = 986.75±3.97 g food remained as compared to the tap water control, X = 209.0±107.0 g (P<0.001). Macropodids fled more when encountering a urine treatment, X = 4.50±2.08 flights, as compared to the control, X = 0 flights (P<0.001). There was no difference in effect between urine or feces treatments (P>0.5). Macropodids did not habituate to repeated exposure to predator scents, rather they avoided the entire experimental area after 10 days of trials (R 2 = 83.8; P<0.001). Conclusions/Significance Responses to urine and feces were indistinguishable; both elicited fear-based responses and deterred foraging. Despite repeated exposure to predator-related cues in the absence of a predator, macropodids persistently avoided an area of highly palatable food. Area avoidance is consistent with that observed from other species following repeated anti-predator conditioning, However, this is the first time this response has been experimentally observed among medium or large vertebrates − where a local response is observed spatially and an area effect is revealed over time. PMID:20463952

  15. Impacts of visitor number on Kangaroos housed in free-range exhibits.

    PubMed

    Sherwen, Sally L; Hemsworth, Paul H; Butler, Kym L; Fanson, Kerry V; Magrath, Michael J L

    2015-01-01

    Free range exhibits are becoming increasingly popular in zoos as a means to enhance interaction between visitors and animals. However very little research exists on the impacts of visitors on animal behaviour and stress in free range exhibits. We investigated the effects of visitor number on the behaviour and stress physiology of Kangaroo Island (KI) Kangaroos, Macropus fuliginosus fuliginosus, and Red Kangaroos, Macropus rufus, housed in two free range exhibits in Australian zoos. Behavioural observations were conducted on individual kangaroos at each site using instantaneous scan sampling to record activity (e.g., vigilance, foraging, resting) and distance from the visitor pathway. Individually identifiable faecal samples were collected at the end of each study day and analysed for faecal glucocorticoid metabolite (FGM) concentration. When visitor number increased, both KI Kangaroos and Red Kangaroos increased the time spent engaged in visitor-directed vigilance and KI Kangaroos also increased the time spent engaged in locomotion and decreased the time spent resting. There was no effect of visitor number on the distance kangaroos positioned themselves from the visitor pathway or FGM concentration in either species. While there are limitations in interpreting these results in terms of fear of visitors, there was no evidence of adverse effects animal welfare in these study groups based on avoidance behaviour or stress physiology under the range of visitor numbers that we studied. © 2015 Wiley Periodicals, Inc.

  16. Phylogeography of Eastern Grey Kangaroos, Macropus giganteus, Suggests a Mesic Refugium in Eastern Australia.

    PubMed

    Coghlan, Brett A; Goldizen, Anne W; Thomson, Vicki A; Seddon, Jennifer M

    2015-01-01

    Phylogeographic studies around the world have identified refugia where fauna were able to persist during unsuitable climatic periods, particularly during times of glaciation. In Australia the effects of Pleistocene climate oscillations on rainforest taxa have been well studied but less is known about the effects on mesic-habitat fauna, such as the eastern grey kangaroo (Macropus giganteus). The eastern grey kangaroo is a large mammal that is common and widespread throughout eastern Australia, preferring dry mesic habitat, rather than rainforest. As pollen evidence suggests that the central-eastern part of Australia (southeast Queensland and northern New South Wales) experienced cycles of expansion in mesic habitat with contraction in rainforests, and vice versa during glacial and interglacial periods, respectively, we hypothesise that the distribution of the eastern grey kangaroo was affected by these climate oscillations and may have contracted to mesic habitat refugia. From 375 mitochondrial DNA control region sequences from across the distribution of eastern grey kangaroos we obtained 108 unique haplotypes. Phylogenetic analysis identified two clades in Queensland, one of which is newly identified and restricted to a small coastal region in southern Queensland north of Brisbane, known as the Sunshine Coast. The relatively limited geographic range of this genetically isolated clade suggests the possibility of a mesic habitat refugium forming during rainforest expansion during wetter climate cycles. Other potential, although less likely, reasons for the genetic isolation of the highly distinct clade include geographic barriers, separate northward expansions, and strong local adaptation.

  17. Diagnosis and treatment of mesenteric volvulus in a red kangaroo (Macropus rufus).

    PubMed

    Knafo, S Emmanuelle; Rosenblatt, Alana J; Morrisey, James K; Flanders, James A; Thompson, Margret S; Knapp-Hoch, Heather M

    2014-04-01

    An 8-year-old male red kangaroo (Macropus rufus) was evaluated with a 2-week history of vomiting and anorexia. Four days prior, the patient became refractory to medical management. The kangaroo was admitted for diagnostic testing and treatment including whole body CT, blood work, and emergency laparotomy. CT findings of a severely enlarged stomach, splenic displacement, and a whirl sign were indicative of mesenteric volvulus with gastric dilatation-volvulus (GDV). Contrast enhancement of abdominal viscera suggested intact arterial blood supply; however, compression of the caudal vena cava and portal vein indicated venous obstruction. Results of preoperative blood work suggested biliary stasis without evidence of inflammation. Additionally, a tooth root abscess was diagnosed on the basis of results of CT. Exploratory laparotomy confirmed the diagnosis of mesenteric volvulus and GDV. The volvuli were corrected by clockwise derotation, and a gastropexy was performed. Tissue samples were obtained from the spleen and liver for evaluation. The kangaroo recovered from surgery, and the abscessed tooth was extracted 6 days later. Eight days after initial evaluation, the kangaroo was discharged. In the present report, the CT whirl sign was used to diagnose volvulus of the abdominal viscera, which suggests that this diagnostic indicator has utility in veterinary patients. Mesenteric volvulus with GDV was successfully treated in a nondomestic species. The tooth root abscess, a common condition in macropods, may explain the historic episodes of anorexia reported by the owner and may have contributed to the development of mesenteric volvulus and GDV in this kangaroo.

  18. Suppurative otitis and ascending meningoencephalitis associated with Bacteroides tectus and Porphyromonas gulae in a captive Parma wallaby (Macropus parma) with toxoplasmosis.

    PubMed

    Giannitti, Federico; Schapira, Andrea; Anderson, Mark; Clothier, Kristin

    2014-09-01

    A 6-year-old female Parma wallaby (Macropus parma) at a zoo in California developed acute ataxia and left-sided circling. Despite intensive care, clinical signs progressed to incoordination and prostration, and the animal was euthanized. At necropsy, the left tympanic cavity was filled with homogeneous suppurative exudate that extended into the cranium expanding the meninges and neuroparenchyma in the lateral and ventral aspect of the caudal ipsilateral brainstem and medulla oblongata. Microscopically, the brainstem showed regional severe suppurative meningoencephalitis with large numbers of neutrophils, fewer macrophages, and lymphocytes admixed with fibrin, necrotic cellular debris, hemorrhage, and mineralization, with numerous intralesional Gram-negative bacilli. Bacteroides spp. and Porphyromonas spp. were isolated on anaerobic culture from the meninges, and the bacteria were further characterized by partial 16S ribosomal RNA gene sequencing as Bacteroides tectus and Porphyromonas gulae. Bacterial aerobic culture from the meninges yielded very low numbers of mixed flora and Proteus spp., which were considered contaminants. Culture of Mycoplasma spp. from middle ear and meninges was negative. Additionally, Toxoplasma gondii cysts were detected by immunohistochemistry in the heart and brain, and anti-Toxoplasma antibodies were detected in serum. The genera Bacteroides and Porphyromonas have been associated with oral disease in marsupials; but not with otitis and meningoencephalitis. The results of the present work highlight the importance of performing anaerobic cultures in the diagnostic investigation of cases of suppurative otitis and meningoencephalitis in macropods. © 2014 The Author(s).

  19. Stress in an Island kangaroo? The Barrow Island euro, Macropus robustus isabellinus.

    PubMed

    King, J M; Bradshaw, S D

    2010-05-15

    Selected physiological parameters were monitored over a 4-year period in the Barrow Island euro, Macropus robustus isabellinus, in Western Australia in a study of this species' homeostatic capabilities in an extremely arid habitat where individuals are exposed to high environmental temperatures and a lack of free water for much of the year. Evidence was found of a significant change in the animal's milieu intérieur on only one occasion on Barrow Island: in November 1994, following a protracted 8-month drought. Euros had significantly elevated levels of plasma osmolality, cortisol, anti-diuretic hormone (lysine vasopressin - LVP), and a reduced eosinophil count. This suggests that these animals may have been dehydrated, despite the operation of appropriate physiological responses to water deprivation. Lower eosinophil counts also suggest that immune function may have been suppressed as a result of the elevated corticosteroid levels. Comparisons with the mainland sub-species of the euro revealed the presence of a non-generative normocytic hypochromic anaemia in Barrow Island euros that potentially compromises their aerobic capacity. Barrow Island is Australia's most important A Class Reserve, harbouring 8 species of marsupials, 4 of which are now extinct, or virtually so, on the adjacent mainland. This study reveals the remarkable effectiveness of the euro's homeostatic capacities, however, its future conservation depends on ensuring that potential stress due to declining water availability and environmental change is avoided. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Contributions to the Mosquito Fauna of Southeast Asia - II. The Genus Culex in Thailand (Diptera: Culicidae)

    DTIC Science & Technology

    1967-01-01

    J. med. Res. 11: 1277 (“*, ?); Barraud 1924, Indian J. med. Res. 12: 432 (L*). Culex macropus Blanchard 1905, Les Moustiques : 327 (new name for...Figures 76, 77, and 78) Culex annulus Theobald 1901, Mon. Cul. 1: 358 (?); Giles 1902, Handb. 2nd ed. : 405 (0); Blanchard 1905, Les Moustiques : 293 (0...zweifl. Ins. 1: 542 (?); Theo- bald 1901, Mon. Cul. 1: 360 (9’); Giles 1902, Handb. , 2nd ed. : 400 (0); Blanchard 1905, L es Moustiques : 293 (0

  1. Analyses of mitochondrial amino acid sequence datasets support the proposal that specimens of Hypodontus macropi from three species of macropodid hosts represent distinct species

    PubMed Central

    2013-01-01

    Background Hypodontus macropi is a common intestinal nematode of a range of kangaroos and wallabies (macropodid marsupials). Based on previous multilocus enzyme electrophoresis (MEE) and nuclear ribosomal DNA sequence data sets, H. macropi has been proposed to be complex of species. To test this proposal using independent molecular data, we sequenced the whole mitochondrial (mt) genomes of individuals of H. macropi from three different species of hosts (Macropus robustus robustus, Thylogale billardierii and Macropus [Wallabia] bicolor) as well as that of Macropicola ocydromi (a related nematode), and undertook a comparative analysis of the amino acid sequence datasets derived from these genomes. Results The mt genomes sequenced by next-generation (454) technology from H. macropi from the three host species varied from 13,634 bp to 13,699 bp in size. Pairwise comparisons of the amino acid sequences predicted from these three mt genomes revealed differences of 5.8% to 18%. Phylogenetic analysis of the amino acid sequence data sets using Bayesian Inference (BI) showed that H. macropi from the three different host species formed distinct, well-supported clades. In addition, sliding window analysis of the mt genomes defined variable regions for future population genetic studies of H. macropi in different macropodid hosts and geographical regions around Australia. Conclusions The present analyses of inferred mt protein sequence datasets clearly supported the hypothesis that H. macropi from M. robustus robustus, M. bicolor and T. billardierii represent distinct species. PMID:24261823

  2. Identification and field evaluation of attractants for the cranberry weevil, Anthonomus musculus Say.

    PubMed

    Szendrei, Zsofia; Averill, Anne; Alborn, Hans; Rodriguez-Saona, Cesar

    2011-04-01

    Studies were conducted to develop an attractant for the cranberry weevil, Anthonomus musculus, a pest of blueberry and cranberry flower buds and flowers in the northeastern United States. In previous studies, we showed that cinnamyl alcohol, the most abundant blueberry floral volatile, and the green leaf volatiles (Z)-3-hexenyl acetate and hexyl acetate, emitted from both flowers and flower buds, elicit strong antennal responses from A. musculus. Here, we found that cinnamyl alcohol did not increase capture of A. musculus adults on yellow sticky traps compared with unbaited controls; however, weevils were highly attracted to traps baited with the Anthonomus eugenii Cano aggregation pheromone, indicating that these congeners share common pheromone components. To identify the A. musculus aggregation pheromone, headspace volatiles were collected from adults feeding on blueberry or cranberry flower buds and analyzed by gas chromatography-mass spectrometry. Three male-specific compounds were identified: (Z)-2-(3,3-dimethyl-cyclohexylidene) ethanol (Z grandlure II); (Z)-(3,3-dimethylcyclohexylidene) acetaldehyde (grandlure III); and (E)-(3,3- dimethylcyclohexylidene) acetaldehyde (grandlure IV). A fourth component, (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol), was emitted in similar quantities by males and females. The emission rates of these volatiles were about 2.8, 1.8, 1.3, and 0.9 ng/adult/d, respectively. Field experiments in highbush blueberry (New Jersey) and cranberry (Massachusetts) examined the attraction of A. musculus to traps baited with the male-produced compounds and geraniol presented alone and combined with (Z)-3-hexenyl acetate and hexyl acetate, and to traps baited with the pheromones of A. eugenii and A. grandis. In both states and crops, traps baited with the A. musculus male-produced compounds attracted the highest number of adults. Addition of the green leaf volatiles did not affect A. musculus attraction to its pheromone but skewed the sex ratio of the captured adults towards females. Although the role of plant volatiles in host-plant location by A. musculus is still unclear, our studies provide the first identification of the primary A. musculus aggregation pheromone components that can be used to monitor this pest in blueberry and cranberry pest management programs.

  3. Developmental and Post-Eruptive Defects in Molar Enamel of Free-Ranging Eastern Grey Kangaroos (Macropus giganteus) Exposed to High Environmental Levels of Fluoride

    PubMed Central

    Kierdorf, Uwe; Death, Clare; Hufschmid, Jasmin; Witzel, Carsten; Kierdorf, Horst

    2016-01-01

    Dental fluorosis has recently been diagnosed in wild marsupials inhabiting a high-fluoride area in Victoria, Australia. Information on the histopathology of fluorotic marsupial enamel has thus far not been available. This study analyzed the developmental and post-eruptive defects in fluorotic molar enamel of eastern grey kangaroos (Macropus giganteus) from the same high-fluoride area using light microscopy and backscattered electron imaging in the scanning electron microscope. The fluorotic enamel exhibited a brownish to blackish discolouration due to post-eruptive infiltration of stains from the oral cavity and was less resistant to wear than normally mineralized enamel of kangaroos from low-fluoride areas. Developmental defects of enamel included enamel hypoplasia and a pronounced hypomineralization of the outer (sub-surface) enamel underneath a thin rim of well-mineralized surface enamel. While the hypoplastic defects denote a disturbance of ameloblast function during the secretory stage of amelogenesis, the hypomineralization is attributed to an impairment of enamel maturation. In addition to hypoplastic defects, the fluorotic molars also exhibited numerous post-eruptive enamel defects due to the flaking-off of portions of the outer, hypomineralized enamel layer during mastication. The macroscopic and histopathological lesions in fluorotic enamel of M. giganteus match those previously described for placental mammals. It is therefore concluded that there exist no principal differences in the pathogenic mechanisms of dental fluorosis between marsupial and placental mammals. The regular occurrence of hypomineralized, opaque outer enamel in the teeth of M. giganteus and other macropodids must be considered in the differential diagnosis of dental fluorosis in these species. PMID:26895178

  4. Energy, water and space use by free-living red kangaroos Macropus rufus and domestic sheep Ovis aries in an Australian rangeland.

    PubMed

    Munn, A J; Dawson, T J; McLeod, S R; Dennis, T; Maloney, S K

    2013-08-01

    We used doubly labelled water to measure field metabolic rates (FMR) and water turnover rates (WTR) in one of Australia's largest native herbivores, the red kangaroo (Macropus rufus) and one of Australia's dominant livestock species, the wool-breed Merino sheep, under free-living conditions in a typical Australian rangeland. Also, we used GPS technology to examine animal space use, along with the comparisons of urine concentration, diet, diet digestibility, and subsequent grazing pressures. We found smaller space-use patterns than previously reported for kangaroos, which were between 14 and 25 % those of sheep. The FMR of a 25-kg kangaroo was 30 % that of a 45-kg sheep, while WTR was 15 % and both were associated with smaller travel distances, lower salt intakes, and higher urine concentration in kangaroos than sheep. After accounting for differences in dry matter digestibility of food eaten by kangaroos (51 %) and sheep (58 %), the relative grazing pressure of a standard (mature, non-reproductive) 25-kg kangaroo was 35 % that of a 45-kg sheep. Even for animals of the same body mass (35 kg), the relative grazing pressure of the kangaroo was estimated to be only 44 % that of the sheep. After accounting for the energetic costs of wool growth by sheep, the FMRs of our sheep and kangaroos were 2-3 times their expected BMRs, which is typical for mammalian FMR:BMRs generally. Notably, data collected from our free-living animals were practically identical to those from animals confined to a semi-natural enclosure (collected in an earlier study under comparable environmental conditions), supporting the idea that FMRs are relatively constrained within species.

  5. Passage marker excretion in red kangaroo (Macropus rufus), collared peccary (Pecari tajacu) and colobine monkeys (Colobus angolensis, C. polykomos, Trachypithecus johnii).

    PubMed

    Schwarm, Angela; Ortmann, Sylvia; Wolf, Christian; Streich, W Jürgen; Clauss, Marcus

    2009-11-01

    Ruminants are characterized by an efficient particle-sorting mechanism in the forestomach (FRST) followed by selective rechewing of large food particles. For the nonruminating foregut fermenter pygmy hippo it was demonstrated that large particles are excreted as fast as, or faster than, the small particles. The same has been suggested for other nonruminating foregut fermenters. We determined the mean retention time of fluids and different-sized particles in six red kangaroos (Macropus rufus), seven collared peccaries (Pecari tajacu) and three colobine monkeys (Colobus angolensis, C. polykomos, Trachypithecus johnii). We fed Co-EDTA as fluid and mordanted fiber as particle markers (Cr, Ce). Mean (+ or - SD) total tract retention time for fluids, small and large particles was 14 + or - 2, 29 + or - 10 and 30 + or - 9 hr in red kangaroos, 26 + or - 2, 34 + or - 5 and 32 + or - 3 hr in collared peccaries and 57 + or - 17, 55 + or - 19 and 54 + or - 19 hr in colobine monkeys, respectively. Large and small particles were excreted simultaneously in all species. There was no difference in the excretion of fluids and particles in the colobine monkeys, in contrast to the other foregut fermenters. In the nonprimate, nonruminant foregut fermenters, the difference in the excretion of fluids and small particles decreases with increasing food intake. On the contrary, ruminants keep this differential excretion constant at different intake levels. This may be a prerequisite for the sorting of particles in their FRST and enable them to achieve higher food intake rates. The functional significance of differential excretion of fluids and particles from the FRST requires further investigations.

  6. Biphasic Allometry of Cardiac Growth in the Developing Kangaroo Macropus fuliginosus.

    PubMed

    Snelling, Edward P; Taggart, David A; Maloney, Shane K; Farrell, Anthony P; Seymour, Roger S

    2015-01-01

    Interspecific studies of adult mammals show that heart mass (M(h), g) increases in direct proportion to body mass (M(b), kg), such that M(h) ∝ M(b)(1.00). However, intraspecific studies on heart mass in mammals at different stages of development reveal considerable variation between species, M(h) ∝ M(b)(0.70-1.00). Part of this variation may arise as a result of the narrow body size range of growing placental mammals, from birth to adulthood. Marsupial mammals are born relatively small and offer an opportunity to examine the ontogeny of heart mass over a much broader body size range. Data from 29 western grey kangaroos Macropus fuliginosus spanning 800-fold in body mass (0.084-67.5 kg) reveal the exponent for heart mass decreases significantly when the joey leaves the pouch (ca. 5-6 kg body mass). In the pouch, the heart mass of joeys scales with hyperallometry, M(h(in-pouch)) = 6.39 M(b)(1.10 ± 0.05), whereas in free-roaming juveniles and adults, heart mass scales with hypoallometry, M(h(postpouch)) = 14.2 Mb(0.77 ± 0.08). Measurements of heart height, width, and depth support this finding. The relatively steep heart growth allometry during in-pouch development is consistent with the increase in relative cardiac demands as joeys develop endothermy and the capacity for hopping locomotion. Once out of the pouch, the exponent decreases sharply, possibly because the energy required for hopping is independent of speed, and the efficiency of energy storage during hopping increases as the kangaroo grows. The right:left ventricular mass ratios (0.30-0.35) do not change over the body mass range and are similar to those of other mammals, reflecting the principle of Laplace for the heart.

  7. Scaling of left ventricle cardiomyocyte ultrastructure across development in the kangaroo Macropus fuliginosus.

    PubMed

    Snelling, Edward P; Taggart, David A; Maloney, Shane K; Farrell, Anthony P; Leigh, Christopher M; Waterhouse, Lyn; Williams, Ruth; Seymour, Roger S

    2015-06-01

    The heart and left ventricle of the marsupial western grey kangaroo Macropus fuliginosus exhibit biphasic allometric growth, whereby a negative shift in the trajectory of cardiac growth occurs at pouch exit. In this study, we used transmission electron microscopy to examine the scaling of left ventricle cardiomyocyte ultrastructure across development in the western grey kangaroo over a 190-fold body mass range (0.355-67.5 kg). The volume-density (%) of myofibrils, mitochondria, sarcoplasmic reticuli and T-tubules increase significantly during in-pouch growth, such that the absolute volume (ml) of these organelles scales with body mass (Mb; kg) with steep hyperallometry: 1.41Mb (1.38), 0.64Mb (1.29), 0.066Mb (1.45) and 0.035Mb (1.87), respectively. Maturation of the left ventricle ultrastructure coincides with pouch vacation, as organelle volume-densities scale independent of body mass across post-pouch development, such that absolute organelle volumes scale in parallel and with relatively shallow hypoallometry: 4.65Mb (0.79), 1.75Mb (0.77), 0.21Mb (0.79) and 0.35Mb (0.79), respectively. The steep hyperallometry of organelle volumes and volume-densities across in-pouch growth is consistent with the improved contractile performance of isolated cardiac muscle during fetal development in placental mammals, and is probably critical in augmenting cardiac output to levels necessary for endothermy and independent locomotion in the young kangaroo as it prepares for pouch exit. The shallow hypoallometry of organelle volumes during post-pouch growth suggests a decrease in relative cardiac requirements as body mass increases in free-roaming kangaroos, which is possibly because the energy required for hopping is independent of speed, and the capacity for energy storage during hopping could increase as the kangaroo grows. © 2015. Published by The Company of Biologists Ltd.

  8. Parasitic nematode communities of the red kangaroo, Macropus rufus: richness and structuring in captive systems.

    PubMed

    Lott, M J; Hose, G C; Power, M L

    2015-08-01

    Captive management practices have the potential to drastically alter pre-existing host-parasite relationships. This can have profound implications for the health and productivity of threatened species in captivity, even in the absence of clinical symptoms of disease. Maximising the success of captive breeding programmes requires a detailed knowledge of anthropogenic influences on the structure of parasite assemblages in captive systems. In this study, we employed two high-throughput molecular techniques to characterise the parasitic nematode (suborder Strongylida) communities of the red kangaroo, Macropus rufus, across seven captive sites. The first was terminal restriction fragment length polymorphism (T-RFLP) analysis of a region of rDNA encompassing the internal transcribed spacers 1 (ITS1), the 5.8S rRNA gene and the internal transcribed spacer 2 (ITS2). The second was Illumina MiSeq next-generation sequencing of the ITS2 region. The prevalence, intensity of infection, taxonomic composition and comparative structure of strongylid nematode assemblages was assessed at each location. Prevalence (P = <0.001) and mean infection intensity (df = 6, F = 17.494, P = <0.001) differed significantly between the seven captive sites. Significant levels of parasite community structure were observed (ANOSIM, P = 0.01), with most of the variation being distributed within, rather than between, captive sites. The range of nematode taxa that occurred in captive red kangaroos appeared to differ from that of wild conspecifics, with representatives of the genus Cloacina, a dominant nematode parasite of the macropodid forestomach, being detected at only two of the seven study sites. This study also provides the first evidence for the presence of the genus Trichostrongylus in a macropodid marsupial. Our results demonstrate that contemporary species management practices may exert a profound influence on the structure of parasite communities in captive systems.

  9. Complete genomic characterisation of two novel poxviruses (WKPV and EKPV) from western and eastern grey kangaroos.

    PubMed

    Bennett, Mark; Tu, Shin-Lin; Upton, Chris; McArtor, Cassie; Gillett, Amber; Laird, Tanya; O'Dea, Mark

    2017-10-15

    Poxviruses have previously been detected in macropods with cutaneous papillomatous lesions, however to date, no comprehensive analysis of a poxvirus from kangaroos has been performed. Here we report the genome sequences of a western grey kangaroo poxvirus (WKPV) and an eastern grey kangaroo poxvirus (EKPV), named for the host species from which they were isolated, western grey (Macropus fuliginosus) and eastern grey (Macropus giganteus) kangaroos. Poxvirus DNA from WKPV and EKPV was isolated and entire coding genome regions determined through Roche GS Junior and Illumina Miseq sequencing, respectively. Viral genomes were assembled using MIRA and SPAdes, and annotations performed using tools available from the Viral Bioinformatics Resource Centre. Histopathology and transmission electron microscopy analysis was also performed on WKPV and its associated lesions. The WKPV and EKPV genomes show 96% identity (nucleotide) to each other and phylogenetic analysis places them on a distinct branch between the established Molluscipoxvirus and Avipoxvirus genera. WKPV and EKPV are 170 kbp and 167 kbp long, containing 165 and 162 putative genes, respectively. Together, their genomes encode up to 47 novel unique hypothetical proteins, and possess virulence proteins including a major histocompatibility complex class II inhibitor, a semaphorin-like protein, a serpin, a 3-β-hydroxysteroid dehydrogenase/δ 5→4 isomerase, and a CD200-like protein. These viruses also encode a large putative protein (WKPV-WA-039 and EKPV-SC-038) with a C-terminal domain that is structurally similar to the C-terminal domain of a cullin, suggestive of a role in the control of host ubiquitination. The relationship of these viruses to members of the Molluscipoxvirus and Avipoxvirus genera is discussed in terms of sequence similarity, gene content and nucleotide composition. A novel genus within subfamily Chordopoxvirinae is proposed to accommodate these two poxvirus species from kangaroos; we suggest the name, Thylacopoxvirus (thylaco-: [Gr.] thylakos meaning sac or pouch). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Femoral bone perfusion through the nutrient foramen during growth and locomotor development of western grey kangaroos (Macropus fuliginosus).

    PubMed

    Hu, Qiaohui; Nelson, Thomas J; Snelling, Edward P; Seymour, Roger S

    2018-02-20

    The nutrient artery passes through the nutrient foramen on the shaft of the femur and supplies more than half of the total blood flow to the bone. Assuming that the size of the nutrient foramen correlates with the size of the nutrient artery, an index of blood flow rate ( Q i ) can be calculated from nutrient foramen dimensions. Interspecific Q i is proportional to locomotor activity levels in adult mammals, birds and reptiles. However, no studies have yet estimated intraspecific Q i to test for the effects of growth and locomotor development on bone blood flow requirements. In this study, we used micro-CT and medical CT scanning to measure femoral dimensions and foramen radius to calculate femoral Q i during the in-pouch and post-pouch life stages of western grey kangaroos ( Macropus fuliginosus ) weighing 5.7 g to 70.5 kg and representing a 12,350-fold range in body mass. A biphasic scaling relationship between Q i and body mass was observed (breakpoint at ca. 1-5 kg body mass right before permanent pouch exit), with a steep exponent of 0.96±0.09 (95% CI) during the in-pouch life stage and a statistically independent exponent of -0.59±0.90 during the post-pouch life stage. In-pouch joeys showed Q i values that were 50-100 times higher than those of adult diprotodont marsupials of the same body mass, but gradually converged with them as post-pouch adults. Bone modelling during growth appears to be the main determinant of femoral bone blood flow during in-pouch development, whereas bone remodelling for micro-fracture repair due to locomotion gradually becomes the main determinant when kangaroos leave the pouch and become more active. © 2018. Published by The Company of Biologists Ltd.

  11. Spatial dynamics of the bacterial community structure in the gastrointestinal tract of red kangaroo (Macropus rufus).

    PubMed

    Li, Meirong; Jin, Wei; Li, Yuanfei; Zhao, Lingling; Cheng, Yanfen; Zhu, Weiyun

    2016-06-01

    The quantification and community of bacteria in the gastrointestinal (GI) tract (stomach, jejunum, ileum, cecum, colon and rectum) of red kangaroos (Macropus rufus) were examined by using real-time PCR and paired-end Illumina sequencing. The quantification of bacteria showed that the number of bacteria in jejunum and rectum was significantly lower than that in colon and cecum (P < 0.05). A total of 1,872,590 sequences was remained after quality-filtering and 50,948 OTUs were identified at the 97 % similarity level. The dominant phyla in the GI tract of red kangaroos were identified as Actinobacteria, Bacteroidetes and Firmicutes. At the level of genus, the samples from different parts of GI tract clustered into three groups: stomach, small intestine (jejunum and ileum) and large intestine (cecum and rectum). Prevotella (29.81 %) was the most dominant genus in the stomach and significantly (P < 0.05) higher than that in other parts of GI tract. In the small intestine, Bifidobacterium (33.04, 12.14 %) and Streptococcus (22.90, 19.16 %) were dominant genera. Unclassified Ruminococcaceae was the most dominant family in large intestine and the total relative abundance of unclassified bacteria was above 50 %. In identified genera, Dorea was the most important variable to discriminate large intestine and it was significantly higher in cecum than in stomach, small intestine and colon (P < 0.05). Bifidobacterium (21.89 %) was the only dominant genus in colon. Future work on culture in vitro and genome sequencing of those unidentified bacteria might give us insight into the function of these microorganisms in the GI tract. In addition, the comparison of the bacterial community in the foregut of kangaroos and other herbivores and the rumen might give us insight into the mechanism of fiber degradation and help us exploit approaches to improve the feed efficiency and subsequently, reduce the methane emission from herbivores.

  12. Decreasing methane yield with increasing food intake keeps daily methane emissions constant in two foregut fermenting marsupials, the western grey kangaroo and red kangaroo.

    PubMed

    Vendl, Catharina; Clauss, Marcus; Stewart, Mathew; Leggett, Keith; Hummel, Jürgen; Kreuzer, Michael; Munn, Adam

    2015-11-01

    Fundamental differences in methane (CH4) production between macropods (kangaroos) and ruminants have been suggested and linked to differences in the composition of the forestomach microbiome. Using six western grey kangaroos (Macropus fuliginosus) and four red kangaroos (Macropus rufus), we measured daily absolute CH4 production in vivo as well as CH4 yield (CH4 per unit of intake of dry matter, gross energy or digestible fibre) by open-circuit respirometry. Two food intake levels were tested using a chopped lucerne hay (alfalfa) diet. Body mass-specific absolute CH4 production resembled values previously reported in wallabies and non-ruminant herbivores such as horses, and did not differ with food intake level, although there was no concomitant proportionate decrease in fibre digestibility with higher food intake. In contrast, CH4 yield decreased with increasing intake, and was intermediate between values reported for ruminants and non-ruminant herbivores. These results correspond to those in ruminants and other non-ruminant species where increased intake (and hence a shorter digesta retention in the gut) leads to a lower CH4 yield. We hypothesize that rather than harbouring a fundamentally different microbiome in their foregut, the microbiome of macropods is in a particular metabolic state more tuned towards growth (i.e. biomass production) rather than CH4 production. This is due to the short digesta retention time in macropods and the known distinct 'digesta washing' in the gut of macropods, where fluids move faster than particles and hence most likely wash out microbes from the forestomach. Although our data suggest that kangaroos only produce about 27% of the body mass-specific volume of CH4 of ruminants, it remains to be modelled with species-specific growth rates and production conditions whether or not significantly lower CH4 amounts are emitted per kg of meat in kangaroo than in beef or mutton production. © 2015. Published by The Company of Biologists Ltd.

  13. The timing and cause of megafauna mass deaths at Lancefield Swamp, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Dortch, Joe; Cupper, Matt; Grün, Rainer; Harpley, Bernice; Lee, Kerrie; Field, Judith

    2016-08-01

    Lancefield Swamp, south-eastern Australia, was one of the earliest sites to provoke interest in Pleistocene faunal extinctions in Sahul (Pleistocene Australia-New Guinea). The systematic investigation of the deposit in the early 1970s identified megafaunal remains dominated by the 100-200 kg kangaroo Macropus giganteus titan. Associated radiocarbon ages indicated that the species was extant until c.30,000 BP, suggesting significant overlap with human settlement of Sahul. This evidence was inconsistent with contemporary models of rapid human-driven extinctions. Instead, researchers inferred ecological tethering of fauna at Lancefield Swamp due to intense drought precipitated localised mass deaths, consistent with Late Pleistocene climatic variability. Later investigations in another part of the swamp, the Mayne Site, remote to the initial investigations, concluded that mass flow disturbed this area, and Electron Spin Resonance (ESR) analyses on megafauna teeth returned wide-ranging ages. To clarify site formation processes and dating of Lancefield Swamp, we excavated new test-pits next to previous trenches in the Classic and Mayne Sites. We compared absolute chronologies for sediments and teeth, sedimentology, palaeo-topography, taphonomy, and macropod age at death across the swamp. Luminescence dating of sediments and ESR analysis of teeth returned ages between c.80,000 and 45,000 years ago. We found no archaeological remains in the bone beds, and evidence of carnivore activity and fluvial action, in the form of reactivated spring flow. The latter disturbed limited parts of the site and substantial areas of the bone beds remained intact. The faunal assemblage is dominated by megafaunal adult Macropus, consistent with mass die-offs due to severe drought. Such droughts appear to have recurred over millennia during the climatic variability of Marine Isotope Stages 4 and 3. These events began tens of millennia before the first appearance of Aboriginal people in Sahul and only the very youngest fossil deposits could be coeval with the earliest human arrivals. Therefore, anthropogenic causes cannot be implicated in most if not all of mass deaths at the site. Climatic and environmental changes were the main factors in site formation and megafauna deaths at Lancefield Swamp.

  14. Phylogeography of the antilopine wallaroo (Macropus antilopinus) across tropical northern Australia.

    PubMed

    Wadley, Jessica J; Fordham, Damien A; Thomson, Vicki A; Ritchie, Euan G; Austin, Jeremy J

    2016-11-01

    The distribution of antilopine wallaroo, Macropus antilopinus , is marked by a break in the species' range between Queensland and the Northern Territory, coinciding with the Carpentarian barrier. Previous work on M. antilopinus revealed limited genetic differentiation between the Northern Territory and Queensland M. antilopinus populations across this barrier. The study also identified a number of divergent lineages in the Northern Territory, but was unable to elucidate any geographic structure. Here, we re-examine these results to (1) determine phylogeographic patterns across the range of M. antilopinus and (2) infer the biogeographic barriers associated with these patterns. The tropical savannahs of northern Australia: from the Cape York Peninsula in the east, to the Kimberley in the west. We examined phylogeographic patterns in M. antilopinus using a larger number of samples and three mtDNA genes: NADH dehydrogenase subunit 2, cytochrome b, and the control region. Two datasets were generated and analyzed: (1) a subset of samples with all three mtDNA regions concatenated together and (2) all samples for just control region sequences that included samples from the previous study. Analysis included generating phylogenetic trees based on Bayesian analysis and intraspecific median-joining networks. The contemporary spatial structure of M. antilopinus mtDNA lineages revealed five shallow clades and a sixth, divergent lineage. The genetic differences that we found between Queensland and Northern Territory M. antilopinus samples confirmed the split in the geographic distribution of the species. We also found weak genetic differentiation between Northern Territory samples and those from the Kimberley region of Western Australia, possibly due to the Kimberley Plateau-Arnhem Land barrier. Within the Northern Territory, two clades appear to be parapatric in the west, while another two clades are broadly sympatric across the Northern Territory. MtDNA diversity of M. antilopinus revealed an unexpectedly complex evolutionary history involving multiple sympatric and parapatric mtDNA clades across northern Australia. These phylogeographic patterns highlight the importance of investigating genetic variation across distributions of species and integrating this information into biodiversity conservation.

  15. Energy requirements of the red kangaroo (Macropus rufus): impacts of age, growth and body size in a large desert-dwelling herbivore.

    PubMed

    Munn, A J; Dawson, T J

    2003-09-01

    Generally, young growing mammals have resting metabolic rates (RMRs) that are proportionally greater than those of adult animals. This is seen in the red kangaroo ( Macropus rufus), a large (>20 kg) herbivorous marsupial common to arid and semi-arid inland Australia. Juvenile red kangaroos have RMRs 1.5-1.6 times those expected for adult marsupials of an equivalent body mass. When fed high-quality chopped lucerne hay, young-at-foot (YAF) kangaroos, which have permanently left the mother's pouch but are still sucking, and recently weaned red kangaroos had digestible energy intakes of 641+/-27 kJ kg(-0.75) day(-1) and 677+/-26 kJ kg(-0.75) day(-1), respectively, significantly higher than the 385+/-37 kJ kg(-0.75) day(-1) ingested by mature, non-lactating females. However, YAF and weaned red kangaroos had maintenance energy requirements (MERs) that were not significantly higher than those of mature, non-lactating females, the values ranging between 384 kJ kg(-0.75) day(-1) and 390 kJ kg(-0.75) day(-1) digestible energy. Importantly, the MER of mature female red kangaroos was 84% of that previously reported for similarly sized, but still growing, male red kangaroos. Growth was the main factor affecting the proportionally higher energy requirements of the juvenile red kangaroos relative to non-reproductive mature females. On a good quality diet, juvenile red kangaroos from permanent pouch exit until shortly after weaning (ca. 220-400 days) had average growth rates of 55 g body mass day(-1). At this level of growth, juveniles had total daily digestible energy requirements (i.e. MER plus growth energy requirements) that were 1.7-1.8 times the MER of mature, non-reproductive females. Our data suggest that the proportionally higher RMR of juvenile red kangaroos is largely explained by the additional energy needed for growth. Energy contents of the tissue gained by the YAF and weaned red kangaroos during growth were estimated to be 5.3 kJ g(-1), within the range found for most young growing mammals.

  16. Kangaroo IGF-II is structurally and functionally similar to the human [Ser29]-IGF-II variant.

    PubMed

    Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z

    1999-06-01

    Kangaroo IGF-II has been purified from western grey kangaroo (Macropus fuliginosus) serum and characterised in a number of in vitro assays. In addition, the complete cDNA sequence of mature IGF-II has been obtained by reverse-transcription polymerase chain reaction. Comparison of the kangaroo IGF-II cDNA sequence with known IGF-II sequences from other species revealed that it is very similar to the human variant, [Ser29]-hIGF-II. Both the variant and kangaroo IGF-II contain an insert of nine nucleotides that encode the amino acids Leu-Pro-Gly at the junction of the B and C domains of the mature protein. The deduced kangaroo IGF-II protein sequence also contains three other amino acid changes that are not observed in human IGF-II. These amino acid differences share similarities with the changes described in many of the IGF-IIs reported for non-mammalian species. Characterisation of human IGF-II, kangaroo IGF-II, chicken IGF-II and [Ser29]-hIGF-II in a number of in vitro assays revealed that all four proteins are functionally very similar. No significant differences were observed in the ability of the IGF-IIs to bind to the bovine IGF-II/cation-independent mannose 6-phosphate receptor or to stimulate protein synthesis in rat L6 myoblasts. However, differences were observed in their abilities to bind to IGF-binding proteins (IGFBPs) present in human serum. Kangaroo, chicken and [Ser29]-hIGF-II had lower apparent affinities for human IGFBPs than did human IGF-II. Thus, it appears that the major circulating form of IGF-II in the kangaroo and a minor form of IGF-II found in human serum are structurally and functionally very similar. This suggests that the splice site that generates both the variant and major form of human IGF-II must have evolved after the divergence of marsupials from placental mammals.

  17. Seroprevalence of Toxoplasma gondii infection in zoo and domestic animals in Jiangxi Province, China.

    PubMed

    Luo, Houqiang; Li, Kun; Zhang, Hui; Gan, Ping; Shahzad, Muhammad; Wu, Xiaoxing; Lan, Yanfang; Wang, Jiaxiang

    2017-01-01

    Toxoplasma gondii is a zoonotic protozoan parasite that infects a wide range of warm-blooded animals throughout the world. In the present study, antibodies to T. gondii were determined using a commercial indirect hemagglutination (IHA) test in wild animals in a zoo. Three of 11 giraffes (Giraffa camelopardalis) (27%), 1 of 5 wolves (Canis lupus laniger) (20%), 1 of 6 hippopotamuses (Hippopotamus amphibious) (17%), and 2 of 9 tundra swans (Cygnus columbianus) (22%) were found to be positive. No antibodies were detected in leopards (Panthera pardus), wild geese (Anser cygnoides), and Eastern grey kangaroos (Macropus giganteus). Domestic species from 13 counties of Jiangxi Province, China were also investigated by an indirect hemagglutination (IHA) test. Thirty-five of 340 goats (10%), 94 of 560 water buffaloes (17%), and 4 of 35 cattle (11%) were found to be seropositive. This is the first report of T. gondii infection in animals kept in zoos and domestic animals in this province. © H. Luo et al., published by EDP Sciences, 2017.

  18. Seroprevalence of Toxoplasma gondii infection in zoo and domestic animals in Jiangxi Province, China

    PubMed Central

    Luo, Houqiang; Li, Kun; Zhang, Hui; Gan, Ping; Shahzad, Muhammad; Wu, Xiaoxing; Lan, Yanfang; Wang, Jiaxiang

    2017-01-01

    Toxoplasma gondii is a zoonotic protozoan parasite that infects a wide range of warm-blooded animals throughout the world. In the present study, antibodies to T. gondii were determined using a commercial indirect hemagglutination (IHA) test in wild animals in a zoo. Three of 11 giraffes (Giraffa camelopardalis) (27%), 1 of 5 wolves (Canis lupus laniger) (20%), 1 of 6 hippopotamuses (Hippopotamus amphibious) (17%), and 2 of 9 tundra swans (Cygnus columbianus) (22%) were found to be positive. No antibodies were detected in leopards (Panthera pardus), wild geese (Anser cygnoides), and Eastern grey kangaroos (Macropus giganteus). Domestic species from 13 counties of Jiangxi Province, China were also investigated by an indirect hemagglutination (IHA) test. Thirty-five of 340 goats (10%), 94 of 560 water buffaloes (17%), and 4 of 35 cattle (11%) were found to be seropositive. This is the first report of T. gondii infection in animals kept in zoos and domestic animals in this province. PMID:28224883

  19. Plasma endotoxin activity in Eastern grey kangaroos (Macropus giganteus) with lumpy jaw disease.

    PubMed

    Sotohira, Yukari; Suzuki, Kazuyuki; Otsuka, Marina; Tsuchiya, Masakazu; Shimamori, Toshio; Nishi, Yasunobu; Tsukano, Kenji; Asakawa, Mitsuhiko

    2017-06-29

    Progressive pyogranulomatous osteomyelitis involving the mandible or maxilla of captive macropods, referred to as "Lumpy jaw disease (LJD)", is one of the most significant causes of illness and death in captive macropods. The aim of the present study was to evaluate the relationship between the severity of LJD and plasma endotoxin activity in kangaroos. Plasma samples obtained from moderate (n=24) and severe LJD (n=12), and healthy kangaroos (n=46), were diluted 1:20 in endotoxin-free water and heated to 80°C for 10 min. Plasma endotoxin activity was measured using the Limulus amebocyte lysate (LAL)-kinetic turbidimetric (KT) assay. Plasma endotoxin activity was higher in kangaroos with severe LJD (0.199 ± 0.157 EU/ml) than in those with moderate LJD (0.051 ± 0.012 EU/ml, P<0.001) and healthy controls (0.057 ± 0.028 EU/ml, P<0.001). Our results suggest that the severity of LJD in captive macropods may be related to the plasma endotoxin activity.

  20. Meat quality attributes of Agile Wallabies.

    PubMed

    Geesink, Geert H; van den Heuvel, Aaron; Hunt, Warren

    2017-11-01

    Meat quality traits of Agile Wallaby (Macropus agilis) M. longissimus (loin) and M. semimembranosus (topside) were investigated. Both muscles exhibited a relatively high pH (>5.7) and dark colour (L*-, a*-, and b*-values). Aging the loins from 2 to 21days p.m. had a significant effect on shear force. However, the results regarding shear force, myofibrillar fragmentation index (MFI) and degradation of desmin and troponin-T suggested that the aging response largely occurred within 2days p.m. Suspension of carcasses from one leg resulted in a side effect on shear force of the loin at 2 and 7days p.m., but not on sarcomere length or MFI. Topsides from the free hanging leg exhibited lower shear force values (33 vs 42N) and greater sarcomere lengths (2.51 vs 1.84μM). Tenderness, juiciness, flavour and overall liking were higher for loins than topsides. Sensory scores for the loin and topside were slightly lower and similar, respectively, to those reported for lamb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Plasma endotoxin activity in Eastern grey kangaroos (Macropus giganteus) with lumpy jaw disease

    PubMed Central

    SOTOHIRA, Yukari; SUZUKI, Kazuyuki; OTSUKA, Marina; TSUCHIYA, Masakazu; SHIMAMORI, Toshio; NISHI, Yasunobu; TSUKANO, Kenji; ASAKAWA, Mitsuhiko

    2017-01-01

    Progressive pyogranulomatous osteomyelitis involving the mandible or maxilla of captive macropods, referred to as “Lumpy jaw disease (LJD)”, is one of the most significant causes of illness and death in captive macropods. The aim of the present study was to evaluate the relationship between the severity of LJD and plasma endotoxin activity in kangaroos. Plasma samples obtained from moderate (n=24) and severe LJD (n=12), and healthy kangaroos (n=46), were diluted 1:20 in endotoxin-free water and heated to 80°C for 10 min. Plasma endotoxin activity was measured using the Limulus amebocyte lysate (LAL)-kinetic turbidimetric (KT) assay. Plasma endotoxin activity was higher in kangaroos with severe LJD (0.199 ± 0.157 EU/ml) than in those with moderate LJD (0.051 ± 0.012 EU/ml, P<0.001) and healthy controls (0.057 ± 0.028 EU/ml, P<0.001). Our results suggest that the severity of LJD in captive macropods may be related to the plasma endotoxin activity. PMID:28484148

  2. Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus).

    PubMed

    Kram, R; Dawson, T J

    1998-05-01

    As red kangaroos hop faster over level ground, their rate of oxygen consumption (indicating metabolic energy consumption) remains nearly the same. This phenomenon has been attributed to exceptional elastic energy storage and recovery via long compliant tendons in the legs. Alternatively, red kangaroos may have exceptionally efficient muscles. To estimate efficiency, we measured the metabolic cost of uphill hopping, where muscle fibers must perform mechanical work against gravity. We found that uphill hopping was much more expensive than level hopping. The maximal rate of oxygen consumption measured (3 ml O2 kg-1 s-1) exceeds all but a few vertebrate species. However, efficiency values were normal, approximately 30%. At faster level hopping speeds the effective mechanical advantage of the extensor muscles of the ankle joint remained the same. Thus, kangaroos generate the same muscular force at all speeds but do so more rapidly at faster hopping speeds. This contradicts a recent hypothesis for what sets the cost of locomotion. The cost of transport (J kg-1 m-1) decreases at faster hopping speeds, yet red kangaroos prefer to use relatively slow speeds that avoid high levels of tendon stress.

  3. Circulating levels of prolactin and progesterone in a wild population of red kangaroos (Macropus rufus) Marsupialia: Macropodidae

    USGS Publications Warehouse

    Muths, E.; Hinds, L. A.

    1996-01-01

    Circulating progesterone and prolactin levels were measured in shot and live-caught wild red kangaroos using radioimmunoassays validated for the red kangaroo. The objective of the study was to correlate hormone profiles with reproductive status and determine if red kangaroos follow the general pattern elucidated for other macropodids. During Phase 2a lactation (<70 days) plasma progesterone concentrations were <189 pg/ml (n= 41). This value increased to >600 pg/ml (n= 32) during the transition to Phase 3 lactation (181 to 235 days) when the quiescent corpus luteum and embryo were reactivated. Progesterone concentrations then decreased to <300 pg/ml (n= 29) during dual lactation when females were suckling a neonate and a young at foot. Concentrations of prolactin during Phase 2a were <6 ng/ml (n= 17). Coincident with the period of reactivation of the diapausing blastocyst (181 to 235 days), plasma prolactin concentrations increased to 15 ng/ml (n= 32), then decreased and remained low through the subsequent stage of dual lactation. These results indicate that progesterone and prolactin profiles in wild red kangaroos follow patterns found previously in other macropodid species, the tammar and Bennett's wallabies.

  4. Arbovirus models to provide practical management tools for mosquito control and disease prevention in the Northern Territory, Australia.

    PubMed

    Jacups, Susan P; Whelan, Peter I; Harley, David

    2011-03-01

    Ross River virus (RRV) causes the most common human arbovirus disease in Australia. Although the disease is nonfatal, the associated arthritis and postinfection fatigue can be debilitating for many months, impacting on workforce participation. We sought to create an early-warning system to notify of approaching RRV disease outbreak conditions for major townships in the Northern Territory. By applying a logistic regression model to meteorologic factors, including rainfall, a postestimation analysis of sensitivity and specificity can create rainfall cut-points. These rainfall cut-points indicate the rainfall level above which previous epidemic conditions have occurred. Furthermore, rainfall cut-points indirectly adjust for vertebrate host data from the agile wallaby (Macropus agilis) as the life cycle of the agile wallaby is intricately meshed with the wet season. Once generated, cut-points can thus be used prospectively to allow timely implementation of larval survey and control measures and public health warnings to preemptively reduce RRV disease incidence. Cut-points are location specific and have the capacity to replace previously used models, which require data management and input, and rarely provide timely notification for vector control requirements and public health warnings. These methods can be adapted for use elsewhere.

  5. Effect of beta-antagonists on isoprenaline-induced secretion of fluid, amylase and protein by the parotid gland of the red kangaroo, Macropus rufus.

    PubMed

    Beal, A M

    2000-02-01

    Selective and non-selective beta-adrenoceptor antagonists were used to block the increases in fluid, protein and amylase secretion caused by sympathomimetic stimulation of the parotid gland of red kangaroos during intracarotid infusion of isoprenaline. ICI118551 at antagonist/agonist ratios up to 300:1 caused increasing but incomplete blockade of fluid secretion, and protein/amylase release. Atenolol at antagonist/agonist ratios up to 300:1 was only marginally more potent than ICI118551 at blocking the fluid, protein and amylase responses. Propranolol at antagonist/agonist ratios of 30:1 was as effective at blocking fluid and protein secretion as the highest ratios of either atenolol or ICI118551. Simultaneous administration of atenolol (30:1) with ICI118551 (30:1) was not as potent as propranolol (30:1). Thus, the beta-adrenoceptor/s in the acini of the kangaroo parotid gland appear to have antagonist-binding affinities atypical of those found for eutherian tissues. The data are consistent with the gland possessing either a single anomalous beta-adrenoceptor or functional beta(2)-receptors in addition to the beta(1)-receptors which are characteristic of eutherian salivary glands.

  6. Histology and immunohistochemistry of the gut-associated lymphoid tissue of the eastern grey kangaroo, Macropus giganteus.

    PubMed

    Old, J M; Deane, E M

    2001-12-01

    Mesenteric lymph nodes and gut-associated lymphoid tissue (GALT) from juvenile eastern grey kangaroos were investigated. The mesenteric nodes had a similar structure to that described for eutherian mammals. They contained distinct regions of medulla and cortex, with prominent follicles and germinal centres. Gut associated lymphoid tissue consisted of areas of submucosal follicles. These varied from areas of densely packed lymphocytes with darkly staining, prominent coronas to areas with no defined follicles. The distribution of T cells in these tissues was documented by use of species-crossreactive antibodies to the surface markers CD3 and CD5; B cells were identified by antibodies to CD79b. Within the lymph nodes T cells were located mainly in the paracortex and cortex, with limited numbers observed in the follicles; B cells were located on the marginal zone of the follicles. In GALT, T cells were located in the peripheral regions of the germinal centres of secondary follicles, while B cells were abundant in primary follicles. These observations are consistent with those made in a range of other marsupials (metatherian) and eutherian mammals and are indicative of the capacity to respond to antigens entering via the mouth.

  7. Experimental manipulation reveals few subclinical impacts of a parasite community in juvenile kangaroos

    PubMed Central

    Cripps, Jemma; Beveridge, Ian; Ploeg, Richard; Coulson, Graeme

    2014-01-01

    Large mammalian herbivores are commonly infected with gastrointestinal helminths. In many host species, these helminths cause clinical disease and may trigger conspicuous mortality events. However, they may also have subclinical impacts, reducing fitness as well as causing complex changes to host growth patterns and body condition. Theoretically, juveniles should experience significantly greater costs from parasites, being immunologically naive and undergoing a significant growth phase. The aims of our study were to quantify the subclinical effects of helminths in juvenile eastern grey kangaroos (Macropus giganteus), which commonly harbour large burdens of gastrointestinal nematodes and are susceptible to associated mass mortality during cold, wet conditions. We conducted a field experiment on a population of free-ranging kangaroos, removing nematodes from one group of juveniles using an anthelmintic treatment. We then compared growth parameters (body condition and growth rates) and haematological parameters of this group with an age-matched, parasitised (untreated) control group. Treated juvenile kangaroos had significantly higher levels of plasma protein (albumin) but, contrary to our predictions, showed negligible changes in all the other parameters measured. Our results suggest that juvenile kangaroos are largely unaffected by their gastrointestinal helminth burdens, and may be able to compensate for the costs of parasites. PMID:25161906

  8. Skeletal fluorosis in marsupials: A comparison of bone lesions in six species from an Australian industrial site.

    PubMed

    Death, Clare; Coulson, Graeme; Kierdorf, Uwe; Kierdorf, Horst; Ploeg, Richard; Firestone, Simon M; Dohoo, Ian; Hufschmid, Jasmin

    2017-04-15

    In this study we explored the prevalence, type, location and severity of skeletal lesions in six species of Australian marsupial (Macropus giganteus, Notamacropus rufogriseus, Wallabia bicolor, Phascolarctos cinereus, Trichosurus vulpecula and Pseudocheirus peregrinus) from high and low-fluoride environments. Lesions occurred to varying extents in all species, and lesion distribution varied with biomechanical differences in gait and mastication. Bone fluoride levels increased with severity of periosteal hyperostosis. The mean bone fluoride concentration of individuals lacking hyperostosis (across all species, from both high and low-fluoride environments) was 1100±260μgF - /g dry bone, compared to 4300±1200μgF - /g and 6300±1200μgF - /g in those with mild and severe grade hyperostosis, respectively. Multivariable modelling showed that the probability of observing a lesion varied across species, anatomical location, age and bone fluoride concentration (in a non-linear manner). The pathological changes reported in the marsupials are consistent with the range of fluoride-related lesions described in other mammals, and biomechanical differences among the studied marsupial species offer some explanation for the degree of interspecific variability in prevalence, type, anatomical location, and severity of the lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Purification, amino acid sequence and characterisation of kangaroo IGF-I.

    PubMed

    Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z

    1998-01-01

    Insulin-like growth factor-I (IGF-I) and IGF-II have been purified to homogeneity from kangaroo (Macropus fuliginosus) serum, thus this represents the first report of the purification, sequencing and characterisation of marsupial IGFs. N-Terminal protein sequencing reveals that there are six amino acid differences between kangaroo and human IGF-I. Kangaroo IGF-II has been partially sequenced and no differences were found between human and kangaroo IGF-II in the 53 residues identified. Thus the IGFs appear to be remarkably structurally conserved during mammalian radiation. In addition, in vitro characterisation of kangaroo IGF-I demonstrated that the functional properties of human, kangaroo and chicken IGF-I are very similar. In an assay measuring the ability of the proteins to stimulate protein synthesis in rat L6 myoblasts, all IGF-I proteins were found to be equally potent. The ability of all three proteins to compete for binding with radiolabelled human IGF-I to type-1 IGF receptors in L6 myoblasts and in Sminthopsis crassicaudata transformed lung fibroblasts, a marsupial cell line, was comparable. Furthermore, kangaroo and human IGF-I react equally in a human IGF-I RIA using a human reference standard, radiolabelled human IGF-I and a polyclonal antibody raised against recombinant human IGF-I. This study indicates that not only is the primary structure of eutherian and metatherian IGF-I conserved, but also the proteins appear to be functionally similar.

  10. Immunocontraception of Eastern Grey kangaroos (Macropus giganteus) with recombinant brushtail possum (Trichosurus vulpecula) ZP3 protein.

    PubMed

    Kitchener, Anne L; Harman, Amanda; Kay, David J; McCartney, Carmen A; Mate, Karen E; Rodger, John C

    2009-01-01

    This study examined the potential of a recombinant marsupial zona pellucida 3 protein as a contraceptive vaccine for the Eastern Grey kangaroo, a marsupial that is locally overabundant in several regions of eastern Australia. First, a pilot study using porcine zona pellucidae (PZP) demonstrated that ZP proteins, primarily the ZP3 component of PZP, are highly immunogenic in the grey kangaroo and produce a long-lasting humoral response to a single immunisation, as found in other marsupials. Immunisation with 300 microg of a non-glycosylated recombinant brushtail possum ZP3 (recBP-ZP3) protein in complete Freund's adjuvant produced a similar, significant and sustained antibody response, and none of the immunised kangaroos (n=7) produced offspring during the following breeding season compared with four out of the six control animals. An epitope analysis of the B-cell response to recBP-ZP3 using a brushtail possum ZP3 identified numerous B-cell epitope regions clustered around the N- and C-terminal regions of the protein. Two regions of interest for further fertility vaccine development based on their immunogenicity and fertility trials and functional studies in other species were found to be immunogenic. These results suggest that immunocontraception based on targeting the ZP3 protein within the zona pellucida may be an effective strategy for fertility reduction in Eastern Grey kangaroos.

  11. Adapting to the unpredictable: reproductive biology of vertebrates in the Australian wet-dry tropics.

    PubMed

    Shine, Richard; Brown, Gregory P

    2008-01-27

    In the wet-dry tropics of northern Australia, temperatures are high and stable year-round but monsoonal rainfall is highly seasonal and variable both annually and spatially. Many features of reproduction in vertebrates of this region may be adaptations to dealing with this unpredictable variation in precipitation, notably by (i) using direct proximate (rainfall-affected) cues to synchronize the timing and extent of breeding with rainfall events, (ii) placing the eggs or offspring in conditions where they will be buffered from rainfall extremes, and (iii) evolving developmental plasticity, such that the timing and trajectory of embryonic differentiation flexibly respond to local conditions. For example, organisms as diverse as snakes (Liasis fuscus, Acrochordus arafurae), crocodiles (Crocodylus porosus), birds (Anseranas semipalmata) and wallabies (Macropus agilis) show extreme annual variation in reproductive rates, linked to stochastic variation in wet season rainfall. The seasonal timing of initiation and cessation of breeding in snakes (Tropidonophis mairii) and rats (Rattus colletti) also varies among years, depending upon precipitation. An alternative adaptive route is to buffer the effects of rainfall variability on offspring by parental care (including viviparity) or by judicious selection of nest sites in oviparous taxa without parental care. A third type of adaptive response involves flexible embryonic responses (including embryonic diapause, facultative hatching and temperature-dependent sex determination) to incubation conditions, as seen in squamates, crocodilians and turtles. Such flexibility fine-tunes developmental rates and trajectories to conditions--especially, rainfall patterns--that are not predictable at the time of oviposition.

  12. Prey use by dingoes in a contested landscape: Ecosystem service provider or biodiversity threat?

    PubMed

    Morrant, Damian S; Wurster, Christopher M; Johnson, Christopher N; Butler, James R A; Congdon, Bradley C

    2017-11-01

    In Australia, dingoes ( Canis lupus dingo ) have been implicated in the decline and extinction of a number of vertebrate species. The lowland Wet Tropics of Queensland, Australia is a biologically rich area with many species of rainforest-restricted vertebrates that could be threatened by dingoes; however, the ecological impacts of dingoes in this region are poorly understood. We determined the potential threat posed by dingoes to native vertebrates in the lowland Wet Tropics using dingo scat/stomach content and stable isotope analyses of hair from dingoes and potential prey species. Common mammals dominated dingo diets. We found no evidence of predation on threatened taxa or rainforest specialists within our study areas. The most significant prey species were northern brown bandicoots ( Isoodon macrourus ), canefield rats ( Rattus sordidus ), and agile wallabies ( Macropus agilis ). All are common species associated with relatively open grass/woodland habitats. Stable isotope analysis suggested that prey species sourced their nutrients primarily from open habitats and that prey choice, as identified by scat/stomach analysis alone, was a poor indicator of primary foraging habitats. In general, we find that prey use by dingoes in the lowland Wet Tropics does not pose a major threat to native and/or threatened fauna, including rainforest specialists. In fact, our results suggest that dingo predation on "pest" species may represent an important ecological service that outweighs potential biodiversity threats. A more targeted approach to managing wild canids is needed if the ecosystem services they provide in these contested landscapes are to be maintained, while simultaneously avoiding negative conservation or economic impacts.

  13. PULMONARY ARTERIAL DISEASE ASSOCIATED WITH RIGHT-SIDED CARDIAC HYPERTROPHY AND CONGESTIVE HEART FAILURE IN ZOO MAMMALS HOUSED AT 2,100 M ABOVE SEA LEVEL.

    PubMed

    Juan-Sallés, Carles; Martínez, Liliana Sofía; Rosas-Rosas, Arely G; Parás, Alberto; Martínez, Osvaldo; Hernández, Alejandra; Garner, Michael M

    2015-12-01

    Subacute and chronic mountain sickness of humans and the related brisket disease of cattle are characterized by right-sided congestive heart failure in individuals living at high altitudes as a result of sustained hypoxic pulmonary hypertension. Adaptations to high altitude and disease resistance vary among species, breeds, and individuals. The authors conducted a retrospective survey of right-sided cardiac hypertrophy associated with pulmonary arterial hypertrophy or arteriosclerosis in zoo mammals housed at Africam Safari (Puebla, México), which is located at 2,100 m above sea level. Seventeen animals with detailed pathology records matched the study criterion. Included were 10 maras (Dolichotis patagonum), 2 cotton-top tamarins (Saguinus oedipus oedipus), 2 capybaras (Hydrochaeris hydrochaeris), and 1 case each of Bennet's wallaby (Macropus rufogriseus), nilgai antelope (Boselaphus tragocamelus), and scimitar-horned oryx (Oryx dammah). All had right-sided cardiac hypertrophy and a variety of arterial lesions restricted to the pulmonary circulation and causing arterial thickening with narrowing of the arterial lumen. Arterial lesions most often consisted of medial hypertrophy or hyperplasia of small and medium-sized pulmonary arteries. All maras also had single or multiple elevated plaques in the pulmonary arterial trunk consisting of fibrosis, accompanied by chondroid metaplasia in some cases. Both antelopes were juvenile and died with right-sided congestive heart failure associated with severe pulmonary arterial lesions. To the authors' knowledge, this is the first description of cardiac and pulmonary arterial disease in zoo mammals housed at high altitudes.

  14. Selective stimulation and blockade of beta-adrenergic receptors in the mandibular gland of the red kangaroo, Macropus rufus.

    PubMed

    Beal, A M

    2000-12-01

    Intracarotid infusions of noradrenaline (0.15 nmol x kg(-1) x min(-1)) either alone or accompanied by phentolamine (1.5 nmol x kg(-1) x min(-1)) caused similar-sized increases in salivary protein, magnesium and bicarbonate, and decreases in osmolality, sodium, potassium and chloride whereas intravenous noradrenaline stimulated much smaller responses. Concurrent infusions of the beta1-antagonist, CGP20712A, blocked these noradrenaline-induced changes in salivary composition more effectively than equimolar infusions of the beta2-antagonist, ICI118551, thereby confirming the presence of beta1-adrenoceptors. Intracarotid infusion of salbutamol at 0.15, 0.3 and 1.5 nmol x kg(-1) x min(-1) caused increasing but qualitatively similar changes in salivary composition, sodium excepted, to intracarotid noradrenaline with 0.3 nmol being most similar quantitatively. Intravenous infusion of salbutamol caused larger changes in salivary composition than equimolar intravenous noradrenaline thereby indicating that the response to salbutamol may, in part, be mediated by reflex increases in general sympathetic tone triggered by lowered blood pressure. Eliminating this hypotensive effect by concurrent intravenous and intracarotid infusions of beta1-(CGP or atenolol) and beta2-(ICII18551) antagonists with intracarotid salbutamol showed that IC1118551 was more potent than the beta1-antagonists thereby demonstrating the presence of beta2-receptors. It was concluded that the kangaroo mandibular has functional beta1- and beta2-adrenoceptor subtypes in both endpieces and excurrent ducts and that the duct system has two populations of cells, each expressing one receptor subtype.

  15. Reconstructing temporal variation of fluoride uptake in eastern grey kangaroos (Macropus giganteus) from a high-fluoride area by analysis of fluoride distribution in dentine.

    PubMed

    Kierdorf, Horst; Rhede, Dieter; Death, Clare; Hufschmid, Jasmin; Kierdorf, Uwe

    2016-04-01

    Trace element profiling in the incrementally formed dentine of mammalian teeth can be applied to reconstruct temporal variation of incorporation of these elements into the tissue. Using an electron microprobe, this study analysed fluoride distribution in dentine of first and third mandibular molars of free-ranging eastern grey kangaroos inhabiting a high-fluoride area, to assess temporal variation in fluoride uptake of the animals. Fluoride content in the early-formed dentine of first molars was significantly lower than in the late-formed dentine of these teeth, and was also lower than in both, the early and the late-formed dentine of third molars. As early dentine formation in M1 takes place prior to weaning, this finding indicates a lower dentinal fluoride uptake during the pre-weaning compared to the post-weaning period. This is hypothetically attributed to the action of a partial barrier to fluoride transfer from blood to milk in lactating females and a low bioavailability of fluoride ingested together with milk. Another factor contributing to lower plasma fluoride levels in juveniles compared to adults is the rapid clearance of fluoride from blood plasma in the former due to their intense skeletal growth. The combined action of these mechanisms is considered to explain why in kangaroos from high-fluoride areas, the (early-formed) first molars are not affected by dental fluorosis while the (later-formed) third and fourth molars regularly exhibit marked to severe fluorotic lesions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Differences down-under: alcohol-fueled methanogenesis by archaea present in Australian macropodids

    PubMed Central

    Hoedt, Emily C; Cuív, Páraic Ó; Evans, Paul N; Smith, Wendy J M; McSweeney, Chris S; Denman, Stuart E; Morrison, Mark

    2016-01-01

    The Australian macropodids (kangaroos and wallabies) possess a distinctive foregut microbiota that contributes to their reduced methane emissions. However, methanogenic archaea are present within the macropodid foregut, although there is scant understanding of these microbes. Here, an isolate taxonomically assigned to the Methanosphaera genus (Methanosphaera sp. WGK6) was recovered from the anterior sacciform forestomach contents of a Western grey kangaroo (Macropus fuliginosus). Like the human gut isolate Methanosphaera stadtmanae DSMZ 3091T, strain WGK6 is a methylotroph with no capacity for autotrophic growth. In contrast, though with the human isolate, strain WGK6 was found to utilize ethanol to support growth, but principally as a source of reducing power. Both the WGK6 and DSMZ 3091T genomes are very similar in terms of their size, synteny and G:C content. However, the WGK6 genome was found to encode contiguous genes encoding putative alcohol and aldehyde dehydrogenases, which are absent from the DSMZ 3091T genome. Interestingly, homologs of these genes are present in the genomes for several other members of the Methanobacteriales. In WGK6, these genes are cotranscribed under both growth conditions, and we propose the two genes provide a plausible explanation for the ability of WGK6 to utilize ethanol for methanol reduction to methane. Furthermore, our in vitro studies suggest that ethanol supports a greater cell yield per mol of methane formed compared to hydrogen-dependent growth. Taken together, this expansion in metabolic versatility can explain the persistence of these archaea in the kangaroo foregut, and their abundance in these ‘low-methane-emitting' herbivores. PMID:27022996

  17. Differences down-under: alcohol-fueled methanogenesis by archaea present in Australian macropodids.

    PubMed

    Hoedt, Emily C; Cuív, Páraic Ó; Evans, Paul N; Smith, Wendy J M; McSweeney, Chris S; Denman, Stuart E; Morrison, Mark

    2016-10-01

    The Australian macropodids (kangaroos and wallabies) possess a distinctive foregut microbiota that contributes to their reduced methane emissions. However, methanogenic archaea are present within the macropodid foregut, although there is scant understanding of these microbes. Here, an isolate taxonomically assigned to the Methanosphaera genus (Methanosphaera sp. WGK6) was recovered from the anterior sacciform forestomach contents of a Western grey kangaroo (Macropus fuliginosus). Like the human gut isolate Methanosphaera stadtmanae DSMZ 3091(T), strain WGK6 is a methylotroph with no capacity for autotrophic growth. In contrast, though with the human isolate, strain WGK6 was found to utilize ethanol to support growth, but principally as a source of reducing power. Both the WGK6 and DSMZ 3091(T) genomes are very similar in terms of their size, synteny and G:C content. However, the WGK6 genome was found to encode contiguous genes encoding putative alcohol and aldehyde dehydrogenases, which are absent from the DSMZ 3091(T) genome. Interestingly, homologs of these genes are present in the genomes for several other members of the Methanobacteriales. In WGK6, these genes are cotranscribed under both growth conditions, and we propose the two genes provide a plausible explanation for the ability of WGK6 to utilize ethanol for methanol reduction to methane. Furthermore, our in vitro studies suggest that ethanol supports a greater cell yield per mol of methane formed compared to hydrogen-dependent growth. Taken together, this expansion in metabolic versatility can explain the persistence of these archaea in the kangaroo foregut, and their abundance in these 'low-methane-emitting' herbivores.

  18. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    PubMed

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  19. Empirical tests of harvest-induced body-size evolution along a geographic gradient in Australian macropods.

    PubMed

    Prowse, Thomas A A; Correll, Rachel A; Johnson, Christopher N; Prideaux, Gavin J; Brook, Barry W

    2015-01-01

    Life-history theory predicts the progressive dwarfing of animal populations that are subjected to chronic mortality stress, but the evolutionary impact of harvesting terrestrial herbivores has seldom been tested. In Australia, marsupials of the genus Macropus (kangaroos and wallabies) are subjected to size-selective commercial harvesting. Mathematical modelling suggests that harvest quotas (c. 10-20% of population estimates annually) could be driving body-size evolution in these species. We tested this hypothesis for three harvested macropod species with continental-scale distributions. To do so, we measured more than 2000 macropod skulls sourced from wildlife collections spanning the last 130 years. We analysed these data using spatial Bayesian models that controlled for the age and sex of specimens as well as environmental drivers and island effects. We found no evidence for the hypothesized decline in body size for any species; rather, models that fit trend terms supported minor body size increases over time. This apparently counterintuitive result is consistent with reduced mortality due to a depauperate predator guild and increased primary productivity of grassland vegetation following European settlement in Australia. Spatial patterns in macropod body size supported the heat dissipation limit and productivity hypotheses proposed to explain geographic body-size variation (i.e. skull size increased with decreasing summer maximum temperature and increasing rainfall, respectively). There is no empirical evidence that size-selective harvesting has driven the evolution of smaller body size in Australian macropods. Bayesian models are appropriate for investigating the long-term impact of human harvesting because they can impute missing data, fit nonlinear growth models and account for non-random spatial sampling inherent in wildlife collections. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  20. Pliocene Paleoenvironments of Southeastern Queensland, Australia Inferred from Stable Isotopes of Marsupial Tooth Enamel

    PubMed Central

    Montanari, Shaena; Louys, Julien; Price, Gilbert J.

    2013-01-01

    The Chinchilla Local Fauna is a diverse assemblage of both terrestrial and aquatic Pliocene vertebrates from the fluviatile Chinchilla Sand deposits of southeastern Queensland, Australia. It represents one of Australia's few but exceptionally rich Pliocene vertebrate localities, and as such is an important source of paleoecological data concerning Pliocene environmental changes and its effects on ecosystems. Prior inferences about the paleoenvironment of this locality made on the basis of qualitative observations have ranged from grassland to open woodland to wetland. Examination of the carbon and oxygen isotopes in the tooth enamel of marsupials from this site represents a quantitative method for inferring the paleoenvironments and paleoecology of the fossil fauna. Results from Chinchilla show that Protemnodon sp. indet. consumed both C3 and C4 photosynthesis plant types (mean δ13C = −14.5±2.0‰), and therefore probably occupied a mixed vegetation environment. Macropus sp. indet. from Chinchilla also consumed a mixed diet of both C3 and C4 plants, with more of a tendency for C4 plant consumption (mean δ13C = −10.3±2.3‰). Interestingly, their isotopic dietary signature is more consistent with tropical and temperate kangaroo communities than the sub-tropical communities found around Chinchilla today. Other genera sampled in this study include the extinct kangaroo Troposodon sp. indet. and the fossil diprotodontid Euryzygoma dunense each of which appear to have occupied distinct dietary niches. This study suggests that southeastern Queensland hosted a mosaic of tropical forests, wetlands and grasslands during the Pliocene and was much less arid than previously thought. PMID:23776636

  1. Eaten Out of House and Home: Impacts of Grazing on Ground-Dwelling Reptiles in Australian Grasslands and Grassy Woodlands

    PubMed Central

    Howland, Brett; Stojanovic, Dejan; Gordon, Iain J.; Manning, Adrian D.; Fletcher, Don; Lindenmayer, David B.

    2014-01-01

    Large mammalian grazers can alter the biotic and abiotic features of their environment through their impacts on vegetation. Grazing at moderate intensity has been recommended for biodiversity conservation. Few studies, however, have empirically tested the benefits of moderate grazing intensity in systems dominated by native grazers. Here we investigated the relationship between (1) density of native eastern grey kangaroos, Macropus giganteus, and grass structure, and (2) grass structure and reptiles (i.e. abundance, richness, diversity and occurrence) across 18 grassland and grassy Eucalyptus woodland properties in south-eastern Australia. There was a strong negative relationship between kangaroo density and grass structure after controlling for tree canopy cover. We therefore used grass structure as a surrogate for grazing intensity. Changes in grazing intensity (i.e. grass structure) significantly affected reptile abundance, reptile species richness, reptile species diversity, and the occurrence of several ground-dwelling reptiles. Reptile abundance, species richness and diversity were highest where grazing intensity was low. Importantly, no species of reptile was more likely to occur at high grazing intensities. Legless lizards (Delma impar, D. inornata) were more likely to be detected in areas subject to moderate grazing intensity, whereas one species (Hemiergis talbingoensis) was less likely to be detected in areas subject to intense grazing and three species (Menetia greyii, Morethia boulengeri, and Lampropholis delicata) did not appear to be affected by grazing intensity. Our data indicate that to maximize reptile abundance, species richness, species diversity, and occurrence of several individual species of reptile, managers will need to subject different areas of the landscape to moderate and low grazing intensities and limit the occurrence and extent of high grazing. PMID:25501680

  2. Prevalence and Clinical Significance of Herpesvirus Infection in Populations of Australian Marsupials.

    PubMed

    Stalder, Kathryn; Vaz, Paola K; Gilkerson, James R; Baker, Rupert; Whiteley, Pam; Ficorilli, Nino; Tatarczuch, Liliana; Portas, Timothy; Skogvold, Kim; Anderson, Garry A; Devlin, Joanne M

    2015-01-01

    Herpesviruses have been reported in several marsupial species, but molecular classification has been limited to four herpesviruses in macropodids, a gammaherpesvirus in two antechinus species (Antechinus flavipes and Antechinus agilis), a gammaherpesvirus in a potoroid, the eastern bettong (Bettongia gaimardi) and two gammaherpesviruses in koalas (Phascolarctos cinereus). In this study we examined a range of Australian marsupials for the presence of herpesviruses using molecular and serological techniques, and also assessed risk factors associated with herpesvirus infection. Our study population included 99 koalas (Phascolarctos cinereus), 96 eastern grey kangaroos (Macropus giganteus), 50 Tasmanian devils (Sarcophilus harrisii) and 33 common wombats (Vombatus ursinius). In total, six novel herpesviruses (one alphaherpesvirus and five gammaherpesviruses) were identified in various host species. The overall prevalence of detection of herpesvirus DNA in our study population was 27.2% (95% confidence interval (CI) of 22.6-32.2%), but this varied between species and reached as high as 45.4% (95% CI 28.1-63.7%) in common wombats. Serum antibodies to two closely related macropodid herpesviruses (macropodid herpesvirus 1 and 2) were detected in 44.3% (95% CI 33.1-55.9%) of animals tested. This also varied between species and was as high as 92% (95% CI 74.0-99.0%) in eastern grey kangaroos. A number of epidemiological variables were identified as positive predictors for the presence of herpesvirus DNA in the marsupial samples evaluated. The most striking association was observed in koalas, where the presence of Chlamydia pecorum DNA was strongly associated with the presence of herpesvirus DNA (Odds Ratio = 60, 95% CI 12.1-297.8). Our results demonstrate the common presence of herpesviruses in Australian marsupials and provide directions for future research.

  3. Prevalence and Clinical Significance of Herpesvirus Infection in Populations of Australian Marsupials

    PubMed Central

    Stalder, Kathryn; Vaz, Paola K.; Gilkerson, James R.; Baker, Rupert; Whiteley, Pam; Ficorilli, Nino; Tatarczuch, Liliana; Portas, Timothy; Skogvold, Kim; Anderson, Garry A.; Devlin, Joanne M.

    2015-01-01

    Herpesviruses have been reported in several marsupial species, but molecular classification has been limited to four herpesviruses in macropodids, a gammaherpesvirus in two antechinus species (Antechinus flavipes and Antechinus agilis), a gammaherpesvirus in a potoroid, the eastern bettong (Bettongia gaimardi) and two gammaherpesviruses in koalas (Phascolarctos cinereus). In this study we examined a range of Australian marsupials for the presence of herpesviruses using molecular and serological techniques, and also assessed risk factors associated with herpesvirus infection. Our study population included 99 koalas (Phascolarctos cinereus), 96 eastern grey kangaroos (Macropus giganteus), 50 Tasmanian devils (Sarcophilus harrisii) and 33 common wombats (Vombatus ursinius). In total, six novel herpesviruses (one alphaherpesvirus and five gammaherpesviruses) were identified in various host species. The overall prevalence of detection of herpesvirus DNA in our study population was 27.2% (95% confidence interval (CI) of 22.6–32.2%), but this varied between species and reached as high as 45.4% (95% CI 28.1–63.7%) in common wombats. Serum antibodies to two closely related macropodid herpesviruses (macropodid herpesvirus 1 and 2) were detected in 44.3% (95% CI 33.1–55.9%) of animals tested. This also varied between species and was as high as 92% (95% CI 74.0–99.0%) in eastern grey kangaroos. A number of epidemiological variables were identified as positive predictors for the presence of herpesvirus DNA in the marsupial samples evaluated. The most striking association was observed in koalas, where the presence of Chlamydia pecorum DNA was strongly associated with the presence of herpesvirus DNA (Odds Ratio = 60, 95% CI 12.1–297.8). Our results demonstrate the common presence of herpesviruses in Australian marsupials and provide directions for future research. PMID:26222660

  4. Eaten out of house and home: impacts of grazing on ground-dwelling reptiles in Australian grasslands and grassy woodlands.

    PubMed

    Howland, Brett; Stojanovic, Dejan; Gordon, Iain J; Manning, Adrian D; Fletcher, Don; Lindenmayer, David B

    2014-01-01

    Large mammalian grazers can alter the biotic and abiotic features of their environment through their impacts on vegetation. Grazing at moderate intensity has been recommended for biodiversity conservation. Few studies, however, have empirically tested the benefits of moderate grazing intensity in systems dominated by native grazers. Here we investigated the relationship between (1) density of native eastern grey kangaroos, Macropus giganteus, and grass structure, and (2) grass structure and reptiles (i.e. abundance, richness, diversity and occurrence) across 18 grassland and grassy Eucalyptus woodland properties in south-eastern Australia. There was a strong negative relationship between kangaroo density and grass structure after controlling for tree canopy cover. We therefore used grass structure as a surrogate for grazing intensity. Changes in grazing intensity (i.e. grass structure) significantly affected reptile abundance, reptile species richness, reptile species diversity, and the occurrence of several ground-dwelling reptiles. Reptile abundance, species richness and diversity were highest where grazing intensity was low. Importantly, no species of reptile was more likely to occur at high grazing intensities. Legless lizards (Delma impar, D. inornata) were more likely to be detected in areas subject to moderate grazing intensity, whereas one species (Hemiergis talbingoensis) was less likely to be detected in areas subject to intense grazing and three species (Menetia greyii, Morethia boulengeri, and Lampropholis delicata) did not appear to be affected by grazing intensity. Our data indicate that to maximize reptile abundance, species richness, species diversity, and occurrence of several individual species of reptile, managers will need to subject different areas of the landscape to moderate and low grazing intensities and limit the occurrence and extent of high grazing.

  5. Sounds scary? Lack of habituation following the presentation of novel sounds.

    PubMed

    Biedenweg, Tine A; Parsons, Michael H; Fleming, Patricia A; Blumstein, Daniel T

    2011-01-18

    Animals typically show less habituation to biologically meaningful sounds than to novel signals. We might therefore expect that acoustic deterrents should be based on natural sounds. We investigated responses by western grey kangaroos (Macropus fulignosus) towards playback of natural sounds (alarm foot stomps and Australian raven (Corvus coronoides) calls) and artificial sounds (faux snake hiss and bull whip crack). We then increased rate of presentation to examine whether animals would habituate. Finally, we varied frequency of playback to investigate optimal rates of delivery. Nine behaviors clustered into five Principal Components. PC factors 1 and 2 (animals alert or looking, or hopping and moving out of area) accounted for 36% of variance. PC factor 3 (eating cessation, taking flight, movement out of area) accounted for 13% of variance. Factors 4 and 5 (relaxing, grooming and walking; 12 and 11% of variation, respectively) discontinued upon playback. The whip crack was most evocative; eating was reduced from 75% of time spent prior to playback to 6% following playback (post alarm stomp: 32%, raven call: 49%, hiss: 75%). Additionally, 24% of individuals took flight and moved out of area (50 m radius) in response to the whip crack (foot stomp: 0%, raven call: 8% and 4%, hiss: 6%). Increasing rate of presentation (12x/min ×2 min) caused 71% of animals to move out of the area. The bull whip crack, an artificial sound, was as effective as the alarm stomp at eliciting aversive behaviors. Kangaroos did not fully habituate despite hearing the signal up to 20x/min. Highest rates of playback did not elicit the greatest responses, suggesting that 'more is not always better'. Ultimately, by utilizing both artificial and biological sounds, predictability may be masked or offset, so that habituation is delayed and more effective deterrents may be produced.

  6. A survey of Western Australian sheep, cattle and kangaroos to determine the prevalence of Coxiella burnetii.

    PubMed

    Banazis, Michael Janis; Bestall, Abbey Simone; Reid, Simon Andrew; Fenwick, Stan Gordon

    2010-07-14

    The objective of this study was to investigate the prevalence of Coxiella burnetii in two domestic ruminant species (cattle and sheep) and the western grey kangaroo (Macropus fuliginosus) in Western Australia (WA). The IDEXX CHEKiT Q Fever ELISA and CFT were used to test sera from 50 sheep and 329 head of cattle for anti-C. burnetii antibodies and 343 kangaroo sera were tested using an indirect ELISA developed specifically for this study. Faecal or urine samples collected from the same animals were tested with two PCR assays to identify active shedding of C. burnetii in excreta. Only two of the 379 ruminant sera had detectable levels of anti-C. burnetii antibodies according to the ELISA while the CFT did not detect any positive samples. In contrast 115 of the 343 western grey kangaroo serum samples were positive when tested with the antibody-ELISA. The first qPCR assay, targeting the IS1111a element, identified 41 of 379 ruminant and 42 of 343 kangaroo DNA samples as positive for C. burnetii DNA. The second qPCR, targeting the JB153-3 gene, identified nine C. burnetii DNA-positive ruminant samples and six positive kangaroo samples. Sequence comparisons showed high degrees of identity with C. burnetii. Isolation of C. burnetii from faeces was also attempted but was not successful. From the results presented here it appears that domestic ruminants may not be the most significant reservoir of C. burnetii in WA and that kangaroos may pose a significant threat for zoonotic transfer of this pathogen. (c) 2009 Elsevier B.V. All rights reserved.

  7. A continent-wide analysis of the shade requirements of red and western grey kangaroos

    PubMed Central

    Roberts, J. A.; Coulson, G.; Munn, A. J.; Kearney, M. R.

    2016-01-01

    ABSTRACT Foraging time may be constrained by a suite of phenomena including weather, which can restrict a species' activity and energy intake. This is recognized as pivotal for many species whose distributions are known to correlate with climate, including kangaroos, although such impacts are rarely quantified. We explore how differences in shade seeking, a thermoregulatory behavior, of 2 closely-related kangaroo species, Macropus rufus (red kangaroos) and M. fuliginosus (western grey kangaroos), might reflect differences in their distributions across Australia. We observed foraging and shade-seeking behavior in the field and, together with local weather observations, calculated threshold radiant temperatures (based on solar and infrared radiant heat loads) over which the kangaroos retreated to shade. We apply these calculated tolerance thresholds to hourly microclimatic estimates derived from daily-gridded weather data to predict activity constraints across the Australian continent over a 10-year period. M. fuliginosus spent more time than M. rufus in the shade (7.6 ± 0.7 h versus 6.4 ± 0.9 h) and more time foraging (11.8 ± 0.5 h vs. 10.0 ± 0.6 h), although total time resting was equivalent (∼8.2 h). M. rufus tolerated 19°C higher radiant temperatures than M. fuliginosus (89°C versus 70°C radiant temperature). Across Australia, we predicted M. fuliginosus to be more restricted to shade than M. rufus, with higher absolute shade requirements farther north. These results corroborate previous findings that M. rufus is more adept at dealing with heat than M. fuliginosus and indicate that M. rufus is less dependent on shade on a continental scale. PMID:27857963

  8. Sperm membrane fatty acid composition in the Eastern grey kangaroo (Macropus giganteus), koala (Phascolarctos cinereus), and common wombat (Vombatus ursinus) and its relationship to cold shock injury and cryopreservation success.

    PubMed

    Miller, R R; Sheffer, C J; Cornett, C L; McClean, R; MacCallum, C; Johnston, S D

    2004-10-01

    Marsupial spermatozoa tolerate cold shock well, but differ in cryopreservation tolerance. In an attempt to explain these phenomena, the fatty acid composition of the sperm membrane from caput and cauda epididymides of the Eastern grey kangaroo, koala, and common wombat was measured and membrane sterol levels were measured in cauda epididymidal spermatozoa. While species-related differences in the levels of linolenic acid (18:3, n-6) and arachidonic acid (20:4, n-6) were observed in caput epididymal spermatozoa, these differences failed to significantly alter the ratio of unsaturated/saturated membrane fatty acids. However in cauda epididymidal spermatozoa, the ratio of unsaturated/saturated membrane fatty acids in koala and kangaroo spermatozoa was approximately 7.6 and 5.2, respectively; substantially higher than any other mammalian species so far described. Koala spermatozoal membranes had a higher ratio of unsaturated/saturated membrane fatty acids than that of wombat spermatozoa (t = 3.81; df = 4; p < or = 0.02); however, there was no significant difference between wombat and kangaroo spermatozoa. The highest proportions of DHA (22:6, n-3), the predominant membrane fatty acid in cauda epididymidal spermatozoa, were found in wombat and koala spermatozoa. While species-related differences in membrane sterol levels (cholesterol and desmosterol) were observed in cauda epididymidal spermatozoa, marsupial membrane sterol levels are very low. Marsupial spermatozoal membrane analyses do not support the hypothesis that a high ratio of saturated/unsaturated membrane fatty acids and low membrane sterol levels predisposes spermatozoa to cold shock damage. Instead, cryogenic tolerance appears related to DHA levels.

  9. The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis

    PubMed Central

    2013-01-01

    Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691

  10. The use of in vitro transcription to probe regulatory functions of viral protein domains.

    PubMed

    Loewenstein, Paul M; Song, Chao-Zhong; Green, Maurice

    2007-01-01

    Adenoviruses (Ads), like other DNA tumor viruses, have evolved specific regulatory genes that facilitate virus replication by controlling the transcription of other viral genes as well as that of key cellular genes. In this regard, the E1A transcription unit contains multiple protein domains that can transcriptionally activate or repress cellular genes involved in the regulation of cell proliferation and cell differentiation. Studies using in vitro transcription have provided a basis for a molecular understanding of the interaction of viral regulatory proteins with the transcriptional machinery of the cell and continue to inform our understanding of transcription regulation. This chapter provides examples of the use of in vitro transcription to analyze transcriptional activation and transcriptional repression by purified, recombinant Ad E1A protein domains and single amino acid substitution mutants as well as the use of protein-affinity chromatography to identify host cell transcription factors involved in viral transcriptional regulation. A detailed description is provided of the methodology to prepare nuclear transcription extract, to prepare biologically active protein domains, to prepare affinity depleted transcription extracts, and to analyze transcription by primer extension and by run-off assay using naked DNA templates.

  11. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription

    PubMed Central

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription. PMID:25764111

  12. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos

    PubMed Central

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-01-01

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915

  13. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos.

    PubMed

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-04-20

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.

  14. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Hervé

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Poly A- transcripts expressed in HeLa cells.

    PubMed

    Wu, Qingfa; Kim, Yeong C; Lu, Jian; Xuan, Zhenyu; Chen, Jun; Zheng, Yonglan; Zhou, Tom; Zhang, Michael Q; Wu, Chung-I; Wang, San Ming

    2008-07-30

    Transcripts expressed in eukaryotes are classified as poly A+ transcripts or poly A- transcripts based on the presence or absence of the 3' poly A tail. Most transcripts identified so far are poly A+ transcripts, whereas the poly A- transcripts remain largely unknown. We developed the TRD (Total RNA Detection) system for transcript identification. The system detects the transcripts through the following steps: 1) depleting the abundant ribosomal and small-size transcripts; 2) synthesizing cDNA without regard to the status of the 3' poly A tail; 3) applying the 454 sequencing technology for massive 3' EST collection from the cDNA; and 4) determining the genome origins of the detected transcripts by mapping the sequences to the human genome reference sequences. Using this system, we characterized the cytoplasmic transcripts from HeLa cells. Of the 13,467 distinct 3' ESTs analyzed, 24% are poly A-, 36% are poly A+, and 40% are bimorphic with poly A+ features but without the 3' poly A tail. Most of the poly A- 3' ESTs do not match known transcript sequences; they have a similar distribution pattern in the genome as the poly A+ and bimorphic 3' ESTs, and their mapped intergenic regions are evolutionarily conserved. Experiments confirmed the authenticity of the detected poly A- transcripts. Our study provides the first large-scale sequence evidence for the presence of poly A- transcripts in eukaryotes. The abundance of the poly A- transcripts highlights the need for comprehensive identification of these transcripts for decoding the transcriptome, annotating the genome and studying biological relevance of the poly A- transcripts.

  16. 29 CFR 1209.08 - Transcripts, recordings or minutes of closed meetings; retention; public availability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provisions of 5 U.S.C. 552b(c), copies of transcripts or minutes, or transcriptions of electronic recordings... transcription. Requests for copies of transcripts or minutes, or transcriptions of electronic recordings of...

  17. Poly A- Transcripts Expressed in HeLa Cells

    PubMed Central

    Lu, Jian; Xuan, Zhenyu; Chen, Jun; Zheng, Yonglan; Zhou, Tom; Zhang, Michael Q.; Wu, Chung-I; Wang, San Ming

    2008-01-01

    Background Transcripts expressed in eukaryotes are classified as poly A+ transcripts or poly A- transcripts based on the presence or absence of the 3′ poly A tail. Most transcripts identified so far are poly A+ transcripts, whereas the poly A- transcripts remain largely unknown. Methodology/Principal Findings We developed the TRD (Total RNA Detection) system for transcript identification. The system detects the transcripts through the following steps: 1) depleting the abundant ribosomal and small-size transcripts; 2) synthesizing cDNA without regard to the status of the 3′ poly A tail; 3) applying the 454 sequencing technology for massive 3′ EST collection from the cDNA; and 4) determining the genome origins of the detected transcripts by mapping the sequences to the human genome reference sequences. Using this system, we characterized the cytoplasmic transcripts from HeLa cells. Of the 13,467 distinct 3′ ESTs analyzed, 24% are poly A-, 36% are poly A+, and 40% are bimorphic with poly A+ features but without the 3′ poly A tail. Most of the poly A- 3′ ESTs do not match known transcript sequences; they have a similar distribution pattern in the genome as the poly A+ and bimorphic 3′ ESTs, and their mapped intergenic regions are evolutionarily conserved. Experiments confirmed the authenticity of the detected poly A- transcripts. Conclusion/Significance Our study provides the first large-scale sequence evidence for the presence of poly A- transcripts in eukaryotes. The abundance of the poly A- transcripts highlights the need for comprehensive identification of these transcripts for decoding the transcriptome, annotating the genome and studying biological relevance of the poly A- transcripts. PMID:18665230

  18. Divergent transcription is associated with promoters of transcriptional regulators

    PubMed Central

    2013-01-01

    Background Divergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters. However, the general significance of divergent lncRNA/mRNA gene pair transcription is still poorly understood. Here, we used strand-specific RNA-seq with high sequencing depth to thoroughly identify antisense transcripts from coding gene promoters in primary mouse tissues. Results We found that a substantial fraction of coding-gene promoters sustain divergent transcription of long non-coding RNA (lncRNA)/mRNA gene pairs. Strikingly, upstream antisense transcription is significantly associated with genes related to transcriptional regulation and development. Their promoters share several characteristics with those of transcriptional developmental genes, including very large CpG islands, high degree of conservation and epigenetic regulation in ES cells. In-depth analysis revealed a unique GC skew profile at these promoter regions, while the associated coding genes were found to have large first exons, two genomic features that might enforce bidirectional transcription. Finally, genes associated with antisense transcription harbor specific H3K79me2 epigenetic marking and RNA polymerase II enrichment profiles linked to an intensified rate of early transcriptional elongation. Conclusions We concluded that promoters of a class of transcription regulators are characterized by a specialized transcriptional control mechanism, which is directly coupled to relaxed bidirectional transcription. PMID:24365181

  19. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    PubMed

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  20. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs.

    PubMed

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J; Jopling, Catherine L

    2015-04-01

    MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.

  1. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...

  2. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...

  3. Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi.

    PubMed

    Dorrell, Richard G; Hinksman, George A; Howe, Christopher J

    2016-02-01

    Plastids produce a vast diversity of transcripts. These include mature transcripts containing coding sequences, and their processing precursors, as well as transcripts that lack direct coding functions, such as antisense transcripts. Although plastid transcriptomes have been characterised for many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga Karenia mikimotoi. This plastid lineage, acquired through tertiary endosymbiosis, utilises transcript processing pathways that are very different from those found in plants and green algae, including 3' poly(U) tail addition, and extensive substitutional editing of transcript sequences. We have sequenced the plastid transcriptome of K. mikimotoi, and have detected evidence for divergent evolution of fucoxanthin plastid genomes. We have additionally characterised polycistronic and monocistronic transcripts from two plastid loci, psbD-tRNA (Met)-ycf4 and rpl36-rps13-rps11. We find evidence for a range of transcripts produced from each locus that differ in terms of editing state, 5' end cleavage position, and poly(U) tail addition. Finally, we identify antisense transcripts in K. mikimotoi, which appear to undergo different processing events from the corresponding sense transcripts. Overall, our study provides insights into the diversity of transcripts and processing intermediates found in plastid lineages across the eukaryotes.

  4. 12 CFR 261b.11 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... minutes. (a) The agency will maintain a complete transcript or electronic recording or transcription... § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a set of minutes...

  5. The transcriptional terminator sequences downstream of the covR gene terminate covR/S operon transcription to generate covR monocistronic transcripts in Streptococcus pyogenes.

    PubMed

    Chiang-Ni, Chuan; Tsou, Chih-Cheng; Lin, Yee-Shin; Chuang, Woei-Jer; Lin, Ming-T; Liu, Ching-Chuan; Wu, Jiunn-Jong

    2008-12-31

    CovR/S is an important two component regulatory system, which regulates about 15% of the gene expression in Streptococcus pyogenes. The covR/S locus was identified as an operon generating an RNA transcript around 2.5-kb in size. In this study, we found the covR/S operon produced three RNA transcripts (around 2.5-, 1.0-, and 0.8-kb in size). Using RNA transcriptional terminator sequence prediction and transcriptional terminator analysis, we identified two atypical rho-independent terminator sequences downstream of the covR gene and showed these terminator sequences terminate RNA transcription efficiently. These results indicate that covR/S operon generates covR/S transcript and monocistronic covR transcripts.

  6. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies.

    PubMed

    Asamitsu, Kaori; Fujinaga, Koh; Okamoto, Takashi

    2018-04-17

    Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.

  7. Intrinsic disorder in transcription factors†

    PubMed Central

    Liu, Jiangang; Perumal, Narayanan B.; Oldfield, Christopher J.; Su, Eric W.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for a general prevalence of intrinsic disorder in transcriptional regulation, we used the Predictor Of Natural Disorder Regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13% to 82.63% of transcription factors posses extended regions of intrinsic disorder, relative to 54.51% and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors for intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues, and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that: (a) The AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) The degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) The degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; (d) The level of α-MoRFs (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that the eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient. PMID:16734424

  8. Nucleoside Triphosphate Phosphohydrolase I (NPH I) Functions as a 5′ to 3′ Translocase in Transcription Termination of Vaccinia Early Genes*

    PubMed Central

    Hindman, Ryan; Gollnick, Paul

    2016-01-01

    Vaccinia virus early genes are transcribed immediately upon infection. Nucleoside triphosphate phosphohydrolase I (NPH I) is an essential component of the early gene transcription complex. NPH I hydrolyzes ATP to release transcripts during transcription termination. The ATPase activity of NPH I requires single-stranded (ss) DNA as a cofactor; however, the source of this cofactor within the transcription complex is not known. Based on available structures of transcription complexes it has been hypothesized that the ssDNA cofactor is obtained from the unpaired non-template strand within the transcription bubble. In vitro transcription on templates that lack portions of the non-template strand within the transcription bubble showed that the upstream portion of the transcription bubble is required for efficient NPH I-mediated transcript release. Complementarity between the template and non-template strands in this region is also required for NPH I-mediated transcript release. This observation complicates locating the source of the ssDNA cofactor within the transcription complex because removal of the non-template strand also disrupts transcription bubble reannealing. Prior studies have shown that ssRNA binds to NPH I, but it does not activate ATPase activity. Chimeric transcription templates with RNA in the non-template strand confirm that the source of the ssDNA cofactor for NPH I is the upstream portion of the non-template strand in the transcription bubble. Consistent with this conclusion we also show that isolated NPH I acts as a 5′ to 3′ translocase on single-stranded DNA. PMID:27189950

  9. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference.

    PubMed

    Hao, Nan; Palmer, Adam C; Dodd, Ian B; Shearwin, Keith E

    2017-03-15

    Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

  10. An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation.

    PubMed

    Rullan, Marc; Benzinger, Dirk; Schmidt, Gregor W; Milias-Argeitis, Andreas; Khammash, Mustafa

    2018-05-17

    Transcription is a highly regulated and inherently stochastic process. The complexity of signal transduction and gene regulation makes it challenging to analyze how the dynamic activity of transcriptional regulators affects stochastic transcription. By combining a fast-acting, photo-regulatable transcription factor with nascent RNA quantification in live cells and an experimental setup for precise spatiotemporal delivery of light inputs, we constructed a platform for the real-time, single-cell interrogation of transcription in Saccharomyces cerevisiae. We show that transcriptional activation and deactivation are fast and memoryless. By analyzing the temporal activity of individual cells, we found that transcription occurs in bursts, whose duration and timing are modulated by transcription factor activity. Using our platform, we regulated transcription via light-driven feedback loops at the single-cell level. Feedback markedly reduced cell-to-cell variability and led to qualitative differences in cellular transcriptional dynamics. Our platform establishes a flexible method for studying transcriptional dynamics in single cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Archaeal RNA polymerase and transcription regulation

    PubMed Central

    Jun, Sung-Hoon; Reichlen, Matthew J.; Tajiri, Momoko; Murakami, Katsuhiko S.

    2010-01-01

    To elucidate the mechanism of transcription by cellular RNA polymerases (RNAPs), high resolution X-ray crystal structures together with structure-guided biochemical, biophysical and genetics studies are essential. The recently-solved X-ray crystal structures of archaeal RNA polymerase (RNAP) allow a structural comparison of the transcription machinery among all three domains of life. The archaea were once thought of closely related to bacteria, but they are now considered to be more closely related to the eukaryote at the molecular level than bacteria. According to these structures, the archaeal transcription apparatus, which includes RNAP and general transcription factors, is similar to the eukaryotic transcription machinery. Yet, the transcription regulators, activators and repressors, encoded by archaeal genomes are closely related to bacterial factors. Therefore, archaeal transcription appears to possess an intriguing hybrid of eukaryotic-type transcription apparatus and bacterial-like regulatory mechanisms. Elucidating the transcription mechanism in archaea, which possesses a combination of bacterial and eukaryotic transcription mechanisms that are commonly regarded as separate and mutually exclusive, can provide data that will bring basic transcription mechanisms across all three domains of life. PMID:21250781

  12. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    PubMed Central

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  13. Pervasive transcription: detecting functional RNAs in bacteria.

    PubMed

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  14. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    PubMed

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. 17 CFR 147.9 - Requests for copies of transcripts, recordings or minutes of closed meetings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., recordings or minutes of closed meetings. (a) Copies of a transcript transcription of an electronic recording... § 147.8(a), shall be furnished to any person at the actual cost of duplication or transcription pursuant...)(9), (d) and (e). (b) Requests for copies of transcripts, transcriptions of electronic recordings or...

  16. 17 CFR 147.9 - Requests for copies of transcripts, recordings or minutes of closed meetings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., recordings or minutes of closed meetings. (a) Copies of a transcript transcription of an electronic recording... § 147.8(a), shall be furnished to any person at the actual cost of duplication or transcription pursuant...)(9), (d) and (e). (b) Requests for copies of transcripts, transcriptions of electronic recordings or...

  17. The RNA Export Factor, Nxt1, Is Required for Tissue Specific Transcriptional Regulation

    PubMed Central

    Jiang, Jianqiao; White-Cooper, Helen

    2013-01-01

    The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex. PMID:23754955

  18. DNA residence time is a regulatory factor of transcription repression

    PubMed Central

    Clauß, Karen; Popp, Achim P.; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N. Henriette

    2017-01-01

    Abstract Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. PMID:28977492

  19. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    PubMed

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.

  20. Chromatin potentiates transcription

    PubMed Central

    Nagai, Shigeki; Davis, Ralph E.; Mattei, Pierre Jean; Eagen, Kyle Patrick; Kornberg, Roger D.

    2017-01-01

    Chromatin isolated from the chromosomal locus of the PHO5 gene of yeast in a transcriptionally repressed state was transcribed with 12 pure proteins (80 polypeptides): RNA polymerase II, six general transcription factors, TFIIS, the Pho4 gene activator protein, and the SAGA, SWI/SNF, and Mediator complexes. Contrary to expectation, a nucleosome occluding the TATA box and transcription start sites did not impede transcription but rather, enhanced it: the level of chromatin transcription was at least sevenfold greater than that of naked DNA, and chromatin gave patterns of transcription start sites closely similar to those occurring in vivo, whereas naked DNA gave many aberrant transcripts. Both histone acetylation and trimethylation of H3K4 (H3K4me3) were important for chromatin transcription. The nucleosome, long known to serve as a general gene repressor, thus also performs an important positive role in transcription. PMID:28137832

  1. Widespread antisense transcription of Populus genome under drought.

    PubMed

    Yuan, Yinan; Chen, Su

    2018-06-06

    Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.

  2. 40 CFR 1603.12 - Availability of transcripts, recordings, and minutes, and applicable fees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of § 1603.7. Copies of the nonexempt portions of the transcript or minutes, or transcription of such... transcription or duplication. Requests for transcripts, recordings, or minutes shall be made in writing to the...

  3. 40 CFR 1603.12 - Availability of transcripts, recordings, and minutes, and applicable fees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of § 1603.7. Copies of the nonexempt portions of the transcript or minutes, or transcription of such... transcription or duplication. Requests for transcripts, recordings, or minutes shall be made in writing to the...

  4. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.

    PubMed

    Bloom, Chloe I; Graham, Christine M; Berry, Matthew P R; Rozakeas, Fotini; Redford, Paul S; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A; Wilkinson, Robert J; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Valeyre, Dominique; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-Pei; Lipman, Marc; O'Garra, Anne

    2013-01-01

    New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.

  5. Maize Iranian mosaic virus shows a descending transcript accumulation order in plant and insect hosts.

    PubMed

    Hortamani, Mozhgan; Massah, Amir; Izadpanah, Keramat

    2018-04-01

    Maize Iranian mosaic virus (MIMV) is a distinct member of the genus Nucleorhabdovirus. In this study, expression of all MIMV genes in maize for four weeks after inoculation and in inoculative planthoppers was examined using a quantitative RT-PCR (RT-qPCR) assay. Accumulation of MIMV P, gene 3, M, G and L transcripts relative to N transcripts was measured and normalized to 18S rRNA in maize plants and to the ribosomal protein S13 gene (RPS13) in planthoppers using the comparative C T method. In plants, higher levels of MIMV N transcripts were found relative to other transcripts, while MIMV L transcripts were at the lowest levels. The highest accumulation of MIMV transcripts was found at 14 days postinoculation (dpi). At 21 dpi, we found the lowest transcript levels for all genes, which increased again at 28 dpi, although in lower amounts than at 14 dpi. In Laodelphax striatellus, MIMV M, G and L transcripts accumulated at lower levels than other transcripts. The gene 3 transcript level was high in both plants and planthoppers. Our results showed that transcript accumulation for the MIMV genes was similar in both hosts and followed the pattern of sequential transcriptional attenuation from the 3' to the 5' end of the genome, similar to vertebrate rhabdoviruses. These results indicate that the regulation of virus gene transcription for this plant-infecting rhabdovirus is similar to that of some vertebrate-infecting rhabdoviruses.

  6. Regulation of circadian clock transcriptional output by CLOCK:BMAL1

    PubMed Central

    Trott, Alexandra J.

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726

  7. Pervasive Transcription of a Herpesvirus Genome Generates Functionally Important RNAs

    PubMed Central

    Canny, Susan P.; Reese, Tiffany A.; Johnson, L. Steven; Zhang, Xin; Kambal, Amal; Duan, Erning; Liu, Catherine Y.; Virgin, Herbert W.

    2014-01-01

    ABSTRACT Pervasive transcription is observed in a wide range of organisms, including humans, mice, and viruses, but the functional significance of the resulting transcripts remains uncertain. Current genetic approaches are often limited by their emphasis on protein-coding open reading frames (ORFs). We previously identified extensive pervasive transcription from the murine gammaherpesvirus 68 (MHV68) genome outside known ORFs and antisense to known genes (termed expressed genomic regions [EGRs]). Similar antisense transcripts have been identified in many other herpesviruses, including Kaposi’s sarcoma-associated herpesvirus and human and murine cytomegalovirus. Despite their prevalence, whether these RNAs have any functional importance in the viral life cycle is unknown, and one interpretation is that these are merely “noise” generated by functionally unimportant transcriptional events. To determine whether pervasive transcription of a herpesvirus genome generates RNA molecules that are functionally important, we used a strand-specific functional approach to target transcripts from thirteen EGRs in MHV68. We found that targeting transcripts from six EGRs reduced viral protein expression, proving that pervasive transcription can generate functionally important RNAs. We characterized transcripts emanating from EGRs 26 and 27 in detail using several methods, including RNA sequencing, and identified several novel polyadenylated transcripts that were enriched in the nuclei of infected cells. These data provide the first evidence of the functional importance of regions of pervasive transcription emanating from MHV68 EGRs. Therefore, studies utilizing mutation of a herpesvirus genome must account for possible effects on RNAs generated by pervasive transcription. PMID:24618256

  8. The chicken skeletal alpha-actin gene promoter region exhibits partial dyad symmetry and a capacity to drive bidirectional transcription.

    PubMed Central

    Grichnik, J M; French, B A; Schwartz, R J

    1988-01-01

    The chicken skeletal alpha-actin gene promoter region (-202 to -12) provides myogenic transcriptional specificity. This promoter contains partial dyad symmetry about an axis at nucleotide -108 and in transfection experiments is capable of directing transcription in a bidirectional manner. At least three different transcription initiation start sites, oriented toward upstream sequences, were mapped 25 to 30 base pairs from TATA-like regions. The opposing transcriptional activity was potentiated upon the deletion of sequences proximal to the alpha-actin transcription start site. Thus, sequences which serve to position RNA polymerase for alpha-actin transcription may allow, in their absence, the selection of alternative and reverse-oriented start sites. Nuclear runoff transcription assays of embryonic muscle indicated that divergent transcription may occur in vivo but with rapid turnover of nuclear transcripts. Divergent transcriptional activity enabled us to define the 3' regulatory boundary of the skeletal alpha-actin promoter which retains a high level of myogenic transcriptional activity. The 3' regulatory border was detected when serial 3' deletions bisected the element (-91 CCAAA TATGG -82) which reduced transcriptional activity by 80%. Previously we showed that disruption of its upstream counterpart (-127 CCAAAGAAGG -136) resulted in about a 90% decrease in activity. These element pairs, which we describe as CCAAT box-associated repeats, are conserved in all sequenced vertebrate sarcomeric actin genes and may act in a cooperative manner to facilitate transcription in myogenic cells. Images PMID:3211124

  9. A structure-based kinetic model of transcription.

    PubMed

    Zuo, Yuhong; Steitz, Thomas A

    2017-01-01

    During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.

  10. Asymmetry between Activation and Deactivation during a Transcriptional Pulse.

    PubMed

    Dunham, Lee S S; Momiji, Hiroshi; Harper, Claire V; Downton, Polly J; Hey, Kirsty; McNamara, Anne; Featherstone, Karen; Spiller, David G; Rand, David A; Finkenstädt, Bärbel; White, Michael R H; Davis, Julian R E

    2017-12-27

    Transcription in eukaryotic cells occurs in gene-specific bursts or pulses of activity. Recent studies identified a spectrum of transcriptionally active "on-states," interspersed with periods of inactivity, but these "off-states" and the process of transcriptional deactivation are poorly understood. To examine what occurs during deactivation, we investigate the dynamics of switching between variable rates. We measured live single-cell expression of luciferase reporters from human growth hormone or human prolactin promoters in a pituitary cell line. Subsequently, we applied a statistical variable-rate model of transcription, validated by single-molecule FISH, to estimate switching between transcriptional rates. Under the assumption that transcription can switch to any rate at any time, we found that transcriptional activation occurs predominantly as a single switch, whereas deactivation occurs with graded, stepwise decreases in transcription rate. Experimentally altering cAMP signalling with forskolin or chromatin remodelling with histone deacetylase inhibitor modifies the duration of defined transcriptional states. Our findings reveal transcriptional activation and deactivation as mechanistically independent, asymmetrical processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. When transcription goes on Holliday: Double Holliday junctions block RNA polymerase II transcription in vitro.

    PubMed

    Pipathsouk, Anne; Belotserkovskii, Boris P; Hanawalt, Philip C

    2017-02-01

    Non-canonical DNA structures can obstruct transcription. This transcription blockage could have various biological consequences, including genomic instability and gratuitous transcription-coupled repair. Among potential structures causing transcription blockage are Holliday junctions (HJs), which can be generated as intermediates in homologous recombination or during processing of stalled replication forks. Of particular interest is the double Holliday junction (DHJ), which contains two HJs. Topological considerations impose the constraint that the total number of helical turns in the DNA duplexes between the junctions cannot be altered as long as the flanking DNA duplexes are intact. Thus, the DHJ structure should strongly resist transient unwinding during transcription; consequently, it is predicted to cause significantly stronger blockage than single HJ structures. The patterns of transcription blockage obtained for RNA polymerase II transcription in HeLa cell nuclear extracts were in accordance with this prediction. However, we did not detect transcription blockage with purified T7 phage RNA polymerase; we discuss a possible explanation for this difference. In general, our findings implicate naturally occurring Holliday junctions in transcription arrest. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Pervasive Targeting of Nascent Transcripts by Hfq.

    PubMed

    Kambara, Tracy K; Ramsey, Kathryn M; Dove, Simon L

    2018-05-01

    Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating that they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Establishment of an in vitro transcription system for Peste des petits ruminant virus.

    PubMed

    Yunus, Mohammad; Shaila, Melkote S

    2012-12-05

    Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.

  14. Analysis of the regulation of viral transcription.

    PubMed

    Gloss, Bernd; Kalantari, Mina; Bernard, Hans-Ulrich

    2005-01-01

    Despite the small genomes and number of genes of papillomaviruses, regulation of their transcription is very complex and governed by numerous transcription factors, cis-responsive elements, and epigenetic phenomena. This chapter describes the strategies of how one can approach a systematic analysis of these factors, elements, and mechanisms. From the numerous different techniques useful for studying transcription, we describe in detail three selected protocols of approaches that have been relevant in shaping our knowledge of human papillomavirus transcription. These are DNAse I protection ("footprinting") for location of transcription-factor binding sites, electrophoretic mobility shifts ("gelshifts") for analysis of bound transcription factors, and bisulfite sequencing for analysis of DNA methylation as a prerequisite for epigenetic transcriptional regulation.

  15. Mitochondrial run-on transcription assay using biotin labeling.

    PubMed

    Kühn, Kristina

    2015-01-01

    RNA synthesis and different posttranscriptional processes shape the transcriptome of plant mitochondria. It is believed that mitochondrial transcription in plants is not stringently controlled, and that RNA degradation has a major impact on mitochondrial steady-state transcript levels. Nevertheless, the presence of two RNA polymerases with different gene specificities in mitochondria of dicotyledonous species indicates that transcriptional mechanisms may provide a means to control mitochondrial steady-state RNA pools and gene expression. To experimentally assess transcriptional activities in mitochondria, run-on transcription assays have been developed. These assays measure elongation rates for endogenous transcripts in freshly prepared mitochondrial extracts. The mitochondrial run-on transcription protocol described here has been optimized for the model plant Arabidopsis (Arabidopsis thaliana). It uses mitochondria prepared from soil-grown Arabidopsis plants and employs nonradioactive labeling for the subsequent detection of run-on transcripts.

  16. A structure-based kinetic model of transcription

    PubMed Central

    Steitz, Thomas A.

    2017-01-01

    ABSTRACT During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement. PMID:27656764

  17. 17 CFR 200.408 - Public access to transcripts and minutes of closed Commission meetings; record retention.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 200.402 or otherwise. Copies of such transcript, or minutes, or a transcription of such recording..., as set forth in § 200.80e, and, if a transcript is prepared, the actual cost of such transcription...

  18. 22 CFR 1413.7 - Transcripts, recordings or minutes of closed meeting; public availability; retention.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pursuant to the provisions of 5 U.S.C. 552b(c). Copies of transcripts or minutes, or transcriptions of... transcription. (c) The agency shall maintain a complete verbatim copy of the transcript, a complete copy of the...

  19. 22 CFR 1413.7 - Transcripts, recordings or minutes of closed meeting; public availability; retention.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pursuant to the provisions of 5 U.S.C. 552b(c). Copies of transcripts or minutes, or transcriptions of... transcription. (c) The agency shall maintain a complete verbatim copy of the transcript, a complete copy of the...

  20. 17 CFR 200.408 - Public access to transcripts and minutes of closed Commission meetings; record retention.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 200.402 or otherwise. Copies of such transcript, or minutes, or a transcription of such recording..., as set forth in § 200.80e, and, if a transcript is prepared, the actual cost of such transcription...

  1. Myc Dynamically and Preferentially Relocates to a Transcription Factory Occupied by Igh

    PubMed Central

    Osborne, Cameron S; Chakalova, Lyubomira; Mitchell, Jennifer A; Horton, Alice; Wood, Andrew L; Bolland, Daniel J; Corcoran, Anne E; Fraser, Peter

    2007-01-01

    Transcription in mammalian nuclei is highly compartmentalized in RNA polymerase II-enriched nuclear foci known as transcription factories. Genes in cis and trans can share the same factory, suggesting that genes migrate to preassembled transcription sites. We used fluorescent in situ hybridization to investigate the dynamics of gene association with transcription factories during immediate early (IE) gene induction in mouse B lymphocytes. Here, we show that induction involves rapid gene relocation to transcription factories. Importantly, we find that the Myc proto-oncogene on Chromosome 15 is preferentially recruited to the same transcription factory as the highly transcribed Igh gene located on Chromosome 12. Myc and Igh are the most frequent translocation partners in plasmacytoma and Burkitt lymphoma. Our results show that transcriptional activation of IE genes involves rapid relocation to preassembled transcription factories. Furthermore, the data imply a direct link between the nonrandom interchromosomal organization of transcribed genes at transcription factories and the incidence of specific chromosomal translocations. PMID:17622196

  2. Global effects of the CSR-1 RNA interference pathway on transcriptional landscape

    PubMed Central

    Cecere, Germano; Hoersch, Sebastian; O’Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-01-01

    Argonaute proteins and their small RNA co-factors short interfering RNAs (siRNAs) are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) antisense to germline transcripts and associates with chromatin in a siRNA-dependent manner. However, its role in gene expression regulation remains controversial. Here, we used a genome-wide profiling of nascent RNA transcripts to demonstrate that the CSR-1 RNAi pathway promotes sense-oriented Pol II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. Based on these findings, we propose that the CSR-1 pathway has a role in maintaining the directionality of active transcription thereby propagating the distinction between transcriptionally active and silent genomic regions. PMID:24681887

  3. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions

    NASA Astrophysics Data System (ADS)

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-01

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  4. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation

    PubMed Central

    Menet, Jerome S; Rodriguez, Joseph; Abruzzi, Katharine C; Rosbash, Michael

    2012-01-01

    A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues. DOI: http://dx.doi.org/10.7554/eLife.00011.001 PMID:23150795

  5. Microarray Analyses and Comparisons of Upper or Lower Flanks of Rice Shoot Base Preceding Gravitropic Bending

    PubMed Central

    Zang, Aiping; Chen, Haiying; Dou, Xianying; Jin, Jing; Cai, Weiming

    2013-01-01

    Gravitropism is a complex process involving a series of physiological pathways. Despite ongoing research, gravitropism sensing and response mechanisms are not well understood. To identify the key transcripts and corresponding pathways in gravitropism, a whole-genome microarray approach was used to analyze transcript abundance in the shoot base of rice (Oryza sativa sp. japonica) at 0.5 h and 6 h after gravistimulation by horizontal reorientation. Between upper and lower flanks of the shoot base, 167 transcripts at 0.5 h and 1202 transcripts at 6 h were discovered to be significantly different in abundance by 2-fold. Among these transcripts, 48 were found to be changed both at 0.5 h and 6 h, while 119 transcripts were only changed at 0.5 h and 1154 transcripts were changed at 6 h in association with gravitropism. MapMan and PageMan analyses were used to identify transcripts significantly changed in abundance. The asymmetric regulation of transcripts related to phytohormones, signaling, RNA transcription, metabolism and cell wall-related categories between upper and lower flanks were demonstrated. Potential roles of the identified transcripts in gravitropism are discussed. Our results suggest that the induction of asymmetrical transcription, likely as a consequence of gravitropic reorientation, precedes gravitropic bending in the rice shoot base. PMID:24040303

  6. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription ofmore » RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.« less

  7. Novel kinase fusion transcripts found in endometrial cancer

    PubMed Central

    Tamura, Ryo; Yoshihara, Kosuke; Yamawaki, Kaoru; Suda, Kazuaki; Ishiguro, Tatsuya; Adachi, Sosuke; Okuda, Shujiro; Inoue, Ituro; Verhaak, Roel G. W.; Enomoto, Takayuki

    2015-01-01

    Recent advances in RNA-sequencing technology have enabled the discovery of gene fusion transcripts in the transcriptome of cancer cells. However, it remains difficult to differentiate the therapeutically targetable fusions from passenger events. We have analyzed RNA-sequencing data and DNA copy number data from 25 endometrial cancer cell lines to identify potential therapeutically targetable fusion transcripts, and have identified 124 high-confidence fusion transcripts, of which 69% are associated with gene amplifications. As targetable fusion candidates, we focused on three in-frame kinase fusion transcripts that retain a kinase domain (CPQ-PRKDC, CAPZA2-MET, and VGLL4-PRKG1). We detected only CPQ-PRKDC fusion transcript in three of 122 primary endometrial cancer tissues. Cell proliferation of the fusion-positive cell line was inhibited by knocking down the expression of wild-type PRKDC but not by blocking the CPQ-PRKDC fusion transcript expression. Quantitative real-time RT-PCR demonstrated that the expression of the CPQ-PRKDC fusion transcript was significantly lower than that of wild-type PRKDC, corresponding to a low transcript allele fraction of this fusion, based on RNA-sequencing read counts. In endometrial cancers, the CPQ-PRKDC fusion transcript may be a passenger aberration related to gene amplification. Our findings suggest that transcript allele fraction is a useful predictor to find bona-fide therapeutic-targetable fusion transcripts. PMID:26689674

  8. Novel kinase fusion transcripts found in endometrial cancer.

    PubMed

    Tamura, Ryo; Yoshihara, Kosuke; Yamawaki, Kaoru; Suda, Kazuaki; Ishiguro, Tatsuya; Adachi, Sosuke; Okuda, Shujiro; Inoue, Ituro; Verhaak, Roel G W; Enomoto, Takayuki

    2015-12-22

    Recent advances in RNA-sequencing technology have enabled the discovery of gene fusion transcripts in the transcriptome of cancer cells. However, it remains difficult to differentiate the therapeutically targetable fusions from passenger events. We have analyzed RNA-sequencing data and DNA copy number data from 25 endometrial cancer cell lines to identify potential therapeutically targetable fusion transcripts, and have identified 124 high-confidence fusion transcripts, of which 69% are associated with gene amplifications. As targetable fusion candidates, we focused on three in-frame kinase fusion transcripts that retain a kinase domain (CPQ-PRKDC, CAPZA2-MET, and VGLL4-PRKG1). We detected only CPQ-PRKDC fusion transcript in three of 122 primary endometrial cancer tissues. Cell proliferation of the fusion-positive cell line was inhibited by knocking down the expression of wild-type PRKDC but not by blocking the CPQ-PRKDC fusion transcript expression. Quantitative real-time RT-PCR demonstrated that the expression of the CPQ-PRKDC fusion transcript was significantly lower than that of wild-type PRKDC, corresponding to a low transcript allele fraction of this fusion, based on RNA-sequencing read counts. In endometrial cancers, the CPQ-PRKDC fusion transcript may be a passenger aberration related to gene amplification. Our findings suggest that transcript allele fraction is a useful predictor to find bona-fide therapeutic-targetable fusion transcripts.

  9. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I

    PubMed Central

    Kadota, Shinichi; Nagata, Kyosuke

    2014-01-01

    Chromatin structure and its alteration play critical roles in the regulation of transcription. However, the transcriptional silencing mechanism with regard to the chromatin structure at an unstimulated state of the interferon (IFN)-stimulated gene (ISG) remains unclear. Here we investigated the role of template activating factor-I (TAF-I, also known as SET) in ISG transcription. Knockdown (KD) of TAF-I increased ISG transcript and simultaneously reduced the histone H1 level on the ISG promoters during the early stages of transcription after IFN stimulation from the unstimulated state. The transcription factor levels on the ISG promoters were increased in TAF-I KD cells only during the early stages of transcription. Furthermore, histone H1 KD also increased ISG transcript. TAF-I and histone H1 double KD did not show the additive effect in ISG transcription, suggesting that TAF-I and histone H1 may act on the same regulatory pathway to control ISG transcription. In addition, TAF-I KD and histone H1 KD affected the chromatin structure near the ISG promoters. On the basis of these findings, we propose that TAF-I and its target histone H1 are key regulators of the chromatin structure at the ISG promoter to maintain the silent state of ISG transcription. PMID:24878923

  10. Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers

    PubMed Central

    Bloom, Chloe I.; Graham, Christine M.; Berry, Matthew P. R.; Rozakeas, Fotini; Redford, Paul S.; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A.; Wilkinson, Robert J.; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-pei; Lipman, Marc; O’Garra, Anne

    2013-01-01

    Rationale New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. Objectives To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. Methods We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. Measurements and Main Results An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Conclusions Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment. PMID:23940611

  11. 5' diversity of human hepatic PXR (NR1I2) transcripts and identification of the major transcription initiation site.

    PubMed

    Kurose, Kouichi; Koyano, Satoru; Ikeda, Shinobu; Tohkin, Masahiro; Hasegawa, Ryuichi; Sawada, Jun-Ichi

    2005-05-01

    The human pregnane X receptor (PXR) is a crucial regulator of the genes encoding several major cytochrome P450 enzymes and transporters, such as CYP3A4 and MDR1, but its own transcriptional regulation remains unclear. To elucidate the transcriptional mechanisms of human PXR gene, we first endeavored to identify the transcription initiation site of human PXR using 5'-RACE. Five types of 5'-variable transcripts (a, b, c, d, and e) with common exon 2 sequence were found, and comparison of these sequences with the genomic sequence suggested that their 5' diversity is derived from initiation by alternative promoters and alternative splicing. None of the exons found in our study contain any new in-frame coding regions. Newly identified introns IVS-a and IVS-b were found to have CT-AC splice sites that do not follow the GT-AG rule of conventional donor and acceptor splice sites. Of the five types of 5' variable transcripts identified, RT-PCR showed that type-a was the major transcript type. Four transcription initiation sites (A-D) for type-a transcript were identified by 5'-RACE using GeneRacer RACE Ready cDNA (human liver) constructed by the oligo-capping method. Putative TATA boxes were located approximately 30 bp upstream from the transcriptional start sites of the major transcript (C) and the longest minor transcript (A) expressed in the human liver. These results indicate that the initiation of transcription of human PXR is more complex than previously reported.

  12. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing

    PubMed Central

    2011-01-01

    Background Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. Results From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. Conclusion The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition. PMID:21492485

  13. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing.

    PubMed

    Natarajan, Purushothaman; Parani, Madasamy

    2011-04-15

    Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition.

  14. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between that...

  15. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between that...

  16. The Intertwined Roles of Transcription and Repair Proteins

    PubMed Central

    Fong, Yick W.; Cattoglio, Claudia; Tjian, Robert

    2014-01-01

    Transcription is apparently risky business. Its intrinsic mutagenic potential must be kept in check by networks of DNA repair factors that monitor the transcription process to repair DNA lesions that could otherwise compromise transcriptional fidelity and genome integrity. Intriguingly, recent studies point to an even more direct function of DNA repair complexes as co-activators of transcription and the unexpected role of “scheduled” DNA damage/repair at gene promoters. Paradoxically, spontaneous DNA double-strand breaks also induce ectopic transcription that is essential for repair. Thus, transcription, DNA damage and repair may be more physically and functionally intertwined than previously appreciated. PMID:24207023

  17. Investigating transcription reinitiation through in vitro approaches

    PubMed Central

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies. PMID:25764113

  18. Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta.

    PubMed

    Konopiński, R; Nowak, R; Siedlecki, J A

    1996-10-17

    Rat cells produce two different transcripts of DNA polymerase beta (beta-Pol). The low-molecular-weight transcript (1.4 kb) was already sequenced. We report here the cloning and sequencing of the full-length cDNA, corresponding to the high-molecular-weight (HMW) transcript (4.0 kb) of beta-Pol. Sequence data strongly suggest that both transcripts are produced from a single gene by alternative polyadenylation. The HMW transcript contains the entire 1.4 kb transcript sequence and additional 2.2 kb on the 3' end. The 3' UTR of the HMW transcript contains some regulatory sequences which are not present in the 1.4-kb transcript. The A + U-rich fragment and (GU)21 sequence are believed to influence the stability of the mRNA. The functional significance of the A-rich region locally destabilizing double-stranded secondary structure remains unknown.

  19. Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA

    NASA Astrophysics Data System (ADS)

    Fujita, Keisuke; Iwaki, Mitsuhiro; Yanagida, Toshio

    2016-12-01

    Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.

  20. Fatty Acid–Regulated Transcription Factors in the Liver

    PubMed Central

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  1. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    PubMed Central

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  2. Quality Issues of Court Reporters and Transcriptionists for Qualitative Research

    PubMed Central

    Hennink, Monique; Weber, Mary Beth

    2015-01-01

    Transcription is central to qualitative research, yet few researchers identify the quality of different transcription methods. We described the quality of verbatim transcripts from traditional transcriptionists and court reporters by reviewing 16 transcripts from 8 focus group discussions using four criteria: transcription errors, cost and time of transcription, and effect on study participants. Transcriptionists made fewer errors, captured colloquial dialogue, and errors were largely influenced by the quality of the recording. Court reporters made more errors, particularly in the omission of topical content and contextual detail and were less able to produce a verbatim transcript; however the potential immediacy of the transcript was advantageous. In terms of cost, shorter group discussions favored a transcriptionist and longer groups a court reporter. Study participants reported no effect by either method of recording. Understanding the benefits and limitations of each method of transcription can help researchers select an appropriate method for each study. PMID:23512435

  3. Microprocessor mediates transcriptional termination in long noncoding microRNA genes

    PubMed Central

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J.; Jopling, Catherine L.

    2015-01-01

    MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lnc-pri-miRNA do not use the canonical cleavage and polyadenylation (CPA) pathway, but instead use Microprocessor cleavage to terminate transcription. This Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a novel RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells. PMID:25730776

  4. Transcription through enhancers suppresses their activity in Drosophila

    PubMed Central

    2013-01-01

    Background Enhancer elements determine the level of target gene transcription in a tissue-specific manner, providing for individual patterns of gene expression in different cells. Knowledge of the mechanisms controlling enhancer action is crucial for understanding global regulation of transcription. In particular, enhancers are often localized within transcribed regions of the genome. A number of experiments suggest that transcription can have both positive and negative effects on regulatory elements. In this study, we performed direct tests for the effect of transcription on enhancer activity. Results Using a transgenic reporter system, we investigated the relationship between the presence of pass-through transcription and the activity of Drosophila enhancers controlling the expression of the white and yellow genes. The results show that transcription from different promoters affects the activity of enhancers, counteracting their ability to activate the target genes. As expected, the presence of a transcriptional terminator between the inhibiting promoter and the affected enhancer strongly reduces the suppression. Moreover, transcription leads to dislodging of the Zeste protein that is responsible for the enhancer-dependent regulation of the white gene, suggesting a 'transcription interference’ mechanism for this regulation. Conclusions Our findings suggest a role for pass-through transcription in negative regulation of enhancer activity. PMID:24279291

  5. Imaging Transcriptional Regulation of Eukaryotic mRNA Genes: Advances and Outlook.

    PubMed

    Yao, Jie

    2017-01-06

    Regulation of eukaryotic transcription in vivo occurs at distinct stages. Previous research has identified many active or repressive transcription factors (TFs) and core transcription components and studied their functions in vitro and in vivo. Nonetheless, how individual TFs act in concert to regulate mRNA gene expression in a single cell remains poorly understood. Direct observation of TF assembly and disassembly and various biochemical reactions during transcription of a single-copy gene in vivo is the ideal approach to study this problem. Research in this area requires developing novel techniques for single-cell transcription imaging and integrating imaging studies into understanding the molecular biology of transcription. In the past decade, advanced cell imaging has enabled unprecedented capabilities to visualize individual TF molecules, to track single transcription sites, and to detect individual mRNA in fixed and living cells. These studies have raised several novel insights on transcriptional regulation such as the "hit-and-run" model and transcription bursting that could not be obtained by in vitro biochemistry analysis. At this point, the key question is how to achieve deeper understandings or discover novel mechanisms of eukaryotic transcriptional regulation by imaging transcription in single cells. Meanwhile, further technical advancements are likely required for visualizing distinct kinetic steps of transcription on a single-copy gene in vivo. This review article summarizes recent progress in the field and describes the challenges and opportunities ahead. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Identification and Classification of New Transcripts in Dorper and Small-Tailed Han Sheep Skeletal Muscle Transcriptomes.

    PubMed

    Chao, Tianle; Wang, Guizhi; Wang, Jianmin; Liu, Zhaohua; Ji, Zhibin; Hou, Lei; Zhang, Chunlan

    2016-01-01

    High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.

  7. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.

  8. In silico methods for co-transcriptional RNA secondary structure prediction and for investigating alternative RNA structure expression.

    PubMed

    Meyer, Irmtraud M

    2017-05-01

    RNA transcripts are the primary products of active genes in any living organism, including many viruses. Their cellular destiny not only depends on primary sequence signals, but can also be determined by RNA structure. Recent experimental evidence shows that many transcripts can be assigned more than a single functional RNA structure throughout their cellular life and that structure formation happens co-transcriptionally, i.e. as the transcript is synthesised in the cell. Moreover, functional RNA structures are not limited to non-coding transcripts, but can also feature in coding transcripts. The picture that now emerges is that RNA structures constitute an additional layer of information that can be encoded in any RNA transcript (and on top of other layers of information such as protein-context) in order to exert a wide range of functional roles. Moreover, different encoded RNA structures can be expressed at different stages of a transcript's life in order to alter the transcript's behaviour depending on its actual cellular context. Similar to the concept of alternative splicing for protein-coding genes, where a single transcript can yield different proteins depending on cellular context, it is thus appropriate to propose the notion of alternative RNA structure expression for any given transcript. This review introduces several computational strategies that my group developed to detect different aspects of RNA structure expression in vivo. Two aspects are of particular interest to us: (1) RNA secondary structure features that emerge during co-transcriptional folding and (2) functional RNA structure features that are expressed at different times of a transcript's life and potentially mutually exclusive. Copyright © 2017. Published by Elsevier Inc.

  9. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

    PubMed

    Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael

    2014-07-01

    Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I.

    PubMed

    Kadota, Shinichi; Nagata, Kyosuke

    2014-07-01

    Chromatin structure and its alteration play critical roles in the regulation of transcription. However, the transcriptional silencing mechanism with regard to the chromatin structure at an unstimulated state of the interferon (IFN)-stimulated gene (ISG) remains unclear. Here we investigated the role of template activating factor-I (TAF-I, also known as SET) in ISG transcription. Knockdown (KD) of TAF-I increased ISG transcript and simultaneously reduced the histone H1 level on the ISG promoters during the early stages of transcription after IFN stimulation from the unstimulated state. The transcription factor levels on the ISG promoters were increased in TAF-I KD cells only during the early stages of transcription. Furthermore, histone H1 KD also increased ISG transcript. TAF-I and histone H1 double KD did not show the additive effect in ISG transcription, suggesting that TAF-I and histone H1 may act on the same regulatory pathway to control ISG transcription. In addition, TAF-I KD and histone H1 KD affected the chromatin structure near the ISG promoters. On the basis of these findings, we propose that TAF-I and its target histone H1 are key regulators of the chromatin structure at the ISG promoter to maintain the silent state of ISG transcription. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators and protein kinases

    USDA-ARS?s Scientific Manuscript database

    Transcription factors (TFs) are proteins that regulate the expression of target genes by binding to specific elements in their regulatory regions. Transcriptional regulators (TRs) also regulate the expression of target genes; however, they operate indirectly via interaction with the basal transcript...

  12. 5 CFR 1632.11 - Procedures for inspection and obtaining copies of transcriptions and minutes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... copies of transcriptions and minutes. 1632.11 Section 1632.11 Administrative Personnel FEDERAL RETIREMENT... inspection and obtaining copies of transcriptions and minutes. (a) Any person may inspect or copy a transcript, a recording or transcription, or minutes described in § 1632.10(c) of this part. (b) Requests for...

  13. 5 CFR 1632.11 - Procedures for inspection and obtaining copies of transcriptions and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... copies of transcriptions and minutes. 1632.11 Section 1632.11 Administrative Personnel FEDERAL RETIREMENT... inspection and obtaining copies of transcriptions and minutes. (a) Any person may inspect or copy a transcript, a recording or transcription, or minutes described in § 1632.10(c) of this part. (b) Requests for...

  14. Relationships between Translation and Transcription Processes during fMRI Connectivity Scanning and Coded Translation and Transcription in Writing Products after Scanning in Children with and without Transcription Disabilities

    PubMed Central

    Wallis, Peter; Richards, Todd; Boord, Peter; Abbott, Robert; Berninger, Virginia

    2018-01-01

    Students with transcription disabilities (dysgraphia/impaired handwriting, n = 13 or dyslexia/impaired word spelling, n = 16) or without transcription disabilities (controls) completed transcription and translation (idea generating, planning, and creating) writing tasks during fMRI connectivity scanning and compositions after scanning, which were coded for transcription and translation variables. Compositions in both groups showed diversity in genre beyond usual narrative-expository distinction; groups differed in coded transcription but not translation variables. For the control group specific transcription or translation tasks during scanning correlated with corresponding coded transcription or translation skills in composition, but connectivity during scanning was not correlated with coded handwriting during composing in dysgraphia group and connectivity during translating was not correlated with any coded variable during composing in dyslexia group. Results are discussed in reference to the trend in neuroscience to use connectivity from relevant seed points while performing tasks and trends in education to recognize the generativity (creativity) of composing at both the genre and syntax levels. PMID:29600113

  15. The Mediator Complex: At the Nexus of RNA Polymerase II Transcription.

    PubMed

    Jeronimo, Célia; Robert, François

    2017-10-01

    Mediator is an essential, large, multisubunit, transcriptional co-activator highly conserved across eukaryotes. Mediator interacts with gene-specific transcription factors at enhancers as well as with the RNA polymerase II (RNAPII) transcription machinery bound at promoters. It also interacts with several other factors involved in various aspects of transcription, chromatin regulation, and mRNA processing. Hence, Mediator is at the nexus of RNAPII transcription, regulating its many steps and connecting transcription with co-transcriptional events. To achieve this flexible role, Mediator, which is divided into several functional modules, reorganizes its conformation and composition while making transient contacts with other components. Here, we review the mechanisms of action of Mediator and propose a unifying model for its function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The MluI cell cycle box (MCB) motifs, but not damage-responsive elements (DREs), are responsible for the transcriptional induction of the rhp51+ gene in response to DNA replication stress.

    PubMed

    Sartagul, Wugangerile; Zhou, Xin; Yamada, Yuki; Ma, Ning; Tanaka, Katsunori; Furuyashiki, Tomoyuki; Ma, Yan

    2014-01-01

    DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase reporter assays, we examined the role of these elements in rhp51+ transcription. The full-length rhp51+ promoter and a promoter fragment containing MCB motifs only, but not a fragment containing DREs, mediated transcriptional activation upon DNA replication stress. Removal of the MCB motifs from the rhp51+ promoter abolished the induction of rhp51+ transcription by DNA replication stress. Consistent with a role for MCB motifs in rhp51+ transcription activation, deletion of the MBF (MCB-binding factor) co-repressors Nrm1 and Yox1 precluded rhp51+ transcriptional induction in response to DNA replication stress. Using cells deficient in checkpoint signaling molecules, we found that the Rad3-Cds1/Chk1 pathway partially mediated rhp51+ transcription in response to DNA replication stress, suggesting the involvement of unidentified checkpoint signaling pathways. Because MBF is critical for G1/S transcription, we examined how the cell cycle affected rhp51+ transcription. The transcription of rhp51+ and cdc18+, an MBF-dependent G1/S gene, peaked simultaneously in synchronized cdc25-22 cells. Furthermore, DNA replication stress maintained transcription of rhp51+ similarly to cdc18+. Collectively, these results suggest that MBF and its regulators mediate rhp51+ transcription in response to DNA replication stress, and underlie rhp51+ transcription at the G1/S transition.

  17. Method to determine transcriptional regulation pathways in organisms

    DOEpatents

    Gardner, Timothy S.; Collins, James J.; Hayete, Boris; Faith, Jeremiah

    2012-11-06

    The invention relates to computer-implemented methods and systems for identifying regulatory relationships between expressed regulating polypeptides and targets of the regulatory activities of such regulating polypeptides. More specifically, the invention provides a new method for identifying regulatory dependencies between biochemical species in a cell. In particular embodiments, provided are computer-implemented methods for identifying a regulatory interaction between a transcription factor and a gene target of the transcription factor, or between a transcription factor and a set of gene targets of the transcription factor. Further provided are genome-scale methods for predicting regulatory interactions between a set of transcription factors and a corresponding set of transcriptional target substrates thereof.

  18. Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation.

    PubMed

    Huang, Ming-Der; Wei, Fu-Jin; Wu, Cheng-Cheih; Hsing, Yue-Ie Caroline; Huang, Anthony H C

    2009-02-01

    The anthers in flowers perform important functions in sexual reproduction. Several recent studies used microarrays to study anther transcriptomes to explore genes controlling anther development. To analyze the secretion and other functions of the tapetum, we produced transcriptomes of anthers of rice (Oryza sativa subsp. japonica) at six progressive developmental stages and pollen with sequencing-by-synthesis technology. The transcriptomes included at least 18,000 unique transcripts, about 25% of which had antisense transcripts. In silico anther-minus-pollen subtraction produced transcripts largely unique to the tapetum; these transcripts include all the reported tapetum-specific transcripts of orthologs in other species. The differential developmental profiles of the transcripts and their antisense transcripts signify extensive regulation of gene expression in the anther, especially the tapetum, during development. The transcriptomes were used to dissect two major cell/biochemical functions of the tapetum. First, we categorized and charted the developmental profiles of all transcripts encoding secretory proteins present in the cellular exterior; these transcripts represent about 12% and 30% of the those transcripts having more than 100 and 1,000 transcripts per million, respectively. Second, we successfully selected from hundreds of transcripts several transcripts encoding potential proteins for lipid exine synthesis during early anther development. These proteins include cytochrome P450, acyltransferases, and lipid transfer proteins in our hypothesized mechanism of exine synthesis in and export from the tapetum. Putative functioning of these proteins in exine formation is consistent with proteins and metabolites detected in the anther locule fluid obtained by micropipetting.

  19. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    PubMed

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Dietary partitioning of Australia's two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range

    PubMed Central

    Johnson, Christopher N.; Barmuta, Leon A.; Jones, Menna E.

    2017-01-01

    Australia’s native marsupial fauna has just two primarily flesh-eating ‘hypercarnivores’, the Tasmanian devil (Sarcophilus harrisii) and the spotted-tailed quoll (Dasyurus maculatus) which coexist only on the island of Tasmania. Devil populations are currently declining due to a fatal transmissible cancer. Our aim was to analyse the diet of both species across their range in Tasmania, as a basis for understanding how devil decline might affect the abundance and distribution of quolls through release from competition. We used faecal analysis to describe diets of one or both species at 13 sites across Tasmania. We compared diet composition and breadth between the two species, and tested for geographic patterns in diets related to rainfall and devil population decline. Dietary items were classified into 6 broad categories: large mammals (≥ 7.0kg), medium-sized mammals (0.5–6.9kg), small mammals (< 0.5kg), birds, reptiles and invertebrates. Diet overlap based on prey-size category was high. Quoll diets were broader than devils at all but one site. Devils consumed more large and medium-sized mammals and quolls more small mammals, reptiles and invertebrates. Medium-sized mammals (mainly Tasmanian pademelon Thylogale billardierii), followed by large mammals (mainly Bennett’s wallaby Macropus rufogriseus) and birds, were the most important prey groups for both species. Diet composition varied across sites, suggesting that both species are flexible and opportunistic foragers, but was not related to rainfall for devils. Quolls included more large mammals but fewer small mammals and invertebrates in their diet in the eastern drier parts of Tasmania where devils have declined. This suggests that a competitive release of quolls may have occurred and the substantial decline of devils has provided more food in the large-mammal category for quolls, perhaps as increased scavenging opportunities. The high diet overlap suggests that if resources become limited in areas of high devil density, interspecific competition could occur. PMID:29176811

  1. A Reproductive Management Program for an Urban Population of Eastern Grey Kangaroos (Macropus giganteus).

    PubMed

    Tribe, Andrew; Hanger, Jon; McDonald, Ian J; Loader, Jo; Nottidge, Ben J; McKee, Jeff J; Phillips, Clive J C

    2014-09-15

    Traditionally, culling has been the expedient, most common, and in many cases, the only tool used to control free-ranging kangaroo populations. We applied a reproductive control program to a population of eastern grey kangaroos confined to a golf course in South East Queensland. The program aimed to reduce fecundity sufficiently for the population to decrease over time so that overgrazing of the fairways and the frequency of human-animal conflict situations were minimised. In 2003, 92% of the female kangaroos above 5 kg bodyweight were implanted with the GnRH agonist deslorelin after darting with a dissociative anaesthetic. In 2007, 86% of the females above 5 kg were implanted with deslorelin and also 87% of the males above 5 kg were sterilised by either orchidectomy or vasectomy. In 2005, 2008 and 2009, the population was censused to assess the effect of each treatment. The 2003 deslorelin program resulted in effective zero population growth for approximately 2.5 years. The combined deslorelin-surgery program in 2007 reduced the birth rate from 0.3 to 0.06%/year for 16 months, resulting in a 27% population reduction by November 2009. The results were consistent with implants conferring contraception to 100% of implanted females for at least 12 months. The iatrogenic mortality rates for each program were 10.5% and 4.9%, respectively, with 50% of all mortalities due to darting-related injuries, exertional myopathy/hyperthermia or recovery misadventure. The short term sexual and agonistic behaviour of the males was assessed for the 2007 program: no significant changes were seen in adult males given the vasectomy procedure, while sexual behaviours' were decreased in adult males given the orchidectomy procedure. It is concluded that female reproduction was effectively controlled by implantation with deslorrelin and male reproductive behaviour was reduced by orchidectomy, which together achieved population control.

  2. Hindgut plasticity in wallabies fed hay either unchopped or ground and pelleted: fiber is not the only factor.

    PubMed

    Munn, Adam J; Clissold, Fiona; Tarszisz, Esther; Kimpton, Kathleen; Dickman, Christopher R; Hume, Ian D

    2009-01-01

    Phenotypic plasticity of the gastrointestinal tract is crucial for optimal food processing and nutrient balance in many vertebrate species. For mammalian herbivores, gut plasticity is typically correlated with the fiber content of forage; however, we show here that other factors such as ingesta particle size may effect profound phenotypic plasticity of the fermentative hindgut in a medium-sized (10-kg body mass) marsupial herbivore, the red-necked wallaby (Macropus rufogriseus). When dietary fiber contents were comparable, red-necked wallabies that were fed a finely ground, pelleted hay for 60-72 d had hindguts that were some 28% heavier (empty wet mass) than those fed unchopped hay. The hindguts of pellet-fed wallabies contained more wet ingesta, which was also of a finer particle size, than those fed hay, indicating some separation of large- and small-particle fermentation between the foregut and the hindgut, respectively. Such a digestive strategy would benefit animals by allowing fermentation of a range of ingesta particle sizes that are expected for free-ranging animals faced with a spectrum of diet types and qualities. The heavier hindgut of pellet-fed wallabies was correlated with increased concentrations of short-chain fatty acids (SCFAs) in the fermentative hindgut (cecum and proximal colon) and particularly with increases in the molar proportions of n-butyric acid. The mechanisms facilitating gut plasticity in herbivorous mammals are uncertain, but we suggest that manipulating ingesta particle size rather than dietary fiber could provide a useful tool for evaluating causal explanations. In particular, altering ingesta particle size could help to distinguish possible direct processes (e.g., the favoring of smaller intestinal microbes and production of specific SCFAs) from indirect affects of feed structure (e.g., muscular hypertrophy to compensate for increased intakes and digesta bulk or the fermentation of mucus secreted to promote the flow of viscous, fine-particle material).

  3. Sounds Scary? Lack of Habituation following the Presentation of Novel Sounds

    PubMed Central

    Biedenweg, Tine A.; Parsons, Michael H.; Fleming, Patricia A.; Blumstein, Daniel T.

    2011-01-01

    Background Animals typically show less habituation to biologically meaningful sounds than to novel signals. We might therefore expect that acoustic deterrents should be based on natural sounds. Methodology We investigated responses by western grey kangaroos (Macropus fulignosus) towards playback of natural sounds (alarm foot stomps and Australian raven (Corvus coronoides) calls) and artificial sounds (faux snake hiss and bull whip crack). We then increased rate of presentation to examine whether animals would habituate. Finally, we varied frequency of playback to investigate optimal rates of delivery. Principal Findings Nine behaviors clustered into five Principal Components. PC factors 1 and 2 (animals alert or looking, or hopping and moving out of area) accounted for 36% of variance. PC factor 3 (eating cessation, taking flight, movement out of area) accounted for 13% of variance. Factors 4 and 5 (relaxing, grooming and walking; 12 and 11% of variation, respectively) discontinued upon playback. The whip crack was most evocative; eating was reduced from 75% of time spent prior to playback to 6% following playback (post alarm stomp: 32%, raven call: 49%, hiss: 75%). Additionally, 24% of individuals took flight and moved out of area (50 m radius) in response to the whip crack (foot stomp: 0%, raven call: 8% and 4%, hiss: 6%). Increasing rate of presentation (12x/min ×2 min) caused 71% of animals to move out of the area. Conclusions/Significance The bull whip crack, an artificial sound, was as effective as the alarm stomp at eliciting aversive behaviors. Kangaroos did not fully habituate despite hearing the signal up to 20x/min. Highest rates of playback did not elicit the greatest responses, suggesting that ‘more is not always better’. Ultimately, by utilizing both artificial and biological sounds, predictability may be masked or offset, so that habituation is delayed and more effective deterrents may be produced. PMID:21267451

  4. The high aerobic capacity of a small, marsupial rat-kangaroo (Bettongia penicillata) is matched by the mitochondrial and capillary morphology of its skeletal muscles.

    PubMed

    Webster, Koa N; Dawson, Terence J

    2012-09-15

    We examined the structure-function relationships that underlie the aerobic capacities of marsupial mammals that hop. Marsupials have relatively low basal metabolic rates (BMR) and historically were seen as 'low energy' mammals. However, the red kangaroo, Macropus rufus (family Macropodidae), has aerobic capacities equivalent to athletic placentals. It has an extreme aerobic scope (fAS) and its large locomotor muscles feature high mitochondrial and capillary volumes. M. rufus belongs to a modern group of kangaroos and its high fAS is not general for marsupials. However, other hopping marsupials may have elevated aerobic capacities. Bettongia penicillata, a rat-kangaroo (family Potoroidae), is a small (1 kg), active hopper whose fAS is somewhat elevated. We examined the oxygen delivery system in its muscles to ascertain links with hopping. An elevated fAS of 23 provided a relatively high maximal aerobic oxygen consumption ( ) in B. penicillata; associated with this is a skeletal muscle mass of 44% of body mass. Ten muscles were sampled to estimate the total mitochondrial and capillary volume of the locomotor muscles. Values in B. penicillata were similar to those in M. rufus and in athletic placentals. This small hopper had high muscle mitochondrial volume densities (7.1-11.9%) and both a large total capillary volume (6 ml kg(-1) body mass) and total capillary erythrocyte volume (3.2 ml kg(-1)). Apparently, a considerable aerobic capacity is required to achieve the benefits of the extended stride in fast hopping. Of note, the ratio of to total muscle mitochondrial volume in B. penicillata was 4.9 ml O(2) min(-1) ml(-1). Similar values occur in M. rufus and also placental mammals generally, not only athletic species. If such relationships occur in other marsupials, a fundamental structure-function relationship for oxygen delivery to muscles likely originated with or before the earliest mammals.

  5. Comparative water metabolism of Barrow Island macropodid marsupials: hormonal versus behavioural-dependent mechanisms of body water conservation.

    PubMed

    King, J M; Bradshaw, S D

    2008-01-15

    Seasonal variations in rates of water turnover were measured over a 7-year period in four species of macropodid marsupials (Lagorchestes conspicillatus, Bettongia lesueur, Petrogale lateralis and Macropus robustus isabellinus), on Barrow Island off the arid Pilbara coast of Western Australia. These ranged from over 100 mL kg(-0.82) d(-1) in wet seasons to as low as 28.2 mL kg(-0.82) d(-1) in dry seasons in the Spectacled hare wallaby, L. conspicillatus. Plasma osmolality increased significantly in both Barrow Island euros (M. robustus isabellinus) and Spectacled hare wallabies in November 1994, in the driest year yet recorded on the island. In contrast, there was no change in plasma osmolality of the other two species (Black-footed rock wallaby, P. lateralis and Lesueur's burrowing bettong, B. lesueur) that exploit cool and humid thermal refugia such as caves and underground warrens to avoid diurnal temperature extremes. Plasma levels of the marsupial antidiuretic hormone (ADH), lysine vasopressin (LVP), were for the most part below the detectable limit of the assay of 0.41 pg mL(-1) in rock wallabies and bettongs, but reached high levels of 16.7+/-4.6 pg mL(-1) and 20.25+/-5.1 pg mL(-1) in euros and hare wallabies, respectively, in dry seasons. LVP levels were positively correlated with plasma osmolality in both euros and hare wallabies, and negatively correlated with total body water content in euros, supporting its rôle as an antidiuretic hormone in these two species. The study highlights the importance of environmental features, such as caves and underground warrens, which are critical for the long-term survival of endangered species such as the Black-footed rock wallaby and the Lesueur's bettong. These species appear to lack ADH-controlled renal systems for the conservation of body water and are thus dependent on behavioural strategies for the maintenance of fluid homeostasis in arid environments.

  6. Modelling digestive constraints in non-ruminant and ruminant foregut-fermenting mammals.

    PubMed

    Munn, Adam J; Streich, W Jürgen; Hummel, Jürgen; Clauss, Marcus

    2008-09-01

    It has been suggested that large foregut-fermenting marsupial herbivores, the kangaroos and their relatives, may be less constrained by food intake limitations as compared with ruminants, due mainly to differences in their digestive morphology and management of ingesta particles through the gut. In particular, as the quality of forage declines with increasing contents of plant fibre (cellulose, hemicelluloses and lignin; measured as neutral-detergent fibre, NDF), the tubiform foregut of kangaroos may allow these animals to maintain food intakes more so than ruminants like sheep, which appear to be limited by fibrous bulk filling the foregut and truncating further ingestion. Using available data on dry matter intake (DMI, g kg(-0.75) d(-1)), ingesta mean retention time (MRT, h), and apparent digestibility, we modelled digestible dry matter intake (DDMI) and digestible energy intake (DEI) by ruminant sheep (Ovis aries) and by the largest marsupial herbivore, the red kangaroo (Macropus rufus). Sheep achieved higher MRTs on similar DMIs, and hence sheep achieved higher DDMIs for any given level of DMI as compared with kangaroos. Interestingly, MRT declined in response to increasing DMI in a similar pattern for both species, and the association between DMI and plant NDF contents did not support the hypothesis that kangaroos are less affected by increasing fibre relative to sheep. However, when DEI was modelled according to DDMIs and dietary energy contents, we show that the kangaroos could meet their daily maintenance energy requirements (MER) at lower levels of DMI and on diets with higher fibre contents compared with sheep, due largely to the kangaroos' lower absolute maintenance and basal energy metabolisms compared with eutherians. These results suggest that differences in the metabolic set-point of different species can have profound effects on their nutritional niche, even when their digestive constraints are similar, as was the case for these ruminant and non-ruminant foregut fermenters.

  7. The Smad3 linker region contains a transcriptional activation domain

    PubMed Central

    2004-01-01

    Transforming growth factor-β (TGF-β)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-β/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-β transcriptional activation responses, although it can be phosphorylated by the TGF-β receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-β. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control. PMID:15588252

  8. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.

  9. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

    PubMed

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Rehli, Michael; Hume, David A

    2015-05-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. © The Author(s).

  10. Mechanisms of specificity in neuronal activity-regulated gene transcription

    PubMed Central

    Lyons, Michelle R.; West, Anne E.

    2011-01-01

    The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. PMID:21620929

  11. E6-associated transcription patterns in human papilloma virus 16-positive cervical tissues.

    PubMed

    Lin, Kezhi; Lu, Xulian; Chen, Jun; Zou, Ruanmin; Zhang, Lifang; Xue, Xiangyang

    2015-01-01

    The change in transcription pattern induced by post-transcriptional RNA splicing is an important mechanism in the regulation of the early gene expression of human papilloma virus (HPV). The present study was conducted to establish a method to specifically amplify HPV-16 E6-associated transcripts. The E6-related transcripts from 63 HPV-16-positive cervical tumor tissue samples were amplified, consisting of eight cases of low-risk intraepithelial lesions, 38 cases of high-risk intraepithelial lesions and 17 cases of cervical cancer (CxCa). The appropriate amplified segments were recovered following agarose gel electrophoresis, and subjected to further sequencing and sequence alignment analysis. Six groups of E6 transcription patterns were identified from HPV-16-positive cervical tumor tissue, including five newly-discovered transcripts. Different HPV-16 E6-associated transcription patterns were detected during the development of CxCa. Over the course of the progression of the low-grade squamous intraepithelial lesions to CxCa, the specific HPV-16 E6-associated transcription patterns and the dominant transcripts were all different. As indicated by this study, the transcription pattern of the E6 early gene of HPV-16 was closely associated with the stages of cervical carcinogenesis, and may also be involved in the development of CxCa.

  12. A hyperactive transcriptional state marks genome reactivation at the mitosis–G1 transition

    PubMed Central

    Hsiung, Chris C.-S.; Bartman, Caroline R.; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J.; Keller, Cheryl A.; Face, Carolyne; Jahn, Kristen S.; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C.; Raj, Arjun; Blobel, Gerd A.

    2016-01-01

    During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis–G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer–promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis–G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis–G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis–G1 transition might predispose cells to diverge in gene expression states. PMID:27340175

  13. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  14. Acetyl coenzyme A stimulates RNA polymerase II transcription and promoter binding by transcription factor IID in the absence of histones.

    PubMed

    Galasinski, S K; Lively, T N; Grebe De Barron, A; Goodrich, J A

    2000-03-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression.

  15. The WRKY transcription factor family in Brachypodium distachyon.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Langum, Tanner J; Boken, Ashley K; Rushton, Deena L; Boomsma, Darius D; Rinerson, Charles I; Rabara, Jennifer; Reese, R Neil; Chen, Xianfeng; Rohila, Jai S; Rushton, Paul J

    2012-06-22

    A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. The description of the WRKY transcription factor family in Brachypodium that we report here provides a framework for functional genomics studies in an important model system. Our database is a resource for both Brachypodium and wheat studies and ultimately projects aimed at improving wheat through manipulation of WRKY transcription factors.

  16. The WRKY transcription factor family in Brachypodium distachyon

    PubMed Central

    2012-01-01

    Background A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. Results We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. Conclusions The description of the WRKY transcription factor family in Brachypodium that we report here provides a framework for functional genomics studies in an important model system. Our database is a resource for both Brachypodium and wheat studies and ultimately projects aimed at improving wheat through manipulation of WRKY transcription factors. PMID:22726208

  17. "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".

    PubMed

    Doidy, Joan; Li, Ying; Neymotin, Benjamin; Edwards, Molly B; Varala, Kranthi; Gresham, David; Coruzzi, Gloria M

    2016-02-03

    Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking. Here, we show that active transcription continues after transient TF-target interactions by tracking de novo synthesis of RNAs made in response to TF nuclear import. To do this, we introduced an affinity-labeled 4-thiouracil (4tU) nucleobase to specifically isolate newly synthesized transcripts following conditional TF nuclear import. Thus, we extended the TARGET system (Transient Assay Reporting Genome-wide Effects of Transcription factors) to include 4tU-labeling and named this new technology TARGET-tU. Our proof-of-principle example is the master TF Basic Leucine Zipper 1 (bZIP1), a central integrator of metabolic signaling in plants. Using TARGET-tU, we captured newly synthesized mRNAs made in response to bZIP1 nuclear import at a time when bZIP1 is no longer detectably bound to its target. Thus, the analysis of de novo transcripomics demonstrates that bZIP1 may act as a catalyst TF to initiate a transcriptional complex ("hit"), after which active transcription by RNA polymerase continues without the TF being bound to the gene promoter ("run"). Our findings provide experimental proof for active transcription of transient TF-targets supporting a "hit-and-run" mode of action. This dynamic regulatory model allows a master TF to catalytically propagate rapid and broad transcriptional responses to changes in environment. Thus, the functional read-out of de novo transcripts produced by transient TF-target interactions allowed us to capture new models for genome-wide transcriptional control.

  18. Ras-Induced Changes in H3K27me3 Occur after Those in Transcriptional Activity

    PubMed Central

    Hosogane, Masaki; Funayama, Ryo; Nishida, Yuichiro; Nagashima, Takeshi; Nakayama, Keiko

    2013-01-01

    Oncogenic signaling pathways regulate gene expression in part through epigenetic modification of chromatin including DNA methylation and histone modification. Trimethylation of histone H3 at lysine-27 (H3K27), which correlates with transcriptional repression, is regulated by an oncogenic form of the small GTPase Ras. Although accumulation of trimethylated H3K27 (H3K27me3) has been implicated in transcriptional regulation, it remains unclear whether Ras-induced changes in H3K27me3 are a trigger for or a consequence of changes in transcriptional activity. We have now examined the relation between H3K27 trimethylation and transcriptional regulation by Ras. Genome-wide analysis of H3K27me3 distribution and transcription at various times after expression of oncogenic Ras in mouse NIH 3T3 cells identified 115 genes for which H3K27me3 level at the gene body and transcription were both regulated by Ras. Similarly, 196 genes showed Ras-induced changes in transcription and H3K27me3 level in the region around the transcription start site. The Ras-induced changes in transcription occurred before those in H3K27me3 at the genome-wide level, a finding that was validated by analysis of individual genes. Depletion of H3K27me3 either before or after activation of Ras signaling did not affect the transcriptional regulation of these genes. Furthermore, given that H3K27me3 enrichment was dependent on Ras signaling, neither it nor transcriptional repression was maintained after inactivation of such signaling. Unexpectedly, we detected unannotated transcripts derived from intergenic regions at which the H3K27me3 level is regulated by Ras, with the changes in transcript abundance again preceding those in H3K27me3. Our results thus indicate that changes in H3K27me3 level in the gene body or in the region around the transcription start site are not a trigger for, but rather a consequence of, changes in transcriptional activity. PMID:24009517

  19. 12 CFR 261b.12 - Procedures for inspection and obtaining copies of transcriptions and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of transcriptions and minutes. 261b.12 Section 261b.12 Banks and Banking FEDERAL RESERVE SYSTEM... § 261b.12 Procedures for inspection and obtaining copies of transcriptions and minutes. (a) Any person may inspect or copy a transcript, a recording or transcription of a recording, or minutes described in...

  20. USE OF TRANSCRIPTIONAL COUPLING AND KEGG PATHWAY ANALYSIS OF GLOBAL GENE EXPRESSION TO REVEAL TRANSCRIPTIONAL CHANGES BETWEEN STATIONARY- AND LOG-PHASE SALMONELLA TYPHIMURIUM LT2

    EPA Science Inventory

    DNA microarray analysis is plagued by a lack of data reproducibility and by limits to the detectability of transcripts by hybridization. To mitigate these limitations, we employed transcriptional coupling within the S. typhimurium genome. This genome has 2664 transcriptionally co...

  1. HALO--a Java framework for precise transcript half-life determination.

    PubMed

    Friedel, Caroline C; Kaufmann, Stefanie; Dölken, Lars; Zimmer, Ralf

    2010-05-01

    Recent improvements in experimental technologies now allow measurements of de novo transcription and/or RNA decay at whole transcriptome level and determination of precise transcript half-lives. Such transcript half-lives provide important insights into the regulation of biological processes and the relative contributions of RNA decay and de novo transcription to differential gene expression. In this article, we present HALO (Half-life Organizer), the first software for the precise determination of transcript half-lives from measurements of RNA de novo transcription or decay determined with microarrays or RNA-seq. In addition, methods for quality control, filtering and normalization are supplied. HALO provides a graphical user interface, command-line tools and a well-documented Java application programming interface (API). Thus, it can be used both by biologists to determine transcript half-lives fast and reliably with the provided user interfaces as well as software developers integrating transcript half-life analysis into other gene expression profiling pipelines. Source code, executables and documentation are available at http://www.bio.ifi.lmu.de/software/halo.

  2. Modelling reveals kinetic advantages of co-transcriptional splicing.

    PubMed

    Aitken, Stuart; Alexander, Ross D; Beggs, Jean D

    2011-10-01

    Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  3. Interdependence between transcription and mRNP processing and export, and its impact on genetic stability.

    PubMed

    Luna, Rosa; Jimeno, Sonia; Marín, Mercedes; Huertas, Pablo; García-Rubio, María; Aguilera, Andrés

    2005-06-10

    The conserved eukaryotic THO-TREX complex acts at the interface between transcription and mRNA export and affects transcription-associated recombination. To investigate the interdependence of nuclear mRNA processes and their impact on genomic integrity, we analyzed transcript accumulation and recombination of 40 selected mutants covering representative steps of the biogenesis and export of the messenger ribonucleoprotein particle (mRNP). None of the mutants analyzed shared the strong transcript-accumulation defect and hyperrecombination of THO mutants. Nevertheless, mutants in 3' end cleavage/polyadenylation, nuclear exosome, and mRNA export showed a weak but significant effect on recombination and transcript accumulation. Mutants of the nuclear exosome (rrp6) and 3' end processing factors (rna14 and rna15) showed inefficient transcription elongation and genetic interactions with THO. The results suggest a tight interdependence among mRNP biogenesis steps and transcription and an unexpected effect of the nuclear exosome and the cleavage/polyadenylation factors on transcription elongation and genetic integrity.

  4. CDK regulation of transcription by RNAP II: Not over 'til it's over?

    PubMed

    Fisher, Robert P

    2017-03-15

    Transcription by RNA polymerase (RNAP) II is regulated at multiple steps by phosphorylation, catalyzed mainly by members of the cyclin-dependent kinase (CDK) family. The CDKs involved in transcription have overlapping substrate specificities, but play largely non-redundant roles in coordinating gene expression. Novel functions and targets of CDKs have recently emerged at the end of the transcription cycle, when the primary transcript is cleaved, and in most cases polyadenylated, and transcription is terminated by the action of the "torpedo" exonuclease Xrn2, which is a CDK substrate. Collectively, various functions have been ascribed to CDKs or CDK-mediated phosphorylation: recruiting cleavage and polyadenylation factors, preventing premature termination within gene bodies while promoting efficient termination of full-length transcripts, and preventing extensive readthrough transcription into intergenic regions or neighboring genes. The assignment of precise functions to specific CDKs is still in progress, but recent advances suggest ways in which the CDK network and RNAP II machinery might cooperate to ensure timely exit from the transcription cycle.

  5. CDK regulation of transcription by RNAP II: Not over ‘til it's over?

    PubMed Central

    Fisher, Robert P.

    2017-01-01

    ABSTRACT Transcription by RNA polymerase (RNAP) II is regulated at multiple steps by phosphorylation, catalyzed mainly by members of the cyclin-dependent kinase (CDK) family. The CDKs involved in transcription have overlapping substrate specificities, but play largely non-redundant roles in coordinating gene expression. Novel functions and targets of CDKs have recently emerged at the end of the transcription cycle, when the primary transcript is cleaved, and in most cases polyadenylated, and transcription is terminated by the action of the “torpedo” exonuclease Xrn2, which is a CDK substrate. Collectively, various functions have been ascribed to CDKs or CDK-mediated phosphorylation: recruiting cleavage and polyadenylation factors, preventing premature termination within gene bodies while promoting efficient termination of full-length transcripts, and preventing extensive readthrough transcription into intergenic regions or neighboring genes. The assignment of precise functions to specific CDKs is still in progress, but recent advances suggest ways in which the CDK network and RNAP II machinery might cooperate to ensure timely exit from the transcription cycle. PMID:28005463

  6. Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.

    PubMed

    Fryer, J P; Oetting, W S; Brott, M J; King, R A

    2001-11-01

    We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.

  7. Genome-Wide Reprogramming of Transcript Architecture by Temperature Specifies the Developmental States of the Human Pathogen Histoplasma

    PubMed Central

    Gilmore, Sarah A.; Voorhies, Mark; Gebhart, Dana; Sil, Anita

    2015-01-01

    Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5’ leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature. PMID:26177267

  8. Bombyx mori Transcription Factors: Genome-Wide Identification, Expression Profiles and Response to Pathogens by Microarray Analysis

    PubMed Central

    Huang, Lulin; Cheng, Tingcai; Xu, Pingzhen; Fang, Ting; Xia, Qingyou

    2012-01-01

    Transcription factors are present in all living organisms, and play vital roles in a wide range of biological processes. Studies of transcription factors will help reveal the complex regulation mechanism of organisms. So far, hundreds of domains have been identified that show transcription factor activity. Here, 281 reported transcription factor domains were used as seeds to search the transcription factors in genomes of Bombyx mori L. (Lepidoptera: Bombycidae) and four other model insects. Overall, 666 transcription factors including 36 basal factors and 630 other factors were identified in B. mori genome, which accounted for 4.56% of its genome. The silkworm transcription factors' expression profiles were investigated in relation to multiple tissues, developmental stages, sexual dimorphism, and responses to oral infection by pathogens and direct bacterial injection. These all provided rich clues for revealing the transcriptional regulation mechanism of silkworm organ differentiation, growth and development, sexual dimorphism, and response to pathogen infection. PMID:22943524

  9. Genome-Wide Reprogramming of Transcript Architecture by Temperature Specifies the Developmental States of the Human Pathogen Histoplasma.

    PubMed

    Gilmore, Sarah A; Voorhies, Mark; Gebhart, Dana; Sil, Anita

    2015-07-01

    Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5' leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature.

  10. A new paradigm for transcription factor TFIIB functionality

    PubMed Central

    Gelev, Vladimir; Zabolotny, Janice M.; Lange, Martin; Hiromura, Makoto; Yoo, Sang Wook; Orlando, Joseph S.; Kushnir, Anna; Horikoshi, Nobuo; Paquet, Eric; Bachvarov, Dimcho; Schaffer, Priscilla A.; Usheva, Anny

    2014-01-01

    Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects. PMID:24441171

  11. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    PubMed Central

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  12. Caracteristiques de trois systemes informatiques de transcription phonetique et graphemique (Characteristics of Three Computer-Based Systems of Phonetic and Graphemic Transcription).

    ERIC Educational Resources Information Center

    Marty, Fernand

    Three computer-based systems for phonetic/graphemic transcription of language are described, compared, and contrasted. The text is entirely in French, with examples given from the French language. The three approaches to transcription are: (1) text entered in standard typography and exiting in phonetic transcription with markers for rhythmic…

  13. TAFII-independent activation mediated by human TBP in the presence of the positive cofactor PC4.

    PubMed Central

    Wu, S Y; Kershnar, E; Chiang, C M

    1998-01-01

    TFIID is a multiprotein complex comprised of the TATA-binding protein (TBP) and an array of TBP-associated factors (TAFIIs). Whereas TBP is sufficient for basal transcription in conjunction with other general transcription factors and RNA polymerase II, TAFIIs are additionally required for activator-dependent transcription in mammalian cell-free transcription systems. However, recent in vivo studies carried out in yeast suggest that TAFIIs are not globally required for activator function. The discrepancy between in vivo yeast studies and in vitro mammalian cell-free systems remains to be resolved. In this study, we describe a mammalian cell-free transcription system reconstituted with only recombinant proteins and epitope-tagged multiprotein complexes. Transcriptional activation can be recapitulated in this highly purified in vitro transcription system in the absence of TAFIIs. This TBP-mediated activation is not induced by human mediator, another transcriptional coactivator complex potentially implicated in activator response. In contrast, general transcription factors TFIIH and TFIIA play a significant role in TBP-mediated activation, which can be detected in vitro with Gal4 fusion proteins containing various transcriptional activation domains. Our data, therefore, suggest that TFIIH and TFIIA can mediate activator function in the absence of TAFIIs. PMID:9687514

  14. mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription.

    PubMed

    Varshney, Dhaval; Lombardi, Olivia; Schweikert, Gabriele; Dunn, Sianadh; Suska, Olga; Cowling, Victoria H

    2018-05-01

    mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Polymerase III transcription factor B activity is reduced in extracts of growth-restricted cells.

    PubMed Central

    Tower, J; Sollner-Webb, B

    1988-01-01

    Extracts of cells that are down-regulated for transcription by RNA polymerase I and RNA polymerase III exhibit a reduced in vitro transcriptional capacity. We have recently demonstrated that the down-regulation of polymerase I transcription in extracts of cycloheximide-treated and stationary-phase cells results from a lack of an activated subform of RNA polymerase I which is essential for rDNA transcription. To examine whether polymerase III transcriptional down-regulation occurs by a similar mechanism, the polymerase III transcription factors were isolated and added singly and in pairs to control cell extracts and to extracts of cells that had reduced polymerase III transcriptional activity due to cycloheximide treatment or growth into stationary phase. These down-regulations result from a specific reduction in TFIIIB; TFIIIC and polymerase III activities remain relatively constant. Thus, although transcription by both polymerase III and polymerase I is substantially decreased in extracts of growth-arrested cells, this regulation is brought about by reduction of different kinds of activities: a component of the polymerase III stable transcription complex in the former case and the activated subform of RNA polymerase I in the latter. Images PMID:3352599

  16. Differentiation Driven Changes in the Dynamic Organization of Basal Transcription Initiation

    PubMed Central

    Giglia-Mari, Giuseppina; Mourgues, Sophie; Nonnekens, Julie; Andrieux, Lise O.; de Wit, Jan; Miquel, Catherine; Wijgers, Nils; Maas, Alex; Fousteri, Maria; Hoeijmakers, Jan H. J.; Vermeulen, Wim

    2009-01-01

    Studies based on cell-free systems and on in vitro–cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue. To allow analysis of transcription initiation dynamics directly into living mammalian tissues, we created a knock-in mouse model expressing fluorescently tagged TFIIH. Surprisingly and in contrast to what has been observed in cultured and proliferating cells, postmitotic murine cells embedded in their tissue exhibit a strong and long-lasting transcription-dependent immobilization of TFIIH. This immobilization is both differentiation driven and development dependent. Furthermore, although very statically bound, TFIIH can be remobilized to respond to new transcriptional needs. This divergent spatiotemporal transcriptional organization in different cells of the soma revisits the generally accepted highly dynamic concept of the kinetic framework of transcription and shows how basic processes, such as transcription, can be organized in a fundamentally different fashion in intact organisms as previously deduced from in vitro studies. PMID:19841728

  17. Therapeutic potential of Mediator complex subunits in metabolic diseases.

    PubMed

    Ranjan, Amol; Ansari, Suraiya A

    2018-01-01

    The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. The Mission Transcript Collection: U.S. Human Spaceflight Missions from Mercury Redstone 3 to Apollo 17

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aboard every U.S. piloted spacecraft, from Mercury through Apollo, NASA installed tape recorders that captured nearly every word spoken by the astronauts during their history-making flights into space. For the first time ever, NASA has digitally scanned all of the transcripts made from both the onboard tapes and those tape recordings made on the ground from the air-to-ground transmissions and placed them on this two CD-ROM set. Gathered in this special collection are 80 transcripts totaling nearly 45,000 pages of text that cover every US human spaceflight from the first human Mercury mission through the last lunar landing flight of Apollo 17. Users of this CD will note that the quantity and type of transcripts made for each mission vary. For example, the Mercury flights each had one transcript whereas the Gemini missions produced several. Starting with the Gemini flights, NASA produced a Public Affairs Office (PAO) commentary version, as well as at least one "technical" air-to-ground transcript version, per mission. Most of the Apollo missions produced four transcripts per flight. These included the onboard voice data recorder transcripts made from the Data Storage Equipment (DSE) on the Command Module (CM), and the Data Storage Electronics Assembly (DSEA) onboard the Lunar Module (LM), in addition to the PAO commentary and air-to-ground technical transcripts. The CD set includes an index listing each transcript file by name. Some of the transcripts include a detailed explanation of their contents and how they were made. Also included in this collection is a listing of all the original air-to-ground audiotapes housed in NASA's archives from which many of these transcripts were made. We hope you find this collection of transcripts interesting and useful.

  19. New insights into transcription fidelity: thermal stability of non-canonical structures in template DNA regulates transcriptional arrest, pause, and slippage.

    PubMed

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (-ΔG°37) in the presence of 20 wt% PEG was more than 8.2 kcal mol(-1). Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs.

  20. New Insights into Transcription Fidelity: Thermal Stability of Non-Canonical Structures in Template DNA Regulates Transcriptional Arrest, Pause, and Slippage

    PubMed Central

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (−ΔGo 37) in the presence of 20 wt% PEG was more than 8.2 kcal mol−1. Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs. PMID:24594642

  1. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription.

    PubMed

    Walker, Amy K; Shi, Yang; Blackwell, T Keith

    2004-04-09

    The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.

  2. The glucose sensor Snf1 and the transcription factors Msn2 and Msn4 regulate transcription of the vacuolar iron importer gene CCC1 and iron resistance in yeast.

    PubMed

    Li, Liangtao; Kaplan, Jerry; Ward, Diane M

    2017-09-15

    The budding yeast Saccharomyces cerevisiae stores iron in the vacuole, which is a major resistance mechanism against iron toxicity. One key protein involved in vacuolar iron storage is the iron importer Ccc1, which facilitates iron entry into the vacuole. Transcription of the CCC1 gene is largely regulated by the binding of iron-sulfur clusters to the activator domain of the transcriptional activator Yap5. Additional evidence, however, suggests that Yap5-independent transcriptional activation of CCC1 also contributes to iron resistance. Here, we demonstrate that components of the signaling pathway involving the low-glucose sensor Snf1 regulate CCC1 transcription and iron resistance. We found that SNF1 deletion acts synergistically with YAP5 deletion to regulate CCC1 transcription and iron resistance. A kinase-dead mutation of Snf1 lowered iron resistance as did deletion of SNF4 , which encodes a partner protein of Snf1. Deletion of all three alternative partners of Snf1 encoded by SIT1 , SIT2 , and GAL83 decreased both CCC1 transcription and iron resistance. The Snf1 complex is known to activate the general stress transcription factors Msn2 and Msn4. We show that Msn2 and Msn4 contribute to Snf1-mediated CCC1 transcription. Of note, SNF1 deletion in combination with MSN2 and MSN4 deletion resulted in additive effects on CCC1 transcription, suggesting that other activators contribute to the regulation of CCC1 transcription. In conclusion, we show that yeast have developed multiple transcriptional mechanisms to regulate Ccc1 expression and to protect against high cytosolic iron toxicity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. 22 CFR 1004.8 - Transcripts, recording of closed meetings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... under § 1004.4. Copies of such transcript, or a transcription of such recording disclosing the identity of each speaker, shall be furnished to any person at the actual cost of duplication or transcription...

  4. 29 CFR 102.142 - Transcripts, recordings or minutes of closed meetings; public availability; retention.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., or transcriptions of electronic recordings including the identification of speakers, shall to the... cost of transcription. (c) The agency shall maintain a complete verbatim copy of the transcript, a...

  5. 29 CFR 102.142 - Transcripts, recordings or minutes of closed meetings; public availability; retention.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or transcriptions of electronic recordings including the identification of speakers, shall to the... cost of transcription. (c) The agency shall maintain a complete verbatim copy of the transcript, a...

  6. 22 CFR 1500.9 - Transcripts, recording of closed meetings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... contain information which may be withheld under § 1500.5. Copies of such transcript, or a transcription of... cost of duplication or transcription. The Foundation shall maintain a complete verbatim copy of the...

  7. 32 CFR 242a.7 - Transcripts, recordings, and minutes of closed meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transcript, or minutes, or a transcription of such recording disclosing the identity of each speaker, shall be available at the actual cost of duplication or transcription. (3) The determination of the...

  8. 32 CFR 242a.7 - Transcripts, recordings, and minutes of closed meetings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transcript, or minutes, or a transcription of such recording disclosing the identity of each speaker, shall be available at the actual cost of duplication or transcription. (3) The determination of the...

  9. The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway.

    PubMed

    Fox, Melanie J; Gao, Hongyu; Smith-Kinnaman, Whitney R; Liu, Yunlong; Mosley, Amber L

    2015-01-01

    The exosome and its nuclear specific subunit Rrp6 form a 3'-5' exonuclease complex that regulates diverse aspects of RNA biology including 3' end processing and degradation of a variety of noncoding RNAs (ncRNAs) and unstable transcripts. Known targets of the nuclear exosome include short (<1000 bp) RNAPII transcripts such as small noncoding RNAs (snRNAs), cryptic unstable transcripts (CUTs), and some stable unannotated transcripts (SUTs) that are terminated by an Nrd1, Nab3, and Sen1 (NNS) dependent mechanism. NNS-dependent termination is coupled to RNA 3' end processing and/or degradation by the Rrp6/exosome in yeast. Recent work suggests Nrd1 is necessary for transcriptome surveillance, regulating promoter directionality and suppressing antisense transcription independently of, or prior to, Rrp6 activity. It remains unclear whether Rrp6 is directly involved in termination; however, Rrp6 has been implicated in the 3' end processing and degradation of ncRNA transcripts including CUTs. To determine the role of Rrp6 in NNS termination globally, we performed RNA sequencing (RNA-Seq) on total RNA and perform ChIP-exo analysis of RNA Polymerase II (RNAPII) localization. Deletion of RRP6 promotes hyper-elongation of multiple NNS-dependent transcripts resulting from both improperly processed 3' RNA ends and faulty transcript termination at specific target genes. The defects in RNAPII termination cause transcriptome-wide changes in mRNA expression through transcription interference and/or antisense repression, similar to previously reported effects of depleting Nrd1 from the nucleus. Elongated transcripts were identified within all classes of known NNS targets with the largest changes in transcription termination occurring at CUTs. Interestingly, the extended transcripts that we have detected in our studies show remarkable similarity to Nrd1-unterminated transcripts at many locations, suggesting that Rrp6 acts with the NNS complex globally to promote transcription termination in addition to 3' end RNA processing and/or degradation at specific targets.

  10. Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb.

    PubMed

    Kuzmina, Alona; Krasnopolsky, Simona; Taube, Ran

    2017-05-27

    Early work on the control of transcription of the human immunodeficiency virus (HIV) laid the foundation for our current knowledge of how RNA Polymerase II is released from promoter-proximal pausing sites and transcription elongation is enhanced. The viral Tat activator recruits Positive Transcription Elongation Factor b (P-TEFb) and Super Elongation Complex (SEC) that jointly drive transcription elongation. While substantial progress in understanding the role of SEC in HIV gene transcription elongation has been obtained, defining of the mechanisms that govern SEC functions is still limited, and the role of SEC in controlling HIV transcription in the absence of Tat is less clear. Here we revisit the contribution of SEC in early steps of HIV gene transcription. In the absence of Tat, the AF4/FMR2 Family member 4 (AFF4) of SEC efficiently activates HIV transcription, while gene activation by its homolog AFF1 is substantially lower. Differential recruitment to the HIV promoter and association with Human Polymerase-Associated Factor complex (PAFc) play key role in this functional distinction between AFF4 and AFF1. Moreover, while depletion of cyclin T1 expression has subtle effects on HIV gene transcription in the absence of Tat, knockout (KO) of AFF1, AFF4, or both proteins slightly repress this early step of viral transcription. Upon Tat expression, HIV transcription reaches optimal levels despite KO of AFF1 or AFF4 expression. However, double AFF1/AFF4 KO completely diminishes Tat trans-activation. Significantly, our results show that P-TEFb phosphorylates AFF4 and modulates SEC assembly, AFF1/4 dimerization and recruitment to the viral promoter. We conclude that SEC promotes both early steps of HIV transcription in the absence of Tat, as well as elongation of transcription, when Tat is expressed. Significantly, SEC functions are modulated by P-TEFb.

  11. Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb

    PubMed Central

    Kuzmina, Alona; Krasnopolsky, Simona; Taube, Ran

    2017-01-01

    ABSTRACT Early work on the control of transcription of the human immunodeficiency virus (HIV) laid the foundation for our current knowledge of how RNA Polymerase II is released from promoter-proximal pausing sites and transcription elongation is enhanced. The viral Tat activator recruits Positive Transcription Elongation Factor b (P-TEFb) and Super Elongation Complex (SEC) that jointly drive transcription elongation. While substantial progress in understanding the role of SEC in HIV gene transcription elongation has been obtained, defining of the mechanisms that govern SEC functions is still limited, and the role of SEC in controlling HIV transcription in the absence of Tat is less clear. Here we revisit the contribution of SEC in early steps of HIV gene transcription. In the absence of Tat, the AF4/FMR2 Family member 4 (AFF4) of SEC efficiently activates HIV transcription, while gene activation by its homolog AFF1 is substantially lower. Differential recruitment to the HIV promoter and association with Human Polymerase-Associated Factor complex (PAFc) play key role in this functional distinction between AFF4 and AFF1. Moreover, while depletion of cyclin T1 expression has subtle effects on HIV gene transcription in the absence of Tat, knockout (KO) of AFF1, AFF4, or both proteins slightly repress this early step of viral transcription. Upon Tat expression, HIV transcription reaches optimal levels despite KO of AFF1 or AFF4 expression. However, double AFF1/AFF4 KO completely diminishes Tat trans-activation. Significantly, our results show that P-TEFb phosphorylates AFF4 and modulates SEC assembly, AFF1/4 dimerization and recruitment to the viral promoter. We conclude that SEC promotes both early steps of HIV transcription in the absence of Tat, as well as elongation of transcription, when Tat is expressed. Significantly, SEC functions are modulated by P-TEFb. PMID:28340332

  12. The Werner Syndrome Protein Is Involved in RNA Polymerase II Transcription

    PubMed Central

    Balajee, Adayabalam S.; Machwe, Amrita; May, Alfred; Gray, Matthew D.; Oshima, Junko; Martin, George M.; Nehlin, Jan O.; Brosh, Robert; Orren, David K.; Bohr, Vilhelm A.

    1999-01-01

    Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype. PMID:10436020

  13. Transcriptional Control in Marine Copiotrophic and Oligotrophic Bacteria with Streamlined Genomes.

    PubMed

    Cottrell, Matthew T; Kirchman, David L

    2016-10-01

    Bacteria often respond to environmental stimuli using transcriptional control, but this may not be the case for marine bacteria such as "Candidatus Pelagibacter ubique," a cultivated representative of the SAR11 clade, the most abundant organism in the ocean. This bacterium has a small, streamlined genome and an unusually low number of transcriptional regulators, suggesting that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. Transcriptome sequencing during batch culture growth revealed that only 0.1% of protein-encoding genes appear to be under transcriptional control in Pelagibacter and in another oligotroph (SAR92) whereas >10% of genes were under transcriptional control in the copiotrophs Polaribacter sp. strain MED152 and Ruegeria pomeroyi When growth levels changed, transcript levels remained steady in Pelagibacter and SAR92 but shifted in MED152 and R. pomeroyi Transcript abundances per cell, determined using an internal RNA sequencing standard, were low (<1 transcript per cell) for all but a few of the most highly transcribed genes in all four taxa, and there was no correlation between transcript abundances per cell and shifts in the levels of transcription. These results suggest that low transcriptional control contributes to the success of Pelagibacter and possibly other oligotrophic microbes that dominate microbial communities in the oceans. Diverse heterotrophic bacteria drive biogeochemical cycling in the ocean. The most abundant types of marine bacteria are oligotrophs with small, streamlined genomes. The metabolic controls that regulate the response of oligotrophic bacteria to environmental conditions remain unclear. Our results reveal that transcriptional control is lower in marine oligotrophic bacteria than in marine copiotrophic bacteria. Although responses of bacteria to environmental conditions are commonly regulated at the level of transcription, metabolism in the most abundant bacteria in the ocean appears to be regulated by other mechanisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Genome wide interactions of wild-type and activator bypass forms of σ54.

    PubMed

    Schaefer, Jorrit; Engl, Christoph; Zhang, Nan; Lawton, Edward; Buck, Martin

    2015-09-03

    Enhancer-dependent transcription involving the promoter specificity factor σ(54) is widely distributed amongst bacteria and commonly associated with cell envelope function. For transcription initiation, σ(54)-RNA polymerase yields open promoter complexes through its remodelling by cognate AAA+ ATPase activators. Since activators can be bypassed in vitro, bypass transcription in vivo could be a source of emergent gene expression along evolutionary pathways yielding new control networks and transcription patterns. At a single test promoter in vivo bypass transcription was not observed. We now use genome-wide transcription profiling, genome-wide mutagenesis and gene over-expression strategies in Escherichia coli, to (i) scope the range of bypass transcription in vivo and (ii) identify genes which might alter bypass transcription in vivo. We find little evidence for pervasive bypass transcription in vivo with only a small subset of σ(54) promoters functioning without activators. Results also suggest no one gene limits bypass transcription in vivo, arguing bypass transcription is strongly kept in check. Promoter sequences subject to repression by σ(54) were evident, indicating loss of rpoN (encoding σ(54)) rather than creating rpoN bypass alleles would be one evolutionary route for new gene expression patterns. Finally, cold-shock promoters showed unusual σ(54)-dependence in vivo not readily correlated with conventional σ(54) binding-sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Genome wide interactions of wild-type and activator bypass forms of σ54

    PubMed Central

    Schaefer, Jorrit; Engl, Christoph; Zhang, Nan; Lawton, Edward; Buck, Martin

    2015-01-01

    Enhancer-dependent transcription involving the promoter specificity factor σ54 is widely distributed amongst bacteria and commonly associated with cell envelope function. For transcription initiation, σ54-RNA polymerase yields open promoter complexes through its remodelling by cognate AAA+ ATPase activators. Since activators can be bypassed in vitro, bypass transcription in vivo could be a source of emergent gene expression along evolutionary pathways yielding new control networks and transcription patterns. At a single test promoter in vivo bypass transcription was not observed. We now use genome-wide transcription profiling, genome-wide mutagenesis and gene over-expression strategies in Escherichia coli, to (i) scope the range of bypass transcription in vivo and (ii) identify genes which might alter bypass transcription in vivo. We find little evidence for pervasive bypass transcription in vivo with only a small subset of σ54 promoters functioning without activators. Results also suggest no one gene limits bypass transcription in vivo, arguing bypass transcription is strongly kept in check. Promoter sequences subject to repression by σ54 were evident, indicating loss of rpoN (encoding σ54) rather than creating rpoN bypass alleles would be one evolutionary route for new gene expression patterns. Finally, cold-shock promoters showed unusual σ54-dependence in vivo not readily correlated with conventional σ54 binding-sites. PMID:26082500

  16. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites.

    PubMed

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  17. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition.

    PubMed

    Hsiung, Chris C-S; Bartman, Caroline R; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J; Keller, Cheryl A; Face, Carolyne; Jahn, Kristen S; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C; Raj, Arjun; Blobel, Gerd A

    2016-06-15

    During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis-G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis-G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer-promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis-G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis-G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis-G1 transition might predispose cells to diverge in gene expression states. © 2016 Hsiung et al.; Published by Cold Spring Harbor Laboratory Press.

  18. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy. 2010 Elsevier Ltd. All rights reserved.

  19. A Transcription and Translation Protocol for Sensitive Cross-Cultural Team Research.

    PubMed

    Clark, Lauren; Birkhead, Ana Sanchez; Fernandez, Cecilia; Egger, Marlene J

    2017-10-01

    Assurance of transcript accuracy and quality in interview-based qualitative research is foundational for data accuracy and study validity. Based on our experience in a cross-cultural ethnographic study of women's pelvic organ prolapse, we provide practical guidance to set up step-by-step interview transcription and translation protocols for team-based research on sensitive topics. Beginning with team decisions about level of detail in transcription, completeness, and accuracy, we operationalize the process of securing vendors to deliver the required quality of transcription and translation. We also share rubrics for assessing transcript quality and the team protocol for managing transcripts (assuring consistency of format, insertion of metadata, anonymization, and file labeling conventions) and procuring an acceptable initial translation of Spanish-language interviews. Accurate, complete, and systematically constructed transcripts in both source and target languages respond to the call for more transparency and reproducibility of scientific methods.

  20. Integrating hidden Markov model and PRAAT: a toolbox for robust automatic speech transcription

    NASA Astrophysics Data System (ADS)

    Kabir, A.; Barker, J.; Giurgiu, M.

    2010-09-01

    An automatic time-aligned phone transcription toolbox of English speech corpora has been developed. Especially the toolbox would be very useful to generate robust automatic transcription and able to produce phone level transcription using speaker independent models as well as speaker dependent models without manual intervention. The system is based on standard Hidden Markov Models (HMM) approach and it was successfully experimented over a large audiovisual speech corpus namely GRID corpus. One of the most powerful features of the toolbox is the increased flexibility in speech processing where the speech community would be able to import the automatic transcription generated by HMM Toolkit (HTK) into a popular transcription software, PRAAT, and vice-versa. The toolbox has been evaluated through statistical analysis on GRID data which shows that automatic transcription deviates by an average of 20 ms with respect to manual transcription.

  1. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II.

    PubMed

    Steurer, Barbara; Marteijn, Jurgen A

    2017-10-27

    The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Bacterial Transcription as a Target for Antibacterial Drug Development

    PubMed Central

    Ma, Cong; Yang, Xiao

    2016-01-01

    SUMMARY Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design. PMID:26764017

  3. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus

    PubMed Central

    Kim, Yea Woon; Lee, Sungkung; Yun, Jangmi; Kim, AeRi

    2015-01-01

    Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer–promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them. PMID:25588787

  4. Human Promoters Are Intrinsically Directional

    PubMed Central

    Duttke, Sascha H.C.; Lacadie, Scott A.; Ibrahim, Mahmoud M.; Glass, Christopher K.; Corcoran, David L.; Benner, Christopher; Heinz, Sven; Kadonaga, James T.; Ohler, Uwe

    2015-01-01

    Divergent transcription, in which reverse-oriented transcripts occur upstream of eukaryotic promoters in regions devoid of annotated genes, has been suggested to be a general property of active promoters. Here we show that the human basal RNA polymerase II transcriptional machinery and core promoter are inherently unidirectional, and that reverse-oriented transcripts originate from their own cognate reverse-directed core promoters. In vitro transcription analysis and mapping of nascent transcripts in cells revealed that sequences at reverse start sites are similar to those of their forward counterparts. The use of DNase I accessibility to define proximal promoter borders revealed that up to half of promoters are unidirectional and that unidirectional promoters are depleted at their upstream edges of reverse core promoter sequences and their associated chromatin features. Divergent transcription is thus not an inherent property of the transcription process, but rather the consequence of the presence of both forward- and reverse-directed core promoters. PMID:25639469

  5. Dynamical behavior of psb gene transcripts in greening wheat seedlings. I. Time course of accumulation of the pshA through psbN gene transcripts during light-induced greening.

    PubMed

    Kawaguchi, H; Fukuda, I; Shiina, T; Toyoshima, Y

    1992-11-01

    The time course of the accumulation of the transcripts from 13 psb genes encoding a major part of the proteins composing photosystem II during light-induced greening of dark-grown wheat seedlings was examined focusing on early stages of plastid development (0.5 h through 72 h). The 13 genes can be divided into three groups. (1) The psbA gene is transcribed as a single transcript of 1.3 kb in the dark-grown seedlings, but its level increases 5- to 7-fold in response to light due to selective increase in RNA stability as well as in transcription activity. (2) The psbE-F-L-J operon, psbM and psbN genes are transcribed as a single transcript of 1.1 kb, two transcripts of 0.5 and 0.7 kb and a single transcript of 0.3 kb, respectively, in the dark-grown seedlings. The levels of accumulation of every transcript remain unchanged or rather decrease during plastid development under illumination. (3) The psbK-I-D-C gene cluster and psbB-H operon exhibit fairly complicated northern hybridization patterns during the greening process. When a psbC or psbD gene probe was used for northern hybridization, five transcripts differing in length were detected in the etioplasts from 5-day old dark-grown seedlings. After 2 h illumination, two new transcripts of different length appeared. Light induction of new transcripts was also observed in the psbB-H operon.

  6. Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation of Period3, a mammalian clock gene.

    PubMed

    Matsumura, Ritsuko; Akashi, Makoto

    2017-09-29

    Cell-autonomous oscillation in clock gene expression drives circadian rhythms. The development of comprehensive analytical techniques, such as bioinformatics and ChIP-sequencing, has enabled the genome-wide identification of potential circadian transcriptional elements that regulate the transcriptional oscillation of clock genes. However, detailed analyses using traditional biochemical and molecular-biological approaches, such as binding and reporter assays, are still necessary to determine whether these potential circadian transcriptional elements are actually functional and how significantly they contribute to driving transcriptional oscillation. Here, we focused on the molecular mechanism of transcriptional oscillations in the mammalian clock gene Period3 ( Per3 ). The PER3 protein is essential for robust peripheral clocks and is a key component in circadian output processes. We found three E box-like elements located upstream of human Per3 transcription start sites that additively contributed to cell-autonomous transcriptional oscillation. However, we also found that Per3 is still expressed in a circadian manner when all three E box-like elements are functionally impaired. We noted that Per3 transcription was activated by the synergistic actions of two D box-like elements and the three E box-like elements, leading to a drastic increase in circadian amplitude. Interestingly, circadian expression of Per3 was completely disrupted only when all five transcriptional elements were functionally impaired. These results indicate that three E box-like and two D box-like elements cooperatively and redundantly regulate cell-autonomous transcriptional oscillation of Per3 . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Repression of TFIIH Transcriptional Activity and TFIIH-Associated cdk7 Kinase Activity at Mitosis

    PubMed Central

    Long, John J.; Leresche, Anne; Kriwacki, Richard W.; Gottesfeld, Joel M.

    1998-01-01

    Nuclear transcription is repressed when eukaryotic cells enter mitosis. Mitotic repression of transcription of various cellular and viral gene promoters by RNA polymerase II can be reproduced in vitro either with extracts prepared from cells arrested at mitosis with the microtubule polymerization inhibitor nocodazole or with nuclear extracts prepared from asynchronous cells and the mitotic protein kinase cdc2/cyclin B. Purified cdc2/cyclin B kinase is also sufficient to inhibit transcription in reconstituted transcription reactions with biochemically purified and recombinant basal transcription factors and RNA polymerase II. The cyclin-dependent kinase inhibitor p21Waf1/Cip1/Sdi1 can reverse the effect of cdc2/cyclin B kinase, indicating that repression of transcription is due to protein phosphorylation. Transcription rescue and inhibition experiments with each of the basal factors and the polymerase suggest that multiple components of the transcription machinery are inactivated by cdc2/cyclin B kinase. For an activated promoter, targets of repression are TFIID and TFIIH, while for a basal promoter, TFIIH is the major target for mitotic inactivation of transcription. Protein labeling experiments indicate that the p62 and p36 subunits of TFIIH are in vitro substrates for mitotic phosphorylation. Using the carboxy-terminal domain of the large subunit of RNA polymerase II as a test substrate for phosphorylation, the TFIIH-associated kinase, cdk7/cyclin H, is inhibited concomitant with inhibition of transcription activity. Our results suggest that there exist multiple phosphorylation targets for the global shutdown of transcription at mitosis. PMID:9488463

  8. Chronic nicotine treatment leads to induction of tyrosine hydroxylase in locus ceruleus neurons: the role of transcriptional activation.

    PubMed

    Sun, Baoyong; Chen, Xiqun; Xu, Lu; Sterling, Carol; Tank, A William

    2004-10-01

    Chronic nicotine treatment (two daily subcutaneous injections administered approximately 12 h apart for 14 days) is associated with long-term inductions of tyrosine hydroxylase (TH) protein and TH mRNA in locus ceruleus (LC) neurons. These increases persist for at least 3 days after the final nicotine injection in LC cell bodies and for at least 7 to 10 days in LC nerve terminal regions. We tested whether this long-term response is due to sustained stimulation of TH gene transcription rate. A semiquantitative reverse transcription-polymerase chain reaction assay was developed to assess changes in the levels of TH RNA primary transcripts; these changes are an indirect measurement of changes in TH gene transcription rate. TH RNA primary transcript levels increase rapidly in the LC after a single nicotine administration and return to basal levels by 24 h. A similar rapid and transient induction of LC TH RNA primary transcripts occurs after chronic nicotine administration. In contrast, TH RNA primary transcript levels remain elevated for a sustained period of time (at least 1 day) in the adrenal medulla after chronic nicotine administration. Similar rapid, but transient changes in LC TH RNA primary transcript levels are observed after repeated immobilization stress. These results suggest that TH gene transcription rate in the LC is stimulated rapidly after each nicotine injection; however, in contrast to the adrenal medulla, there is no sustained transcriptional response elicited by chronic nicotine treatment or repeated immobilization stress in the LC, suggesting that post-transcriptional mechanisms may also play a role in these long-term responses.

  9. The relationship between gene transcription and combinations of histone modifications

    NASA Astrophysics Data System (ADS)

    Cui, Xiangjun; Li, Hong; Luo, Liaofu

    2012-09-01

    Histone modification is an important subject of epigenetics which plays an intrinsic role in transcriptional regulation. It is known that multiple histone modifications act in a combinatorial fashion. In this study, we demonstrated that the pathways within constructed Bayesian networks can give an indication for the combinations among 12 histone modifications which have been studied in the TSS+1kb region in S. cerevisiae. After Bayesian networks for the genes with high transcript levels (H-network) and low transcript levels (L-network) were constructed, the combinations of modifications within the two networks were analyzed from the view of transcript level. The results showed that different combinations played dissimilar roles in the regulation of gene transcription when there exist differences for gene expression at transcription level.

  10. Transcription Regulation in Archaea

    PubMed Central

    Gehring, Alexandra M.; Walker, Julie E.

    2016-01-01

    The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription. PMID:27137495

  11. 12 CFR 604.435 - Record of closed meetings or closed portion of a meeting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this part. Copies of such transcript or minutes, or a transcription of such recording disclosing the... transcription. (d) The Farm Credit Administration shall maintain a complete verbatim copy of the transcript, a...

  12. 12 CFR 604.435 - Record of closed meetings or closed portion of a meeting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... this part. Copies of such transcript or minutes, or a transcription of such recording disclosing the... transcription. (d) The Farm Credit Administration shall maintain a complete verbatim copy of the transcript, a...

  13. 76 FR 10755 - Practices and Procedures, Board Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... pursuant to the provisions of 5 U.S.C. 552b(c). Copies of transcripts or minutes, or transcriptions of... transcription. (3) The Board shall maintain a complete verbatim copy of the transcript, a complete copy of the...

  14. Trichomonas vaginalis ribosomal RNA: identification and characterisation of the transcription promoter and terminator sequences.

    PubMed

    Franco, Bernardo; Hernández, Roberto; López-Villaseñor, Imelda

    2012-09-01

    Trichomonas vaginalis is a parasitic protozoan of both medical and biological relevance. Transcriptional studies in this organism have focused mainly on type II pol promoters, whereas the elements necessary for transcription by polI or polIII have not been investigated. Here, with the aid of a transient transcription system, we characterised the rDNA intergenic region, defining both the promoter and the terminator sequences required for transcription. We defined the promoter as a compact region of approximately 180 bp. We also identified a potential upstream control element (UCE) that was located 80 bp upstream of the transcription start point (TSP). A transcription termination element was identified within a 34 bp region that was located immediately downstream of the 28S coding sequence. The function of this element depends upon polarity and the presence of both a stretch of uridine residues (U's) and a hairpin structure in the transcript. Our observations provide a strong basis for the study of DNA recognition by the polI transcriptional machinery in this early divergent organism. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A BEN-domain-containing protein associates with heterochromatin and represses transcription.

    PubMed

    Sathyan, Kizhakke M; Shen, Zhen; Tripathi, Vidisha; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2011-09-15

    In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression.

  16. A BEN-domain-containing protein associates with heterochromatin and represses transcription

    PubMed Central

    Sathyan, Kizhakke M.; Shen, Zhen; Tripathi, Vidisha; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2011-01-01

    In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression. PMID:21914818

  17. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates.

    PubMed

    Gamble, Matthew J; Erdjument-Bromage, Hediye; Tempst, Paul; Freedman, Leonard P; Fisher, Robert P

    2005-01-01

    To uncover factors required for transcription by RNA polymerase II on chromatin, we fractionated a mammalian cell nuclear extract. We identified the histone chaperone TAF-I (also known as INHAT [inhibitor of histone acetyltransferase]), which was previously proposed to repress transcription, as a potent activator of chromatin transcription responsive to the vitamin D3 receptor or to Gal4-VP16. TAF-I associates with chromatin in vitro and can substitute for the related protein NAP-1 in assembling chromatin onto cloned DNA templates in cooperation with the remodeling enzyme ATP-dependent chromatin assembly factor (ACF). The chromatin assembly and transcriptional activation functions are distinct, however, and can be dissociated temporally. Efficient transcription of chromatin assembled with TAF-I still requires the presence of TAF-I during the polymerization reaction. Conversely, TAF-I cannot stimulate transcript elongation when added after the other factors necessary for assembly of a preinitiation complex on naked DNA. Thus, TAF-I is required to facilitate transcription at a step after chromatin assembly but before transcript elongation.

  18. Coupled Evolution of Transcription and mRNA Degradation

    PubMed Central

    Dori-Bachash, Mally; Shema, Efrat; Tirosh, Itay

    2011-01-01

    mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast. PMID:21811398

  19. 49 CFR 804.10 - Availability and retention of transcripts, recordings, and minutes, and applicable fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transcript or minutes, or transcription of such recordings disclosing the identity of each speaker, shall be furnished to any person at the actual cost of transcription or duplication. the NTSB shall maintain a...

  20. 45 CFR 503.28 - Record of closed meetings, or closed portion of a meeting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... may be withheld under § 503.24. Copies of the transcript or minutes, or a transcription of the... duplication or transcription. (d) The Commission will maintain a complete verbatim copy of the transcript, a...

  1. 7 CFR 1409.8 - Public inspection and copying of records; applicable fees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., electronic recording, transcription of the recording, or minutes of the discussion of any item on the agenda...., Washington, DC 20250. (c) The transcripts, minutes, or transcriptions of electronic recordings of a Board... of transcription or duplication. ...

  2. 49 CFR 804.10 - Availability and retention of transcripts, recordings, and minutes, and applicable fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transcript or minutes, or transcription of such recordings disclosing the identity of each speaker, shall be furnished to any person at the actual cost of transcription or duplication. the NTSB shall maintain a...

  3. 45 CFR 503.28 - Record of closed meetings, or closed portion of a meeting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... may be withheld under § 503.24. Copies of the transcript or minutes, or a transcription of the... duplication or transcription. (d) The Commission will maintain a complete verbatim copy of the transcript, a...

  4. 28 CFR 16.207 - Public access to nonexempt transcripts and minutes of closed Commission meetings-Documents used...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Copies of nonexempt transcripts, or minutes, or a transcription of such recording disclosing the identity of each speaker, shall be furnished to any person at the actual cost of duplication or transcription...

  5. 7 CFR 1409.8 - Public inspection and copying of records; applicable fees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., electronic recording, transcription of the recording, or minutes of the discussion of any item on the agenda...., Washington, DC 20250. (c) The transcripts, minutes, or transcriptions of electronic recordings of a Board... of transcription or duplication. ...

  6. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  7. An evolutionarily conserved RNase-based mechanism for repression of transcriptional positive autoregulation

    PubMed Central

    Wurtmann, Elisabeth J.; Ratushny, Alexander V.; Pan, Min; Beer, Karlyn D.; Aitchison, John D.; Baliga, Nitin S.

    2014-01-01

    Summary It is known that environmental context influences the degree of regulation at the transcriptional and post-transcriptional levels. However, the principles governing the differential usage and interplay of regulation at these two levels are not clear. Here, we show that the integration of transcriptional and post-transcriptional regulatory mechanisms in a characteristic network motif drives efficient environment-dependent state transitions. Through phenotypic screening, systems analysis, and rigorous experimental validation, we discovered an RNase (VNG2099C) in Halobacterium salinarum that is transcriptionally co-regulated with genes of the aerobic physiologic state but acts on transcripts of the anaerobic state. Through modeling and experimentation we show that this arrangement generates an efficient state-transition switch, within which RNase-repression of a transcriptional positive autoregulation (RPAR) loop is critical for shutting down ATP-consuming active potassium uptake to reserve energy required for salinity adaptation under aerobic, high potassium, or dark conditions. Subsequently, we discovered that many Escherichia coli operons with energy-associated functions are also putatively controlled by RPAR indicating that this network motif may have evolved independently in phylogenetically distant organisms. Thus, our data suggest that interplay of transcriptional and post-transcriptional regulation in the RPAR motifis a generalized principle for efficient environment-dependent state transitions across prokaryotes. PMID:24612392

  8. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.

    PubMed

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-05-10

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.

  9. [Transcriptome analysis of Dunaliella viridis].

    PubMed

    Zhu, Shuai-qi; Gong, Yi-fu; Hang, Yu-qing; Liu, Hao; Wang, He-yu

    2015-08-01

    In order to understand the gene information, function, haloduric pathway (glycerolipid metabolism) and related key genes for Dunaliella viridis, we used Illumina HiSeqTM 2000 high-throughput sequencing technology to sequence its transcriptome. Trinity soft was used to assemble the data to form transcripts. Based on the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG ) databases, we carried out functional annotation and classification, pathway annotation, and the opening reading fragment (ORF) sequence prediction of transcripts. The key genes in the glycerolipid metabolism were analyzed. The results suggested that 81,593 transcripts were found, and 77,117 ORF sequences were predicted, accounting for 94.50% of all transcripts. COG classification results showed that 16,569 transcripts were assigned to 24 categories. GO classification annotated 76,436 transcripts. The number of transcripts for biologcial processes was 30,678, accounting for 40.14% of all transcripts. KEGG pathway analysis showed that 26,428 transcripts were annotated to 317 pathways, and 131 pathways were related to metabolism, accounting for 41.32% of all annotated pathways. Only one transcript was annotated as coding the key enzyme dihydroxyacetone kinase involved in the glycerolipid pathway. This enzyme could be related to glycerol biosynthesis under salt stress. This study further improved the gene information and laid the foundation of metabolic pathway research for Dunaliella viridis.

  10. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    NASA Astrophysics Data System (ADS)

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-05-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.

  11. Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts.

    PubMed

    Pessler, F; Pendergrast, P S; Hernandez, N

    1997-07-01

    The human immunodeficiency virus (HIV-1) promoter directs the synthesis of two classes of RNA molecules, short transcripts and full-length transcripts. The synthesis of short transcripts depends on a bipartite DNA element, the inducer of short transcripts (IST), located in large part downstream of the HIV-1 start site of transcription. IST does not require any viral product for function and is thought to direct the assembly of transcription complexes that are incapable of efficient elongation. Nothing is known, however, about the biochemical mechanisms that mediate IST function. Here, we report the identification and purification of a factor that binds specifically to the IST. This factor, FBI-1, recognizes a large bipartite binding site that coincides with the bipartite IST element. It is constituted at least in part by an 86-kDa polypeptide that can be specifically cross-linked to IST. FBI-1 also binds to promoter and attenuation regions of a number of cellular and viral transcription units that are regulated by a transcription elongation block. This observation, together with the observation that the binding of FBI-1 to IST mutants correlates with the ability of these mutants to direct IST function, suggests that FBI-1 may be involved in the establishment of abortive transcription complexes.

  12. Different types of pausing modes during transcription initiation.

    PubMed

    Lerner, Eitan; Ingargiola, Antonino; Lee, Jookyung J; Borukhov, Sergei; Michalet, Xavier; Weiss, Shimon

    2017-08-08

    In many cases, initiation is rate limiting to transcription. This due in part to the multiple cycles of abortive transcription that delay promoter escape and the transition from initiation to elongation. Pausing of transcription in initiation can further delay promoter escape. The previously hypothesized pausing in initiation was confirmed by two recent studies from Duchi et al. 1 and from Lerner, Chung et al. 2 In both studies, pausing is attributed to a lack of forward translocation of the nascent transcript during initiation. However, the two works report on different pausing mechanisms. Duchi et al. report on pausing that occurs during initiation predominantly on-pathway of transcript synthesis. Lerner, Chung et al. report on pausing during initiation as a result of RNAP backtracking, which is off-pathway to transcript synthesis. Here, we discuss these studies, together with additional experimental results from single-molecule FRET focusing on a specific distance within the transcription bubble. We show that the results of these studies are complementary to each other and are consistent with a model involving two types of pauses in initiation: a short-lived pause that occurs in the translocation of a 6-mer nascent transcript and a long-lived pause that occurs as a result of 1-2 nucleotide backtracking of a 7-mer transcript.

  13. Profilin Is Required for Optimal Actin-Dependent Transcription of Respiratory Syncytial Virus Genome RNA

    PubMed Central

    Burke, Emily; Mahoney, Nicole M.; Almo, Steven C.; Barik, Sailen

    2000-01-01

    Transcription of human respiratory syncytial virus (RSV) genome RNA exhibited an obligatory need for the host cytoskeletal protein actin. Optimal transcription, however, required the participation of another cellular protein that was characterized as profilin by a number of criteria. The amino acid sequence of the protein, purified on the basis of its transcription-optimizing activity in vitro, exactly matched that of profilin. RSV transcription was inhibited 60 to 80% by antiprofilin antibody or poly-l-proline, molecules that specifically bind profilin. Native profilin, purified from extracts of lung epithelial cells by affinity binding to a poly-l-proline matrix, stimulated the actin-saturated RSV transcription by 2.5- to 3-fold. Recombinant profilin, expressed in bacteria, stimulated viral transcription as effectively as the native protein and was also inhibited by poly-l-proline. Profilin alone, in the absence of actin, did not activate viral transcription. It is estimated that at optimal levels of transcription, every molecule of viral genomic RNA associates with approximately the following number of protein molecules: 30 molecules of L, 120 molecules of phosphoprotein P, and 60 molecules each of actin and profilin. Together, these results demonstrated for the first time a cardinal role for profilin, an actin-modulatory protein, in the transcription of a paramyxovirus RNA genome. PMID:10623728

  14. RHON1 mediates a Rho-like activity for transcription termination in plastids of Arabidopsis thaliana.

    PubMed

    Chi, Wei; He, Baoye; Manavski, Nikolay; Mao, Juan; Ji, Daili; Lu, Congming; Rochaix, Jean David; Meurer, Jörg; Zhang, Lixin

    2014-12-01

    Although transcription termination is essential to generate functional RNAs, its underlying molecular mechanisms are still poorly understood in plastids of vascular plants. Here, we show that the RNA binding protein RHON1 participates in transcriptional termination of rbcL (encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) in Arabidopsis thaliana. Inactivation of RHON1 leads to enhanced rbcL read-through transcription and to aberrant accD (encoding β-subunit of the acetyl-CoA carboxylase) transcriptional initiation, which may result from inefficient transcription termination of rbcL. RHON1 can bind to the mRNA as well as to single-stranded DNA of rbcL, displays an RNA-dependent ATPase activity, and terminates transcription of rbcL in vitro. These results suggest that RHON1 terminates rbcL transcription using an ATP-driven mechanism similar to that of Rho of Escherichia coli. This RHON1-dependent transcription termination occurs in Arabidopsis but not in rice (Oryza sativa) and appears to reflect a fundamental difference between plastomes of dicotyledonous and monocotyledonous plants. Our results point to the importance and significance of plastid transcription termination and provide insights into its machinery in an evolutionary context. © 2014 American Society of Plant Biologists. All rights reserved.

  15. Transcriptional organization of the DNA region controlling expression of the K99 gene cluster.

    PubMed

    Roosendaal, B; Damoiseaux, J; Jordi, W; de Graaf, F K

    1989-01-01

    The transcriptional organization of the K99 gene cluster was investigated in two ways. First, the DNA region, containing the transcriptional signals was analyzed using a transcription vector system with Escherichia coli galactokinase (GalK) as assayable marker and second, an in vitro transcription system was employed. A detailed analysis of the transcription signals revealed that a strong promoter PA and a moderate promoter PB are located upstream of fanA and fanB, respectively. No promoter activity was detected in the intercistronic region between fanB and fanC. Factor-dependent terminators of transcription were detected and are probably located in the intercistronic region between fanA and fanB (T1), and between fanB and fanC (T2). A third terminator (T3) was observed between fanC and fanD and has an efficiency of 90%. Analysis of the regulatory region in an in vitro transcription system confirmed the location of the respective transcription signals. A model for the transcriptional organization of the K99 cluster is presented. Indications were obtained that the trans-acting regulatory polypeptides FanA and FanB both function as anti-terminators. A model for the regulation of expression of the K99 gene cluster is postulated.

  16. Antisense transcriptional interference mediates condition-specific gene repression in budding yeast.

    PubMed

    Nevers, Alicia; Doyen, Antonia; Malabat, Christophe; Néron, Bertrand; Kergrohen, Thomas; Jacquier, Alain; Badis, Gwenael

    2018-05-18

    Pervasive transcription generates many unstable non-coding transcripts in budding yeast. The transcription of such noncoding RNAs, in particular antisense RNAs (asRNAs), has been shown in a few examples to repress the expression of the associated mRNAs. Yet, such mechanism is not known to commonly contribute to the regulation of a given class of genes. Using a mutant context that stabilized pervasive transcripts, we observed that the least expressed mRNAs during the exponential phase were associated with high levels of asRNAs. These asRNAs also overlapped their corresponding gene promoters with a much higher frequency than average. Interrupting antisense transcription of a subset of genes corresponding to quiescence-enriched mRNAs restored their expression. The underlying mechanism acts in cis and involves several chromatin modifiers. Our results convey that transcription interference represses up to 30% of the 590 least expressed genes, which includes 163 genes with quiescence-enriched mRNAs. We also found that pervasive transcripts constitute a higher fraction of the transcriptome in quiescence relative to the exponential phase, consistent with gene expression itself playing an important role to suppress pervasive transcription. Accordingly, the HIS1 asRNA, normally only present in quiescence, is expressed in exponential phase upon HIS1 mRNA transcription interruption.

  17. Permissive Sense and Antisense Transcription from the 5′ and 3′ Long Terminal Repeats of Human T-Cell Leukemia Virus Type 1

    PubMed Central

    Polakowski, Nicholas; Hoang, Kimson

    2016-01-01

    ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus, and, as such, its genome becomes chromosomally integrated following infection. The resulting provirus contains identical 5′ and 3′ peripheral long terminal repeats (LTRs) containing bidirectional promoters. Antisense transcription from the 3′ LTR regulates expression of a single gene, hbz, while sense transcription from the 5′ LTR controls expression of all other viral genes, including tax. Both the HBZ and Tax proteins are implicated in the development of adult T-cell leukemia (ATL), a T-cell malignancy caused by HTLV-1 infection. However, these proteins appear to harbor opposing molecular functions, indicating that they may act independently and at different time points prior to leukemogenesis. Here, we used bidirectional reporter constructs to test whether transcriptional interference serves as a mechanism that inhibits simultaneous expression of Tax and HBZ. We found that sense transcription did not interfere with antisense transcription from the 3′ LTR and vice versa, even with strong transcription emanating from the opposing direction. Therefore, bidirectional transcription across the provirus might not restrict hbz or tax expression. Single-cell analyses revealed that antisense transcription predominates in the absence of Tax, which transactivates viral sense transcription. Interestingly, a population of Tax-expressing cells exhibited antisense but not activated sense transcription. Consistent with the ability of Tax to induce cell cycle arrest, this population was arrested in G0/G1 phase. These results imply that cell cycle arrest inhibits Tax-mediated activation of sense transcription without affecting antisense transcription, which may be important for long-term viral latency. IMPORTANCE The chromosomally integrated form of the retrovirus human T-cell leukemia virus type 1 (HTLV-1) contains identical DNA sequences, known as long terminal repeats (LTRs), at its 5′ and 3′ ends. The LTRs modulate transcription in both forward (sense) and reverse (antisense) directions. We found that sense transcription from the 5′ LTR does not interfere with antisense transcription from the 3′ LTR, allowing viral genes encoded on opposite DNA strands to be simultaneously transcribed. Two such genes are tax and hbz, and while they are thought to function at different times during the course of infection to promote leukemogenesis of infected T cells, our results indicate that they can be simultaneously transcribed. We also found that the ability of Tax to induce cell cycle arrest inhibits its fundamental function of activating viral sense transcription but does not affect antisense transcription. This regulatory mechanism may be important for long-term HTLV-1 infection. PMID:26792732

  18. Identification of Poly(ADP-Ribose) Polymerase as a Transcriptional Coactivator of the Human T-Cell Leukemia Virus Type 1 Tax Protein

    PubMed Central

    Anderson, Mark G.; Scoggin, Kirsten E. S.; Simbulan-Rosenthal, Cynthia M.; Steadman, Jennifer A.

    2000-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) encodes a transcriptional activator, Tax, whose activity is believed to contribute significantly to cellular transformation. Tax stimulates transcription from the proviral promoter as well as from promoters for a variety of cellular genes. The mechanism through which Tax communicates to the general transcription factors and RNA polymerase II has not been completely determined. We investigated whether Tax could function directly through the general transcription factors and RNA polymerase II or if other intermediary factors or coactivators were required. Our results show that a system consisting of purified recombinant TFIIA, TFIIB, TFIIE, TFIIF, CREB, and Tax, along with highly purified RNA polymerase II, affinity-purified epitope-tagged TFIID, and semipurified TFIIH, supports basal transcription of the HTLV-1 promoter but is not responsive to Tax. Two additional activities were required for Tax to stimulate transcription. We demonstrate that one of these activities is poly(ADP-ribose) polymerase (PARP), a molecule that has been previously identified to be the transcriptional coactivator PC1. PARP functions as a coactivator in our assays at molar concentrations approximately equal to those of the DNA and equal to or less than those of the transcription factors in the assay. We further demonstrate that PARP stimulates Tax-activated transcription in vivo, demonstrating that this biochemical approach has functionally identified a novel target for the retroviral transcriptional activator Tax. PMID:10666246

  19. c-Jun binds the N terminus of human TAF(II)250 to derepress RNA polymerase II transcription in vitro.

    PubMed

    Lively, T N; Ferguson, H A; Galasinski, S K; Seto, A G; Goodrich, J A

    2001-07-06

    c-Jun is an oncoprotein that activates transcription of many genes involved in cell growth and proliferation. We studied the mechanism of transcriptional activation by human c-Jun in a human RNA polymerase II transcription system composed of highly purified recombinant and native transcription factors. Transcriptional activation by c-Jun depends on the TATA-binding protein (TBP)-associated factor (TAF) subunits of transcription factor IID (TFIID). Protein-protein interaction assays revealed that c-Jun binds with high specificity to the largest subunit of human TFIID, TAF(II)250. The region of TAF(II)250 bound by c-Jun lies in the N-terminal 163 amino acids. This same region of TAF(II)250 binds to TBP and represses its interaction with TATA boxes, thereby decreasing DNA binding by TFIID. We hypothesized that c-Jun is capable of derepressing the effect of the TAF(II)250 N terminus on TFIID-driven transcription. In support of this hypothesis, we found that c-Jun increased levels of TFIID-driven transcription in vitro when added at high concentrations to a DNA template lacking activator protein 1 (AP-1) sites. Moreover, c-Jun blocked the repression of TBP DNA binding caused by the N terminus of TAF(II)250. In addition to revealing a mechanism by which c-Jun activates transcription, our studies provide the first evidence that an activator can bind directly to the N terminus of TAF(II)250 to derepress RNA polymerase II transcription in vitro.

  20. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function

    PubMed Central

    Herzel, Lydia; Ottoz, Diana S. M.; Alpert, Tara; Neugebauer, Karla M.

    2018-01-01

    Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing. PMID:28792005

  1. Sense transcription through the S region is essential for immunoglobulin class switch recombination

    PubMed Central

    Haddad, Dania; Oruc, Zéliha; Puget, Nadine; Laviolette-Malirat, Nathalie; Philippe, Magali; Carrion, Claire; Le Bert, Marc; Khamlichi, Ahmed Amine

    2011-01-01

    Class switch recombination (CSR) occurs between highly repetitive sequences called switch (S) regions and is initiated by activation-induced cytidine deaminase (AID). CSR is preceded by a bidirectional transcription of S regions but the relative importance of sense and antisense transcription for CSR in vivo is unknown. We generated three mouse lines in which we attempted a premature termination of transcriptional elongation by inserting bidirectional transcription terminators upstream of Sμ, upstream of Sγ3 or downstream of Sγ3 sequences. The data show, at least for Sγ3, that sense transcriptional elongation across S region is absolutely required for CSR whereas its antisense counterpart is largely dispensable, strongly suggesting that sense transcription is sufficient for AID targeting to both DNA strands. PMID:21378751

  2. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists.

    PubMed

    Sanitá Lima, Matheus; Smith, David Roy

    2017-11-06

    Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq) data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb), indicating that most of the organelle DNA-coding and noncoding-is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb) and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells. Copyright © 2017 Sanitá Lima and Smith.

  3. Comparative analysis reveals genomic features of stress-induced transcriptional readthrough

    PubMed Central

    Vilborg, Anna; Sabath, Niv; Wiesel, Yuval; Nathans, Jenny; Levy-Adam, Flonia; Yario, Therese A.; Steitz, Joan A.; Shalgi, Reut

    2017-01-01

    Transcription is a highly regulated process, and stress-induced changes in gene transcription have been shown to play a major role in stress responses and adaptation. Genome-wide studies reveal prevalent transcription beyond known protein-coding gene loci, generating a variety of RNA classes, most of unknown function. One such class, termed downstream of gene-containing transcripts (DoGs), was reported to result from transcriptional readthrough upon osmotic stress in human cells. However, how widespread the readthrough phenomenon is, and what its causes and consequences are, remain elusive. Here we present a genome-wide mapping of transcriptional readthrough, using nuclear RNA-Seq, comparing heat shock, osmotic stress, and oxidative stress in NIH 3T3 mouse fibroblast cells. We observe massive induction of transcriptional readthrough, both in levels and length, under all stress conditions, with significant, yet not complete, overlap of readthrough-induced loci between different conditions. Importantly, our analyses suggest that stress-induced transcriptional readthrough is not a random failure process, but is rather differentially induced across different conditions. We explore potential regulators and find a role for HSF1 in the induction of a subset of heat shock-induced readthrough transcripts. Analysis of public datasets detected increases in polymerase II occupancy in DoG regions after heat shock, supporting our findings. Interestingly, DoGs tend to be produced in the vicinity of neighboring genes, leading to a marked increase in their antisense-generating potential. Finally, we examine genomic features of readthrough transcription and observe a unique chromatin signature typical of DoG-producing regions, suggesting that readthrough transcription is associated with the maintenance of an open chromatin state. PMID:28928151

  4. Sex-biased gene expression and sequence conservation in Atlantic and Pacific salmon lice (Lepeophtheirus salmonis).

    PubMed

    Poley, Jordan D; Sutherland, Ben J G; Jones, Simon R M; Koop, Ben F; Fast, Mark D

    2016-07-04

    Salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae), are highly important ectoparasites of farmed and wild salmonids, and cause multi-million dollar losses to the salmon aquaculture industry annually. Salmon lice display extensive sexual dimorphism in ontogeny, morphology, physiology, behavior, and more. Therefore, the identification of transcripts with differential expression between males and females (sex-biased transcripts) may help elucidate the relationship between sexual selection and sexually dimorphic characteristics. Sex-biased transcripts were identified from transcriptome analyses of three L. salmonis populations, including both Atlantic and Pacific subspecies. A total of 35-43 % of all quality-filtered transcripts were sex-biased in L. salmonis, with male-biased transcripts exhibiting higher fold change than female-biased transcripts. For Gene Ontology and functional analyses, a consensus-based approach was used to identify concordantly differentially expressed sex-biased transcripts across the three populations. A total of 127 male-specific transcripts (i.e. those without detectable expression in any female) were identified, and were enriched with reproductive functions (e.g. seminal fluid and male accessory gland proteins). Other sex-biased transcripts involved in morphogenesis, feeding, energy generation, and sensory and immune system development and function were also identified. Interestingly, as observed in model systems, male-biased L. salmonis transcripts were more frequently without annotation compared to female-biased or unbiased transcripts, suggesting higher rates of sequence divergence in male-biased transcripts. Transcriptome differences between male and female L. salmonis described here provide key insights into the molecular mechanisms controlling sexual dimorphism in L. salmonis. This analysis offers targets for parasite control and provides a foundation for further analyses exploring critical topics such as the interaction between sex and drug resistance, sex-specific factors in host-parasite relationships, and reproductive roles within L. salmonis.

  5. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.

    PubMed

    Herzel, Lydia; Straube, Korinna; Neugebauer, Karla M

    2018-06-14

    Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2 , the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3' end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation. © 2018 Herzel et al.; Published by Cold Spring Harbor Laboratory Press.

  6. The role of alternative Polyadenylation in regulation of rhythmic gene expression.

    PubMed

    Ptitsyna, Natalia; Boughorbel, Sabri; El Anbari, Mohammed; Ptitsyn, Andrey

    2017-08-04

    Alternative transcription is common in eukaryotic cells and plays important role in regulation of cellular processes. Alternative polyadenylation results from ambiguous PolyA signals in 3' untranslated region (UTR) of a gene. Such alternative transcripts share the same coding part, but differ by a stretch of UTR that may contain important functional sites. The methodoogy of this study is based on mathematical modeling, analytical solution, and subsequent validation by datamining in multiple independent experimental data from previously published studies. In this study we propose a mathematical model that describes the population dynamics of alternatively polyadenylated transcripts in conjunction with rhythmic expression such as transcription oscillation driven by circadian or metabolic oscillators. Analysis of the model shows that alternative transcripts with different turnover rates acquire a phase shift if the transcript decay rate is different. Difference in decay rate is one of the consequences of alternative polyadenylation. Phase shift can reach values equal to half the period of oscillation, which makes alternative transcripts oscillate in abundance in counter-phase to each other. Since counter-phased transcripts share the coding part, the rate of translation becomes constant. We have analyzed a few data sets collected in circadian timeline for the occurrence of transcript behavior that fits the mathematical model. Alternative transcripts with different turnover rate create the effect of rectifier. This "molecular diode" moderates or completely eliminates oscillation of individual transcripts and stabilizes overall protein production rate. In our observation this phenomenon is very common in different tissues in plants, mice, and humans. The occurrence of counter-phased alternative transcripts is also tissue-specific and affects functions of multiple biological pathways. Accounting for this mechanism is important for understanding the natural and engineering the synthetic cellular circuits.

  7. A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system.

    PubMed

    D'Souza, Alicia D; Belotserkovskii, Boris P; Hanawalt, Philip C

    2018-02-01

    The selective inhibition of transcription of a chosen gene by an artificial agent has numerous applications. Usually, these agents are designed to bind a specific nucleotide sequence in the promoter or within the transcribed region of the chosen gene. However, since optimal binding sites might not exist within the gene, it is of interest to explore the possibility of transcription inhibition when the agent is designed to bind at other locations. One of these possibilities arises when an additional transcription initiation site (e.g. secondary promoter) is present upstream from the primary promoter of the target gene. In this case, transcription inhibition might be achieved by inducing the formation of an RNA-DNA hybrid (R-loop) upon transcription from the secondary promoter. The R-loop could extend into the region of the primary promoter, to interfere with promoter recognition by RNA polymerase and thereby inhibit transcription. As a sequence-specific R-loop-inducing agent, a peptide nucleic acid (PNA) could be designed to facilitate R-loop formation by sequestering the non-template DNA strand. To investigate this mode for transcription inhibition, we have employed a model system in which a PNA binding site is localized between the T3 and T7 phage RNA polymerase promoters, which respectively assume the roles of primary and secondary promoters. In accord with our model, we have demonstrated that with PNA-bound DNA substrates, transcription from the T7 promoter reduces transcription from the T3 promoter by 30-fold, while in the absence of PNA binding there is no significant effect of T7 transcription upon T3 transcription. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae

    PubMed Central

    Cui, Ping; Jin, Huiyan; Vutukuru, Manjula Ramya; Kaplan, Craig D.

    2016-01-01

    The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both cryptic intragenic transcription and the Suppressor of Ty (Spt-) phenotype for the lys2-128∂ allele of the LYS2 gene. Mutants that suppress lys2-128∂ allow transcription from a normally inactive Ty1 ∂ promoter, conferring a LYS+ phenotype. The arrangement of transcription units at lys2-128∂ is reminiscent of genes containing cryptic promoters within their open reading frames. We set out to examine the relationship between RNA Polymerase II (Pol II) activity, functions of Spt elongation factors, and cryptic transcription because of the previous observation that increased-activity Pol II alleles confer an Spt- phenotype. We identify both cooperating and antagonistic genetic interactions between Pol II alleles and alleles of elongation factors SPT4, SPT5, and SPT6. We find that cryptic transcription at FLO8 and STE11 is distinct from that at lys2-128∂, though all show sensitivity to reduction in Pol II activity, especially the expression of lys2-128∂ found in Spt- mutants. We determine that the lys2-128∂ Spt- phenotypes for spt6-1004 and increased activity rpo21/rpb1 alleles each require transcription from the LYS2 promoter. Furthermore, we identify the Ty1 transcription start site (TSS) within the ∂ element as the position of Spt- transcription in tested Spt- mutants. PMID:27261007

  9. Convergent transcription in the butyrolactone regulon in Streptomyces coelicolor confers a bistable genetic switch for antibiotic biosynthesis.

    PubMed

    Chatterjee, Anushree; Drews, Laurie; Mehra, Sarika; Takano, Eriko; Kaznessis, Yiannis N; Hu, Wei-Shou

    2011-01-01

    cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modeling we explore the role of cis asRNA produced as a result of convergent transcription in scbA-scbR genetic switch. scbA and scbR gene pair, encoding repressor-amplifier proteins respectively, mediates the synthesis of a signaling molecule, the γ-butyrolactone SCB1 and controls the onset of antibiotic production. Our model considers that transcriptional interference caused by convergent transcription of two opposing RNA polymerases results in fatal collision and transcriptional termination, which suppresses transcription efficiency. Additionally, convergent transcription causes sense and antisense interactions between complementary sequences from opposing strands, rendering the full length transcript inaccessible for translation. We evaluated the role of transcriptional interference and the antisense effect conferred by convergent transcription on the behavior of scbA-scbR system. Stability analysis showed that while transcriptional interference affects the system, it is asRNA that confers scbA-scbR system the characteristics of a bistable switch in response to the signaling molecule SCB1. With its critical role of regulating the onset of antibiotic synthesis the bistable behavior offers this two gene system the needed robustness to be a genetic switch. The convergent two gene system with potential of transcriptional interference is a frequent feature in various genomes. The possibility of asRNA regulation in other such gene-pairs is yet to be examined.

  10. Stereochemical analysis of the functional significance of the conserved inverted CCAAT and TATA elements in the rat bone sialoprotein gene promoter.

    PubMed

    Su, Ming; Lee, Daniel; Ganss, Bernhard; Sodek, Jaro

    2006-04-14

    Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.

  11. Transcriptional control in Alicyclobacillus acidocaldarius and associated genes, proteins, and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Thompson, David N.; Apel, William A.

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of modulating transcription or transcription or transcriptional control using isolated and/or purified polypeptides and nucleic acid sequences from Alicyclobacillus acidocaldarius.

  12. 40 CFR 1610.4 - Deposition Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Deposition Transcripts. 1610.4 Section... INVESTIGATIONS § 1610.4 Deposition Transcripts. (a) Transcripts of depositions of witnesses compelled by subpoena... by the person conducting the deposition. (b) Such a witness, after completing the compelled testimony...

  13. 40 CFR 1610.4 - Deposition Transcripts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Deposition Transcripts. 1610.4 Section... INVESTIGATIONS § 1610.4 Deposition Transcripts. (a) Transcripts of depositions of witnesses compelled by subpoena... by the person conducting the deposition. (b) Such a witness, after completing the compelled testimony...

  14. Transcriptional control in Alicyclobacillus acidocaldarius and associated genes, proteins, and methods

    DOEpatents

    Lee, Brady Deneys; Thompson, David N; Apel, William A.; Thompson, Vicki Slavchev; Reed, David W; Lacey, Jeffrey A

    2014-05-06

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of modulating transcription or transcription or transcriptional control using isolated and/or purified polypeptides and nucleic acid sequences from Alicyclobacillus acidocaldarius.

  15. Transcriptional control in Alicyclobacillus acidocaldarius and associated genes, proteins, and methods

    DOEpatents

    Lee, Brady D.; Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Reed, David W.; Lacey, Jeffrey A.

    2015-11-17

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of modulating transcription or transcription or transcriptional control using isolated and/or purified polypeptides and nucleic acid sequences from Alicyclobacillus acidocaldarius.

  16. Transcriptional control in alicyclobacillus acidocaldarius and associated genes, proteins, and methods

    DOEpatents

    Lee, Brady D; Thompson, David N; Apel, William A; Thompson, Vicki S; Reed, David W; Lacey, Jeffrey A

    2016-11-22

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of modulating transcription or transcription or transcriptional control using isolated and/or purified polypeptides and nucleic acid sequences from Alicyclobacillus acidocaldarius.

  17. Backtracking dynamics of RNA polymerase: pausing and error correction.

    PubMed

    Sahoo, Mamata; Klumpp, Stefan

    2013-09-18

    Transcription by RNA polymerases is frequently interrupted by pauses. One mechanism of such pauses is backtracking, where the RNA polymerase translocates backward with respect to both the DNA template and the RNA transcript, without shortening the transcript. Backtracked RNA polymerases move in a diffusive fashion and can return to active transcription either by diffusive return to the position where backtracking was initiated or by cleaving the transcript. The latter process also provides a mechanism for proofreading. Here we present some exact results for a kinetic model of backtracking and analyse its impact on the speed and the accuracy of transcription. We show that proofreading through backtracking is different from the classical (Hopfield-Ninio) scheme of kinetic proofreading. Our analysis also suggests that, in addition to contributing to the accuracy of transcription, backtracking may have a second effect: it attenuates the slow down of transcription that arises as a side effect of discriminating between correct and incorrect nucleotides based on the stepping rates.

  18. Backtracking dynamics of RNA polymerase: pausing and error correction

    NASA Astrophysics Data System (ADS)

    Sahoo, Mamata; Klumpp, Stefan

    2013-09-01

    Transcription by RNA polymerases is frequently interrupted by pauses. One mechanism of such pauses is backtracking, where the RNA polymerase translocates backward with respect to both the DNA template and the RNA transcript, without shortening the transcript. Backtracked RNA polymerases move in a diffusive fashion and can return to active transcription either by diffusive return to the position where backtracking was initiated or by cleaving the transcript. The latter process also provides a mechanism for proofreading. Here we present some exact results for a kinetic model of backtracking and analyse its impact on the speed and the accuracy of transcription. We show that proofreading through backtracking is different from the classical (Hopfield-Ninio) scheme of kinetic proofreading. Our analysis also suggests that, in addition to contributing to the accuracy of transcription, backtracking may have a second effect: it attenuates the slow down of transcription that arises as a side effect of discriminating between correct and incorrect nucleotides based on the stepping rates.

  19. Chromatin-Specific Regulation of Mammalian rDNA Transcription by Clustered TTF-I Binding Sites

    PubMed Central

    Diermeier, Sarah D.; Németh, Attila; Rehli, Michael; Grummt, Ingrid; Längst, Gernot

    2013-01-01

    Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes. PMID:24068958

  20. Enhancer Activation Requires Trans-Recruitment of a Mega Transcription Factor Complex

    PubMed Central

    Liu, Zhijie; Merkurjev, Daria; Yang, Feng; Li, Wenbo; Oh, Soohwan; Friedman, Meyer J.; Song, Xiaoyuan; Zhang, Feng; Ma, Qi; Ohgi, Kenneth; Krones, Anna; Rosenfeld, Michael G.

    2014-01-01

    Summary Enhancers provide critical information directing cell-type specific transcriptional programs, regulated by binding of signal-dependent transcription factors and their associated cofactors. Here we report that the most strongly activated estrogen (E2)-responsive enhancers are characterized by trans-recruitment and in situ assembly of a large 1-2 MDa complex of diverse DNA-binding transcription factors by ERα at ERE-containing enhancers. We refer to enhancers recruiting these factors as mega transcription factor-bound in trans (MegaTrans) enhancers. The MegaTrans complex is a signature of the most potent functional enhancers and is required for activation of enhancer RNA transcription and recruitment of coactivators, including p300 and Med1. The MegaTrans complex functions, in part, by recruiting specific enzymatic machinery, exemplified by DNA-dependent protein kinase. Thus, MegaTrans-containing enhancers represent a cohort of functional enhancers that mediate a broad and important transcriptional program and provide a molecular explanation for transcription factor clustering and hotspots noted in the genome. PMID:25303530

  1. TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.

    PubMed

    Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I

    1994-09-01

    We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation.

  2. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.

    PubMed

    Lebar, Tina; Jerala, Roman

    2018-01-01

    Transcriptional regulation lies at the center of many cellular processes and is the result of cellular response to different external and internal signals. Control of transcription of selected genes enables an unprecedented access to shape the cellular response. While orthogonal transcription factors from bacteria, yeast, plants, or other cells have been used to introduce new cellular logic into mammalian cells, the discovery of designable modular DNA binding domains, such as Transcription Activator-Like Effectors (TALEs) and the CRISPR system, enable targeting of almost any selected DNA sequence. Fusion or conditional association of DNA targeting domain with transcriptional effector domains enables controlled regulation of almost any endogenous or ectopic gene. Moreover, the designed regulators can be linked into genetic circuits to implement complex responses, such as different types of Boolean functions and switches. In this chapter, we describe the protocols for achieving efficient transcriptional regulation with TALE- and CRISPR-based designed transcription factors in mammalian cells.

  3. Real-time observation of the initiation of RNA polymerase II transcription.

    PubMed

    Fazal, Furqan M; Meng, Cong A; Murakami, Kenji; Kornberg, Roger D; Block, Steven M

    2015-09-10

    Biochemical and structural studies have shown that the initiation of RNA polymerase II transcription proceeds in the following stages: assembly of the polymerase with general transcription factors and promoter DNA in a 'closed' preinitiation complex (PIC); unwinding of about 15 base pairs of the promoter DNA to form an 'open' complex; scanning downstream to a transcription start site; synthesis of a short transcript, thought to be about 10 nucleotides long; and promoter escape. Here we have assembled a 32-protein, 1.5-megadalton PIC derived from Saccharomyces cerevisiae, and observe subsequent initiation processes in real time with optical tweezers. Contrary to expectation, scanning driven by the transcription factor IIH involved the rapid opening of an extended transcription bubble, averaging 85 base pairs, accompanied by the synthesis of a transcript up to the entire length of the extended bubble, followed by promoter escape. PICs that failed to achieve promoter escape nevertheless formed open complexes and extended bubbles, which collapsed back to closed or open complexes, resulting in repeated futile scanning.

  4. Natural Antisense Transcripts: Molecular Mechanisms and Implications in Breast Cancers

    PubMed Central

    Latgé, Guillaume; Poulet, Christophe; Bours, Vincent; Jerusalem, Guy

    2018-01-01

    Natural antisense transcripts are RNA sequences that can be transcribed from both DNA strands at the same locus but in the opposite direction from the gene transcript. Because strand-specific high-throughput sequencing of the antisense transcriptome has only been available for less than a decade, many natural antisense transcripts were first described as long non-coding RNAs. Although the precise biological roles of natural antisense transcripts are not known yet, an increasing number of studies report their implication in gene expression regulation. Their expression levels are altered in many physiological and pathological conditions, including breast cancers. Among the potential clinical utilities of the natural antisense transcripts, the non-coding|coding transcript pairs are of high interest for treatment. Indeed, these pairs can be targeted by antisense oligonucleotides to specifically tune the expression of the coding-gene. Here, we describe the current knowledge about natural antisense transcripts, their varying molecular mechanisms as gene expression regulators, and their potential as prognostic or predictive biomarkers in breast cancers. PMID:29301303

  5. Natural Antisense Transcripts: Molecular Mechanisms and Implications in Breast Cancers.

    PubMed

    Latgé, Guillaume; Poulet, Christophe; Bours, Vincent; Josse, Claire; Jerusalem, Guy

    2018-01-02

    Natural antisense transcripts are RNA sequences that can be transcribed from both DNA strands at the same locus but in the opposite direction from the gene transcript. Because strand-specific high-throughput sequencing of the antisense transcriptome has only been available for less than a decade, many natural antisense transcripts were first described as long non-coding RNAs. Although the precise biological roles of natural antisense transcripts are not known yet, an increasing number of studies report their implication in gene expression regulation. Their expression levels are altered in many physiological and pathological conditions, including breast cancers. Among the potential clinical utilities of the natural antisense transcripts, the non-coding|coding transcript pairs are of high interest for treatment. Indeed, these pairs can be targeted by antisense oligonucleotides to specifically tune the expression of the coding-gene. Here, we describe the current knowledge about natural antisense transcripts, their varying molecular mechanisms as gene expression regulators, and their potential as prognostic or predictive biomarkers in breast cancers.

  6. Illegitimate transcription: transcription of any gene in any cell type.

    PubMed Central

    Chelly, J; Concordet, J P; Kaplan, J C; Kahn, A

    1989-01-01

    Using in vitro amplification of cDNA by the polymerase chain reaction, we have detected spliced transcripts of various tissue-specific genes (genes for anti-Müllerian hormone, beta-globin, aldolase A, and factor VIIIc) in human nonspecific cells, such as fibroblasts, hepatoma cells, and lymphoblasts. In rats, erythroid- and liver-type pyruvate kinase transcripts were also detected in brain, lung, and muscle. The abundance of these "illegitimate" transcripts is very low; yet, their existence and the possibility of amplifying them by the cDNA polymerase chain reaction provide a powerful tool to analyze pathological transcripts of any tissue-specific gene by using any accessible cell. Images PMID:2495532

  7. Transcriptome analysis by strand-specific sequencing of complementary DNA

    PubMed Central

    Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey

    2009-01-01

    High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online. PMID:19620212

  8. Transcriptome analysis by strand-specific sequencing of complementary DNA.

    PubMed

    Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey

    2009-10-01

    High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online.

  9. A critical role for topoisomerase IIb and DNA double strand breaks in transcription

    PubMed Central

    Calderwood, Stuart K.

    2016-01-01

    ABSTRACT Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb. PMID:27100743

  10. A critical role for topoisomerase IIb and DNA double strand breaks in transcription.

    PubMed

    Calderwood, Stuart K

    2016-05-26

    Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb.

  11. Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators

    PubMed Central

    Hahn, Steven; Young, Elton T.

    2011-01-01

    Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms. PMID:22084422

  12. Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA.

    PubMed

    López-estraño, C; Schvartzman, J B; Krimer, D B; Hernández, P

    1998-03-27

    We investigated the replication of the region where transcription terminates in mouse rDNA. It contains a replication fork barrier (RFB) that behaves in a polar manner, arresting only replication forks moving in the direction opposite to transcription. This RFB consists of several closely spaced fork arrest sites that co-localize with the transcription terminator elements, known as Sal boxes. Sal boxes are the target for mTTF-I (murine transcription termination factor I). These results suggest that both termination of rRNA transcription and replication fork arrest may share cis-acting as well as trans-acting factors. Copyright 1998 Academic Press Limited.

  13. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    PubMed Central

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes. PMID:18662996

  14. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes

    PubMed Central

    Chymkowitch, Pierre; Nguéa P, Aurélie; Aanes, Håvard; Koehler, Christian J.; Thiede, Bernd; Lorenz, Susanne; Meza-Zepeda, Leonardo A.; Klungland, Arne; Enserink, Jorrit M.

    2015-01-01

    Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs. PMID:25800674

  15. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a)

    PubMed Central

    Emerling, Brooke M.; Weinberg, Frank; Liu, Juinn-Lin; Mak, Tak W.; Chandel, Navdeep S.

    2008-01-01

    The tumor suppressor PTEN is mutated or deleted in many tumors, causing the activation of the PI3K pathway. Here, we show that the loss of PTEN increases the transcriptional activity of hypoxia-inducible factor 1 (HIF-1) through the inactivation of Forkhead transcription factors (FOXO) in PTEN-null cells. Reintroduction of PTEN into the nucleus, overexpression of a nonphosphorylatable FOXO3a, which accumulates in the nucleus, or inhibition of nuclear export of FOXO3a by leptomycin B represses HIF-1 transcriptional activity in PTEN-null cells. HIF-1 transcriptional activity increases in PTEN-positive cells depleted of FOXO3a with siRNA. PTEN and FOXO3a regulate the transactivation domain of HIF-1α. Chromatin immunoprecipitation indicates that FOXO3a complexes with HIF-1α and p300 on the Glut-1 promoter, a HIF-1 target gene. Overexpression of p300 reverses FOXO3a-mediated repression of HIF-1 transcriptional activity. Coimmunoprecipitation and GAL4-HIF-1α transactivation assays reveal that FOXO3a interferes with p300-dependent HIF-1 transcriptional activity. Thus, FOXO3a negatively regulates HIF-1 transcriptional activity. PMID:18268343

  16. Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy

    PubMed Central

    Kirby, Tyler J.; Patel, Rooshil M.; McClintock, Timothy S.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.; McCarthy, John J.

    2016-01-01

    Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (<1000 μm2) demonstrated the highest transcriptional activity. Finally, transcription was primarily responsible for changes in the expression of genes known to regulate myofiber size. These findings show that resident myonuclei possess a significant reserve capacity to up-regulate transcription during hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy. PMID:26764089

  17. Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I.

    PubMed

    Bierhoff, Holger; Dundr, Miroslav; Michels, Annemieke A; Grummt, Ingrid

    2008-08-01

    The protein kinase casein kinase 2 (CK2) phosphorylates different components of the RNA polymerase I (Pol I) transcription machinery and exerts a positive effect on rRNA gene (rDNA) transcription. Here we show that CK2 phosphorylates the transcription initiation factor TIF-IA at serines 170 and 172 (Ser170/172), and this phosphorylation triggers the release of TIF-IA from Pol I after transcription initiation. Inhibition of Ser170/172 phosphorylation or covalent tethering of TIF-IA to the RPA43 subunit of Pol I inhibits rDNA transcription, leading to perturbation of nucleolar structure and cell cycle arrest. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrate that dissociation of TIF-IA from Pol I is a prerequisite for proper transcription elongation. In support of phosphorylation of TIF-IA switching from the initiation into the elongation phase, dephosphorylation of Ser170/172 by FCP1 facilitates the reassociation of TIF-IA with Pol I, allowing a new round of rDNA transcription. The results reveal a mechanism by which the functional interplay between CK2 and FCP1 sustains multiple rounds of Pol I transcription.

  18. Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome

    PubMed Central

    Stolc, Viktor; Deng, Wei; He, Hang; Korbel, Jan; Chen, Xuewei; Tongprasit, Waraporn; Ronald, Pamela; Chen, Runsheng; Gerstein, Mark; Wang Deng, Xing

    2007-01-01

    Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs) not encoded by annotated exons in the rice (Oryza. sativa) subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83%) japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome. PMID:17372628

  19. Transcription regulation by the Mediator complex.

    PubMed

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  20. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.

    PubMed

    Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo

    2003-08-01

    Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.

  1. Def1 interacts with TFIIH and modulates RNA polymerase II transcription.

    PubMed

    Damodaren, Nivedita; Van Eeuwen, Trevor; Zamel, Joanna; Lin-Shiao, Enrique; Kalisman, Nir; Murakami, Kenji

    2017-12-12

    The DNA damage response is an essential process for the survival of living cells. In a subset of stress-responsive genes in humans, Elongin controls transcription in response to multiple stimuli, such as DNA damage, oxidative stress, and heat shock. Yeast Elongin (Ela1-Elc1), along with Def1, is known to facilitate ubiquitylation and degradation of RNA polymerase II (pol II) in response to multiple stimuli, yet transcription activity has not been examined. We have found that Def1 copurifies from yeast whole-cell extract with TFIIH, the largest general transcription factor required for transcription initiation and nucleotide excision repair. The addition of recombinant Def1 and Ela1-Elc1 enhanced transcription initiation in an in vitro reconstituted system including pol II, the general transcription factors, and TFIIS. Def1 also enhanced transcription restart from TFIIS-induced cleavage in a pol II transcribing complex. In the Δdef1 strain, heat shock genes were misregulated, indicating that Def1 is required for induction of some stress-responsive genes in yeast. Taken together, our results extend the understanding of the molecular mechanism of transcription regulation on cellular stress and reveal functional similarities to the mammalian system.

  2. Constitutive Transcription and Stable RNA Accumulation in Plastids during the Conversion of Chloroplasts to Chromoplasts in Ripening Tomato Fruits 1

    PubMed Central

    Marano, María Rosa; Carrillo, Néstor

    1992-01-01

    The size distribution of plastid transcripts during chromoplast differentiation in ripening tomato (Lycopersicon esculentum L.) fruits was determined using northern blot analysis. Hybridization of total cellular RNA from leaves and fruits with several tobacco chloroplast DNA probes showed distinct transcript patterns in chloroplasts and chromoplasts. We also compared transcriptional rates by probing immobilized DNA fragments of small size (representing about 85% of the plastid genome) with run-on transcripts from tomato plastids. The relative rates of transcription of the various DNA regions were very similar in chloro- and chromoplasts. Parallel determination of the steady-state levels of plastid RNA showed no strict correlation between synthesis rate and RNA accumulation. Differences in the relative abundance of transcripts between chloro- and chromoplasts were not very pronounced and were limited to a small number of genes. The results indicate that the conversion of chloroplasts to chromoplasts at the onset of tomato fruit ripening proceeds with no important variations in the relative transcription rates and with only moderate changes in the relative stability of plastid-encoded transcripts. Images Figure 1 Figure 4 PMID:16653091

  3. Antisense transcription is pervasive but rarely conserved in enteric bacteria.

    PubMed

    Raghavan, Rahul; Sloan, Daniel B; Ochman, Howard

    2012-01-01

    Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell's transcription machinery. IMPORTANCE Application of high-throughput methods has revealed the expression throughout bacterial genomes of transcripts encoded on the strand complementary to protein-coding genes. Because transcription is costly, it is usually assumed that these transcripts, termed antisense RNAs (asRNAs), serve some function; however, the role of most asRNAs is unclear, raising questions about their relevance in cellular processes. Because natural selection conserves functional elements, comparisons between related species provide a method for assessing functionality genome-wide. Applying such an approach, we assayed all transcripts in two closely related bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, and demonstrate that, although the levels of genome-wide antisense transcription are similarly high in both bacteria, only a small fraction of asRNAs are shared across species. Moreover, the promoters associated with asRNAs show no evidence of sequence conservation between, or even within, species. These findings indicate that despite the genome-wide transcription of asRNAs, many of these transcripts are likely nonfunctional.

  4. 5 CFR 2413.7 - Transcripts, recordings or minutes of closed meeting; public availability; retention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pursuant to the provisions of 5 U.S.C. 552b(c). Copies of transcripts or minutes, or transcriptions of... schedule of fees set forth in § 2411.10 of this subchapter and the actual cost of transcription. (c) The...

  5. 5 CFR 2413.7 - Transcripts, recordings or minutes of closed meeting; public availability; retention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pursuant to the provisions of 5 U.S.C. 552b(c). Copies of transcripts or minutes, or transcriptions of... schedule of fees set forth in § 2411.10 of this subchapter and the actual cost of transcription. (c) The...

  6. Transcriptomic Analysis of Grapevine (cv. Summer Black) Leaf, Using the Illumina Platform

    PubMed Central

    Pervaiz, Tariq; Haifeng, Jia; Salman Haider, Muhammad; Cheng, Zhang; Cui, Mengjie; Wang, Mengqi; Cui, Liwen; Wang, Xicheng; Fang, Jinggui

    2016-01-01

    Proceeding to illumina sequencing, determining RNA integrity numbers for poly RNA were separated from each of the four developmental stages of cv. Summer Black leaves by using Illumina HiSeq™ 2000. The sums of 272,941,656 reads were generated from vitis vinifera leaf at four different developmental stages, with more than 27 billion nucleotides of the sequence data. At each growth stage, RNA samples were indexed through unique nucleic acid identifiers and sequenced. KEGG annotation results depicted that the highest number of transcripts in 2,963 (2Avs4A) followed by 1Avs4A (2,920), and 3Avs4A (2,294) out of 15,614 (71%) transcripts were recorded. In comparison, a total of 1,532 transcripts were annotated in GOs, including Cellular component, with the highest number in “Cell part” 251 out of 353 transcripts (71.1%), followed by intracellular organelle 163 out of 353 transcripts (46.2%), while in molecular function and metabolic process 375 out of 525 (71.4%) transcripts, multicellular organism process 40 out of 525 (7.6%) transcripts in biological process were most common in 1Avs2A. While in case of 1Avs3A, cell part 476 out of 662 transcripts (71.9%), and membrane-bounded organelle 263 out of 662 transcripts (39.7%) were recorded in Cellular component. In the grapevine transcriptome, during the initial stages of leaf development 1Avs2A showed single transcript was down-regulated and none of them were up-regulated. While in comparison of 1A to 3A showed one up-regulated (photosystem II reaction center protein C) and one down regulated (conserved gene of unknown function) transcripts, during the hormone regulating pathway namely SAUR-like auxin-responsive protein family having 2 up-regulated and 7 down-regulated transcripts, phytochrome-associated protein showed 1 up-regulated and 9 down-regulated transcripts, whereas genes associated with the Leucine-rich repeat protein kinase family protein showed 7 up-regulated and 1 down-regulated transcript, meanwhile Auxin Resistant 2 has single up-regulated transcript in second developmental stage, although 3 were down-regulated at lateral growth stages (3A and 4A). In the present study, 489 secondary metabolic pathways related genes were identified during leaf growth, which mainly includes alkaloid (40), anthocyanins (21), Diterpenoid (144), Monoterpenoid (90) and Flavonoids (93). Quantitative real-time PCR was applied to validate 10 differentially expressed transcripts patterns from flower, leaf and fruit metabolic pathways at different growth stages. PMID:26824474

  7. BEND3 mediates transcriptional repression and heterochromatin organization

    PubMed Central

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581

  8. BEND3 mediates transcriptional repression and heterochromatin organization.

    PubMed

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  9. Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts.

    PubMed Central

    Pessler, F; Pendergrast, P S; Hernandez, N

    1997-01-01

    The human immunodeficiency virus (HIV-1) promoter directs the synthesis of two classes of RNA molecules, short transcripts and full-length transcripts. The synthesis of short transcripts depends on a bipartite DNA element, the inducer of short transcripts (IST), located in large part downstream of the HIV-1 start site of transcription. IST does not require any viral product for function and is thought to direct the assembly of transcription complexes that are incapable of efficient elongation. Nothing is known, however, about the biochemical mechanisms that mediate IST function. Here, we report the identification and purification of a factor that binds specifically to the IST. This factor, FBI-1, recognizes a large bipartite binding site that coincides with the bipartite IST element. It is constituted at least in part by an 86-kDa polypeptide that can be specifically cross-linked to IST. FBI-1 also binds to promoter and attenuation regions of a number of cellular and viral transcription units that are regulated by a transcription elongation block. This observation, together with the observation that the binding of FBI-1 to IST mutants correlates with the ability of these mutants to direct IST function, suggests that FBI-1 may be involved in the establishment of abortive transcription complexes. PMID:9199312

  10. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  11. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction.

    PubMed

    Bossi, Flavia; Fan, Jue; Xiao, Jun; Chandra, Lilyana; Shen, Max; Dorone, Yanniv; Wagner, Doris; Rhee, Seung Y

    2017-06-26

    The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.

  12. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed Central

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-01-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors. PMID:9973611

  13. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-03-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors.

  14. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor.

    PubMed

    Belbin, Fiona E; Noordally, Zeenat B; Wetherill, Sarah J; Atkins, Kelly A; Franklin, Keara A; Dodd, Antony N

    2017-01-01

    We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Mutations on the DNA Binding Surface of TBP Discriminate between Yeast TATA and TATA-Less Gene Transcription

    PubMed Central

    Kamenova, Ivanka; Warfield, Linda

    2014-01-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. PMID:24865972

  16. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription.

    PubMed

    Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves

    2017-12-08

    Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.

  17. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    PubMed

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  18. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription.

    PubMed

    Kamenova, Ivanka; Warfield, Linda; Hahn, Steven

    2014-08-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Transcriptional requirements of the distal heavy-strand promoter of mtDNA

    PubMed Central

    Zollo, Ornella; Tiranti, Valeria; Sondheimer, Neal

    2012-01-01

    The heavy strand of mtDNA contains two promoters with nonoverlapping functions. The role of the minor heavy-strand promoter (HSP2) is controversial, because the promoter has been difficult to activate in an in vitro system. We have isolated HSP2 by excluding its interaction with the more powerful HSP1 promoter, and we find that it is transcribed efficiently by recombinant mtRNA polymerase and mitochondrial transcription factor B2. The mitochondrial transcription factor A is not required for initiation, but it has the ability to alternatively activate and repress the HSP2 transcriptional unit depending on the ratio between mitochondrial transcription factor A and other transcription factors. The positioning of transcriptional initiation agrees with our current understanding of HSP2 activity in vivo. Serial deletion of HSP2 shows that only proximal sequences are required. Several mutations, including the disruption of a polycytosine track upstream of the HSP2 initiation site, influence transcriptional activity. Transcription from HSP2 is also observed when HeLa cell mitochondrial extract is used as the source of mitochondrial polymerase, and this transcription is maintained when HSP2 is provided in proper spacing and context to the HSP1 promoter. Studies of the linked heavy-strand promoters show that they are differentially regulated by ATP dosage. We conclude that HSP2 is transcribed and has features that allow it to regulate mitochondrial mRNA synthesis. PMID:22454497

  20. Transcriptional activation of human mu-opioid receptor gene by insulin-like growth factor-I in neuronal cells is modulated by the transcription factor REST.

    PubMed

    Bedini, Andrea; Baiula, Monica; Spampinato, Santi

    2008-06-01

    The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. We investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I up-regulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 signaling pathway and this transcription factor, binding to the signal transducer and activator of transcription-1/3 DNA element located in the promoter, increases OPRM1 transcription. We propose that a reduction in REST is a critical switch enabling IGF-I to up-regulate hMOPr. These findings help clarify how hMOPr expression is regulated in neuronal cells.

  1. Fail-safe transcription termination: Because one is never enough.

    PubMed

    Lemay, Jean-François; Bachand, François

    2015-01-01

    Termination of RNA polymerase II (RNAPII) transcription is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of RNAPII from the DNA template. As transcription termination is intimately linked to RNA 3' end processing, termination pathways have a key decisive influence on the fate of the transcribed RNA. Quite remarkably, when reaching the 3' end of genes, a substantial fraction of RNAPII fail to terminate transcription, requiring the contribution of alternative or "fail-safe" mechanisms of termination to release the polymerase. This point of view covers redundant mechanisms of transcription termination and how they relate to conventional termination models. In particular, we expand on recent findings that propose a reverse torpedo model of termination, in which the 3'5' exonucleolytic activity of the RNA exosome targets transcription events associated with paused and backtracked RNAPII.

  2. Nuclear Transcription Factors in the Mitochondria: A New Paradigm in Fine-Tuning Mitochondrial Metabolism.

    PubMed

    Sepuri, Naresh Babu V; Tammineni, Prasad; Mohammed, Fareed; Paripati, Arunkumar

    2017-01-01

    Noncanonical functions of several nuclear transcription factors in the mitochondria have been gaining exceptional traction over the years. These transcription factors include nuclear hormone receptors like estrogen, glucocorticoid, and thyroid hormone receptors: p53, IRF3, STAT3, STAT5, CREB, NF-kB, and MEF-2D. Mitochondria-localized nuclear transcription factors regulate mitochondrial processes like apoptosis, respiration and mitochondrial transcription albeit being nuclear in origin and having nuclear functions. Hence, the cell permits these multi-stationed transcription factors to orchestrate and fine-tune cellular metabolism at various levels of operation. Despite their ubiquitous distribution in different subcompartments of mitochondria, their targeting mechanism is poorly understood. Here, we review the current status of mitochondria-localized transcription factors and discuss the possible targeting mechanism besides the functional interplay between these factors.

  3. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  4. The histone modifications governing TFF1 transcription mediated by estrogen receptor.

    PubMed

    Li, Yanyan; Sun, Luyang; Zhang, Yu; Wang, Dandan; Wang, Feng; Liang, Jing; Gui, Bin; Shang, Yongfeng

    2011-04-22

    Transcription regulation by histone modifications is a major contributing factor to the structural and functional diversity in biology. These modifications are encrypted as histone codes or histone languages and function to establish and maintain heritable epigenetic codes that define the identity and the fate of the cell. Despite recent advances revealing numerous histone modifications associated with transcription regulation, how such modifications dictate the process of transcription is not fully understood. Here we describe spatial and temporal analyses of the histone modifications that are introduced during estrogen receptor α (ERα)-activated transcription. We demonstrated that aborting RNA polymerase II caused a disruption of the histone modifications that are associated with transcription elongation but had a minimal effect on modifications deposited during transcription initiation. We also found that the histone H3S10 phosphorylation mark is catalyzed by mitogen- and stress-activated protein kinase 1 (MSK1) and is recognized by a 14-3-3ζ/14-3-3ε heterodimer through its interaction with H3K4 trimethyltransferase SMYD3 and the p52 subunit of TFIIH. We showed that H3S10 phosphorylation is a prerequisite for H3K4 trimethylation. In addition, we demonstrated that SET8/PR-Set7/KMT5A is required for ERα-regulated transcription and its catalyzed H4K20 monomethylation is implicated in both transcription initiation and elongation. Our experiments provide a relatively comprehensive analysis of histone modifications associated with ERα-regulated transcription and define the biological meaning of several key components of the histone code that governs ERα-regulated transcription.

  5. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    PubMed

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  6. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III.

    PubMed Central

    Das, G; Henning, D; Wright, D; Reddy, R

    1988-01-01

    Whereas the genes coding for trimethyl guanosine-capped snRNAs are transcribed by RNA polymerase II, the U6 RNA genes are transcribed by RNA polymerase III. In this study, we have analyzed the cis-regulatory elements involved in the transcription of a mouse U6 snRNA gene in vitro and in frog oocytes. Transcriptional analysis of mutant U6 gene constructs showed that, unlike most known cases of polymerase III transcription, intragenic sequences except the initiation nucleotide are dispensable for efficient and accurate transcription of U6 gene in vitro. Transcription of 5' deletion mutants in vitro and in frog oocytes showed that the upstream region, within 79 bp from the initiation nucleotide, contains elements necessary for U6 gene transcription. Transcription studies were carried out in frog oocytes with U6 genes containing 5' distal sequence; these studies revealed that the distal element acts as an orientation-dependent enhancer when present upstream to the gene, while it is orientation-independent but distance-dependent enhancer when placed down-stream to the U6 gene. Analysis of 3' deletion mutants showed that the transcription termination of U6 RNA is dependent on a T cluster present on the 3' end of the gene, thus providing further support to other lines of evidence that U6 genes are transcribed by RNA polymerase III. These observations suggest the involvement of a composite of components of RNA polymerase II and III transcription machineries in the transcription of U6 genes by RNA polymerase III. Images PMID:3366121

  7. Detectable Changes in The Blood Transcriptome Are Present after Two Weeks of Antituberculosis Therapy

    PubMed Central

    Bloom, Chloe I.; Graham, Christine M.; Berry, Matthew P. R.; Wilkinson, Katalin A.; Oni, Tolu; Rozakeas, Fotini; Xu, Zhaohui; Rossello-Urgell, Jose; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Lipman, Marc; Wilkinson, Robert J.; O’Garra, Anne

    2012-01-01

    Rationale Globally there are approximately 9 million new active tuberculosis cases and 1.4 million deaths annually. Effective antituberculosis treatment monitoring is difficult as there are no existing biomarkers of poor adherence or inadequate treatment earlier than 2 months after treatment initiation. Inadequate treatment leads to worsening disease, disease transmission and drug resistance. Objectives To determine if blood transcriptional signatures change in response to antituberculosis treatment and could act as early biomarkers of a successful response. Methods Blood transcriptional profiles of untreated active tuberculosis patients in South Africa were analysed before, during (2 weeks and 2 months), at the end of (6 months) and after (12 months) antituberculosis treatment, and compared to individuals with latent tuberculosis. An active-tuberculosis transcriptional signature and a specific treatment-response transcriptional signature were derived. The specific treatment response transcriptional signature was tested in two independent cohorts. Two quantitative scoring algorithms were applied to measure the changes in the transcriptional response. The most significantly represented pathways were determined using Ingenuity Pathway Analysis. Results An active tuberculosis 664-transcript signature and a treatment specific 320-transcript signature significantly diminished after 2 weeks of treatment in all cohorts, and continued to diminish until 6 months. The transcriptional response to treatment could be individually measured in each patient. Conclusions Significant changes in the transcriptional signatures measured by blood tests were readily detectable just 2 weeks after treatment initiation. These findings suggest that blood transcriptional signatures could be used as early surrogate biomarkers of successful treatment response. PMID:23056259

  8. Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae

    PubMed Central

    Korde, Asawari; Rosselot, Jessica M.; Donze, David

    2014-01-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins. PMID:24336746

  9. S-nitrosylation in the regulation of gene transcription☆

    PubMed Central

    Sha, Yonggang; Marshall, Harvey E.

    2015-01-01

    Background Post-translational modification of proteins by S-nitrosylation serves as a major mode of signaling in mammalian cells and a growing body of evidence has shown that transcription factors and their activating pathways are primary targets. S-nitrosylation directly modifies a number of transcription factors, including NF-κB, HIF-1, and AP-1. In addition, S-nitrosylation can indirectly regulate gene transcription by modulating other cell signaling pathways, in particular JNK kinase and ras. Scope of review The evolution of S-nitrosylation as a signaling mechanism in the regulation of gene transcription, physiological advantages of protein S-nitrosylation in the control of gene transcription, and discussion of the many transcriptional proteins modulated by S-nitrosylation is summarized. Major conclusions S-nitrosylation plays a crucial role in the control of mammalian gene transcription with numerous transcription factors regulated by this modification. Many of these proteins serve as immunomodulators, and inducible nitric oxide synthase (iNOS) is regarded as a principal mediatiator of NO-dependent S-nitrosylation. However, additional targets within the nucleus (e.g. histone deacetylases) and alternative mechanisms of S-nitrosylation (e.g. GAPDH-mediated trans-nitrosylation) are thought to play a role in NOS-dependent transcriptional regulation. General significance Derangement of SNO-regulated gene transcription is an important factor in a variety of pathological conditions including neoplasia and sepsis. A better understanding of protein S-nitrosylation as it relates to gene transcription and the physiological mechanisms behind this process is likely to lead to novel therapies for these disorders. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation. PMID:21640163

  10. Electronic Transcripts: Past, Present, and Future

    ERIC Educational Resources Information Center

    Harris, Sarah; Hannah, Andrew; Stones, Dave; Morley, Robert

    2011-01-01

    Electronic transcripts are no longer a concept awaiting definition. They are here to stay. Although paper transcripts remain the standard--at least in terms of volume--an ever-increasing number and eventual majority of students and alumni will expect if not require electronic transcripts. College registrars and admissions officers' obligation to…

  11. 41 CFR 60-30.22 - Official transcript.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Official transcript. 60-30.22 Section 60-30.22 Public Contracts and Property Management Other Provisions Relating to Public... ORDER 11246 Hearings and Related Matters § 60-30.22 Official transcript. The official transcripts of...

  12. 41 CFR 60-30.22 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Official transcript. 60-30.22 Section 60-30.22 Public Contracts and Property Management Other Provisions Relating to Public... ORDER 11246 Hearings and Related Matters § 60-30.22 Official transcript. The official transcripts of...

  13. Breaking up the transcription logjam can improve cash flow.

    PubMed

    Paulik, Dennis

    2004-06-01

    Using more than 20 transcription companies to handle its annual volume of 36 million lines, Health Midwest knew it had to gain control of the document transcription and delivery process. By centralizing its transcription service, the organization saved $600,000 and reduced days in accounts receivable by 10 days.

  14. Interplay between DNA supercoiling and transcription elongation.

    PubMed

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  15. 37 CFR 251.15 - Transcripts of closed meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Transcripts of closed... PROCEDURE Public Access to Copyright Arbitration Royalty Panel Meetings § 251.15 Transcripts of closed meetings. (a) All meetings closed to the public shall be subject either to a complete transcript or, in the...

  16. 29 CFR 1627.7 - Transcriptions and reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Transcriptions and reports. 1627.7 Section 1627.7 Labor... § 1627.7 Transcriptions and reports. Every person required to maintain records under the Act shall make such extension, recomputation or transcriptions of his records and shall submit such reports concerning...

  17. 49 CFR 511.35 - Testimony upon oral examination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Transcription and filing of testimony—(1) Transcription. Upon request by any party, the testimony recorded at an... party who notices the examination shall pay for the examination. The party who requests transcription of the examination shall pay for the transcription. (g) Failure to attend or to serve subpoena; expenses...

  18. Transcription Tales or Let Not Love's Labour Be Lost

    ERIC Educational Resources Information Center

    Downs, Yvonne

    2010-01-01

    Drawing heavily on my MA dissertation but influenced by subsequent transcription experience, I relate how a technical problem in the recording of an interview necessitated deliberations on the nature and purpose of transcription that continue to have repercussions for my transcription practice and, furthermore, for my understanding of research as…

  19. 45 CFR 1703.404 - Copying and transcription charges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Copying and transcription charges. 1703.404... Copying and transcription charges. (a) The Commission will charge fees for furnishing records at the rate of ten cents per page for photocopies and at the actual cost of transcription. When the anticipated...

  20. 22 CFR 92.61 - Transcription and signing of record of examination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Transcription and signing of record of... RELATED SERVICES Depositions and Letters Rogatory § 92.61 Transcription and signing of record of... be fully transcribed and the transcription attached securely to any document or documents to which...

  1. 22 CFR 92.61 - Transcription and signing of record of examination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Transcription and signing of record of... RELATED SERVICES Depositions and Letters Rogatory § 92.61 Transcription and signing of record of... be fully transcribed and the transcription attached securely to any document or documents to which...

  2. 29 CFR 1627.7 - Transcriptions and reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Transcriptions and reports. 1627.7 Section 1627.7 Labor... § 1627.7 Transcriptions and reports. Every person required to maintain records under the Act shall make such extension, recomputation or transcriptions of his records and shall submit such reports concerning...

  3. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  4. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  5. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  6. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any, of...

  7. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  8. Demonstrating Interactions of Transcription Factors with DNA by Electrophoretic Mobility Shift Assay.

    PubMed

    Yousaf, Nasim; Gould, David

    2017-01-01

    Confirming the binding of a transcription factor with a particular DNA sequence may be important in characterizing interactions with a synthetic promoter. Electrophoretic mobility shift assay is a powerful approach to demonstrate the specific DNA sequence that is bound by a transcription factor and also to confirm the specific transcription factor involved in the interaction. In this chapter we describe a method we have successfully used to demonstrate interactions of endogenous transcription factors with sequences derived from endogenous and synthetic promoters.

  9. Post-transcriptional Regulation of Genes Related to Biological Behaviors of Gastric Cancer by Long Noncoding RNAs and MicroRNAs

    PubMed Central

    Liu, Wenjing; Ma, Rui; Yuan, Yuan

    2017-01-01

    Noncoding RNAs play critical roles in regulating protein-coding genes and comprise two major classes: long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). LncRNAs regulate gene expression at transcriptional, post-transcriptional, and epigenetic levels via multiple action modes. LncRNAs can also function as endogenous competitive RNAs for miRNAs and indirectly regulate gene expression post-transcriptionally. By binding to the 3'-untranslated regions (3'-UTR) of target genes, miRNAs post-transcriptionally regulate gene expression. Herein, we conducted a review of post-transcriptional regulation by lncRNAs and miRNAs of genes associated with biological behaviors of gastric cancer. PMID:29187891

  10. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation

    PubMed Central

    Joo, Yoo Jin; Ficarro, Scott B.; Soares, Luis M.; Chun, Yujin; Marto, Jarrod A.; Buratowski, Stephen

    2017-01-01

    TFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-binding protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-associated factor (TAF) subunits recognize downstream promoter elements, act as coactivators, and interact with nucleosomes. In yeast nuclear extracts, transcription induces stable TAF binding to downstream promoter DNA, promoting subsequent activator-independent transcription reinitiation. In vivo, promoter responses to TAF mutations correlate with the level of downstream, rather than overall, Taf1 cross-linking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations. PMID:29203645

  11. Fail-safe transcription termination: Because one is never enough

    PubMed Central

    Lemay, Jean-François; Bachand, François

    2015-01-01

    Termination of RNA polymerase II (RNAPII) transcription is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of RNAPII from the DNA template. As transcription termination is intimately linked to RNA 3′ end processing, termination pathways have a key decisive influence on the fate of the transcribed RNA. Quite remarkably, when reaching the 3′ end of genes, a substantial fraction of RNAPII fail to terminate transcription, requiring the contribution of alternative or “fail-safe” mechanisms of termination to release the polymerase. This point of view covers redundant mechanisms of transcription termination and how they relate to conventional termination models. In particular, we expand on recent findings that propose a reverse torpedo model of termination, in which the 3′5′ exonucleolytic activity of the RNA exosome targets transcription events associated with paused and backtracked RNAPII. PMID:26273910

  12. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis.

    PubMed

    Liu, Jie; Cheng, Xiliu; Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-05-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis.

  13. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis

    PubMed Central

    Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-01-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis. PMID:28558040

  14. Transcription termination factor Rho and microbial phenotypic heterogeneity.

    PubMed

    Bidnenko, Elena; Bidnenko, Vladimir

    2018-06-01

    Populations of genetically identical microorganisms exhibit high degree of cell-to-cell phenotypic diversity even when grown in uniform environmental conditions. Heterogeneity is a genetically determined trait, which ensures bacterial adaptation and survival in the ever changing environmental conditions. Fluctuations in gene expression (noise) at the level of transcription initiation largely contribute to cell-to-cell variability within population. Not surprisingly, the analyses of the mechanisms driving phenotypic heterogeneity are mainly focused on the activity of promoters and transcriptional factors. Less attention is currently given to a role of intrinsic and factor-dependent transcription terminators. Here, we discuss recent advances in understanding the regulatory role of the multi-functional transcription termination factor Rho, the major inhibitor of pervasive transcription in bacteria and the emerging global regulator of gene expression. We propose that termination activity of Rho might be among the mechanisms by which cells manage the intensity of transcriptional noise, thus affecting population heterogeneity.

  15. Bacterial effectors target the plant cell nucleus to subvert host transcription.

    PubMed

    Canonne, Joanne; Rivas, Susana

    2012-02-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.

  16. Context-Dependent Piano Music Transcription With Convolutional Sparse Coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt

    This study presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsetsmore » simultaneously in the same framework. Finally, experiments show that it significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments.« less

  17. Transcription and recombination: when RNA meets DNA.

    PubMed

    Aguilera, Andrés; Gaillard, Hélène

    2014-08-01

    A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription-replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Clk post-transcriptional control denoises circadian transcription both temporally and spatially.

    PubMed

    Lerner, Immanuel; Bartok, Osnat; Wolfson, Victoria; Menet, Jerome S; Weissbein, Uri; Afik, Shaked; Haimovich, Daniel; Gafni, Chen; Friedman, Nir; Rosbash, Michael; Kadener, Sebastian

    2015-05-08

    The transcription factor CLOCK (CLK) is essential for the development and maintenance of circadian rhythms in Drosophila. However, little is known about how CLK levels are controlled. Here we show that Clk mRNA is strongly regulated post-transcriptionally through its 3' UTR. Flies expressing Clk transgenes without normal 3' UTR exhibit variable CLK-driven transcription and circadian behaviour as well as ectopic expression of CLK-target genes in the brain. In these flies, the number of the key circadian neurons differs stochastically between individuals and within the two hemispheres of the same brain. Moreover, flies carrying Clk transgenes with deletions in the binding sites for the miRNA bantam have stochastic number of pacemaker neurons, suggesting that this miRNA mediates the deterministic expression of CLK. Overall our results demonstrate a key role of Clk post-transcriptional control in stabilizing circadian transcription, which is essential for proper development and maintenance of circadian rhythms in Drosophila.

  19. Ubiquitin and Proteasomes in Transcription

    PubMed Central

    Geng, Fuqiang; Wenzel, Sabine; Tansey, William P.

    2013-01-01

    Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription—from transcription initiation through to export of mRNA from the nucleus—is influenced by the UPS and that all major arms of the system—from the first step in ubiquitin (Ub) conjugation through to the proteasome—are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630

  20. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

    DOE PAGES

    Chang, Katherine Noelani; Zhong, Shan; Weirauch, Matthew T.; ...

    2013-06-11

    The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signalingmore » pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways.« less

  1. Predicting phonetic transcription agreement: Insights from research in infant vocalizations

    PubMed Central

    RAMSDELL, HEATHER L.; OLLER, D. KIMBROUGH; ETHINGTON, CORINNA A.

    2010-01-01

    The purpose of this study is to provide new perspectives on correlates of phonetic transcription agreement. Our research focuses on phonetic transcription and coding of infant vocalizations. The findings are presumed to be broadly applicable to other difficult cases of transcription, such as found in severe disorders of speech, which similarly result in low reliability for a variety of reasons. We evaluated the predictiveness of two factors not previously documented in the literature as influencing transcription agreement: canonicity and coder confidence. Transcribers coded samples of infant vocalizations, judging both canonicity and confidence. Correlation results showed that canonicity and confidence were strongly related to agreement levels, and regression results showed that canonicity and confidence both contributed significantly to explanation of variance. Specifically, the results suggest that canonicity plays a major role in transcription agreement when utterances involve supraglottal articulation, with coder confidence offering additional power in predicting transcription agreement. PMID:17882695

  2. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    PubMed

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

    PubMed Central

    Chang, Katherine Noelani; Zhong, Shan; Weirauch, Matthew T; Hon, Gary; Pelizzola, Mattia; Li, Hai; Huang, Shao-shan Carol; Schmitz, Robert J; Urich, Mark A; Kuo, Dwight; Nery, Joseph R; Qiao, Hong; Yang, Ally; Jamali, Abdullah; Chen, Huaming; Ideker, Trey; Ren, Bing; Bar-Joseph, Ziv; Hughes, Timothy R; Ecker, Joseph R

    2013-01-01

    The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signaling pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways. DOI: http://dx.doi.org/10.7554/eLife.00675.001 PMID:23795294

  4. Context-Dependent Piano Music Transcription With Convolutional Sparse Coding

    DOE PAGES

    Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt

    2016-08-04

    This study presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsetsmore » simultaneously in the same framework. Finally, experiments show that it significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments.« less

  5. Intrinsic transcriptional heterogeneity in B cells controls early class switching to IgE

    PubMed Central

    Wu, Yee Ling; Teichmann, Sarah A.

    2017-01-01

    Noncoding transcripts originating upstream of the immunoglobulin constant region (I transcripts) are required to direct activation-induced deaminase to initiate class switching in B cells. Differential regulation of Iε and Iγ1 transcription in response to interleukin 4 (IL-4), hence class switching to IgE and IgG1, is not fully understood. In this study, we combine novel mouse reporters and single-cell RNA sequencing to reveal the heterogeneity in IL-4–induced I transcription. We identify an early population of cells expressing Iε but not Iγ1 and demonstrate that early Iε transcription leads to switching to IgE and occurs at lower activation levels than Iγ1. Our results reveal how probabilistic transcription with a lower activation threshold for Iε directs the early choice of IgE versus IgG1, a key physiological response against parasitic infestations and a mediator of allergy and asthma. PMID:27994069

  6. Bacterial antisense RNAs are mainly the product of transcriptional noise.

    PubMed

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I; Serrano, Luis; Lluch-Senar, Maria

    2016-03-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome.

  7. Bacterial antisense RNAs are mainly the product of transcriptional noise

    PubMed Central

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I.; Serrano, Luis; Lluch-Senar, Maria

    2016-01-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome. PMID:26973873

  8. Beyond Transcription Factors: The Role of Chromatin Modifying Enzymes in Regulating Transcription Required for Memory

    ERIC Educational Resources Information Center

    Barrett, Ruth M.; Wood, Marcelo A.

    2008-01-01

    One of the alluring aspects of examining chromatin modifications in the role of modulating transcription required for long-term memory processes is that these modifications may provide transient and potentially stable epigenetic marks in the service of activating and/or maintaining transcriptional processes. These, in turn, may ultimately…

  9. Problem-Solving Test: The Mechanism of Transcription Termination by the Rho Factor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2012-01-01

    Transcription termination comes in two forms in "E. coli" cells. Rho-dependent termination requires the binding of a termination protein called Rho factor to the transcriptional machinery at the terminator region, whereas Rho-independent termination is achieved by conformational changes in the transcript itself. This article presents a test…

  10. New discoveries linking transcription to DNA repair and damage tolerance pathways.

    PubMed

    Cohen, Susan E; Walker, Graham C

    2011-01-01

    In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.

  11. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    USDA-ARS?s Scientific Manuscript database

    Natural antisense transcripts (NATs) are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded) or a different locus (trans-encoded). They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation....

  12. Transgenic Mice Expressing an Inhibitory Truncated Form of p300 Exhibit Long-Term Memory Deficits

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Wood, Marcelo A.; McDonough, Conor B.; Abel, Ted

    2007-01-01

    The formation of many forms of long-term memory requires several molecular mechanisms including regulation of gene expression. The mechanisms directing transcription require not only activation of individual transcription factors but also recruitment of transcriptional coactivators. CBP and p300 are transcriptional coactivators that interact with…

  13. 7 CFR 1600.8 - Transcript, recording or minutes; availability to the public.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., transcription of the recording, or minutes of the discussion of any item on the agenda of a Board meeting..., minutes, or transcriptions of electronic recordings of a Board meeting will disclose the identity of each speaker, and will be furnished to any person at the actual cost of transcription or duplication. ...

  14. 7 CFR 1.656 - What are the requirements for transcription of the hearing?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false What are the requirements for transcription of the hearing? 1.656 Section 1.656 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS... transcription of the hearing? (a) Transcript and reporter's fees. The hearing will be transcribed verbatim. (1...

  15. Predicting Phonetic Transcription Agreement: Insights from Research in Infant Vocalizations

    ERIC Educational Resources Information Center

    Ramsdell, Heather L.; Oller, D. Kimbrough; Ethington, Corinna A.

    2007-01-01

    The purpose of this study is to provide new perspectives on correlates of phonetic transcription agreement. Our research focuses on phonetic transcription and coding of infant vocalizations. The findings are presumed to be broadly applicable to other difficult cases of transcription, such as found in severe disorders of speech, which similarly…

  16. 50 CFR 221.56 - What are the requirements for transcription of the hearing?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false What are the requirements for transcription of the hearing? 221.56 Section 221.56 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... requirements for transcription of the hearing? (a) Transcript and reporter's fees. The hearing will be...

  17. 50 CFR 221.56 - What are the requirements for transcription of the hearing?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false What are the requirements for transcription of the hearing? 221.56 Section 221.56 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... requirements for transcription of the hearing? (a) Transcript and reporter's fees. The hearing will be...

  18. 7 CFR 1600.8 - Transcript, recording or minutes; availability to the public.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., transcription of the recording, or minutes of the discussion of any item on the agenda of a Board meeting..., minutes, or transcriptions of electronic recordings of a Board meeting will disclose the identity of each speaker, and will be furnished to any person at the actual cost of transcription or duplication. ...

  19. 7 CFR 1.656 - What are the requirements for transcription of the hearing?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false What are the requirements for transcription of the hearing? 1.656 Section 1.656 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS... transcription of the hearing? (a) Transcript and reporter's fees. The hearing will be transcribed verbatim. (1...

  20. 39 CFR 230.14 - Who owns the written or recorded notes, memoranda, reports, and transcriptions made pursuant to...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., reports, and transcriptions made pursuant to an official investigation, audit, or review conducted by an... the written or recorded notes, memoranda, reports, and transcriptions made pursuant to an official..., reports, and transcriptions, whether written or recorded and made pursuant to an official investigation...

  1. Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target

    PubMed Central

    Watanabe, Hideo; Francis, Joshua M.; Woo, Michele S.; Etemad, Banafsheh; Lin, Wenchu; Fries, Daniel F.; Peng, Shouyong; Snyder, Eric L.; Tata, Purushothama Rao; Izzo, Francesca; Schinzel, Anna C.; Cho, Jeonghee; Hammerman, Peter S.; Verhaak, Roel G.; Hahn, William C.; Rajagopal, Jayaraj; Jacks, Tyler; Meyerson, Matthew

    2013-01-01

    The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To study the transcriptional impact of NKX2-1 amplification, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma and analyzed DNA-binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation. Integration of these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1. Further cistromic and overexpression analyses indicated that NKX2-1 can cooperate with the forkhead box transcription factor FOXA1 to regulate LMO3 gene expression. RNAi analysis of NKX2-1-amplified cells compared with nonamplified cells demonstrated that LMO3 mediates cell survival downstream from NKX2-1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transcriptional signal transducer in NKX2-1-amplified lung adenocarcinomas. PMID:23322301

  2. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quina, Ana Sofia; Instituto Gulbenkian de Ciencia, 2781-901 Oeiras; Parreira, Leonor

    2005-07-01

    Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters uponmore » activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.« less

  3. Genome-wide characterization of monomeric transcriptional regulators in Mycobacterium tuberculosis.

    PubMed

    Feng, Lipeng; Chen, Zhenkang; Wang, Zhongwei; Hu, Yangbo; Chen, Shiyun

    2016-05-01

    Gene transcription catalysed by RNA polymerase is regulated by transcriptional regulators, which play central roles in the control of gene transcription in both eukaryotes and prokaryotes. In regulating gene transcription, many regulators form dimers that bind to DNA with repeated motifs. However, some regulators function as monomers, but their mechanisms of gene expression control are largely uncharacterized. Here we systematically characterized monomeric versus dimeric regulators in the tuberculosis causative agent Mycobacterium tuberculosis. Of the >160 transcriptional regulators annotated in M. tuberculosis, 154 transcriptional regulators were tested, 22 % probably act as monomers and most are annotated as hypothetical regulators. Notably, all members of the WhiB-like protein family are classified as monomers. To further investigate mechanisms of monomeric regulators, we analysed the actions of these WhiB proteins and found that the majority interact with the principal sigma factor σA, which is also a monomeric protein within the RNA polymerase holoenzyme. Taken together, our study for the first time globally classified monomeric regulators in M. tuberculosis and suggested a mechanism for monomeric regulators in controlling gene transcription through interacting with monomeric sigma factors.

  4. Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation

    PubMed Central

    Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D

    2009-01-01

    The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1–MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity. PMID:19644446

  5. Prevalence of transcription promoters within archaeal operons and coding sequences

    PubMed Central

    Koide, Tie; Reiss, David J; Bare, J Christopher; Pang, Wyming Lee; Facciotti, Marc T; Schmid, Amy K; Pan, Min; Marzolf, Bruz; Van, Phu T; Lo, Fang-Yin; Pratap, Abhishek; Deutsch, Eric W; Peterson, Amelia; Martin, Dan; Baliga, Nitin S

    2009-01-01

    Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of ∼64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein–DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3′ ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes—events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements. PMID:19536208

  6. Prevalence of transcription promoters within archaeal operons and coding sequences.

    PubMed

    Koide, Tie; Reiss, David J; Bare, J Christopher; Pang, Wyming Lee; Facciotti, Marc T; Schmid, Amy K; Pan, Min; Marzolf, Bruz; Van, Phu T; Lo, Fang-Yin; Pratap, Abhishek; Deutsch, Eric W; Peterson, Amelia; Martin, Dan; Baliga, Nitin S

    2009-01-01

    Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of approximately 64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein-DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3' ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes-events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.

  7. Post-transcriptional regulation tends to attenuate the mRNA noise and to increase the mRNA gain

    NASA Astrophysics Data System (ADS)

    Shi, Changhong; Wang, Shuqiang; Zhou, Tianshou; Jiang, Yiguo

    2015-10-01

    Post-transcriptional regulation is ubiquitous in prokaryotic and eukaryotic cells, but how it impacts gene expression remains to be fully explored. Here, we analyze a simple gene model in which we assume that mRNAs are produced in a constitutive manner but are regulated post-transcriptionally by a decapping enzyme that switches between the active state and the inactive state. We derive the analytical mRNA distribution governed by a chemical master equation, which can be well used to analyze the mechanism of how post-transcription regulation influences the mRNA expression level including the mRNA noise. We demonstrate that the mean mRNA level in the stochastic case is always higher than that in the deterministic case due to the stochastic effect of the enzyme, but the size of the increased part depends mainly on the switching rates between two enzyme states. More interesting is that we find that in contrast to transcriptional regulation, post-transcriptional regulation tends to attenuate noise in mRNA. Our results provide insight into the role of post-transcriptional regulation in controlling the transcriptional noise.

  8. TEFM is a potent stimulator of mitochondrial transcription elongation in vitro

    PubMed Central

    Posse, Viktor; Shahzad, Saba; Falkenberg, Maria; Hällberg, B. Martin; Gustafsson, Claes M.

    2015-01-01

    A single-subunit RNA polymerase, POLRMT, transcribes the mitochondrial genome in human cells. Recently, a factor termed as the mitochondrial transcription elongation factor, TEFM, was shown to stimulate transcription elongation in vivo, but its effect in vitro was relatively modest. In the current work, we have isolated active TEFM in recombinant form and used a reconstituted in vitro transcription system to characterize its activities. We show that TEFM strongly promotes POLRMT processivity as it dramatically stimulates the formation of longer transcripts. TEFM also abolishes premature transcription termination at conserved sequence block II, an event that has been linked to primer formation during initiation of mtDNA synthesis. We show that POLRMT pauses at a wide range of sites in a given DNA sequence. In the absence of TEFM, this leads to termination; however, the presence of TEFM abolishes this effect and aids POLRMT in continuation of transcription. Further, we show that TEFM substantially increases the POLRMT affinity to an elongation-like DNA:RNA template. In combination with previously published in vivo observations, our data establish TEFM as an essential component of the mitochondrial transcription machinery. PMID:25690892

  9. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    PubMed

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  10. TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.

    PubMed Central

    Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I

    1994-01-01

    We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation. Images PMID:8076598

  11. The amino terminal extension of mammalian mitochondrial RNA polymerase ensures promoter specific transcription initiation

    PubMed Central

    Posse, Viktor; Hoberg, Emily; Dierckx, Anke; Shahzad, Saba; Koolmeister, Camilla; Larsson, Nils-Göran; Wilhelmsson, L. Marcus; Hällberg, B. Martin; Gustafsson, Claes M.

    2014-01-01

    Mammalian mitochondrial transcription is executed by a single subunit mitochondrial RNA polymerase (Polrmt) and its two accessory factors, mitochondrial transcription factors A and B2 (Tfam and Tfb2m). Polrmt is structurally related to single-subunit phage RNA polymerases, but it also contains a unique N-terminal extension (NTE) of unknown function. We here demonstrate that the NTE functions together with Tfam to ensure promoter-specific transcription. When the NTE is deleted, Polrmt can initiate transcription in the absence of Tfam, both from promoters and non-specific DNA sequences. Additionally, when in presence of Tfam and a mitochondrial promoter, the NTE-deleted mutant has an even higher transcription activity than wild-type polymerase, indicating that the NTE functions as an inhibitory domain. Our studies lead to a model according to which Tfam specifically recruits wild-type Polrmt to promoter sequences, relieving the inhibitory effect of the NTE, as a first step in transcription initiation. In the second step, Tfb2m is recruited into the complex and transcription is initiated. PMID:24445803

  12. Centromere Transcription: Means and Motive.

    PubMed

    Duda, Zachary; Trusiak, Sarah; O'Neill, Rachel

    2017-01-01

    The chromosome biology field at large has benefited from studies of the cell cycle components, protein cascades and genomic landscape that are required for centromere identity, assembly and stable transgenerational inheritance. Research over the past 20 years has challenged the classical descriptions of a centromere as a stable, unmutable, and transcriptionally silent chromosome component. Instead, based on studies from a broad range of eukaryotic species, including yeast, fungi, plants, and animals, the centromere has been redefined as one of the more dynamic areas of the eukaryotic genome, requiring coordination of protein complex assembly, chromatin assembly, and transcriptional activity in a cell cycle specific manner. What has emerged from more recent studies is the realization that the transcription of specific types of nucleic acids is a key process in defining centromere integrity and function. To illustrate the transcriptional landscape of centromeres across eukaryotes, we focus this review on how transcripts interact with centromere proteins, when in the cell cycle centromeric transcription occurs, and what types of sequences are being transcribed. Utilizing data from broadly different organisms, a picture emerges that places centromeric transcription as an integral component of centromere function.

  13. The Fast and Transient Transcriptional Network of Gravity and Mechanical Stimulation in the Arabidopsis Root Apex1[w

    PubMed Central

    Kimbrough, Jeffery M.; Salinas-Mondragon, Raul; Boss, Wendy F.; Brown, Christopher S.; Sederoff, Heike Winter

    2004-01-01

    Plant root growth is affected by both gravity and mechanical stimulation (Massa GD, Gilroy S [2003] Plant J 33: 435–445). A coordinated response to both stimuli requires specific and common elements. To delineate the transcriptional response mechanisms, we carried out whole-genome microarray analysis of Arabidopsis root apices after gravity stimulation (reorientation) and mechanical stimulation and monitored transcript levels of 22,744 genes in a time course during the first hour after either stimulus. Rapid, transient changes in the relative abundance of specific transcripts occurred in response to gravity or mechanical stimulation, and these transcript level changes reveal clusters of coordinated events. Transcriptional regulation occurs in the root apices within less than 2 min after either stimulus. We identified genes responding specifically to each stimulus as well as transcripts regulated in both signal transduction pathways. Several unknown genes were specifically induced only during gravitropic stimulation (gravity induced genes). We also analyzed the network of transcriptional regulation during the early stages of gravitropism and mechanical stimulation. PMID:15347791

  14. miRNA Enriched in Human Neuroblast Nuclei Bind the MAZ Transcription Factor and Their Precursors Contain the MAZ Consensus Motif.

    PubMed

    Goldie, Belinda J; Fitzsimmons, Chantel; Weidenhofer, Judith; Atkins, Joshua R; Wang, Dan O; Cairns, Murray J

    2017-01-01

    While the cytoplasmic function of microRNA (miRNA) as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.

  15. Nascent Transcription Affected by RNA Polymerase IV in Zea mays

    PubMed Central

    Erhard, Karl F.; Talbot, Joy-El R. B.; Deans, Natalie C.; McClish, Allison E.; Hollick, Jay B.

    2015-01-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3ʹ-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  16. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes.

    PubMed

    Chymkowitch, Pierre; Nguéa, Aurélie P; Aanes, Håvard; Koehler, Christian J; Thiede, Bernd; Lorenz, Susanne; Meza-Zepeda, Leonardo A; Klungland, Arne; Enserink, Jorrit M

    2015-06-01

    Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs. © 2015 Chymkowitch et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Repression of YdaS Toxin Is Mediated by Transcriptional Repressor RacR in the Cryptic rac Prophage of Escherichia coli K-12.

    PubMed

    Krishnamurthi, Revathy; Ghosh, Swagatha; Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2017-01-01

    Horizontal gene transfer is a major driving force behind the genomic diversity seen in prokaryotes. The cryptic rac prophage in Escherichia coli K-12 carries the gene for a putative transcription factor RacR, whose deletion is lethal. We have shown that the essentiality of racR in E. coli K-12 is attributed to its role in transcriptionally repressing toxin gene(s) called ydaS and ydaT , which are adjacent to and coded divergently to racR . IMPORTANCE Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli , we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent.

  18. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells

    PubMed Central

    Cagliero, Cedric; Zhou, Yan Ning; Jin, Ding Jun

    2014-01-01

    In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes, demonstrating that transcription machinery and replisome are mostly located in different chromosomal territories to maintain harmony between the two major cellular functions in fast-growing cells. Our study suggests that bacterial chromosomes are spatially and functionally organized, analogous to eukaryotes. PMID:25416798

  19. Pause, play, repeat

    PubMed Central

    Sansó, Miriam; Fisher, Robert P

    2013-01-01

    Cyclin-dependent kinases (CDKs) play a central role in governing eukaryotic cell division. It is becoming clear that the transcription cycle of RNA polymerase II (RNAP II) is also regulated by CDKs; in metazoans, the cell cycle and transcriptional CDK networks even share an upstream activating kinase, which is itself a CDK. From recent chemical-genetic analyses we know that CDKs and their substrates control events both early in transcription (the transition from initiation to elongation) and late (3′ end formation and transcription termination). Moreover, mutual dependence on CDK activity might couple the “beginning” and “end” of the cycle, to ensure the fidelity of mRNA maturation and the efficient recycling of RNAP II from sites of termination to the transcription start site (TSS). As is the case for CDKs involved in cell cycle regulation, different transcriptional CDKs act in defined sequence on multiple substrates. These phosphorylations are likely to influence gene expression by several mechanisms, including direct, allosteric effects on the transcription machinery, co-transcriptional recruitment of proteins needed for mRNA-capping, splicing and 3′ end maturation, dependent on multisite phosphorylation of the RNAP II C-terminal domain (CTD) and, perhaps, direct regulation of RNA-processing or histone-modifying machinery. Here we review these recent advances, and preview the emerging challenges for transcription-cycle research. PMID:23756342

  20. The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle.

    PubMed

    Pramila, Tata; Wu, Wei; Miles, Shawna; Noble, William Stafford; Breeden, Linda L

    2006-08-15

    Transcription patterns shift dramatically as cells transit from one phase of the cell cycle to another. To better define this transcriptional circuitry, we collected new microarray data across the cell cycle of budding yeast. The combined analysis of these data with three other cell cycle data sets identifies hundreds of new highly periodic transcripts and provides a weighted average peak time for each transcript. Using these data and phylogenetic comparisons of promoter sequences, we have identified a late S-phase-specific promoter element. This element is the binding site for the forkhead protein Hcm1, which is required for its cell cycle-specific activity. Among the cell cycle-regulated genes that contain conserved Hcm1-binding sites, there is a significant enrichment of genes involved in chromosome segregation, spindle dynamics, and budding. This may explain why Hcm1 mutants show 10-fold elevated rates of chromosome loss and require the spindle checkpoint for viability. Hcm1 also induces the M-phase-specific transcription factors FKH1, FKH2, and NDD1, and two cell cycle-specific transcriptional repressors, WHI5 and YHP1. As such, Hcm1 fills a significant gap in our understanding of the transcriptional circuitry that underlies the cell cycle.

  1. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations

    PubMed Central

    Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens

    2017-01-01

    Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators. PMID:28301511

  2. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations.

    PubMed

    Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens

    2017-01-01

    Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators.

  3. Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.

    PubMed

    Zuo, Chunman; Blow, Matthew; Sreedasyam, Avinash; Kuo, Rita C; Ramamoorthy, Govindarajan Kunde; Torres-Jerez, Ivone; Li, Guifen; Wang, Mei; Dilworth, David; Barry, Kerrie; Udvardi, Michael; Schmutz, Jeremy; Tang, Yuhong; Xu, Ying

    2018-01-01

    Switchgrass ( Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts. We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures. Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.

  4. NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision.

    PubMed

    Chuang, Trees-Juen; Wu, Chan-Shuo; Chen, Chia-Ying; Hung, Li-Yuan; Chiang, Tai-Wei; Yang, Min-Yu

    2016-02-18

    Analysis of RNA-seq data often detects numerous 'non-co-linear' (NCL) transcripts, which comprised sequence segments that are topologically inconsistent with their corresponding DNA sequences in the reference genome. However, detection of NCL transcripts involves two major challenges: removal of false positives arising from alignment artifacts and discrimination between different types of NCL transcripts (trans-spliced, circular or fusion transcripts). Here, we developed a new NCL-transcript-detecting method ('NCLscan'), which utilized a stepwise alignment strategy to almost completely eliminate false calls (>98% precision) without sacrificing true positives, enabling NCLscan outperform 18 other publicly-available tools (including fusion- and circular-RNA-detecting tools) in terms of sensitivity and precision, regardless of the generation strategy of simulated dataset, type of intragenic or intergenic NCL event, read depth of coverage, read length or expression level of NCL transcript. With the high accuracy, NCLscan was applied to distinguishing between trans-spliced, circular and fusion transcripts on the basis of poly(A)- and nonpoly(A)-selected RNA-seq data. We showed that circular RNAs were expressed more ubiquitously, more abundantly and less cell type-specifically than trans-spliced and fusion transcripts. Our study thus describes a robust pipeline for the discovery of NCL transcripts, and sheds light on the fundamental biology of these non-canonical RNA events in human transcriptome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossi, Flavia; Fan, Jue; Xiao, Jun

    Here, the molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. As a result, to identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation.more » We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.« less

  6. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction

    DOE PAGES

    Bossi, Flavia; Fan, Jue; Xiao, Jun; ...

    2017-06-26

    Here, the molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. As a result, to identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation.more » We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.« less

  7. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content.

    PubMed

    Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles

    2014-04-23

    Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.

  8. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    PubMed Central

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  9. Early Whole Blood Transcriptional Signatures Are Associated with Severity of Lung Inflammation in Cynomolgus Macaques with Mycobacterium tuberculosis Infection.

    PubMed

    Gideon, Hannah P; Skinner, Jason A; Baldwin, Nicole; Flynn, JoAnne L; Lin, Philana Ling

    2016-12-15

    Whole blood transcriptional profiling offers great diagnostic and prognostic potential. Although studies identified signatures for pulmonary tuberculosis (TB) and transcripts that predict the risk for developing active TB in humans, the early transcriptional changes immediately following Mycobacterium tuberculosis infection have not been evaluated. We evaluated the gene expression changes in the cynomolgus macaque model of TB, which recapitulates all clinical aspects of human M. tuberculosis infection, using a human microarray and analytics platform. We performed genome-wide blood transcriptional analysis on 38 macaques at 11 postinfection time points during the first 6 mo of M. tuberculosis infection. Of 6371 differentially expressed transcripts between preinfection and postinfection, the greatest change in transcriptional activity occurred 20-56 d postinfection, during which fluctuation of innate and adaptive immune response-related transcripts was observed. Modest transcriptional differences between active TB and latent infection were observed over the time course with substantial overlap. The pattern of module activity previously published for human active TB was similar in macaques with active disease. Blood transcript activity was highly correlated with lung inflammation (lung [ 18 F]fluorodeoxyglucose [FDG] avidity) measured by positron emission tomography and computed tomography at early time points postinfection. The differential signatures between animals with high and low lung FDG were stronger than between clinical outcomes. Analysis of preinfection signatures of macaques revealed that IFN signatures could influence eventual clinical outcomes and lung FDG avidity, even before infection. Our data support that transcriptional changes in the macaque model are translatable to human M. tuberculosis infection and offer important insights into early events of M. tuberculosis infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome.

    PubMed

    Wu, Jia Qian; Du, Jiang; Rozowsky, Joel; Zhang, Zhengdong; Urban, Alexander E; Euskirchen, Ghia; Weissman, Sherman; Gerstein, Mark; Snyder, Michael

    2008-01-03

    Recent studies of the mammalian transcriptome have revealed a large number of additional transcribed regions and extraordinary complexity in transcript diversity. However, there is still much uncertainty regarding precisely what portion of the genome is transcribed, the exact structures of these novel transcripts, and the levels of the transcripts produced. We have interrogated the transcribed loci in 420 selected ENCyclopedia Of DNA Elements (ENCODE) regions using rapid amplification of cDNA ends (RACE) sequencing. We analyzed annotated known gene regions, but primarily we focused on novel transcriptionally active regions (TARs), which were previously identified by high-density oligonucleotide tiling arrays and on random regions that were not believed to be transcribed. We found RACE sequencing to be very sensitive and were able to detect low levels of transcripts in specific cell types that were not detectable by microarrays. We also observed many instances of sense-antisense transcripts; further analysis suggests that many of the antisense transcripts (but not all) may be artifacts generated from the reverse transcription reaction. Our results show that the majority of the novel TARs analyzed (60%) are connected to other novel TARs or known exons. Of previously unannotated random regions, 17% were shown to produce overlapping transcripts. Furthermore, it is estimated that 9% of the novel transcripts encode proteins. We conclude that RACE sequencing is an efficient, sensitive, and highly accurate method for characterization of the transcriptome of specific cell/tissue types. Using this method, it appears that much of the genome is represented in polyA+ RNA. Moreover, a fraction of the novel RNAs can encode protein and are likely to be functional.

  11. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma

    PubMed Central

    Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens

    2013-01-01

    Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945

  12. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata

    PubMed Central

    Cherukupalli, Neeraja; Divate, Mayur; Mittapelli, Suresh R.; Khareedu, Venkateswara R.; Vudem, Dashavantha R.

    2016-01-01

    Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeq™ 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts—using kyoto encyclopedia of genes and genomes database—revealed 5606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs) in 23,168 transcripts. Assembled sequences of transcriptome of A. paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analysis besides identification of key enzymes involved in the various pathways of secondary metabolism. PMID:27582746

  13. Transient transcriptional activation of the Vibrio cholerae El Tor virulence regulator toxT in response to culture conditions.

    PubMed

    Medrano, A I; DiRita, V J; Castillo, G; Sanchez, J

    1999-05-01

    Vibrio cholerae El Tor require special in vitro culture conditions, consisting of an initial static growth period followed by shift to shaking (AKI conditions), for expression of cholera toxin (CT) and toxin coregulated pili (TCP). ToxT, a regulator whose initial transcription depends on the ToxR regulator, positively modulates expression of CT and TCP. To help understand control of CT and TCP in El Tor vibrios, we monitored ctxAB and ToxR-dependent toxT transcription by time course primer extension assays. AKI conditions stimulated CT synthesis with an absence of ctxAB transcription during static growth followed by induction upon shaking. ToxR-dependent toxT transcription was induced at the end of the static growth period but was transient, stopping shortly after shaking was initiated but, interestingly, also if the static phase was prolonged. Immunoblot assays showed that ToxR protein levels were not coincidentally transient, implying a protein on/off switch mechanism for ToxR. Despite the transient activation by ToxR, transcription of ctxAB was maintained during shaking. This finding suggested continued toxT expression, possibly through relay transcription from another promoter. The 12.6-kb distant upstream tcpA promoter responsible for expression of the TCP operon has been proposed to provide an alternate toxT message by readthrough transcription. Activation of the tcpA promoter is supported by increased expression of TcpA protein during the shaking phase of the culture. Readthrough transcription of toxT from tcpA would be compatible with reverse transcription-PCR evidence for a toxT mRNA at times when ToxR-dependent transcription was no longer detectable by primer extension.

  14. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors

    PubMed Central

    2014-01-01

    Background SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. Results The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Conclusion Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity. PMID:25678957

  15. Function of the growth-regulated transcription initiation factor TIF-IA in initiation complex formation at the murine ribosomal gene promoter.

    PubMed

    Schnapp, A; Schnapp, G; Erny, B; Grummt, I

    1993-11-01

    Alterations in the rate of cell proliferation are accompanied by changes in the transcription of rRNA genes. In mammals, this growth-dependent regulation of transcription of genes coding for rRNA (rDNA) is due to reduction of the amount or activity of an essential transcription factor, called TIF-IA. Extracts prepared from quiescent cells lack this factor activity and, therefore, are transcriptionally inactive. We have purified TIF-IA from exponentially growing cells and have shown that it is a polypeptide with a molecular mass of 75 kDa which exists as a monomer in solution. Using a reconstituted transcription system consisting of purified transcription factors, we demonstrate that TIF-IA is a bona fide transcription initiation factor which interacts with RNA polymerase I. Preinitiation complexes can be assembled in the absence of TIF-IA, but formation of the first phosphodiester bonds of nascent rRNA is precluded. After initiation, TIF-IA is liberated from the initiation complex and facilitates transcription from templates bearing preinitiation complexes which lack TIF-IA. Despite the pronounced species specificity of class I gene transcription, this growth-dependent factor has been identified not only in mouse but also in human cells. Murine TIF-IA complements extracts from both growth-inhibited mouse and human cells. The analogous human activity appears to be similar or identical to that of TIF-IA. Therefore, despite the fact that the RNA polymerase transcription system has evolved sufficiently rapidly that an rDNA promoter from one species will not function in another species, the basic mechanisms that adapt ribosome synthesis to cell proliferation have been conserved.

  16. A single alteration 20 nt 5′ to an editing target inhibits chloroplast RNA editing in vivo

    PubMed Central

    Reed, Martha L.; Peeters, Nemo M.; Hanson, Maureen R.

    2001-01-01

    Transcripts of typical dicot plant plastid genes undergo C→U RNA editing at approximately 30 locations, but there is no consensus sequence surrounding the C targets of editing. The cis-acting elements required for editing of the C located at tobacco rpoB editing site II were investigated by introducing translatable chimeric minigenes containing sequence –20 to +6 surrounding the C target of editing. When the –20 to +6 sequence specified by the homologous region present in the black pine chloroplast genome was incorporated, virtually no editing of the transcripts occurred in transgenic tobacco plastids. Nucleotides that differ between the black pine and tobacco sequence were tested for their role in C→U editing by designing chimeric genes containing one or more of these divergent nucleotides. Surprisingly, the divergent nucleotide that had the strongest negative effect on editing of the minigene transcript was located –20 nt 5′ to the C target of editing. Expression of transgene transcripts carrying the 27 nt sequence did not affect the editing extent of the endogenous rpoB transcripts, even though the chimeric transcripts were much more abundant than those of the endogenous gene. In plants carrying a 93 nt rpoB editing site sequence, transgene transcripts accumulated to a level three times greater than transgene transcripts in the plants carrying the 27 nt rpoB editing sites and resulted in editing of the endogenous transcripts from 100 to 50%. Both a lower affinity of the 27 nt site for a trans-acting factor and lower abundance of the transcript could explain why expression of minigene transcripts containing the 27 nt sequence did not affect endogenous editing. PMID:11266552

  17. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    PubMed

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  18. A common class of transcripts with 5'-intron depletion, distinct early coding sequence features, and N1-methyladenosine modification.

    PubMed

    Cenik, Can; Chua, Hon Nian; Singh, Guramrit; Akef, Abdalla; Snyder, Michael P; Palazzo, Alexander F; Moore, Melissa J; Roth, Frederick P

    2017-03-01

    Introns are found in 5' untranslated regions (5'UTRs) for 35% of all human transcripts. These 5'UTR introns are not randomly distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously, transcripts lacking 5'UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and understand the connection between coding-region sequence and 5'UTR intron status, we developed a classifier that can predict 5'UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier identifies transcripts with 5 ' proximal- i ntron- m inus-like-coding regions ("5IM" transcripts). Unexpectedly, we found that the early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts. The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start codon and near the 5' cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM transcripts are bound by the exon junction complex (EJC) at noncanonical 5' proximal positions. Finally, N 1 -methyladenosines are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5' proximal introns, presence of specific RNA sequence features associated with low translation efficiency, N 1 -methyladenosines in the early coding region, and enrichment for noncanonical binding by the EJC. © 2017 Cenik et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Identification of mRNAs that move over long distances using an RNA-Seq analysis of Arabidopsis/Nicotiana benthamiana heterografts.

    PubMed

    Notaguchi, Michitaka; Higashiyama, Tetsuya; Suzuki, Takamasa

    2015-02-01

    Phloem is a conductive tissue that allocates nutrients from mature source leaves to sinks such as young developing tissues. Phloem also delivers proteins and RNA species, such as small RNAs and mRNAs. Intensive studies on plant systemic signaling revealed the essential roles of proteins and RNA species. However, many of their functions are still largely unknown, with the roles of transported mRNAs being particularly poorly understood. A major difficulty is the absence of an accurate and comprehensive list of mobile transcripts. In this study, we used a hetero-graft system with Nicotiana benthamiana as the recipient scion and Arabidopsis as the donor stock, to identify transcripts that moved long distances across the graft union. We identified 138 Arabidopsis transcripts as mobile mRNAs, which we collectively termed the mRNA mobilome. Reverse transcription-PCR, quantitative real-time PCR and droplet digital PCR analyses confirmed the mobility. The transcripts included potential signaling factors and, unexpectedly, more general factors. In our investigations, we found no preferred transcript length, no previously known sequence motifs in promoter or transcript sequences and no similarities between the level of the transcripts and that in the source leaves. Grafting experiments regarding the function of ERECTA, an identified transcript, showed that no function of the transcript mobilized. To our knowledge, this is the first report identifying transcripts that move over long distances using a hetero-graft system between different plant taxa. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Transcription factor REST negatively influences the protein kinase C-dependent up-regulation of human mu-opioid receptor gene transcription.

    PubMed

    Bedini, Andrea; Baiula, Monica; Carbonari, Gioia; Spampinato, Santi

    2010-01-01

    Mu-opioid receptor expression increases during neurogenesis, regulates the survival of maturing neurons and is implicated in ischemia-induced neuronal death. The repressor element 1 silencing transcription factor (REST), a regulator of a subset of genes in differentiating and post-mitotic neurons, is involved in its transcriptional repression. Extracellular signaling molecules and mechanisms that control the human mu-opioid receptor (hMOR) gene transcription are not clearly understood. We examined the role of protein kinase C (PKC) on hMOR transcription in a model of neuronal cells and in the context of the potential influence of REST. In native SH-SY5Y neuroblastoma cells, PKC activation with phorbol 12-myristate 13-acetate (PMA, 16 nM, 24h) down-regulated hMOR transcription and concomitantly elevated the REST binding activity to repressor element 1 of the hMOR promoter. In contrast, PMA activated hMOR gene transcription when REST expression was knocked down by an antisense strategy or by retinoic acid-induced cell differentiation. PMA acts through a PKC-dependent pathway requiring downstream MAP kinases and the transcription factor AP-1. In a series of hMOR-luciferase promoter/reporter constructs transfected into SH-SY5Y cells and PC12 cells, PMA up-regulated hMOR transcription in PC12 cells lacking REST, and in SH-SY5Y cells either transfected with constructs deficient in the REST DNA binding element or when REST was down-regulated in retinoic acid-differentiated cells. These findings help explain how hMOR transcription is regulated and may clarify its contribution to epigenetic modifications and reprogramming of differentiated neuronal cells exposed to PKC-activating agents. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Integrative genetic analysis of transcription modules: towards filling the gap between genetic lociand inherited traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongqiang; Chen, Hao; Bao, Lei

    2005-01-01

    Genetic loci that regulate inherited traits are routinely identified using quantitative trait locus (QTL) mapping methods. However, the genotype-phenotype associations do not provide information on the gene expression program through which the genetic loci regulate the traits. Transcription modules are 'selfconsistent regulatory units' and are closely related to the modular components of gene regulatory network [Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y. and Barkai, N. (2002) Revealing modular organization in the yeast transcriptional network. Nat. Genet., 31, 370-377; Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D. and Friedman, N. (2003) Module networks: identifyingmore » regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166-176]. We used genome-wide genotype and gene expression data of a genetic reference population that consists of mice of 32 recombinant inbred strains to identify the transcription modules and the genetic loci regulating them. Twenty-nine transcription modules defined by genetic variations were identified. Statistically significant associations between the transcription modules and 18 classical physiological and behavioral traits were found. Genome-wide interval mapping showed that major QTLs regulating the transcription modules are often co-localized with the QTLs regulating the associated classical traits. The association and the possible co-regulation of the classical trait and transcription module indicate that the transcription module may be involved in the gene pathways connecting the QTL and the classical trait. Our results show that a transcription module may associate with multiple seemingly unrelated classical traits and a classical trait may associate with different modules. Literature mining results provided strong independent evidences for the relations among genes of the transcription modules, genes in the regions of the QTLs regulating the transcription modules and the keywords representing the classical traits.« less

  2. A novel statistical approach for identification of the master regulator transcription factor.

    PubMed

    Sikdar, Sinjini; Datta, Susmita

    2017-02-02

    Transcription factors are known to play key roles in carcinogenesis and therefore, are gaining popularity as potential therapeutic targets in drug development. A 'master regulator' transcription factor often appears to control most of the regulatory activities of the other transcription factors and the associated genes. This 'master regulator' transcription factor is at the top of the hierarchy of the transcriptomic regulation. Therefore, it is important to identify and target the master regulator transcription factor for proper understanding of the associated disease process and identifying the best therapeutic option. We present a novel two-step computational approach for identification of master regulator transcription factor in a genome. At the first step of our method we test whether there exists any master regulator transcription factor in the system. We evaluate the concordance of two ranked lists of transcription factors using a statistical measure. In case the concordance measure is statistically significant, we conclude that there is a master regulator. At the second step, our method identifies the master regulator transcription factor, if there exists one. In the simulation scenario, our method performs reasonably well in validating the existence of a master regulator when the number of subjects in each treatment group is reasonably large. In application to two real datasets, our method ensures the existence of master regulators and identifies biologically meaningful master regulators. An R code for implementing our method in a sample test data can be found in http://www.somnathdatta.org/software . We have developed a screening method of identifying the 'master regulator' transcription factor just using only the gene expression data. Understanding the regulatory structure and finding the master regulator help narrowing the search space for identifying biomarkers for complex diseases such as cancer. In addition to identifying the master regulator our method provides an overview of the regulatory structure of the transcription factors which control the global gene expression profiles and consequently the cell functioning.

  3. Versatility of Cooperative Transcriptional Activation: A Thermodynamical Modeling Analysis for Greater-Than-Additive and Less-Than-Additive Effects

    PubMed Central

    Frank, Till D.; Carmody, Aimée M.; Kholodenko, Boris N.

    2012-01-01

    We derive a statistical model of transcriptional activation using equilibrium thermodynamics of chemical reactions. We examine to what extent this statistical model predicts synergy effects of cooperative activation of gene expression. We determine parameter domains in which greater-than-additive and less-than-additive effects are predicted for cooperative regulation by two activators. We show that the statistical approach can be used to identify different causes of synergistic greater-than-additive effects: nonlinearities of the thermostatistical transcriptional machinery and three-body interactions between RNA polymerase and two activators. In particular, our model-based analysis suggests that at low transcription factor concentrations cooperative activation cannot yield synergistic greater-than-additive effects, i.e., DNA transcription can only exhibit less-than-additive effects. Accordingly, transcriptional activity turns from synergistic greater-than-additive responses at relatively high transcription factor concentrations into less-than-additive responses at relatively low concentrations. In addition, two types of re-entrant phenomena are predicted. First, our analysis predicts that under particular circumstances transcriptional activity will feature a sequence of less-than-additive, greater-than-additive, and eventually less-than-additive effects when for fixed activator concentrations the regulatory impact of activators on the binding of RNA polymerase to the promoter increases from weak, to moderate, to strong. Second, for appropriate promoter conditions when activator concentrations are increased then the aforementioned re-entrant sequence of less-than-additive, greater-than-additive, and less-than-additive effects is predicted as well. Finally, our model-based analysis suggests that even for weak activators that individually induce only negligible increases in promoter activity, promoter activity can exhibit greater-than-additive responses when transcription factors and RNA polymerase interact by means of three-body interactions. Overall, we show that versatility of transcriptional activation is brought about by nonlinearities of transcriptional response functions and interactions between transcription factors, RNA polymerase and DNA. PMID:22506020

  4. RNA-Seq Profiling Reveals Novel Hepatic Gene Expression Pattern in Aflatoxin B1 Treated Rats

    PubMed Central

    Merrick, B. Alex; Phadke, Dhiral P.; Auerbach, Scott S.; Mav, Deepak; Stiegelmeyer, Suzy M.; Shah, Ruchir R.; Tice, Raymond R.

    2013-01-01

    Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1’s carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT’s) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the rat transcriptome contains many previously unidentified, AFB1-responsive exons and transcripts supporting RNA-Seq’s capabilities to provide new insights into AFB1-mediated gene expression leading to hepatocellular carcinoma. PMID:23630614

  5. TIPMaP: a web server to establish transcript isoform profiles from reliable microarray probes.

    PubMed

    Chitturi, Neelima; Balagannavar, Govindkumar; Chandrashekar, Darshan S; Abinaya, Sadashivam; Srini, Vasan S; Acharya, Kshitish K

    2013-12-27

    Standard 3' Affymetrix gene expression arrays have contributed a significantly higher volume of existing gene expression data than other microarray platforms. These arrays were designed to identify differentially expressed genes, but not their alternatively spliced transcript forms. No resource can currently identify expression pattern of specific mRNA forms using these microarray data, even though it is possible to do this. We report a web server for expression profiling of alternatively spliced transcripts using microarray data sets from 31 standard 3' Affymetrix arrays for human, mouse and rat species. The tool has been experimentally validated for mRNAs transcribed or not-detected in a human disease condition (non-obstructive azoospermia, a male infertility condition). About 4000 gene expression datasets were downloaded from a public repository. 'Good probes' with complete coverage and identity to latest reference transcript sequences were first identified. Using them, 'Transcript specific probe-clusters' were derived for each platform and used to identify expression status of possible transcripts. The web server can lead the user to datasets corresponding to specific tissues, conditions via identifiers of the microarray studies or hybridizations, keywords, official gene symbols or reference transcript identifiers. It can identify, in the tissues and conditions of interest, about 40% of known transcripts as 'transcribed', 'not-detected' or 'differentially regulated'. Corresponding additional information for probes, genes, transcripts and proteins can be viewed too. We identified the expression of transcripts in a specific clinical condition and validated a few of these transcripts by experiments (using reverse transcription followed by polymerase chain reaction). The experimental observations indicated higher agreements with the web server results, than contradictions. The tool is accessible at http://resource.ibab.ac.in/TIPMaP. The newly developed online tool forms a reliable means for identification of alternatively spliced transcript-isoforms that may be differentially expressed in various tissues, cell types or physiological conditions. Thus, by making better use of existing data, TIPMaP avoids the dependence on precious tissue-samples, in experiments with a goal to establish expression profiles of alternative splice forms--at least in some cases.

  6. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats.

    PubMed

    Merrick, B Alex; Phadke, Dhiral P; Auerbach, Scott S; Mav, Deepak; Stiegelmeyer, Suzy M; Shah, Ruchir R; Tice, Raymond R

    2013-01-01

    Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1's carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT's) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the rat transcriptome contains many previously unidentified, AFB1-responsive exons and transcripts supporting RNA-Seq's capabilities to provide new insights into AFB1-mediated gene expression leading to hepatocellular carcinoma.

  7. Genome-Wide Spectra of Transcription Insertions and Deletions Reveal That Slippage Depends on RNA:DNA Hybrid Complementarity.

    PubMed

    Traverse, Charles C; Ochman, Howard

    2017-08-29

    Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola , which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. IMPORTANCE The high level of mistakes generated during transcription can result in the accumulation of malfunctioning and misfolded proteins which can alter global gene regulation and in the expenditure of energy to degrade these nonfunctional proteins. The transcriptome-wide occurrence of base substitutions has been elucidated in bacteria, but information on transcription insertions and deletions-errors that potentially have more dire effects on protein function-is limited to reporter gene constructs. Here, we capture the transcriptome-wide spectrum of insertions and deletions in Escherichia coli and Buchnera aphidicola and show that they occur at rates approaching those of base substitutions. Knowledge of the full extent of sequences subject to transcription indels supports a new model of bacterial transcription slippage, one that relies on the number of complementary bases between the transcript and the DNA template to which it slipped. Copyright © 2017 Traverse and Ochman.

  8. Sialotranscriptomics of Rhipicephalus zambeziensis reveals intricate expression profiles of secretory proteins and suggests tight temporal transcriptional regulation during blood-feeding.

    PubMed

    de Castro, Minique Hilda; de Klerk, Daniel; Pienaar, Ronel; Rees, D Jasper G; Mans, Ben J

    2017-08-10

    Ticks secrete a diverse mixture of secretory proteins into the host to evade its immune response and facilitate blood-feeding, making secretory proteins attractive targets for the production of recombinant anti-tick vaccines. The largely neglected tick species, Rhipicephalus zambeziensis, is an efficient vector of Theileria parva in southern Africa but its available sequence information is limited. Next generation sequencing has advanced sequence availability for ticks in recent years and has assisted the characterisation of secretory proteins. This study focused on the de novo assembly and annotation of the salivary gland transcriptome of R. zambeziensis and the temporal expression of secretory protein transcripts in female and male ticks, before the onset of feeding and during early and late feeding. The sialotranscriptome of R. zambeziensis yielded 23,631 transcripts from which 13,584 non-redundant proteins were predicted. Eighty-six percent of these contained a predicted start and stop codon and were estimated to be putatively full-length proteins. A fifth (2569) of the predicted proteins were annotated as putative secretory proteins and explained 52% of the expression in the transcriptome. Expression analyses revealed that 2832 transcripts were differentially expressed among feeding time points and 1209 between the tick sexes. The expression analyses further indicated that 57% of the annotated secretory protein transcripts were differentially expressed. Dynamic expression profiles of secretory protein transcripts were observed during feeding of female ticks. Whereby a number of transcripts were upregulated during early feeding, presumably for feeding site establishment and then during late feeding, 52% of these were downregulated, indicating that transcripts were required at specific feeding stages. This suggested that secretory proteins are under stringent transcriptional regulation that fine-tunes their expression in salivary glands during feeding. No open reading frames were predicted for 7947 transcripts. This class represented 17% of the differentially expressed transcripts, suggesting a potential transcriptional regulatory function of long non-coding RNA in tick blood-feeding. The assembled sialotranscriptome greatly expands the sequence availability of R. zambeziensis, assists in our understanding of the transcription of secretory proteins during blood-feeding and will be a valuable resource for future vaccine candidate selection.

  9. Splice-Site Mutations Cause Rrp6-Mediated Nuclear Retention of the Unspliced RNAs and Transcriptional Down-Regulation of the Splicing-Defective Genes

    PubMed Central

    Eberle, Andrea B.; Hessle, Viktoria; Helbig, Roger; Dantoft, Widad; Gimber, Niclas; Visa, Neus

    2010-01-01

    Background Eukaryotic cells have developed surveillance mechanisms to prevent the expression of aberrant transcripts. An early surveillance checkpoint acts at the transcription site and prevents the release of mRNAs that carry processing defects. The exosome subunit Rrp6 is required for this checkpoint in Saccharomyces cerevisiae, but it is not known whether Rrp6 also plays a role in mRNA surveillance in higher eukaryotes. Methodology/Principal Findings We have developed an in vivo system to study nuclear mRNA surveillance in Drosophila melanogaster. We have produced S2 cells that express a human β-globin gene with mutated splice sites in intron 2 (mut β-globin). The transcripts encoded by the mut β-globin gene are normally spliced at intron 1 but retain intron 2. The levels of the mut β-globin transcripts are much lower than those of wild type (wt) ß-globin mRNAs transcribed from the same promoter. We have compared the expression of the mut and wt β-globin genes to investigate the mechanisms that down-regulate the production of defective mRNAs. Both wt and mut β-globin transcripts are processed at the 3′, but the mut β-globin transcripts are less efficiently cleaved than the wt transcripts. Moreover, the mut β-globin transcripts are less efficiently released from the transcription site, as shown by FISH, and this defect is restored by depletion of Rrp6 by RNAi. Furthermore, transcription of the mut β-globin gene is significantly impaired as revealed by ChIP experiments that measure the association of the RNA polymerase II with the transcribed genes. We have also shown that the mut β-globin gene shows reduced levels of H3K4me3. Conclusions/Significance Our results show that there are at least two surveillance responses that operate cotranscriptionally in insect cells and probably in all metazoans. One response requires Rrp6 and results in the inefficient release of defective mRNAs from the transcription site. The other response acts at the transcription level and reduces the synthesis of the defective transcripts through a mechanism that involves histone modifications. PMID:20634951

  10. A resource for characterizing genome-wide binding and putative target genes of transcription factors expressed during secondary growth and wood formation in Populus

    Treesearch

    Lijun Liu; Trevor Ramsay; Matthew S. Zinkgraf; David Sundell; Nathaniel Robert Street; Vladimir Filkov; Andrew Groover

    2015-01-01

    Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors...

  11. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    PubMed

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  12. 43 CFR 45.56 - What are the requirements for transcription of the hearing?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false What are the requirements for transcription of the hearing? 45.56 Section 45.56 Public Lands: Interior Office of the Secretary of the Interior....56 What are the requirements for transcription of the hearing? (a) Transcript and reporter's fees...

  13. 43 CFR 45.56 - What are the requirements for transcription of the hearing?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false What are the requirements for transcription of the hearing? 45.56 Section 45.56 Public Lands: Interior Office of the Secretary of the Interior....56 What are the requirements for transcription of the hearing? (a) Transcript and reporter's fees...

  14. WRKY transcription factors

    PubMed Central

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  15. Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea.

    PubMed

    Daniels, Jan-Peter; Kelly, Steven; Wickstead, Bill; Gull, Keith

    2009-07-29

    The transcription machineries of Archaea and eukaryotes are similar in many aspects, but little is understood about archaeal chromatin and its role in transcription. Here, we describe the identification in hyperthermophilic Crenarchaeota and a Korarchaeon of an orthologue of the eukaryotic transcription elongation factor Elf1, which has been shown to function in chromatin structure maintenance of actively transcribed templates. Our discovery has implications for the relationship of chromatin and transcription in Archaea and the evolution of these processes in eukaryotes.

  16. Nucleosome displacement in transcription.

    PubMed

    Workman, Jerry L

    2006-08-01

    Recent reports reinforce the notion that nucleosomes are highly dynamic in response to the process of transcription. Nucleosomes are displaced at promoters during gene activation in a process that involves histone modification, ATP-dependent nucleosome remodeling complexes, histone chaperones and perhaps histone variants. During transcription elongation nucleosomes are acetylated and transferred behind RNA polymerase II where they are required to suppress spurious transcription initiation within the body of the gene. It is becoming increasingly clear that the eukaryotic transcriptional machinery is adapted to exploit the presence of nucleosomes in very sophisticated ways.

  17. Differentiation among isolates of prunus necrotic ringspot virus by transcript conformation polymorphism.

    PubMed

    Rosner, A; Maslenin, L; Spiegel, S

    1998-09-01

    A method based on differences in electrophoretic mobility of RNA transcripts made from polymerase chain reaction (PCR) products was used for differentiation among virus isolates. A T7 RNA polymerase promoter was attached to amplified prunus necrotic ringspot virus (PNRSV) sequences by PCR. The PCR products then served as a template for transcription. Single-stranded transcripts originated from different PNRSV isolates varied in electrophoretic mobility in polyacrylamide gels, presumably because of transcript conformation polymorphism (TCP). This procedure was applied for the differentiation of PNRSV isolates.

  18. Post-translational regulation of WRKY transcription factors in plant immunity.

    PubMed

    Ishihama, Nobuaki; Yoshioka, Hirofumi

    2012-08-01

    Plants have evolved immune system to protect themselves against invading pathogens. Recent research has illustrated that signaling networks, after perception of diverse pathogen-derived signals, facilitate transcriptional reprogramming through mitogen-activated protein kinase (MAPK) cascades. WRKY proteins, which comprise a large family of plant transcription factors, are key players in plant immune responses. WRKY transcription factors participate in the control of defense-related genes either as positive or as negative regulators, and essentially are regulated at the transcriptional level. Emerging evidence emphasizes that group I WRKY transcription factors, which contain a conserved motif in the N-terminal region, are also activated by MAPK-dependent phosphorylation, underlining their importance in plant immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Stochastic Model of Supercoiling-Dependent Transcription

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Bentivoglio, A.; Corless, S.; Gilbert, N.; Gonnella, G.; Marenduzzo, D.

    2016-07-01

    We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we incorporate the experimental observation that polymerases create supercoiling as they unwind the DNA helix and that these enzymes bind more favorably to regions where the genome is unwound. Within this model, we show that when the transcriptionally induced flux of supercoiling increases, there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up regulation of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and writhe should provide a pathway to down regulate transcription.

  20. Mechanical Properties of Transcription

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

Top