Magnetic properties and macroscopic heterogeneity of FeCoNbB Hitperms
NASA Astrophysics Data System (ADS)
Butvin, Pavol; Butvinová, Beata; Sitek, Jozef; Degmová, Jarmila; Vlasák, Gabriel; Švec, Peter; Janičkovič, Dušan
Nanocrystalline ribbons of Fe 81-xCo xNb 7B 12 (where x ranges from 0 to 40.5 at%) Hitperm alloys have been investigated as to their basic magnetic properties and the influence of the macroscopic heterogeneity. Different crystalline share at surfaces compared with the volume average is observed by conversion electron Mössbauer spectroscopy (CEMS) and Mössbauer spectroscopy (MS), respectively. This marks the presence of macroscopic heterogeneity in these Hitperms. The heterogeneity is generally more significant in Ar-annealed samples than in the vacuum-annealed ones. The characteristic slant hysteresis loops (hard-ribbon-axis) are seen as a rule with few exceptions. An inspection of hysteresis loop response of resin potted samples shows that the surfaces bi-axially squeeze the ribbon interior in heterogeneous Hitperms when the ribbons cool down after annealing. Certain compositions show macroscopic viscous flow prior to crystallization so the heterogeneity gets another chance to induce anisotropy during annealing. The induction attains 1.5 T but saturates poorly due to the heterogeneity and the ensuing anisotropy. Moreover the heterogeneity appears to hamper the crystallization within the ribbon interior. Unlike Finemets, the density of these Hitperms show no pronounced trend with annealing.
Calibration of steady-state car-following models using macroscopic loop detector data.
DOT National Transportation Integrated Search
2010-05-01
The paper develops procedures for calibrating the steady-state component of various car following models using : macroscopic loop detector data. The calibration procedures are developed for a number of commercially available : microscopic traffic sim...
Dussaud, Anne; Fieschi-Corso, Lara
2009-01-01
It is well established that silicones alter hair surface properties and that silicones have a significant impact on the macroscopic behavior of hair assembly, such as visual appearance, combing performance and manageability of the hair. In order to fine-tune the chemistry of functionlized silicones for specific consumer benefits and hair types, we investigated the influence of silicones on hair fiber-fiber interactions and their correlation to hair volume. The incline plane fiber loop method, implemented with a high-precision motorized rotary stage, was used to quantify the fiber-fiber interactions. Low load static friction was studied as a function of polymer molecular weight, dose and chemical architecture. This information was related to the macroscopic behavior of hair assembly, using virgin curly hair in high humidity.
Macroscopic Floquet topological crystalline steel and superconductor pump
NASA Astrophysics Data System (ADS)
Rossi, Anna M. E. B.; Bugase, Jonas; Fischer, Thomas M.
2017-08-01
The transport of a macroscopic steel sphere and a superconducting sphere on top of two-dimensional periodic magnetic patterns is studied experimentally and compared with the theory and with experiments on topological transport of magnetic colloids. Transport of the steel and superconducting sphere is achieved by moving an external permanent magnet on a closed loop around the two-dimensional crystal. The transport is topological, i.e., the spheres are transported by a primitive unit vector of the lattice when the external magnet loop winds around specific directions. We experimentally determine the set of directions the loops must enclose for nontrivial transport of the spheres into various directions. We show that the loops can be used to sort steel and superconducting spheres. We show that the topological transport is robust with respect to the scale of the system and therefore speculate on its down scalability to the molecular scale.
Yamashita, Keishi; Ema, Akira; Hosoda, Kei; Mieno, Hiroaki; Moriya, Hiromitsu; Katada, Natsuya; Watanabe, Masahiko
2017-01-01
AIM To evaluate whether a high risk macroscopic appearance (Type IV and giant Type III) is associated with a dismal prognosis after curative surgery, because its prognostic relevance remains elusive in pathological stage II/III (pStage II/III) gastric cancer. METHODS One hundred and seventy-two advanced gastric cancer (defined as pT2 or beyond) patients with pStage II/III who underwent curative surgery plus adjuvant S1 chemotherapy were evaluated, and the prognostic relevance of a high-risk macroscopic appearance was examined. RESULTS Advanced gastric cancers with a high-risk macroscopic appearance were retrospectively identified by preoperative recorded images. A high-risk macroscopic appearance showed a significantly worse relapse free survival (RFS) (35.7%) and overall survival (OS) (34%) than an average risk appearance (P = 0.0003 and P < 0.0001, respectively). A high-risk macroscopic appearance was significantly associated with the 13th Japanese Gastric Cancer Association (JGCA) pT (P = 0.01), but not with the 13th JGCA pN. On univariate analysis for RFS and OS, prognostic factors included 13th JGCA pStage (P < 0.0001) and other clinicopathological factors including macroscopic appearance. A multivariate Cox proportional hazards model for univariate prognostic factors identified high-risk macroscopic appearance (P = 0.036, HR = 2.29 for RFS and P = 0.021, HR = 2.74 for OS) as an independent prognostic indicator. CONCLUSION A high-risk macroscopic appearance was associated with a poor prognosis, and it could be a prognostic factor independent of 13th JGCA stage in pStage II/III advanced gastric cancer. PMID:28451064
XMCD and TEM studies of as-cast and rapidly quenched Fe50Nd50 alloys
NASA Astrophysics Data System (ADS)
Menushenkov, V. P.; Menushenkov, A. P.; Shchetinin, I. V.; Wilhelm, F.; Ivanov, A. A.; Rudnev, I. A.; Ivanov, V. G.; Rogalev, A.; Savchenko, A. G.; Zhukov, D. G.; Rafalskiy, A. V.; Ketov, S. V.
2017-12-01
We present the XMCD analysis of as-cast and melt spun Fe50Nd50 samples performed at L2,3 -Nd and K-Fe absorption edges at 5 and 50 K in comparison with macroscopic data of XRD, TEM and magnetic properties measurements. In addition, we have measured the magnetic field dependence of XMCD signal for both types of the samples in magnetic fields up/down to 17 T. The obtained results pointed to the strong difference between structure and magnetic properties of the as-cast and melt spun Fe50Nd50 alloys for both macroscopic and local measurements. The element selective XMCD loops for melt spun alloy show almost identical value of the coercive force Hci for L 2-Nd and K-Fe edges and practically do not depend on temperature. XMCD loop at K-Fe edge is a sum of contributions of the Fe-based phases. The main Fe-rich phase has high Hci ≈ 2,4 T as a highly anisotropic phase. The absence of the K-Fe XMCD loop saturation in the field up to 17 T points to presence of the second Nd-rich Nd-Fe phase which is ferromagnetic at temperature lower than 50 K. In accordance to the TEM results these both phases may coexist as the mixture of nanocrystals which was formed as a result of decomposition of the amorphous-like matrix phase. The XMCD loop at L2 -Nd edge with Hci ≈ 1,9 T is the sum of contributions from two Nd-based phases: hard Fe-rich phase (Hci ≈ 2,4 T) and Nd-Fe matrix phase of medium hardness with Hci ≈ 1,3 T. The macroscopic loop showed the higher Hci compared to XMCD loops. Such discrepancy may be caused by the fact that XMCD signal is collected from a 5-10 mcm thick surface layer, which contains many defects that reduce anisotropy and coercivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Hongchen; Sun, Yao; Zhou, Xilong
Cellular electrets polymer is a new ferroelectret material exhibiting large piezoelectricity and has attracted considerable attentions in researches and industries. Property characterization is very important for this material and current investigations are mostly on macroscopic properties. In this work, we conduct nanoscale piezoelectric and ferroelectric characterizations of cellular polypropylene (PP) films using piezoresponse force microscopy (PFM). First, both the single-frequency PFM and dual-frequency resonance-tracking PFM testings were conducted on the cellular PP film. The localized piezoelectric constant d{sub 33} is estimated to be 7–11pC/N by correcting the resonance magnification with quality factor and it is about one order lower thanmore » the macroscopic value. Next, using the switching spectroscopy PFM (SS-PFM), we studied polarization switching behavior of the cellular PP films. Results show that it exhibits the typical ferroelectric-like phase hysteresis loops and butterfly-shaped amplitude loops, which is similar to that of a poly(vinylidene fluoride) (PVDF) ferroelectric polymer film. However, both the phase and amplitude loops of the PP film are intensively asymmetric, which is thought to be caused by the nonzero remnant polarization after poling. Then, the D-E hysteresis loops of both the cellular PP film and PVDF film were measured by using the same wave form as that used in the SS-PFM, and the results show significant differences. Finally, we suggest that the ferroelectric-like behavior of cellular electrets films should be distinguished from that of typical ferroelectrics, both macroscopically and microscopically.« less
Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico
2012-01-01
Summary The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type®, WinSix®, BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface®), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI implant, with a hexagonal internal connection, and TTX implant, with a hexagonal external connection. SEM analysis showed that the Torque Type® implant is characterized by a truncated cone shape with tapered tips. The implant body showed a double loop thread and double pitch with blunt tips. For both types of connection, the implant neck was 0.7 mm in height with a 3% taper. This implant design may be able to guarantee osteotomic properties at the time of insertion in a surgical site suitably prepared, a facilitated screwing, thanks to the thread pitch and to the broad and deep draining grooves, thereby ensuring a good primary stability. The different connection design appears defined and precise, in order to ensure a good interface between the fixture and the prosthetic components. Therefore, this design appears to be particularly suitable in cases where a good primary stability is necessary and a precise coupling between endosseous and prosthetic components, as it allows an easy insertion of the fixture even in conditions of reduced bone availability, and in cases of immediately loaded full-arch rehabilitations. PMID:23087785
Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico
2012-04-01
The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type(®), WinSix(®), BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface(®)), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI implant, with a hexagonal internal connection, and TTX implant, with a hexagonal external connection. SEM analysis showed that the Torque Type(®) implant is characterized by a truncated cone shape with tapered tips. The implant body showed a double loop thread and double pitch with blunt tips. For both types of connection, the implant neck was 0.7 mm in height with a 3% taper. This implant design may be able to guarantee osteotomic properties at the time of insertion in a surgical site suitably prepared, a facilitated screwing, thanks to the thread pitch and to the broad and deep draining grooves, thereby ensuring a good primary stability. The different connection design appears defined and precise, in order to ensure a good interface between the fixture and the prosthetic components. Therefore, this design appears to be particularly suitable in cases where a good primary stability is necessary and a precise coupling between endosseous and prosthetic components, as it allows an easy insertion of the fixture even in conditions of reduced bone availability, and in cases of immediately loaded full-arch rehabilitations.
NASA Astrophysics Data System (ADS)
Ding, Jian; Li, Li
2018-05-01
We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.
NASA Astrophysics Data System (ADS)
Ding, Jian; Li, Li
2018-06-01
We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.
Unipolar memristive Switching in Bulk Negative Temperature Coefficient Thermosensitive Ceramics
Wu, Hongya; Cai, Kunpeng; Zhou, Ji; Li, Bo; Li, Longtu
2013-01-01
A memristive phenomenon was observed in macroscopic bulk negative temperature coefficient nickel monoxide (NiO) ceramic material. Current-voltage characteristics of memristors, pinched hysteretic loops were systematically observed in the Ag/NiO/Ag cell. A thermistor-based model for materials with negative temperature coefficient was proposed to explain the mechanism of the experimental phenomena. Most importantly, the results demonstrate the potential for a realization of memristive systems based on macroscopic bulk materials. PMID:24255717
Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites.
Coll, Mariona; Gomez, Andrés; Mas-Marza, Elena; Almora, Osbel; Garcia-Belmonte, Germà; Campoy-Quiles, Mariano; Bisquert, Juan
2015-04-16
We investigate the ferroelectric properties of photovoltaic methylammonium lead halide CH3NH3PbI3 perovskite using piezoelectric force microscopy (PFM) and macroscopic polarization methods. The electric polarization is clearly observed by amplitude and phase hysteresis loops. However, the polarization loop decreases as the frequency is lowered, persisting for a short time only, in the one second regime, indicating that CH3NH3PbI3 does not exhibit permanent polarization at room temperature. This result is confirmed by macroscopic polarization measurement based on a standard capacitive method. We have observed a strong increase of piezoelectric response under illumination, consistent with the previously reported giant photoinduced dielectric constant at low frequencies. We speculate that an intrinsic charge transfer photoinduced dipole in the perovskite cage may lie at the origin of this effect.
Domain switching mechanisms in polycrystalline ferroelectrics with asymmetric hysteretic behavior
NASA Astrophysics Data System (ADS)
Anton, Eva-Maria; García, R. Edwin; Key, Thomas S.; Blendell, John E.; Bowman, Keith J.
2009-01-01
A numerical method is presented to predict the effect of microstructure on the local polarization switching of bulk ferroelectric ceramics. The model shows that a built-in electromechanical field develops in a ferroelectric material as a result of the spatial coupling of the grains and the direct physical coupling between the thermomechanical and electromechanical properties of a bulk ceramic material. The built-in fields that result from the thermomechanically induced grain-grain electromechanical interactions result in the appearance of four microstructural switching mechanisms: (1) simple switching, where the c-axes of ferroelectric domains will align with the direction of the applied macroscopic electric field by starting from the core of each grain; (2) grain boundary induced switching, where the domain's switching response will initiate at grain corners and boundaries as a result of the polarization and stress that is locally generated from the strong anisotropy of the dielectric permittivity and the local piezoelectric contributions to polarization from the surrounding material; (3) negative poling, where abutting ferroelectric domains of opposite polarity actively oppose domain switching by increasing their degree of tetragonality by interacting with the surrounding domains that have already switched to align with the applied electrostatic field. Finally, (4) domain reswitching mechanism is observed at very large applied electric fields, and is characterized by the appearance of polarization domain reversals events in the direction of their originally unswitched state. This mechanism is a consequence of the competition between the macroscopic applied electric field, and the induced electric field that results from the neighboring domains (or grains) interactions. The model shows that these built-in electromechanical fields and mesoscale mechanisms contribute to the asymmetry of the macroscopic hysteretic behavior in poled samples. Furthermore, below a material-dependent operating temperature, the predicted built-in electric fields can potentially drive the aging and electrical fatigue of the system to further skew the shape of the hysteresis loops.
Statistical foundations of liquid-crystal theory: II: Macroscopic balance laws.
Seguin, Brian; Fried, Eliot
2013-01-01
Working on a state space determined by considering a discrete system of rigid rods, we use nonequilibrium statistical mechanics to derive macroscopic balance laws for liquid crystals. A probability function that satisfies the Liouville equation serves as the starting point for deriving each macroscopic balance. The terms appearing in the derived balances are interpreted as expected values and explicit formulas for these terms are obtained. Among the list of derived balances appear two, the tensor moment of inertia balance and the mesofluctuation balance, that are not standard in previously proposed macroscopic theories for liquid crystals but which have precedents in other theories for structured media.
Wu, Po-Ting; Jou, I-Ming; Yang, Cheng-Chang; Lin, Chii-Jeng; Yang, Chyun-Yu; Su, Fong-Chin; Su, Wei-Ren
2014-08-01
This study investigated the histopathology of the long head of biceps (LHB) tendon and correlated the findings with the macroscopic appearances of the LHB and the size of rotator cuff tears (RCTs) in patients with chronic RCTs. We compared biopsy specimens from LHBs in 34 patients with chronic RCTs and grossly normal LHBs in 8 patients undergoing shoulder hemiarthroplasty (controls). Duration of preoperative symptoms, the severity of RCTs, and macroscopic appearance of LHBs were recorded, classified, and compared with the histologic grading and apoptosis index of terminal deoxynucleotide transferase-mediated biotin-deoxy uridine triphosphate nick-end labeling (TUNEL) assays of LHBs. In the RCT group, there were 8 partial-thickness tears with 5 macroscopic LHB lesions, 12 full-thickness tears with 8 macroscopic LHB lesions, and 14 massive tears with 13 macroscopic LHB lesions. There were 6 LHB subluxations. However, the macroscopic grading and the symptom duration were not correlated with the severity of the histology. In patients with massive tears, no matter what the macroscopic appearance of the LHB, the proportion of end-stage (grade 4) histologic LHB tendinopathy significantly increased (85.7%, P < .05) compared with patients with other types of RCTs. There was a consistently high incidence of advanced LHB histology (grade 3 or higher) in each classification of RCTs (75.0%-100.0%). The 8 patients in the control group showed milder histopathology (grade 1 or 2). The apoptosis index significantly increased as the tendinopathy progressed (P < .05). The macroscopic pathology of LHB may not fully reflect the severity of tendinopathy, and the coexisting size of RCTs plays a role in the severity of LHB tendinopathy. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Magnetic Vortices in Nanodisks: What are the implications in macroscopic magnetic properties?
NASA Astrophysics Data System (ADS)
Gelvez Pedroza, Ciro Fernando; Patino, Edgar J.; Superconductivity; Nanodevices Laboratory Team
The study of nanodevices is of great importance nowadays. In particular nanodisks present extraordinary properties when varying their size, shape and materials. One of the most interesting ones has been the presence of magnetic vortices which are normally not present in continuous films or bulk materials. For that reason, these constitute of great interest in potential applications such as data storage, binary logic gates or nano-plasmonics. Although there are many high cost methods for fabrication we have chosen a low cost technique based on Colloidal Lithography. Using Polystyrene Nanoparticles (100nm) nanodisks of about 180 nm in diameter have been grown using Electron Beam evaporation. The fabrication technique requires a number of steps such as spin coating, oxygen plasma and Ion Beam Etching. The samples obtained with this method were Ti/Co/Nb nanodisks with various thickness of the Co layer. Micromagnetic simulations were carried out in OOMMF giving magnetic domain structure and hysteresis loops which were later compared with those obtained experimentally using Vibrating Sample Magnetometry. Simulation results suggest a critical thickness for the appearance of magnetic vortices, revealed by hysteresis loops with substantially lower coercive fields. Facultad de Ciencias,Vicerrectoria de Investigaciones - Universidad de los Andes.
Vorre, P; Illum, P; Oster, S; Reske-Nielsen, E; Larsen, K B
1989-01-01
In 6 pigs a bronchoscopical resection of the tracheal mucosa was performed using CO2-laser on one side, and an electric high-frequency cutting loop (ECL) on the other. The pigs were sacrificed 3 months later. On macroscopic examination the tracheal mucosa appeared almost normal on the laser-resected side, while severe deformation was seen after ECL treatment. Microscopically the respiratory epithelium had regenerated irrespective of the instrument used. After laser resection the subepithelial tissue had a normal width and consisted of collagen fibrils with few vessels and sparse fragmented elastic tissue. The cartilage showed necrosis and pericellular fibrosis. The scar tissue after ECL was a broad cellular and richly vascularized connective tissue. The content of elastic fibres was markedly greater than after laser resection. The cartilage showed small irregular necroses lined by pyknotic nuclei. In neither case had the gland regenerated. Both CO2-laser and ECL caused severe (but not identical) damage to the tissue, clearly visible after 3 months. However, the deformation caused by ECL was not seen at the laser-resected sites, which makes the laser technique seem preferable--where economy permits.
Experimental Studies of Josephson Effect
1990-09-06
to test predictions that macroscopic variables, such as the flux through a SQUID loop, display quantum mechanical properties such as tunneling and...approximately Oo/L as flux quanta enter the loop. In the Josephson junctions used here are lead-alloy tunnel junc- linear region, for I, <<J, the rate...magnetometer. The junctions ln(F)-AU/kT+In(f/2z). (3) used were nominal I x I pm 2 Nb/AI2O3/Nb tunnel junc- As Fig. 3 shows, the observed dependence is in
Room temperature ferroelectricity in continuous croconic acid thin films
NASA Astrophysics Data System (ADS)
Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Zhang, Xiaozhe; Wang, Xiao; Yu, Le; Ahmadi, Zahra; Costa, Paulo S.; DiChiara, Anthony D.; Cheng, Xuemei; Gruverman, Alexei; Enders, Axel; Xu, Xiaoshan
2016-09-01
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.
Room temperature ferroelectricity in continuous croconic acid thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei
2016-09-05
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structuresmore » of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.« less
Statistical foundations of liquid-crystal theory
Seguin, Brian; Fried, Eliot
2013-01-01
Working on a state space determined by considering a discrete system of rigid rods, we use nonequilibrium statistical mechanics to derive macroscopic balance laws for liquid crystals. A probability function that satisfies the Liouville equation serves as the starting point for deriving each macroscopic balance. The terms appearing in the derived balances are interpreted as expected values and explicit formulas for these terms are obtained. Among the list of derived balances appear two, the tensor moment of inertia balance and the mesofluctuation balance, that are not standard in previously proposed macroscopic theories for liquid crystals but which have precedents in other theories for structured media. PMID:23554513
Using emergent order to shape a space society
NASA Technical Reports Server (NTRS)
Graps, Amara L.
1993-01-01
A fast-growing movement in the scientific community is reshaping the way that we view the world around us. The short-hand name for this movement is 'chaos'. Chaos is a science of the global, nonlinear nature of systems. The center of this set of ideas is that simple, deterministic systems can breed complexity. Systems as complex as the human body, ecology, the mind or a human society. While it is true that simple laws can breed complexity, the other side is that complex systems can breed order. It is the latter that I will focus on in this paper. In the past, nonlinear was nearly synonymous with unsolvable because no general analytic solutions exist. Mathematically, an essential difference exists between linear and nonlinear systems. For linear systems, you just break up the complicated system into many simple pieces and patch together the separated solutions for each piece to form a solution to the full problem. In contrast, solutions to a nonlinear system cannot be added to form a new solution. The system must be treated in its full complexity. While it is true that no general analytical approach exists for reducing a complex system such as a society, it can be modeled. The technical involves a mathematical construct called phase space. In this space stable structures can appear which I use as analogies for the stable structures that appear in a complex system such as an ecology, the mind or a society. The common denominator in all of these systems is that they rely on a process called feedback loops. Feedback loops link the microscopic (individual) parts to the macroscopic (global) parts. The key, then, in shaping a space society, is in effectively using feedback loops. This paper will illustrate how one can model a space society by using methods that chaoticists have developed over the last hundred years. And I will show that common threads exist in the modeling of biological, economical, philosophical, and sociological systems.
The use of histology in 638 coronial post-mortem examinations of adults: an audit.
Langlois, Neil E I
2006-10-01
An audit was performed to determine the effectiveness of histological sampling of forensic post-mortem cases based on a review of three years' data, which comprised 638 adult autopsy cases. During the study period organs and tissues that appeared macroscopically normal and abnormal were extensively sampled. Histology was regarded as in some way contributory (providing, altering or confirming a cause of death) 53% of the time. The use of histology provided the cause of death in 49 (24%) of the 203 cases not given a cause of death after the completion of the macroscopic examination. When an interim cause of death had been supplied following the completion of the gross examination it was changed in 4.8% of cases, but there were no changes of the manner of death. The majority of the histological diagnoses or discrepancies involved the lungs and the heart. All diagnoses relevant to determining the cause of death would have been made if samples had been taken only from the left ventricle, right ventricle, coronary arteries, lungs, kidneys and brain with any tissue or organ that appeared abnormal macroscopically. A macroscopically identified abnormality that appeared to have been responsible for death was not sampled in 20 cases; consequently, more attention will be paid to sampling macroscopically abnormal tissues. As a result of this audit histology sampling practice has been revised and will be re-audited in the future.
NASA Astrophysics Data System (ADS)
Siscoe, G. L.
2012-12-01
What is a system? A group of elements interacting with each other so as to create feedback loops. A system gets complex as the number of feedback loops increases and as the feedback loops exhibit time delays. Positive and negative feedback loops with time delays can give a system intrinsic time dependence and emergent properties. A system generally has input and output flows of something (matter, energy, money), which, if time variable, add an extrinsic component to its behavior. The magnetosphere is a group of elements interacting through feedback loops, some with time delays, driven by energy and mass inflow from a variable solar wind and outflow into the atmosphere and solar wind. The magnetosphere is a complex system. With no solar wind, there is no behavior. With solar wind, there is behavior from intrinsic and extrinsic causes. As a contribution to taking a macroscopic view of magnetospheric dynamics, to treating the magnetosphere as a globally integrated, complex entity, I will discus the magnetosphere as a system, its feedback loops, time delays, emergent behavior, and intrinsic and extrinsic behavior modes.
Trans-umbilical endoscopic cholecystectomy with a water-jet hybrid-knife: A pilot animal study
Jiang, Sheng-Jun; Shi, Hong; Swar, Gyanendra; Wang, Hai-Xia; Liu, Xiao-Jing; Wang, Yong-Guang
2013-01-01
AIM: To investigate the feasibility and safety of Natural orifice trans-umbilical endoscopic cholecystectomy with a water-jet hybrid-knife in a non-survival porcine model. METHODS: Pure natural orifice transluminal endoscopic surgery (NOTES) cholecystectomy was performed on three non-survival pigs, by transumbilical approach, using a water-jet hybrid-knife. Under general anesthesia, the following steps detailed the procedure: (1) incision of the umbilicus followed by the passage of a double-channel flexible endsocope through an overtube into the peritoneal cavity; (2) establishment of pneumoperitoneum; (3) abdominal exploration; (4) endoscopic cholecystectomy: dissection of the gallbladder performed using water jet equipment, ligation of the cystic artery and duct conducted using nylon loops; and (5) necropsy with macroscopic evaluation. RESULTS: Transumbilical endoscopic cholecystectomy was successfully completed in the first and third pig, with minor bleedings. The dissection times were 137 and 42 min, respectively. The total operation times were 167 and 69 min, respectively. And the lengths of resected specimen were 6.5 and 6.1 cm, respectively. Instillation of the fluid into the gallbladder bed produced edematous, distended tissue making separation safe and easy. Reliable ligation using double nylon loops insured the safety of cutting between the loops. There were no intraoperative complications or hemodynamic instability. Uncontrolled introperative bleeding occurred in the second case, leading to the operation failure. CONCLUSION: Pure NOTES trans-umbilical cholecystectomy with a water-jet hybrid-knife appears to be feasible and safe. Further investigation of this technique with long-term follow-up in animals is needed to confirm the preliminary observation. PMID:24187461
Trans-umbilical endoscopic cholecystectomy with a water-jet hybrid-knife: a pilot animal study.
Jiang, Sheng-Jun; Shi, Hong; Swar, Gyanendra; Wang, Hai-Xia; Liu, Xiao-Jing; Wang, Yong-Guang
2013-10-28
To investigate the feasibility and safety of Natural orifice trans-umbilical endoscopic cholecystectomy with a water-jet hybrid-knife in a non-survival porcine model. Pure natural orifice transluminal endoscopic surgery (NOTES) cholecystectomy was performed on three non-survival pigs, by transumbilical approach, using a water-jet hybrid-knife. Under general anesthesia, the following steps detailed the procedure: (1) incision of the umbilicus followed by the passage of a double-channel flexible endoscope through an overtube into the peritoneal cavity; (2) establishment of pneumoperitoneum; (3) abdominal exploration; (4) endoscopic cholecystectomy: dissection of the gallbladder performed using water jet equipment, ligation of the cystic artery and duct conducted using nylon loops; and (5) necropsy with macroscopic evaluation. Transumbilical endoscopic cholecystectomy was successfully completed in the first and third pig, with minor bleedings. The dissection times were 137 and 42 min, respectively. The total operation times were 167 and 69 min, respectively. And the lengths of resected specimen were 6.5 and 6.1 cm, respectively. Instillation of the fluid into the gallbladder bed produced edematous, distended tissue making separation safe and easy. Reliable ligation using double nylon loops insured the safety of cutting between the loops. There were no intraoperative complications or hemodynamic instability. Uncontrolled introperative bleeding occurred in the second case, leading to the operation failure. Pure NOTES trans-umbilical cholecystectomy with a water-jet hybrid-knife appears to be feasible and safe. Further investigation of this technique with long-term follow-up in animals is needed to confirm the preliminary observation.
Simulating nanostorm heating in coronal loops using hydrodynamics and non-thermal particle evolution
NASA Astrophysics Data System (ADS)
Migliore, Christina; Winter, Henry; Murphy, Nicholas
2018-01-01
The solar corona is filled with loop-like structures that appear bright against the background when observed in the extreme ultraviolet (EUV). These loops have several remarkable properties that are not yet well understood. Warm loops (∼ 1 MK) appear to be ∼ 2 ‑ 9 times as dense at their apex as the predictions of hydrostatic atmosphere models. These loops also appear to be of constant cross-section despite the fact that the field strength in a potential magnetic field should decrease in the corona, causing the loops to expand. It is not clear why many active region loops appear to be of constant cross-section. Theories range from an internal twist of the magnetic field to observational effects. In this work we simulate active region loops heated by nanoflare storms using a dipolar magnetic field. We calculate the hydrodynamic properties for each loop using advanced hydrodynamics codes to simulate the corona and chromospheric response and basic dipole models to represent the magnetic fields of the loops. We show that even modest variations of the magnetic field strength along the loop can lead to drastic changes in the density profiles of active region loops, and they can also explain the overpressure at the apex of these loops. Synthetic AIA images of each loop are made to show the observable consequences of varying magnetic field strengths along the loop’s axis of symmetry. We also show how this work can lead to improved modeling of larger solar and stellar flares.
CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downs, Cooper; Lionello, Roberto; Mikić, Zoran
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditionsmore » is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.« less
Closed-field Coronal Heating Driven by Wave Turbulence
NASA Astrophysics Data System (ADS)
Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A.; Velli, Marco
2016-12-01
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.
DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan
2013-07-01
The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 A channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at onemore » footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool ({approx}10{sup 5} K), dense ({approx}10{sup 10} cm{sup -3}) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.« less
Quantum theory and human perception of the macro-world.
Aerts, Diederik
2014-01-01
We investigate the question of 'why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time', starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new 'conceptual quantum interpretation', including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing-light as a geometric theory-and human touching-only ruled by Pauli's exclusion principle-plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects-as they occur in smaller entities-appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general theory will be needed.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions
NASA Astrophysics Data System (ADS)
Barré, J.; Carrillo, J. A.; Degond, P.; Peurichard, D.; Zatorska, E.
2018-02-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions.
Barré, J; Carrillo, J A; Degond, P; Peurichard, D; Zatorska, E
2018-01-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.
2016-01-01
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823
Wave dynamics in an extended macroscopic traffic flow model with periodic boundaries
NASA Astrophysics Data System (ADS)
Wang, Yu-Qing; Chu, Xing-Jian; Zhou, Chao-Fan; Yan, Bo-Wen; Jia, Bin; Fang, Chen-Hao
2018-06-01
Motivated by the previous traffic flow model considering the real-time traffic state, a modified macroscopic traffic flow model is established. The periodic boundary condition is applied to the car-following model. Besides, the traffic state factor R is defined in order to correct the real traffic conditions in a more reasonable way. It is a key step that we introduce the relaxation time as a density-dependent function and provide corresponding evolvement of traffic flow. Three different typical initial densities, namely the high density, the medium one and the low one, are intensively investigated. It can be found that the hysteresis loop exists in the proposed periodic-boundary system. Furthermore, the linear and nonlinear stability analyses are performed in order to test the robustness of the system.
Smulders, J F; de Hingh, I H J T; Stavast, J; Jackimowicz, J J
2007-11-01
Intestinal anastomotic healing requires apposition of the collagen containing submucosal layers of the opposing intestinal walls, which is traditionally achieved by staples or sutures. Recently, a feedback-controlled bipolar sealing system (LigaSure) has been successfully introduced to seal and transect vessels. Since this technology depends on fusion of collagen fibres which are abundantly present in the intestinal wall, the possibility to create intestinal anastomoses using this technology was investigated in the present study. For this purpose a new-generation radiofrequency (RF) generator and a prototype of the Ligasure Anastomotic Device (LAD) have been developed. The generator incorporates a closed loop control system which monitors tissue fusion, compares it with a mathematical model of ideal fusion based on the density and compliance of intestinal tissue and adjusts energy output accordingly. In total 8 anastomoses were created in a porcine model (4 pigs, 2 anastomoses each) and healing was assessed by macroscopic and histological examination. All seals were macroscopic intact both immediate after creation and at sacrifice at the 7th postoperative day. Between operations, pigs appeared healthy and had normal intestinal passage. Histological examination of the anastomoses revealed undisturbed healing with granulation tissue, newly synthesised collagen in the submucosa and re-epithelialization at the borders of the seals. These results confirm the feasibility to create experimental intestinal anastomoses using LigaSure technology. This may be an important step towards the development of new laparoscopic equipment combining dissecting and reconstructive properties within one single instrument.
Collider probes of axion-like particles
NASA Astrophysics Data System (ADS)
Bauer, Martin; Neubert, Matthias; Thamm, Andrea
2017-12-01
Axion-like particles (ALPs), which are gauge-singlets under the Standard Model (SM), appear in many well-motivated extensions of the SM. Describing the interactions of ALPs with SM fields by means of an effective Lagrangian, we discuss ALP decays into SM particles at one-loop order, including for the first time a calculation of the a → πππ decay rates for ALP masses below a few GeV. We argue that, if the ALP couples to at least some SM particles with couplings of order (0.01 - 1) TeV-1, its mass must be above 1 MeV. Taking into account the possibility of a macroscopic ALP decay length, we show that large regions of so far unconstrained parameter space can be explored by searches for the exotic, on-shell Higgs and Z decays h → Za, h → aa and Z → γa in Run-2 of the LHC with an integrated luminosity of 300 fb-1. This includes the parameter space in which ALPs can explain the anomalous magnetic moment of the muon. Considering subsequent ALP decays into photons and charged leptons, we show that the LHC provides unprecedented sensitivity to the ALP-photon and ALP-lepton couplings in the mass region above a few MeV, even if the relevant ALP couplings are loop suppressed and the a → γγ and a → ℓ+ℓ- branching ratios are significantly less than 1. We also discuss constraints on the ALP parameter space from electroweak precision tests.
Equivalence of different definitions of the surface tension
NASA Astrophysics Data System (ADS)
Jug, Giancarlo; Jasnow, David
1985-02-01
Recently Brézin and Feng and independently Pant reported renormalization-group calculations of a universal amplitude ratio involving the surface tension, σ, defined as the free-energy difference produced by appropriate boundary conditions. Here we comment on an equivalent result obtained, within the same one-loop framework, using an alternative definition of σ involving the free-energy increment due to a macroscopic distortion of a flat interface.
Basu, Christopher; Stoll, Alexander L; Dixon, Jonathon; Molenaar, Fieke Marije; Flach, Edmund; Smith, Ken C
2016-03-01
An adult male reticulated giraffe (Giraffa camelopardalis reticulata) was presented for postmortem examination. During radiologic examination of the hindlimbs, osseous cyst-like lesions were detected in both medial femoral condyles. These lesions were subsequently examined macroscopically and histologically. The gross appearance suggested a diagnosis of bilateral osteochondrosis that was confirmed with histopathologic examination. This finding has not previously been reported in giraffes. Macroscopic visualization of the major limb joints, including the femorotibial joints, is therefore encouraged in future postmortem examinations of giraffes (Giraffa camelopardalis), and further assessment of clinical significance is required.
Thermally Assisted Macroscopic Quantum Resonance on a Single-Crystal of Mn12-ac
NASA Astrophysics Data System (ADS)
Lionti, F.; Thomas, L.; Ballou, R.; Wernsdorfer, W.; Barbara, B.; Sulpice, A.; Sessoli, R.; Gatteschi, D.
1997-03-01
Magnetization measurements have been performed on a single mono-crystal of the molecule Mn12-acetate (L. Thomas, F. Lionti, R. Ballou, R. Sessoli, D. Gatteschi and B. Barbara, Nature, 383, 145 (1996).). Steps were observed in the hysteresis loop for values of the applied field at which level crossings of the collective spin states of each manganese clusters take place. The influence of quartic terms is taken into account. At these fields, the magnetization relaxes at short time scales, being otherwise essentially blocked. This novel behavior is interpreted in terms of resonant quantum tunneling of the magnetization from thermally activated energy levels. Hysteresis loop measurements performed for different field orientations and ac-susceptibility experiments, confirm general trends of this picture.
Analysis of structural patterns in the brain with the complex network approach
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir A.; Makarov, Vladimir V.; Kharchenko, Alexander A.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.
2015-03-01
In this paper we study mechanisms of the phase synchronization in a model network of Van der Pol oscillators and in the neural network of the brain by consideration of macroscopic parameters of these networks. As the macroscopic characteristics of the model network we consider a summary signal produced by oscillators. Similar to the model simulations, we study EEG signals reflecting the macroscopic dynamics of neural network. We show that the appearance of the phase synchronization leads to an increased peak in the wavelet spectrum related to the dynamics of synchronized oscillators. The observed correlation between the phase relations of individual elements and the macroscopic characteristics of the whole network provides a way to detect phase synchronization in the neural networks in the cases of normal and pathological activity.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; ...
2016-01-28
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less
Quantum theory and human perception of the macro-world
Aerts, Diederik
2014-01-01
We investigate the question of ‘why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time’, starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new ‘conceptual quantum interpretation’, including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing—light as a geometric theory—and human touching—only ruled by Pauli's exclusion principle—plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects—as they occur in smaller entities—appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general theory will be needed. PMID:25009510
Closed Field Coronal Heating Models Inspired by Wave Turbulence
NASA Astrophysics Data System (ADS)
Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M. M.
2013-12-01
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence dissipation (WTD) phenomenology for the heating of closed coronal loops. To do so, we employ an implementation of non-WKB equations designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic equations in 1D for an idealized loop, and the relevance to a range of solar conditions is established by computing solutions for several hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing realistic heating scale heights and thermal non-equilibrium cycles is discussed, and preliminary 3D thermodynamic MHD simulations using this formulation are presented. Research supported by NASA and NSF.
Fine flow structures in the transition region small-scale loops
NASA Astrophysics Data System (ADS)
Yan, L.; Peter, H.; He, J.; Wei, Y.
2016-12-01
The observation and model have suggested that the transition region EUV emission from the quiet sun region is contributed by very small scale loops which have not been resolved. Recently, the observation from IRIS has revealed that this kind of small scale loops. Based on the high resolution spectral and imaging observation from IRIS, much more detail work needs to be done to reveal the fine flow features in this kind of loop to help us understand the loop heating. Here, we present a detail statistical study of the spatial and temporal evolution of Si IV line profiles of small scale loops and report the spectral features: there is a transition from blue (red) wing enhancement dominant to red (blue) wing enhancement dominant along the cross-section of the loop, which is independent of time. This feature appears as the loop appear and disappear as the loop un-visible. This is probably the signature of helical flow along the loop. The result suggests that the brightening of this kind of loop is probably due to the current dissipation heating in the twisted magnetic field flux tube.
The Width Distribution of Loops and Strands in the Solar Corona—Are We Hitting Rock Bottom?
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Peter, Hardi
2017-05-01
In this study, we analyze Atmospheric Imaging Assembly (AIA) and Hi-C images in order to investigate absolute limits for the finest loop strands. We develop a model of the occurrence-size distribution function of coronal loop widths, characterized by the lower limit of widths w min, the peak (or most frequent) width w p , the peak occurrence number n p , and a power-law slope a. Our data analysis includes automated tracing of curvilinear features with the OCCULT-2 code, automated sampling of the cross-sectional widths of coronal loops, and fitting of the theoretical size distribution to the observed distribution. With Monte Carlo simulations and variable pixel sizes {{Δ }}x, we derive a first diagnostic criterion to discriminate whether the loop widths are unresolved ({w}p/{{Δ }}x≈ 2.5+/- 0.2) or fully resolved (if {w}p/{{Δ }}x≳ 2.7). For images with resolved loop widths, we can apply a second diagnostic criterion that predicts the lower limit of loop widths as a function of the spatial resolution. We find that the loop widths are marginally resolved in AIA images but are fully resolved in Hi-C images, where our model predicts a most frequent (peak) value at {w}p≈ 550 {km}, in agreement with recent results of Brooks et al. This result agrees with the statistics of photospheric granulation sizes and thus supports coronal heating mechanisms operating on the macroscopic scale of photospheric magneto-convection, rather than nanoflare braiding models on unresolved microscopic scales.
Mesohysteresis model for ferromagnetic materials by minimization of the micromagnetic free energy
NASA Astrophysics Data System (ADS)
van den Berg, A.; Dupré, L.; Van de Wiele, B.; Crevecoeur, G.
2009-04-01
To study the connection between macroscopic hysteretic behavior and the microstructural properties, this paper presents and validates a new material dependent three-dimensional mesoscopic magnetic hysteresis model. In the presented mesoscopic description, the different micromagnetic energy terms are reformulated on the space scale of the magnetic domains. The sample is discretized in cubic cells, each with a local stress state, local bcc crystallographic axes, etc. The magnetization is assumed to align with one of the three crystallographic axes, in positive or negative sense, defining six volume fractions within each cell. The micromagnetic Gibbs free energy is described in terms of these volume fractions. Hysteresis loops are computed by minimizing the mesoscopic Gibbs free energy using a modified gradient search for a sequence of external applied fields. To validate the mesohysteresis model, we studied the magnetic memory properties. Numerical experiments reveal that (1) minor hysteresis loops are indeed closed and (2) the closed minor loops are erased from the memory.
Michael, Amy R; Bengtson, Jennifer D
2016-02-01
Clinical literature provides substantial information on the effects of chronic alcohol abuse on bone remodeling and related skeletal disease processes. This biomedical information is seldom considered in detail by forensic anthropologists, who often rely on normative macroscopic models of bone remodeling and traditional macroscopic age estimation methods in the creation of biological profiles. The case study presented here considers the ways that alcoholism disrupts normal bone remodeling processes, thus skewing estimations of age-at-death. Alcoholism affects bone macroscopically, resulting in a porous appearance and an older estimation of age, while simultaneously inhibiting osteoblastic activity and resulting in a younger microscopic appearance. Forensic anthropologists must also be cognizant of pathological remodeling stemming from alcoholism in cases where trauma analysis is critical to the reconstruction of events leading up to death, as fracture healing rates can be affected. Beyond the case study, we also consider how forensic anthropologists and practitioners can recognize and account for osteological signatures of alcoholism in medico-legal contexts. In order to best estimate age at death, a combined macroscopic and microscopic approach should be employed whenever possible alcohol and drug abuse is known or suspected. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Magnetic tearing of plasma discharges due to nonuniform resistivity
NASA Technical Reports Server (NTRS)
Hassam, A. B.
1988-01-01
The rearrangement of current in a plasma discharge in response to resistivity nonuniformities within a magnetic surface is studied. It is shown that macroscopic magnetic islands develop about those surfaces where the nonuniformity is aligned with the magnetic field. If the nonuniformity and the field are not aligned anywhere, there is no current rearrangement; instead, relatively large plasma flows are set up. Such resistivity inhomogeneities can obtain in solar coronal loops and, in some circumstances, in tokamak discharges.
NASA Astrophysics Data System (ADS)
Lee, Eunsang; Paul, Wolfgang
2018-02-01
A variety of linear polymer precursors with hydrogen bonding motifs at both ends enable us to design supramolecular polymer systems with tailored macroscopic properties including self-healing. In this study, we investigate thermodynamic properties of single polyethylene and polybutylene glycols with hydrogen bonding motifs. In this context, we first build a coarse-grained model of building blocks of the supramolecular polymer system based on all-atom molecular structures. The density of states of the single precursor is obtained using the stochastic approximation Monte Carlo method. Constructing canonical partition functions from the density of states, we find the transition from looped to open conformations at transition temperatures which are non-monotonously changing with an increasing degree of polymerization due to the competition between chain stiffness and loop-forming entropy penalty. In the complete range of chain length under investigation, a coexistence of the looped and open morphologies at the transition temperature is shown regardless of whether the transition is first-order-like or continuous. Polyethylene and polybutylene glycols show similar behavior in all the thermodynamic properties but the transition temperature of the more flexible polybutylene glycol is shown to change more gradually.
Porfyridis, Ilias; Georgiadis, Georgios; Michael, Michalis; Frangopoulos, Frangiskos; Vogazianos, Paris; Papadopoulos, Alexis; Kara, Panayiota; Charalampous, Charis; Georgiou, Andreas
2016-08-01
Medical thoracoscopy (MT) is useful for the management of pleural disease. Rapid on-site evaluation (ROSE) of transbronchial needle aspirates proved to be useful during bronchoscopy. We aimed to evaluate the diagnostic performance of ROSE of MT biopsy specimens and thoracoscopists' impression of the macroscopic appearance and assess the intermodality agreement between ROSE and final histopathologic diagnosis. Sixty two patients with exudative pleural effusions further investigated with MT were enrolled. MT was performed under local anaesthesia and conscious sedation, using the rigid pleuroscope. ROSE with the Hemacolor rapid staining method of the biopsy specimens was performed. Thoracoscopists' impression of the macroscopic appearance was recorded. The final diagnosis was established following histopathological examination. Thoracoscopic pleural biopsies were diagnosed in 61 patients (98.4%). Group A (n = 25) consisted of patients with malignancy and group B (n = 37) with benign disorders. Area under the curve of ROSE for the diagnosis of malignancy was 0.86 (95% CI: 0.76-0.96, P < 0.001), with a sensitivity of 79.17%, specificity of 94.59%, diagnostic accuracy of 88.5%, positive predictive value of 90.5% and negative predictive value of 87.5%. Intermodality agreement between ROSE and histopathology was good (κ ± SE = 0.615 ± 0.084, P < 0.001). Area under the curve of the thoracoscopists' impression of macroscopic appearance was 0.72 (95% CI: 0.58-0.85, P = 0.001), with a sensitivity of 100%, specificity of 44.7%, positive predictive value of 53.33% and negative predictive value of 100%. Rapid on-site evaluation during MT was found to have high accuracy for predicting malignancy. ROSE can provide the thoracoscopist with an on-site preliminary diagnosis, especially in cases with inconclusive macroscopic appearance. © 2016 Asian Pacific Society of Respirology.
X-ray characteristics of the Lupus Loop and SN 1006 supernova remnants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toor, A.
1980-01-01
The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest x-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 to 10 keV) from our observationmore » and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology.« less
Area law from loop quantum gravity
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Hung, Ling-Yan; Marcianò, Antonino; Zhang, Mingyi
2018-03-01
We explore the constraints following from requiring the area law in the entanglement entropy in the context of loop quantum gravity. We find a unique solution to the single-link wave function in the large j limit, believed to be appropriate in the semiclassical limit. We then generalize our considerations to multilink coherent states, and find that the area law is preserved very generically using our single-link wave function as a building block. Finally, we develop the framework that generates families of multilink states that preserve the area law while avoiding macroscopic entanglement, the space-time analogue of "Schrödinger's cat." We note that these states, defined on a given set of graphs, are the ground states of some local Hamiltonian that can be constructed explicitly. This can potentially shed light on the construction of the appropriate Hamiltonian constraints in the LQG framework.
NASA Astrophysics Data System (ADS)
Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho
2009-06-01
Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.
Scanning SQUID sampler with 40-ps time resolution
NASA Astrophysics Data System (ADS)
Cui, Zheng; Kirtley, John R.; Wang, Yihua; Kratz, Philip A.; Rosenberg, Aaron J.; Watson, Christopher A.; Gibson, Gerald W.; Ketchen, Mark B.; Moler, Kathryn. A.
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ0. This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Scanning SQUID sampler with 40-ps time resolution.
Cui, Zheng; Kirtley, John R; Wang, Yihua; Kratz, Philip A; Rosenberg, Aaron J; Watson, Christopher A; Gibson, Gerald W; Ketchen, Mark B; Moler, Kathryn A
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ 0 . This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Influence of coexisting phases on the surface dilatational viscosity of Langmuir monolayers.
Lopez, Juan M; Vogel, Michael J; Hirsa, Amir H
2004-11-01
Monolayer hydrodynamics are usually described in terms of a Newtonian constitutive relationship. However, this macroscopic view fails to account for small-scale coexisting phase domains, which are generally present in the monolayer and appear to have profound macroscopic effects. Here, we provide direct evidence of these effects, consisting of Brewster angle microscopy images of the monolayer, space- and time-resolved interfacial velocity measurements, and comparisons with predictions based on the Navier-Stokes equations together with the classic model for a Newtonian interface.
Slimani, Ahmed; Varret, François; Boukheddaden, Kamel; Garrot, Damien; Oubouchou, Hassane; Kaizaki, Sumio
2013-02-22
We investigated by optical microscopy the thermal transition of the spin-crossover dinuclear iron(II) compound [(Fe(NCSe)(py)(2))(2)(m-bpypz)]. In a high-quality crystal the high-spin (HS) low-spin (LS) thermal transition took place with a sizable hysteresis, at ~108 K and ~116 K on cooling and heating, respectively, through the growth of a single macroscopic domain with a straight LS and HS interface. The interface orientation was almost constant and its propagation velocity was close to ~6 and 26 μ m s(-1) for the on-cooling and on-heating processes, respectively. We found that the motion of the interface was sensitive to the intensity of the irradiation beam of the microscope, through a photothermal effect. By fine-tuning the intensity we could stop and even reverse the interface motion. This way we stabilized a biphasic state of the crystal, and we followed the spontaneous motion of the interface at different temperatures inside the thermal hysteresis loop. This experiment gives access for the first time to an accurate determination of the equilibrium temperature in the case of thermal hysteresis--which was not accessible by the usual quasistatic investigations. The temperature dependence of the propagation velocity inside the hysteretic interval was revealed to be highly nonlinear, and it was quantitatively reproduced by a dynamical mean-field theory, which made possible an estimate of the macroscopic energy barrier.
Modeling of magnetic hystereses in soft MREs filled with NdFeB particles
NASA Astrophysics Data System (ADS)
Kalina, K. A.; Brummund, J.; Metsch, P.; Kästner, M.; Borin, D. Yu; Linke, J. M.; Odenbach, S.
2017-10-01
Herein, we investigate the structure-property relationships of soft magnetorheological elastomers (MREs) filled with remanently magnetizable particles. The study is motivated from experimental results which indicate a large difference between the magnetization loops of soft MREs filled with NdFeB particles and the loops of such particles embedded in a comparatively stiff matrix, e.g. an epoxy resin. We present a microscale model for MREs based on a general continuum formulation of the magnetomechanical boundary value problem which is valid for finite strains. In particular, we develop an energetically consistent constitutive model for the hysteretic magnetization behavior of the magnetically hard particles. The microstructure is discretized and the problem is solved numerically in terms of a coupled nonlinear finite element approach. Since the local magnetic and mechanical fields are resolved explicitly inside the heterogeneous microstructure of the MRE, our model also accounts for interactions of particles close to each other. In order to connect the microscopic fields to effective macroscopic quantities of the MRE, a suitable computational homogenization scheme is used. Based on this modeling approach, it is demonstrated that the observable macroscopic behavior of the considered MREs results from the rotation of the embedded particles. Furthermore, the performed numerical simulations indicate that the reversion of the sample’s magnetization occurs due to a combination of particle rotations and internal domain conversion processes. All of our simulation results obtained for such materials are in a good qualitative agreement with the experiments.
Detection of low tension cosmic superstrings
NASA Astrophysics Data System (ADS)
Chernoff, David F.; Tye, S.-H. Henry
2018-05-01
Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn
2015-05-07
BiFeO{sub 3} multiferroic ceramics were modified by introducing (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} to form solid solutions. The single phase structure was easy to be obtained in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} (x = 0.2, 0.25, 0.3, and 0.4) solid solutions. Rietveld refinement of X-ray diffraction data revealed a transition from rhombohedral R3c (x = 0.2, 0.25, and 0.3) to orthorhombic Pnma (x = 0.4). Current density-field (J-E) characteristics indicated that the leakage current density was reduced by three orders of magnitude in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics. Both the ferroelectricity and magnetic properties were significantly enhanced in the presentmore » solid solutions. P-E hysteresis loop measurements with dynamic leakage current compensation methods showed the significantly enhanced ferroelectric properties for x = 0.25 and 0.3 and the paraelectric behavior for x = 0.4. The best ferromagnetic characteristics were achieved in the composition of x = 0.25, where the saturated M-H loop was determined with M{sub r} = 34.8 emu/mol. The improvement of ferroelectricity was mainly due to the suppressed leakage current, and the enhanced magnetism originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}, which destroyed its previous spiral structure to allow the appearance of a macroscopic magnetization.« less
Efficacy of low-level laser therapy on scar tissue.
Freitas, Carla P; Melo, Cristina; Alexandrino, Ana M; Noites, Andreia
2013-06-01
Physiotherapy has a very important role in the maintenance of the integumentary system integrity. There is very few evidence in humans. Nevertheless, there are some studies about tissue regeneration using low-level laser therapy (LLLT). To analyze the effectiveness of LLLT on scar tissue. Seventeen volunteers were stratified by age of their scars, and then randomly assigned to an experimental group (EG) - n = 9 - and a placebo group (PG) - n = 8. Fifteen sessions were conducted to both the groups thrice a week. However, in the PG, the laser device was switched off. Scars' thickness, length, width, macroscopic aspect, pain threshold, pain perception, and itching were measured. After 5 weeks, there were no statistically significant differences in any variable between both the groups. However, analyzing independently each group, EG showed a significant improvement in macroscopic aspect (p = 0.003) using LLLT. Taking into account the scars' age, LLLT showed a tendency to decrease older scars' thickness in EG. The intervention with LLLT appears to have a positive effect on the macroscopic scars' appearance, and on old scars' thickness, in the studied sample. However, it cannot be said for sure that LLLT has influence on scar tissue.
2015-01-01
Economies are instances of complex socio-technical systems that are shaped by the interactions of large numbers of individuals. The individual behavior and decision-making of consumer agents is determined by complex psychological dynamics that include their own assessment of present and future economic conditions as well as those of others, potentially leading to feedback loops that affect the macroscopic state of the economic system. We propose that the large-scale interactions of a nation's citizens with its online resources can reveal the complex dynamics of their collective psychology, including their assessment of future system states. Here we introduce a behavioral index of Chinese Consumer Confidence (C3I) that computationally relates large-scale online search behavior recorded by Google Trends data to the macroscopic variable of consumer confidence. Our results indicate that such computational indices may reveal the components and complex dynamics of consumer psychology as a collective socio-economic phenomenon, potentially leading to improved and more refined economic forecasting. PMID:25826692
Dong, Xianlei; Bollen, Johan
2015-01-01
Economies are instances of complex socio-technical systems that are shaped by the interactions of large numbers of individuals. The individual behavior and decision-making of consumer agents is determined by complex psychological dynamics that include their own assessment of present and future economic conditions as well as those of others, potentially leading to feedback loops that affect the macroscopic state of the economic system. We propose that the large-scale interactions of a nation's citizens with its online resources can reveal the complex dynamics of their collective psychology, including their assessment of future system states. Here we introduce a behavioral index of Chinese Consumer Confidence (C3I) that computationally relates large-scale online search behavior recorded by Google Trends data to the macroscopic variable of consumer confidence. Our results indicate that such computational indices may reveal the components and complex dynamics of consumer psychology as a collective socio-economic phenomenon, potentially leading to improved and more refined economic forecasting.
Digital second-order phase-locked loop
NASA Technical Reports Server (NTRS)
Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.
1975-01-01
Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.
Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens
2016-11-01
Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)-a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks-to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.
[Studies on macroscopic and microscopic identification of Cordyceps sinensis and its counterfeits].
Chan, Siutsau; Liu, Baoling; Zhao, Zhongzhen; Lam, Markin; Law, Kwokwai; Chen, Hubiao
2011-05-01
To provide a rapid, simple, accurate and reproducible identification method from which Cordyceps sinensis can be distinguished from other species. To observe the larva and stroma of Cordyceps family with macroscopic identification method, and with powder microscopic identification method. For macroscopic, only stroma of C. sinensis is mostly non-inflated, and un-obtuse at the tip, the caterpillar annulations of C. sinensis and the C. gracilis is distinct, about 20-30, and feet of above two are 8 pairs, 4 of 8 pairs are relatively distinct. The above appearance shows its unique characteristic. For microscopic identification, only C. sinensis exists microtrichia, the tip is pointed. The arranging order of stubby setae is irregular, the tip is blunt while the basal is gradually broader; the top of some setae bends slightly like a hook.
Mak, Chi H
2015-11-25
While single-stranded (ss) segments of DNAs and RNAs are ubiquitous in biology, details about their structures have only recently begun to emerge. To study ssDNA and RNAs, we have developed a new Monte Carlo (MC) simulation using a free energy model for nucleic acids that has the atomisitic accuracy to capture fine molecular details of the sugar-phosphate backbone. Formulated on the basis of a first-principle calculation of the conformational entropy of the nucleic acid chain, this free energy model correctly reproduced both the long and short length-scale structural properties of ssDNA and RNAs in a rigorous comparison against recent data from fluorescence resonance energy transfer, small-angle X-ray scattering, force spectroscopy and fluorescence correlation transport measurements on sequences up to ∼100 nucleotides long. With this new MC algorithm, we conducted a comprehensive investigation of the entropy landscape of small RNA stem-loop structures. From a simulated ensemble of ∼10(6) equilibrium conformations, the entropy for the initiation of different size RNA hairpin loops was computed and compared against thermodynamic measurements. Starting from seeded hairpin loops, constrained MC simulations were then used to estimate the entropic costs associated with propagation of the stem. The numerical results provide new direct molecular insights into thermodynaimc measurement from macroscopic calorimetry and melting experiments.
Routine histological analysis of a macroscopically normal gallbladder--a review of the literature.
Jamal, K; Ratansingham, K; Siddique, M; Nehra, D
2014-01-01
70,000 cholecystectomies were performed in the United Kingdom in 2011-2012. Currently it is standard practice to submit all gallbladder specimens for routine histology to exclude malignancy. The aim of this systematic review was to establish whether a normal macroscopic appearance to the gallbladder at the time of cholecystectomy is sufficient to rule out malignancy and therefore negate the need for routine histology. Relevant articles that were published between 1966 and January 2013 were identified through electronic databases. 21 studies reported on 34,499 histologically analysed specimens. 172/187 (92%) of gallbladder cancers demonstrated intra-operative macroscopic abnormality. Studies that opened the specimens intra-operatively identified all cancers, whereas gross macroscopic visualization resulted in 15 potentially missed cancers (p = 0.10). In patients of European ethnicity, gallbladder cancer in a macroscopically normal looking gallbladder was identified in only one study; however all of these patients were above the age of 60. The incidence of gallbladder cancer was significantly raised in ethnic groups from high risk areas (p = 0.0001). A macroscopically normal gallbladder in patients of European ethnicity under the age of 60 may not require formal histopathology. The best method for intra-operative examination may involve opening the specimen to allow inspection of the mucosa and wall, however this needs further investigation. In the context of the volume of gallbladder surgery being performed there is the potential for significant cost and time savings. Copyright © 2014 Surgical Associates Ltd. All rights reserved.
Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance.
Wu, Ya Sheng; Yu, Gong Liang; Li, Ren Hui; Song, Li Rong; Jiang, Hong Xia; Riding, Robert; Liu, Li Jing; Liu, Dong Yan; Zhao, Rui
2014-01-22
The end-Permian mass extinction was followed by the formation of an enigmatic rock layer with a distinctive macroscopic spotted or dendroid fabric. This deposit has been interpreted as microbial reef rock, digitate dendrolite, digital thrombolite, dendritic thrombolite, or bacterial deposits. Agreement has been reached in considering them as microbialites, but not in their formation. This study has revealed that the spotted and dendroid microbialites were composed of numerous fossil casts formed by the planktic cyanobacterium, Microcystis, a coccoid genus that at the present-day commonly forms blooms in modern lakes, rivers, and reservoirs. The abundance of the fossils and the diagenesis they experienced has determined the macroscopic fabric: where they abundant, the rock appears as dendroid, otherwise, it appears as spotted. The ancient Microcystis bloom might produce toxin to kill other metazoans, and be responsible for the oceanic anoxia that has puzzled so many researchers for so many years.
Apollo 16 impact-melt splashes - Petrography and major-element composition
NASA Technical Reports Server (NTRS)
See, Thomas H.; Horz, Friedrich; Morris, Richard V.
1986-01-01
Petrographic and major-element analyses are applied to 50 Apollo 16 impact-melt splash (IMS) samples in order to determine their origin and assess the nature of the subregolith source. The macroscopic analyses reveal that the IMSs exhibit a glassy appearance, but the textures range from holohyaline to hyalopilitic. Schlieren-rich glasses dominate the holohyaline areas, and the crystalline areas are mainly spherulitic. It is observed that most IMSs contain feldspathic monomineralic and lithic clasts and no regolithic materials. It is detected that the chemistry of most IMSs is not like the local regolith and appears to represent varied mixtures of VHA impact-melt breccias and anorthosite; the host rocks are mainly dimict breccias. It is concluded that the Cayley Formation is a polymict deposit composed of VHA impact-melt breccias and anorthosites. Tables revealing the macroscopic characteristics of the IMSs and the major-element composition of IMSs and various host rock are presented.
Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance
Wu, Ya Sheng; Yu, Gong Liang; Li, Ren Hui; Song, Li Rong; Jiang, Hong Xia; Riding, Robert; Liu, Li Jing; Liu, Dong Yan; Zhao, Rui
2014-01-01
The end-Permian mass extinction was followed by the formation of an enigmatic rock layer with a distinctive macroscopic spotted or dendroid fabric. This deposit has been interpreted as microbial reef rock, digitate dendrolite, digital thrombolite, dendritic thrombolite, or bacterial deposits. Agreement has been reached in considering them as microbialites, but not in their formation. This study has revealed that the spotted and dendroid microbialites were composed of numerous fossil casts formed by the planktic cyanobacterium, Microcystis, a coccoid genus that at the present-day commonly forms blooms in modern lakes, rivers, and reservoirs. The abundance of the fossils and the diagenesis they experienced has determined the macroscopic fabric: where they abundant, the rock appears as dendroid, otherwise, it appears as spotted. The ancient Microcystis bloom might produce toxin to kill other metazoans, and be responsible for the oceanic anoxia that has puzzled so many researchers for so many years. PMID:24448025
General theory of skin reinforcement.
Kruglikov, Ilja L; Scherer, Philipp E
2017-01-01
Macroscopic mechanical properties of human skin in vivo cannot be considered independent of adjacent subcutaneous white adipose tissue (sWAT). The layered system skin/sWAT appears as the hierarchical structural composite in which single layers behave as fiber-reinforced structures. Effective macroscopic mechanical properties of such composites are mainly determined either by the properties of the skin or by those of the sWAT, dependent on the conditions of mechanical loading. Mechanical interactions between the skin and the adjacent sWAT associated with a mismatch in the mechanical moduli of these two layers can lead to production of the skin wrinkles. Reinforcement of the composite skin/sWAT can take place in different ways. It can be provided through reorientation of collagen fibers under applied loading, through production of new bonds between existing collagen fibers and through induction of additional collagen structures. Effectiveness of this type of reinforcement is strongly dependent on the type of mechanical loading. Different physical interventions induce the reinforcement of at least one of these two layers, thus increasing the effective macroscopic stiffness of the total composite. At the same time, the standalone reinforcement of the skin appears to be less effective to achieve a delay or a reduction of the apparent signs of skin aging relative to the reinforcement of the sWAT.
Wu, Wei; An, Ke; Liaw, Peter K.
2014-12-23
In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less
Magnetic torque on a rotating superconducting sphere
NASA Technical Reports Server (NTRS)
Holdeman, L. B.
1975-01-01
The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.
Conformation of receptor-bound visual arrestin.
Kim, Miyeon; Vishnivetskiy, Sergey A; Van Eps, Ned; Alexander, Nathan S; Cleghorn, Whitney M; Zhan, Xuanzhi; Hanson, Susan M; Morizumi, Takefumi; Ernst, Oliver P; Meiler, Jens; Gurevich, Vsevolod V; Hubbell, Wayne L
2012-11-06
Arrestin-1 (visual arrestin) binds to light-activated phosphorylated rhodopsin (P-Rh*) to terminate G-protein signaling. To map conformational changes upon binding to the receptor, pairs of spin labels were introduced in arrestin-1 and double electron-electron resonance was used to monitor interspin distance changes upon P-Rh* binding. The results indicate that the relative position of the N and C domains remains largely unchanged, contrary to expectations of a "clam-shell" model. A loop implicated in P-Rh* binding that connects β-strands V and VI (the "finger loop," residues 67-79) moves toward the expected location of P-Rh* in the complex, but does not assume a fully extended conformation. A striking and unexpected movement of a loop containing residue 139 away from the adjacent finger loop is observed, which appears to facilitate P-Rh* binding. This change is accompanied by smaller movements of distal loops containing residues 157 and 344 at the tips of the N and C domains, which correspond to "plastic" regions of arrestin-1 that have distinct conformations in monomers of the crystal tetramer. Remarkably, the loops containing residues 139, 157, and 344 appear to have high flexibility in both free arrestin-1 and the P-Rh*complex.
DOE R&D Accomplishments Database
Prigogine, I.
1989-10-01
As in the previous period, our work has been concerned with the study of the properties of nonequilibrium systems and especially with the mechanism of self-organization. As is well-known, the study of self-organization began with the investigation of hydrodynamical or chemical instabilities studied from the point of view of macroscopic physics. The main outcome is that nonequilibrium generates spatial correlations of macroscopic physics. The main outcome is that nonequilibrium generated spatial correlations of macroscopic range whose characteristics length is an intrinsic property and whose amplitude is determined by nonequilibrium constraints. A survey of the macroscopic approach to nonequilibrium states is given in the paper. "Nonequilibrium States and Long Range Correlations in Chemical Dynamics", by G. Nicolis at al. However, over the last few years important progress has been made in the simulation of nonequilibrium situations using mainly molecular dynamics. It appears now that processes corresponding to self-organization as well as the appearance of long-range correlations can be obtained in this way starting from a program involving Newtonian dynamics (generally the laws of interaction correspond to hard spheres or hard disks). Examples of such types of studies leading to Benard instabilities, to chemical clocks, or to spatial structure formation are given in this report. As a result, we may now view self-organization as a direct expression of tan appropriate microscopic dynamics. This is the reason why we have devoted much work to the study of large Poincare systems (LPS) involving continuous sets of resonances. These systems have been shown to lead, according to the constraints, either to equilibrium situations or to nonequilibrium states involving long range correlations. We discuss LPS in the frame of classical mechanics.
Landau singularities and symbology: One- and two-loop MHV amplitudes in SYM theory
Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia
2016-03-14
We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N = 4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. Finally, we observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.
Grima, R
2010-07-21
Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the regions of parameter space in which there are maximum differences between the solutions of the master equation and the corresponding rate equations. We show that these differences depend sensitively on the Fano factors and on the inherent structure and topology of the chemical network. The theory of effective mesoscopic rate equations generalizes the conventional rate equations of physical chemistry to describe kinetics in systems of mesoscopic size such as biological cells.
Macroscopic behavior and microscopic magnetic properties of nanocarbon
NASA Astrophysics Data System (ADS)
Lähderanta, E.; Ryzhov, V. A.; Lashkul, A. V.; Galimov, D. M.; Titkov, A. N.; Matveev, V. V.; Mokeev, M. V.; Kurbakov, A. I.; Lisunov, K. G.
2015-06-01
Here are presented investigations of powder and glass-like samples containing carbon nanoparticles, not intentionally doped and doped with Ag, Au and Co. The neutron diffraction study reveals an amorphous structure of the samples doped with Au and Co, as well as the magnetic scattering due to a long-range FM order in the Co-doped sample. The composition and molecular structure of the sample doped with Au is clarified with the NMR investigations. The temperature dependence of the magnetization, M (T), exhibits large irreversibility in low fields of B=1-7 mT. M (B) saturates already above 2 T at high temperatures, but deviates from the saturation behavior below 50 (150 K). Magnetic hysteresis is observed already at 300 K and exhibits a power-law temperature decay of the coercive field, Bc (T). The macroscopic behavior above is typical of an assembly of partially blocked magnetic nanoparticles. The values of the saturation magnetization, Ms, and the blocking temperature, Tb, are obtained as well. However, the hysteresis loop in the Co-doped sample differs from that in other samples, and the values of Bc and Ms are noticeably increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.
Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less
Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; ...
2015-12-11
Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less
Abdulmawjood, Amir; Grabowski, Nils; Fohler, Svenja; Kittler, Sophie; Nagengast, Helga; Klein, Guenter
2014-01-01
Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP) assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes. PMID:24963709
NASA Astrophysics Data System (ADS)
Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens
2016-11-01
Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)—a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks—to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.
Dynamical behaviour in coronal loops
NASA Technical Reports Server (NTRS)
Haisch, Bernhard M.
1986-01-01
Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.
Dynamical behaviour in coronal loops
NASA Astrophysics Data System (ADS)
Haisch, Bernhard M.
Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.
Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Lance J.; /SLAC; Drummond, James M.
2012-02-15
We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parametersmore » uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.« less
2010-05-24
The northern portion of the Gulf of Mexico Loop Current, shown in red, appears about to detach a large ring of current, creating a separate eddy. An eddy is a large, warm, clockwise-spinning vortex of water -- the ocean version of a cyclone.
Murayama, S Y; Sakai, T; Makino, S; Kurata, T; Sasakawa, C; Yoshikawa, M
1986-01-01
We examined the possibility that mice could be used in the Sereny test instead of guinea pigs or rabbits. Although the reactions in mice were more transient and not as pronounced as those in guinea pigs, mice indeed could be used to distinguish even macroscopically between virulent and avirulent shigellae. Virulent enteroinvasive Escherichia coli strains were also positive for the mouse Sereny test. We described the macroscopic and microscopic appearance of the mouse eyes. Thus, mice are recommended for use in the Sereny test, particularly when a large number of samples are to be tested. Images PMID:3510985
Hilbert's sixth problem and the failure of the Boltzmann to Euler limit
NASA Astrophysics Data System (ADS)
Slemrod, Marshall
2018-04-01
This paper addresses the main issue of Hilbert's sixth problem, namely the rigorous passage of solutions to the mesoscopic Boltzmann equation to macroscopic solutions of the Euler equations of compressible gas dynamics. The results of the paper are that (i) in general Hilbert's program will fail because of the appearance of van der Waals-Korteweg capillarity terms in a macroscopic description of motion of a gas, and (ii) the van der Waals-Korteweg theory itself might satisfy Hilbert's quest for a map from the `atomistic view' to the laws of motion of continua. This article is part of the theme issue `Hilbert's sixth problem'.
Ligation of Macroscopically Detectable Arteriovenous Fistulas in Stewart-Bluefarb Syndrome
Sung, Shih-Ying; Lin, Yi-Chang; Tsai, Yi-Ting; Lin, Chih-Yuan; Lee, Chung-Yi; Tsai, Chien-Sung
2014-01-01
We herein describe the case of a 21-year-old woman with Stewart-Bluefarb syndrome presenting with recurrent ulcers on the right foot and multiple congenital arteriovenous malformations. The painful recurrent ulcers and brownish macules at the dorsum of the right foot had appeared at 13 years of age, and the size of the right foot gradually became larger than the left. She underwent conservative treatment and polyvinyl alcohol embolization but the ulcer was recurrent. Two macroscopic detectable feeding arteries to arteriovenous fistulas were ligated under Doppler sonography. At her 6 month follow-up, the chronic ulcer had begun to heal and pain had been alleviated. PMID:27122807
Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at nanoscale
Kalinin, Sergei V.; Jesse, Stephen; Yang, Yaodong; ...
2016-04-27
Here, the nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with first order reversal curve (FORC) measurements on (K,Na)NbO 3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the FORCmore » of the polarization switching shows a clear decrease in correlation with increasing AC bias, suggesting the impact of domain wall clamping on the DC measurement case. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. These confirm the link between local piezoelectric nonlinearity, domain wall motion and minor loop formation, and suggest that existing theories (such as Preisach) are applicable at these length scales, with associated implications for future nanoscale devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Jesse, Stephen; Yang, Yaodong
Here, the nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with first order reversal curve (FORC) measurements on (K,Na)NbO 3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the FORCmore » of the polarization switching shows a clear decrease in correlation with increasing AC bias, suggesting the impact of domain wall clamping on the DC measurement case. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. These confirm the link between local piezoelectric nonlinearity, domain wall motion and minor loop formation, and suggest that existing theories (such as Preisach) are applicable at these length scales, with associated implications for future nanoscale devices.« less
Observable Signatures of Energy Release in Braided Coronal Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pontin, D. I.; Janvier, M.; Tiwari, S. K.
We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to themore » observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.« less
Conformation of receptor-bound visual arrestin
Kim, Miyeon; Vishnivetskiy, Sergey A.; Van Eps, Ned; Alexander, Nathan S.; Cleghorn, Whitney M.; Zhan, Xuanzhi; Hanson, Susan M.; Morizumi, Takefumi; Ernst, Oliver P.; Meiler, Jens; Gurevich, Vsevolod V.; Hubbell, Wayne L.
2012-01-01
Arrestin-1 (visual arrestin) binds to light-activated phosphorylated rhodopsin (P-Rh*) to terminate G-protein signaling. To map conformational changes upon binding to the receptor, pairs of spin labels were introduced in arrestin-1 and double electron–electron resonance was used to monitor interspin distance changes upon P-Rh* binding. The results indicate that the relative position of the N and C domains remains largely unchanged, contrary to expectations of a “clam-shell” model. A loop implicated in P-Rh* binding that connects β-strands V and VI (the “finger loop,” residues 67–79) moves toward the expected location of P-Rh* in the complex, but does not assume a fully extended conformation. A striking and unexpected movement of a loop containing residue 139 away from the adjacent finger loop is observed, which appears to facilitate P-Rh* binding. This change is accompanied by smaller movements of distal loops containing residues 157 and 344 at the tips of the N and C domains, which correspond to “plastic” regions of arrestin-1 that have distinct conformations in monomers of the crystal tetramer. Remarkably, the loops containing residues 139, 157, and 344 appear to have high flexibility in both free arrestin-1 and the P-Rh*complex. PMID:23091036
Freed, K S; Paulson, E K; Frederick, M G; Keogan, M T; Pappas, T N
1997-06-01
To evaluate the postoperative computed tomographic (CT) appearance, complications, and potential pitfalls after a Puestow procedure (lateral side-to-side pancreaticojejunostomy). Forty CT examinations were performed after the Puestow procedure in 20 patients. Images were retrospectively reviewed by three radiologists. The pancreaticojejunal anastomosis was identified at 30 examinations and was immediately anterior to the pancreatic body or tail. The anastomosis contained fluid or gas on 11 scans and oral contrast material on four scans. On 15 scans, the anastomosis appeared as collapsed bowel without gas, fluid, or oral contrast material. The Roux-en-Y loop was identified on 28 (70%) scans and contained fluid or gas on 16 scans and oral contrast material on six scans. The Roux-en-Y loop appeared as collapsed bowel on six scans. When the anastomosis or Roux-en-Y loop contained fluid and gas, the appearance mimicked that of a pancreatic or parapancreatic abscess. Peripancreatic stranding was present on 28 scans and was due to either ongoing pancreatitis or postoperative change. Complications included 15 transient fluid collections, three abscesses, four pseudocysts, one hematoma, and one small-bowel and Roux-en-Y obstruction. Knowledge of the anatomy after a Puestow procedure is essential for accurate interpretation of CT scans.
Coherent quantum dynamics of a superconducting flux qubit.
Chiorescu, I; Nakamura, Y; Harmans, C J P M; Mooij, J E
2003-03-21
We have observed coherent time evolution between two quantum states of a superconducting flux qubit comprising three Josephson junctions in a loop. The superposition of the two states carrying opposite macroscopic persistent currents is manipulated by resonant microwave pulses. Readout by means of switching-event measurement with an attached superconducting quantum interference device revealed quantum-state oscillations with high fidelity. Under strong microwave driving, it was possible to induce hundreds of coherent oscillations. Pulsed operations on this first sample yielded a relaxation time of 900 nanoseconds and a free-induction dephasing time of 20 nanoseconds. These results are promising for future solid-state quantum computing.
Acquisition and Tracking Behavior of Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Viterbi, A. J.
1958-01-01
Phase-locked or APC loops have found increasing applications in recent years as tracking filters, synchronizing devices, and narrowband FM discriminators. Considerable work has been performed to determine the noise-squelching properties of the loop when it is operating in or near phase lock and is functioning as a linear coherent detector. However, insufficient consideration has been devoted to the non-linear behavior of the loop when it is out of lock and in the process of pulling in. Experimental evidence has indicated that there is a strong tendency for phase-locked loops to achieve lock under most circumstances. However, the analysis which has appeared in the literature iis limited to the acquisition of a constant frequency reference signal with only one phase-locked loop filter configuration. This work represents an investigation of frequency acquisition properties of phase-locked loops for a variety of reference-signal behavior and loop configurations
IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR FLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Qingrong; Petrosian, Vahe, E-mail: qrchen@gmail.com, E-mail: vahep@stanford.edu
2012-03-20
We present the analysis of a pair of unusually energetic coronal hard X-ray (HXR) sources detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager during the impulsive phase of an X3.9 class solar flare on 2003 November 3, which simultaneously shows two intense footpoint (FP) sources. A distinct loop top (LT) coronal source is detected up to {approx}150 keV and a second (upper) coronal source up to {approx}80 keV. These photon energies, which were not fully investigated in earlier analysis of this flare, are much higher than commonly observed in coronal sources and pose grave modeling challenges. The LTmore » source in general appears higher in altitude with increasing energy and exhibits a more limited motion compared to the expansion of the thermal loop. The high-energy LT source shows an impulsive time profile and its nonthermal power-law spectrum exhibits soft-hard-soft evolution during the impulsive phase, similar to the FP sources. The upper coronal source exhibits an opposite spatial gradient and a similar spectral slope compared to the LT source. These properties are consistent with the model of stochastic acceleration of electrons by plasma waves or turbulence. However, the LT and FP spectral index difference (varying from {approx}0 to 1) is much smaller than commonly measured and than that expected from a simple stochastic acceleration model. Additional confinement or trapping mechanisms of high-energy electrons in the corona are required. Comprehensive modeling including both kinetic effects and the macroscopic flare structure may shed light on this behavior. These results highlight the importance of imaging spectroscopic observations of the LT and FP sources up to high energies in understanding electron acceleration in solar flares. Finally, we show that the electrons producing the upper coronal HXR source may very likely be responsible for the type III radio bursts at the decimetric/metric wavelength observed during the impulsive phase of this flare.« less
The Reality of the Quantum World.
ERIC Educational Resources Information Center
Shimony, Abner
1988-01-01
Describes experiments used during recent history to explain the nature of the quantum world. Explains the essential elements of experiments using polarized light and magnetic flux. Illustrates differences between classical theories in physics and quantum theory. Shows how experiments in the microscopic and macroscopic world appear to support…
Peters, Sarah K; Dunlop, Katharine; Downar, Jonathan
2016-01-01
The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network's associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN's cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders.
Peters, Sarah K.; Dunlop, Katharine; Downar, Jonathan
2016-01-01
The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network’s associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN’s cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders. PMID:28082874
Blowout Surge due to Interaction between a Solar Filament and Coronal Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haidong; Jiang, Yunchun; Yang, Jiayan
2017-06-20
We present an observation of the interaction between a filament and the outer spine-like loops that produces a blowout surge within one footpoint of large-scale coronal loops on 2015 February 6. Based the observation of the AIA 304 and 94 Å, the activated filament is initially embedded below a dome of a fan-spine configuration. Due to the ascending motion, the erupting filament reconnects with the outer spine-like field. We note that the material in the filament blows out along the outer spine-like field to form the surge with a wider spire, and a two-ribbon flare appears at the site ofmore » the filament eruption. In this process, small bright blobs appear at the interaction region and stream up along the outer spine-like field and down along the eastern fan-like field. As a result, a leg of the filament becomes radial and the material in it erupts, while another leg forms the new closed loops. Our results confirm that the successive reconnection occurring between the erupting filament and the coronal loops may lead to a strong thermal/magnetic pressure imbalance, resulting in a blowout surge.« less
Sweeping Arches and Loops [video
2014-07-10
Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: NASA/Solar Dynamics Observatory Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: Solar Dynamics Observatory/NASA.
Clendaniel, Daphne C; Sivacolundhu, Ramesh K; Sorenmo, Karin U; Donovan, Taryn A; Turner, Avenelle; Arteaga, Theresa; Bergman, Philip J
2014-01-01
Medical records for 79 dogs with confirmed splenic hemangiosarcoma (HSA) following splenectomy were reviewed for information regarding either the presence or absence of macroscopic liver lesions and the histopathological characteristics of the liver. Only 29 of 58 dogs (50%) with grossly abnormal livers had HSA metastasis. No dogs with grossly normal livers had metastasis detected on liver pathology. Gross lesions in the liver such as multiple nodules, dark-colored nodules, and active bleeding nodules were highly associated with malignancy. For the dogs in this study, performing biopsy in a grossly normal liver was a low-yield procedure in dogs with splenic HSA.
Process For Cutting Polymers Electrolyte Multi-Layer Batteries And Batteries Obtained Thereby
Gauthier, Michel; Lessard, Ginette; Dussault, Gaston; Rouillard, Roger; Simoneau, Martin; Miller, Alan Paul
2003-09-09
A stacking of battery laminate is prepared, each battery consisting of anode, polymer electrolyte, cathode films and possibly an insulating film, under conditions suitable to constitute a rigid monoblock assembly, in which the films are unitary with one another. The assembly obtained is thereafter cut in predetermined shape by using a mechanical device without macroscopic deformation of the films constituting the assembly and without inducing permanent short circuits. The battery which is obtained after cutting includes at least one end which appears as a uniform cut, the various films constituting the assembly having undergone no macroscopic deformation, the edges of the films of the anode including an electronically insulating passivation film.
Electron cyclotron wave acceleration outside a flaring loop
NASA Technical Reports Server (NTRS)
Sprangle, P.; Vlahos, L.
1983-01-01
A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.
Bali, Rachna; Savino, Laura; Ramirez, Diego A.; Tsvetkova, Nelly M.; Bagatolli, Luis; Tablin, Fern; Crowe, John H.; Leidy, Chad
2009-01-01
There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large domains. In contrast, some polarizable cells do show large regions with qualitative differences in lipid fluidity. It is important to ask more precisely, based on the current phase diagrams, under what conditions would large domains be expected to form in cells. In this work we study the thermotropic phase behavior of the platelet plasma membrane by FTIR, and compare it to a POPC/Sphingomyelin/Cholesterol model representing the outer leaflet composition. We find that this model closely reflects the platelet phase behavior. Previous work has shown that the platelet plasma membrane presents inhomogeneous distribution of DiI18:0 at 24°C, but not at 37°C, which suggests the formation of macroscopic lipid domains at low temperatures. We show by fluorescence microscopy, and by comparison with published phase diagrams, that the outer leaflet model system enters the macroscopic domain region only at the lower temperature. In addition, the low cholesterol content in platelets (~15 mol %), appears to be crucial for the formation of large domains during cooling. PMID:19341703
Characterizing Solution Surface Loop Conformational Flexibility of the GM2 Activator Protein
2015-01-01
GM2AP has a β-cup topology with numerous X-ray structures showing multiple conformations for some of the surface loops, revealing conformational flexibility that may be related to function, where function is defined as either membrane binding associated with ligand binding and extraction or interaction with other proteins. Here, site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and molecular dynamic (MD) simulations are used to characterize the mobility and conformational flexibility of various structural regions of GM2AP. A series of 10 single cysteine amino acid substitutions were generated, and the constructs were chemically modified with the methanethiosulfonate spin label. Continuous wave (CW) EPR line shapes were obtained and subsequently simulated using the microscopic order macroscopic disorder (MOMD) program. Line shapes for sites that have multiple conformations in the X-ray structures required two spectral components, whereas spectra of the remaining sites were adequately fit with single-component parameters. For spin labeled sites L126C and I66C, spectra were acquired as a function of temperature, and simulations provided for the determination of thermodynamic parameters associated with conformational change. Binding to GM2 ligand did not alter the conformational flexibility of the loops, as evaluated by EPR and NMR spectroscopies. These results confirm that the conformational flexibility observed in the surface loops of GM2AP crystals is present in solution and that the exchange is slow on the EPR time scale (>ns). Furthermore, MD simulation results are presented and agree well with the conformational heterogeneity revealed by SDSL. PMID:25127419
The woody breast condition results in surface discoloration of cooked broiler pectoralis major
USDA-ARS?s Scientific Manuscript database
Published studies have shown that the woody breast (WB) condition affects macroscopic appearances, quality, and functionality of raw broiler breast fillets (pectoralis major) and texture of both raw and cooked fillets. In this study we demonstrated that the WB condition also significantly affects th...
Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron
NASA Astrophysics Data System (ADS)
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-12-01
The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.
Inverted Temperature Loops in The Quiet Corona: Properties and Physical Origin
NASA Astrophysics Data System (ADS)
Huang, Z.; van der Holst, B.; Frazin, R. A.; Nuevo, F.; Vásquez, A. M.; Manchester, W.; Sokolov, I.; Gombosi, T. I.
2013-12-01
Huang et al. 2012 revealed the existence of inverted temperature ("down") loops, in which temperature decreases with height, as well as the usual ("up") loops, in which the temperature increases with height, in the quiet solar Corona. It was shown that the "down" loops are mostly located at low latitudes and "up" loops most often appear in high latitudes. A recent study by Nuevo et al. 2013 confirmed this discovery and further showed that the "down" loop population is greatest at solar minimum; and strongly decreases with solar activity. Moreover, the "down" loops were found to be associated with values of the plasma beta greater than about unity, while the "up" loops were associated with much smaller values of beta. Here, we review the properties of "up" and "down" loops, and employ a state-of-the-art global MHD model to understand the physics of these loops as well as to investigate their thermodynamic stability. The 3D MHD model uses a phenomenological wave dissipation model based on wave reflection (proportional to the Alfvén speed gradients) and turbulent dissipation.
NASA Technical Reports Server (NTRS)
Foukal, Peter
1987-01-01
A wide range of observations has shown that active region phenomena in the photospheric, chromospheric and coronal temperature regimes are dynamical in nature. At the photosphere, recent observations of full line profiles place an upper limit of about + or - 20/msec on any downflows at supergranule cell edges. Observations of the full Stokes 5 profiles in the network show no evidence for downflows in magnetic flux tubes. In the area of chromospheric dynamics, several models were put forward recently to reproduce the observed behavior of spicules. However, it is pointed out that these adiabatic models do not include the powerful radiative dissipation which tend to damp out the large amplitude disturbances that produce the spicular acceleration in the models. In the corona, loop flows along field lines clearly transport mass and energy at rates important for the dynamics of these structures. However, advances in understanding the heating and mass balance of the loop structures seem to require new kinds of observations. Some results are presented using a remote sensing diagnostic of the intensity and orientation of macroscopic plasma electric fields predicted by models of reconnective heating and also wave heating.
Effects of dipolar interactions in magnetic nanoparticle systems
NASA Astrophysics Data System (ADS)
Ruta, Sergiu; Hovorka, Ondrej; Chantrell, Roy
2014-03-01
Understanding the effects of magnetostatic interactions in magnetic nanoparticle systems is of importance in magnetic recording, biomedical applications such as in hyperthermia cancer treatment, or for sensing approaches in biology and chemistry, for example. In this talk we discuss the macroscopic and microscopic effects of dipole-dipole interactions in three-dimensional assemblies of magnetic nanoparticles in various spatial arrangements, including the BCC, FCC, or randomized lattices. Our study is based on the kinetic Monte-Carlo modelling and concentrates on exploring the effect of the particle arrangement, distributions of particle volumes and anisotropy axes, and the role of thermal effects on the overall behaviour of hysteresis loops, ZFC/FC temperature scans and the magnetization decay data computed during the relaxation to equilibrium. In the case of the FCC lattice we find a counter-intuitive effect where increasing the interaction strength enhances/suppresses the hysteresis loop coercivity at high/low temperatures. The analysis of the domain pattern formation and pair correlation functions suggests for the observed behaviour to be a result of the phenomenon of frustration. We also discuss the possibility of observing the super-ferromagnetic phases on similar syste
A case report of gastric lymphocytic phlebitis, a rare mimic for malignancy.
Chan, Daniel L; Ravindran, Praveen; Chua, Dorothy; Smith, Jason D; Wong, King S; Ghusn, Michael A
2017-01-01
Lymphocytic phlebitis is a benign condition characterised by inflammation of the veins and rarely affects the gastrointestinal tract. Reported cases present as acute abdomen and involve the colon or small intestine. We report the fourth case of gastric lymphocytic phlebitis in the literature. A 74-year-old female presented with eight weeks of abdominal pain. Findings at endoscopy were suggestive of a malignant ulcer on the greater curvature of antrum, while biopsies showed chronic gastritis without malignancy. Appearance at diagnostic laparoscopy was consistent with a malignant gastric ulcer with serosal changes. Due to persistent pain and the macroscopic appearance, she proceeded to have an open subtotal gastrectomy and D2 lymph node clearance. Despite macroscopic appearance, the microscopic examination demonstrated no malignancy, and was consistent with lymphocytic phlebitis with overlying ulceration. This case was a mimic for gastric malignancy, with the benign diagnosis only being made after surgical resection. Gastric lymphocytic phlebitis is a rare differential diagnosis for gastric ulcers when biopsies are negative, although preoperative diagnosis is difficult given the lesions do not involve the mucosa. If clinical history and endoscopic findings are suspicious for malignancy, despite normal biopsies, an aggressive surgical resection remains reasonable given the rarity gastric lymphocytic phlebitis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Thermal Analysis of Post-eruption Loops from 80,000 to 1.6 million K
NASA Technical Reports Server (NTRS)
Kucera, T.; Landi, E.
2006-01-01
We analyze the thermal properties of a set of post eruptive loops which appeared after a prominence eruption on April 30, 2004. The event was observed by TRACE and SOHO/SUMER. The SUMER data was taken from a single slit location with a 90 second cadence and included a number of lines spanning the temperature range 80,000 to 1.6 million K. We perform a differential emission measure analysis of the loops in order to study their thermal evolution.
Instabilities encountered during heat transfer to a supercritical fluid
NASA Technical Reports Server (NTRS)
Cornelius, A. J.
1969-01-01
Investigation was made of the unstable behavior of a heat-transfer loop operating at a supercritical pressure. Natural convection operation of the loop, with observations on acoustic and slow oscillatory behavior, was emphasized during testing. The basic cause of both types of behavior appeared to originate in the heated boundary layer.
Application Potential of Nanocrystalline Ribbons Still Pending
NASA Astrophysics Data System (ADS)
Butvin, Pavol; Butvinová, Beata; Švec, Peter; Sitek, Jozef
2010-09-01
Nanocrystalline soft-magnetic ribbons promised a wide-spread practical use when introduced at the beginning of nineties. After 20 years of extensive research there are still unclear material problems which are thought to be the principal reason why these materials show but marginal use. Poorly controllable magnetic anisotropy due to spontaneous intrinsic macroscopic stress that comes from an inevitable heterogeneity of the ribbon materials is pointed to in this work. Certain stress-based mechanisms are shown to induce the unintended anisotropy in the already familiar Finemets as well as in the newer Hitperms. Hysteresis loops, domain structure and power loss is used to reveal the anisotropy consequences and particular connected but still unanswered questions are pinpointed.
On the Casimir scaling violation in the cusp anomalous dimension at small angle
NASA Astrophysics Data System (ADS)
Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian
2017-10-01
We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.
RECURRENT TWO-SIDED LOOP-TYPE JETS DUE TO A BIPOLE EMERGING BELOW TRANSEQUATORIAL LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yunchun; Bi, Yi; Yang, Jiayan
2013-10-01
We report four successive two-sided loop-type jets centered around a small bipole emerging below transequatorial interconnecting loops (TILs). They occurred at the very first emerging stage of the bipole in a short recurrent period of only 12 minutes. During this term, the emerging flux consisted of a main bipole, but showed a mixed-polarity field morphology with the appearance and then disappearance of a small magnetic feature in its interior. However, no associated cancellation of the bipole with the nearby flux was observed in this process. In multi-wavelength EUV images, the jets started nearly simultaneously and were similar in appearance. Eachmore » jet consisted of a pair of components that connected to two bright footpoints around the bipole and were ejected from the emergence location to opposite directions. While the two bright footpoints were separated by a gap and had consistent evolution with that of the bipole, the jet base region covering them accordingly showed four episodes of emission enhancement that peaked approximately at the jet start times. Compatible with the magnetic-reconnection jet mechanism, the recurrent two-sided loop-type jets are explained as a result of reconnection between the emerging bipole and the overlying TILs.« less
Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators
NASA Astrophysics Data System (ADS)
Wolfrum, M.; Gurevich, S. V.; Omel'chenko, O. E.
2016-02-01
In this paper we study the transition to synchrony in an one-dimensional array of oscillators with non-local coupling. For its description in the continuum limit of a large number of phase oscillators, we use a corresponding Ott-Antonsen equation, which is an integro-differential equation for the evolution of the macroscopic profiles of the local mean field. Recently, it was reported that in the spatially extended case at the synchronisation threshold there appear partially coherent plane waves with different wave numbers, which are organised in the well-known Eckhaus scenario. In this paper, we show that for Kuramoto-Sakaguchi phase oscillators the phase lag parameter in the interaction function can induce a Benjamin-Feir-type instability of the partially coherent plane waves. The emerging collective macroscopic chaos appears as an intermediate stage between complete incoherence and stable partially coherent plane waves. We give an analytic treatment of the Benjamin-Feir instability and its onset in a codimension-two bifurcation in the Ott-Antonsen equation as well as a numerical study of the transition from phase turbulence to amplitude turbulence inside the Benjamin-Feir unstable region.
Bardos, Tamas; Farkas, Boglarka; Mezes, Beata; Vancsodi, Jozsef; Kvell, Krisztian; Czompoly, Tamas; Nemeth, Peter; Bellyei, Arpad; Illes, Tamas
2009-11-01
A focal cartilage lesion has limited capacity to heal, and the repair modalities used at present are still unable to provide a universal solution. Pure cartilage graft implantation appears to be a simple option, but it has not been applied widely as cartilage will not reattach easily to the subchondral bone. We used a multiple-incision technique (processed chondrograft) to increase cartilage graft surface. We hypothesized that pure cartilage graft with augmented osteochondral fusion capacity may be used for cartilage repair and we compared this method with other repair techniques. Controlled laboratory study. Full-thickness focal cartilage defects were created on the medial femoral condyle of 9-month-old pigs; defects were repaired using various methods including bone marrow stimulation, autologous chondrocyte implantation, and processed chondrograft. After the repair, at weeks 6 and 24, macroscopic and histologic evaluation was carried out. Compared with other methods, processed chondrograft was found to be similarly effective in cartilage repair. Defects without repair and defects treated with bone marrow stimulation appeared slightly irregular with fibrocartilage filling. Autologous chondrocyte implantation produced hyalinelike cartilage, although its cellular organization was distinguishable from the surrounding articular cartilage. Processed chondrograft demonstrated good osteochondral integration, and the resulting tissue appeared to be hyaline cartilage. The applied cartilage surface processing method allows acceptable osteochondral integration, and the repair tissue appears to have good macroscopic and histologic characteristics. If further studies confirm its efficacy, this technique could be considered for human application in the future.
Macrocystic ductal adenocarcinoma of prostate: A rare gross appearance of prostate cancer.
Kojima, Fumiyoshi; Koike, Hiroyuki; Matsuzaki, Ibu; Iwahashi, Yoshifumi; Warigaya, Kenji; Fujimoto, Masakazu; Ono, Kazuo; Urata, Youji; Kohjimoto, Yasuo; Hara, Isao; Murata, Shin-Ichi
2017-04-01
Macroscopic cyst-formation by prostatic adenocarcinoma, herein referred to as macrocystic prostatic adenocarcinoma (MPA), is extremely rare. To date, no studies of prostate cancer performed based on gross cystic appearance have been reported. MPA can include various diseases, one of which is cystadenocarcinoma. Several cases of ductal adenocarcinoma exhibiting a macrocystic appearance have recently been reported; however, the histological and clinicopathological characteristics of MPAs have yet to be characterized and established. Therefore, we aimed to determine the histological and clinicopathological characteristics of MPA, via a multi-institutional investigation. We discovered five patients with MPA out of 1559 treated patients (0.32%); all cases were ductal adenocarcinomas. MPA was found to have three growth patterns: Two cases showed a prevalence of exuberant papillary proliferation with a fibrovascular core in the macroscopic multilocular cysts. Two others predominantly exhibited multilocular cysts lined by flat epithelium with foci of low papillae, and the fifth had a cystic lesion with intracancerous necrosis. Three of the cases showed extraprostatic invasion; however, none of the patients experienced recurrence during the follow-up period. Each predominant growth pattern tended to exhibit unique clinicopathological characteristics with respect to serum prostate specific antigen level and tumor size and location. In conclusion, we demonstrated that MPA is a ductal adenocarcinoma that is composed of intracystic exuberant papillary proliferation and flat proliferation with foci of low papillae, both of which might exhibit different clinicopathololgical appearances. Copyright © 2017 Elsevier Inc. All rights reserved.
Transequatorial loops interconnecting McMath regions 12472 and 12474
NASA Technical Reports Server (NTRS)
Svestka, Z.; Krieger, A. S.; Chase, R. C.; Howard, R.
1977-01-01
The paper reviews the life history of one transequatorial loop in a system observed in soft X-rays for at least 1.5 days and which interconnected a newly born active region with an old region. The birth of the selected loop is discussed along with properties of the interconnected active regions, sharpening and brightening of the loop, decay of the loop system, and physical relations between the interconnected regions. It is concluded that: (1) the loop was most probably born via reconnection of magnetic-field lines extending from the two active regions toward the equator, which occurred later than 33 hr after the younger region was born; (2) the fully developed interconnection was composed of several loops, all of which appeared to be rooted in a spotless magnetic hill of preceding northern polarity but were spread over two separate spotty regions of southern polarity in the magnetically complex new region; (3) the loop electron temperature increased from 2.1 million to 3.1 million K in one to three hours when the loop system brightened; and (4) the loops became twisted during the brightening, possibly due to their rise in the corona while remaining rooted in moving magnetic features in the younger region.
NASA Astrophysics Data System (ADS)
Altabet, Y. Elia; Debenedetti, Pablo G.
2017-12-01
Liquid water confined between nanoscale hydrophobic objects can become metastable with respect to its vapor at nanoscale separations. While the separations are only several molecular diameters, macroscopic theories are often invoked to interpret the thermodynamics and kinetics of water under confinement. We perform detailed rate and free energy calculations via molecular simulations in order to assess the dependence of the rate of evaporation, free energy barriers, and free energy differences between confined liquid and vapor upon object separation and compare them to the relevant macroscopic theories. At small enough separations, the rate of evaporation appears to deviate significantly from the predictions of classical nucleation theory, and we attribute such deviations to changes in the structure of the confined liquid film. However, the free energy difference between the confined liquid and vapor phases agrees quantitatively with macroscopic theory, and the free energy barrier to condensation displays qualitative agreement. Overall, the present work suggests that theories attempting to capture the kinetic behavior of nanoscale systems should incorporate structural details rather than treating it as a continuum.
Warm inflationary model in loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Ramon
A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.
Investigation of Inner Loop Flight Control Strategies for High-Speed Research
NASA Technical Reports Server (NTRS)
Newman, Brett; Kassem, Ayman
1999-01-01
This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.
NASA Astrophysics Data System (ADS)
Brun, Pierre-Thomas
2014-03-01
Trick roping evolved from humble origins as a cattle-catching tool into a sport that delights audiences the world over with its complex patterns or ``tricks,'' such as the Merry-Go-Round , the Wedding-Ring, the Spoke-Jumping, the Texas Skip... Its implement is the lasso, a length of rope with a small loop (``honda'') at one end through which the other end is passed to form a large loop. Here, we study the physics of the simplest rope trick, the Flat Loop, in which the motion of the lasso is forced by a uniform circular motion of the cowboy's/cowgirl's hand in a horizontal plane. To avoid accumulating twist in the rope, the cowboy/cowgirl rolls it between his/her thumb and forefinger while spinning it. The configuration of the rope is stationary in a reference frame that rotates with the hand. Exploiting this fact we derive a dynamical ``string'' model in which line tension is balanced by the centrifugal force and the rope's weight. Using a numerical continuation method, we calculate the steady shapes of a lasso with a fixed honda, examine their stability, and determine a bifurcation diagram exhibiting coat-hanger shapes and whirling modes in addition to flat loops. We then extend the model to a honda with finite sliding friction by using matched asymptotic expansions to determine the structure of the boundary layer where bending forces are significant, thereby obtaining a macroscopic criterion for frictional sliding of the honda. We compare our theoretical results with high-speed videos of a professional trick roper and experiments performed using a laboratory ``robo-cowboy.'' Finally, we conclude with a practical guidance on how to spin a lasso in the air based on the results of our analysis. With the support of Univ. Paris Sud (Lab. FAST/CNRS) and UPMC (d'Alembert/CNRS).
Dislocation loops in ultra-high purity Fe(Cr) alloys after 7.2 MeV proton irradiation
NASA Astrophysics Data System (ADS)
Chen, J.; Duval, F.; Jung, P.; Schäublin, R.; Gao, N.; Barthe, M. F.
2018-05-01
Ultra-high purity Fe(Cr) alloys (from 0 wt% Cr to 14 wt% Cr) were 3D homogeneously irradiated by 0-7.2 MeV protons to 0.3 dpa at nominal temperatures from 270 °C to 500 °C. Microstructural changes were observed by transmission electron microscopy (TEM). The results showed that evolution of dislocation loops depends on the Cr content. Below 300 °C, large ½ a0 <111> loops are dominating. Above 300 °C, a0 <100> loops with a habit plane {100} appear. Loop sizes of both types are more or less the same. At temperatures from 310 °C to 400 °C, a0 <100> loops form clusters with the same {100} habit plane as the one of the loops forming them. This indicates that <100> loops of the same variant start gliding under mutual elastic interaction. At 500 °C, dislocation loops form disc shaped clusters about 1000 nm in diameter and sitting on {111} and/or {100} planes in the pure Fe samples. Based on these observations a quantitative analysis of the dislocation loops configurations and their temperature dependence is made, leading to an understanding of the basic mechanisms of formation of these loops.
NASA Technical Reports Server (NTRS)
Choudhary, Debi Prasad; Gary, Allen G.
1998-01-01
The high-resolution H(sub alpha) images observed during the decay phase of a long duration flare on 23 March 1991 are used to study the three-dimensional magnetic field configuration of the active region NOAA 6555. Whereas, all the large flares in NOAA 6555 occurred at the location of high magnetic shear and flux emergence, this long duration flare was observed in the region of low magnetic shear at the photosphere. The H(sub alpha) loop activity started soon after the maximum phase of the flare. There were few long loop at the initial phase of the activity. Some of these were sheared in the chromosphere at an angle of about 45 deg with the east-west axis. Gradually, increasing number of shorter loops, oriented along the east-west axis, started appearing. The chromospheric Dopplergrams show blue-shifts at the end points of the loops. By using different magnetic field models, we have extrapolated the photospheric magnetograms to the chromospheric heights. The magnetic field lines computed by using the potential field model correspond to most of the observed H(sub alpha) loops. The height of the H(sub alpha) loops were derived by comparing them with the computed field lines. From the temporal evolution of the H(sub alpha) loop activity, we derive the negative rate of appearance of H(sub alpha) features as a function of height. It is found that the field lines oriented along one of the neutral lines was sheared and low lying. The higher field lines were mostly potential. The paper also outlines a possible scenario for describing the post-flare stage of the observed long duration flare.
Conformal structure of massless scalar amplitudes beyond tree level
NASA Astrophysics Data System (ADS)
Banerjee, Nabamita; Banerjee, Shamik; Bhatkar, Sayali Atul; Jain, Sachin
2018-04-01
We show that the one-loop on-shell four-point scattering amplitude of massless ϕ 4 scalar field theory in 4D Minkowski space time, when Mellin transformed to the Celestial sphere at infinity, transforms covariantly under the global conformal group (SL(2, ℂ)) on the sphere. The unitarity of the four-point scalar amplitudes is recast into this Mellin basis. We show that the same conformal structure also appears for the two-loop Mellin amplitude. Finally we comment on some universal structure for all loop four-point Mellin amplitudes specific to this theory.
High Frequency Aircraft Antennas
1968-05-03
is ob- tained if the current on the loop is assunned to be a superposition of two oppositely directed uniform traveling -wave currents of equal...effect will be to slow down the traveling wave currents on the loop and thus make the loop appear larger in size. Equations (6), (7), and (IÜ...18C/NDT + 1 NTRAN3=ü L»0 CALL LINSEG<NWIRE.L»X.Y.Z.5I . SALP ,CAB.SAB) N = L NN=N+1 WR|TE(6«11) IF(N-100) 4 1,41.500 41 CONTINUE Jl = l J2
From Loops to Trees By-passing Feynman's Theorem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catani, Stefano; Gleisberg, Tanju; Krauss, Frank
2008-04-22
We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluationmore » of cross-sections at next-to-leading order.« less
Effect of aspirin treatment on chondromalacia patellae.
Bentley, G; Leslie, I J; Fischer, D
1981-01-01
Twenty-nine patients (21 females and 8 males) with chondromalacia patellae diagnosed by arthroscopy were randomly allocated to receive aspirin or placebo for 3 months. Clinical and arthroscopic examination after 3 months showed no significant change in symptoms, signs, or macroscopic appearances in either group. Surgical treatment was performed in 14 patients for deteriorating symptoms. Images PMID:7008711
NASA Technical Reports Server (NTRS)
Gary, G. A.; Moore, R. L.; Porter, J. G.; Falconer, D. A.
1999-01-01
We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the island. (3) The main-arch bright loops are likely to be heated via reconnection driven at the magnetic null over the island. The details of how and where (along the null line) the reconnection is driven determine which of the split-end loops are selected for strong heating. (4) The null does not appear to be directly involved in the heating of the sheared core fields or in the heating of an extended loop rooted in the island. Rather, these all appear to be heated by microflares in the sheared core field.
Mass and energy supply of a cool coronal loop near its apex
NASA Astrophysics Data System (ADS)
Yan, Limei; Peter, Hardi; He, Jiansen; Xia, Lidong; Wang, Linghua
2018-03-01
Context. Different models for the heating of solar corona assume or predict different locations of the energy input: concentrated at the footpoints, at the apex, or uniformly distributed. The brightening of a loop could be due to the increase in electron density ne, the temperature T, or a mixture of both. Aim. We investigate possible reasons for the brightening of a cool loop at transition region temperatures through imaging and spectral observation. Methods: We observed a loop with the Interface Region Imaging Spectrograph (IRIS) and used the slit-jaw images together with spectra taken at a fixed slit position to study the evolution of plasma properties in and below the loop. We used spectra of Si IV, which forms at around 80 000 K in equilibrium, to identify plasma motions and derive electron densities from the ratio of inter-combination lines of O IV. Additional observations from the Solar Dynamics Observatory (SDO) were employed to study the response at coronal temperatures (Atmospheric Imaging Assembly, AIA) and to investigate the surface magnetic field below the loop (Helioseismic and Magnetic Imager, HMI). Results: The loop first appears at transition region temperatures and later also at coronal temperatures, indicating a heating of the plasma in the loop. The appearance of hot plasma in the loop coincides with a possible accelerating upflow seen in Si IV, with the Doppler velocity shifting continuously from -70 km s-1 to -265 km s-1. The 3D magnetic field lines extrapolated from the HMI magnetogram indicate possible magnetic reconnection between small-scale magnetic flux tubes below or near the loop apex. At the same time, an additional intensity enhancement near the loop apex is visible in the IRIS slit-jaw images at 1400 Å. These observations suggest that the loop is probably heated by the interaction between the loop and the upflows, which are accelerated by the magnetic reconnection between small-scale magnetic flux tubes at lower altitudes. Before and after the possible heating phase, the intensity changes in the optically thin (Si IV) and optical thick line (C II) are mainly contributed by the density variation without significant heating. Conclusions: We therefore provide evidence for the heating of an envelope loop that is affected by accelerating upflows, which are probably launched by magnetic reconnection between small-scale magnetic flux tubes underneath the envelope loop. This study emphasizes that in the complex upper atmosphere of the Sun, the dynamics of the 3D coupled magnetic field and flow field plays a key role in thermalizing 1D structures such as coronal loops. An animation associated to Fig. 1 is available at http://https://www.aanda.org
Can Thermal Nonequilibrium Explain Coronal Loops?
NASA Technical Reports Server (NTRS)
Klimchuk, James A.; Karpen, Judy T.; Antiochos, Spiro K.
2010-01-01
Any successful model of coronal loops must explain a number of observed properties. For warm (approx. 1 MK) loops, these include: 1. excess density, 2. flat temperature profile, 3. super-hydrostatic scale height, 4. unstructured intensity profile, and 5. 1000-5000 s lifetime. We examine whether thermal nonequilibrium can reproduce the observations by performing hydrodynamic simulations based on steady coronal heating that decreases exponentially with height. We consider both monolithic and multi-stranded loops. The simulations successfully reproduce certain aspects of the observations, including the excess density, but each of them fails in at least one critical way. -Xonolithic models have far too much intensity structure, while multi-strand models are either too structured or too long-lived. Storms of nanoflares remain the only viable explanation for warm loops that has been proposed so far. Our results appear to rule out the widespread existence of heating that is both highly concentrated low in the corona and steady or quasi-steady (slowly varying or impulsive with a rapid cadence). Active regions would have a very different appearance if the dominant heating mechanism had these properties. Thermal nonequilibrium may nonetheless play an important role in prominences and catastrophic cooling e(veen.gts..,coronal rain) that occupy a small fraction of the coronal volume. However, apparent inconsistencies between the models and observations of cooling events have yet to be understood.
A proposal of a local modified QCD
NASA Astrophysics Data System (ADS)
Cabo Montes de Oca, A.
2012-06-01
A local and renormalizable version of a modified PQCD introduced in previous works is presented. The construction indicates that it could be equivalent to massless QCD. The case in which only quark condensate effects are retained is discussed in more detail. Then, the appearing auxiliary fermion fields can be integrated, leading to a theory with the action of massless QCD, to which one local and gauge invariant Lagrangian term for each quark flavour is added. Those action terms are defined by two gluon and two quark fields, in a form curiously not harming power counting renormalizability. The gluon self-energy is evaluated in second order in the gauge coupling and all orders in the new quark couplings, and the result became transversal as required by the gauge invariance. The vacuum energy was also calculated in the two-loop approximation and became gauge parameter independent. The possibilities that higher-loop contributions to the vacuum energy allow the generation of a quark mass hierarchy as a flavour symmetry-breaking effect are commented. The decision on this issue needs a further evaluation of more than two-loop contributions, in which more than one type of quark loops start appearing, possibly leading to interference effects in the vacuum energy.
THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmelz, J. T.; Pathak, S., E-mail: jschmelz@memphis.edu
2012-09-10
The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescalesmore » less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.« less
Loop Diuretics in the Treatment of Hypertension.
Malha, Line; Mann, Samuel J
2016-04-01
Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.
Spin entanglement, decoherence and Bohm's EPR paradox.
Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D
2009-10-12
We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.
Automatic Event Detection in Search for Inter-Moss Loops in IRIS Si IV Slit-Jaw Images
NASA Technical Reports Server (NTRS)
Fayock, Brian; Winebarger, Amy R.; De Pontieu, Bart
2015-01-01
The high-resolution capabilities of the Interface Region Imaging Spectrometer (IRIS) mission have allowed the exploration of the finer details of the solar magnetic structure from the chromosphere to the lower corona that have previously been unresolved. Of particular interest to us are the relatively short-lived, low-lying magnetic loops that have foot points in neighboring moss regions. These inter-moss loops have also appeared in several AIA pass bands, which are generally associated with temperatures that are at least an order of magnitude higher than that of the Si IV emission seen in the 1400 angstrom pass band of IRIS. While the emission lines seen in these pass bands can be associated with a range of temperatures, the simultaneous appearance of these loops in IRIS 1400 and AIA 171, 193, and 211 suggest that they are not in ionization equilibrium. To study these structures in detail, we have developed a series of algorithms to automatically detect signal brightening or events on a pixel-by-pixel basis and group them together as structures for each of the above data sets. These algorithms have successfully picked out all activity fitting certain adjustable criteria. The resulting groups of events are then statistically analyzed to determine which characteristics can be used to distinguish the inter-moss loops from all other structures. While a few characteristic histograms reveal that manually selected inter-moss loops lie outside the norm, a combination of several characteristics will need to be used to determine the statistical likelihood that a group of events be categorized automatically as a loop of interest. The goal of this project is to be able to automatically pick out inter-moss loops from an entire data set and calculate the characteristics that have previously been determined manually, such as length, intensity, and lifetime. We will discuss the algorithms, preliminary results, and current progress of automatic characterization.
Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation
NASA Astrophysics Data System (ADS)
Laakso, Ilkka; Hirata, Akimasa
2012-12-01
In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.
Fabrication of ultrathin film capacitors by chemical solution deposition
Brennecka, Geoff L.; Tuttle, Bruce A.
2007-10-01
We present that a facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ≥1 mm 2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Furthermore, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nmmore » but are still macroscopically addressable with specific capacitance values >160 nF/mm 2.« less
Inflationary preheating dynamics with two-species condensates
NASA Astrophysics Data System (ADS)
Zache, T. V.; Kasper, V.; Berges, J.
2017-06-01
We investigate both analytically and numerically a two-component ultracold atom system in one spatial dimension. The model features a tachyonic instability, which incorporates characteristic aspects of the mechanisms for particle production in early universe inflaton models. We establish a direct correspondence between measurable macroscopic growth rates for occupation numbers of the ultracold Bose gas and the underlying microscopic processes in terms of Feynman loop diagrams. We analyze several existing ultracold atom setups featuring dynamical instabilities and propose optimized protocols for their experimental realization. We demonstrate that relevant dynamical processes can be enhanced using a seeding procedure for unstable modes and clarify the role of initial quantum fluctuations and the generation of a nonlinear secondary stage for the amplification of modes.
Influence of film thickness on topology and related magnetic interactions in Fe nanoparticle films
NASA Astrophysics Data System (ADS)
Ausanio, G.; Iannotti, V.; Amoruso, S.; Bruzzese, R.; Wang, X.; Aruta, C.; Arzeo, M.; Lanotte, L.
2013-08-01
Fe nanoparticle (NP)-assembled thin films with different thickness were prepared by femtosecond-pulsed laser deposition using different deposition times. The proper selection of the deposition time allows to control, to a certain degree, the morphology and topology of the deposited Fe nanoparticles (NPs) assembly, fostering non-uniform dense assemblies of NPs, with the consequent reduction of the influence of the exchange interactions on the macroscopic magnetic properties with decreasing thickness. The magnetic behavior of the Fe NP-assembled films with decreasing thickness is characterized by higher coercive field ( H c) values (a factor ≈4.5) and a good compromise between the hysteresis loops squareness and moderate exchange interactions, strongly correlated with the NPs topology.
Order by disorder and gaugelike degeneracy in a quantum pyrochlore antiferromagnet.
Henley, Christopher L
2006-02-03
The (three-dimensional) pyrochlore lattice antiferromagnet with Heisenberg spins of large spin length S is a highly frustrated model with a macroscopic degeneracy of classical ground states. The zero-point energy of (harmonic-order) spin-wave fluctuations distinguishes a subset of these states. I derive an approximate but illuminating effective Hamiltonian, acting within the subspace of Ising spin configurations representing the collinear ground states. It consists of products of Ising spins around loops, i.e., has the form of a Z2 lattice gauge theory. The remaining ground-state entropy is still infinite but not extensive, being O(L) for system size O(L3). All these ground states have unit cells bigger than those considered previously.
Global constraints on Z2 fluxes in two different anisotropic limits of a hypernonagon Kitaev model
NASA Astrophysics Data System (ADS)
Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi
2018-05-01
The Kitaev model is an exactly-soluble quantum spin model, whose ground state provides a canonical example of a quantum spin liquid. Spin excitations from the ground state are fractionalized into emergent matter fermions and Z2 fluxes. The Z2 flux excitation is pointlike in two dimensions, while it comprises a closed loop in three dimensions because of the local constraint for each closed volume. In addition, the fluxes obey global constraints involving (semi)macroscopic number of fluxes. We here investigate such global constraints in the Kitaev model on a three-dimensional lattice composed of nine-site elementary loops, dubbed the hypernonagon lattice, whose ground state is a chiral spin liquid. We consider two different anisotropic limits of the hypernonagon Kitaev model where the low-energy effective models are described solely by the Z2 fluxes. We show that there are two kinds of global constraints in the model defined on a three-dimensional torus, namely, surface and volume constraints: the surface constraint is imposed on the even-odd parity of the total number of fluxes threading a two-dimensional slice of the system, while the volume constraint is for the even-odd parity of the number of the fluxes through specific plaquettes whose total number is proportional to the system volume. In the two anisotropic limits, therefore, the elementary excitation of Z2 fluxes occurs in a pair of closed loops so as to satisfy both two global constraints as well as the local constraints.
Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin
2015-12-14
Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasingmore » AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.« less
A Biosignature Suite from Cave Pool Precipitates, Cottonwood Cave, New Mexico
NASA Astrophysics Data System (ADS)
Melim, L. A.; Liescheidt, R.; Northup, D. E.; Spilde, M. N.; Boston, P. J.; Queen, J. M.
2009-11-01
Calcite cave pool precipitates often display a variety of potential biosignatures from the macroscopic to the submicroscopic. A fossil cave pool in Cottonwood Cave, New Mexico, exhibits older stalactites and stalagmites that are completely coated in brown, laminated calcitic crust that extends down as pool fingers and u-loops. The pool fingers and u-loops are mainly micrite to clotted micrite, some recrystallized to microspar, with some isopachous spar layers. Micrite, particularly clotted micrite, is usually interpreted by carbonate workers as microbial in origin. Scanning electron microscopy examination of etched pool fingers, u-loops, and the brown crust revealed abundant calcified microbial filaments and biofilm. Energy dispersive X-ray analysis showed that these features have excess carbon, above that found in pure calcite. Independent carbon analysis indicated that these same samples contain up to 0.2% organic carbon. Since pool fingers hang down but form underwater, we hypothesize they are biogenic with hanging microbial filaments or biofilm acting as nuclei for calcite precipitation. Because of the abundance of micrite and fossil filaments, we further hypothesize that these pendant features formed during a period of plentiful nutrients and active hydrological activity when the pool was literally dripping with microbial slime. Although each of these lines of evidence could be interpreted in other ways, their combined weight strongly suggests the cave pool precipitates in Cottonwood Cave are biogenic. These investigations can be used to help inform extraterrestrial life-detection studies.
A biosignature suite from cave pool precipitates, Cottonwood Cave, New Mexico.
Melim, L A; Liescheidt, R; Northup, D E; Spilde, M N; Boston, P J; Queen, J M
2009-11-01
Calcite cave pool precipitates often display a variety of potential biosignatures from the macroscopic to the submicroscopic. A fossil cave pool in Cottonwood Cave, New Mexico, exhibits older stalactites and stalagmites that are completely coated in brown, laminated calcitic crust that extends down as pool fingers and u-loops. The pool fingers and u-loops are mainly micrite to clotted micrite, some recrystallized to microspar, with some isopachous spar layers. Micrite, particularly clotted micrite, is usually interpreted by carbonate workers as microbial in origin. Scanning electron microscopy examination of etched pool fingers, u-loops, and the brown crust revealed abundant calcified microbial filaments and biofilm. Energy dispersive X-ray analysis showed that these features have excess carbon, above that found in pure calcite. Independent carbon analysis indicated that these same samples contain up to 0.2% organic carbon. Since pool fingers hang down but form underwater, we hypothesize they are biogenic with hanging microbial filaments or biofilm acting as nuclei for calcite precipitation. Because of the abundance of micrite and fossil filaments, we further hypothesize that these pendant features formed during a period of plentiful nutrients and active hydrological activity when the pool was literally dripping with microbial slime. Although each of these lines of evidence could be interpreted in other ways, their combined weight strongly suggests the cave pool precipitates in Cottonwood Cave are biogenic. These investigations can be used to help inform extraterrestrial life-detection studies.
Gravitons as Embroidery on the Weave
NASA Astrophysics Data System (ADS)
Iwasaki, Junichi; Rovelli, Carlo
We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.
THE INSTABILITY AND NON-EXISTENCE OF MULTI-STRANDED LOOPS WHEN DRIVEN BY TRANSVERSE WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magyar, N.; Van Doorsselaere, T., E-mail: norbert.magyar@wis.kuleuven.be
2016-06-01
In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands in order to explain their thermal behavior and appearance. We perform three-dimensional (3D) ideal magnetohydrodynamics simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted into synthetic images, corresponding to the AIA 171 and 193 Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of themore » word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin–Helmholtz instability acting as the main mechanism. The final product of our simulation is a mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises strong doubts on the usability and applicability of coronal loop models consisting of independent strands.« less
Protein-mediated loops in supercoiled DNA create large topological domains
Yan, Yan; Ding, Yue; Leng, Fenfei; Dunlap, David; Finzi, Laura
2018-01-01
Abstract Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites. PMID:29538766
Navigating around the algebraic jungle of QCD: efficient evaluation of loop helicity amplitudes
NASA Astrophysics Data System (ADS)
Lam, C. S.
1993-05-01
A method is developed whereby spinor helicity techniques can be used to simlify the calculation of loop amplitudes. This is achieved by using the Feynman-parameter representation where the offending off-shell loop momenta do not appear. Other shortcuts motivated by the Bern-Kosower one-loop string calculations can be incorporated into the formalism. This includes color reorganization into Chan-Paton factors and the use of background Feynman gauge. This method is applicable to any Feynman diagram with any number of loops as long as the external masses can be ignored. In order to minimize the very considerable algebra encountered in non-abelian gauge theories, graphical methods are developed for most of the calculations. This enables the large number of terms encountered to be organized implicitly in the Feynman diagram without the necessity of writing down any of them algebraically. A one-loop four-gluon amplitude in a particular helicity configuration is computed explicitly to illustrate the method.
Residual stresses and vector hysteresis modeling
NASA Astrophysics Data System (ADS)
Ktena, Aphrodite
2016-04-01
Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.
Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro
NASA Astrophysics Data System (ADS)
Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul
2013-03-01
The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.
Construction of a psb C deletion strain in Synechocystis 6803.
Goldfarb, N; Knoepfle, N; Putnam-Evans, C
1997-01-01
Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.
THE ROLE OF KELVIN–HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Xia; Yuan, Ding; Xia, Chun
We propose a model for the formation of loop-top hard X-ray (HXR) sources in solar flares through the inverse Compton mechanism, scattering the surrounding soft X-ray (SXR) photons to higher energy HXR photons. We simulate the consequences of a flare-driven energy deposit in the upper chromosphere in the impulsive phase of single loop flares. The consequent chromosphere evaporation flows from both footpoints reach speeds up to hundreds of kilometers per second, and we demonstrate how this triggers Kelvin–Helmholtz instability (KHI) in the loop top, under mildly asymmetric conditions, or more toward the loop flank for strongly asymmetric cases. The KHImore » vortices further fragment the magnetic topology into multiple magnetic islands and current sheets, and the hot plasma within leads to a bright loop-top SXR source region. We argue that the magnetohydrodynamic turbulence that appears at the loop apex could be an efficient accelerator of non-thermal particles, which the island structures can trap at the loop-top. These accelerated non-thermal particles can upscatter the surrounding thermal SXR photons emitted by the extremely hot evaporated plasma to HXR photons.« less
Yang, Rong; Lee, Matthew C; Yan, Honggao; Duan, Yong
2005-07-01
Comparison of the crystallographic and NMR structures of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) suggests that the enzyme may undergo significant conformational change upon binding to its first substrate, ATP. Two of the three surface loops (loop 2 and loop 3) accounting for most of the conformational differences appear to be confined by crystal contacts, raising questions about the putative large-scale induced-fit conformational change of HPPK and the functional roles of the conserved side-chain residues on the loops. To investigate the loop dynamics in crystal-free environment, we carried out molecular dynamics and locally enhanced sampling simulations of the apo-enzyme and the HPPK.MgATP complex. Our simulations showed that the crystallographic B-factors underestimated the loop dynamics considerably. We found that the open-conformation of loop 3 in the binary complex is accessible to the apo-enzyme and is the favored conformation in solution phase. These results revise our previous view of HPPK-substrate interactions and the associated functional mechanism of conformational change. The lessons learned here offer valuable structural insights into the workings of HPPK and should be useful for structure-based drug design.
Dai, Weixing; Li, Yaqi; Meng, Xianke; Cai, Sanjun; Li, Qingguo; Cai, Guoxiang
2017-09-01
Few previous studies have taken the growth pattern into consideration when analyzing the prognostic value of tumor size in colorectal cancer (CRC). We sought to reveal the prognostic role of tumor size in different macroscopic growth patterns of CRC. Using Cancer Center datasets, we identified 4057 cases with colorectal adenocarcinoma treated with curative resection. Macroscopic growth patterns of tumors were classified into three types: infiltrative, ulcerative and expansive types based on tumor gross appearance. Univariate and multivariate Cox regression analyses were performed to evaluate the prognostic factors for overall survival (OS) and disease-free survival (DFS). In whole cohort, tumor size was an independent factor for OS (HR 1.10, 95%CI 1.04-1.16, p < 0.001). Subgroup analysis based on macroscopic growth pattern suggested that tumor size was an independent factor for OS both in the infiltrative (HR 1.37, 95%CI 1.12-1.66, p = 0.002) group and ulcerative group (HR 1.08, 95%CI 1.00-1.16, p = 0.044) and tumor size (HR 1.22, 95%CI 1.06-1.40, p = 0.004) was found as an independent factor for DFS only in infiltrative group. Tumor size is an independent factor for OS and DFS in patients with colorectal adenocarcinoma of infiltrative type, while only for OS in patients of ulcerative type. Copyright © 2017. Published by Elsevier Ltd.
Shimbashi, Wataru; Sugitani, Iwao; Kawabata, Kazuyoshi; Mitani, Hiroki; Toda, Kazuhisa; Yamada, Keiko; Sato, Yukiko
2018-02-01
While the biological behavior of follicular thyroid carcinoma (FTC) has been studied in great detail using clinical experience, few studies have investigated pre- or intraoperative factors related to the risk of distant metastasis (DM) among patients with FTC. The aim of this study was to analyze the characteristics of FTC with DM. This study retrospectively investigated 102 patients with FTC who underwent surgery between 1988 and 2013. We compared clinicopathological characteristics between FTC with and without DM. Univariate analysis revealed nodal metastasis (p=0.045), serum thyroglobulin (Tg) at initial operation (≥1000ng/ml; p<0.0001), widely invasive appearance according to macroscopic findings (p<0.0001), thick tumor capsule (≥1mm; p<0.0001), vascular invasion (p=0.0003), extrathyroidal invasion (p=0.047), and venous tumor embolism (p=0.045) as significant risk factors for DM. Multivariate analysis conducted using pre- and intraoperative factors identified thick tumor capsule (≥1mm), serum Tg at initial operation (≥1000ng/ml), and macroscopically widely invasive appearance as risk factors independently associated with development of DM. Patients with these risk factors should undergo total thyroidectomy and radioactive iodine ablation. Copyright © 2017 Elsevier B.V. All rights reserved.
Modelling a solar flare from X-ray, UV, and radio observations
NASA Astrophysics Data System (ADS)
Chiuderi Drago, F.; Monsignori Fossi, B. C.
1991-03-01
A slowly evolving, flaring loop was observed by the UVSP, XRP, and HXIS instruments onboard SMM on June 10, 1980. Simultaneous radio observations from Toyokawa (Japan) are also available. The SMM instruments have an angular resolution ranging from 3 to 30 arcsec by which the loop structure may be determined. It appears that these observations cannot be accounted for by a single loop model even assuming a variable temperature and pressure. The additional presence of a hot and tenuous isothermal plasma is necessary to explain the harder emission (HXIS). X-ray and UV data are used to fit the differential emission measure as a function of temperature and a model of the flare is deduced, which is then checked against radio data. An estimate of the heating function along the loop and of the total energy content of the loop is also given.
Statistical Characteristic of Global Tropical Cyclone Looping Motion
NASA Astrophysics Data System (ADS)
Shen, W.; Song, J.; Wang, Y.
2016-12-01
Statistical characteristic of looping motion of tropical cyclones (TCs) in the Western North Pacific (WPAC), North Atlantic (NATL), Eastern North Pacific (EPAC), Northern Indian Ocean (NIO), Southern Indian Ocean (SIO) and South Pacific (SPAC) basins are investigated by using IBTrACS archive maintained by NOAA. From global perspective, about ten percent TCs experience a looping motion in the above six basins. The southern hemisphere (SH) including SIO and SPAC basins have higher looping percentage than the northern hemisphere (NH), while the EPAC basin has the least looping percentage. The interannual variation of the number of looping TCs are significantly correlated with that of total TCs in the NATL, SIO and SPAC basins, while there are no correlations between the EPAC and NIO basins. The numbers of looping TCs have a higher percentage in the early and late cyclone season in the NH rather than the peak period of cyclone season, while the SIO and SPAC basins have the higher looping percentage in the early and late cyclone season, respectively. The looping motion of TCs mainly concentrates on the scale of tropical depression to category 2 and has its peak value on the scale of tropical storm. The looping motion appears more frequently and has a higher percentage at the pre-mature stage than the post-mature stage of TCs in most basins except EPAC. Comparing the intensity and intensity variation caused by the looping motion, the weaker TCs tend to intensify after looping, while the more intense ones weaken.
The utility of routine histological examination of gunshot wounds.
Perez, Danielo B; Molina, D Kimberley
2012-09-01
Determining the range of fire is a crucial part of a forensic examination of gunshot wound victims. Traditionally, this has been accomplished by noting the gross appearance of soot or powder around the wound. This study was undertaken to determine the utility of routine histological examination of gunshot wounds as related to range-of-fire determination. A prospective study was performed, and a total of 69 gunshot wounds were examined both macroscopically and microscopically. Of the 45 entrance wounds examined, there was 100% concordance between macroscopic and microscopic analysis for the close-range wounds and 67% concordance for the distant wounds, with 33% of these wounds showing no evidence of soot or powder grossly but where residue was seen microscopically. In addition, 21% of the exit wounds examined showed microscopic evidence of soot/powder residues when none were visible macroscopically. As described in previous studies, it can be assumed that the bullet itself can deposit small residues along the wound track (bullet wipe) that can be seen microscopically and is unrelated to the range of fire. Therefore, the authors conclude there is no utility in the routine histological examination of gunshot wounds for the determination of range of fire.
Micro- and macro-behaviour of fluid flow through rock fractures: an experimental study
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Nemcik, Jan; Ma, Shuqi
2013-12-01
Microscopic and macroscopic behaviour of fluid flow through rough-walled rock fractures was experimentally investigated. Advanced microfluidic technology was introduced to examine the microscopic viscous and inertial effects of water flow through rock fractures in the vicinity of voids under different flow velocities, while the macroscopic behaviour of fracture flow was investigated by carrying out triaxial flow tests through fractured sandstone under confining stresses ranging from 0.5 to 3.0 MPa. The flow tests show that the microscopic inertial forces increase with the flow velocity with significant effects on the local flow pattern near the voids. With the increase in flow velocity, the deviation of the flow trajectories is reduced but small eddies appear inside the cavities. The results of the macroscopic flow tests show that the linear Darcy flow occurs for mated rock fractures due to small aperture, while a nonlinear deviation of the flow occurs at relatively high Reynolds numbers in non-mated rock fracture (Re > 32). The microscopic experiments suggest that the pressure loss consumed by the eddies inside cavities could contribute to the nonlinear fluid flow behaviour through rock joints. It is found that such nonlinear flow behaviour is best matched with the quadratic-termed Forchheimer equation.
Stochastic space interval as a link between quantum randomness and macroscopic randomness?
NASA Astrophysics Data System (ADS)
Haug, Espen Gaarder; Hoff, Harald
2018-03-01
For many stochastic phenomena, we observe statistical distributions that have fat-tails and high-peaks compared to the Gaussian distribution. In this paper, we will explain how observable statistical distributions in the macroscopic world could be related to the randomness in the subatomic world. We show that fat-tailed (leptokurtic) phenomena in our everyday macroscopic world are ultimately rooted in Gaussian - or very close to Gaussian-distributed subatomic particle randomness, but they are not, in a strict sense, Gaussian distributions. By running a truly random experiment over a three and a half-year period, we observed a type of random behavior in trillions of photons. Combining our results with simple logic, we find that fat-tailed and high-peaked statistical distributions are exactly what we would expect to observe if the subatomic world is quantized and not continuously divisible. We extend our analysis to the fact that one typically observes fat-tails and high-peaks relative to the Gaussian distribution in stocks and commodity prices and many aspects of the natural world; these instances are all observable and documentable macro phenomena that strongly suggest that the ultimate building blocks of nature are discrete (e.g. they appear in quanta).
Tribological Properties of Nanodiamonds in Aqueous Suspensions: Effect of the Surface Charge
NASA Astrophysics Data System (ADS)
Krim, J.; Liu, Zijian; Leininger, D. A.; Kooviland, A.; Smirnov, A. I.; Shendarova, O.; Brenner, D. W.
The presence of granular nanoparticulates, be they wear particles created naturally by frictional rubbing at a geological fault line or products introduced as lubricant additives, can dramatically alter friction at solid-liquid interfaces. Given the complexity of such systems, understanding system properties at a fundamental level is particularly challenging. The Quartz Crystal Microbalance (QCM) is an ideal tool for studies of material-liquid-nanoparticulate interfaces. We have employed it here to study the uptake and nanotribological properties of positively and negatively charged 5-15 nm diameter nanodiamonds dispersed in water[1] in the both the presence and absence of a macroscopic contact with the QCM electrode. The nanodiamonds were found to impact tribological performance at both nanometer and macroscopic scales. The tribological effects were highly sensitive to the sign of the charge: negatively (positively) charged particles were more weakly (strongly) bound and reduced (increased) frictional drag at the solid-liquid interface. For the macroscopic contacts, negatively charged nanodiamonds appeared to be displaced from the contact, while the positively charged ones were not. Overall, the negatively charged nanodiamonds were more stable in an aqueous dispersion for extended time periods. Work supported by NSF and DOE.
Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.
Keller, Ole
2005-08-01
On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Morgan, Huw; Leonard, Drew
During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, withmore » emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.« less
2012-01-01
Background During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile “trigger loop” of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the “bridge helix” that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. Results All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as “switch” residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. Conclusions Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation. PMID:22676913
Key issues in the computational simulation of GPCR function: representation of loop domains
NASA Astrophysics Data System (ADS)
Mehler, E. L.; Periole, X.; Hassan, S. A.; Weinstein, H.
2002-11-01
Some key concerns raised by molecular modeling and computational simulation of functional mechanisms for membrane proteins are discussed and illustrated for members of the family of G protein coupled receptors (GPCRs). Of particular importance are issues related to the modeling and computational treatment of loop regions. These are demonstrated here with results from different levels of computational simulations applied to the structures of rhodopsin and a model of the 5-HT2A serotonin receptor, 5-HT2AR. First, comparative Molecular Dynamics (MD) simulations are reported for rhodopsin in vacuum and embedded in an explicit representation of the membrane and water environment. It is shown that in spite of a partial accounting of solvent screening effects by neutralization of charged side chains, vacuum MD simulations can lead to severe distortions of the loop structures. The primary source of the distortion appears to be formation of artifactual H-bonds, as has been repeatedly observed in vacuum simulations. To address such shortcomings, a recently proposed approach that has been developed for calculating the structure of segments that connect elements of secondary structure with known coordinates, is applied to 5-HT2AR to obtain an initial representation of the loops connecting the transmembrane (TM) helices. The approach consists of a simulated annealing combined with biased scaled collective variables Monte Carlo technique, and is applied to loops connecting the TM segments on both the extra-cellular and the cytoplasmic sides of the receptor. Although this initial calculation treats the loops as independent structural entities, the final structure exhibits a number of interloop interactions that may have functional significance. Finally, it is shown here that in the case where a given loop from two different GPCRs (here rhodopsin and 5-HT2AR) has approximately the same length and some degree of sequence identity, the fold adopted by the loops can be similar. Thus, in such special cases homology modeling might be used to obtain initial structures of these loops. Notably, however, all other loops in these two receptors appear to be very different in sequence and structure, so that their conformations can be found reliably only by ab initio, energy based methods and not by homology modeling.
Plasma transport in the Io torus - The importance of microscopic diffusion
NASA Technical Reports Server (NTRS)
Mei, YI; Thorne, Richard M.
1991-01-01
This paper considers the question of whether the distribution of mass in the Io plasma torus is consistent with the concept of interchange eddy transport. Specifically, the flux tube content exhibits a gradual decrease with increasing radial distance from the source near Io without any evidence for substantial density irregularity associated with the plasma source or loss. Using a simple one-dimensional numerical model to simulate macroscopic interchange eddy transport, it is demonstrated that this smooth equilibrium distribution of mass can occur but only with the inclusion of a minimal level of small scale microscopic mixing at a rate approaching Bohm diffusion. Otherwise, the system exhibits a chaotic appearance which never approaches an equilibrium distribution. Various physical mechanisms for the microscopic diffusion process which is required to provide a sufficiently rapid mixing of material between the macroscopic eddies are discussed.
Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors
Jaiteh, Mariama; Taly, Antoine; Hénin, Jérôme
2016-01-01
Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such “Cys-less” receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the “Cys-loop” proline is absolutely conserved, suggesting the more fitting name “Pro loop” for that motif, and “Pro-loop receptors” for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes. PMID:26986966
Pinch technique and the Batalin-Vilkovisky formalism
NASA Astrophysics Data System (ADS)
Binosi, Daniele; Papavassiliou, Joannis
2002-07-01
In this paper we take the first step towards a nondiagrammatic formulation of the pinch technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the generalization of the method to all orders. We show that the task of comparing the effective Green's functions obtained by the pinch technique with those computed in the background field method Feynman gauge is significantly facilitated when employing the powerful quantization framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful nonlinear identities, which express the background field method Green's functions in terms of the conventional (quantum) ones and auxiliary Green's functions involving the background source and the gluonic antifield; these latter Green's functions are subsequently related by means of a Schwinger-Dyson type of equation to the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity.
CP-odd Higgs boson production in eγ collisions
NASA Astrophysics Data System (ADS)
Sasaki, Ken; Uematsu, Tsuneo
2018-06-01
We investigate the CP-odd Higgs boson production via two-photon processes in eγ collisions. The CP-odd Higgs boson, which we denote as A0, is expected to appear in the Two-Higgs Doublet Models (2HDM) as a minimal extension of Higgs sector for which the Minimal Supersymmetric Standard Model (MSSM) is a special case. The scattering amplitude for eγ → eA0 is evaluated at the electroweak one-loop level. The dominant contribution comes from top-quark loops when A0 boson is rather light and tan β is not large. There are no contributions from the W-boson and Z-boson loops nor the scalar top-quark (stop) loops. The differential cross section for the A0 production is analyzed.
Kassab, A
2012-02-01
The ultrasonographic appearance and measurements of the normal buffalo and camel eye globes were described in 60 buffaloes (Bos bubalis) aged 1 year (28 eyes) and 10 years (32 eyes), and in 51 humped camels (Camelus dromedarius) aged 1 year (26 eyes) and 10 years (24 eyes). Ocular measurements were recorded by A- and B-scan ultrasonographic examination of 40 buffalo eyes (18 young and 22 adult eyes) and 34 camel eyes (14 young and 20 adult eyes) using a KANGH ultrasound scanner equipped with 10 MHz probe. For gross measurements, 20 buffalo and 16 camel eye globes were frozen and dissected and the same measurements were made using fine callipers macroscopically. The aqueous and vitreous humour of the buffalo and camel eyes appeared anechoic. The cornea, anterior and posterior lens capsule and iris appeared hyperechoic. The ocular measurements for the axial length, vitreous chamber depth (VCD), corneal thickness, lens thickness and scleroretinal rim thickness increase with the advance of age in both buffaloes and camels. Except for the anterior chamber depth, VCD and lens thickness, which were larger in adult camels than in adult buffaloes, no other differences between ocular dimensions were observed in both species. The results of this study are valuable for comparative ocular anatomy and will be useful for ultrasonographic evaluation of ocular diseases in buffaloes and camels. © 2011 Blackwell Verlag GmbH.
[Diagnostic imaging of changes of the canine intervertebral disc].
Harder, Lisa K
2016-10-12
Intervertebral disc degeneration can cause intervertebral disc herniation. Diagnostic imaging, including radiography, computed tomography and magnetic resonance imaging, is the most important tool in diagnosis. Firstly, an overview of macroscopic and biochemical physiology and pathology of the intervertebral disc will be given. Subsequently, the physics of diagnostic imaging and the appearance of intervertebral disc degeneration and displacement in several imaging methods are described.
Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits
NASA Astrophysics Data System (ADS)
Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas
2018-04-01
Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.
Evidence for Nonuniform Heating of Coronal Loops Inferred from Multithread Modeling of TRACE Data
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Nightingale, Richard W.; Alexander, David
2000-10-01
The temperature Te(s) and density structure ne(s) of active region loops in EUV observed with TRACE is modeled with a multithread model, synthesized from the summed emission of many loop threads that have a distribution of maximum temperatures and that satisfy the steady state Rosner-Tucker-Vaiana (RTV) scaling law, modified by Serio et al. for gravitational stratification (called RTVSp in the following). In a recent Letter, Reale & Peres demonstrated that this method can explain the almost isothermal appearance of TRACE loops (observed by Lenz et al.) as derived from the filter-ratio method. From model-fitting of the 171 and 195 Å fluxes of 41 loops, which have loop half-lengths in the range of L=4-320 Mm, we find that (1) the EUV loops consist of near-isothermal loop threads with substantially smaller temperature gradients than are predicted by the RTVSp model; (2) the loop base pressure, p0~0.3+/-0.1 dynes cm-2, is independent of the loop length L, and it agrees with the RTVSp model for the shortest loops but exceeds the RTVSp model up to a factor of 35 for the largest loops; and (3) the pressure scale height is consistent with hydrostatic equilibrium for the shortest loops but exceeds the temperature scale height up to a factor of ~3 for the largest loops. The data indicate that cool EUV loops in the temperature range of Te~0.8-1.6 MK cannot be explained with the static steady state RTVSp model in terms of uniform heating but are fully consistent with Serio's model in the case of nonuniform heating (RTVSph), with heating scale heights in the range of sH=17+/-6 Mm. This heating function provides almost uniform heating for small loops (L<~20 Mm), but restricts heating to the footpoints of large loops (L~50-300 Mm).
Coupling between Catalytic Loop Motions and Enzyme Global Dynamics
Kurkcuoglu, Zeynep; Bakan, Ahmet; Kocaman, Duygu; Bahar, Ivet; Doruker, Pemra
2012-01-01
Catalytic loop motions facilitate substrate recognition and binding in many enzymes. While these motions appear to be highly flexible, their functional significance suggests that structure-encoded preferences may play a role in selecting particular mechanisms of motions. We performed an extensive study on a set of enzymes to assess whether the collective/global dynamics, as predicted by elastic network models (ENMs), facilitates or even defines the local motions undergone by functional loops. Our dataset includes a total of 117 crystal structures for ten enzymes of different sizes and oligomerization states. Each enzyme contains a specific functional/catalytic loop (10–21 residues long) that closes over the active site during catalysis. Principal component analysis (PCA) of the available crystal structures (including apo and ligand-bound forms) for each enzyme revealed the dominant conformational changes taking place in these loops upon substrate binding. These experimentally observed loop reconfigurations are shown to be predominantly driven by energetically favored modes of motion intrinsically accessible to the enzyme in the absence of its substrate. The analysis suggests that robust global modes cooperatively defined by the overall enzyme architecture also entail local components that assist in suitable opening/closure of the catalytic loop over the active site. PMID:23028297
N -loop running should be combined with N -loop matching
NASA Astrophysics Data System (ADS)
Braathen, Johannes; Goodsell, Mark D.; Krauss, Manuel E.; Opferkuch, Toby; Staub, Florian
2018-01-01
We investigate the high-scale behavior of Higgs sectors beyond the Standard Model, pointing out that the proper matching of the quartic couplings before applying the renormalization group equations (RGEs) is of crucial importance for reliable predictions at larger energy scales. In particular, the common practice of leading-order parameters in the RGE evolution is insufficient to make precise statements on a given model's UV behavior, typically resulting in uncertainties of many orders of magnitude. We argue that, before applying N -loop RGEs, a matching should even be performed at N -loop order in contrast to common lore. We show both analytical and numerical results where the impact is sizable for three minimal extensions of the Standard Model: a singlet extension, a second Higgs doublet and finally vector-like quarks. We highlight that the known two-loop RGEs tend to moderate the running of their one-loop counterparts, typically delaying the appearance of Landau poles. For the addition of vector-like quarks we show that the complete two-loop matching and RGE evolution hints at a stabilization of the electroweak vacuum at high energies, in contrast to results in the literature.
FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn
2014-10-01
Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches aremore » connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.« less
Chromospheric counterparts of solar transition region unresolved fine structure loops
NASA Astrophysics Data System (ADS)
Pereira, Tiago M. D.; Rouppe van der Voort, Luc; Hansteen, Viggo H.; De Pontieu, Bart
2018-04-01
Low-lying loops have been discovered at the solar limb in transition region temperatures by the Interface Region Imaging Spectrograph (IRIS). They do not appear to reach coronal temperatures, and it has been suggested that they are the long-predicted unresolved fine structures (UFS). These loops are dynamic and believed to be visible during both heating and cooling phases. Making use of coordinated observations between IRIS and the Swedish 1-m Solar Telescope, we study how these loops impact the solar chromosphere. We show for the first time that there is indeed a chromospheric signal of these loops, seen mostly in the form of strong Doppler shifts and a conspicuous lack of chromospheric heating. In addition, we find that several instances have a inverse Y-shaped jet just above the loop, suggesting that magnetic reconnection is driving these events. Our observations add several puzzling details to the current knowledge of these newly discovered structures; this new information must be considered in theoretical models. Two movies associated to Fig. 1 are available at http://https://www.aanda.org
Giant Primeval Magnetic Dipoles
NASA Astrophysics Data System (ADS)
Thompson, Christopher
2017-07-01
Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.
Moré, Gastón; Regensburger, Cristian; Gos, M Laura; Pardini, Lais; Verma, Shiv K; Ctibor, Juliana; Serrano-Martínez, Marcos Enrique; Dubey, Jitender P; Venturini, M Cecilia
2016-04-01
There is considerable confusion concerning the species of Sarcocystis in South American camelids (SAC). Several species names have been used; however, proper descriptions are lacking. In the present paper, we redescribe the macroscopic sarcocyst forming Sarcocystis aucheniae and describe and propose a new name, Sarcocystis masoni for the microscopic sarcocyst forming species. Muscles samples were obtained from llamas (Lama glama) and guanacos (Lama guanicoe) from Argentina and from alpacas (Vicugna pacos) and llamas from Peru. Individual sarcocysts were processed by optical and electron microscopy, and molecular studies. Microscopic sarcocysts of S. masoni were up to 800 µm long and 35-95 µm wide, the sarcocyst wall was 2·5-3·5 µm thick, and had conical to cylindrical villar protrusions (vp) with several microtubules. Each vp had 11 or more rows of knob-like projections. Seven 18S rRNA gene sequences obtained from sarcocysts revealed 95-96% identity with other Sarcocystis spp. sequences reported in the GenBank. Sarcocysts of S. aucheniae were macroscopic, up to 1·2 cm long and surrounded by a dense and laminar 50 µm thick secondary cyst wall. The sarcocyst wall was up to 10 µm thick, and had branched vp, appearing like cauliflower. Comparison of the 11 sequences obtained from individual macroscopic cysts evidenced a 98-99% of sequence homology with other S. aucheniae sequences. In conclusion, 2 morphologically and molecularly different Sarcocystis species, S. masoni (microscopic cysts) and S. aucheniae (macroscopic cysts), were identified affecting different SAC from Argentina and Peru.
Non-supersymmetric Wilson loop in N = 4 SYM and defect 1d CFT
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Giombi, Simone; Tseytlin, Arkady A.
2018-03-01
Following Polchinski and Sully (arXiv:1104.5077), we consider a generalized Wilson loop operator containing a constant parameter ζ in front of the scalar coupling term, so that ζ = 0 corresponds to the standard Wilson loop, while ζ = 1 to the locally supersymmetric one. We compute the expectation value of this operator for circular loop as a function of ζ to second order in the planar weak coupling expansion in N = 4 SYM theory. We then explain the relation of the expansion near the two conformal points ζ = 0 and ζ = 1 to the correlators of scalar operators inserted on the loop. We also discuss the AdS5 × S 5 string 1-loop correction to the strong-coupling expansion of the standard circular Wilson loop, as well as its generalization to the case of mixed boundary conditions on the five-sphere coordinates, corresponding to general ζ. From the point of view of the defect CFT1 defined on the Wilson line, the ζ-dependent term can be seen as a perturbation driving a RG flow from the standard Wilson loop in the UV to the supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the logarithm of the expectation value of the standard Wilson loop for the circular contour is larger than that of the supersymmetric one, which appears to be in agreement with the 1d analog of the F-theorem.
Interaction of irradiation-induced prismatic dislocation loops with free surfaces in tungsten
NASA Astrophysics Data System (ADS)
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-02-01
The prismatic dislocation loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, size and depth of the loop in the foil, they can escape to the free surface, thus invalidating TEM observations and conclusions. In this article small prismatic hexagonal and circular dislocation loops in tungsten with the Burgers vectors 1/2 〈 1 1 1 〉 and 〈 1 0 0 〉 are studied by molecular statics simulations using three embedded atom method (EAM) potentials. The calculated image forces are compared to known elastic solutions. A particular attention is paid to the critical stress to move edge dislocations. The escape of the loop to the free surface is quantified by a combination of atomistic simulations and elastic calculations. For example, for the 1/2 〈 1 1 1 〉 loop with diameter 7.4 nm in a 55 nm thick foil we calculated that about one half of the loops will escape to the free surface. This implies that TEM observations detect only approx. 50% of the loops that were originally present in the foil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.
Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less
Some new results for the one-loop mass correction to the compactified λϕ4 theory
NASA Astrophysics Data System (ADS)
Fucci, Guglielmo; Kirsten, Klaus
2018-03-01
In this work, we consider the one-loop effective action of a self-interacting λϕ4 field propagating in a D dimensional Euclidean space endowed with d ≤ D compact dimensions. The main purpose of this paper is to compute the corrections to the mass of the field due to the presence of the compactified dimensions. Although the results of the one-loop correction to the mass of a λϕ4 field are very well known for compactified toroidal spaces, where the field obeys periodic boundary conditions, similar results do not appear to be readily available for cases in which the scalar field is subject to Dirichlet and Neumann boundary conditions. We apply the results of the one-loop mass correction to the study of the critical temperature in Ginzburg-Landau models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.
2017-03-20
We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s{sup −1}. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, whichmore » may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.« less
Onset of multiferroicity in nickel and lithium co-substituted barium titanate ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud S.; James Raju, K. C.
2018-04-01
The structural, magnetic and ferroelectric properties of nickel and lithium co-substituted barium titanate were investigated in this work. Ba(1-x)LixNix/2TiO3 (x = 0, 0.02, 0.04 and 0.08) ceramics were synthesized via solid-state reaction with the assistance of microwave heating of the starting materials. The tetragonal structure has been observed in all samples, and it is confirmed by the Rietveld refinement study. The morphological study has been carried out by FE-SEM. Electron spin resonance (ESR) has been used to study the electron interaction and to verify the magnetism behavior of present samples. No resonance signal was observed in pure BaTiO3 samples. However, the resonance signal has appeared in the co-substituted samples. The result shows that the electron interactions are strongly affected by Ni2+ and Li+ concentrations. M-H loop was traced using VSM at room temperature. The results confirm that the sample with x = 0 shows an anti-ferromagnetic response. However, a ferromagnetic hysteresis loop arises with co-substitution. The emergence of M-H loops confirms the appearance of magnetic properties in Ni2+ and Li+ co-substituted BaTiO3 ceramics. The origin of magnetic behavior could be due to the carrier-mediated exchange interactions. Room temperature P-E hysteresis loop has been investigated at an applied electric field of 35 kV/cm and 33 Hz frequency. Measurements of room temperature ferroelectric and magnetic hysteresis loops indicate that the Ni2+ and Li+ co-substituted BaTiO3 ceramics show ferroelectricity and ferromagnetism simultaneously.
Unresolved fine-scale structure in solar coronal loop-tops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.
2014-12-10
New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.« less
NASA Technical Reports Server (NTRS)
Fan, Y.; Fisher, G. H.; Deluca, E. E.
1993-01-01
A series of 3D numerical simulations was carried out to examine the dynamical evolution of emerging flux loops in the solar convective envelope. The innermost portions of the loops are anchored beneath the base of the convective zone by the subadiabatic temperature gradient of the underlying overshoot region. It is found that, as the emerging loops approach the photosphere, the magnetic field strength of the leading side of each rising loop is about twice as large as that of the following side at the same depth. The evacuation of plasma out of the leading side of the rising loop results in an enhanced magnetic field strength there compared with the following side. It is argued that this result provides a natural explanation for the fact that the preceding (leading) polarity tends to have a less organized and more fragmented appearance, and that the preceding spots tend to be larger in area and fewer in number, and have a longer lifetime than the following spots.
NASA Astrophysics Data System (ADS)
Jurčišinová, E.; Jurčišin, M.
2018-04-01
Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.
Sethi, Paul M; Sheth, Chirag D; Pauzenberger, Leo; McCarthy, Mary Beth R; Cote, Mark P; Soneson, Emma; Miller, Seth; Mazzocca, Augustus D
2018-03-01
Numerous studies have identified factors that may affect the chances of rotator cuff healing after surgery. Intraoperative tendon quality may be used to predict healing and to determine type of repair and/or consideration of augmentation. There are no data that correlate how gross tendon morphology and degree of tendinopathy affect patient outcome or postoperative tendon healing. Purpose/Hypothesis: The purposes of this study were to (1) compare the gross appearance of the tendon edge during arthroscopic rotator cuff repair with its histological degree of tendinopathy and (2) determine if gross appearance correlated with postoperative repair integrity. The hypothesis was that gross (macroscopic) tendon with normal thickness, no delamination, and elastic tissue before repair would have a correlation with low Bonar scores, higher postoperative American Shoulder and Elbow Surgeons (ASES) scores, and increased rates of postoperative tendon healing on ultrasound. Cross-sectional study; Level of evidence, 3. A total of 105 patients undergoing repair of medium-size (1-3 cm) full-thickness rotator cuff tears were enrolled in the study. Intraoperatively, the supraspinatus tendon was rated on thickness, fraying, and stiffness. Tendon tissue was recovered for histological analysis based on the Bonar scoring system. Postoperative ASES and ultrasound assessment of healing were obtained 1 year after repair. Correlation between gross appearance of the tendon and rotator cuff histology was determined. Of the 105 patients, 85 were followed the study to completion. The mean age of the patients was 61.6 years; Bonar score, 7.5; preoperative ASES score, 49; and postoperative ASES score, 86. Ninety-one percent of repairs were intact on ultrasound. Gross appearance of torn rotator cuff tendon tissue did not correlate with histological appearance. Neither histological (Bonar) score nor gross appearance correlated with multivariate analysis of ASES score, postoperative repair status, or demographic data. The degree of tendinopathy did not correlate with morphological appearance of the tendon. Neither of these parameters correlated with healing or patient outcome. This study suggests that the degree of tendinopathy, unlike muscle atrophy, may not be predictive of outcomes and that, on appearance, poor quality tendon has adequate healing capacity. Therefore, abnormal gross tendon appearance should not affect the repair effort or technique.
Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria
NASA Astrophysics Data System (ADS)
Kitsunezaki, S.
In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Bonacci, Teresa; Vercillo, Vannio
2015-07-01
Ants are among the insects that colonize exposed human and animal corpses during the early stage of decomposition. In Calabria, Italy (as well as in other countries), Formicidae have been observed preying on immature stages of Diptera and other insects, as well as causing irregular scalloped areas of superficial skin loss on human corpses and animal carcasses. We present a case of injuries on a human corpse caused by ant feeding. The macroscopic appearance is described and the results of a histochemical investigation of the skin lesions caused by worker ants are reported for the first time. The investigation was carried out on the fresh corpse of a 53-year-old man discovered in a rural area of Cosenza province (Calabria, southern Italy). Numerous irregular areas of superficial skin loss caused by the ant Tapinoma nigerrimum (Nylander 1856) (Hymenoptera, Formicidae) were observed on the body surface, inflicted very early in the post-mortem period. Because the classification of lesions is of crucial importance for forensic investigations, the macroscopic appearance and distribution pattern of the lesions on the corpse are illustrated. The histochemical investigation of the damaged skin explains, for the first time, the mechanism of production of the lesions. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Numerical investigations on the characteristics of thermomagnetic instability in MgB2 bulks
NASA Astrophysics Data System (ADS)
Xia, Jing; Li, Maosheng; Zhou, Youhe
2017-07-01
This paper presents the characteristics of thermomagnetic instability in MgB2 bulks by numerically solving the macroscopic dynamics of thermomagnetic interaction governed by the coupled magnetic and heat diffusion equations in association with a modified E-J power-law relationship. The finite element method is used to discretize the system of partial differential equations. The calculated magnetization loops with flux jumps are consistent with the experimental results for MgB2 slabs bathed in a wide range of ambient temperatures. We reveal the evolution process of the thermomagnetic instability and present the distributions of the magnetic field, temperature, and current density before and after flux jumps. A 2D axisymmetric model is used to study the thermomagnetic instability in cylindrical MgB2 bulks. It is found that the number of flux jumps monotonously reduces as the ambient temperature rises and no flux jump appears when the ambient temperature exceeds a certain value. Moreover, the flux-jump phenomenon exists in a wide range of the ramp rate of the applied external field, i.e. 10-2-102 T s-1. Furthermore, the dependences of the first flux-jump field on the ambient temperature, ramp rate, and bulk thickness are investigated. The critical bulk thicknesses for stability are obtained for different ambient temperatures and sample radii. In addition, the influence of the capability of the interfacial heat transfer on the temporal response of the bulk temperature is discussed. We also find that the prediction of thermomagnetic instability is sensitive to the employment of the flux creep exponent in the simulations.
How securely is the testicular artery occluded in the spermatic cord by using a ligature?
Rijkenhuizen, A B M; Sommerauer, S; Fasching, M; Velde, K; Peham, C
2013-09-01
There are no studies on the ideal ligature technique for the spermatic cord. To compare the maximal resistance pressure in the testicular artery and the maximal tensile forces to produce failure of 2 different ligature techniques used for ligation of the equine spermatic cord. The capabilities of 2 types of ligatures, single knot loop and double knot loop, were assessed using a pressure-resistance test in testicular arteries and with an in vitro mechanical evaluation of the tensile strength by single cycle-to-failure testing. In the pressure-resistance test, the mean ± s.d. peak force at failure of the single knot loop was 354.4 ± 91.7 mmHg and for the double knot loop 303.2 ± 62.0 mmHg. There was no significant difference between the maximal load to failure of the single knot loop and double knot loop technique. The pressure needed for rupture was significantly higher (P = 0.001) than for leakage. The maximal tensile force at failure of the single knot loop was significantly higher than the double knot loop (P = 0.028). There was no significant difference in load elongation properties to failure between the single knot loop and double knot loop. Although no significant differences were obtained in the pressure-resistance test, the single knot loop sustained significantly greater load to failure than the double knot loop in single cycle-to-failure testing. Based on these findings, it would appear that the performance of the single knot loop should be superior to the double knot loop. Both ligature techniques are able to withstand the normal physiological intravascular pressure. The single knot loop has the greater breaking strength of the 2 ligatures tested and is less time consuming to perform and may therefore have advantages during equine castration. © 2012 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Riekel, C.; Craig, C. L.; Burghammer, M.; Müller, M.
2001-01-01
Scanning X-ray microdiffraction (SXD) permits the 'imaging' in-situ of crystalline phases, crystallinity and texture in whole biopolymer samples on the micrometre scale. SXD complements transmission electron microscopy (TEM) techniques, which reach sub-nanometre lateral resolution but require thin sections and a vacuum environment. This is demonstrated using a support thread from a web spun by the orb-weaving spider Eriophora fuliginea (C.L. Koch). Scanning electron microscopy (SEM) shows a central thread composed of two fibres to which thinner fibres are loosely attached. SXD of a piece of support thread approximately 60 µm long shows in addition the presence of nanometre-sized crystallites with the β-poly(L-alanine) structure in all fibres. The crystallinity of the thin fibres appears to be higher than that of the central thread, which probably reflects a higher polyalanine content of the fibroins. The molecular axis of the polymer chains in the central thread is orientated parallel to the macroscopic fibre axis, but in the thin fibres the molecular axis is tilted by about 71° to the macroscopic fibre axis. A helical model is tentatively proposed to describe this morphology. The central thread has a homogeneous distribution of crystallinity along the macroscopic fibre axis.
Rathke, Hendrik; Hamm, Bernd; Guettler, Felix; Lohneis, Philipp; Stroux, Andrea; Suttmeyer, Britta; Jonczyk, Martin; Teichgräber, Ulf; de Bucourt, Maximilian
2015-12-01
In a patient, it is usually not macroscopically possible to estimate the non-viable volume induced by radiofrequency ablation (RFA) after the procedure. The purpose of this study was to use an ex vivo bovine liver model to perform magnetic resonance (MR) volumetry of the visible tissue signal change induced by RFA and to correlate the MR measurement with the actual macroscopic volume measured in the dissected specimens. Sixty-four liver specimens cut from 16 bovine livers were ablated under constant simulated, close physiological conditions with target volumes set to 14.14 ml (3-cm lesion) and 65.45 ml (5-cm lesion). Four commercially available radiofrequency (RF) systems were tested (n=16 for each system; n=8 for 3 cm and n=8 for 5 cm). A T1-weighted turbo spin echo (TSE) sequence with inversion recovery and a proton-density (PD)-weighted TSE sequence were acquired in a 1.0-T open magnetic resonance imaging (MRI) system. After manual dissection, actual macroscopic ablation diameters were measured and volumes calculated. MR volumetry was performed using a semiautomatic software tool. To validate the correctness and feasibility of the volume formula in macroscopic measurements, MR multiplanar reformation diameter measurements with subsequent volume calculation and semiautomatic MR volumes were correlated. Semiautomatic MR volumetry yielded smaller volumes than manual measurement after dissection, irrespective of RF system used, target lesion size, and MR sequence. For the 3-cm lesion, only 43.3% (T1) and 41.5% (PD) of the entire necrosis are detectable. For the 5-cm lesion, only 40.8% (T1) and 37.2% (PD) are visualized in MRI directly after intervention. The correlation between semiautomatic MR volumes and calculated MR volumes was 0.888 for the T1-weighted sequence and 0.875 for the PD sequence. After correlation of semiautomatic MR volumes and calculated MR volumes, it seems reasonable to use the respective volume formula for macroscopic volume calculation. Hyperacute MRI after ex vivo intervention may result in the underestimation of the real expansion of the produced necrosis zone. This must be kept in mind when using MRI for validating ablation success directly after RFA. One reason for the discrepancy between macroscopic and MRI appearance immediately after RFA may be that the transitional zone shows no or only partially visible MR signal change.
CSI, optimal control, and accelerometers: Trials and tribulations
NASA Technical Reports Server (NTRS)
Benjamin, Brian J.; Sesak, John R.
1994-01-01
New results concerning optimal design with accelerometers are presented. These results show that the designer must be concerned with the stability properties of two Linear Quadratic Gaussian (LQG) compensators, one of which does not explicitly appear in the closed-loop system dynamics. The new concepts of virtual and implemented compensators are introduced to cope with these subtleties. The virtual compensator appears in the closed-loop system dynamics and the implemented compensator appears in control electronics. The stability of one compensator does not guarantee the stability of the other. For strongly stable (robust) systems, both compensators should be stable. The presence of controlled and uncontrolled modes in the system results in two additional forms of the compensator with corresponding terms that are of like form, but opposite sign, making simultaneous stabilization of both the virtual and implemented compensator difficult. A new design algorithm termed sensor augmentation is developed that aids stabilization of these compensator forms by incorporating a static augmentation term associated with the uncontrolled modes in the design process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher
Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constantsmore » for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.« less
Free energy and phase transition of the matrix model on a plane wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.
2005-03-15
It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less
Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai
2015-01-01
Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.
Yi, Xiaoou; Culham Science Centre, Abingdon; Jenkins, Michael L.; ...
2015-04-21
The displacement damage induced in bulk W and W-5 wt.% Re and W-5 wt.% Ta alloys by 2 MeV W + irradiation to doses 3.3×10 17 - 2.5×10 19 W +/m 2 at temperatures ranging from 300 to750°C has been characterized by transmission electron microscopy. An automated sizing and counting approach based on Image J has been proposed and performed for all irradiation data. In all cases the damage comprised dislocation loops, mostly of interstitial type, with Burgers vectors b = ½<111> (> 60%) and b = <100>. The diameters of loops did not exceed 20 nm, with the majoritymore » being ≤ 6 nm. The loop number density varied between 10 22 and 10 23 loops/m 3 . With increasing irradiation temperature, the loop size distributions shifted towards larger sizes, and there was a substantial decrease in loop number densities. The damage microstructure was less sensitive to dose than to temperature. Under the same irradiation conditions, loop number densities in the alloys were higher than in pure W but loops were smaller. In grains with normals close to z = <001>, loop strings developed in W at temperatures ≥ 500°C and doses ≥ 1.2 dpa, but such strings were not observed in the W-Re or W-Ta alloys. However, in other grain orientations complex structures appeared in all materials and dense dislocation networks formed at higher doses.« less
Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudík, J.; Zuccarello, F. P.; Aulanier, G.
Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at the peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, the X1.1-class flare SOL2012-03-05T03:20 and the C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171more » Å, 193 Å, or 211 Å passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding and contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193 Å appears to be close by and cotemporal with an apparently imploding loop arcade seen in 171 Å. Later, the 193 Å loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.« less
A ``perfect'' Late Phase Flare Loop: X-ray And Radio Studies
NASA Astrophysics Data System (ADS)
Bain, Hazel; Fletcher, L.
2009-05-01
We present observations of a GOES X3.1 class flare which occurred on the 24th August 2002. The event was observed by a number of instruments including RHESSI, TRACE and NoRH. This flare is particularly interesting due to its position and orientation on the west limb of the Sun. The flare appears to be perpendicular to the line of sight making it possible to ascertain the geometrical parameters of the post flare arcade loops. We investigate the decay phase of the flare by comparing X-ray and radio observations of the post flare arcade loops with models of soft x-ray and thermal gyrosynchrotron emission to characterise the electron distribution present within the loop. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)
Loop models, modular invariance, and three-dimensional bosonization
NASA Astrophysics Data System (ADS)
Goldman, Hart; Fradkin, Eduardo
2018-05-01
We consider a family of quantum loop models in 2+1 spacetime dimensions with marginally long-ranged and statistical interactions mediated by a U (1 ) gauge field, both purely in 2+1 dimensions and on a surface in a (3+1)-dimensional bulk system. In the absence of fractional spin, these theories have been shown to be self-dual under particle-vortex duality and shifts of the statistical angle of the loops by 2 π , which form a subgroup of the modular group, PSL (2 ,Z ) . We show that careful consideration of fractional spin in these theories completely breaks their statistical periodicity and describe how this occurs, resolving a disagreement with the conformal field theories they appear to approach at criticality. We show explicitly that incorporation of fractional spin leads to loop model dualities which parallel the recent web of (2+1)-dimensional field theory dualities, providing a nontrivial check on its validity.
A rationale for human operator pulsive control behavior
NASA Technical Reports Server (NTRS)
Hess, R. A.
1979-01-01
When performing tracking tasks which involve demanding controlled elements such as those with K/s-squared dynamics, the human operator often develops discrete or pulsive control outputs. A dual-loop model of the human operator is discussed, the dominant adaptive feature of which is the explicit appearance of an internal model of the manipulator-controlled element dynamics in an inner feedback loop. Using this model, a rationale for pulsive control behavior is offered which is based upon the assumption that the human attempts to reduce the computational burden associated with time integration of sensory inputs. It is shown that such time integration is a natural consequence of having an internal representation of the K/s-squared-controlled element dynamics in the dual-loop model. A digital simulation is discussed in which a modified form of the dual-loop model is shown to be capable of producing pulsive control behavior qualitively comparable to that obtained in experiment.
Evidence for Magnetic Reconnection in Three Homologous Solar Flares Observed by RHESSI
NASA Technical Reports Server (NTRS)
Sui, Lin-Hui; Holman, Gordon D.; Dennis, Brian R.
2004-01-01
We present RHESSI observF5oss of three homologous flares, which occurred between April 14 and 16, 2002. We find that the RHESSI images of all three flares at energies between 6 and 25 keV had some common features: (1) A. separate coronal source up to approx. 30 deg. above the flare loop appeared in the early impulsive phase and stayed stationary for several minutes. (2) Before the flare loop moved upward; previously reported by others, the flare loop-top centroid moved downward for 2-4 minutes during the early impulsive phase of the Ears: falling by 13 - 30% of its initial height with a speed between 8 and 23 km/s. We conclude that these features are associated with the formation and development of a current sheet between the loop-top and the coronal source. In the April 14-15 flare, we find that the hard X-ray flux (greater than 25 keV) is correlated with the rate at which the flare loop moves upward, indicating that the faster the loop grows, the faster the reconnection rate, and therefore, the greater the flux of accelerated electrons. Subject headings: Sun: L'iaies-Sun: X-1-ay-s -
Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki
2014-04-07
Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidthsmore » shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.« less
A Simple Hierarchical Pooling Data Structure for Loop Closure
2016-10-16
ticated agglomerative schemes at a fraction of the effort. 1.1 Related work Loop closure is a key component in robotic mapping (SLAM) [37], autonomous...appearance-only slam-fab-map 2.0. In: Robotics : Science and Systems. vol. 5. Seattle, USA (2009) 7. Dong, J., Soatto, S.: Domain size pooling in local...detection with bags of binary words. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Intl. Conf. on. pp. 51–58. IEEE (2011) 9. Geiger, A
1977-07-01
analysis predicted the location of crack initiation on the fretted surfaces of specimens of Al -4% Cu alloy loaded axially or in bending and the calculated...at least for Al -4 d Cu alloy and three steels tested in air, the macroscopic stress distribution appears to pre- dict the initiation of fretting...and abrasive effe^-s were crucial to the fretting process [Tomlinson, et al .(175)l. The role of these two effects has now been downplayed (i.e
NASA Astrophysics Data System (ADS)
Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Milisavljevic, Dan
2018-04-01
Underlying nearly every quantitative discussion of the Cygnus Loop supernova remnant is uncertainty about its distance. Here, we present optical images and spectra of nebulosities around two stars whose mass-loss material appears to have interacted with the remnant's expanding shock front and thus can be used to estimate the Cygnus Loop's distance. Narrow passband images reveal a small emission-line nebula surrounding an M4 red giant near the remnant's eastern nebula NGC 6992. Optical spectra of the nebula show it to be shock-heated with significantly higher electron densities than seen in the remnant's filaments. This along with a bow-shaped morphology suggests it is likely red giant mass-loss material shocked and accelerated by passage of the Cygnus Loop's blast wave. We also identify a B7 V star located along the remnant's northwestern limb, which also appears to have interacted with the remnant's shock wave. It lies within a small arc of nebulosity in an unusually complex region of curved and distorted filaments along the remnant's northern shock front suggestive of a localized disturbance of the shock front due to the B star's stellar winds. Based on the assumption that these two stars lie inside the remnant, combined with an estimated distance to a molecular cloud situated along the remnant's western limb, we propose a distance to the Cygnus Loop of 1.0 ± 0.2 kpc. Although larger than several recent estimates of 500-800 pc, a distance ≃1 kpc helps resolve difficulties with the remnant's postshock cosmic ray and gas pressure ratio and estimated supernova explosion energy.
Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude
NASA Astrophysics Data System (ADS)
Reece, Matthew
2013-04-01
The recently discovered 125 GeV boson appears very similar to a Standard Model (SM) Higgs, but with data favoring an enhanced h → γγ rate. A number of groups have found that fits would allow (or, less so after the latest updates, prefer) that the ht\\bar {t} coupling have the opposite sign. This can be given meaning in the context of an electroweak chiral Lagrangian, but it might also be interpreted to mean that a new colored and charged particle runs in loops and reinforces the W-loop contribution to hFF, while also producing the opposite-sign hGG amplitude to that generated by integrating out the top. Due to a correlation in sign of the new physics amplitudes, when the SM hFF coupling is enhanced the hGG coupling is decreased. Thus, in order to not suppress the rate of h → WW and h → ZZ, which appear to be approximately SM-like, one would need the loop to ‘overshoot’, not only canceling the top contribution but producing an opposite-sign hGG vertex of about the same magnitude as that in the SM. We argue that most such explanations have severe problems with fine-tuning and, more importantly, vacuum stability. In particular, the case of stop loops producing an opposite-sign hGG vertex of the same size as the SM one is ruled out by a combination of vacuum decay bounds and Large Electron-Positron Collider (LEP) constraints. We also show that scenarios with a sign flip from loops of color octet charged scalars or new fermionic states are highly constrained.
Effect of neutron irradiation on defect evolution in Ti 3SiC 2 and Ti 2AlC
Tallman, Darin J.; He, Lingfeng; Garcia-Diaz, Brenda L.; ...
2015-10-23
Here, we report on the characterization of defects formed in polycrystalline Ti 3SiC 2 and Ti 2AlC samples exposed to neutron irradiation – up to 0.1 displacements per atom (dpa) at 350 ± 40 °C or 695 ± 25 °C, and up to 0.4 dpa at 350 ± 40 °C. Black spots are observed in both Ti 3SiC 2 and Ti 2AlC after irradiation to both 0.1 and 0.4 dpa at 350 °C. After irradiation to 0.1 dpa at 695 °C, small basal dislocation loops, with a Burgers vector of b = 1/2 [0001] are observed in both materials. Atmore » 9 ± 3 and 10 ± 5 nm, the loop diameters in the Ti 3SiC 2 and Ti 2AlC samples, respectively, were comparable. At 1 × 10 23 loops/m 3, the dislocation loop density in Ti 2AlC was ≈1.5 orders of magnitude greater than in Ti 3SiC 2, at 3 x 10 21 loops/m3. After irradiation at 350 °C, extensive microcracking was observed in Ti 2AlC, but not in Ti 3SiC 2. The room temperature electrical resistivities increased as a function of neutron dose for all samples tested, and appear to saturate in the case of Ti 3SiC 2. The MAX phases are unequivocally more neutron radiation tolerant than the impurity phases TiC and Al 2O 3. Based on these results, Ti 3SiC 2 appears to be a more promising MAX phase candidate for high temperature nuclear applications than Ti 2AlC.« less
A Residue in Loop 9 of the β2-Subunit Stabilizes the Closed State of the GABAA Receptor*
Williams, Carrie A.; Bell, Shannon V.; Jenkins, Andrew
2010-01-01
In γ-aminobutyric acid type A (GABAA) receptors, the structural elements that couple ligand binding to channel opening remain poorly defined. Here, site-directed mutagenesis was used to determine if Loop 9 on the non-GABA binding site interface of the β2-subunit may be involved in GABAA receptor activation. Specifically, residues Gly170-Gln185 of the β2-subunit were mutated to alanine, co-expressed with wild-type α1- and γ2S-subunits in human embryonic kidney (HEK) 293 cells and assayed for their activation by GABA, the intravenous anesthetic propofol and the endogenous neurosteroid pregnanolone using whole cell macroscopic recordings. Three mutants, G170A, V175A, and G177A, produced 2.5-, 6.7-, and 5.6-fold increases in GABA EC50 whereas one mutant, Q185A, produced a 5.2-fold decrease in GABA EC50. None of the mutations affected the ability of propofol or pregnanolone to potentiate a submaximal GABA response, but the Q185A mutant exhibited 8.3- and 3.5-fold increases in the percent direct activation by propofol and pregnanolone, respectively. Mutant Q185A receptors also had an increased leak current that was sensitive to picrotoxin, indicating an increased gating efficiency. Further Q185E, Q185L, and Q185W substitutions revealed a strong correlation between the hydropathy of the amino acid at this position and the GABA EC50. Taken together, these results indicate that β2 Loop 9 is involved in receptor activation by GABA, propofol, and pregnanolone and that β2(Q185) participates in hydrophilic interactions that are important for stabilizing the closed state of the GABAA receptor. PMID:20007704
Replication Fork Protection Factors Controlling R-Loop Bypass and Suppression.
Chang, Emily Yun-Chia; Stirling, Peter C
2017-01-14
Replication-transcription conflicts have been a well-studied source of genome instability for many years and have frequently been linked to defects in RNA processing. However, recent characterization of replication fork-associated proteins has revealed that defects in fork protection can directly or indirectly stabilize R-loop structures in the genome and promote transcription-replication conflicts that lead to genome instability. Defects in essential DNA replication-associated activities like topoisomerase, or the minichromosome maintenance (MCM) helicase complex, as well as fork-associated protection factors like the Fanconi anemia pathway, both appear to mitigate transcription-replication conflicts. Here, we will highlight recent advances that support the concept that normal and robust replisome function itself is a key component of mitigating R-loop coupled genome instability.
Ultrasonographic features of intestinal entrapment in dogs.
Swift, Inar
2009-01-01
The clinical and ultrasonographic features of postoperative intestinal entrapment were assessed in five dogs. Four had vomiting and lethargy, and one had peracute collapse and hematochezia. Ultrasonographic findings in four of five dogs were similar, being characterized by focally hyperechoic mesentery and abdominal effusion, surrounding a single loop of amotile and dilated intestine. In some dogs, the affected intestinal loop had a thickened or corrugated wall, or alteration of wall layering. In one dog, the site of entrapment could be directly visualized. In the most severely affected dog, a large volume of echogenic peritoneal effusion was present, as well as fluid dilation of multiple intestinal loops. The ultrasonographic appearance of intestinal entrapment is similar to that of intestinal perforation or infarction by other causes.
van Velsen, Valery; van Helmond, Noud; Chapman, Kenneth B
2018-04-01
Chronic neuropathic pain is often refractory to conventional medical treatments and leads to significant disability and socio-economic burden. Dorsal root ganglion (DRG) stimulation has recently emerged as a treatment for persistent neuropathic pain, but creating a strain relief loop at the S1 level has thus far been a challenging technical component of DRG lead placement. We describe a refined technique for strain relief loop formation at the S1 level using a transforaminal approach that we employed in a 45-year-old patient with intractable foot pain. We successfully placed a strain relief loop in the sacral space in a predictable and easily reproducible manner using a transforaminal anchorless approach. The patient experienced a decrease in visual analog pain score (85%), and improvement in function during the trial period, and proceeded with permanent implantation. The described sacral transforaminal strain relief loop formation technique appears to be a more reliable and predictable technique of DRG lead placement in the sacrum than those previously documented. © 2017 World Institute of Pain.
Soliton concepts and protein structure
NASA Astrophysics Data System (ADS)
Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao
2012-03-01
Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.
Multi-loop positivity of the planar $$ \\mathcal{N} $$ = 4 SYM six-point amplitude
Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.; ...
2017-02-22
We study the six-point NMHV ratio function in planarmore » $$ \\mathcal{N} $$ = 4 SYM theory in the context of positive geometry. The Amplituhedron construction of the integrand for the amplitudes provides a kinematical region in which the integrand was observed to be positive. It is natural to conjecture that this property survives integration, i.e. that the final result for the ratio function is also positive in this region. Establishing such a result would imply that preserving positivity is a surprising property of the Minkowski contour of integration and it might indicate some deeper underlying structure. We find that the ratio function is positive everywhere we have tested it, including analytic results for special kinematical regions at one and two loops, as well as robust numerical evidence through five loops. There is also evidence for not just positivity, but monotonicity in a “radial” direction. We also investigate positivity of the MHV six-gluon amplitude. While the remainder function ceases to be positive at four loops, the BDS-like normalized MHV amplitude appears to be positive through five loops.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.
We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear couplingmore » between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.« less
Ouaray, Zahra; ElSawy, Karim M; Lane, David P; Essex, Jonathan W; Verma, Chandra
2016-10-01
Most p53 mutations associated with cancer are located in its DNA binding domain (DBD). Many structures (X-ray and NMR) of this domain are available in the protein data bank (PDB) and a vast conformational heterogeneity characterizes the various free and complexed states. The major difference between the apo and the holo-complexed states appears to lie in the L1 loop. In particular, the conformations of this loop appear to depend intimately on the sequence of DNA to which it binds. This conclusion builds upon recent observations that implicate the tetramerization and the C-terminal domains (respectively TD and Cter) in DNA binding specificity. Detailed PCA analysis of the most recent collection of DBD structures from the PDB have been carried out. In contrast to recommendations that small molecules/drugs stabilize the flexible L1 loop to rescue mutant p53, our study highlights a need to retain the flexibility of the p53 DNA binding surface (DBS). It is the adaptability of this region that enables p53 to engage in the diverse interactions responsible for its functionality. Proteins 2016; 84:1443-1461. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A COLD FLARE WITH DELAYED HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleishman, Gregory D.; Pal'shin, Valentin D.; Lysenko, Alexandra L.
2016-05-10
Recently, a number of peculiar flares have been reported that demonstrate significant nonthermal particle signatures with low, if any, thermal emission, which implies a close association of the observed emission with the primary energy release/electron acceleration region. This paper presents a flare that appears “cold” at the impulsive phase, while displaying delayed heating later on. Using hard X-ray data from Konus- Wind , microwave observations by SSRT, RSTN, NoRH, and NoRP, context observations, and three-dimensional modeling, we study the energy release, particle acceleration, and transport, and the relationships between the nonthermal and thermal signatures. The flaring process is found tomore » involve the interaction between a small loop and a big loop with the accelerated particles divided roughly equally between them. Precipitation of the electrons from the small loop produced only a weak thermal response because the loop volume was small, while the electrons trapped in the big loop lost most of their energy in the coronal part of the loop, which resulted in coronal plasma heating but no or only weak chromospheric evaporation, and thus unusually weak soft X-ray emission. The energy losses of the fast electrons in the big tenuous loop were slow, which resulted in the observed delay of the plasma heating. We determined that the impulsively accelerated electron population had a beamed angular distribution in the direction of the electric force along the magnetic field of the small loop. The accelerated particle transport in the big loop was primarily mediated by turbulent waves, which is similar to other reported cold flares.« less
Conversion from mutual helicity to self-helicity observed with IRIS
NASA Astrophysics Data System (ADS)
Li, L. P.; Peter, H.; Chen, F.; Zhang, J.
2014-10-01
Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org
Simulations of fully deformed oscillating flux tubes
NASA Astrophysics Data System (ADS)
Karampelas, K.; Van Doorsselaere, T.
2018-02-01
Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org
Kirby, Karen A; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G; Chiang, Leslie A; Pan, Yun; Moran, Jennifer L; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G
2015-01-01
Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target. © FASEB.
Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.; ...
2017-06-22
Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less
Quantum Darwinism in Quantum Brownian Motion
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin; Zurek, Wojciech H.
2008-12-01
Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.
Quantum Darwinism in quantum Brownian motion.
Blume-Kohout, Robin; Zurek, Wojciech H
2008-12-12
Quantum Darwinism--the redundant encoding of information about a decohering system in its environment--was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state--a macroscopic superposition--the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.
2006-09-01
Monday through Friday in a single week. This daily schedule was chosen so that engineers could still access their office during part of the normal...aluminum, austenitic SS) structures do not cleave! "* Physical Manifestation - Bright, shiny appearance - " Crystallized " fracture surface - Chevrons...region with the "striations" Fracture mode was actually by SOC *Lesson? Don’t base conclusions on a single observation Higher mag macroscopic image
In Vitro Susceptibility Testing Methods for Caspofungin against Aspergillus and Fusarium Isolates
Arikan, Sevtap; Lozano-Chiu, Mario; Paetznick, Victor; Rex, John H.
2001-01-01
We investigated the relevance of prominent reduction in turbidity macroscopically (MIC) and formation of aberrant hyphal tips microscopically (minimum effective concentration; MEC) in measuring the in vitro activity of caspofungin against Aspergillus and Fusarium. Caspofungin generated low MICs and MECs against Aspergillus, but not for Fusarium. While MICs increased inconsistently when the incubation time was prolonged, MEC appeared as a stable and potentially relevant endpoint in testing in vitro caspofungin activity. PMID:11120990
1998-05-01
multiple molecular abnormalities which progressively accumulate to result in the clinical and morphological phenotypes seen as breast cancer. As the...ill defined and thus all patients with a first or second degree relative affected were recorded. Clinical data, mammograms, and information on risk...This has been done in conjunction with a record of all the clinical data available relating to the macroscopic appearance of the lesions, diagnostic
Stockley, R A; Hill, S L; Morrison, H M; Starkie, C M
1984-01-01
Sputum samples from 34 patients with bronchiectasis were assessed subjectively and the results related to objective measurements of elastase activity and albumin content. The results suggest that the macroscopic appearance of the sample is related to the elastase content. 88.7% of the purulent samples but none of the mucoid samples showing elastase activity. The macroscopic appearance was also associated with changes in protein transudation into the secretions. The median sputum: serum albumin concentration ratio was 0.71 X 10(-2) (range 0.22-4.7) in the mucoid samples but was greater in purulent samples (p less than 0.005), with a median value of 1.52 X 10(-2) (range 0.55-12.72), suggesting that purulence in the stable state was associated with low grade pulmonary inflammation or epithelial damage or both. Abnormalities of air flow were found in 24 of the patients (70.6%) but there was a significantly higher ratio of residual volume to total lung capacity (p less than 0.025) in patients who regularly produced purulent sputum (mean (SD) RV/TLC 44.4% (9.0%] than in those with mucoid or mucopurulent secretions (38.0% (9.9%]. A similar difference was found between those who produced elastase positive secretions and those who produced elastase negative ones. PMID:6565423
Friedberg, Joseph S
2013-01-01
Malignant pleural mesothelioma remains an incurable disease for which the role of surgery remains controversial. Though not yet clearly defined there does appear to be a subset of patients who benefit from a surgery-based multimodal treatment plan, beyond what would be expected with current nonoperative therapies. As with other pleural cancers it is probably not possible to achieve a microscopic complete resection with any operation. The goal of surgery in this setting, therefore, is to remove all visible and palpable disease - a macroscopic complete resection. There are basically two surgical approaches to achieve a macroscopic complete resection, lung-sacrificing and lung-sparing. Lung-sacrificing surgery, which likely leaves behind the least amount of microscopic disease, is accomplished as an extrapleural pneumonectomy. This is a well established and standardized operation. Lung-sparing surgery for malignant pleural mesothelioma, on the other hand, does not currently enjoy any degree of consistency. Not only are the reported variations on the operation widely disparate, but even the nomenclature to describe the operation is highly variable. Often the selection of a lung-sparing approach is reported as an intraoperative decision that hinges on the bulk of the cancer and/or the degree of extension into the pulmonary fissures. This article describes the current evolution of a lung-sparing procedure, radical pleurectomy, which has been used to achieve a macroscopic complete resection in over a hundred patients. Many of these cases involved bulky cancers, some exceeding two liters in volume, and often with extensive invasion of the pulmonary fissures. With the described technique there has not yet been an instance where conversion to extrapleural pneumonectomy would have contributed to the ability to achieve a macroscopic complete resection. Whether or not radical pleurectomy is the optimal approach for any or all patients undergoing surgery-based multimodal treatment for malignant pleural mesothelioma is not known, but the described technique does offer an operation that can serve as a consistent foundation for any surgery-based treatment strategy where achieving a macroscopic complete resection, while sparing the lung, is desired. Copyright © 2013. Published by Elsevier Inc.
Jordan, Frank; Arjunan, Palaniappa; Kale, Sachin; Nemeria, Natalia S.; Furey, William
2009-01-01
The region encompassing residues 401–413 on the E1 component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli comprises a loop (the inner loop) which was not seen in the X-ray structure in the presence of thiamin diphosphate, the required cofactor for the enzyme. This loop is seen in the presence of a stable analogue of the pre-decarboxylation intermediate, the covalent adduct between the substrate analogue methyl acetylphosphonate and thiamin diphosphate, C2α-phosphonolactylthiamin diphosphate. It has been shown that the residue H407 and several other residues on this loop are required to reduce the mobility of the loop so electron density corresponding to it can be seen once the pre-decarboxylation intermediate is formed. Concomitantly, the loop encompassing residues 541–557 (the outer loop) appears to work in tandem with the inner loop and there is a hydrogen bond between the two loops ensuring their correlated motion. The inner loop was shown to: a) sequester the active center from carboligase side reactions; b) assist the interaction between the E1 and the E2 components, thereby affecting the overall reaction rate of the entire multienzyme complex; c) control substrate access to the active center. Using viscosity effects on kinetics it was shown that formation of the pre-decarboxylation intermediate is specifically affected by loop movement. A cysteine-less variant was created for the E1 component, onto which cysteines were substituted at selected loop positions. Introducing an electron spin resonance spin label and an 19F NMR label onto these engineered cysteines, the loop mobility was examined: a) both methods suggested that in the absence of ligand, the loop exists in two conformations; b) line-shape analysis of the NMR signal at different temperatures, enabled estimation of the rate constant for loop movement, and this rate constant was found to be of the same order of magnitude as the turnover number for the enzyme under the same conditions. Furthermore, this analysis gave important insights into rate-limiting thermal loop dynamics. Overall, the results suggest that the dynamic properties correlate with catalytic events on the E1 component of the pyruvate dehydrogenase complex. PMID:20160956
[Characteristics of body constitution and their relations to success in learning].
Vikhruk, T I; Vikhruk, A Ia; Churganov, O A; Kolotov, V Ia
2004-01-01
Somatotype, finger dermatoglyphic pattern type, emotional stability level and foreign languages learning successfulness have been analyzed in 297 male cadets (aged 17-20 years) of the Military Institute of Physical Training. The cadets studied most frequently belonged to macrosomal and mesosomal somatotypes. In the study of finger patterns, loops were found to be most common (61.5% of all the patterns), while ringlets (33.4%) and arc patterns (5.1%) were less frequent. The amount of ulnar loops increased, while that of ringlets became less in the direction from micro- to macrosomal type. Almost half (46.9%) of the cadets appeared to be ambiverts, 30.8% were intraverts and the rest were extraverts. Loop patterns on all the fingers to a greater extent were found in cadets with high level of neuroticism; the cadets having lower neuroticism level were characterized by a combinations of loops with arcs on the left hand and arcs with ringlets on the right one. The cadets differing in foreign language learning successfulness level were different in their dermatoglyphic patterns and, especially in the prevalence of pattern combinations. So, among the excellent pupils the loop-arc combinations were 2.7 times more common and combinations of all three types of patterns (arcs, loops, ringlets) were 1.4 times more common.
Plasma dynamics above solar flare soft x-ray loop tops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doschek, G. A.; Warren, H. P.; McKenzie, D. E.
2014-06-10
We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup –1} and appear to increase withmore » height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.« less
Sonographic diagnosis of fetal intestinal volvulus with ileal atresia: a case report.
Yu, Wang; Ailu, Cai; Bing, Wang
2013-05-01
Fetal intestinal volvulus is a rare life-threatening condition usually manifesting after birth with most cases being associated with intestinal malrotation. It appears on prenatal sonography (US) as a twisting of the bowel loops around the mesenteric artery, leading to mechanical obstruction and ischemic necrosis of the bowel. We report a case of intrauterine intestinal volvulus with ileal atresia, suspected when US revealed a typical "whirlpool" sign at 37 weeks' gestation, with a segment of markedly distended bowel loops and small amount of fetal ascites. Copyright © 2012 Wiley Periodicals, Inc.
Electronic ferroelectricity induced by charge and orbital orderings.
Yamauchi, Kunihiko; Barone, Paolo
2014-03-12
After the revival of the magnetoelectric effect which took place in the early 2000s, the interest in multiferroic materials displaying simultaneous presence of spontaneous long-range magnetic and dipolar order has motivated an exponential growth of research activity, from both the experimental and theoretical perspectives. Within this context, and relying also on the rigorous formulation of macroscopic polarization as provided by the Berry-phase approach, it has been possible to identify new microscopic mechanisms responsible for the appearance of ferroelectricity. In particular, it has been realized that electronic spin, charge and orbital degrees of freedom may be responsible for the breaking of the space-inversion symmetry, a necessary condition for the appearance of electric polarization, even in centrosymmetric crystal structures. In view of its immediate potential application in magnetoelectric-based devices, many efforts have been made to understand how magnetic orderings may lead to ferroelectric polarization, and to identify candidate materials. On the other hand, the role of charge and orbital degrees of freedom, which have received much less attention, has been predicted to be non-negligible in several cases. Here, we review recent theoretical advances in the field of so-called electronic ferroelectricity, focusing on the possible mechanisms by which charge- and/or orbital-ordering effects may cause the appearance of macroscopic polarization. Generally, a naive distinction can be drawn between materials displaying almost localized electrons and those characterized by a strong covalent character and delocalized electrons. As for the latter, an intuitive understanding of basic mechanisms is provided in the framework of tight-binding model Hamiltonians, which are used to shed light on unusual charge/orbital effects in half-doped manganites, whereas the case of magnetite will be thoroughly discussed in light of recent progress pointing to an electronic origin of its proposed ferroelectric and magnetoelectric properties.
Airflow accelerates bovine and human articular cartilage drying and chondrocyte death.
Paterson, S I; Amin, A K; Hall, A C
2015-02-01
Exposure of articular cartilage to static air results in changes to the extracellular matrix (ECM) and stimulates chondrocyte death, which may cause joint degeneration. However during open orthopaedic surgery, cartilage is often exposed to laminar airflow, which may exacerbate these damaging effects. We compared drying in static and moving air in terms of cartilage appearance, hydration and chondrocyte viability, and tested the ability of saline-saturated gauze to limit the detrimental effects of air exposure. Articular cartilage from bovine metatarsophalangeal joints (N = 50) and human femoral heads (N = 6) was exposed for 90 min to (1) static air (2) airflow (up to 0.34 m/s), or (3) airflow (0.18 m/s), covered with gauze. Following air exposure, cartilage was also rehydrated (0.9% saline; 120 min) to determine the reversibility of drying effects. The influence of airflow was assessed by studying macroscopic appearance, and quantifying superficial zone (SZ) chondrocyte viability and cartilage hydration. Airflow caused advanced changes to cartilage appearance, accelerated chondrocyte death, and increased dehydration compared to static air. These effects were prevented if cartilage was covered by saline-saturated gauze. Cartilage rehydration reversed macroscopic changes associated with drying but the chondrocyte death was not altered. Chondrocytes at the cut edge of cartilage were more sensitive to drying compared to cells distant from the edge. Airflow significantly increased articular cartilage dehydration and chondrocyte death compared to static air. As laminar airflow is routinely utilised in operating theatres, it is essential that articular cartilage is kept wet via irrigation or by covering with saline-saturated gauze to prevent chondrocyte death. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Reproductive tactics of male bearded goby (Sufflogobius bibarbatus) in anoxic and hypoxic waters
NASA Astrophysics Data System (ADS)
Seivåg, Maria Larsen; Salvanes, Anne Gro Vea; Utne-Palm, Anne Christine; Kjesbu, Olav Si'gurd
2016-03-01
The bearded goby (Sufflogobius bibarbatus), a key species in the northern Benguela Upwelling Ecosystem, tolerates extremely low levels of oxygen. Yet little is known about how its reproduction is affected by these harsh living conditions. The distribution patterns of alternative reproductive tactics of male bearded goby across the continental shelf off Namibia were investigated. Histology and stereology were for the first time used to validate macroscopic maturity development by estimating volume fraction of the different stages of spermatogenesis using "Delesse principle", an approach so far for teleosts barely used in studies on testes but applied in advanced oocyte estimation. The macroscopic scale appeared suitable for the purpose, and the prevalence of territorial and sneaker tactics could therefore be documented. The sneakers had relative large testes and small seminal vesicles (SV), with the opposite being the case for the territorials. A third, numerous category with intermediate sized testes and SV was also recognized with unclear underlying tactical rationale, although regression analyses indicated similar investment in testes weight in relation to somatic weight as for the territorials. Low oxygen levels were the most important factor limiting spawning activity in territorial males. Our data suggested the existence of a spawning site on the outer shelf of the central Namibian shelf where the bottom water is hypoxic (oxygen saturation of 6.2-6.7%) while the anoxic middle shelf area (oxygen saturation of 1.7-2.9%) appeared to show too low oxygen levels for spawning to take place. Hence, significant parts of this large shelf area appear unsuited for successful reproduction of the bearded goby, in particular for nest building by the territorials.
Anomalous magnetic properties of 7 nm single-crystal Co3O4 nanowires
NASA Astrophysics Data System (ADS)
Lv, Ping; Zhang, Yan; Xu, Rui; Nie, Jia-Cai; He, Lin
2012-01-01
We present a study of magnetic properties of single-crystal Co3O4 nanowires with diameter about 7 nm. The nanowires expose (111) planes composed of plenty of Co3+ cations and exhibit two order temperatures at 56 K (TN of wire cores) and 73 K (order temperature of wire shells), which are far above TN = 40 K of bulk Co3O4. This novel behavior is attributed to symmetry breaking of surface Co3+ cations and magnetic proximity effect. The nanowire shells show macroscopic residual magnetic moments. Cooling in a magnetic field, a fraction of the residual moments are tightly pinned to the antiferromagnetic lattice, which results in an obvious horizontal and vertical shift of hysteresis loop. Our experiment demonstrates that the exchange bias field HE and the pinned magnetic moments Mpin follow a simple expression HE = aMpin with a a constant.
de Gooijer, C D; Wijffels, R H; Tramper, J
1991-07-01
The modeling of the growth of Nitrobacter agilis cell immobilized in kappa-carrageenan is presented. A detailed description is given of the modeling of internal diffusion and growth of cells in the support matrix in addition to external mass transfer resistance. The model predicts the substrate and biomass profiles in the support as well as the macroscopic oxygen consumption rate of the immobilized biocatalyst in time. The model is tested by experiments with continuously operated airlift loop reactors containing cells immobilized in kappa-carrageenan. The model describes experimental data very well. It is clearly shown that external mass transfer may not be neglected. Furthermore, a sensitivity analysis of the parameters at their values during the experiments revealed that apart from the radius of the spheres and the substrate bulk concentration, the external mass transfer resistance coefficient is the most sensitive parameter for our case.
Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds
NASA Astrophysics Data System (ADS)
Lafata, M. A.; Rettberg, L. H.; He, M. Y.; Pollock, T. M.
2018-01-01
The mechanism of oxidation-assisted growth of surface cracks during fatigue with compressive holds has been studied experimentally and via a model that describes the role of oxide and substrate properties. The creep-based finite element model has been employed to examine the role of material parameters in the damage evolution in a Ni-base single-crystal superalloy René N5. Low-cycle fatigue experiments with compressive holds were conducted at 1255 K and 1366 K (982 °C and 1093 °C). Interrupted and failed specimens were characterized for crack depth and spacing, oxide thickness, and microstructural evolution. Comparison of experimental to modeled hysteresis loops indicates that transient creep drives the macroscopic stress-strain response. Crack penetration rates are strongly influenced by growth stresses in the oxide, structural evolution in the substrate, and the development of γ ^' } denuded zones. Implications for design of alloys resistant to this mode of degradation are discussed.
Vortex knots in tangled quantum eigenfunctions
Taylor, Alexander J.; Dennis, Mark R.
2016-01-01
Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex three-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose–Einstein condensates. PMID:27468801
Two-loop renormalization of quantum gravity simplified
NASA Astrophysics Data System (ADS)
Bern, Zvi; Chi, Huan-Hang; Dixon, Lance; Edison, Alex
2017-02-01
The coefficient of the dimensionally regularized two-loop R3 divergence of (nonsupersymmetric) gravity theories has recently been shown to change when nondynamical three-forms are added to the theory, or when a pseudoscalar is replaced by the antisymmetric two-form field to which it is dual. This phenomenon involves evanescent operators, whose matrix elements vanish in four dimensions, including the Gauss-Bonnet operator which is also connected to the trace anomaly. On the other hand, these effects appear to have no physical consequences for renormalized scattering processes. In particular, the dependence of the two-loop four-graviton scattering amplitude on the renormalization scale is simple. We explain this result for any minimally-coupled massless gravity theory with renormalizable matter interactions by using unitarity cuts in four dimensions and never invoking evanescent operators.
On the Liouville Integrability of the Periodic Kostant-Toda Flow on Matrix Loops of Level k
NASA Astrophysics Data System (ADS)
Li, Luen-Chau; Nie, Zhaohu
2017-06-01
In this work, we consider the periodic Kostant-Toda flow on matrix loops in sl(n,C) of level k, which correspond to periodic infinite band matrices with period n with lower bandwidth equal to k and fixed upper bandwidth equal to 1 with 1's on the first superdiagonal. We show that the coadjoint orbits through the submanifold of such matrix loops can be identified with those of a finite-dimensional Lie group, which appears in the form of a semi-direct product. We then characterize the generic coadjoint orbits and obtain an explicit global cross-section for such orbits. We also establish the Liouville integrability of the periodic Kostant-Toda flow on such orbits via the construction of action-angle variables.
Dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1978-01-01
A dual-loop model of the human controller in single-axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure that involves feeding back that portion of controlled element output rate that is due to control activity. A novel feature of the model is the explicit appearance of the human's internal representation of the manipulator-controlled element dynamics in the inner loop. The sensor inputs to the human controller are assumed to be system error and control force. The former can be sensed via visual, aural, or tactile displays, whereas the latter is assumed to be sensed in kinesthetic fashion. A set of general adaptive characteristics for the model is hypothesized, including a method for selecting simplified internal models of the manipulator-controlled element dynamics. It is demonstrated that the model can produce controller describing functions that closely approximate those measured in four laboratory tracking tasks in which the controlled element dynamics vary considerably in terms of ease of control. An empirically derived expression for the normalized injected error remnant spectrum is introduced.
Schwannoma of the descending loop of the hypoglossal nerve: Case report.
Illuminati, Giulio; Pizzardi, Giulia; Pasqua, Rocco; Palumbo, Piergaspare; Vietri, Francesco
2017-01-01
Schwannomas of the descending loop of the hypoglossal nerve are very rare. They are slow-growing tumors that may masquerade a carotid body tumor. A 60-year-old female was referred for a latero-cervical mass appearing as a chemodectoma at CT-scan. At operation, a 2cm mass arising from the descending loop of the hypoglossal nerve was resected en bloc with the loop itself and a functional lymphadenectomy was associated. Post-operative course was uneventful and the patient is free from disease recurrence at one year follow-up. En bloc resection remains the real curative treatment of Schwannomas, ensuring unlimited freedom from disease, although causing functional impairment which may be significant. Nonetheless recurrence should be prevented as, beside requiring reintervention, it may harbor a malignant evolution towards sarcoma. Schwannomas of the descending lop of the hypoglossal nerve may masquerade a chemodectoma of the carotid bifurcation and can be curatively resected without any functional impairment. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knížat, Branislav, E-mail: branislav.knizat@stuba.sk; Urban, František, E-mail: frantisek.urban@stuba.sk; Mlkvik, Marek, E-mail: marek.mlkvik@stuba.sk
A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly inmore » the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.« less
Bursting reconnection of the two co-rotating current loops
NASA Astrophysics Data System (ADS)
Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi
2000-10-01
Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.
An investigation of coronal active region loop structures using AS&E rocket X-ray images
NASA Technical Reports Server (NTRS)
Webb, D. F.
1983-01-01
Simultaneous high spatial resolution observations at 6 cm in soft X-rays, in photospheric magnetograms, and in optical filtergrams were used to compare the most intense sources of centimetric emission in two active regions to coronal loops, sunspots, chromospheric structures, and photospheric magnetic fields. Results show that the majority of the bright microwave components are not associated with sunspots or X-ray emission. A nonthermal mechanism appears necessary to explain the brightest microwave components, discrete regions of continuous particle acceleration may be common in active regions. Studies of the plasma parameters of selected loops imply that the radio emission is consistent with gyro-resonance absorption at the third and fourth harmonic, at least from part of each loop. Results are presented for: (1) X-ray and microwave observations of active regions; (2) comparison of coronal holes observed in soft X-rays and Hel 10830 A spectrosheliograms; and (3) the reappearance of polar coronal holes and the evolution of the solar magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aich, Sanjukta; Prasad, Lata; Delbaere, Louis T.J.
GTP-dependent phosphoenolpyruvate carboxykinase (PCK) is the key enzyme that controls the blood glucose level during fasting in higher animals. Here we report the first substrate-free structure of a GTP-dependent phosphoenolpyruvate (PEP) carboxykinase from a bacterium, Corynebacterium glutamicum (CgPCK). The protein crystallizes in space group P2{sub 1} with four molecules per asymmetric unit. The 2.3 {angstrom} resolution structure was solved by molecular replacement using the human cytosolic PCK (hcPCK) structure (PDB ID: 1KHF) as the starting model. The four molecules in the asymmetric unit pack as two dimers, and is an artifact of crystal packing. However, the P-loop and the guaninemore » binding loop of the substrate-free CgPCK structure have different conformations from the other published GTP-specific PCK structures, which all have bound substrates and/or metal ions. It appears that a change in the P-loop and guanine binding loop conformation is necessary for substrate binding in GTP-specific PCKs, as opposed to overall domain movement in ATP-specific PCKs.« less
Radio imaging of solar flares using the very large array - New insights into flare process
NASA Technical Reports Server (NTRS)
Kundu, M. R.; Schmahl, E. J.; Vlahos, L.; Velusamy, T.
1982-01-01
An interpretation of VLA observations of microwave bursts is presented in an attempt to distinguish between certain models of flares. The VLA observations provide information about the pre-flare magnetic field topology and the existence of mildly relativistic electrons accelerated during flares. Examples are shown of changes in magnetic field topology in the hour before flares. In one case, new bipolar loops appear to emerge, which is an essential component of the model developed by Heyvaerts et al. (1977). In another case, a quadrupole structure, suggestive of two juxtaposed bipolar loops, appears to trigger the flare. Because of the observed diversity of magnetic field topologies in microwave bursts, it is believed that the magnetic energy must be dissipated in more than one way. The VLA observations are clearly providing means for sorting out the diverse flare models.
Supra Arcade Downflows in the Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Kobelski, A.; Savage, S. L.; Malaspina, D.
2017-12-01
Pinpointing the location of a single reconnection event in the corona is difficult due to observational constraints, although features directly resulting from this rapid reconfiguration of the field lines can be observed beyond the reconnection site. One set of such features are outflows in the form of post-reconnection loops, which have been linked to observations of supra-arcade downflows (SADs). SADs appear as sunward-traveling, density-depleted regions above flare arcades that develop during long duration eruptions. The limitations of remote sensing methods inherently results in ambiguities regarding the interpretation of SAD formation. Of particular interest is how these features are related to post-reconnection retracting magnetic field lines. In planetary magnetospheres, similar events to solar flares occur in the form of substorms, where reconnection in the anti-sunward tail of the magnetosphere causes field lines to retract toward the planet. Using data from the Time History of Events and Macroscopic Interactions during Substorms (THEMIS), we compare one particular aspect of substorms, dipolarization fronts, to SADs. Dipolarization fronts are observed as rapid but temporary changes in the magnetic field of the magnetotail plasma sheet into a more potential-like dipolar shape. These dipolarization fronts are believed to be retracting post-reconnection field lines. We combine data sets to show that the while the densities and magnetic fields involved vary greatly between the regimes, the plasma βs and Alfvén speeds are similar. These similarities allow direct comparison between the retracting field lines and their accompanying wakes of rarified plasma observed with THEMIS around the Earth to the observed morphological density depletions visible with XRT and AIA on the Sun. These results are an important source of feedback for models of coronal current sheets.
Supra Arcade Downflows in the Earth's Magnetotail
NASA Technical Reports Server (NTRS)
Kobelski, Adam; Savage, Sabrina L.; Malaspina, David M.
2017-01-01
Pinpointing the location of a single reconnection event in the corona is difficult due to observational constraints, although features directly resulting from this rapid reconfiguration of the field lines can be observed beyond the reconnection site. One set of such features are outflows in the form of post-reconnection loops, which have been linked to observations of supra-arcade downflows (SADs). SADs appear as sunward-traveling, density-depleted regions above flare arcades that develop during long duration eruptions. The limitations of remote sensing methods inherently results in ambiguities regarding the interpretation of SAD formation. Of particular interest is how these features are related to post-reconnection retracting magnetic field lines. In planetary magnetospheres, similar events to solar flares occur in the form of substorms, where reconnection in the anti-sunward tail of the magnetosphere causes field lines to retract toward the planet. Using data from the Time History of Events and Macroscopic Interactions during Substorms (THEMIS), we compare one particular aspect of substorms, dipolarization fronts, to SADs. Dipolarization fronts are observed as rapid but temporary changes in the magnetic field of the magnetotail plasma sheet into a more potential-like dipolar shape. These dipolarization fronts are believed to be retracting post-reconnection field lines. We combine data sets to show that the while the densities and magnetic fields involved vary greatly between the regimes, the plasma betas and Alfvén speeds are similar. These similarities allow direct comparison between the retracting field lines and their accompanying wakes of rarified plasma observed with THEMIS around the Earth to the observed morphological density depletions visible with XRT and AIA on the Sun. These results are an important source of feedback for models of coronal current sheets.
Sizable electron/neutron electric dipole moment in D 3 /D 7 μ -split supersymmetry
NASA Astrophysics Data System (ADS)
Dhuria, Mansi; Misra, Aalok
2014-10-01
Within the framework of N =1 gauged supergravity, using a phenomenological model that can be obtained locally as a Swiss-cheese Calabi-Yau string-theoretic compactification with a mobile D 3 -brane localized on a nearly special Lagrangian three cycle in the Calabi-Yau and fluxed stacks of wrapped D 7 -branes, and which provides a natural realization of μ -split supersymmetry (SUSY), we show that in addition to getting a significant value of an [electron/neutron (e/n)] electron dipole moment (EDM) at two-loop level, one can obtain a sizable contribution of (e/n) EDM even at one-loop level due to the presence of heavy supersymmetric fermions nearly isospectral with heavy sfermions. Unlike traditional split SUSY models in which the one-loop diagrams do not give significant contribution to the EDM of the electron/neutron because of very heavy sfermions existing as propagators in the loop, we show that one obtains a "healthy" value of the EDM in our model because of the presence of a heavy Higgsino, neutralino/chargino, and gaugino as fermionic propagators in the loops. The independent C P -violating phases are generated from nontrivial distinct phase factors associated with four Wilson line moduli [identified with first-generation leptons and quarks and their S U (2 )L -singlet cousins] as well as the D 3 -brane position moduli (identified with two Higgses), and the same are sufficient to produce overall distinct phase factors corresponding to all possible effective Yukawas as well as effective gauge couplings that we discuss in the context of N =1 gauged supergravity action. However, the complex phases responsible to generate a nonzero EDM at one-loop level mainly appear from an off-diagonal contribution of sfermion as well as Higgs mass matrices at the electroweak scale (EW). In our analysis, we obtain a dominant contribution of the electron/neutron EDM around de/e ≡O (1 0-29) cm from two-loop diagrams involving heavy sfermions and a light Higgs, and de/e ≡O (1 0-32) cm from a one-loop diagram involving a heavy chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of the order dn/e ≡O (1 0-33) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W± and the Higgs (responsible to generate the nontrivial C P -violating phase) in the two-loop diagrams as discussed by Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our D 3 /D 7 μ -split SUSY model at the EW scale. By conjecturing that the C P -violating phase can appear from the diagonalization of the Higgs mass matrix obtained in the context of μ -split SUSY, we also get an EDM of the electron/neutron around O (1 0-27) e cm in the case of the two-loop diagram involving W± bosons.
EUV Waves Driven by the Sudden Expansion of Transequatorial Loops Caused by Coronal Jets
NASA Astrophysics Data System (ADS)
Shen, Yuandeng; Tang, Zehao; Miao, Yuhu; Su, Jiangtao; Liu, Yu
2018-06-01
We present two events to study the driving mechanism of extreme-ultraviolet (EUV) waves that are not associated with coronal mass ejections (CMEs), by using high-resolution observations taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Observational results indicate that the observed EUV waves were accompanied by flares and coronal jets, but not the CMEs that were regarded as drivers of most EUV waves in previous studies. In the first case, it is observed that a coronal jet is ejected along a transequatorial loop system at a plane-of-the-sky (POS) speed of 335 ± 22 km s{}-1; in the meantime, an arc-shaped EUV wave appeared on the eastern side of the loop system. In addition, the EUV wave further interacted with another interconnecting loop system and launched a fast propagating (QFP) magnetosonic wave along the loop system, which had a period of 200 s and a speed of 388 ± 65 km s{}-1, respectively. In the second case, we observed a coronal jet that ejected at a POS speed of 282 ± 44 km s{}-1 along a transequatorial loop system as well as the generation of bright EUV waves on the eastern side of the loop system. Based on the observational results, we propose that the observed EUV waves on the eastern side of the transequatorial loop systems are fast-mode magnetosonic waves and that they are driven by the sudden lateral expansion of the transequatorial loop systems due to the direct impingement of the associated coronal jets, while the QFP wave in the fist case formed due to the dispersive evolution of the disturbance caused by the interaction between the EUV wave and the interconnecting coronal loops. It is noted that EUV waves driven by sudden loop expansions have shorter lifetimes than those driven by CMEs.
NASA Astrophysics Data System (ADS)
Christe, Steven; Inglis, A.; Aschwanden, M.; Dennis, B.
2011-05-01
On 2010 October 16th SDO/AIA observed its first flare using automatic exposure control. Coincidentally, this flare also exhibited a large number of interesting features. Firstly, a large ribbon significantly to the solar west of the flare kernel was ignited and was visible in all AIA wavelengths, posing the question as to how this energy was deposited and how it relates to the main flare site. A faint blast wave also emanates from the flare kernel, visible in AIA and observed traveling to the solar west at an estimated speed of 1000 km/s. This blast wave is associated with a weak white-light CME observed with STEREO B and a Type II radio burst observed from Green Bank Observatory (GBSRBS). One possibility is that this blast wave is responsible for the heating of the ribbon. However, closer scrutiny reveals that the flare site and the ribbon are in fact connected magnetically via coronal loops which are heated during the main energy release. These loops are distinct from the expected hot, post-flare loops present within the main flare kernel. RHESSI spectra indicate that these loops are heated to approximately 10 MK in the immediate flare aftermath. Using the multi-temperature capabilities of AIA in combination with RHESSI, and by employing the cross-correlation mapping technique, we are able to measure the loop temperatures as a function of time over several post-flare hours and hence measure the loop cooling rate. We find that the time delay between the appearance of loops in the hottest channel, 131 A, and the cool 171 A channel, is 70 minutes. Yet the causality of this event remains unclear. Is the ribbon heated via these interconnected loops or via a blast wave?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiff, Avery J.; Cranmer, Steven R.
Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from themore » initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s{sup -1} at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s{sup -1} in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.« less
Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froment, C.; Auchère, F.; Bocchialini, K.
In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory /EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with themore » Solar Dynamics Observatory /Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.« less
[Monilethrix--rare syndrome of structural hair abnormalities].
Brzezińska-Wcisło, L; Bogdanowski, T; Szeremeta-Bazylewicz, G; Pierzchała, E
1999-11-01
Monilethrix is a rare structural disorder of hair. Characteristic abnormalities in the form of alternating thinning and fusiform thickening are observed in most of hair shafts that we call beaded hair. Macroscopic estimation shows lustreless, dry, rough, fragile hair. Trichological examination usually reveals a considerable percentage of anagenic hair. According to our own experiences and literature data systemic therapy (vitamins) and topical treatment (desquamative ointments) are not effective sufficiently. Spontaneous regression of symptoms often appears with time. Five cases of familial occurrence of monilethrix have been presented.
Black Hole Thermodynamics and Lorentz Symmetry
NASA Astrophysics Data System (ADS)
Jacobson, Ted; Wall, Aron C.
2010-08-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.
1993-04-01
the clusters appear to form monoatomic layers on the (i x 1) substrate. This assertion, derived from the apparent z-corrugation in the STH images, is...top-layer lattice and thereby displacing one of the nearest-neighbor atoms. A related , although more concerted, atomic motion can also provide a viable...microscopic rate-limiting step(s) for this process are not necessarily related straightforwardly to the free- energy difference for the overall macroscopic
Soliton concepts and protein structure.
Krokhotin, Andrei; Niemi, Antti J; Peng, Xubiao
2012-03-01
Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.
Transcription of Gypsy Elements in a Y-Chromosome Male Fertility Gene of Drosophila Hydei
Hochstenbach, R.; Harhangi, H.; Schouren, K.; Bindels, P.; Suijkerbuijk, R.; Hennig, W.
1996-01-01
We have found that defective gypsy retrotransposons are a major constituent of the lampbrush loop pair Nooses in the short arm of the Y chromosome of Drosophila hydei. The loop pair is formed by male fertility gene Q during the primary spermatocyte stage of spermatogenesis, each loop being a single transcription unit with an estimated length of 260 kb. Using fluorescent in situ hybridization, we show that throughout the loop transcripts gypsy elements are interspersed with blocks of a tandemly repetitive Y-specific DNA sequence, ay1. Nooses transcripts containing both sequence types show a wide size range on Northern blots, do not migrate to the cytoplasm, and are degraded just before the first meiotic division. Only one strand of ay1 and only the coding strand of gypsy can be detected in the loop transcripts. However, as cloned genomic DNA fragments also display opposite orientations of ay1 and gypsy, such DNA sections cannot be part of the Nooses. Hence, they are most likely derived from the flanking heterochromatin. The direction of transcription of ay1 and gypsy thus appears to be of a functional significance. PMID:8852843
Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi
2016-01-22
The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact.more » From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.« less
Functional characteristics of a double positive feedback loop coupled with autorepression
NASA Astrophysics Data System (ADS)
Banerjee, Subhasis; Bose, Indrani
2008-12-01
We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic β-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the β-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the β-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON → OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out.
Ni-rich precipitates in a lead bismuth eutectic loop
NASA Astrophysics Data System (ADS)
Kikuchi, K.; Saito, S.; Hamaguchi, D.; Tezuka, M.
2010-03-01
Solidified LBE was sampled from the specimens, electro-magnetic pump, filter, drain valve and oxygen sensor at the JAEA Lead Bismuth Loop-1 (JLBL-1) where the structural material was made of SS316. The concentration of Ni, Fe and Cr in LBE were analyzed by the Inductive Coupled Plasma atomic emission spectrometer. It was concluded that the solution of Ni into LBE was not saturated although the concentration of Fe and Cr almost achieved to the values in the literature. A needle-type structure appeared on the surface of solidified LBE inside the tube specimens. It was found to be Ni-rich precipitates by X-ray analyses (Field Emission Scanning Electron Microscope, FE-SEM). LBE samples collected from a circulating loop after discharging did not show the amount of impurities equivalent to the LBE bulk property.
Two-loop renormalization of quantum gravity simplified
Bern, Zvi; Chi, Huan -Hang; Dixon, Lance; ...
2017-02-22
The coefficient of the dimensionally regularized two-loop R 3 divergence of (nonsupersymmetric) gravity theories has recently been shown to change when nondynamical three-forms are added to the theory, or when a pseudoscalar is replaced by the antisymmetric two-form field to which it is dual. This phenomenon involves evanescent operators, whose matrix elements vanish in four dimensions, including the Gauss-Bonnet operator which is also connected to the trace anomaly. On the other hand, these effects appear to have no physical consequences for renormalized scattering processes. In particular, the dependence of the two-loop four-graviton scattering amplitude on the renormalization scale is simple.more » As a result, we explain this result for any minimally-coupled massless gravity theory with renormalizable matter interactions by using unitarity cuts in four dimensions and never invoking evanescent operators.« less
Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.
Zhao, Bo; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826
The Inverse Optimal Control Problem for a Three-Loop Missile Autopilot
NASA Astrophysics Data System (ADS)
Hwang, Donghyeok; Tahk, Min-Jea
2018-04-01
The performance characteristics of the autopilot must have a fast response to intercept a maneuvering target and reasonable robustness for system stability under the effect of un-modeled dynamics and noise. By the conventional approach, the three-loop autopilot design is handled by time constant, damping factor and open-loop crossover frequency to achieve the desired performance requirements. Note that the general optimal theory can be also used to obtain the same gain as obtained from the conventional approach. The key idea of using optimal control technique for feedback gain design revolves around appropriate selection and interpretation of the performance index for which the control is optimal. This paper derives an explicit expression, which relates the weight parameters appearing in the quadratic performance index to the design parameters such as open-loop crossover frequency, phase margin, damping factor, or time constant, etc. Since all set of selection of design parameters do not guarantee existence of optimal control law, explicit inequalities, which are named the optimality criteria for the three-loop autopilot (OC3L), are derived to find out all set of design parameters for which the control law is optimal. Finally, based on OC3L, an efficient gain selection procedure is developed, where time constant is set to design objective and open-loop crossover frequency and phase margin as design constraints. The effectiveness of the proposed technique is illustrated through numerical simulations.
On the Occurrence of Thermal Nonequilibrium in Coronal Loops
NASA Astrophysics Data System (ADS)
Froment, C.; Auchère, F.; Mikić, Z.; Aulanier, G.; Bocchialini, K.; Buchlin, E.; Solomon, J.; Soubrié, E.
2018-03-01
Long-period EUV pulsations, recently discovered to be common in active regions, are understood to be the coronal manifestation of thermal nonequilibrium (TNE). The active regions previously studied with EIT/Solar and Heliospheric Observatory and AIA/SDO indicated that long-period intensity pulsations are localized in only one or two loop bundles. The basic idea of this study is to understand why. For this purpose, we tested the response of different loop systems, using different magnetic configurations, to different stratifications and strengths of the heating. We present an extensive parameter-space study using 1D hydrodynamic simulations (1020 in total) and conclude that the occurrence of TNE requires specific combinations of parameters. Our study shows that the TNE cycles are confined to specific ranges in parameter space. This naturally explains why only some loops undergo constant periodic pulsations over several days: since the loop geometry and the heating properties generally vary from one loop to another in an active region, only the ones in which these parameters are compatible exhibit TNE cycles. Furthermore, these parameters (heating and geometry) are likely to vary significantly over the duration of a cycle, which potentially limits the possibilities of periodic behavior. This study also confirms that long-period intensity pulsations and coronal rain are two aspects of the same phenomenon: both phenomena can occur for similar heating conditions and can appear simultaneously in the simulations.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.
2016-09-01
Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org
Hänse, Maria; Krautwald-Junghanns, Maria-Elisabeth; Reitemeier, Susanne; Einspanier, Almuth; Schmidt, Volker
2013-12-01
Knowledge of the reproductive cycle of male parrots is important for examining the male genital tract and for successful breeding, especially of endangered species. To evaluate different diagnostic methods and criteria concerning the classification of reproductive stages, we examined 20 testicular samples obtained at necropsy in psittacine birds of different species and testicular biopsy samples collected from 9 cockatiels (Nymphicus hollandicus) and 7 rose-ringed parakeets (Psittacula krameri) by endoscopy 4 times over a 12-month period. The testicular reproductive status was assessed histologically and then compared with the macroscopic appearance of the testicles and cytologic results. The histologic examination was nondiagnostic in 19 of 59 testicular biopsy samples. By contrast, the cytologic preparations were diagnostic in 57 of 59 biopsy samples. The results of the cytologic examination coincided with the histologic results in 34 of 38 biopsy samples and 18 of 20 necropsy samples. Macroscopic parameters displayed some differences between reproductive stages but provided an unreliable indication of the reproductive status. These results suggest that microscopic examination of a testicular biopsy sample is a reliable method for evaluating the reproductive status of male parrots and is preferable to the macroscopic evaluation of the testicle. Cytologic examination provides fast preliminary results, even when the histologic preparation is not sufficient for evaluation, but results may be erroneous. Thus, a combination of histologic and cytologic examination is recommended for evaluating testicular reproductive status.
NASA Technical Reports Server (NTRS)
Zirin, H.; Tanaka, K.
1972-01-01
Analysis is made of observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra. In each flare the observations fit a model of particle acceleration in the chromosphere with emission produced by impart and by heating by the energetic electrons and protons. The region showed twisted flux and high gradients from birth, and flares appear due to strong magnetic shears and gradients across the neutral line produced by sunspot motions. Post flare loops show a strong change from sheared, force-free fields parallel to potential-field-like loops, perpendicular to the neutral line above the surface.
NASA Astrophysics Data System (ADS)
Radons, Günter
2008-06-01
The Preisach model with symmetric elementary hysteresis loops and uncorrelated input is treated analytically in detail. It is shown that the appearance of long-time tails in the output correlations is a quite general feature of this model. The exponent η of the algebraic decay t-η , which may take any positive value, is determined by the tails of the input and the Preisach density. We identify the system classes leading to identical algebraic tails. These results imply the occurrence of 1/f noise for a large class of hysteretic systems.
Measurement of the Branching Fraction of the Exclusive Decay B0 --> K*0gamma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrera, Barbara
The b {yields} s{gamma} transition proceeds by a loop penguin diagram. It may be used to measure precisely the couplings of the top quark and to search for the effects of any new particles appearing in the loop. We present a preliminary measurement of the branching fraction of the exclusive decay, B{sup 0} {yields} K*{sup 0}{gamma}. They use 8.6 x 10{sup 6} B{bar B} decays to measure B(B{sup 0} {yields} K*{sup 0}{gamma}) = (5.4 {+-} 0.8 {+-} 0.5) x 10{sup -5}.
Local elasticity map and plasticity in a model Lennard-Jones glass.
Tsamados, Michel; Tanguy, Anne; Goldenberg, Chay; Barrat, Jean-Louis
2009-08-01
In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to calculate the local elasticity tensor and to quantify the deviation from linear elasticity (local Hooke's law) at different coarse-graining scales. From the results a clear picture emerges of an amorphous material with strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke's law at scales larger than a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomogeneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic rearrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this local parameter as a predictor of subsequent local plastic activity is also discussed.
Afriat-Jurnou, Livnat; Jackson, Colin J; Tawfik, Dan S
2012-08-07
Only decades after the introduction of organophosphate pesticides, bacterial phosphotriesterases (PTEs) have evolved to catalyze their degradation with remarkable efficiency. Their closest known relatives, lactonases, with promiscuous phosphotriasterase activity, dubbed PTE-like lactonases (PLLs), share only 30% sequence identity and also differ in the configuration of their active-site loops. PTE was therefore presumed to have evolved from a yet unknown PLL whose primary activity was the hydrolysis of quorum sensing homoserine lactones (HSLs) (Afriat et al. (2006) Biochemistry 45, 13677-13686). However, how PTEs diverged from this presumed PLL remains a mystery. In this study we investigated loop remodeling as a means of reconstructing a homoserine lactonase ancestor that relates to PTE by few mutational steps. Although, in nature, loop remodeling is a common mechanism of divergence of enzymatic functions, reproducing this process in the laboratory is a challenge. Structural and phylogenetic analyses enabled us to remodel one of PTE's active-site loops into a PLL-like configuration. A deletion in loop 7, combined with an adjacent, highly epistatic, point mutation led to the emergence of an HSLase activity that is undetectable in PTE (k(cat)/K(M) values of up to 2 × 10(4)). The appearance of the HSLase activity was accompanied by only a minor decrease in PTE's paraoxonase activity. This specificity change demonstrates the potential role of bifunctional intermediates in the divergence of new enzymatic functions and highlights the critical contribution of loop remodeling to the rapid divergence of new enzyme functions.
NASA Astrophysics Data System (ADS)
Jiao, Z.; Hesterberg, J.; Was, G. S.
2018-03-01
Post-irradiation annealing was performed on a 304L SS that was irradiated to 5.9 dpa in the Barsebäck 1 BWR reactor. Evolution of dislocation loops, radiation-induced solute clusters and radiation-induced segregation at the grain boundary was investigated following thermal annealing at 500 °C and 550 °C up to 20 h. Dislocation loops, Ni-Si and Al-Cu clusters, and enrichment of Ni, Si and depletion of Cr at the grain boundary were observed in the as-irradiated condition. Dislocation loop size did not change significantly after annealing at 550 °C for 5 h but the loop number density decreased considerably and loops mostly disappeared after annealing at 550 °C for 20 h. The average size of Ni-Si and Al-Cu clusters increased while the number density decreased with annealing. The increase in cluster size was due to diffusion of solutes rather than cluster coarsening. Significant volume fractions of Ni-Si and Al-Cu clusters still remained after annealing at 550 °C for 20 h. Substantial recovery of Cr and Ni at the grain boundary was observed after annealing at 550 °C for 5 h but neither Cr nor Ni was fully recovered after 20 h. Annihilation of dislocation loops, driven by the thermal vacancy concentration gradient caused by the strain field and stacking fault associated with the loops appeared to be faster than annihilation of solute clusters and recovery of Ni and Si at the grain boundary, both of which are driven by the solute concentration gradients.
THERMAL STRUCTURE OF CORONAL LOOPS AS SEEN WITH NORIKURA CORONAGRAPH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, S. Krishna; Singh, Jagdev; Ichimoto, K., E-mail: krishna@iiap.res.in
2013-03-10
The thermal structure of a coronal loop, both along and across the loop, is vital in determining the exact plasma heating mechanism. High-resolution spectroscopic observations of the off-limb corona were made using the 25 cm Norikura coronagraph, located at Norikura, Japan. Observations on a number of days were made simultaneously in four forbidden iron emission lines, namely, the [Fe XI] 7892 A line, the [Fe XIII] 10747 A and 10798 A lines, and the [Fe XIV] 5303 A line and on some days made only in the [Fe XI] 7892 A and [Fe X] 6374 A lines. Using temperature sensitivemore » emission line ratios [Fe XIV] 5303 A/[Fe XIII] 10747 A and [Fe XI] 7892 A/[Fe X] 6374 A, we compute the electron temperatures along 18 different loop structures observed on different days. We find a significant negative temperature gradient in all of the structures observed in Fe XIV and Fe XIII and a positive temperature gradient in the structures observed in Fe XI and Fe X. Combining these results with the previous investigations by Singh and his collaborators, we infer that the loop tops, in general, appear hotter when observed in colder lines and colder when observed in relatively hotter lines as compared to their coronal foot points. We suggest that this contrasting trend observed in the temperature variation along the loop structures can be explained by a gradual interaction of different temperature plasma. The exact mechanism responsible for this interaction must be investigated further and has the potential to constrain loop heating models.« less
Macroscopic quantum states: Measures, fragility, and implementations
NASA Astrophysics Data System (ADS)
Fröwis, Florian; Sekatski, Pavel; Dür, Wolfgang; Gisin, Nicolas; Sangouard, Nicolas
2018-04-01
Large-scale quantum effects have always played an important role in the foundations of quantum theory. With recent experimental progress and the aspiration for quantum enhanced applications, the interest in macroscopic quantum effects has been reinforced. In this review, measures aiming to quantify various aspects of macroscopic quantumness are critically analyzed and discussed. Recent results on the difficulties and prospects to create, maintain, and detect macroscopic quantum states are surveyed. The role of macroscopic quantum states in foundational questions as well as practical applications is outlined. Finally, past and ongoing experimental advances aiming to generate and observe macroscopic quantum states are presented.
Asian Facelift Technique Refinement With High Patient Satisfaction: FACE-Q Report.
Wang, Rongrong; Yang, Jie; Guo, Ke; Zhong, Aimei; Tong, Jing; Xiong, Lingyun; Sun, Jiaming
2018-05-24
Facial aging is a complex process influencing every layer of the facial structure. Most accepted surgical techniques for facial rejuvenation involve certain manipulation of the superficial musculoaponeurotic system (SMAS). Out of these SMAS-based techniques, SMAS plication or suspension provides excellent outcomes with shorter convalescence and fewer potential complications. Herein, we would like to present our own technique combining SMAS plication, periauricular purse-string, and malar fat pad elevation technique for mid and lower facelift. Through a classical periauricular and temporal incision, a periauricular permanent purse-string suture was woven into the SMAS to suspend sagging soft tissue of the mid and lower face after superficial undermining, then plication of inner and outer SMAS of the purse-string loop was performed to further secure suspension, and at last the malar fat pad was elevated for midface rejuvenation. The shape of the loop varies with patients' age; for younger patients, the loop is more vertical, and for older patients, the loop is more horizontal. Patient-reported outcomes were described using the FACE-Q questionnaire. From January 2010 to June 2015, a total of 138 patients were treated with this technique by a same surgeon. Follow-up duration ranged from 1 to 6 years. Preoperative and postoperative photographs were recorded and analyzed. The complications rates were low, and satisfaction rates were high. Patients felt that they appeared 7.3 years younger than their actual age on average and were most satisfied with the appearance of their lower face and jawline. Periauricular purse-string reinforced with SMAS plication and malar fat pad elevation technique produces esthetically pleasing outcomes, besides being simple, safe, and personalized.
Low-Altitude Reconnection Inflow-Outflow Observations During a 2010 November 3 Solar Eruption
NASA Technical Reports Server (NTRS)
Savage, Sabrina L.a; Holman, Gordon; Reeves, Katharine K.; Seaton, Daniel B.; McKenzie, David E.; Su, Yang
2012-01-01
For a solar flare occurring on 2010 November 3, we present observations us- ing several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from approximately 150 - 690 km s-1 with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high- temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be approximately 10(exp 2) km s-1 with outflow speeds ranging from approximately 10(exp 2) - 10(exp 33 km s-1 indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops presumably exiting the reconnection site.
MacDonald, James T.; Kabasakal, Burak V.; Godding, David; Kraatz, Sebastian; Henderson, Louie; Barber, James; Freemont, Paul S.; Murray, James W.
2016-01-01
The ability to design and construct structures with atomic level precision is one of the key goals of nanotechnology. Proteins offer an attractive target for atomic design because they can be synthesized chemically or biologically and can self-assemble. However, the generalized protein folding and design problem is unsolved. One approach to simplifying the problem is to use a repetitive protein as a scaffold. Repeat proteins are intrinsically modular, and their folding and structures are better understood than large globular domains. Here, we have developed a class of synthetic repeat proteins based on the pentapeptide repeat family of beta-solenoid proteins. We have constructed length variants of the basic scaffold and computationally designed de novo loops projecting from the scaffold core. The experimentally solved 3.56-Å resolution crystal structure of one designed loop matches closely the designed hairpin structure, showing the computational design of a backbone extension onto a synthetic protein core without the use of backbone fragments from known structures. Two other loop designs were not clearly resolved in the crystal structures, and one loop appeared to be in an incorrect conformation. We have also shown that the repeat unit can accommodate whole-domain insertions by inserting a domain into one of the designed loops. PMID:27573845
Structural and mechanistic insights into Mps1 kinase activation.
Wang, Wei; Yang, Yuting; Gao, Yuefeng; Xu, Quanbin; Wang, Feng; Zhu, Songcheng; Old, William; Resing, Katheryn; Ahn, Natalie; Lei, Ming; Liu, Xuedong
2009-08-01
Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-A-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices EF and F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.
On the structure of solar and stellar coronae - Loops and loop heat transport
NASA Technical Reports Server (NTRS)
Litwin, Christof; Rosner, Robert
1993-01-01
We discuss the principal constraints on mechanisms for structuring and heating the outer atmospheres - the coronae - of stars. We argue that the essential cause of highly localized heating in the coronae of stars like the sun is the spatially intermittent nature of stellar surface magnetic fields, and that the spatial scale of the resulting coronal structures is related to the spatial structure of the photospheric fields. We show that significant constraints on coronal heating mechanisms derive from the observed variations in coronal emission, and, in addition, show that the observed structuring perpendicular to coronal magnetic fields imposes severe constraints on mechanisms for heat dispersal in the low-beta atmosphere. In particular, we find that most of commonly considered mechanisms for heat dispersal, such as anomalous diffusion due to plasma turbulence or magnetic field line stochasticity, are much too slow to account for the observed rapid heating of coronal loops. The most plausible mechanism appears to be reconnection at the interface between two adjacent coronal flux bundles. Based on a model invoking hyperresistivity, we show that such a mechanism naturally leads to dominance of isolated single bright coronal loops and to bright coronal plasma structures whose spatial scale transverse to the local magnetic field is comparable to observed dimensions of coronal X-ray loops.
NASA Astrophysics Data System (ADS)
Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.
2015-10-01
The β2-α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.
Fermi-edge superfluorescence from a quantum-degenerate electron-hole gas
NASA Astrophysics Data System (ADS)
Kim, Ji-Hee; , G. Timothy Noe, II; McGill, Stephen A.; Wang, Yongrui; Wójcik, Aleksander K.; Belyanin, Alexey A.; Kono, Junichiro
2013-11-01
Nonequilibrium can be a source of order. This rather counterintuitive statement has been proven to be true through a variety of fluctuation-driven, self-organization behaviors exhibited by out-of-equilibrium, many-body systems in nature (physical, chemical, and biological), resulting in the spontaneous appearance of macroscopic coherence. Here, we report on the observation of spontaneous bursts of coherent radiation from a quantum-degenerate gas of nonequilibrium electron-hole pairs in semiconductor quantum wells. Unlike typical spontaneous emission from semiconductors, which occurs at the band edge, the observed emission occurs at the quasi-Fermi edge of the carrier distribution. As the carriers are consumed by recombination, the quasi-Fermi energy goes down toward the band edge, and we observe a continuously red-shifting streak. We interpret this emission as cooperative spontaneous recombination of electron-hole pairs, or superfluorescence (SF), which is enhanced by Coulomb interactions near the Fermi edge. This novel many-body enhancement allows the magnitude of the spontaneously developed macroscopic polarization to exceed the maximum value for ordinary SF, making electron-hole SF even more ``super'' than atomic SF.
Lethal injection of potassium chloride: first description of the pathological appearance of organs.
Coulibaly, Béma; Piercecchi-Marti, Marie-Dominique; Bartoli, Christophe; Liprandi, Agnes; Léonetti, Georges; Pellissier, Jean-François
2010-05-01
Lethal injection of potassium chloride (KCl) can be used as a method of either suicide or homicide. As biological tests are still inadequate to differentiate endogenous from exogenous potassium, at the scene of death the cause can only be suspected. We wished to determine the usefulness of conventional pathological examination in this context and carried out a study in four fetuses after medical termination of pregnancy for serious disease. Pregnancy was terminated by KCl injection in two cases and by injection of lidocaine and sufentanil in the other two cases. In each of the two fetuses in which KCl injection was performed, macroscopic examination showed whitish deposits on the tissues and histological examination showed clumps of lanceolate crystals in the internal organs. In the two fetuses which received lidocaine and sufentanil injection, no deposits were visible on macroscopic examination and no crystals were seen on histological examination. These findings suggest that pathological study may have useful applications in forensic medicine when death by potassium injection is suspected. 2009 John Wiley & Sons, Ltd.
Baladrón, Carlos; Khrennikov, Andrei
2016-12-01
The similarities between biological and physical systems as respectively defined in quantum information biology (QIB) and in a Darwinian approach to quantum mechanics (DAQM) have been analysed. In both theories the processing of information is a central feature characterising the systems. The analysis highlights a mutual support on the thesis contended by each theory. On the one hand, DAQM provides a physical basis that might explain the key role played by quantum information at the macroscopic level for bio-systems in QIB. On the other hand, QIB offers the possibility, acting as a macroscopic testing ground, to analyse the emergence of quantumness from classicality in the terms held by DAQM. As an added result of the comparison, a tentative definition of quantum information in terms of classical information flows has been proposed. The quantum formalism would appear from this comparative analysis between QIB and DAQM as an optimal information scheme that would maximise the stability of biological and physical systems at any scale. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Second order perturbations of a macroscopic string: Covariant approach
NASA Astrophysics Data System (ADS)
Larsen, A. L.; Nicolaidis, A.
2001-06-01
Using a world-sheet covariant formalism, we derive the equations of motion for second order perturbations of a generic macroscopic string, thus generalizing previous results for first order perturbations. We give the explicit results for the first and second order perturbations of a contracting near-circular string; these results are relevant for the understanding of the possible outcome when a cosmic string contracts under its own tension, as discussed in a series of papers by Vilenkin and Garriga. In particular, second order perturbations are necessary for a consistent computation of the energy. We also quantize the perturbations and derive the mass formula up to second order in perturbations for an observer using world-sheet time τ. The high frequency modes give the standard Minkowski result while, interestingly enough, the Hamiltonian turns out to be nondiagonal in oscillators for low-frequency modes. Using an alternative definition of the vacuum, it is possible to diagonalize the Hamiltonian, and the standard string mass spectrum appears for all frequencies. We finally discuss how our results are also relevant for the problems concerning string-spreading near a black hole horizon, as originally discussed by Susskind.
The macroscopic delamination of thin films from elastic substrates
Vella, Dominic; Bico, José; Boudaoud, Arezki; Roman, Benoit; Reis, Pedro M.
2009-01-01
The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical properties because stretching or twisting of the substrate is mostly accommodated through bending of the film, which minimizes fatigue or fracture. To date, applications in this context have used substrate patterning to create an anisotropic substrate-film adhesion energy, thereby producing a controlled array of delamination “blisters.” However, even in the absence of such patterning, blisters appear spontaneously, with a characteristic size. Here, we perform well-controlled experiments at macroscopic scales to study what sets the dimensions of these blisters in terms of the material properties and explain our results by using a combination of scaling and analytical methods. Besides pointing to a method for determining the interfacial toughness, our analysis suggests a number of design guidelines for the thin films used in flexible electronic applications. Crucially, we show that, to avoid the possibility that delamination may cause fatigue damage, the thin film thickness must be greater than a critical value, which we determine. PMID:19556551
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.
2009-03-01
In practice, dynamic behavior of fiber-optic ring resonator (FORR) appears as a detrimental factor to influence the transmission response of the FORR. This paper presents dynamic response analysis of the FORR by considering phase modulation of the FORR loop and sinewave modulation of input signal applied to the FORR from a laser diode. The analysis investigates the influences of modulation frequency and amplitude modulation index of laser diode, loop delay time of the FORR, phase angle between FM and AM response of laser diode, and laser diode line-width on dynamic response of the FORR. The analysis shows that the transient response of the FORR strongly depends on the product of modulation frequency and loop delay time, coupling and transmission coefficients of the FORR. The analyses presented here may have applications in optical systems employing an FORR with a laser diode source.
Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel
NASA Astrophysics Data System (ADS)
Klimenkov, M.; Lindau, R.; Jäntsch, U.; Möslang, A.
2017-09-01
The EUROFER-ODS alloy with 0.5% Y2O3 was neutron irradiated with doses up to 16.2 dpa at 250 °C, 350 °C and 450 °C. The radiation induced changes in the microstructure (e.g. dislocation loops and voids) were investigated using transmission electron microscopy (TEM). The number density of radiation induced defects was found to be significantly lower than in EUROFER 97 irradiated at the same conditions. It was found that the appearance and extent of radiation damage strongly depend not only on the irradiation temperature but also on the local number density and size distribution of ODS particles. The higher number density of dislocation loops and voids was found in the local areas with low number density of ODS particles. The interstitial loops with Burgers vector of both ½<111> and <100> types were detected by imaging using different diffraction conditions.
Tanaka, Jun; Fukamizo, Tamo; Ohnuma, Takayuki
2017-05-01
The catalytic domains of family GH19 chitinases have been found to consist of a conserved, α-helical core-region and different numbers (1-6) of loop structures, located at both ends of the substrate-binding groove and which extend over the glycon- and aglycon-binding sites. We expressed, purified and enzymatically characterized a GH19 chitinase from rice, Oryza sativa L. cv. Nipponbare (OsChia2a), lacking a major loop structure (loop III) connected to the functionally important β-stranded region. The new enzyme thus contained the five remaining loop structures (loops I, II, IV, V and C-term). The OsChia2a recombinant protein catalyzed hydrolysis of chitin oligosaccharides, (GlcNAc)n (n = 3-6), with inversion of anomeric configuration, indicating that OsChia2a correctly folded without loop III. From thermal unfolding experiments and calorimetric titrations using the inactive OsChia2a mutant (OsChia2a-E68Q), in which the catalytic residue Glu68 was mutated to glutamine, we found that the binding affinities towards (GlcNAc)n (n = 2-6) were almost proportional to the degree of polymerization of (GlcNAc)n, but were much lower than those obtained for a moss GH19 chitinase having only loop III [Ohnuma T, Sørlie M, Fukuda T, Kawamoto N, Taira T, Fukamizo T. 2011. Chitin oligosaccharide binding to a family GH19 chitinase from the moss, Bryum coronatum. FEBS J. 278:3991-4001]. Nevertheless, OsChia2a exhibited significant antifungal activity. It appears that loop III connected to the β-stranded region is important for (GlcNAc)n binding, but is not essential for antifungal activity. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhang, B.; Hou, Y. J.; Zhang, J.
2018-03-01
Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://https://www.aanda.org
Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
NASA Astrophysics Data System (ADS)
Rovelli, Carlo; Speziale, Simone
2003-03-01
A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts, and give the conditions under which its action is unitary.
NASA Astrophysics Data System (ADS)
Fischer, M.; Groote, S.; Körner, J. G.
2018-05-01
We identify the T -odd structure functions that appear in the description of polarized top quark decays in the sequential decay t (↑)→Xb+W+(→ℓ++νℓ) (two structure functions) and the quasi-three-body decay t (↑)→X b+ℓ++νℓ (one structure function). A convenient measure of the magnitude of the T -odd structure functions is the contribution of the imaginary part Im gR of the right-chiral tensor coupling gR to the T -odd structure functions which we work out. Contrary to the case of QCD, the NLO electroweak corrections to polarized top quark decays admit absorptive one-loop vertex contributions. We analytically calculate the imaginary parts of the relevant four electroweak one-loop triangle vertex diagrams and determine their contributions to the T -odd helicity structure functions that appear in the description of polarized top quark decays.
Experimental study on heat transfer to supercritical water flowing through tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, M.; Gu, H.; Cheng, X.
2012-07-01
A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2})more » and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)« less
Phase contrast MR angiography techniques.
Dumoulin, C L
1995-08-01
Phase contrast MR methods encode information from macroscopic motion into the phase of the MR signal. Phase contrast methods can be applied with small and large fields-of-view, can give quantitative measures of velocity, and provide excellent suppression of signals from stationary tissue. Unlike time-of-flight methods, phase contrast methods directly measure flow and thus are not hindered by the artifactual appearance of tissue having short T1. Phase contrast angiograms can be two-dimensional (thin slice or projectile), three-dimensional, and/or time resolved and have applications throughout the body.
[Intramuscular juvenile xantogranuloma].
Berenguer, B; González, B; Marín, M; Rodríguez, P; Seguel, F; Enríquez de Salamanca, J; de Prada, I
2004-01-01
Deep or intramuscular juvenile xanthogranuloma (JXG) is very rare. There are, however, some clinical and histological similarities between the case we present and the few cases that have been published in the literature. Although most of them will need histologic confirmation to establish the final diagnosis, surgeons who are operating tumors of infancy should consider it in the differential diagnosis of well circumscribed, rapidly growing dorsal masses in children under 3 years of age. Macroscopic appearance upon excision can help to support the diagnosis. Knowledge of this variant of JXG may avoid aggressive diagnostic or therapeutic procedures.
Saint-Andre, J P; Touzard, D; Houssin, A; Simard, C
1982-01-01
This communication presents three cases of prolonged macroscopic hematuria in young subjects. Complementary explorations eliminated urologic or vascular causes. Renal biopsies showed minimal glomerular lesions with light microscopy, normal basement membranes in electron microscopy and mesangial deposits of C3 and properdine in immunofluorescence. Although the mesangial deposits of C3 lack specificity and the number of observations is small, it appears useful to report such cases so as to indicate their frequency and perhaps their autonomy, in glomerular hematuric nephropathies.
Pattern formation in a monolayer of magnetic spheres
NASA Astrophysics Data System (ADS)
Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang
2003-08-01
Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.
From microscopic rules to macroscopic dynamics with active colloidal snakes
NASA Astrophysics Data System (ADS)
Zhang, Jie; Yan, Jing; Granick, Steve
Seeking to learn about self-assembly far from equilibrium, these imaging experiments inspect self-propelled colloidal particles whose heads and tails attract other particles reversibly as they swim. We observe processes akin to polymerization (short times) and chain scission and recombination (long times). The steady-state of dilute systems consists of discrete rings rotating in place with largely quenched dynamics, but when concentration is high, the system dynamics share features with turbulence. The dynamical rules of this model system appear to be scale-independent and hence potentially relevant more generally.
Katory, Mark; McLean, Ross; Osman, Khalid; Ahmad, Mukhtar; Hughes, Tracey; Newby, Mike; Dennison, Christopher; O'Loughlin, Paul
2017-02-01
Interpretation of water-soluble contrast enema following laparoscopic low anterior resection can be very challenging for both radiologists and colorectal surgeons. Discriminating the radiological appearances secondary to anastomotic configuration from those caused by actual anastomotic dehiscence is a common problem and may be made worse with the advent of laparoscopic surgery. The aim of this study is to identify potential novel appearances of the water-soluble contrast enema (WSCE) images of rectal anastomosis following laparoscopic low anterior resection to radiologists and surgeons. We enrolled 45 patients who underwent laparoscopic low anterior resection with proximal de-functioning loop ileostomy within a specialized colorectal unit. The water-soluble contrast enema reports were reviewed. Two blinded colorectal radiologists independently reviewed the images of patients suspected of anastomotic leak. All of these patients also underwent a flexible sigmoidoscopy to confirm or exclude anastomotic leak before reversal of loop ileostomy. Inter-observer concordance was calculated. Seven out of eighteen patients (38.9%) were found to have true anastomotic leaks on flexible sigmoidoscopy (15% overall leak rate). In the remaining eleven patients the image appearances were attributed to the appearance of the anastomotic 'dog-ear effect', created by the anastomotic configuration due to multiple firing of the intra-corporeal laparoscopic stapling device. Radiologist inter-observer concordance was 83%. Sensitivity was 100%, specificity 71%, positive-predictive value (38.9%) and negative-predictive value (100%). The novel appearances of laparoscopic-stapled rectal anastomoses in WSCE can be mistaken for anastomotic leak. To avoid delay in reversal of ileostomy, a flexible sigmoidoscopy can be used to confirm or exclude a leak.
Zhang, Xuan; Li, Meimei; Park, Jun -Sang; ...
2016-12-30
The effect of neutron irradiation on tensile deformation of a Fe-9wt.%Cr alloy was investigated using in situ high-energy synchrotron X-ray diffraction during room-temperature uniaxial tensile tests. New insights into the deformation mechanisms were obtained through the measurements of lattice strain evolution and the analysis of diffraction peak broadening using the modified Williamson-Hall method. Two neutron-irradiated specimens, one irradiated at 300 °C to 0.01 dpa and the other at 450 °C to 0.01dpa, were tested along with an unirradiated specimen. The macroscopic stress–strain curves of the irradiated specimens showed increased strength, reduced ductility and work-hardening exponent compared to the unirradiated specimen.more » The evolutions of the lattice strain, the dislocation density and the coherent scattering domain size in the deformation process revealed different roles of the submicroscopic defects in the 300°C/0.01 dpa specimen and the TEM-visible nanometer-sized dislocation loops in the 450°C/0.01 dpa specimen: submicroscopic defects extended the linear work hardening stage (stage II) to a higher strain, while irradiation-induced dislocation loops were more effective in dislocation pinning. Lastly, while the work hardening rate of stage II was unaffected by irradiation, significant dynamic recovery in stage III in the irradiated specimens led to the early onset of necking without stage IV as observed in the unirradiated specimen.« less
Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals
NASA Astrophysics Data System (ADS)
Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine
2017-10-01
The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.
Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, C.; Keppens, R.; Guo, Y.
2014-01-10
The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the mainmore » polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5× 10{sup 14} g.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleint, L.; Martínez-Sykora, J.; Antolin, P.
Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.''33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s{sup –1} and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to bemore » the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.« less
The complete two-loop integrated jet thrust distribution in soft-collinear effective theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Manteuffel, Andreas; Schabinger, Robert M.; Zhu, Hua Xing
2014-03-01
In this work, we complete the calculation of the soft part of the two-loop integrated jet thrust distribution in e+e- annihilation. This jet mass observable is based on the thrust cone jet algorithm, which involves a veto scale for out-of-jet radiation. The previously uncomputed part of our result depends in a complicated way on the jet cone size, r, and at intermediate stages of the calculation we actually encounter a new class of multiple polylogarithms. We employ an extension of the coproduct calculus to systematically exploit functional relations and represent our results concisely. In contrast to the individual contributions, themore » sum of all global terms can be expressed in terms of classical polylogarithms. Our explicit two-loop calculation enables us to clarify the small r picture discussed in earlier work. In particular, we show that the resummation of the logarithms of r that appear in the previously uncomputed part of the two-loop integrated jet thrust distribution is inextricably linked to the resummation of the non-global logarithms. Furthermore, we find that the logarithms of r which cannot be absorbed into the non-global logarithms in the way advocated in earlier work have coefficients fixed by the two-loop cusp anomalous dimension. We also show that in many cases one can straightforwardly predict potentially large logarithmic contributions to the integrated jet thrust distribution at L loops by making use of analogous contributions to the simpler integrated hemisphere soft function.« less
QED loop effects in the spacetime background of a Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Emelyanov, Viacheslav A.
2017-12-01
The black-hole evaporation implies that the quantum-field propagators in a local Minkowski frame acquire a correction, which gives rise to this process. The modification of the propagators causes, in turn, non-trivial local effects due to the radiative/loop diagrams in non-linear QFTs. In particular, there should be imprints of the evaporation in QED, if one goes beyond the tree-level approximation. Of special interest in this respect is the region near the black-hole horizon, which, already at tree level, appears to show highly non-classical features, e.g., negative energy density and energy flux into the black hole.
Robust Assignment Of Eigensystems For Flexible Structures
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Lim, Kyong B.; Junkins, John L.
1992-01-01
Improved method for placement of eigenvalues and eigenvectors of closed-loop control system by use of either state or output feedback. Applied to reduced-order finite-element mathematical model of NASA's MAST truss beam structure. Model represents deployer/retractor assembly, inertial properties of Space Shuttle, and rigid platforms for allocation of sensors and actuators. Algorithm formulated in real arithmetic for efficient implementation. Choice of open-loop eigenvector matrix and its closest unitary matrix believed suitable for generating well-conditioned eigensystem with small control gains. Implication of this approach is that element of iterative search for "optimal" unitary matrix appears unnecessary in practice for many test problems.
Fine-grained state counting for black holes in loop quantum gravity.
Ghosh, A; Mitra, P
2009-04-10
A state of a black hole in loop quantum gravity is given by a distribution of spins on punctures on the horizon. The distribution is of the Boltzmann type, with the area playing the role of the energy. In investigations where the total area was kept approximately constant, there was a kind of thermal equilibrium between the spins which have the same analogue temperature and the entropy was proportional to the area. If the area is precisely fixed, however, multiple constraints appear, different spins have different analogue temperatures and the entropy is not strictly linear in the area, but is bounded by a linear rise.
Renormalization of QCD in the interpolating momentum subtraction scheme at three loops
NASA Astrophysics Data System (ADS)
Gracey, J. A.; Simms, R. M.
2018-04-01
We introduce a more general set of kinematic renormalization schemes than the original momentum subtraction schemes of Celmaster and Gonsalves. These new schemes will depend on a parameter ω , which tags the external momentum of one of the legs of the three-point vertex functions in QCD. In each of the three new schemes, we renormalize QCD in the Landau and maximal Abelian gauges and establish the three-loop renormalization group functions in each gauge. For an application, we evaluate two critical exponents at the Banks-Zaks fixed point and demonstrate that their values appear to be numerically scheme independent in a subrange of the conformal window.
Cyclic Mario worlds — color-decomposition for one-loop QCD
NASA Astrophysics Data System (ADS)
Kälin, Gregor
2018-04-01
We present a new color decomposition for QCD amplitudes at one-loop level as a generalization of the Del Duca-Dixon-Maltoni and Johansson-Ochirov decomposition at tree level. Starting from a minimal basis of planar primitive amplitudes we write down a color decomposition that is free of linear dependencies among appearing primitive amplitudes or color factors. The conjectured decomposition applies to any number of quark flavors and is independent of the choice of gauge group and matter representation. The results also hold for higher-dimensional or supersymmetric extensions of QCD. We provide expressions for any number of external quark-antiquark pairs and gluons. [Figure not available: see fulltext.
Developmental Alterations of Frontal-Striatal-Thalamic Connectivity in Obsessive-Compulsive Disorder
ERIC Educational Resources Information Center
Fitzgerald, Kate Dimond; Welsh, Robert C.; Stern, Emily R.; Angstadt, Mike; Hanna, Gregory L.; Abelson, James L.; Taylor, Stephan F.
2011-01-01
Objective: Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatal-thalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal…
NASA Astrophysics Data System (ADS)
Brosius, J. W.
2012-12-01
We observed a C1 flare in rapid cadence stare mode simultaneously with Hinode's EIS (11.2 s) and SOHO's CDS (10 s) on 2012 March 7. The pointings of the two slits were offset about 25 arcsec, so that EIS observed the leg and CDS the apex of the flaring loop. EIS observed the Fe XXIII line at 263.8 A, formed at temperatures around 14 MK, to emerge abruptly above the background noise at 18:49:36 UT. The line's intensity peaked at 18:53:09 UT. After its emergence the Fe XXIII line's entire profile became increasingly blueshifted over the next 3 exposures, reached a maximum upward velocity of -208 km/s, and then became decreasingly blueshifted toward zero velocity while the line's intensity continued to increase over the next 12 exposures. The bulk of the Fe XXIII emission remained stationary after that. A secondary blueshifted component of the Fe XXIII line profile appeared at 18:52:24 UT, endured for 5 exposures, and reached a maximum upward velocity of -206 km/s. We interpret this sudden, brief re-appearance of rapid upward velocity in Fe XXIII emission as evidence for ongoing reconnection following the flare's initial, impulsive phase. The structure of the loop and its strand footpoints seen in the AIA 131 and 94 A images reveal changes possibly due to the cutting and rearrangement of individual strands during reconnection. Emission lines of Fe XVII, formed at temperatures around 4 MK, and Fe XVI, formed around 2.7 MK, brightened significantly starting about 3.3 and 7.1 minutes after the first appearance of Fe XXIII emission, likely due to cooling of plasma previously heated to temperatures appropriate for Fe XXIII emission. Neither Fe XVII nor Fe XVI showed significant relative Doppler velocities. None of the transition region lines observed by EIS participated in the event. CDS spectra were contaminated by a particle storm at SOHO during the flare, but we were able to salvage roughly 1/3 of the exposures by visually inspecting individual line profiles and discarding those that appeared affected. The intensity of the Fe XIX line at 592.2 A, formed at 8 MK, reached its maximum value at the location of the CDS slit near the flare loop apex about 4.6 minutes after the Fe XXIII line reached its peak intensity. This work was supported by NASA grant NNX10AC08G.
Bose-Einstein condensation of light: general theory.
Sob'yanin, Denis Nikolaevich
2013-08-01
A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.
de Albuquerque, Paulo Cezar Vidal Carneiro; Dos Santos, Saulo Monteiro; de Andrade Aguiar, José Lamartine; Filho, Nicodemus Pontes; de Mello, Roberto José Vieira; Costa, Mariana Lúcia Correia Ramos; de Albuquerque Olbertz, Clarissa Miranda Carneiro; de Souza Almeida, Tarciana Mendonça; da Silva Santos, Alessandro Henrique; da Silva, Joacil Carlos
2011-01-01
To study the surface, coloring, consistency, continuity and healing of osteochondral defects produced in the femoral condyles of rabbits and filled with sugar cane biopolymer gel (SCBG), after 90, 120 and 180 days, and in comparison with a control group. Sixteen adult New Zealand white rabbits aged 6 to 7 months, weighing between 2 and 2.5 kg and without locomotor system abnormalities were studied. In all the animals, a defect was made in the femoral condyles of the right and left knees, measuring 3.2 mm in diameter and 4 mm in depth, using a trephine. The animals were divided into two groups: study group formed by the right knees, in which the medial and lateral condyles received implants of SCBG; and control group formed by the left knees, in which the medial and lateral condyles were allowed to heal naturally. The knees were assessed 90, 120 and 180 days after the operation. After the animals had been sacrificed, the anatomical specimens were resected and placed in Bouin's solution. They were then photographed with a Nikon Coolpix 5400(®) coupled to a Nikon SM2800(®) stereoscopic loupe, to analyze the surface, coloring, consistency, continuity and healing. The results were evaluated using the chi-square test. There were no significant differences in the macroscopic assessments of healing between the study and control groups. With regard to the surface, coloring, consistency, continuity and healing of the defects, the macroscopic appearance of the tissue repaired with SCBG was similar to that of the control group.
NASA Astrophysics Data System (ADS)
Zalaletdinov, R. M.
1998-04-01
The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.
Dynamic Consequences of Mutation of Tryptophan 215 in Thrombin.
Peacock, Riley B; Davis, Jessie R; Markwick, Phineus R L; Komives, Elizabeth A
2018-05-08
Thrombin normally cleaves fibrinogen to promote coagulation; however, binding of thrombomodulin to thrombin switches the specificity of thrombin toward protein C, triggering the anticoagulation pathway. The W215A thrombin mutant was reported to have decreased activity toward fibrinogen without significant loss of activity toward protein C. To understand how mutation of Trp215 may alter thrombin specificity, hydrogen-deuterium exchange experiments (HDXMS), accelerated molecular dynamics (AMD) simulations, and activity assays were carried out to compare the dynamics of Trp215 mutants with those of wild type (WT) thrombin. Variation in NaCl concentration had no detectable effect on the sodium-binding (220s CT ) loop, but appeared to affect other surface loops. Trp215 mutants showed significant increases in amide exchange in the 170s CT loop consistent with a loss of H-bonding in this loop identified by the AMD simulations. The W215A thrombin showed increased amide exchange in the 220s CT loop and in the N-terminus of the heavy chain. The AMD simulations showed that a transient conformation of the W215A thrombin has a distorted catalytic triad. HDXMS experiments revealed that mutation of Phe227, which engages in a π-stacking interaction with Trp215, also caused significantly increased amide exchange in the 170s CT loop. Activity assays showed that only the F227V mutant had wild type catalytic activity, whereas all other mutants showed markedly lower activity. Taken together, the results explain the reduced pro-coagulant activity of the W215A mutant and demonstrate the allosteric connection between Trp215, the sodium-binding loop, and the active site.
A minimal approach to the scattering of physical massless bosons
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Luo, Hui
2018-05-01
Tree and loop level scattering amplitudes which involve physical massless bosons are derived directly from physical constraints such as locality, symmetry and unitarity, bypassing path integral constructions. Amplitudes can be projected onto a minimal basis of kinematic factors through linear algebra, by employing four dimensional spinor helicity methods or at its most general using projection techniques. The linear algebra analysis is closely related to amplitude relations, especially the Bern-Carrasco-Johansson relations for gluon amplitudes and the Kawai-Lewellen-Tye relations between gluons and graviton amplitudes. Projection techniques are known to reduce the computation of loop amplitudes with spinning particles to scalar integrals. Unitarity, locality and integration-by-parts identities can then be used to fix complete tree and loop amplitudes efficiently. The loop amplitudes follow algorithmically from the trees. A number of proof-of-concept examples are presented. These include the planar four point two-loop amplitude in pure Yang-Mills theory as well as a range of one loop amplitudes with internal and external scalars, gluons and gravitons. Several interesting features of the results are highlighted, such as the vanishing of certain basis coefficients for gluon and graviton amplitudes. Effective field theories are naturally and efficiently included into the framework. Dimensional regularisation is employed throughout; different regularisation schemes are worked out explicitly. The presented methods appear most powerful in non-supersymmetric theories in cases with relatively few legs, but with potentially many loops. For instance, in the introduced approach iterated unitarity cuts of four point amplitudes for non-supersymmetric gauge and gravity theories can be computed by matrix multiplication, generalising the so-called rung-rule of maximally supersymmetric theories. The philosophy of the approach to kinematics also leads to a technique to control colour quantum numbers of scattering amplitudes with matter, especially efficient in the adjoint and fundamental representations.
Freie, Angela Bourbon; Ferrato, Francine; Carrière, Frédéric; Lowe, Mark E.
2013-01-01
In a previous study, we demonstrated that the β5′-loop in the C-terminal domain of human pancreatic triglyceride lipase (hPTL) makes a major contribution in the function of hPTL (Chahinian et al. (2002) Biochemistry 41, 13725–13735). In the present study, we characterized the contribution of three residues in the β5′-loop, Val-407, Ile-408, and Leu-412, to the function of hPTL. By substituting charged residues, aspartate or lysine, in these positions, we altered the hydrophilic to lipophilic ratio of the β5′-loop. Each of the mutants was expressed, purified, and characterized for activity and binding with both monolayers and emulsions and for binding to colipase. Experiments with monolayers and with emulsions suggested that the interaction of hPTL with a phospholipid monolayer differs from the interaction of the hPTL-colipase complex with a dicaprin monolayer or a triglyceride emulsion (i.e. neutral lipids). Val-407, Ile-408, and Leu-412 make major contributions to interactions with monolayers, whereas only Val-407 and Ile-408 appear essential for activity on triglyceride emulsions in the presence of bile salt micelles. In solutions of taurodeoxycholate at micellar concentrations, a major effect of the β5′-loop mutations is to change the interaction between hPTL and colipase. These observations support a major contribution of residues in the β5′-loop in the function of hPTL and suggest that a third partner, bile salt micelles or the lipid interface or both, influence the binding of colipase and hPTL through interactions with the β5′-loop. PMID:16431912
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; Li, Ting; Chen, Huadong, E-mail: zjun@nao.cas.cn, E-mail: hdchen@nao.cas.cn
From 2014 October 19 to 27, six X-class flares occurred in super active region (AR) 12192. They were all confined flares and were not followed by coronal mass ejections. To examine the structures of the four flares close to the solar disk center from October 22 to 26, we firstly employ composite triple-time images in each flare process to display the stratified structure of these flare loops. The loop structures of each flare in both the lower (171 Å) and higher (131 Å) temperature channels are complex, e.g., the flare loops rooting at flare ribbons are sheared or twisted (enwound)more » together, and the complex structures were not destroyed during the flares. For the first flare, although the flare loop system appears as a spindle shape, we can estimate its structures from observations, with lengths ranging from 130 to 300 Mm, heights from 65 to 150 Mm, widths at the middle part of the spindle from 40 to 100 Mm, and shear angles from 16° to 90°. Moreover, the flare ribbons display irregular movements, such as the left ribbon fragments of the flare on October 22 sweeping a small region repeatedly, and both ribbons of the flare on October 26 moved along the same direction instead of separating from each other. These irregular movements also imply that the corresponding flare loops are complex, e.g., several sets of flare loops are twisted together. Although previous studies have suggested that the background magnetic fields prevent confined flares from erupting,based on these observations, we suggest that complex flare loop structures may be responsible for these confined flares.« less
Rank distributions: A panoramic macroscopic outlook
NASA Astrophysics Data System (ADS)
Eliazar, Iddo I.; Cohen, Morrel H.
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
King, Simon; Dimech, Margaret; Johnstone, Susan
2016-06-01
We examined whether introduction of a structured macroscopic reporting template for rectal tumour resection specimens improved the completeness and efficiency in collecting key macroscopic data elements. Fifty free text (narrative) macroscopic reports retrieved from 2012 to 2014 were compared with 50 structured macroscopic reports from 2013 to 2015, all of which were generated at John Hunter Hospital, Newcastle, NSW. The six standard macroscopic data elements examined in this study were reported in all 50 anatomical pathology reports using a structured macroscopic reporting dictation template. Free text reports demonstrated significantly impaired data collection when recording intactness of mesorectum (p<0.001), relationship to anterior peritoneal reflection (p=0.028) and distance of tumour to the non-peritonealised circumferential margin (p<0.001). The number of words used was also significantly (p<0.001) reduced using pre-formatted structured reports compared to free text reports. The introduction of a structured reporting dictation template improves data collection and may reduce the subsequent administrative burden when macroscopically evaluating rectal resections. Copyright © 2016 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.
Rank distributions: a panoramic macroscopic outlook.
Eliazar, Iddo I; Cohen, Morrel H
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions-top-down, bottom-up, and global-and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
Sun, Jun; Xing, Zhaoyu; Xing, Wei; Zheng, Linfeng; Chen, Jie; Fan, Min; Chen, Tongbing; Zhang, Zhuoli
2016-03-01
To evaluate the value of combining the detection of intratumoral macroscopic fat and hemorrhage in the differentiation of the benign from malignant solid renal masses.Conventional magnetic resonance imaging (MRI), chemical shift (CS)-MRI, and susceptibility-weighted imaging were performed in 152 patients with 152 solid renal masses, including 48 benign and 104 malignant masses all pathologically confirmed. The presence of macroscopic fat detected by CS-MRI and hemorrhage detected by susceptibility-weighted imaging were evaluated in all masses. The rates of macroscopic fat and hemorrhage observed between benign and malignant masses were compared by a χ test. All masses found to contain macroscopic fat with or without hemorrhage were considered to be benign. The remaining masses (without macroscopic fat) found not to contain hemorrhage were considered to be benign. Only those found to contain hemorrhage alone were considered to be malignant. The evaluation indexes for differentiating and forecasting the benign and malignant masses were calculated.Significant differences in the rate of macroscopic fat (observed in 85.42% of benign masses vs. 0% of malignant masses) and hemorrhage (observed in 4.17% of benign masses vs. 95.19% of malignant masses) were measured in the benign and malignant groups (P < 0.005, for both). The 41 masses containing macroscopic fat with or without hemorrhage and 11 masses containing neither macroscopic fat nor hemorrhage were considered to be benign. The 100 masses containing no macroscopic fat and only hemorrhage were considered to be malignant. By combining the results for the macroscopic fat and hemorrhage, the accuracy, sensitivity, and specificity in the differential diagnosis of the benign and malignant masses were 96.05%, 95.19%, and 97.92%, respectively, and the accuracy and error rate of forecasting the benign and malignant masses were 95.39% and 4.61%, respectively.Combining the detection intratumoral macroscopic fat and hemorrhage can be used to differentiate the benign from malignant solid renal masses.
Cell-accurate optical mapping across the entire developing heart.
Weber, Michael; Scherf, Nico; Meyer, Alexander M; Panáková, Daniela; Kohl, Peter; Huisken, Jan
2017-12-29
Organogenesis depends on orchestrated interactions between individual cells and morphogenetically relevant cues at the tissue level. This is true for the heart, whose function critically relies on well-ordered communication between neighboring cells, which is established and fine-tuned during embryonic development. For an integrated understanding of the development of structure and function, we need to move from isolated snap-shot observations of either microscopic or macroscopic parameters to simultaneous and, ideally continuous, cell-to-organ scale imaging. We introduce cell-accurate three-dimensional Ca 2+ -mapping of all cells in the entire electro-mechanically uncoupled heart during the looping stage of live embryonic zebrafish, using high-speed light sheet microscopy and tailored image processing and analysis. We show how myocardial region-specific heterogeneity in cell function emerges during early development and how structural patterning goes hand-in-hand with functional maturation of the entire heart. Our method opens the way to systematic, scale-bridging, in vivo studies of vertebrate organogenesis by cell-accurate structure-function mapping across entire organs.
Nguyen, The Hoang; Kloeppel, Marcus; Staudenmaier, Rainer; Werner, Jürgen; Biemer, Edgar
2005-01-01
Use of an isolated artery as an implanted pedicle in prefabricated flaps has rarely been reported either clinically or experimentally. In Chinchilla Bastard rabbits (n = 36), we dissected an isolated arterial pedicle from the femoral and saphenous artery, anastomosed it end-to-end to the femoral vein at the inguinal ligament and created an isolated arterial loop pedicle. This was implanted and fixed with polyglactin 9/0 under a random-pattern vascularised abdominal fasciocutaneous flap. The neovascularisation in the prefabricated flaps was evaluated macroscopically, by blood analysis, selective microangiography, and histology. The results showed a progressive degree of neovascularisation that corresponded to the increasing length of time that the pedicle was implanted in the flaps. Twenty days after prefabrication, the abdominal fasciocutaneous flap was readily perfused by the blood supply from the arterial pedicle. The capacity of the vessels in this group as seen on angiograms had increased to 258 vessels (108%) compared with the control group (239 vessels, 100%).
Cell-accurate optical mapping across the entire developing heart
Meyer, Alexander M; Panáková, Daniela; Kohl, Peter
2017-01-01
Organogenesis depends on orchestrated interactions between individual cells and morphogenetically relevant cues at the tissue level. This is true for the heart, whose function critically relies on well-ordered communication between neighboring cells, which is established and fine-tuned during embryonic development. For an integrated understanding of the development of structure and function, we need to move from isolated snap-shot observations of either microscopic or macroscopic parameters to simultaneous and, ideally continuous, cell-to-organ scale imaging. We introduce cell-accurate three-dimensional Ca2+-mapping of all cells in the entire electro-mechanically uncoupled heart during the looping stage of live embryonic zebrafish, using high-speed light sheet microscopy and tailored image processing and analysis. We show how myocardial region-specific heterogeneity in cell function emerges during early development and how structural patterning goes hand-in-hand with functional maturation of the entire heart. Our method opens the way to systematic, scale-bridging, in vivo studies of vertebrate organogenesis by cell-accurate structure-function mapping across entire organs. PMID:29286002
NASA Astrophysics Data System (ADS)
Erokhin, Sergey; Berkov, Dmitry; Ito, Masaaki; Kato, Akira; Yano, Masao; Michels, Andreas
2018-03-01
We demonstrate how micromagnetic simulations can be employed in order to characterize and analyze the magnetic microstructure of nanocomposites. For the example of nanocrystalline Nd-Fe-B, which is a potential material for future permanent-magnet applications, we have compared three different models for the micromagnetic analysis of this material class: (i) a description of the nanocomposite microstructure in terms of Stoner-Wohlfarth particles with and without the magnetodipolar interaction; (ii) a model based on the core-shell representation of the nanograins; (iii) the latter model including a contribution of superparamagnetic clusters. The relevant parameter spaces have been systematically scanned with the aim to establish which micromagnetic approach can most adequately describe experimental data for this material. According to our results, only the last, most sophisticated model is able to provide an excellent agreement with the measured hysteresis loop. The presented methodology is generally applicable to multiphase magnetic nanocomposites and it highligths the complex interrelationship between the microstructure, magnetic interactions, and the macroscopic magnetic properties.
Ciliates in chalk-stream habitats congregate in biodiversity hot spots.
Bradley, Mark W; Esteban, Genoveva F; Finlay, Bland J
2010-09-01
Free-living ciliates are a diverse group of microbial eukaryotes that inhabit aquatic environments. They have a vital role within the 'microbial loop', being consumers of microscopic prey such as bacteria, micro-algae, and flagellates, and representing a link between the microscopic and macroscopic components of aquatic food webs. This investigation describes the ciliate communities of four habitats located in the catchment of the River Frome, the major chalk-stream in southern Britain. The ciliate communities were characterised in terms of community assemblage, species abundance and size classes. The ciliate communities investigated proved to be highly diverse, yielding a total of 114 active species. An additional 15 'cryptic' ciliate species were also uncovered. Heterogeneity in the ciliate communities was evident at multiple spatial scales, revealing hot spots of species richness, both within and between habitats. The ciliate communities of habitats with flowing water were composed of smaller ciliates compared to the still-water habitats examined. Copyright 2010 Elsevier Masson SAS. All rights reserved.
TRACE Observations of Changes in Coronal Hole Boundaries
2010-02-13
predominate SXT •3 sP nngcr TRACK Observations of Changes in Coronal Hole Boundaries 145 active regions in CHs appear as anemone , characterized by a radial...array of loops formed by connections between the CH fields and the opposite polarity part of the active region. The anemone active regions are
The International Conference on Amorphous and Liquid Semiconductors (9th).
1979-12-11
loop effective action of a constant gluon field can be expressed in terms of the experimentally determinable A,.,• In the following chapter, the...regularization and Schwinger’s proper time method. The renormalization mass parameters appearing in the two treatments can then be related and the exact one
Hoffman, A; Kiesslich, R; Bittinger, F; Galle, P R; Neurath, M F
2008-07-01
Chromoendoscopy using methylene blue is employed in the gastrointestinal tract to delineate neoplastic lesions. We tested the value of chromoendoscopy during choledochoscopy for characterization of local inflammation, neoplasias, and other alterations in patients with biliary strictures. Patients with suspected biliary lesions were scheduled for endoscopic retrograde cholangiography with subsequent cholangioscopy. After initial inspection of the bile duct, 15 ml methylene blue (0.1 %) was administered via the working channel of the cholangioscope. Newly appearing circumscribed or unstained lesions were judged according to their macroscopic type and staining features. Methylene-blue-aided diagnosis was compared with either clinical follow-up of the patients or, in some cases, with the results of targeted biopsies. A total of 55 patients [biliary stenosis/cholestasis of unknown origin (n = 24), stenosis after orthotopic liver transplantation (n = 11), primary sclerosing cholangitis (n = 20)] were included. Methylene blue unmasked subtle mucosal changes and permitted macroscopic characterization of circumscribed lesions. Characteristic surface staining patterns were seen in chronic inflammation, dysplasia, and ischemic-type biliary lesions. Nondysplastic mucosa appeared homogeneously stained, whereas scarred strictures showed a weak uptake of methylene blue. In this prospective feasibility study, methylene-blue-aided cholangioscopy was used for the first time to define different staining patterns of the bile duct. The differences in staining patterns identified normal, dysplastic, and inflamed mucosa of the bile duct, as was proved by follow-up or, in some cases, histology. Whereas homogeneous staining predicted the presence of normal mucosa, absence of staining of circumscribed lesions, or diffused staining of such lesions, represented neoplastic changes or inflammation.
Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.
Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna
2015-09-01
Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.
Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies
Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna
2015-01-01
Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583
NASA Astrophysics Data System (ADS)
Wu, Y.; Chen, G. L.; Hui, X. D.; Liu, C. T.; Lin, Y.; Shang, X. C.; Lu, Z. P.
2009-10-01
Based on mechanical instability of individual shear transformation zones (STZs), a quantitative link between the microplastic instability and macroscopic deformation behavior of metallic glasses was proposed. Our analysis confirms that macroscopic metallic glasses comprise a statistical distribution of STZ embryos with distributed values of activation energy, and the microplastic instability of all the individual STZs dictates the macroscopic deformation behavior of amorphous solids. The statistical model presented in this paper can successfully reproduce the macroscopic stress-strain curves determined experimentally and readily be used to predict strain-rate effects on the macroscopic responses with the availability of the material parameters at a certain strain rate, which offer new insights into understanding the actual deformation mechanism in amorphous solids.
Liu, Nian; Huang, Yuan
2010-01-01
The complete 15,599-bp mitogenome of Acrida cinerea was determined and compared with that of the other 20 orthopterans. It displays characteristic gene content, genome organization, nucleotide composition, and codon usage found in other Caelifera mitogenomes. Comparison of 21 orthopteran sequences revealed that the tRNAs encoded by the H-strand appear more conserved than those by the L-stand. All tRNAs form the typical clover-leaf structure except trnS (agn), and most of the size variation among tRNAs stemmed from the length variation in the arm and loop of TΨC and the loop of DHU. The derived secondary structure models of the rrnS and rrnL from 21 orthoptera species closely resemble those from other insects on CRW except a considerably enlarged loop of helix 1399 of rrnS in Caelifera, which is a potentially autapomorphy of Caelifera. In the A+T-rich region, tandem repeats are not only conserved in the closely related mitogenome but also share some conserved motifs in the same subfamily. A stem-loop structure, 16 bp or longer, is likely to be involved in replication initiation in Caelifera and Grylloidea. A long T-stretch (>17 bp) with conserved stem-loop structure next to rrnS on the H-strand, bounded by a purine at either end, exists in the three species from Tettigoniidae. PMID:21197069
NASA Astrophysics Data System (ADS)
Huang, Zhenghua; Mou, Chaozhou; Fu, Hui; Deng, Linhua; Li, Bo; Xia, Lidong
2018-02-01
We present high-resolution observations of a magnetic reconnection event in the solar atmosphere taken with the New Vacuum Solar Telescope, Atmospheric Imaging Assembly (AIA), and Helioseismic and Magnetic Imager (HMI). The reconnection event occurred between the threads of a twisted arch filament system (AFS) and coronal loops. Our observations reveal that the relaxation of the twisted AFS drives some of its threads to encounter the coronal loops, providing inflows of the reconnection. The reconnection is evidenced by flared X-shape features in the AIA images, a current-sheet-like feature apparently connecting post-reconnection loops in the Hα + 1 Å images, small-scale magnetic cancelation in the HMI magnetograms and flows with speeds of 40–80 km s‑1 along the coronal loops. The post-reconnection coronal loops seen in the AIA 94 Å passband appear to remain bright for a relatively long time, suggesting that they have been heated and/or filled up by dense plasmas previously stored in the AFS threads. Our observations suggest that the twisted magnetic system could release its free magnetic energy into the upper solar atmosphere through reconnection processes. While the plasma pressure in the reconnecting flux tubes are significantly different, the reconfiguration of field lines could result in transferring of mass among them and induce heating therein.
Particle Acceleration and Plasma Heating in the Chromosphere
NASA Astrophysics Data System (ADS)
Zaitsev, V. V.; Stepanov, A. V.
2015-12-01
We propose a new mechanism of electron acceleration and plasma heating in the solar chromosphere, based on the magnetic Rayleigh-Taylor instability. The instability develops at the chromospheric footpoints of a flare loop and deforms the local magnetic field. As a result, the electric current in the loop varies, and a resulting inductive electric field appears. A pulse of the induced electric field, together with the pulse of the electric current, propagates along the loop with the Alfvén velocity and begins to accelerate electrons up to an energy of about 1 MeV. Accelerated particles are thermalized in the dense layers of the chromosphere with the plasma density n ≈10^{14} - 10^{15} cm^{-3}, heating them to a temperature of about several million degrees. Joule dissipation of the electric current pulse heats the chromosphere at heights that correspond to densities n ≤10^{11} - 10^{13} cm^{-3}. Observations with the New Solar Telescope at Big Bear Solar Observatory indicate that chromospheric footpoints of coronal loops might be heated to coronal temperatures and that hot plasma might be injected upwards, which brightens ultra-fine loops from the photosphere to the base of the corona. Thereby, recent observations of the Sun and the model we propose stimulate a déjà vu - they are reminiscent of the concept of the chromospheric flare.
Structural and mechanistic insights into Mps1 kinase activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Yang, Yuting; Gao, Yuefeng
2010-11-05
Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-{angstrom}-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the {alpha}C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation.more » Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices {alpha}EF and {alpha}F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.« less
Utilization of municipal wastewater for cooling in thermoelectric power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safari, Iman; Walker, Michael E.; Hsieh, Ming-Kai
2013-09-01
A process simulation model has been developed using Aspen Plus® with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH 3 and CO 2 evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loopmore » pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH 3 mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., k NH3 < 4×10 -3 m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO 3). The effect of the CO2 mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., k CO2<4×10 -6 m/s).« less
A Pilot Model for the NASA Simplified Aid for EVA Rescue (SAFER) (Single-Axis Pitch Task)
NASA Astrophysics Data System (ADS)
Handley, Patrick Mark
This thesis defines, tests, and validates a descriptive pilot model for a single-axis pitch control task of the Simplified Aid for EVA Rescue (SAFER). SAFER is a small propulsive jetpack used by astronauts for self-rescue. Pilot model research supports development of improved self-rescue strategies and technologies through insights into pilot behavior.This thesis defines a multi-loop pilot model. The innermost loop controls the hand controller, the middle loop controls pitch rate, and the outer loop controls pitch angle. A human-in-the-loop simulation was conducted to gather data from a human pilot. Quantitative and qualitative metrics both indicate that the model is an acceptable fit to the human data. Fuel consumption was nearly identical; time to task completion matched very well. There is some evidence that the model responds faster to initial pitch rates than the human, artificially decreasing the model's time to task completion. This pilot model is descriptive, not predictive, of the human pilot. Insights are made into pilot behavior from this research. Symmetry implies that the human responds to positive and negative initial conditions with the same strategy. The human pilot appears indifferent to pitch angles within 0.5 deg, coasts at a constant pitch rate 1.09 deg/s, and has a reaction delay of 0.1 s.
Hess, Oswald; Meyer, Günther F.
1963-01-01
The nuclei of growing spermatocytes in Drosophila hydei and D. neohydei are characterized by the appearance of phase-specific, paired, loop-shaped structures thought to be similar to the loops in lampbrush chromosomes of amphibian oocytes. In X/O-males of D. hydei spermatogenesis is completely blocked before the first maturation division. No spermatozoa are formed in such testes. In the nuclei of X/O-spermatocytes, paired loop formations are absent. This shows the dependence of these chromosomal functional structures upon the Y chromosome. The basis of this dependence could be shown through an investigation of males with two Y chromosomes. All loop pairs are present in duplicate in XYY males. This proves that the intranuclear formations are structural modifications of the Y chromosome itself. These functional structures are species-specific and characteristically different in Drosophila hydei and D. neohydei. Reciprocal species crosses and a backcross showed that the spermatocyte nuclei of all hybrid males possess the functional structures corresponding to the species which donated the Y chromosome. This shows that the morphological character of the functional structures is also determined by the Y chromosome. PMID:13954225
Exact correlators on the Wilson loop in N=4 SYM: localization, defect CFT, and integrability
NASA Astrophysics Data System (ADS)
Giombi, Simone; Komatsu, Shota
2018-05-01
We compute a set of correlation functions of operator insertions on the 1 /8 BPS Wilson loop in N=4 SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the 't Hooft coupling and the rank of the gauge group. When applied to the 1 /2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS2 string worldsheet. We also explain the connection of our results to the "generalized Bremsstrahlung functions" previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite N generalization. Furthermore, we show that the correlators at large N can be recast as simple integrals of products of polynomials (known as Q-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.
Hard matching for boosted tops at two loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Andre H.; Pathak, Aditya; Pietrulewicz, Piotr
2015-12-10
Here, cross sections for top quarks provide very interesting physics opportunities, being both sensitive to new physics and also perturbatively tractable due to the large top quark mass. Rigorous factorization theorems for top cross sections can be derived in several kinematic scenarios, including the boosted regime in the peak region that we consider here. In the context of the corresponding factorization theorem for e +e – collisions we extract the last missing ingredient that is needed to evaluate the cross section differential in the jet-mass at two-loop order, namely the matching coefficient at the scale μ≃m t. Our extraction alsomore » yields the final ingredients needed to carry out logarithmic re-summation at next-to-next-to-leading logarithmic order (or N 3LL if we ignore the missing 4-loop cusp anomalous dimension). This coefficient exhibits an amplitude level rapidity logarithm starting at O(α 2 s) due to virtual top quark loops, which we treat using rapidity renormalization group (RG) evolution. Interestingly, this rapidity RG evolution appears in the matching coefficient between two effective theories around the heavy quark mass scale μ ≃ m t.« less
Pricop, Catalin; Serban, Dragomir N; Serban, Ionela Lacramioara; Cumpanas, Alin-Adrian; Gingu, Constantin-Virgil
2016-01-01
JJ stents are often encountered in patients with pelvic renal stones referred for shock wave lithotripsy, most of them being placed either for obstructive renal pelvic stones or for ureteric stones mobilized retrograde during the JJ stent insertion. The aim of the study was to determine whether the relative stone position in the upper loop of the JJ stent during extracorporeal shock wave lithotripsy (SWL) influences the efficiency of the procedure. The study was designed as a prospective cohort study on 162 patients addressing the same urological department, with single renal pelvic stone (primary or mobilized to the renal pelvis during the insertion of JJ stent), smaller than 15 mm, with JJ stent, treated by SWL using a second generation spark gap lithotripter, 18 kV, 3000 waves/session. Patients were divided in three groups according to the relative position of the stone to the upper loop of the JJ stent as appears on plain X-ray: stone-inside-loop, loop-crossing-stone and stone-outside the loop. The SWL success rate was the primary outcome of the study. p Value, Chi square and Kruskal-Wallis tests were used for statistical analysis. For stone-inside-loop cases, SWL efficiency was 22.7 versus 42 % for all the other cases (p = 0.002). Other factors for decreased SWL success rate were: higher stone radio-opacity, larger JJ of stent and obese patients. Study limitation is represented by the relative small study group and by the evaluation of stone density using plain X-ray instead of computer tomography. For pelvic renal stones having the same density characteristics studied by plain X-ray, the SWL efficiency is lower in stone-inside-loop cases comparing with the other positions. The overall stone free rate for renal pelvic stones could be explained by the second generation lithotripter used for all procedures.
Evidence that the X-Ray Plasma in Microflares is in a Sequence of Subresolution Magnetic Tubes
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.
1998-01-01
We analyze the cooling of the X-ray emitting thermal plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope. A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approximately 2 x 10(exp 8) cm) (Shimizu 1995, PASJ, 47, 251). The X-ray plasma in the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is filled by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (1995) (X-ray brightness through the thin aluminum filter approximately 4 x 10(exp 3) DN/s/pixel, lifetime approximately 5 min, temperature approximately 6 x 10(exp 6) K, loop length approximately 10(exp 9) cm, loop diameter approximately 3 x 10(exp 8) cm), we find that for filling factors greater than approximately 1% (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that (1) heating to X-ray temperatures continues through nearly the entire life of a microflare, (2) the heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction (less than approximately 10%) of the microflare loop. Hence, we expect that coronal X-ray images with spatial resolution 2-3 times better than from Yohkoh will show plenty of rapidly changing filamentary substructure in microflares.
A statistical study of decaying kink oscillations detected using SDO/AIA
NASA Astrophysics Data System (ADS)
Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.
2016-01-01
Context. Despite intensive studies of kink oscillations of coronal loops in the last decade, a large-scale statistically significant investigation of the oscillation parameters has not been made using data from the Solar Dynamics Observatory (SDO). Aims: We carry out a statistical study of kink oscillations using extreme ultraviolet imaging data from a previously compiled catalogue. Methods: We analysed 58 kink oscillation events observed by the Atmospheric Imaging Assembly (AIA) on board SDO during its first four years of operation (2010-2014). Parameters of the oscillations, including the initial apparent amplitude, period, length of the oscillating loop, and damping are studied for 120 individual loop oscillations. Results: Analysis of the initial loop displacement and oscillation amplitude leads to the conclusion that the initial loop displacement prescribes the initial amplitude of oscillation in general. The period is found to scale with the loop length, and a linear fit of the data cloud gives a kink speed of Ck = (1330 ± 50) km s-1. The main body of the data corresponds to kink speeds in the range Ck = (800-3300) km s-1. Measurements of 52 exponential damping times were made, and it was noted that at least 21 of the damping profiles may be better approximated by a combination of non-exponential and exponential profiles rather than a purely exponential damping envelope. There are nine additional cases where the profile appears to be purely non-exponential and no damping time was measured. A scaling of the exponential damping time with the period is found, following the previously established linear scaling between these two parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Sudip; Banerjee, Dipankar; Pant, Vaibhav
Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory /Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence.more » The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.« less
TRIGGER MECHANISM OF SOLAR SUBFLARES IN A BRAIDED CORONAL MAGNETIC STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.
Fine-scale braiding of coronal magnetic loops by continuous footpoint motions may power coronal heating via nanoflares, which are spontaneous fine-scale bursts of internal reconnection. An initial nanoflare may trigger an avalanche of reconnection of the braids, making a microflare or larger subflare. In contrast to this internal triggering of subflares, we observe external triggering of subflares in a braided coronal magnetic field observed by the High-resolution Coronal Imager (Hi-C). We track the development of these subflares using 12 s cadence images acquired by SDO/AIA in 1600, 193, 94 Å, and registered magnetograms of SDO/HMI, over four hours centered on the Hi-Cmore » observing time. These data show numerous recurring small-scale brightenings in transition-region emission happening on polarity inversion lines where flux cancellation is occurring. We present in detail an example of an apparent burst of reconnection of two loops in the transition region under the braided coronal field which is appropriate for releasing a short reconnected loop downward and a longer reconnected loop upward. The short loop presumably submerges into the photosphere, participating in observed flux cancellation. A subflare in the overlying braided magnetic field is apparently triggered by the disturbance of the braided field by the reconnection-released upward loop. At least 10 subflares observed in this braided structure appear to be triggered this way. How common this external trigger mechanism for coronal subflares is in other active regions, and how important it is for coronal heating in general, remain to be seen.« less
NASA Astrophysics Data System (ADS)
Zhang, Yao; Zhan, Qingfeng; Zuo, Zhenghu; Yang, Huali; Zhang, Xiaoshan; Dai, Guohong; Liu, Yiwei; Yu, Ying; Wang, Jun; Wang, Baomin; Li, Run-Wei
2015-05-01
We fabricated epitaxial exchange biased (EB) IrMn/FeGa bilayers by oblique deposition and systematically investigated their magnetization reversal. Two different configurations with the uniaxial magnetic anisotropy Ku parallel and perpendicular to the unidirectional anisotropy Ke b were obtained by controlling the orientation of the incident FeGa beam during deposition. A large ratio of Ku/Ke b was obtained by obliquely depositing the FeGa layer to achieve a large Ku while reducing the IrMn thickness to obtain a small Ke b. Besides the previously reported square loops, conventional asymmetrically shaped loops, and one-sided and two-sided two-step loops, unusual asymmetrically shaped loops with a three-step magnetic transition for the descending branch and a two-step transition for the ascending branch and biased three-step loops were observed at various field orientations in the films of both IrMn (tIrMn=1.5 to 20 nm)/FeGa (10 nm) with Ku⊥ Ke b and IrMn (tIrMn≤2 nm)/FeGa (10 nm) with Ku|| Ke b . Considering the geometries of anisotropies, a model based on domain wall nucleation and propagation was employed to quantitatively describe the angular dependent behaviors of IrMn/FeGa bilayers. The biased three-step magnetic switching was predicted to take place when | Ku|> ɛ90°+Ke b , where ɛ90° is the 90° domain wall nucleation energy, and the EB leads to the appearance of the unusual asymmetrically shaped hysteresis loops.
Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huadong; Zhang, Jun; Ma, Suli
We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19–20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearbymore » coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ∼280 km s{sup −1}. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ∼8 G.« less
Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets
NASA Astrophysics Data System (ADS)
Chen, Huadong; Zhang, Jun; Ma, Suli; Yan, Xiaoli; Xue, Jianchao
2017-05-01
We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19-20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ˜280 km s-1. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ˜8 G.
Lazy river on Mars: Ring-shaped fluvial channel discovered north of Capri Chasma
NASA Astrophysics Data System (ADS)
Thomson, B. J.
2017-12-01
Many features on Mars are strange, but some are stranger than others. Fluvial features on Mars come in several basic flavors: branching valley networks, massive outflow channels, and possibly presently active recurring slope lineae. Here, we identify a small, valley network-like channel segment whose planform appearance traces out a nearly complete circle. One of the key tenants of hydrogeology and plumbing is that "stuff flows downhill." A seemingly circular loop implies a gross violation of the downhill flow rule, akin to a visual claim of perpetual motion. This M.C. Escher-inspired landform is located at 6.45°S, 39.70°W inside Innsbruck crater, a 59-km diameter impact structure that is just north of Capri Chasma. A close inspection reveals that the loop is not 100% continuous; there is a slight break on the western side of the loop. The pair of channels on either side of this gap terminate abruptly. These appear to be points of origin rather than termini, although admittedly the direction(s) of flow within the channel segments are difficult to constrain uniquely. The overall morphology of this near-circular channel system implies a local source limited both in duration and volume. Assuming that the fluid involved was water, the volume of water was sufficient for incipient erosion of the terrain, but not sufficient to have ponded or continued to flow. Here, the combined infiltration and evaporation rates must have been sufficiently large such that a breakout flow did not occur.
Floating-point system quantization errors in digital control systems
NASA Technical Reports Server (NTRS)
Phillips, C. L.
1973-01-01
The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.
ABJ theory in the higher spin limit
NASA Astrophysics Data System (ADS)
Hirano, Shinji; Honda, Masazumi; Okuyama, Kazumi; Shigemori, Masaki
2016-08-01
We study the conjecture made by Chang, Minwalla, Sharma, and Yin on the duality between the {N}=6 Vasiliev higher spin theory on AdS4 and the {N}=6 Chern-Simons-matter theory, so-called ABJ theory, with gauge group U( N) × U( N + M). Building on our earlier results on the ABJ partition function, we develop the systematic 1 /M expansion, corresponding to the weak coupling expansion in the higher spin theory, and compare the leading 1 /M correction, with our proposed prescription, to the one-loop free energy of the {N}=6 Vasiliev theory. We find an agreement between the two sides up to an ambiguity that appears in the bulk one-loop calculation.
Factors affecting the serological testing of cadaveric donor cornea.
Raj, Anuradha; Mittal, Garima; Bahadur, Harsh
2018-01-01
The purpose of this study was to evaluate the serological profile of the eye donors and to study the influence of various factors on serological test results. A cross-sectional, observational study was conducted, and data of 509 donors were reviewed from the records of eye bank from December 2012 to June 2017. Various details of donors analyzed included the age, sex of the donor, cause of death, source of tissue, time since blood collection after death, macroscopic appearance of blood sample, and details of discarded tissues. Serological examination of blood was performed for human immunodeficiency virus (HIV), hepatitis B virus, hepatitis C virus (HCV), venereal disease research laboratory (VDRL), and serology reports reactive or nonreactive were analyzed. Among the 509 donors, 295 (58%) were male, and 420 (82.50%) belonged to age group ≥60 years. Most donors (354, 69.5%) died due to cardiac arrest. Macroscopically, sera were normal in the majority of 488 (95.9%) cases. Among 509 donors, 475 (93.3%) were nonreactive, 12 (2.4%) donors were found to be reactive to hepatitis B surface antigen (HBsAg), and 1 (0.2%) was reactive to HCV, but no donor serology was reactive to HIV or VDRL. Twenty-one (4.12%) donors' sera were not fit for serological testing. Among all donors, 475 (93.32%) donors were accepted and 34 (6.67%) were rejected or discarded on the basis of serological testing. Cause of death and macroscopic aspect of sera influenced the serological results in a highly significant manner (P = 0.00). Acceptance or rejection of the donor was significantly influenced by the serological results of the donor (P = 0.00). The seroprevalence among eye donor for HBsAg and HCV was 12 (2.4%) and 1 (0.2%), respectively. Factors such as cause of death and macroscopic aspect of sera influence the serological results. Time since blood collection or sampling will not show any impact on viral serological results if postmortem sampling will be done in < 10 hours(h) after death which can improve the safety and utility of the donor cornea.
Distinct Molecular Features of Different Macroscopic Subtypes of Colorectal Neoplasms
Konda, Kenichi; Konishi, Kazuo; Yamochi, Toshiko; Ito, Yoichi M.; Nozawa, Hisako; Tojo, Masayuki; Shinmura, Kensuke; Kogo, Mari; Katagiri, Atsushi; Kubota, Yutaro; Muramoto, Takashi; Yano, Yuichiro; Kobayashi, Yoshiya; Kihara, Toshihiro; Tagawa, Teppei; Makino, Reiko; Takimoto, Masafumi; Imawari, Michio; Yoshida, Hitoshi
2014-01-01
Background Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs). Methods We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI]) and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers) alterations in 158 CRNs including 56 polypoid neoplasms (PNs), 25 granular type laterally spreading tumors (LST-Gs), 48 non-granular type LSTs (LST-NGs), 19 depressed neoplasms (DNs) and 10 small flat-elevated neoplasms (S-FNs) on the basis of macroscopic appearance. Results S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs) (P<0.001). By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively) (P<0.007). We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively) (P<0.005). Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05). PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41). Conclusion We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal tumorigenesis. PMID:25093594
Role of substrate quality on IC performance and yields
NASA Technical Reports Server (NTRS)
Thomas, R. N.
1981-01-01
The development of silicon and gallium arsenide crystal growth for the production of large diameter substrates are discussed. Large area substrates of significantly improved compositional purity, dopant distribution and structural perfection on a microscopic as well as macroscopic scale are important requirements. The exploratory use of magnetic fields to suppress convection effects in Czochralski crystal growth is addressed. The growth of large crystals in space appears impractical at present however the efforts to improve substrate quality could benefit from the experiences gained in smaller scale growth experiments conducted in the zero gravity environment of space.
Synchronisation Induced by Repulsive Interactions in a System of van der Pol Oscillators
NASA Astrophysics Data System (ADS)
Martins, T. V.; Toral, R.
2011-09-01
We consider a system of identical van der Pol oscillators, globally coupled through their velocities, and study how the presence of competitive interactions affects its synchronisation properties. We will address the question from two points of view. Firstly, we will investigate the role of competitive interactions on the synchronisation among identical oscillators. Then, we will show that the presence of a fraction of repulsive links results in the appearance of macroscopic oscillations at that signal's rhythm, in regions where the individual oscillator is unable to synchronise with a weak external signal.
Comprehensive Thematic T-Matrix Reference Database: A 2014-2015 Update
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Zakharova, Nadezhda; Khlebtsov, Nikolai G.; Videen, Gorden; Wriedt, Thomas
2015-01-01
The T-matrix method is one of the most versatile and efficient direct computer solvers of the macroscopic Maxwell equations and is widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, and particles in the vicinity of an interface separating two half-spaces with different refractive indices. This paper is the seventh update to the comprehensive thematic database of peer-reviewed T-matrix publications initiated by us in 2004 and includes relevant publications that have appeared since 2013. It also lists a number of earlier publications overlooked previously.
Structure of interfaces at phase coexistence. Theory and numerics
NASA Astrophysics Data System (ADS)
Delfino, Gesualdo; Selke, Walter; Squarcini, Alessio
2018-05-01
We compare results of the exact field theory of phase separation in two dimensions with Monte Carlo simulations for the q-state Potts model with boundary conditions producing an interfacial region separating two pure phases. We confirm in particular the theoretical predictions that below critical temperature the surplus of non-boundary colors appears in drops along a single interface, while for q > 4 at critical temperature there is formation of two interfaces enclosing a macroscopic disordered layer. These qualitatively different structures of the interfacial region can be discriminated through a measurement at a single point for different system sizes.
Renormalization of the Higgs sector in the triplet model
NASA Astrophysics Data System (ADS)
Aoki, Mayumi; Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei
2012-08-01
We study radiative corrections to the mass spectrum and the triple Higgs boson coupling in the model with an additional Y = 1 triplet field. In this model, the vacuum expectation value for the triplet field is strongly constrained from the electroweak precision data, under which characteristic mass spectrum appear at the tree level; i.e., mH++2 - mH+2 ≃ mH+2 - mA2 and mA2 ≃ mH2, where the CP-even (H), the CP-odd (A) and the doubly-charged (H±±) as well as the singly-charged (H±) Higgs bosons are the triplet-like. We evaluate how the tree-level formulae are modified at the one-loop level. The hhh coupling for the standard model-like Higgs boson (h) is also calculated at the one-loop level. One-loop corrections to these quantities can be large enough for identification of the model by future precision data at the LHC or the International Linear Collider.
One-loop calculations in Supersymmetric Lattice QCD
NASA Astrophysics Data System (ADS)
Costa, M.; Panagopoulos, H.
2017-03-01
We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (N = 1). We compute, perturbatively to one-loop, the relevant two-point Green's functions using both the dimensional and the lattice regularizations. Our lattice formulation employs the Wilson fermion acrion for the gluino and quark fields. The gauge group that we consider is SU(Nc) while the number of colors, Nc and the number of flavors, Nf , are kept as generic parameters. We have also searched for relations among the propagators which are computed from our one-loop results. We have obtained analytic expressions for the renormalization functions of the quark field (Zψ), gluon field (Zu), gluino field (Zλ) and squark field (ZA±). We present here results from dimensional regularization, relegating to a forthcoming publication [1] our results along with a more complete list of references. Part of the lattice study regards also the renormalization of quark bilinear operators which, unlike the nonsupersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.
Ye, Yuzhen; Wang, Zhongwei; Zhou, Jianfeng; Wu, Qingjiang
2009-08-01
Microsatellite markers and D-loop sequences of mtDNA from a female allotetraploid parent carp and her progenies of generations 1 and 2 induced by sperm of five distant fish species were analyzed. Eleven microsatellite markers were used to identify 48 alleles from the allotetraploid female. The same number of alleles (48) appeared in the first and second generations of the gynogenetic offspring, regardless of the source of the sperm used as an activator. The mtDNA D-loop analysis was performed on the female tetraploid parent, 25 gynogenetic offspring, and 5 sperm-donor species. Fourteen variable sites from the 1,018 bp sequences were observed in the offspring as compared to the female tetraploid parent. Results from D-loop sequence and microsatellite marker analysis showed exclusive maternal transmission, and no genetic information was derived from the father. Our study suggests that progenies of artificial tetraploid carp are genetically stable, which is important for genetic breeding of this tetraploid fish.
NASA Astrophysics Data System (ADS)
Pang, Yi; Rong, Junchen; Su, Ning
2016-12-01
We consider ϕ 3 theory in 6 - 2 ɛ with F 4 global symmetry. The beta function is calculated up to 3 loops, and a stable unitary IR fixed point is observed. The anomalous dimensions of operators quadratic or cubic in ϕ are also computed. We then employ conformal bootstrap technique to study the fixed point predicted from the perturbative approach. For each putative scaling dimension of ϕ (Δ ϕ ), we obtain the corresponding upper bound on the scaling dimension of the second lowest scalar primary in the 26 representation ( Δ 26 2nd ) which appears in the OPE of ϕ × ϕ. In D = 5 .95, we observe a sharp peak on the upper bound curve located at Δ ϕ equal to the value predicted by the 3-loop computation. In D = 5, we observe a weak kink on the upper bound curve at ( Δ ϕ , Δ 26 2nd ) = (1.6, 4).
Isolation, characterization, and expression analyses of plant elicitor peptides (pep) genes in maize
USDA-ARS?s Scientific Manuscript database
PROPEP1, PROPEP 2, and PROPEP3 genes appear to have roles in a feedback loop that amplifies defense signaling pathways initiated by pathogens. We present evidence to support the role of peptides derived from PROPEP genes as endogenous elicitors that are generated in response to pathogens. The preval...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouha, Harald; Hoenninger, Verena M.; Thurner, Caroline
2011-08-15
Flavivirus gene expression is modulated by RNA secondary structure elements at the terminal ends of the viral RNA molecule. For tick-borne encephalitis virus (TBEV), four stem-loop (SL) elements have been predicted in the first 180 nucleotides of the viral genome: 5'-SL1, 5'-SL2, 5'-SL3 and 5'-SL4. The last three of these appear to be unique to tick-borne flaviviruses. Here, we report their characterization by mutagenesis in a TBEV luciferase reporter system. By manipulating their thermodynamic properties, we found that an optimal stability of the 5'-SL2 is required for efficient RNA replication. 5'-SL3 formation is also important for viral RNA replication, butmore » although it contains the viral start codon, its formation is dispensable for RNA translation. 5'-SL4 appears to facilitate both RNA translation and replication. Our data suggest that maintenance of the balanced thermodynamic stability of these SL elements is important for temporal regulation of its different functions.« less
Colonoscopy and SeHCAT for investigation of chronic diarrhea.
Müller, Marcella; Willén, Roger; Stotzer, Per-Ove
2004-01-01
Chronic diarrhea is a common problem. Colonoscopy is the investigation of choice for diagnosis. Even a macroscopically normal mucosa on endoscopy can have abnormalities such as microscopic colitis and bile acid malabsorption (BAM). The aim of this study was to establish the value of colonoscopy with biopsies in patients with chronic diarrhea and to evaluate the additive value of a SeHCAT test for diagnosing BAM in these patients. All patients who underwent a colonoscopy between November 1999 and December 2000 were included. Patient files, colonoscopy and pathology reports and SeHCAT test results were reviewed. 205 patients were included. The most common diagnoses were diarrhea-predominant IBS (n = 76) and IBD (n = 38). 158 patients had non-bloody diarrhea, 113 (72%) of them had a macroscopically normal appearing mucosa. In 40 (35%) of these patients, a histological diagnosis could be made and microscopic colitis was the most common diagnosis (n = 27). SeHCAT test was performed in 36 patients and 15 (42%) of them had BAM. In the 47 patients with bloody diarrhea, IBD was the main diagnosis (n = 23). Colonoscopy with biopsies must be performed when investigating chronic diarrhea and BAM should be excluded.
Numerical estimation of cavitation intensity
NASA Astrophysics Data System (ADS)
Krumenacker, L.; Fortes-Patella, R.; Archer, A.
2014-03-01
Cavitation may appear in turbomachinery and in hydraulic orifices, venturis or valves, leading to performance losses, vibrations and material erosion. This study propose a new method to predict the cavitation intensity of the flow, based on a post-processing of unsteady CFD calculations. The paper presents the analyses of cavitating structures' evolution at two different scales: • A macroscopic one in which the growth of cavitating structures is calculated using an URANS software based on a homogeneous model. Simulations of cavitating flows are computed using a barotropic law considering presence of air and interfacial tension, and Reboud's correction on the turbulence model. • Then a small one where a Rayleigh-Plesset software calculates the acoustic energy generated by the implosion of the vapor/gas bubbles with input parameters from macroscopic scale. The volume damage rate of the material during incubation time is supposed to be a part of the cumulated acoustic energy received by the solid wall. The proposed analysis method is applied to calculations on hydrofoil and orifice geometries. Comparisons between model results and experimental works concerning flow characteristic (size of cavity, pressure,velocity) as well as pitting (erosion area, relative cavitation intensity) are presented.
Light ion irradiation for unfavorable soft tissue sarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linstadt, D.; Castro, J.R.; Phillips, T.L.
1990-09-01
Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopicmore » tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation.« less
Bose-Einstein condensation of photons in a 'white-wall' photon box
NASA Astrophysics Data System (ADS)
Klärs, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin
2011-01-01
Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a "white-wall" photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.
Nagarjun, S; Dhadde, Shivsharan B; Veerapur, Veeresh P; Thippeswamy, B S; Chandakavathe, Baburao N
2017-05-01
Present study was designed to evaluate the effect of chromium-d-phenylalanine complex (Cr (d-phe) 3 ) on indomethacin-induced inflammatory bowel disease (IBD) in rats. Adult Wistar rats were pretreated with vehicle/Cr (d-phe) 3 (30, 60 and 90μg/kg, p.o.) for 11days. On day 8 and 9, after one h of the above mentioned treatment, indomethacin (7.5mg/kg/day,s.c.) was administered to induce IBD. On day 12, blood samples were collected from animals for lactate dehydrogenase (LDH) estimation and ileum was isolated for macroscopic scoring, biochemical estimation (lipid peroxidation, reduced glutathione and myeloperoxidase activity) and histopathological study. Administration of indomethacin significantly altered the serum LDH, macroscopic and microscopic appearance and biochemical parameters in ileum tissue. Cr (d-phe) 3 , at all the tested doses, caused a significant reversal of changes induced by indomethacin. Present study demonstrates the protective effect of Cr (d-phe) 3 against indomethacin-induced IBD in rats. The observed protective effect might be attributed to the antioxidant and anti-inflammatory properties of Cr (d-phe) 3 . Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Electromagnetic coupling of spins and pseudospins in bilayer graphene
NASA Astrophysics Data System (ADS)
Winkler, R.; Zülicke, U.
2015-03-01
We present a theoretical study of bilayer-graphene's electronic properties in the presence of electric and magnetic fields. In contrast to known materials, including single-layer graphene, any possible coupling of physical quantities to components of the electric field has a counterpart where the analogous component of the magnetic field couples to exactly the same quantities. For example, a purely electric spin splitting appears as the magneto-electric analogue of the magnetic Zeeman spin splitting. The measurable thermodynamic response induced by magnetic and electric fields is thus completely symmetric. The Pauli magnetization induced by a magnetic field takes exactly the same functional form as the polarization induced by an electric field. Although they seem counterintuitive, our findings are consistent with fundamental principles such as time reversal symmetry. For example, only a magnetic field can give rise to a macroscopic spin polarization, whereas only a perpendicular electric field can induce a macroscopic polarization of the sublattice-related pseudospin in bilayer graphene. These rules enforced by symmetry for the matter-field interactions clarify the nature of spins versus pseudospins. We have obtained numerical values of prefactors for relevant terms. NSF Grant DMR-1310199 and Marsden Fund Contract No. VUW0719.
Self-Poling of BiFeO3 Thick Films.
Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej
2016-08-03
Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.
Active polar two-fluid macroscopic dynamics.
Pleiner, H; Svenšek, D; Brand, H R
2013-11-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria as well as shoals of fish, flocks of birds and migrating insects. Due to the fact that the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units, which are typically biological in nature. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to a second velocity as a variable. We analyze in detail how the macroscopic behavior of an active system with a polar dynamic preferred direction compares to other systems with two velocities including immiscible liquids and electrically neutral quantum liquids such as superfluid (4)He and (3)He . We critically discuss changes in the normal mode spectrum when comparing uncharged superfluids, immiscible liquids and active system with a polar dynamic preferred direction. We investigate the influence of a macroscopic hand (collective effects of chirality) on the macroscopic behavior of such active media.
NASA Astrophysics Data System (ADS)
Weijermars, R.; van Harmelen, A.
2016-07-01
An important real world application of doublet flow occurs in well design of both geothermal and hydrocarbon reservoirs. A guiding principle for fluid management of injection and extraction wells is that mass balance is commonly assumed between the injected and produced fluid. Because the doublets are considered closed loops, the injection fluid is assumed to eventually reach the producer well and all the produced fluid ideally comes from stream tubes connected to the injector of the well pair making up the doublet. We show that when an aquifer background flow occurs, doublets will rarely retain closed loops of fluid recirculation. When the far-field flow rate increases relative to the doublet's strength, the area occupied by the doublet will diminish and eventually vanishes. Alternatively, rather than using a single injector (source) and single producer (sink), a linear array of multiple injectors separated by some distance from a parallel array of producers can be used in geothermal energy projects as well as in waterflooding of hydrocarbon reservoirs. Fluid flow in such an arrangement of parallel source-sink arrays is shown to be macroscopically equivalent to that of a line doublet. Again, any far-field flow that is strong enough will breach through the line doublet, which then splits into two vortices. Apart from fundamental insight into elementary flow dynamics, our new results provide practical clues that may contribute to improve the planning and design of doublets and direct line drives commonly used for flow management of groundwater, geothermal and hydrocarbon reservoirs.
Highly strain-sensitive magnetostrictive tunnel magnetoresistance junctions
NASA Astrophysics Data System (ADS)
Tavassolizadeh, Ali; Hayes, Patrick; Rott, Karsten; Reiss, Günter; Quandt, Eckhard; Meyners, Dirk
2015-06-01
Tunnel magnetoresistance (TMR) junctions with CoFeB/MgO/CoFeB layers are promising for strain sensing applications due to their high TMR effect and magnetostrictive sense layer (CoFeB). TMR junctions available even in submicron dimensions can serve as strain sensors for microelectromechanical systems devices. Upon stress application, the magnetization configuration of such junctions changes due to the inverse magnetostriction effect resulting in strain-sensitive tunnel resistance. Here, strain sensitivity of round-shaped junctions with diameters of 11.3 μm, 19.2 μm, 30.5 μm, and 41.8 μm were investigated on macroscopic cantilevers using a four-point bending apparatus. This investigation mainly focuses on changes in hard-axis TMR loops caused by the stress-induced anisotropy. A macrospin model is proposed, supported by micromagnetic simulations, which describes the complete rotation of the sense layer magnetization within TMR loops of junctions, exposed to high stress. Below 0.2‰ tensile strain, a representative junction with 30.5 μm diameter exhibits a very large gauge factor of 2150. For such high gauge factor a bias field H = - 3.2 kA / m is applied in an angle equal to 3 π / 2 toward the pinned magnetization of the reference layer. The strain sensitivity strongly depends on the bias field. Applying stress along π / 4 against the induced magnetocrystalline anisotropy, both compressive and tensile strain can be identified by a unique sensor. More importantly, a configuration with a gauge factor of 400 at zero bias field is developed which results in a straightforward and compact measuring setup.
Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.
Fukushi, Keisuke; Hasegawa, Yusuke; Maeda, Koushi; Aoi, Yusuke; Tamura, Akihiro; Arai, Shoji; Yamamoto, Yuhei; Aosai, Daisuke; Mizuno, Takashi
2013-11-19
Eu(III) sorption on granite was assessed using combined microscopic and macroscopic approaches in neutral to acidic conditions where the mobility of Eu(III) is generally considered to be high. Polished thin sections of the granite were reacted with solutions containing 10 μM of Eu(III) and were analyzed using EPMA and LA-ICP-MS. On most of the biotite grains, Eu enrichment up to 6 wt % was observed. The Eu-enriched parts of biotite commonly lose K, which is the interlayer cation of biotite, indicating that the sorption mode of Eu(III) by the biotite is cation exchange in the interlayer. The distributions of Eu appeared along the original cracks of the biotite. Those occurrences indicate that the prior water-rock interaction along the cracks engendered modification of biotite to possess affinity to the Eu(III). Batch Eu(III) sorption experiments on granite and biotite powders were conducted as functions of pH, Eu(III) loading, and ionic strength. The macroscopic sorption behavior of biotite was consistent with that of granite. At pH > 4, there was little pH dependence but strong ionic strength dependence of Eu(III) sorption. At pH < 4, the sorption of Eu(III) abruptly decreased with decreased pH. The sorption behavior at pH > 4 was reproducible reasonably by the modeling considering single-site cation exchange reactions. The decrease of Eu(III) sorption at pH < 4 was explained by the occupation of exchangeable sites by dissolved cationic species such as Al and Fe from granite and biotite in low-pH conditions. Granites are complex mineral assemblages. However, the combined microscopic and macroscopic approaches revealed that elementary reactions by a single mineral phase can be representative of the bulk sorption reaction in complex mineral assemblages.
Toward a Classical Thermodynamic Model for Retro-cognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, Edwin C.
2011-11-29
Retro-cognition--a human response before a randomly determined future stimulus--has always been part of our experience. Experiments over the last 80 years show a small but statistically significant effect. If this turns out to be true, then it suggests a form of macroscopic retro-causation. The 2nd Law of Thermodynamics provides an explanation for the apparent single direction of time at the macroscopic level although time is reversible at the microscopic level. In a preliminary study, I examined seven anomalous cognition (a.k.a., ESP) studies in which the entropic gradients and the entropy of their associated target systems were calculated, and the qualitymore » of the response was estimated by a rating system called the figure of merit. The combined Spearman's correlation coefficient for these variables for the seven studies was 0.211 (p = 6.4x10{sup -4}) with a 95% confidence interval for the correlation of [0.084, 0.332]; whereas, the same data for a correlation with the entropy itself was 0.028 (p = 0.36; 95% confidence interval of [-0.120-0.175]). This suggests that anomalous cognition is mediated via some kind of a sensory system in that all the normal sensory systems are more sensitive to changes than they are to inputs that are not changing. A standard relationship for the change of entropy of a binary sequence appears to provide an upper limit to anomalous cognition functioning for free response and for forced-choice Zener card guessing. This entropic relation and an apparent limit set by the entropy may provide a clue for understanding macroscopic retro-causation.« less
NASA Astrophysics Data System (ADS)
Pomeau, Yves; Piasecki, Jarosław
2017-11-01
The existence of atoms has been long predicted by philosophers and scientists. The development of thermodynamics and of the statistical interpretation of its concepts at the end of the nineteenth century and in the early years of the twentieth century made it possible to bridge the gap of scales between the macroscopic world and the world of atoms. Einstein and Smoluchowski showed in 1905 and 1906 that the Brownian motion of particles of measurable size is a manifestation of the motion of atoms in fluids. Their derivation was completely different from each other. Langevin showed in 1908 how to put in a coherent framework the subtle effect of the randomness of the atomic world, responsible for the fluctuating force driving the motion of the Brownian particle and the viscosity of the "macroscopic" flow taking place around the same Brownian particle. Whereas viscous forces were already well understood at this time, the "Langevin" force appears there for the first time: it represents the fluctuating part of the interaction between the Brownian particle and the surrounding fluid. We discuss the derivation by Einstein and Smoluchowski as well as a previous paper by Sutherland on the diffusion coefficient of large spheres. Next we present Langevin's short note and explain the fundamental splitting into a random force and a macroscopic viscous force. This brings us to discuss various points, like the kind of constraints on Langevin-like equations. We insist in particular on the one arising from the time-reversal symmetry of the equilibrium fluctuations. Moreover, we discuss another constraint, raised first by Lorentz, which implies that, if the Brownian particle is not very heavy, the viscous force cannot be taken as the standard Stokes drag on an object moving at uniform speed. Lastly, we examine the so-called Langevin-Heisenberg and/or Langevin-Schrödinger equation used in quantum mechanics.
Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage
Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor AP; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel
2014-01-01
Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486
Leo, Berit; Schweimer, Kristian; Rösch, Paul; Hartl, Maximilian J; Wöhrl, Birgitta M
2012-09-10
The ribonuclease H (RNase H) domains of retroviral reverse transcriptases play an essential role in the replication cycle of retroviruses. During reverse transcription of the viral genomic RNA, an RNA/DNA hybrid is created whose RNA strand needs to be hydrolyzed by the RNase H to enable synthesis of the second DNA strand by the DNA polymerase function of the reverse transcriptase. Here, we report the solution structure of the separately purified RNase H domain from prototype foamy virus (PFV) revealing the so-called C-helix and the adjacent basic loop, which both were suggested to be important in substrate binding and activity. The solution structure of PFV RNase H shows that it contains a mixed five-stranded β-sheet, which is sandwiched by four α-helices (A-D), including the C-helix, on one side and one α-helix (helix E) on the opposite side. NMR titration experiments demonstrate that upon substrate addition signal changes can be detected predominantly in the basic loop as well as in the C-helix. All these regions are oriented towards the bound substrate. In addition, signal intensities corresponding to residues in the B-helix and the active site decrease, while only minor or no changes of the overall structure of the RNase H are detectable upon substrate binding. Dynamic studies confirm the monomeric state of the RNase H domain. Structure comparisons with HIV-1 RNase H, which lacks the basic protrusion, indicate that the basic loop is relevant for substrate interaction, while the C-helix appears to fulfill mainly structural functions, i.e. positioning the basic loop in the correct orientation for substrate binding. The structural data of PFV RNase H demonstrate the importance of the basic loop, which contains four positively charged lysines, in substrate binding and the function of the C-helix in positioning of the loop. In the dimeric full length HIV-1 RT, the function of the basic loop is carried out by a different loop, which also harbors basic residues, derived from the connection domain of the p66 subunit. Our results suggest that RNases H which are also active as separate domains might need a functional basic loop for proper substrate binding.
Macroscopic erosion of divertor and first wall armour in future tokamaks
NASA Astrophysics Data System (ADS)
Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.
2002-12-01
Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.
The influence of temperature on fatigue-crack growth in a mill-annealed Ti-6Al-4V alloy
NASA Technical Reports Server (NTRS)
Wei, R. P.; Ritter, D. L.
1971-01-01
To understand the influence of temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude fatigue crack growth experiments were carried out using a 1/4 inch thick (6.35 mm) mill-annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C and as a function of the crack tip, stress intensity factor K, in dehumidified high purity argon environment. The dependence of the rate of fatigue crack growth on K appears to be separable into two regions. The transition correlates with changes in both the microscopic and macroscopic appearances of the fracture surfaces, and suggests a change in the mechanism and the influence of microstructure on fatigue crack growth.
Mucinous cystadenocarcinoma of the breast: a case report and review of the literature.
Honma, Naoko; Sakamoto, Goi; Ikenaga, Motoko; Kuroiwa, Kojiro; Younes, Mamoun; Takubo, Kaiyo
2003-08-01
We report a case of mucinous cystadenocarcinoma (MCA) of the breast in a 96-year-old woman. This is an extremely rare variant of primary breast carcinoma that bears a striking resemblance to MCAs of the ovary and pancreas. The macroscopic appearance and secretion pattern (cytologic findings) resembled cystic hypersecretory carcinoma. However, microscopically, the epithelial cells were quite different from those of cystic hypersecretory carcinoma. In the present study as well as in the literature, MCAs tend to occur more frequently in elderly women. Immunohistochemical findings suggest that they may develop independently of estrogenic stimulation. Although MCAs show high proliferative activity, the prognosis was favorable in the present case as well as in the reported cases. Because MCAs appear to have a distinct pathogenesis and biologic behavior, they should be distinguished from ordinary mucinous carcinomas, cystic hypersecretory carcinomas, and carcinomas of other histologic subtypes.
The Difficult Task of Diagnosing Prostate Cancer Metastases on Dry Bone.
Castoldi, Elisa; Cappella, Annalisa; Gibelli, Daniele; Sforza, Chiarella; Cattaneo, Cristina
2018-05-01
The interpretation of pathology on skeletal remains is mandatory for implementing the biological profile and for disease recognition. Prostate cancer is one of the most common tumors, with a high preference for the skeleton as a primary site of metastasis. Its diagnosis on bone is however still ambiguous, due to its "osteoblastic" and resorptive manifestation. This study investigates distribution and appearance of prostate cancer metastases on dry bone on six known cases (selected from the Milano Cemetery Skeletal Collection) and one healthy individual. A macroscopic inspection was performed highlighting the abnormalities observed, describing location, shape, dimension, and aspect. A great amount of proliferative and mixed lesions was noticed, but also cases of pure lytic lesions were displayed. The multiple appearances of the manifestations observed display the difficulty in correctly identifying such a pathology, but also the potential and advantages provided by investigating a study sample with known antemortem history. © 2017 American Academy of Forensic Sciences.
Fracture Characteristics of Monolayer CVD-Graphene
Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo
2014-01-01
We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized. PMID:24657996
De-Giorgio, Fabio; Lodise, Maria; Pascali, Vincenzo L; Spagnolo, Antonio G; d'Aloja, Ernesto; Arena, Vincenzo
2015-01-01
Gastromalacia is the acute autolytic erosion of the gastric wall. It generally occurs postmortem, and it appears as a slimy brownish black region of the wall which occurs principally in the gastric fundus. A 59-year-old woman died in the Emergency Department following a 2-day period of mild abdominal pain, vomiting, and diarrhea. A forensic autopsy was performed which revealed a rupture of the gastric fundus that had caused leakage of gastric content into the abdominal cavity. There was no macroscopic evidence of peritonitis, and the stomach wall adjacent to the rupture site showed marked thinning. The gross appearance was typical of gastromalacia. In contrast, histological observations revealed the presence of an ulcer at the site of perforation and a severe acute inflammatory reaction indicating a robust reaction with an antemortem rupture. © 2014 American Academy of Forensic Sciences.
Modification of "Pressed" Atmospheres in Active Regions of Ultracool Stars
NASA Astrophysics Data System (ADS)
Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.
2017-12-01
Ultracool stars usually have active regions, which is confirmed by their high-power radiofrequency emission modulated by the star axial rotation. The interpretation of this emission is commonly based on the electron cyclotron maser mechanism realized in the active regions. A plasma mechanism of radiofrequency emission is not considered, because ultracool star atmospheres are tightly "pressed" against the star surface, and the plasma frequency is much lower than the electron gyrofrequency ( f L ≪ f B) at the coronal levels. This paper explores active regions of ultracool stars for the possible existence of a system of coronal magnetic loops carrying electric current generated by photospheric convection. It is shown that current dissipation induces a temperature increase inside the loops to about 107 K, which causes an increase in the scale of height of the inhomogeneous atmosphere and, at the coronal levels, effectuates condition f L ≫ f B, at which the plasma mechanism of radiofrequency emission prevails over the electron cyclotron maser mechanism. The magnetic loop parameters, intensity of electric currents generated by the photospheric convection, and efficiency of plasma heating inside the magnetic loops are evaluated on the example of the brown dwarf TVLM513-46546. The scale of the height of the modified atmosphere, which appears to be comparable to the star radius, is calculated; it is shown that the soft X-ray flow created by the hot modified atmosphere inside a coronal magnetic loop is about equal to that observed for brown dwarf TVLM513-46546.
Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul
2013-11-01
This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hassan, M.; Ghazanfar, M.; Arooj, N.; Riaz, S.; Hussain, S. Sajjad; Naseem, S.
We have fabricated Zn1-xFexS (x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) diluted magnetic semiconductors using co-precipitation method. X-ray diffraction patterns depict that Zn1-xFexS appears as a dominant phase with cubic zinc blende structure and nanoscale crystallite size. In addition, a secondary phase of rhombohedral ZnS also appears; however, no additional phase arises that primarily belongs to Fe dopant. Using Debye-Scherrer relation, the crystallite size is found to be in the range of 20-27nm, which is in good agreement with the crystallite size calculated using the Williamson-Hall (WH) plot method. The appearance of secondary phase provoked to study the residual strain using Stokes-Wilson equation, which is nearly consistent to that observed using WH plot method. The surface morphology, revealed using scanning electron microscopy, depicts non-uniform surface structure with a variety of grains and void dimensions. Hysteresis loops measured for Zn1-xFexS at room temperature (RT) illustrate a paramagnetic behavior at higher fields; however, small ferromagnetic behavior is evident due to the small openings of the measured hysteresis loops around the origin. The measured RT ferromagnetism reveals the potential spintronic device applications of the studied diluted magnetic semiconductors.
Stochastic gravitational wave background from light cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePies, Matthew R.; Hogan, Craig J.
2007-06-15
Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less
S-ovalbumin, an ovalbumin conformer with properties analogous to those of loop-inserted serpins.
Huntington, J. A.; Patston, P. A.; Gettins, P. G.
1995-01-01
Most serpins are inhibitors of serine proteinases and are thought to undergo a conformational change upon complex formation with proteinase that involves partial insertion of the reactive center loop into a beta-sheet of the inhibitor. Ovalbumin, although a serpin, is not an inhibitor of serine proteinases. It has been proposed that this deficiency arises from the presence of a charged residue, arginine, at a critical point (P14) in the reactive center region, which prevents loop insertion into the beta-sheet and thereby precludes inhibitory properties. To test whether loop insertion is prevented in ovalbumin we have examined the properties of two forms of ovalbumin: the native protein and S-ovalbumin, a form that forms spontaneously from native ovalbumin and has increased stability. Calorimetric measurements showed that S-ovalbumin was more stable than ovalbumin by about 3 kcal mol-1. CD spectra, which indicated that S-ovalbumin had less alpha-helix than native ovalbumin, and 1H NMR spectra, which indicated very similar overall structures, suggest limited conformational differences between the two forms. From comparison of the susceptibility of the reactive center region of each protein to proteolysis by porcine pancreatic elastase and by subtilisin Carlsberg, we concluded that the limited native-to-S conformational change specifically affected the reactive center region. These data are consistent with a structure for S-ovalbumin in which part of the reactive center loop has inserted into beta-sheet A to give a more stable structure, analogously to other serpins. However, the rate of loop insertion appears to be very much lower than for inhibitory serpins.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7613461
Ultrasonographic, endoscopic and histological appearance of the caecum in clinically healthy cats.
Hahn, Harriet; Freiche, Valérie; Baril, Aurélie; Charpentier, Julie; Desquilbet, Loïc; Le Poder, Sophie; Servely, Jean-Luc; Laloy, Eve; Pey, Pascaline
2017-02-01
Objectives The aim of the study was to describe the ultrasonographic and endoscopic appearance and characteristics of the caecum in asymptomatic cats, and to correlate these findings with histology. Methods Ex vivo ultrasonographic and histologic evaluations of a fresh caecum were initially performed. Then, 20 asymptomatic cats, privately owned or originating from a reproductive colony, were recruited. All cats had an ultrasonographic examination of the ileocaecocolic junction, where the thickness of the caecal wall, ileocolic lymph nodes and the echogenicity of the local fat were assessed. They all underwent a colonoscopy with a macroscopic assessment of the mucosa and biopsies for histology. Results An ultrasonographic hypoechoic nodular inner layer, which corresponded to the coalescence of multiple lymphoid follicles originating from the submucosa and protruding in the mucosa on histology, was visible in all parts of the caecum. The combined mucosa and submucosa was measured ultrasonographically and defined as the follicular layer. Although all cats were asymptomatic, 3/19 cats showed mild caecal inflammation on histology. The most discriminatory ultrasonographic parameter in assessing this subclinical inflammation was the thickness of the follicular layer at the entrance of the caecum, with a cut-off value of 2.0 mm. All cats (20/20) showed some degree of macroscopic 'dimpling' of the caecal mucosa on endoscopy. Conclusions and relevance Lymphoid follicles in the caecal mucosa and submucosa constitute a unique follicular layer on ultrasound. In asymptomatic cats, a subtle, non-clinically relevant inflammation may exist and this is correlated with an increased thickness of the follicular layer on ultrasound. On endoscopy, a 'dimpled aspect' to the caecal mucosa is a normal finding in the asymptomatic cat.
NASA Technical Reports Server (NTRS)
Pallavicini, R.; Vaiana, G. S.; Kahler, S. W.; Krieger, A. S.
1975-01-01
Morphological and quantitative analyses are presented of a 1B solar flare that was observed with high spatial and temporal resolution by the S-054 grazing-incidence X-ray telescope aboard Skylab. It is found that the flare had the configuration of a compact region with a characteristic size of the order of 30 arcsec at the intensity peak, the interior of the region appeared to be highly structured and to consist of temporally changing complex loop systems, brightening over an extended part of the active region preceded the flare onset, and the impulsive phase was marked by rapid brightening in the loop structures. The X-ray photographs also indicate that the X-ray emission was centered over the neutral line of the longitudinal magnetic field, loop systems formed at successively increasing heights during the decay phase, and different regions of the flare had distinctly different light curves. The flux profiles for the different regions are shown to suggest continued heating during the decay phase. It is concluded that flare models should be based on a multiplicity of volumes ordered in loops of successively larger scale lengths and heights rather than on a single point of energy release and deposition.
Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO
NASA Astrophysics Data System (ADS)
Yang, Shuhong; Zhang, Jun
2018-06-01
Using the observations from the Optical and Near-infrared Solar Eruption Tracer (ONSET) and the Solar Dynamics Observatory (SDO), we study an M5.7 flare in AR 11476 on 2012 May 10 and a micro-flare in the quiet Sun on 2017 March 23. Before the onset of each flare, there is a reverse S-shaped filament above the polarity inversion line, then the filaments become unstable and begin to rise. The rising filaments gain the upper hand over the tension force of the dome-like overlying loops and thus successfully erupt outward. The footpoints of the reconnecting overlying loops successively brighten and are observed as two flare ribbons, while the newly formed low-lying loops appear as post-flare loops. These eruptions are similar to the classical model of successful filament eruptions associated with coronal mass ejections (CMEs). However, the erupting filaments in this study move along large-scale lines and eventually reach the remote solar surface; i.e., no filament material is ejected into the interplanetary space. Thus, both the flares are confined. These results reveal that some successful filament eruptions can trigger confined flares. Our observations also imply that this kind of filament eruption may be ubiquitous on the Sun, from active regions (ARs) with large flares to the quiet Sun with micro-flares.
Subresolution Fibrillation in X-Ray Microflares Observed by Yohkoh SXT
NASA Technical Reports Server (NTRS)
Moore, Ron; Falconer, David; Porter, Jason
1999-01-01
We analyze the cooling of the X-ray plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope (SXT). A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approx. 2 x 10(exp 8) cm). The plasma heated to X-ray temperatures in the body of the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is fluid by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (X-ray brightness through the thin aluminum filter - 4 x 10(exp 3) DN/s/pixeL lifetime approx. 5 min, temperature approx. 6 x 10(exp 6) K, loop length approx. 10(exp 9) cm, loop diameter approx. 3 x 10(exp 8) cm), we find that for filling factors greater than approx. 1%: (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that: (1) heating to X-ray temperatures continues through nearly the entire lifetime of the microflare, (2) die heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction (approx. 10%) of the microflare loop. Hence, we expect that coronal X-ray images with spatial resolution 2-3 times better than from the Yohkoh SXT will show plenty of rapidly changing filamentary substructure in microflares. Our results also suggest that the heating in microflares may result from progressive reconnection similar to that inferred in many larger flares.
Hybrid Stars and Coronal Evolution
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Dupree, Andrea K.
2004-01-01
This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, TrA (K2 11-111). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars.
MEASUREMENT OF
NASA Astrophysics Data System (ADS)
Hastings, Nicholas C.
Measurements of time-dependent CP asymmetries in B0 → J/ψK0, φK0, K+K- KS, η' KS, f0 (980) KS and ωKS decays based on 386 × 106 Bbar{B} pairs collected by the Belle detector are presented. With this data sample, the J/ψK0 mode provides a precision measurement of sin2 φ1. The other modes, which proceed via b → s penguin (loop) diagrams are sensitive to new physics phases which may appear within the loop. Differing sin2 φ1 measurements between J/ψK0 and the b → s penguin modes could be a signature of such phases.
Hyper-Systolic Processing on APE100/QUADRICS:. n2-LOOP Computations
NASA Astrophysics Data System (ADS)
Lippert, Thomas; Ritzenhöfer, Gero; Glaessner, Uwe; Hoeber, Henning; Seyfried, Armin; Schilling, Klaus
We investigate the performance gains from hyper-systolic implementations of n2-loop problems on the massively parallel computer Quadrics, exploiting its three-dimensional interprocessor connectivity. For illustration we study the communication aspects of an exact molecular dynamics simulation of n particles with Coulomb (or gravitational) interactions. We compare the interprocessor communication costs of the standard-systolic and the hyper-systolic approaches for various granularities. We predict gain factors as large as three on the Q4 and eight on the QH4 and measure actual performances on these machine configurations. We conclude that it appears feasible to investigate the thermodynamics of a full gravitating n-body problem with O(16.000) particles using the new method on a QH4 system.
NASA Technical Reports Server (NTRS)
Bienert, Nancy; Mercer, Joey; Homola, Jeffrey; Morey, Susan; Prevot, Thomas
2014-01-01
This paper presents a case study of how factors such as wind prediction errors and metering delays can influence controller performance and workload in Human-In-The-Loop simulations. Retired air traffic controllers worked two arrival sectors adjacent to the terminal area. The main tasks were to provide safe air traffic operations and deliver the aircraft to the metering fix within +/- 25 seconds of the scheduled arrival time with the help of provided decision support tools. Analyses explore the potential impact of metering delays and system uncertainties on controller workload and performance. The results suggest that trajectory prediction uncertainties impact safety performance, while metering fix accuracy and workload appear subject to the scenario difficulty.
A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity.
Kassmann, Celia M; Quintes, Susanne; Rietdorf, Jens; Möbius, Wiebke; Sereda, Michael Werner; Nientiedt, Tobias; Saher, Gesine; Baes, Myriam; Nave, Klaus-Armin
2011-07-21
Demyelinating diseases of the nervous system cause axon loss but the underlying mechanisms are not well understood. Here we show by confocal and electron microscopy that in myelin-forming glia peroxisomes are associated with myelin membranes. When peroxisome biogenesis is experimentally perturbed in Pex5 conditional mouse mutants, myelination by Schwann cells appears initially normal. However, in nerves of older mice paranodal loops become physically unstable and develop swellings filled with vesicles and electron-dense material. This novel model of a demyelinating neuropathy demonstrates that peroxisomes serve an important function in the peripheral myelin compartment, required for long-term axonal integrity. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Formation of large-scale structure from cosmic-string loops and cold dark matter
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1987-01-01
Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.
Two-loop integrals for CP-even heavy quarkonium production and decays: elliptic sectors
NASA Astrophysics Data System (ADS)
Chen, Long-Bin; Jiang, Jun; Qiao, Cong-Feng
2018-04-01
By employing the differential equations, we compute analytically the elliptic sectors of two-loop master integrals appearing in the NNLO QCD corrections to CP-even heavy quarkonium exclusive production and decays, which turns out to be the last and toughest part in the relevant calculation. The integrals are found can be expressed as Goncharov polylogarithms and iterative integrals over elliptic functions. The master integrals may be applied to some other NNLO QCD calculations about heavy quarkonium exclusive production, like {γ}^{\\ast}γ \\to Q\\overline{Q} , {e}+{e}-\\to γ +Q\\overline{Q} , and H/{Z}^0\\to γ +Q\\overline{Q} , heavy quarkonium exclusive decays, and also the CP-even heavy quarkonium inclusive production and decays.
NASA Technical Reports Server (NTRS)
Kobayashi, Tsunehiro
1996-01-01
Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.
Goebel, L; Orth, P; Cucchiarini, M; Pape, D; Madry, H
2017-04-01
To correlate osteochondral repair assessed by validated macroscopic scoring systems with established semiquantitative histological analyses in an ovine model and to test the hypothesis that important macroscopic individual categories correlate with their corresponding histological counterparts. In the weight-bearing portion of medial femoral condyles (n = 38) of 19 female adult Merino sheep (age 2-4 years; weight 70 ± 20 kg) full-thickness chondral defects were created (size 4 × 8 mm; International Cartilage Repair Society (ICRS) grade 3C) and treated with Pridie drilling. After sacrifice, 1520 blinded macroscopic observations from three observers at 2-3 time points including five different macroscopic scoring systems demonstrating all grades of cartilage repair where correlated with corresponding categories from 418 blinded histological sections. Categories "defect fill" and "total points" of different macroscopic scoring systems correlated well with their histological counterparts from the Wakitani and Sellers scores (all P ≤ 0.001). "Integration" was assessed in both histological scoring systems and in the macroscopic ICRS, Oswestry and Jung scores. Here, a significant relationship always existed (0.020 ≤ P ≤ 0.049), except for Wakitani and Oswestry (P = 0.054). No relationship was observed for the "surface" between histology and macroscopy (all P > 0.05). Major individual morphological categories "defect fill" and "integration", and "total points" of macroscopic scoring systems correlate with their corresponding categories in elementary and complex histological scoring systems. Thus, macroscopy allows to precisely predict key histological aspects of articular cartilage repair, underlining the specific value of macroscopic scoring for examining cartilage repair. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Planktonic microbial community responses to added copper.
Le Jeune, Anne-Hélène; Charpin, Marie; Sargos, Denis; Lenain, Jean-François; Deluchat, Véronique; Ngayila, Nadine; Baudu, Michel; Amblard, Christian
2007-07-20
It is generally agreed that autotrophic organisms and especially phytoplanktonic species can be harmed by copper through its effect on photosystem. However, the impact of copper on other components of the pelagic food web, such as the microbial loop (autotrophic and heterotrophic picoplankton, pigmented and non-pigmented flagellates and ciliates) has received little attention. Indoor experiments were conducted to evaluate the direct and indirect effects of copper, supplied in the range of concentrations used to control cyanobacteria growth in ponds, on non-targeted organisms of natural microbial loop communities sampled in spring and summer. Two copper concentrations were tested (80microgL(-1) and 160microgL(-1) final concentrations), set, respectively, below and above the ligand binding capacity of the water samples. Both caused a significant decrease in the biomass and diversity of pigmented organisms (picophytoplankton and pigmented flagellates). Conversely, the heterotrophic bacterioplankton and the heterotrophic flagellates did not seem to be directly affected by either copper treatment in terms of biomass or diversity, according to the descriptor chosen. The ciliate biomass was significantly reduced with increasing copper concentrations, but differences in sensitivity appeared between spring and summer communities. Potential mixotrophic and nanoplanktorivorous ciliates appeared to be more sensitive to copper treatments than bacterivorous ciliates, suggesting a stronger direct and (or) indirect effect of copper on the former. Copper sulphate treatments had a significant restructuring effect on the microbial loop communities, resulting in a dominance of heterotrophic bacterioplankton among microbial microorganisms 27 days after the beginning of the treatment. The spring microbial communities exhibited a greater sensitivity than the summer communities with respect to their initial compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.
Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780 × Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect atmore » a transition energy which occurs at approximately 250 × Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5 Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.« less
Macroscopic modeling of freeway traffic using an artificial neural network
DOT National Transportation Integrated Search
1997-01-01
Traffic flow on freeways is a complex process that often is described by a set of highly nonlinear, dynamic equations in the form of a macroscopic traffic flow model. However, some of the existing macroscopic models have been found to exhibit instabi...
Uncovering low dimensional macroscopic chaotic dynamics of large finite size complex systems
NASA Astrophysics Data System (ADS)
Skardal, Per Sebastian; Restrepo, Juan G.; Ott, Edward
2017-08-01
In the last decade, it has been shown that a large class of phase oscillator models admit low dimensional descriptions for the macroscopic system dynamics in the limit of an infinite number N of oscillators. The question of whether the macroscopic dynamics of other similar systems also have a low dimensional description in the infinite N limit has, however, remained elusive. In this paper, we show how techniques originally designed to analyze noisy experimental chaotic time series can be used to identify effective low dimensional macroscopic descriptions from simulations with a finite number of elements. We illustrate and verify the effectiveness of our approach by applying it to the dynamics of an ensemble of globally coupled Landau-Stuart oscillators for which we demonstrate low dimensional macroscopic chaotic behavior with an effective 4-dimensional description. By using this description, we show that one can calculate dynamical invariants such as Lyapunov exponents and attractor dimensions. One could also use the reconstruction to generate short-term predictions of the macroscopic dynamics.
In situ studies of velocity in fractured crystalline rocks.
Moos, D.; Zoback, M.D.
1983-01-01
A study of the effects of macroscopic fractures on P and S wave velocities has been conducted in four wells drilled in granitic rock to depths between 0.6 and 1.2km. The effect of macroscopic fractures is to decrease both Vp and Vs and increase Vp/Vs. In wells with a relatively low density of macroscopic fractures, the in situ velocity is similar to that of saturated core samples under confining pressure in the laboratory, and there is a clear correlation between zones with macroscopic fractures and anomalously low velocities. In wells with numerous macroscopic fractures, the in situ velocity is lower than that of intact samples under pressure, and there is a correlation between the rate at which in situ velocity increases with depth and the rate at which the velocity of laboratory samples increases with pressure. Differences in in situ P wave velocity between wells cannot be explained solely by differences in the degree of macroscopic fracturing, thus emphasizing the importance of composition and microcracks on velocity.-from Authors
Superconductivity-induced macroscopic resonant tunneling.
Goorden, M C; Jacquod, Ph; Weiss, J
2008-02-15
We show analytically and by numerical simulations that the conductance through pi-biased chaotic Josephson junctions is enhanced by several orders of magnitude in the short-wavelength regime. We identify the mechanism behind this effect as macroscopic resonant tunneling through a macroscopic number of low-energy quasidegenerate Andreev levels.
Gál, János; Csikó, György; Pásztor, István; Bölcskey-Molnár, Antal; Albert, Mihály
2010-03-01
Postmortem examination of the carcass of an approximately 10-year-old male Red-eared slider ( Trachemys scripta elegans ) was performed. The thyroid gland was enlarged, showed follicular structure, and shifted the base of the heart caudally. Histology revealed differently shaped and sized follicles in the thyroid gland. Based on the macroscopic appearance and histopathological changes of the thyroid gland, the pathological process was established as a papillary-cystic carcinoma. Neoplasia of the endocrine organs, especially of the thyroid gland, is rare in reptiles. The current case seems to be the first report of thyroid carcinoma in a Red-eared slider.
Improving the Endoscopic Detection Rate in Patients with Early Gastric Cancer
2015-01-01
Endoscopists should ideally possess both sufficient knowledge of the endoscopic gastrointestinal disease findings and an appropriate attitude. Before performing endoscopy, the endoscopist must identify several risk factors of gastric cancer, including the patient's age, comorbidities, and drug history, a family history of gastric cancer, previous endoscopic findings of atrophic gastritis or intestinal metaplasia, and a history of previous endoscopic treatments. During endoscopic examination, the macroscopic appearance is very important for the diagnosis of early gastric cancer; therefore, the endoscopist should have a consistent and organized endoscope processing technique and the ability to comprehensively investigate the entire stomach, even blind spots. PMID:26240801
Comprehensive Thematic T-Matrix Reference Database: A 2015-2017 Update
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Zakharova, Nadezhda; Khlebtsov, Nikolai G.; Videen, Gorden; Wriedt, Thomas
2017-01-01
The T-matrix method pioneered by Peter C. Waterman is one of the most versatile and efficient numerically exact computer solvers of the time-harmonic macroscopic Maxwell equations. It is widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, periodic structures (including metamaterials), and particles in the vicinity of plane or rough interfaces separating media with different refractive indices. This paper is the eighth update to the comprehensive thematic database of peer-reviewed T-matrix publications initiated in 2004 and lists relevant publications that have appeared since 2015. It also references a small number of earlier publications overlooked previously.
Histology of two rice bodies isolated from the stifle of an adult draught horse stallion
Heimann, Marianne; Lejeune, Jean-Philippe; Verwilghen, Denis R.V.G.; Deby-Dupont, Ginette P.; Serteyn, Didier A.
2006-01-01
In the human and equine species, different kinds of free floating intra-articular particles are related to certain disorders. Osteochondral fragments formed during osteochondrosis dissecans are the most common finding in the equine species, whereas in humans rice bodies due to rheumatoid arthritis are more frequent. Herein we report a third type of floating body inside the stifle of an adult draught horse stallion, in macroscopic appearance similar to articular rice bodies known in humans. As revealed by histologic examination, the two particles consist of polypoid degenerated structures derived from synovial villi. Their formation was probably induced by ischemia. PMID:16434856
Histology of two rice bodies isolated from the stifle of an adult draught horse stallion.
Schneider, Nicole; Heimann, Marianne; Lejeune, Jean-Philippe; Verwilghen, Denis R V G; Deby-Dupont, Ginette P; Serteyn, Didier A
2006-03-01
In the human and equine species, different kinds of free floating intra-articular particles are related to certain disorders. Osteochondral fragments formed during osteochondrosis dissecans are the most common finding in the equine species, whereas in humans rice bodies due to rheumatoid arthritis are more frequent. Herein we report a third type of floating body inside the stifle of an adult draught horse stallion, in macroscopic appearance similar to articular rice bodies known in humans. As revealed by histologic examination, the two particles consist of polypoid degenerated structures derived from synovial villi. Their formation was probably induced by ischemia.
Comprehensive thematic T-matrix reference database: A 2015-2017 update
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Zakharova, Nadezhda T.; Khlebtsov, Nikolai G.; Videen, Gorden; Wriedt, Thomas
2017-11-01
The T-matrix method pioneered by Peter C. Waterman is one of the most versatile and efficient numerically exact computer solvers of the time-harmonic macroscopic Maxwell equations. It is widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, periodic structures (including metamaterials), and particles in the vicinity of plane or rough interfaces separating media with different refractive indices. This paper is the eighth update to the comprehensive thematic database of peer-reviewed T-matrix publications initiated in 2004 and lists relevant publications that have appeared since 2015. It also references a small number of earlier publications overlooked previously.
Defects, optical absorption and electron mobility in indium and gallium nitrides
NASA Astrophysics Data System (ADS)
Tansley, T. L.; Egan, R. J.
1993-04-01
We review the experimental evidence for the origin and location of the four native point defects in the wide gap semiconducting indium and gallium nitrides and compare then with experimental predictions. The donor triplets associated with nitrogen vacancies and the deep compensating centres ascribed to the antisite substitutional defects appear to have the greatest effect on macroscopic properties, apparently including the four luminescent bands in GaN. Calculated mobilities in InN and GaN depend principally on ionised impurity and polar-mode phonon scattering. We reconcile these results with experimental data and point out the consequences for improvements in material growth.
Cervantes, Felix A; Backus, Elaine A
2018-05-31
Blue-green sharpshooter, Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf), a foregut-borne bacterium that is the causal agent of Pierce's disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG monitor) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents for the first time a complete, updated waveform library for this species, as well as effects of different electropenetrograph settings and adhesives on waveform appearances. Both AC and DC applied signals were used with input resistor (Ri) levels (amplifier sensitivities) of 10 6 , 10 7 , 10 8 and 10 9 Ohms, as well as two type of adhesives, conducting silver paint and handmade silver glue. Waveform description, characterization of electrical origins (R versus emf components), and proposed biological meanings of waveforms are reported, as well as qualitative differences in waveform appearances observed with different electropenetrograph settings and adhesives. In addition, a quantitative study with AC signal, using two applied voltage levels (50 and 200 mV) and two Ri levels (10 7 and 10 9 Ohms) was performed. Intermediate Ri levels 10 7 and 10 8 Ohms provided EPG waveforms with the greatest amount of information, because both levels captured similar proportions of R and emf components, as supported by appearance, clarity, and definition of waveforms. Similarly, use of a gold wire loop plus handmade silver glue provided more definition of waveforms than a gold wire loop plus commercial conducting silver paint. Qualitative/observational evidence suggested that AC applied signal caused fewer aberrant behaviors/waveforms than DC applied signal. In the quantitative study, behavioral components of the sharpshooter X wave were the most affected by changes in Ri and voltage level. Because the X wave probably represents X. fastidiosa inoculation behavior, future studies of X. fastidiosa inoculation via EPG will require carefully determined instrument settings. An intermediate Ri level such as 10 8 Ohms with low voltage, AC applied signal, and gold wire loop plus silver glue is recommended as the best electropenetrograph methods to conduct future EPG studies of sharpshooter inoculation behaviors on Xf-resistant and -susceptible grapevine. Copyright © 2018. Published by Elsevier Ltd.
Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films
NASA Astrophysics Data System (ADS)
Kono, Junichiro
One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.
NASA Astrophysics Data System (ADS)
Susilaningsih, E.; Wulandari, C.; Supartono; Kasmui; Alighiri, D.
2018-03-01
This research aims to compose learning material which contains definitive macroscopic, microscopic and symbolic to analyze students’ conceptual understanding in acid-base learning materials. This research was conducted in eleven grade, natural science class, senior high school 1 (SMAN 1) Karangtengah, Demak province, Indonesia as the low level of students’ conceptual understanding and the high level of students’ misconception. The data collecting technique is by test to assess the cognitive aspect, questionnaire to assess students’ responses to multi representative learning materials (definitive, macroscopic, microscopic, symbolic), and observation to assess students’ macroscopic aspects. Three validators validate the multi-representative learning materials (definitive, macroscopic, microscopic, symbolic). The results of the research show that the multi-representative learning materials (definitive, macroscopic, microscopes, symbolic) being used is valid in the average score 62 of 75. The data is analyzed using the descriptive qualitative method. The results of the research show that 72.934 % students understand, 7.977 % less understand, 8.831 % do not understand, and 10.256 % misconception. In comparison, the second experiment class shows 54.970 % students understand, 5.263% less understand, 11.988 % do not understand, 27.777 % misconception. In conclusion, the application of multi representative learning materials (definitive, macroscopic, microscopic, symbolic) can be used to analyze the students’ understanding of acid-base materials.
Scale transition using dislocation dynamics and the nudged elastic band method
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...
2017-08-01
Microstructural features such as precipitates or irradiation-induced defects impede dislocation motion and directly influence macroscopic mechanical properties such as yield point and ductility. In dislocation-defect interactions both atomic scale and long range elastic interactions are involved. Thermally assisted dislocation bypass of obstacles occurs when thermal fluctuations and driving stresses contribute sufficient energy to overcome the energy barrier. The Nudged Elastic Band (NEB) method is typically used in the context of atomistic simulations to quantify the activation barriers for a given reaction. In this work, the NEB method is generalized to coarse-grain continuum representations of evolving microstructure states beyond the discretemore » particle descriptions of first principles and atomistics. The method we employed enables the calculation of activation energies for a View the MathML source glide dislocation bypassing a [001] self-interstitial atom loop of size in the range of 4-10 nm with a spacing larger than 150nm in α-iron for a range of applied stresses and interaction geometries. This study is complemented by a comparison between atomistic and continuum based prediction of barriers.« less
De Liberato, Claudio; Berrilli, Federica; Meoli, Roberta; Friedrich, Klaus G; Di Cerbo, Pilar; Cocumelli, Cristiano; Eleni, Claudia
2014-10-01
A case of fatal infection caused by larval forms of Taenia martis in a ring-tailed lemur (Lemur catta) living in the Rome zoological garden is described. The animal, living in a semi-natural pen with other 15 conspecific individuals and being fed with fresh fruit and vegetables, yoghurt and eggs, was transported to the Istituto Zooprofilattico of Rome for post-mortem examination. The anamnesis included, ten days before the death, apathy, lack of appetite, abdominal distension and diarrhoea. A severe exudative fibrinous-purulent peritonitis with numerous adhesions between the abdominal wall and the bowel loops was detected. After intestine removal, two free and viable, 4 cm long, whitish, leaf-like parasitic forms were pinpointed. Macroscopic examination of the two parasites allowed their identification as larval stages of cestodes, identified via molecular analysis as T. martis metacestodes. This report represents the first record of T. martis infection in the host species and in a zoological garden and for the pathological relevance of the infection. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Walston, Jeremy; Wirtz, Denis
2016-01-01
Aging is a complex, multifaceted process that induces a myriad of physiological changes over an extended period of time. Aging is accompanied by major biochemical and biomechanical changes at macroscopic and microscopic length scales that affect not only tissues and organs but also cells and subcellular organelles. These changes include transcriptional and epigenetic modifications; changes in energy production within mitochondria; and alterations in the overall mechanics of cells, their nuclei, and their surrounding extracellular matrix. In addition, aging influences the ability of cells to sense changes in extracellular-matrix compliance (mechanosensation) and to transduce these changes into biochemical signals (mechanotransduction). Moreover, following a complex positive-feedback loop, aging is accompanied by changes in the composition and structure of the extracellular matrix, resulting in changes in the mechanics of connective tissues in older individuals. Consequently, these progressive dysfunctions facilitate many human pathologies and deficits that are associated with aging, including cardiovascular, musculoskeletal, and neurodegenerative disorders and diseases. Here, we critically review recent work highlighting some of the primary biophysical changes occurring in cells and tissues that accompany the aging process. PMID:26643020
Gobeljic, D.; Shvartsman, V. V.; Belianinov, A.; ...
2016-01-05
Relaxor/ferroelectric ceramic/ceramic composites have shown to be promising in generating large electromechanical strain at moderate electric fields. However, the mechanisms of polarization and strain coupling between grains of different nature in the composites remain unclear. To rationalize the coupling mechanisms we performed advanced piezoresponse force microscopy (PFM) studies of 0.92BNT-0.06BT-0.02KNN/0.93BNT-0.07BT (ergodic/non-ergodic relaxor) composites. PFM is able to distinguish grains of different phases by characteristic domain patterns. Polarization switching has been probed locally, on a sub-grain scale. k-Means clustering analysis applied to arrays of local hysteresis loops reveals variations of polarization switching characteristics between the ergodic and non-ergodic relaxor grains. Here,more » we report a different set of switching parameters for grains in the composites as opposed to the pure phase samples. These results confirm ceramic/ceramic composites to be a viable approach to tailor the piezoelectric properties and optimize the macroscopic electromechanical characteristics.« less
Efficient micromagnetics for magnetic storage devices
NASA Astrophysics Data System (ADS)
Escobar Acevedo, Marco Antonio
Micromagnetics is an important component for advancing the magnetic nanostructures understanding and design. Numerous existing and prospective magnetic devices rely on micromagnetic analysis, these include hard disk drives, magnetic sensors, memories, microwave generators, and magnetic logic. The ability to examine, describe, and predict the magnetic behavior, and macroscopic properties of nanoscale magnetic systems is essential for improving the existing devices, for progressing in their understanding, and for enabling new technologies. This dissertation describes efficient micromagnetic methods as required for magnetic storage analysis. Their performance and accuracy is demonstrated by studying realistic, complex, and relevant micromagnetic system case studies. An efficient methodology for dynamic micromagnetics in large scale simulations is used to study the writing process in a full scale model of a magnetic write head. An efficient scheme, tailored for micromagnetics, to find the minimum energy state on a magnetic system is presented. This scheme can be used to calculate hysteresis loops. An efficient scheme, tailored for micromagnetics, to find the minimum energy path between two stable states on a magnetic system is presented. This minimum energy path is intimately related to the thermal stability.
Kettunen, R; Tyystjärvi, E; Aro, E M
1996-08-01
Photoinhibition-induced degradation of the D1 protein of the photosystem II reaction center was studied in intact pumpkin (Cucurbita pepo L.) leaves. Photoinhibition was observed to cause the cleavage of the D1 protein at two distinct sites. The main cleavage generated an 18-kD N-terminal and a 20-kD C-terminal degradation fragment of the D1 protein. this cleavage site was mapped to be located clearly N terminally of the DE loop. The other, less-frequent cleavage occurred at the DE loop and produced the well-documented 23-kD, N-terminal D1 degradation product. Furthermore, the 23-kD, N-terminal D1 fragment appears to be phosphorylated and can be detected only under severe photoinhibition in vivo. Comparison of the D1 degradation pattern after in vivo photoinhibition to that after in vitro acceptor-side and donor-side photoinhibition, performed with isolated photosystem II core particles, gives indirect evidence in support of donor-side photoinhibition in intact leaves.
Oscherwitz, Jon; Quinn, Conrad P; Cease, Kemp B
2015-05-11
Epitope-focused immunogens can elicit antibody against the loop neutralizing determinant (LND), a neutralizing epitope found within the 2β2-2β3 loop of protective antigen (PA), which can protect rabbits from high-dose inhalation challenge with Bacillus anthracis Ames strain. Interestingly, data suggests that this epitope is relatively immunosilent in rabbits and non-human primates immunized with full length PA. To determine whether the LND is immunosilent among humans vaccinated with PA, we screened antisera from AVA- or placebo-vaccinees from a clinical trial for antibody reactive with the LND. AVA-vaccinee sera had significant PA-specific antibody compared to placebo-vaccinee sera; however, sera from the two cohorts were indistinguishable with regard to the frequency of individuals with antibody specific for the LND. AVA-vaccinees have a low frequency of antibody reactive with the LND. As with rabbits and non-human primates, the elicitation of LND-specific antibody in humans appears to require immunization with an epitope-focused vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points
Del Duca, Vittorio; Druc, Stefan; Drummond, James; ...
2016-08-25
We show that scattering amplitudes in planar N = 4 Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes’ theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L + 4 external legs. We also investigate non-MHV amplitudes, and we show that they canmore » be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. In conclusion, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.« less
Dynamics of visual feedback in a laboratory simulation of a penalty kick.
Morya, Edgard; Ranvaud, Ronald; Pinheiro, Walter Machado
2003-02-01
Sport scientists have devoted relatively little attention to soccer penalty kicks, despite their decisive role in important competitions such as the World Cup. Two possible kicker strategies have been described: ignoring the goalkeeper action (open loop) or trying to react to the goalkeeper action (closed loop). We used a paradigm simulating a penalty kick in the laboratory to investigate the dynamics of the closed-loop strategy in these controlled conditions. The probability of correctly responding to the simulated goalkeeper motion as a function of time available followed a logistic curve. Kickers on average reached perfect performance only if the goalkeeper committed him or herself to one side about 400 ms before ball contact and showed chance performance if the goalkeeper motion occurred less than 150 ms before ball contact. Interestingly, coincidence judgement--another aspect of the laboratory responses--appeared to be affected for a much longer time (> 500 ms) than was needed to correctly determine laterality. The present study is meant as groundwork for experiments in more ecological conditions applicable to kickers and goalkeepers.
Power modulation based fiber-optic loop-sensor having a dual measurement range
NASA Astrophysics Data System (ADS)
Nguyen, Nguyen Q.; Gupta, Nikhil
2009-08-01
A fiber-optic sensor is investigated in this work for potential applications in structural health monitoring. The sensor, called fiber-loop-sensor, is based on bending an optical fiber beyond a critical radius to obtain intensity losses and calibrating the losses with respect to the applied force or displacement. Additionally, in the present case, the use of single-mode optical fibers allows the appearance of several resonance peaks in the transmitted power-displacement graph. The intensity of one of these resonances can be tracked in a narrow range to obtain high sensitivity. Experimental results show that the resolution of 10-4 N for force and 10-5 m for displacement can be obtained in these sensors. The sensors are calibrated for various loop radii and for various loading rates. They are also tested under loading-unloading conditions for over 104 cycles to observe their fatigue behavior. The sensors show very repeatable response and no degradation in performance under these test conditions. Simple construction and instrumentation, high sensitivity, and low cost are the advantages of these sensors.
NASA Astrophysics Data System (ADS)
Croft, T. P.; Blackburn, E.; Kulda, J.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Hayden, S. M.
2017-12-01
It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa2Cu3O6 +x with doping levels p =0.104 and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-θI I pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 μB for p =0.104 .
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
.... The analyses for LSCS, Unit 2, Cycle 15 have concluded that a two-loop MCPR SL of >= 1.14, based on... safety. The NRC staff has reviewed the licensee's analysis and, based on this review, it appears that the... has provided its analysis of the issue of no significant hazards consideration, which is presented...
Masslessness of ghosts in equivariantly gauge-fixed Yang-Mills theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golterman, Maarten; Zimmerman, Leah
2005-06-01
We show that the one-loop ghost self-energy in an equivariantly gauge-fixed Yang-Mills theory vanishes at zero momentum. A ghost mass is forbidden by equivariant BRST symmetry, and our calculation confirms this explicitly. The four-ghost self interaction which appears in the equivariantly gauge-fixed Yang-Mills theory is needed in order to obtain this result.
PERCEPTION AND TELEVISION--PHYSIOLOGICAL FACTORS OF TELEVISION VIEWING.
ERIC Educational Resources Information Center
GUBA, EGON; AND OTHERS
AN EXPERIMENTAL SYSTEM WAS DEVELOPED FOR RECORDING EYE-MOVEMENT DATA. RAW DATA WERE IN THE FORM OF MOTION PICTURES TAKEN OF THE MONITOR OF A CLOSED LOOP TELEVISION SYSTEM. A TELEVISION CAMERA WAS MOUNTED ON THE SUBJECTS' FIELD OF VIEW. THE EYE MARKER APPEARED AS A SMALL SPOT OF LIGHT AND INDICATED THE POINT IN THE VISUAL FIELD AT WHICH THE SUBJECT…
Kimura, Tohru; Allen, Patrick B.; Nairn, Angus C.
2007-01-01
The activity and trafficking of the Na+,K+-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein–coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 and 3, 14-3-3 ε, and spinophilin directly associate with the Na+,K+-ATPase and that the associations with arrestins, GRKs, or 14-3-3 ε are blocked in the presence of spinophilin. In COS cells that overexpressed arrestin, the Na+,K+-ATPase was redistributed to intracellular compartments. This effect was not seen in mock-transfected cells or in cells expressing spinophilin. Furthermore, expression of spinophilin appeared to slow, whereas overexpression of β-arrestins accelerated internalization of the Na+,K+-ATPase endocytosis. We also find that GRKs phosphorylate the Na+,K+-ATPase in vitro on its large cytoplasmic loop. Taken together, it appears that association with arrestins, GRKs, 14-3-3 ε, and spinophilin may be important modulators of Na+,K+-ATPase trafficking. PMID:17804821
Levels and loops: the future of artificial intelligence and neuroscience.
Bell, A J
1999-01-01
In discussing artificial intelligence and neuroscience, I will focus on two themes. The first is the universality of cycles (or loops): sets of variables that affect each other in such a way that any feed-forward account of causality and control, while informative, is misleading. The second theme is based around the observation that a computer is an intrinsically dualistic entity, with its physical set-up designed so as not to interfere with its logical set-up, which executes the computation. The brain is different. When analysed empirically at several different levels (cellular, molecular), it appears that there is no satisfactory way to separate a physical brain model (or algorithm, or representation), from a physical implementational substrate. When program and implementation are inseparable and thus interfere with each other, a dualistic point-of-view is impossible. Forced by empiricism into a monistic perspective, the brain-mind appears as neither embodied by or embedded in physical reality, but rather as identical to physical reality. This perspective has implications for the future of science and society. I will approach these from a negative point-of-view, by critiquing some of our millennial culture's popular projected futures. PMID:10670021
Čabart, Pavel; Jin, Huiyan; Li, Liangtao; Kaplan, Craig D
2014-01-01
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn2+ stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF. PMID:25764335
Temperature impact on the micro structure of tungsten exposed to He irradiation in LHD
NASA Astrophysics Data System (ADS)
Bernard, Elodie; Sakamoto, Ryuichi; Tokitani, Masayuki; Masuzaki, Suguru; Hayashi, Hiromi; Yamada, Hiroshi; Yoshida, Naoaki
2017-02-01
A new temperature controlled material probe was designed for the exposure of tungsten samples to helium plasma in the LHD. Samples were exposed to estimated fluences of ∼1023 m-2 and temperatures ranging from 65 to 600 °C. Transmission Electron Microscopy analysis allowed the study of the impact of He irradiation under high temperatures on tungsten micro structure for the first time in real-plasma exposure conditions. Both dislocation loops and bubbles appeared from low to medium temperatures and saw an impressive increase of size (factor 4 to 6) most probably by coalescence as the temperature reaches 600 °C, with 500 °C appearing as a threshold for bubble growth. Annealing of the samples up to 800 C highlighted the stability of the dislocation damages formed by helium irradiation at high surface temperature, as bubbles and dislocation loops seem to conserve their characteristics. Additional studies on cross-sections showed that bubbles were formed much deeper (70-100 nm) than the heavily damaged surface layer (10-20 nm), raising concern about the impact on the material mechanical properties conservation and potential additional trapping of hydrogen isotopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ryun-Young; Chae, Jongchul; Zhang Jie
2010-05-01
We measure the heights of EUV bright points (BPs) above the solar surface by applying a stereoscopic method to the data taken by the Solar TErrestrial RElations Observatory/SECCHI/Extreme UltraViolet Imager (EUVI). We have developed a three-dimensional reconstruction method for point-like features such as BPs using the simple principle that the position of a point in the three-dimensional space is specified as the intersection of two lines of sight. From a set of data consisting of EUVI 171 A, 195 A, 284 A, and 304 A images taken on 11 days arbitrarily selected during a period of 14 months, we havemore » identified and analyzed 210 individual BPs that were visible on all four passband images and smaller than 30 Mm. The BPs seen in the 304 A images have an average height of 4.4 Mm, and are often associated with the legs of coronal loops. In the 171 A, 195 A, and 284 A images the BPs appear loop-shaped, and have average heights of 5.1, 6.7, and 6.1 Mm, respectively. Moreover, there is a tendency that overlying loops are filled with hotter plasmas. The average heights of BPs in 171 A, 195 A, and 284 A passbands are roughly twice the corresponding average lengths. Our results support the notion that an EUV BP represents a system of small loops with temperature stratification like flaring loops, being consistent with the magnetic reconnection origin.« less
Del Bo, Roberto; Bordoni, Andreina; Martinelli Boneschi, Filippo; Crimi, Marco; Sciacco, Monica; Bresolin, Nereo; Scarlato, Guglielmo; Comi, Giacomo Pietri
2002-10-15
The progressive accumulation of mitochondrial DNA (mtDNA) alterations, ranging from single mutations to large-scale deletions, in both the normal ageing process and pathological conditions is a relevant phenomenon in terms of frequency and heteroplasmic degree. Recently, two point mutations (A189G and T408A) within the Displacement loop (D-loop) region, the control region for mtDNA replication, were shown to occur in skeletal muscles from aged individuals. We evaluated the presence and the heteroplasmy levels of these two mutations in muscle biopsies from 91 unrelated individuals of different ages (21 healthy subjects and 70 patients affected by mitochondrial encephalomyopathies). Overall, both mutations significantly accumulate with age. However, a different relationship was discovered among the different subgroups of patients: a higher number of A189G positive subjects younger than 53 years was detected in the subgroup of multiple-deleted patients; furthermore, a trend towards an increased risk for the mutations was evidenced among patients carrying multiple deletions when compared to healthy controls. These findings support the idea that a common biological mechanism determines the accumulation of somatic point mutations in the D-loop region, both in healthy subjects and in mitochondrial myopathy patients. At the same time, it appears that disorders caused by mutations of nuclear genes controlling mtDNA replication (the "mtDNA multiple deletions" syndromes) present a temporal advantage to mutate in the D-loop region. This observation may be relevant to the definition of the molecular pathogenesis of these latter syndromes. Copyright 2002 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, K. A. P.; Nishida, K.; Shibata, K.
The recent discovery of chromospheric anemone jets with the Solar Optical Telescope (SOT) on board Hinode has shown an indirect evidence of magnetic reconnection in the solar chromosphere. However, the basic nature of magnetic reconnection in chromosphere is still unclear. We studied nine chromospheric anemone jets from SOT/Hinode using Ca II H filtergrams, and we found multiple bright, plasma ejections along the jets. In most cases, the major intensity enhancements (larger than 30% relative to the background intensity) of the loop correspond to the timing of the plasma ejections. The typical lifetime and size of the plasma ejecta are aboutmore » 20-60 s and 0.3-1.5 Mm, respectively. The height-time plot of jet shows many sub-structures (or individual jets) and the typical lifetime of the individual jet is about one to five minutes. Before the onset of the jet activity, a loop appears in Ca II H and gradually increases in size, and after few minutes several jets are launched from the loop. Once the jet activity starts and several individual jets are launched, the loop starts shrinking with a speed of {approx}4 km s{sup -1}. In some events, a downward moving blob with a speed of {approx}35 km s{sup -1} was observed, associated with the upward moving plasma along one of the legs of the loop hosting the jets. The upward moving plasma gradually developed into jets. Multiple plasma ejections in chromospheric anemone jet show the strongly time-dependent as well as intermittent nature of magnetic reconnection in the solar chromosphere.« less
NASA Astrophysics Data System (ADS)
Singh, K. A. P.; Isobe, H.; Nishizuka, N.; Nishida, K.; Shibata, K.
2012-11-01
The recent discovery of chromospheric anemone jets with the Solar Optical Telescope (SOT) on board Hinode has shown an indirect evidence of magnetic reconnection in the solar chromosphere. However, the basic nature of magnetic reconnection in chromosphere is still unclear. We studied nine chromospheric anemone jets from SOT/Hinode using Ca II H filtergrams, and we found multiple bright, plasma ejections along the jets. In most cases, the major intensity enhancements (larger than 30% relative to the background intensity) of the loop correspond to the timing of the plasma ejections. The typical lifetime and size of the plasma ejecta are about 20-60 s and 0.3-1.5 Mm, respectively. The height-time plot of jet shows many sub-structures (or individual jets) and the typical lifetime of the individual jet is about one to five minutes. Before the onset of the jet activity, a loop appears in Ca II H and gradually increases in size, and after few minutes several jets are launched from the loop. Once the jet activity starts and several individual jets are launched, the loop starts shrinking with a speed of ~4 km s-1. In some events, a downward moving blob with a speed of ~35 km s-1 was observed, associated with the upward moving plasma along one of the legs of the loop hosting the jets. The upward moving plasma gradually developed into jets. Multiple plasma ejections in chromospheric anemone jet show the strongly time-dependent as well as intermittent nature of magnetic reconnection in the solar chromosphere.
Coronal hole boundaries evolution at small scales. I. EIT 195 Å and TRACE 171 Å view
NASA Astrophysics Data System (ADS)
Madjarska, M. S.; Wiegelmann, T.
2009-09-01
Aims: We aim to study the small-scale evolution at the boundaries of an equatorial coronal hole connected with a channel of open magnetic flux to the polar region and an “isolated” one in the extreme-ultraviolet spectral range. We determine the spatial and temporal scale of these changes. Methods: Imager data from TRACE in the Fe ix/x 171 Å passband and EIT on-board Solar and Heliospheric Observatory in the Fe xii 195 Å passband were analysed. Results: We found that small-scale loops known as bright points play an essential role in coronal hole boundary evolution at small scales. Their emergence and disappearance continuously expand or contract coronal holes. The changes appear to be random on a time scale comparable to the lifetime of the loops seen at these temperatures. No signature was found for a major energy release during the evolution of the loops. Conclusions: Although coronal holes seem to maintain their general shape during a few solar rotations, a closer look at their day-by-day and even hour-by-hour evolution demonstrates significant dynamics. The small-scale loops (10´´-40´´ and smaller) which are abundant along coronal hole boundaries contribute to the small-scale evolution of coronal holes. Continuous magnetic reconnection of the open magnetic field lines of the coronal hole and the closed field lines of the loops in the quiet Sun is more likely to take place. Movies are only available in electronic form at http://www.aanda.org
Zhang, Yan; Wang, Lei; Schultz, Peter G.; Wilson, Ian A.
2005-01-01
The Methanococcus jannaschii tRNATyr/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-l-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 Å, respectively, for comparison with the published structure of TyrRS complexed with tRNATyr and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257–263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through π-stacking and hydrogen bonding interactions. Loop 133–143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNATyr. Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133–143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over l-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids. PMID:15840835
NASA Astrophysics Data System (ADS)
Calonne, N.; Geindreau, C.; Flin, F.
2015-12-01
At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.
NASA Astrophysics Data System (ADS)
Kirby, Brian
Macroscopic quantum effects are of fundamental interest because they help us to understand the quantum-classical boundary, and may also have important practical applications in long-range quantum communications. Specifically we analyze a macroscopic generalization of the Franson interferometer, where violations of Bell's inequality can be observed using phase entangled coherent states created using weak nonlinearities. Furthermore we want to understand how these states, and other macroscopic quantum states, can be applied to secure quantum communications. We find that Bell's inequality can be violated at ranges of roughly 400 km in optical fiber when various unambiguous state discrimination techniques are applied. In addition Monte Carlo simulations suggest that quantum communications schemes based on macroscopic quantum states and random unitary transformations can be potentially secure at long distances. Lastly, we calculate the feasibility of creating the weak nonlinearity needed for the experimental realization of these proposals using metastable xenon in a high finesse cavity. This research suggests that quantum states created using macroscopic coherent states and weak nonlinearities may be a realistic path towards the realization of secure long-range quantum communications.
NASA Astrophysics Data System (ADS)
Oriwol, Daniel; Trempa, Matthias; Sylla, Lamine; Leipner, Hartmut S.
2017-04-01
Dislocation clusters are the main crystal defects in multicrystalline silicon and are detrimental for solar cell efficiency. They were formed during the silicon ingot casting due to the relaxation of strain energy. The evolution of the dislocation clusters was studied by means of automated analysing tools of the standard wafer and cell production giving information about the cluster development as a function of the ingot height. Due to the observation of the whole wafer surface the point of view is of macroscopic nature. It was found that the dislocations tend to build clusters of high density which usually expand in diameter as a function of ingot height. According to their structure the dislocation clusters can be divided into light and dense clusters. The appearance of both types shows a clear dependence on the orientation of the grain growth direction. Additionally, a process of annihilation of dislocation clusters during the crystallization has been observed. To complement the macroscopic description, the dislocation clusters were also investigates by TEM. It is shown that the dislocations within the subgrain boundaries are closely arranged. Distances of 40-30 nm were found. These results lead to the conclusion that the dislocation density within the cluster structure is impossible to quantify by means of etch pit counting.
On the nature of the NAA diffusion attenuated MR signal in the central nervous system.
Kroenke, Christopher D; Ackerman, Joseph J H; Yablonskiy, Dmitriy A
2004-11-01
In the brain, on a macroscopic scale, diffusion of the intraneuronal constituent N-acetyl-L-aspartate (NAA) appears to be isotropic. In contrast, on a microscopic scale, NAA diffusion is likely highly anisotropic, with displacements perpendicular to neuronal fibers being markedly hindered, and parallel displacements less so. In this report we first substantiate that local anisotropy influences NAA diffusion in vivo by observing differing diffusivities parallel and perpendicular to human corpus callosum axonal fibers. We then extend our measurements to large voxels within rat brains. As expected, the macroscopic apparent diffusion coefficient (ADC) of NAA is practically isotropic due to averaging of the numerous and diverse fiber orientations. We demonstrate that the substantially non-monoexponential diffusion-mediated MR signal decay vs. b value can be quantitatively explained by a theoretical model of NAA confined to an ensemble of differently oriented neuronal fibers. On the microscopic scale, NAA diffusion is found to be strongly anisotropic, with displacements occurring almost exclusively parallel to the local fiber axis. This parallel diffusivity, ADCparallel, is 0.36 +/- 0.01 microm2/ms, and ADCperpendicular is essentially zero. From ADCparallel the apparent viscosity of the neuron cytoplasm is estimated to be twice as large as that of a temperature-matched dilute aqueous solution. (c) 2004 Wiley-Liss, Inc.
Structure-Property Relations in Carbon Nanotube Fibers by Downscaling Solution Processing.
Headrick, Robert J; Tsentalovich, Dmitri E; Berdegué, Julián; Bengio, Elie Amram; Liberman, Lucy; Kleinerman, Olga; Lucas, Matthew S; Talmon, Yeshayahu; Pasquali, Matteo
2018-03-01
At the microscopic scale, carbon nanotubes (CNTs) combine impressive tensile strength and electrical conductivity; however, their macroscopic counterparts have not met expectations. The reasons are variously attributed to inherent CNT sample properties (diameter and helicity polydispersity, high defect density, insufficient length) and manufacturing shortcomings (inadequate ordering and packing), which can lead to poor transmission of stress and current. To efficiently investigate the disparity between microscopic and macroscopic properties, a new method is introduced for processing microgram quantities of CNTs into highly oriented and well-packed fibers. CNTs are dissolved into chlorosulfonic acid and processed into aligned films; each film can be peeled and twisted into multiple discrete fibers. Fibers fabricated by this method and solution-spinning are directly compared to determine the impact of alignment, twist, packing density, and length. Surprisingly, these discrete fibers can be twice as strong as their solution-spun counterparts despite a lower degree of alignment. Strength appears to be more sensitive to internal twist and packing density, while fiber conductivity is essentially equivalent among the two sets of samples. Importantly, this rapid fiber manufacturing method uses three orders of magnitude less material than solution spinning, expanding the experimental parameter space and enabling the exploration of unique CNT sources. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arcos, Carlos; Díaz, Juan-David; Canencio, Kenny; Rodríguez, Diana; Viveros, Carlos; Vega, Jonathan; Lores, Juliana; Sinisterra, Gustavo; Sepúlveda, Wilmer; Moreno, Freddy
2015-07-01
To describe the behavior of 45 discs of dental amalgam of known dimension prepared from three commercially available brands of dental amalgam (Contour® Kerr®-USA, Admix® SDI®-Australia and Nu Alloy® Newstethic®-Colombia) when subjected to the action of high temperatures (200 °C, 400 °C, 600 °C, 800 °C, 1000 °C). It was hoped to establish parameters that could be used for human dental identification in cases of charred, burned or incinerated human remains. A pseudo-experimental descriptive in-vitro study was designed to describe the macroscopic physical changes to the surface of 45 discs of pre-prepared amalgam of three commercially available brands exposed to a range of high temperatures. Characteristic and repetitive physical changes were a noticeable feature of the discs of amalgam of each brand of amalgam subjected to the different temperature ranges. These physical changes included changes in dimensional stability, changes in texture, changes in colour, changes in the appearance of fissures and cracks and changes in the fracture and fragmentation of the sample. The characteristics of dental amalgam may be of assistance in cases of human identification where charred, burned or incinerated human remains are a feature and where fingerprints or other soft tissue features are unavailable.
Making the universe safe for historians: Time travel and the laws of physics
NASA Astrophysics Data System (ADS)
Woodward, James F.
1995-02-01
The study of the hypothetical activities of arbitrarily advanced cultures, particularly in the area of space and time travel, as a means of investigating fundamental issues in physics is briefly discussed. Hawking's chronology protection conjecture as it applies to wormhole spacetimes is considered. The nature of time, especially regarding the viability of time travel, as it appears in several “interpretations” of quantum mechanics is investigated. A conjecture on the plausibility of theories of reality that admit relativistically invariant interactions and irreducibly stochastic processes is advanced. A transient inertial reaction effect that makes it technically feasible, fleetingly, to induce large concentrations of negative mass-energy is presented and discussed in the context of macroscopic wormhole formation. Other candidates for chronology protection are examined. It is pointed out that if the strong version of Mach's principle (the gravitational induction of mass) is correct, then wormhole formation employing negative mass-energy is impossible. But if the bare masses of elementary particles are large, finite and negative, as is suggested by a heuristic general relativistic model of elementary particles, then, using the transient effect, it is technically feasible to trigger a non-linear process that may lead to macroscopic wormhole formation. Such wormholes need not be destroyed by the Hawking protection mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimnyakov, D. A., E-mail: zimnykov@sgu.ru; Sadovoi, A. V.; Vilenskii, M. A.
2009-02-15
Image sequences of the surface of disordered layers of porous medium (paper) obtained under noncoherent and coherent illumination during capillary rise of a liquid are analyzed. As a result, principles that govern the critical behavior of the interface between liquid and gaseous phases during its pinning are established. By a cumulant analysis of speckle-modulated images of the surface and by the statistical analysis of binarized difference images of the surface under noncoherent illumination, it is shown that the macroscopic dynamics of the interface at the stage of pinning is mainly controlled by the power law dependence of the appearance ratemore » of local instabilities (avalanches) of the interface on the critical parameter, whereas the growth dynamics of the local instabilities is controlled by the diffusion of a liquid in a layer and weakly depends on the critical parameter. A phenomenological model is proposed for the macroscopic dynamics of the phase interface for interpreting experimental data. The values of critical indices are determined that characterize the samples under test within this model. These values are compared with the results of numerical simulation for discrete models of directed percolation corresponding to the Kardar-Parisi-Zhang equation.« less
Zinelis, Spiros; Al Jabbari, Youssef S
2018-05-01
This study was conducted to evaluate the failure mechanism of clinically failed Hedstrom (H)-files. Discarded H-files (n=160) from #8 to #40 ISO sizes were collected from different dental clinics. Retrieved files were classified according to their macroscopic appearance and they were investigated under scanning electron microscopy (SEM) and X-ray micro-computed tomography (mXCT). Then the files were embedded in resin along their longitudinal axis and after metallographic grinding and polishing, studied under an incident light microscope. The macroscopic evaluation showed that small ISO sizes (#08-#15) failed by extensive plastic deformation, while larger sizes (≥#20) tended to fracture. Light microscopy and mXCT results coincided showing that unused and plastically deformed files were free of internal defects, while fractured files demonstrate the presence of intense cracking in the flute region. SEM analysis revealed the presence of striations attributed to the fatigue mechanism. Secondary cracks were also identified by optical microscopy and their distribution was correlated to fatigue under bending loading. Experimental results demonstrated that while overloading of cutting instruments is the predominating failure mechanism of small file sizes (#08-#15), fatigue should be considered the fracture mechanism for larger sizes (≥#20).
Subvalvular Pannus Overgrowth after Mosaic Bioprosthesis Implantation in the Aortic Position
Isomura, Tadashi; Yoshida, Minoru; Katsumata, Chieko; Ito, Fusahiko; Watanabe, Masazumi
2015-01-01
Purpose: Although pannus overgrowth by itself was not the pathology of structural valve deterioration (SVD), it might be related to reoperation for SVD of the bioprostheses. Methods: We retrospectively reviewed patients undergoing reoperation for SVD after implantation of the third-generation Mosaic aortic bioprosthesis and macroscopic appearance of the explanted valves was examined to detect the presence of pannus. Results: There were 10 patients and the age for the initial aortic valve replacement was 72 ± 10 years old. The duration of durability was 9.9 ± 2.0 years. Deteriorated valve presented stenosis (valvular area of 0.96 ± 0.20 cm2; pressure gradient of 60 ± 23 mmHg). Coexisting regurgitant flow was detected in two cases. Macroscopically, subvalvular pannus overgrowth was detected in 8 cases (80%). The proportion of overgrowth from the annulus was almost even and pannus overgrowth created subvalvular membrane, which restricted the area especially for each commissure. In contrast, opening and mobility of each leaflet was not severely limited and pannus overgrowth would restrict the area, especially for each commissure. In other two cases with regurgitation, tear of the leaflet on the stent strut was detected and mild calcification of each leaflet restricted opening. Conclusion: In patients with the Mosaic aortic bioprosthesis, pannus overgrowth was the major cause for reoperation. PMID:26633541
Subvalvular Pannus Overgrowth after Mosaic Bioprosthesis Implantation in the Aortic Position.
Hirota, Masanori; Isomura, Tadashi; Yoshida, Minoru; Katsumata, Chieko; Ito, Fusahiko; Watanabe, Masazumi
2016-01-01
Although pannus overgrowth by itself was not the pathology of structural valve deterioration (SVD), it might be related to reoperation for SVD of the bioprostheses. We retrospectively reviewed patients undergoing reoperation for SVD after implantation of the third-generation Mosaic aortic bioprosthesis and macroscopic appearance of the explanted valves was examined to detect the presence of pannus. There were 10 patients and the age for the initial aortic valve replacement was 72 ± 10 years old. The duration of durability was 9.9 ± 2.0 years. Deteriorated valve presented stenosis (valvular area of 0.96 ± 0.20 cm(2); pressure gradient of 60 ± 23 mmHg). Coexisting regurgitant flow was detected in two cases. Macroscopically, subvalvular pannus overgrowth was detected in 8 cases (80%). The proportion of overgrowth from the annulus was almost even and pannus overgrowth created subvalvular membrane, which restricted the area especially for each commissure. In contrast, opening and mobility of each leaflet was not severely limited and pannus overgrowth would restrict the area, especially for each commissure. In other two cases with regurgitation, tear of the leaflet on the stent strut was detected and mild calcification of each leaflet restricted opening. In patients with the Mosaic aortic bioprosthesis, pannus overgrowth was the major cause for reoperation.
NASA Astrophysics Data System (ADS)
Gajdoš, Adam; Škvarenina, Lubomír.; Škarvada, Pavel; Macků, Robert
2017-12-01
An imperfections or defects may appear in fabricated monocrystalline solar cells. These microstructural imperfections could have impact on the parameters of whole solar cell. The research is divided into two parts, firstly, the detection and localization defects by using several techniques including current-voltage measurement, scanning probe microscopy (SPM), scanning electron microscope (SEM) and electroluminescence. Secondly, the defects isolation by a focused ion beam (FIB) milling and impact of a milling process on solar cells. The defect detection is realized by I-V measurement under reverse biased sample. For purpose of localization, advantage of the fact that defects or imperfections in silicon solar cells emit the visible and near infrared electroluminescence under reverse biased voltage is taken, and CCD camera measurement for macroscopic localization of these spots is applied. After rough macroscopic localization, microscopic localization by scanning probe microscopy combined with a photomultiplier (shadow mapping) is performed. Defect isolation is performed by a SEM equipped with the FIB instrument. FIB uses a beam of gallium ions which modifies crystal structure of a material and may affect parameters of solar cell. As a result, it is interesting that current in reverse biased sample with isolated defect is smaller approximately by 2 orders than current before isolation process.
Teixeira, Paulo Eduardo Ferlini; Corrêa, Christiane Leal; Oliveira, Fernanda Bittencourt de; Alencar, Alba Cristina Miranda de Barros; Neves, Leandro Batista das; Garcia, Daniel Daipert; Almeida, Fernanda Barbosa de; Pereira, Luis Cláudio Muniz; Machado-Silva, José Roberto; Rodrigues-Silva, Rosângela
2018-01-01
Although sheep farming has grown in the state of Acre over the past four decades, little is known about occurrences of helminthiases in the herds of this region. The objective of the study was to assess the occurrences of non-intestinal helminthiasis among sheep slaughtered in Rio Branco. A total of 110 sheep livers were inspected from two slaughter batches (july 2014 and march 2015) in a slaughterhouse in Rio Branco. Livers with macroscopic lesions were photographed and were then subjected to histopathological analysis under an optical microscope. The macroscopic lesions showed small nodes with inflammatory characteristics and areas of fibrosis, which appeared to be calcified, thus suggesting a granulomatous reaction. Of the 110 evaluated livers, we noticed 110 nodules in total; these nodules have an average size of 0.5 cm. The histopathological analysis showed alterations to the architecture of the hepatic lobe, with multiple foci of necrosis and polymorphonuclear cells. Two samples revealed the presence of helminths from Nematode class and Capillaria sp. eggs identified by the typical morphology and morphometry. This seems to be the first report of Capillaria sp. in sheep livers in Brazil, and it serves as an important alert regarding animal health surveillance and control and regarding the Capillaria sp. zoonotic role in humans.
NASA Astrophysics Data System (ADS)
Jones, S. P.; Kerner, M.; Luisoni, G.
2018-04-01
We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.
NASA Technical Reports Server (NTRS)
Watson, G. K.
1974-01-01
Simulated nuclear fuel element specimens, consisting of uranium mononitride (UN) fuel cylinders clad with tungsten-lined T-111, were exposed for up to 7500 hr at 1040 C (1900 F) in a pumped-lithium loop. The lithium flow velocity was 1.5 m/sec (5 ft/sec) in the specimen test section. No evidence of any compatibility problems between the specimens and the flowing lithium was found based on appearance, weight change, chemistry, and metallography. Direct exposure of the UN to the lithium through a simulated cladding crack resulted in some erosion of the UN in the area of the defect. The T-111 cladding was ductile after lithium exposure, but it was sensitive to hydrogen embrittlement during post-test handling.
Jones, S P; Kerner, M; Luisoni, G
2018-04-20
We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high p_{t,H} region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.
NASA Astrophysics Data System (ADS)
Prygarin, Alexander; Spradlin, Marcus; Vergu, Cristian; Volovich, Anastasia
2012-04-01
Recent progress on scattering amplitudes has benefited from the mathematical technology of symbols for efficiently handling the types of polylogarithm functions which frequently appear in multiloop computations. The symbol for all two-loop maximally helicity violating amplitudes in planar supersymmetric Yang-Mills theory is known, but explicit analytic formulas for the amplitudes are hard to come by except in special limits where things simplify, such as multi-Regge kinematics. By applying symbology we obtain a formula for the leading behavior of the imaginary part (the Mandelstam cut contribution) of this amplitude in multi-Regge kinematics for any number of gluons. Our result predicts a simple recursive structure which agrees with a direct Balitsky-Fadin-Kuraev-Lipatov computation carried out in a parallel publication.
Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor
Mukherjee, Amarnath; Castanares, Mark; Hedayati, Mohammad; Wabler, Michele; Trock, Bruce; Kulkarni, Prakash; Rodriguez, Ronald; Getzenberg, Robert H; DeWeese, Theodore L; Ivkov, Robert; Lupold, Shawn E
2014-01-01
Aim To develop and apply a heat-responsive and secreted reporter assay for comparing cellular response to nanoparticle (NP)- and macroscopic-mediated sublethal hyperthermia. Materials & methods Reporter cells were heated by water bath (macroscopic heating) or iron oxide NPs activated by alternating magnetic fields (nanoscopic heating). Cellular responses to these thermal stresses were measured in the conditioned media by secreted luciferase assay. Results & conclusion Reporter activity was responsive to macroscopic and nanoparticle heating and activity correlated with measured macroscopic thermal dose. Significant cellular responses were observed with NP heating under doses that were insufficient to measurably change the temperature of the system. Under these conditions, the reporter response correlated with proximity to cells loaded with heated nanoparticles. These results suggest that NP and macroscopic hyperthermia may be distinctive under conditions of mild hyperthermia. PMID:24547783
Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal.
Guo, Liangqia; Ye, Peirong; Wang, Jing; Fu, Fengfu; Wu, Zujian
2015-11-15
3D graphene macroscopic gel synthesized via self-assembly of GO nanosheets under basic conditions at low temperature is modified with polydopamine and Fe3O4 nanoparticles. The modification of polydopamine can not only strengthen the 3D graphene-based macroscopic architecture but also enhance the loadage and binding ability of Fe3O4 nanoparticles. The synthesized 3D Fe3O4-graphene macroscopic composites are characterized by SEM, XRD, XPS, BET, Raman and magnetic property and used as a versatile adsorbent for sub-ppm concentration of As(III) and As(V) removal from aqueous solutions. The experimental results suggest that the synthesized 3D Fe3O4-graphene macroscopic composites are promising for treating low concentration of arsenic contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of fluctuations in random compressible systems at marginal dimensionality
NASA Astrophysics Data System (ADS)
Meissner, G.; Sasvári, L.; Tadić, B.
1986-07-01
In a unified treatment we have studied the role of fluctuations in uniaxial random systems at marginal dimensionality d*=4 with the n=1 component order parameter being coupled to elastic degrees of freedom. Depending on the ratio of the nonuniversal parameters of quenched disorder Δ0 and of elastic fluctuations v~0, a first- or second-order phase transition is found to occur, separated by a tricritical point. A complete account of critical properties and of macroscopic as well as of microscopic elastic stability is given for temperatures T>Tc. Universal singularities of thermodynamic functions are determined for t=(T-Tc)/Tc-->0 including the tricritical point: for v~0/Δ0>-2, they are the same as in a rigid random system; for v~0/Δ0=-2, they are different due to lattice compressibility being related, however, to the former by Fisher renormalization. Fluctuation corrections in one-loop approximation have been evaluated in a nonuniversal critical temperature range, tx<
Surgical technique for en bloc transurethral resection of bladder tumour with a Hybrid Knife(®).
Islas-García, J J O; Campos-Salcedo, J G; López-Benjume, B I; Torres-Gómez, J J; Aguilar-Colmenero, J; Martínez-Alonso, I A; Gil-Villa, S A
2016-05-01
Bladder cancer is the second most common malignancy of the urinary tract and the 9th worldwide. Latin American has an incidence of 5.6 per 100,000 inhabitants per year. Seventy-five percent of newly diagnosed cases are nonmuscle invasive bladder cancer, and 25% of cases present as muscle invasive. The mainstay of treatment for nonmuscle invasive bladder cancer is loop transurethral resection. In 2013, the group led by Dr Mundhenk of the University Hospital of Tübingen, Germany, was the first to describe the Hybrid Knife(®) equipment for performing en bloc bladder tumour resection, with favourable functional and oncological results. To describe the surgical technique of en bloc bladder tumour resection with a Hybrid Knife(®) as an alternative treatment for nonmuscle invasive bladder tumours. A male patient was diagnosed by urotomography and urethrocystoscopy with a bladder tumour measuring 2×1cm on the floor. En bloc transurethral resection of the bladder tumour was performed with a Hybrid Knife(®). Surgery was performed for 35min, with 70 watts for cutting and 50 watts for coagulation, resecting and evacuating en bloc the bladder tumour, which macroscopically included the muscle layer of the bladder. There were no complications. The technique of en bloc bladder tumour resection with Hybrid Knife(®) is an effective alternative to bipolar loop transurethral resection. Resection with a Hybrid Knife(®) is a procedure with little bleeding and good surgical vision and minimises the risk of bladder perforation and tumour implants. The procedure facilitates determining the positivity of the neoplastic process, vascular infiltration and bladder muscle invasion in the histopathology study. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Takuya; Shibata, Kazunari; Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp
We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamicsmore » become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.« less
Remarkable sequence conservation of the last intron in the PKD1 gene.
Rodova, Marianna; Islam, M Rafiq; Peterson, Kenneth R; Calvet, James P
2003-10-01
The last intron of the PKD1 gene (intron 45) was found to have exceptionally high sequence conservation across four mammalian species: human, mouse, rat, and dog. This conservation did not extend to the comparable intron in pufferfish. Pairwise comparisons for intron 45 showed 91% identity (human vs. dog) to 100% identity (mouse vs. rat) for an average for all four species of 94% identity. In contrast, introns 43 and 44 of the PKD1 gene had average pairwise identities of 57% and 54%, and exons 43, 44, and 45 and the coding region of exon 46 had average pairwise identities of 80%, 84%, 82%, and 80%. Intron 45 is 90 to 95 bp in length, with the major region of sequence divergence being in a central 4-bp to 9-bp variable region. RNA secondary structure analysis of intron 45 predicts a branching stem-loop structure in which the central variable region lies in one loop and the putative branch point sequence lies in another loop, suggesting that the intron adopts a specific stem-loop structure that may be important for its removal. Although intron 45 appears to conform to the class of small, G-triplet-containing introns that are spliced by a mechanism utilizing intron definition, its high sequence conservation may be a reflection of constraints imposed by a unique mechanism that coordinates splicing of this last PKD1 intron with polyadenylation.
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Qiu, Jiong; Shibata, Kazunari
2017-10-01
We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.
NASA Astrophysics Data System (ADS)
Stepanov, Alexander; Zaitsev, Valerii
New mechanism of electron acceleration in the solar chromosphere and chromospheric plasma heating is proposed. The main role in acceleration and heating belongs to the Rayleigh-Tailor instability. Ballooning mode of the instability develops at the chromospheric footpoints of a flare loop and deforms here the magnetic field. Thus the electric current flowing in the loop changes and an inductive electric field appears. This electric field is the reason for the acceleration of 300-500 keV electrons which do not escape from the chromosphere, providing the excitation of plasma waves and the heating of chromospheric plasma in situ. Observations with New Solar Telescope at Big Bear Solar Observatory (Ji et al. ApJ 750, L25, 2012) give us good evidences on the heating of chromospheric footpoints of coronal loops to the coronal temperatures as well as upward injection of hot plasma that excite the fine loops from the photosphere to the base of the corona. We discuss also other consequences of the Rayleigh-Taylor instability: non-thermal plasma emission at 212 and 405 GHz from the ionized chromosphere with the electron density as high as 10 (15) cm (-3) (Zaitsev et al. Astron.Lett. 39, 650, 2013), and the model of sub-second pulsations at THz observed by Kaufmann et al. (ApJ 697, 420, 2009).
Functional connectivity studies of patients with auditory verbal hallucinations.
Hoffman, Ralph E; Hampson, Michelle
2011-12-02
Functional connectivity (FC) studies of brain mechanisms leading to auditory verbal hallucinations (AVHs) utilizing functional magnetic resonance imaging (fMRI) data are reviewed. Initial FC studies utilized fMRI data collected during performance of various tasks, which suggested frontotemporal disconnection and/or source-monitoring disturbances. Later FC studies have utilized resting (no-task) fMRI data. These studies have produced a mixed picture of disconnection and hyperconnectivity involving different pathways associated with AVHs. Results of our most recent FC study of AVHs are reviewed in detail. This study suggests that the core mechanism producing AVHs involves not a single pathway, but a more complex functional loop. Components of this loop include Wernicke's area and its right homologue, the left inferior frontal cortex, and the putamen. It is noteworthy that the putamen appears to play a critical role in the generation of spontaneous language, and in determining whether auditory stimuli are registered consciously as percepts. Excessive functional coordination linking this region with the Wernicke's seed region in patients with schizophrenia could, therefore, generate an overabundance of potentially conscious language representations. In our model, intact FC in the other two legs of corticostriatal loop (Wernicke's with left IFG, and left IFG with putamen) appeared to allow hyperconnectivity linking the putamen and Wernicke's area (common to schizophrenia overall) to be expressed as conscious hallucinations of speech. Recommendations for future studies are discussed, including inclusion of multiple methodologies applied to the same subjects in order to compare and contrast different mechanistic hypotheses, utilizing EEG to better parse time-course of neural synchronization leading to AVHs, and ascertaining experiential subtypes of AVHs that may reflect distinct mechanisms.
Sun, Ye-Ming; Favre, Isabelle; Schild, Laurent; Moczydlowski, Edward
1997-01-01
Recent evidence indicates that ionic selectivity in voltage-gated Na+ channels is mediated by a small number of residues in P-region segments that link transmembrane elements S5 and S6 in each of four homologous domains denoted I, II, III, and IV. Important determinants for this function appear to be a set of conserved charged residues in the first three homologous domains, Asp(I), Glu(II), and Lys(III), located in a region of the pore called the DEKA locus. In this study, we examined several Ala-substitution mutations of these residues for alterations in ionic selectivity, inhibition of macroscopic current by external Ca2+ and H+, and molecular sieving behavior using a series of organic cations ranging in size from ammonium to tetraethylammonium. Whole-cell recording of wild-type and mutant channels of the rat muscle μ1 Na+ channel stably expressed in HEK293 cells was used to compare macroscopic current–voltage behavior in the presence of various external cations and an intracellular reference solution containing Cs+ and very low Ca2+. In particular, we tested the hypothesis that the Lys residue in domain III of the DEKA locus is responsible for restricting the permeation of large organic cations. Mutation of Lys(III) to Ala largely eliminated selectivity among the group IA monovalent alkali cations (Li+, Na+, K+, Rb+, Cs+) and permitted inward current of group IIA divalent cations (Mg2+, Ca2+, Sr2+, Ba2+). This same mutation also resulted in the acquisition of permeability to many large organic cations such as methylammonium, tetramethylammonium, and tetraethylammonium, all of which are impermeant in the native channel. The results lead to the conclusion that charged residues of the DEKA locus play an important role in molecular sieving behavior of the Na+ channel pore, a function that has been previously attributed to a hypothetical region of the channel called the “selectivity filter.” A detailed examination of individual contributions of the Asp(I), Glu(II), and Lys(III) residues and the dependence on molecular size suggests that relative permeability of organic cations is a complex function of the size, charge, and polarity of these residues and cation substrates. As judged by effects on macroscopic conductance, charged residues of the DEKA locus also appear to play a role in the mechanisms of block by external Ca2+ and H+, but are not essential for the positive shift in activation voltage that is produced by these ions. PMID:9382897
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
NASA Astrophysics Data System (ADS)
Grib, S. A.; Leora, S. N.
2017-12-01
Macroscopic discontinuous structures observed in the solar wind are considered in the framework of magnetic hydrodynamics. The interaction of strong discontinuities is studied based on the solution of the generalized Riemann-Kochin problem. The appearance of discontinuities inside the magnetosheath after the collision of the solar wind shock wave with the bow shock front is taken into account. The propagation of secondary waves appearing in the magnetosheath is considered in the approximation of one-dimensional ideal magnetohydrodynamics. The appearance of a compression wave reflected from the magnetopause is indicated. The wave can nonlinearly break with the formation of a backward shock wave and cause the motion of the bow shock towards the Sun. The interaction between shock waves is considered with the well-known trial calculation method. It is assumed that the velocity of discontinuities in the magnetosheath in the first approximation is constant on the average. All reasonings and calculations correspond to consideration of a flow region with a velocity less than the magnetosonic speed near the Earth-Sun line. It is indicated that the results agree with the data from observations carried out on the WIND and Cluster spacecrafts.
Spectral-Temporal Evolution of Low-Frequency Pulsations in the Microwave Radiation of Solar Flares
NASA Astrophysics Data System (ADS)
Zaitsev, V. V.; Kislyakov, A. G.; Urpo, S.; Stepanov, A. V.; Shkelev, E. I.
2003-10-01
Low-frequency pulsations of 22 and 37 GHz microwave radiation detected during solar flares are analyzed. Several microwave bursts observed at the Metsähovi Radio Observatory are studied with time resolutions of 100 and 50 ms. A fast Fourier transformation with a sliding window and the Wigner-Ville method are used to obtain frequency-time diagrams for the low-frequency pulsations, which are interpreted as natural oscillations of coronal magnetic loops; the dynamical spectra of the pulsations are synthesized for the first time. Three types of low-frequency fluctuations modulating the flare microwave radiation can be distinguished in the observations. First, there are fast and slow magneto-acoustic oscillations with periods of 0.5 0.8 s and 200 280 s, respectively. The fast magneto-acoustic oscillations appear as trains of narrow-band signals with durations of 100 200 s, a positive frequency drift dν/dt=0.25 MHz/min, and frequency splitting δν=0.01 0.05 Hz. Second, there are natural oscillations of the coronal magnetic loops as equivalent electrical circuits. These oscillations have periods of 0.5 10 s and positive or negative frequency drift rates dν/dt=8×10-3 Hz/min or dν/dt=-1.3×10-2 Hz/min, depending on the phase of the radio outburst. Third, there are modulations of the microwave radiation by short periodic pulses with a period of 20 s. The dynamical spectra of the low-frequency pulsations supply important information about the parameters of the magnetic loops: the ratio of the loop radius to its length r/L≈0.1, the plasma parameter β≈10-3, the ratio of the plasma densities outside and inside the loop ρe/ρi≈10-2, and the electrical current flowing along the loop I≈1012 A.
Working memory subsystems and task complexity in young boys with Fragile X syndrome.
Baker, S; Hooper, S; Skinner, M; Hatton, D; Schaaf, J; Ornstein, P; Bailey, D
2011-01-01
Working memory problems have been targeted as core deficits in individuals with Fragile X syndrome (FXS); however, there have been few studies that have examined working memory in young boys with FXS, and even fewer studies that have studied the working memory performance of young boys with FXS across different degrees of complexity. The purpose of this study was to investigate the phonological loop and visual-spatial working memory in young boys with FXS, in comparison to mental age-matched typical boys, and to examine the impact of complexity of the working memory tasks on performance. The performance of young boys (7 to 13-years-old) with FXS (n = 40) was compared with that of mental age and race matched typically developing boys (n = 40) on measures designed to test the phonological loop and the visuospatial sketchpad across low, moderate and high degrees of complexity. Multivariate analyses were used to examine group differences across the specific working memory systems and degrees of complexity. Results suggested that boys with FXS showed deficits in phonological loop and visual-spatial working memory tasks when compared with typically developing mental age-matched boys. For the boys with FXS, the phonological loop was significantly lower than the visual-spatial sketchpad; however, there was no significant difference in performance across the low, moderate and high degrees of complexity in the working memory tasks. Reverse tasks from both the phonological loop and visual-spatial sketchpad appeared to be the most challenging for both groups, but particularly for the boys with FXS. These findings implicate a generalised deficit in working memory in young boys with FXS, with a specific disproportionate impairment in the phonological loop. Given the lack of differentiation on the low versus high complexity tasks, simple span tasks may provide an adequate estimate of working memory until greater involvement of the central executive is achieved. © 2010 The Authors. Journal of Intellectual Disability Research © 2010 Blackwell Publishing Ltd.
Working memory subsystems and task complexity in young boys with Fragile X syndrome
Baker, S.; Hooper, S.; Skinner, M.; Hatton, D.; Schaaf, J.; Ornstein, P.; Bailey, D.
2011-01-01
Background Working memory problems have been targeted as core deficits in individuals with Fragile X syndrome (FXS); however, there have been few studies that have examined working memory in young boys with FXS, and even fewer studies that have studied the working memory performance of young boys with FXS across different degrees of complexity. The purpose of this study was to investigate the phonological loop and visual–spatial working memory in young boys with FXS, in comparison to mental age-matched typical boys, and to examine the impact of complexity of the working memory tasks on performance. Methods The performance of young boys (7 to 13-years-old) with FXS (n = 40) was compared with that of mental age and race matched typically developing boys (n = 40) on measures designed to test the phonological loop and the visuospatial sketchpad across low, moderate and high degrees of complexity. Multivariate analyses were used to examine group differences across the specific working memory systems and degrees of complexity. Results Results suggested that boys with FXS showed deficits in phonological loop and visual–spatial working memory tasks when compared with typically developing mental age-matched boys. For the boys with FXS, the phonological loop was significantly lower than the visual–spatial sketchpad; however, there was no significant difference in performance across the low, moderate and high degrees of complexity in the working memory tasks. Reverse tasks from both the phonological loop and visual–spatial sketchpad appeared to be the most challenging for both groups, but particularly for the boys with FXS. Conclusions These findings implicate a generalised deficit in working memory in young boys with FXS, with a specific disproportionate impairment in the phonological loop. Given the lack of differentiation on the low versus high complexity tasks, simple span tasks may provide an adequate estimate of working memory until greater involvement of the central executive is achieved. PMID:21121991
ERIC Educational Resources Information Center
Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.
2015-01-01
This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N = 48) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data…
Takeuchi, Hajime; Takeda, Yoko; Takahashi, Miyo; Hayashi, Shogo; Fukuzawa, Yoshitaka; Nakano, Takashi
2014-09-01
To observe a case of congenital extrahepatic portosystemic shunt and discuss it from the embryological and clinical viewpoints. An 85-year-old female cadaver was employed for a dissection course at Aichi Medical University in 2009. There was no evidence of liver cirrhosis macroscopically or microscopically. A portosystemic shunt was observed that involved communication between the inferior mesenteric vein, inferior vena cava (IVC), and left ovarian vein by a single Y-shaped shunt vessel. To the best of our knowledge, this is the first reported case of the above-mentioned three veins being connected by a single Y-shaped shunt vessel. Considering the other venous diameters, the shunt appeared to flow into the splenic vein and IVC. It cannot be denied that this shunt may have led to hepatic encephalopathy, although the shunt effect may have been minimal. Embryological development of IVC appears to occur close to the plexus of anastomosing vitelline veins, forming the portal vein.
Atomic oxygen durability of solar concentrator materials for Space Station Freedom
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.
1990-01-01
The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.
Room temperature ferromagnetism in BiFe1-xMnxO3 thin film induced by spin-structure manipulation
NASA Astrophysics Data System (ADS)
Shigematsu, Kei; Asakura, Takeshi; Yamamoto, Hajime; Shimizu, Keisuke; Katsumata, Marin; Shimizu, Haruki; Sakai, Yuki; Hojo, Hajime; Mibu, Ko; Azuma, Masaki
2018-05-01
The evolution of crystal structure, spin structure, and macroscopic magnetization of manganese-substituted BiFeO3 (BiFe1-xMnxO3), a candidate for multiferroic materials, were investigated on bulk and epitaxial thin-film. Mn substitution for Fe induced collinear antiferromagnetic spin structure around room temperature by destabilizing the cycloidal spin modulation which prohibited the appearance of net magnetization generated by Dzyaloshinskii-Moriya interaction. For the bulk samples, however, no significant signal of ferromagnetism was observed because the direction of the ordered spins was close to parallel to the electric polarization so that spin-canting did not occur. On the contrary, BiFe1-xMnxO3 thin film on SrTiO3 (001) had a collinear spin structure with the spin direction perpendicular to the electric polarization at room temperature, where the appearance of spontaneous magnetization was expected. Indeed, ferromagnetic hysteresis behavior was observed for BiFe0.9Mn0.1O3 thin film.
Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G
2010-01-01
Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2014-04-01
Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.
Cho, Joonil; Ishida, Yasuhiro
2017-07-01
Porous materials with molecular-sized periodic structures, as exemplified by zeolites, metal-organic frameworks, or mesoporous silica, have attracted increasing attention due to their range of applications in storage, sensing, separation, and transformation of small molecules. Although the components of such porous materials have a tendency to pack in unidirectionally oriented periodic structures, such ideal types of packing cannot continue indefinitely, generally ceasing when they reach a micrometer scale. Consequently, most porous materials are composed of multiple randomly oriented domains, and overall behave as isotropic materials from a macroscopic viewpoint. However, if their channels could be unidirectionally oriented over a macroscopic scale, the resultant porous materials might serve as powerful tools for manipulating molecules. Guest molecules captured in macroscopically oriented channels would have their positions and directions well-defined, so that molecular events in the channels would proceed in a highly controlled manner. To realize such an ideal situation, numerous efforts have been made to develop various porous materials with macroscopically oriented channels. An overview of recent studies on the synthesis, properties, and applications of macroscopically oriented porous materials is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal Equilibrium of a Macroscopic Quantum System in a Pure State.
Goldstein, Sheldon; Huse, David A; Lebowitz, Joel L; Tumulka, Roderich
2015-09-04
We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.
The graphical brain: Belief propagation and active inference
Friston, Karl J.; Parr, Thomas; de Vries, Bert
2018-01-01
This paper considers functional integration in the brain from a computational perspective. We ask what sort of neuronal message passing is mandated by active inference—and what implications this has for context-sensitive connectivity at microscopic and macroscopic levels. In particular, we formulate neuronal processing as belief propagation under deep generative models. Crucially, these models can entertain both discrete and continuous states, leading to distinct schemes for belief updating that play out on the same (neuronal) architecture. Technically, we use Forney (normal) factor graphs to elucidate the requisite message passing in terms of its form and scheduling. To accommodate mixed generative models (of discrete and continuous states), one also has to consider link nodes or factors that enable discrete and continuous representations to talk to each other. When mapping the implicit computational architecture onto neuronal connectivity, several interesting features emerge. For example, Bayesian model averaging and comparison, which link discrete and continuous states, may be implemented in thalamocortical loops. These and other considerations speak to a computational connectome that is inherently state dependent and self-organizing in ways that yield to a principled (variational) account. We conclude with simulations of reading that illustrate the implicit neuronal message passing, with a special focus on how discrete (semantic) representations inform, and are informed by, continuous (visual) sampling of the sensorium. Author Summary This paper considers functional integration in the brain from a computational perspective. We ask what sort of neuronal message passing is mandated by active inference—and what implications this has for context-sensitive connectivity at microscopic and macroscopic levels. In particular, we formulate neuronal processing as belief propagation under deep generative models that can entertain both discrete and continuous states. This leads to distinct schemes for belief updating that play out on the same (neuronal) architecture. Technically, we use Forney (normal) factor graphs to characterize the requisite message passing, and link this formal characterization to canonical microcircuits and extrinsic connectivity in the brain. PMID:29417960