Analysis and Evaluation of the Macroscopic Organizational Structure of Red House
2001-03-01
Readiness Squadron, Engineer (RED HORSE ). This thesis examines the macroscopic organizational structure of RED HORSE ; that is, the manner in which RED HORSE ...Command - sponsored RED HORSE 2010 Strategic Study, and focuses on issues of geographic location and chain of command above the unit level, as the...study found these two topics were found to be vital to the accomplishment of the RED HORSE mission. Working in direct cooperation with ACC, this research
Avitable, Daniele; Wedgwood, Kyle C A
2017-02-01
We study coarse pattern formation in a cellular automaton modelling a spatially-extended stochastic neural network. The model, originally proposed by Gong and Robinson (Phys Rev E 85(5):055,101(R), 2012), is known to support stationary and travelling bumps of localised activity. We pose the model on a ring and study the existence and stability of these patterns in various limits using a combination of analytical and numerical techniques. In a purely deterministic version of the model, posed on a continuum, we construct bumps and travelling waves analytically using standard interface methods from neural field theory. In a stochastic version with Heaviside firing rate, we construct approximate analytical probability mass functions associated with bumps and travelling waves. In the full stochastic model posed on a discrete lattice, where a coarse analytic description is unavailable, we compute patterns and their linear stability using equation-free methods. The lifting procedure used in the coarse time-stepper is informed by the analysis in the deterministic and stochastic limits. In all settings, we identify the synaptic profile as a mesoscopic variable, and the width of the corresponding activity set as a macroscopic variable. Stationary and travelling bumps have similar meso- and macroscopic profiles, but different microscopic structure, hence we propose lifting operators which use microscopic motifs to disambiguate them. We provide numerical evidence that waves are supported by a combination of high synaptic gain and long refractory times, while meandering bumps are elicited by short refractory times.
Adsorption modeling for macroscopic contaminant dispersal analysis
Axley, J.W.
1990-05-01
Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.
Macroscopic analyses of communicability structures in complex networks
NASA Astrophysics Data System (ADS)
Min, Seungsik; Chang, Ki-Ho; Na, Sungjoon; Kim, Kyungsik
2016-11-01
We study the dynamical property of macroscopic community structures in two scientific societies. The type of data is extracted from author networks in both the Korean Meteorological Society and the Korean Physical Society. We discuss some notable methods for giving evolutionary information as the community structure is investigated using the model of oscillator networks. We simulate and analyze macroscopic community metrics such as the entropy, the natural connectivity, the free energy, the total energy, and the bipartivity in the community structures of the two scientific societies. We particularly compare and analyze the statistical values between the two scientific societies.
Kastrin, Andrej; Rindflesch, Thomas C; Hristovski, Dimitar
2014-01-01
Concept associations can be represented by a network that consists of a set of nodes representing concepts and a set of edges representing their relationships. Complex networks exhibit some common topological features including small diameter, high degree of clustering, power-law degree distribution, and modularity. We investigated the topological properties of a network constructed from co-occurrences between MeSH descriptors in the MEDLINE database. We conducted the analysis on two networks, one constructed from all MeSH descriptors and another using only major descriptors. Network reduction was performed using the Pearson's chi-square test for independence. To characterize topological properties of the network we adopted some specific measures, including diameter, average path length, clustering coefficient, and degree distribution. For the full MeSH network the average path length was 1.95 with a diameter of three edges and clustering coefficient of 0.26. The Kolmogorov-Smirnov test rejects the power law as a plausible model for degree distribution. For the major MeSH network the average path length was 2.63 edges with a diameter of seven edges and clustering coefficient of 0.15. The Kolmogorov-Smirnov test failed to reject the power law as a plausible model. The power-law exponent was 5.07. In both networks it was evident that nodes with a lower degree exhibit higher clustering than those with a higher degree. After simulated attack, where we removed 10% of nodes with the highest degrees, the giant component of each of the two networks contains about 90% of all nodes. Because of small average path length and high degree of clustering the MeSH network is small-world. A power-law distribution is not a plausible model for the degree distribution. The network is highly modular, highly resistant to targeted and random attack and with minimal dissortativity.
Macroscopic and Microscopic Analysis of the Thumb Carpometacarpal Ligaments
Ladd, Amy L.; Lee, Julia; Hagert, Elisabet
2012-01-01
Background: Stability and mobility represent the paradoxical demands of the human thumb carpometacarpal joint, yet the structural origin of each functional demand is poorly defined. As many as sixteen and as few as four ligaments have been described as primary stabilizers, but controversy exists as to which ligaments are most important. We hypothesized that a comparative macroscopic and microscopic analysis of the ligaments of the thumb carpometacarpal joint would further define their role in joint stability. Methods: Thirty cadaveric hands (ten fresh-frozen and twenty embalmed) from nineteen cadavers (eight female and eleven male; average age at the time of death, seventy-six years) were dissected, and the supporting ligaments of the thumb carpometacarpal joint were identified. Ligament width, length, and thickness were recorded for morphometric analysis and were compared with use of the Student t test. The dorsal and volar ligaments were excised from the fresh-frozen specimens and were stained with use of a triple-staining immunofluorescent technique and underwent semiquantitative analysis of sensory innervation; half of these specimens were additionally analyzed for histomorphometric data. Mixed-effects linear regression was used to estimate differences between ligaments. Results: Seven principal ligaments of the thumb carpometacarpal joint were identified: three dorsal deltoid-shaped ligaments (dorsal radial, dorsal central, posterior oblique), two volar ligaments (anterior oblique and ulnar collateral), and two ulnar ligaments (dorsal trapeziometacarpal and intermetacarpal). The dorsal ligaments were significantly thicker (p < 0.001) than the volar ligaments, with a significantly greater cellularity and greater sensory innervation compared with the anterior oblique ligament (p < 0.001). The anterior oblique ligament was consistently a thin structure with a histologic appearance of capsular tissue with low cellularity. Conclusions: The dorsal deltoid ligament
Analysis and Enhancements of a Prolific Macroscopic Model of Epilepsy
Fietkiewicz, Christopher; Loparo, Kenneth A.
2016-01-01
Macroscopic models of epilepsy can deliver surprisingly realistic EEG simulations. In the present study, a prolific series of models is evaluated with regard to theoretical and computational concerns, and enhancements are developed. Specifically, we analyze three aspects of the models: (1) Using dynamical systems analysis, we demonstrate and explain the presence of direct current potentials in the simulated EEG that were previously undocumented. (2) We explain how the system was not ideally formulated for numerical integration of stochastic differential equations. A reformulated system is developed to support proper methodology. (3) We explain an unreported contradiction in the published model specification regarding the use of a mathematical reduction method. We then use the method to reduce the number of equations and further improve the computational efficiency. The intent of our critique is to enhance the evolution of macroscopic modeling of epilepsy and assist others who wish to explore this exciting class of models further. PMID:27144054
Zhu, Zhongcheng; Li, Yang; Xu, Hui; Peng, Xin; Chen, Ya-Nan; Shang, Cong; Zhang, Qin; Liu, Jiaqi; Wang, Huiliang
2016-06-22
Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assistance of a flow field induced by vacuum degassing and the in situ polymerization accelerated by GO. The hydrogel prepared with a GO concentration of 5.0 mg mL(-1) exhibits macroscopically aligned LC structures, which endow the gels with anisotropic optical, mechanical properties, and dimensional changes during the phase transition. The hydrogels show dramatically enhanced tensile mechanical properties and phase transition rates. The oriented LC structures are not damaged during the phase transition of the PNIPAM/GO hydrogels, and hence their LC behavior undergoes reversible change. Moreover, highly oriented LC structures can also be formed when the gels are elongated, even for the gels which do not have macroscopically oriented LC structures. Very impressively, the oriented LC structures in the hydrogels can be permanently maintained by drying the gel samples elongated to and then kept at a constant tensile strain. The thermosensitive nature of PNIPAM and the angle-dependent nature of the macroscopically aligned GO LC structures allow the practical applications of the PNIPAM/GO hydrogels as optical switches, soft sensors, and actuators and so on.
Macroscopic effects of the spectral structure in turbulent flows
NASA Astrophysics Data System (ADS)
Tran, Tuan; Chakraborty, Pinaki; Guttenberg, Nicholas; Prescott, Alisia; Kellay, Hamid; Goldburg, Walter; Goldenfeld, Nigel; Gioia, Gustavo
2010-06-01
There is a missing link between the macroscopic properties of turbulent flows, such as the frictional drag of a wall-bounded flow, and the turbulent spectrum. The turbulent spectrum is a power law of exponent α (the `spectral exponent') that gives the characteristic velocity of a turbulent fluctuation (or `eddy') of size s as a function of s (ref. 1). Here we seek the missing link by comparing the frictional drag in soap-film flows, where α=3 (refs 9, 10), and in pipe flows, where α=5/3 (refs 11, 12). For moderate values of the Reynolds number Re, we find experimentally that in soap-film flows the frictional drag scales as Re-1/2, whereas in pipe flows the frictional drag scales as Re-1/4. Each of these scalings may be predicted from the attendant value of α by using a new theory, in which the frictional drag is explicitly linked to the turbulent spectrum.
Macroscopic effects of the spectral structure in turbulent flows
NASA Astrophysics Data System (ADS)
Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G.
2010-11-01
There is a missing link between macroscopic properties of turbulent flows, such as the frictional drag of a wall-bounded flow, and the turbulent spectrum. To seek the missing link we carry out unprecedented experimental measurements of the frictional drag in turbulent soap-film flows over smooth walls. These flows are effectively two-dimensional, and we are able to create soap-film flows with the two types of turbulent spectrum that are theoretically possible in two dimensions: the "enstrophy cascade," for which the spectral exponent α= 3, and the "inverse energy cascade," for which the spectral exponent α= 5/3. We find that the functional relation between the frictional drag f and the Reynolds number Re depends on the spectral exponent: where α= 3, f ˜Re-1/2; where α= 5/3, f ˜Re-1/4. Each of these scalings may be predicted from the attendant value of α by using a recently proposed spectral theory of the frictional drag. In this theory the frictional drag of turbulent flows on smooth walls is predicted to be f ˜Re^(1-α)/(1+α).
NASA Astrophysics Data System (ADS)
Li, Peng-Cheng; Liu, I.-Lin; Laughlin, Cecil; Chu, Shih-I.
2012-06-01
We present an accurate study of macroscopic high-order harmonic generation (HHG) from He atoms in intense ultrashort laser pulses. An accurate one-electron model potential is constructed for the description of the He atoms low-lying and Rydberg states. The macroscopic high-order harmonic spectra from He atoms are obtained by solving Maxwell's equation using macroscopic single-atom induced dipole moment. Macroscopic single-atom induced dipole moment can be obtained by solving accurately the time-dependent Schr"odinger equation (TDSE) using the time-dependent generalized pseudospectral method (TDGPS). This method allows accurate and efficient propagation of the wave function with a modest number of spatial grid points, leading to the efficient treatment of the macroscopic propagation effects for HHG. Our results show fine structure and significant enhancement of the intensities of the lower harmonics due to the resonance transitions between bound states. We explain the temporal and spatial characteristics of HHG by means of the wavelet time-frequency analysis. These analyses help to understand the detailed HHG mechanisms from He atoms.
Macroscopic structures of lyotropic lamellar phase under spatial confinement
NASA Astrophysics Data System (ADS)
Iwashita, Yasutaka; Tanaka, Hajime
2004-03-01
We study the formation of lamellar structure of lyotropic liquid crystal composed of C_12E_5/H_2O in wedge-shaped cell. The equilibrium lamellar structure in this cell is known to be an edge dislocation array, which is formed if lamellar layers well align homeotropically to cell surface. When we formed the lamellar phase in the cell, however, some lamellar structures far from equilibrium appeared such as random orientation lamella with dense defects and onion phase in particular condition. This means non-equilibrium, which has not been taken into account so far, is important in this problem. In observing their formation processes in detail, we found the origin of these non-equilibrium lamellar structures is a complex coupling between homo- or heterogeneous nucleation of lamella, elasticity of membrane and spatial confinement (or sample thickness). We will show the relation between spatial confinement and the morphology of structure, and discuss their physical origins.
Micro/macroscopic fluid flow in open cell fibrous structures and porous media
NASA Astrophysics Data System (ADS)
Tamayol, Ali
Fibrous porous materials are involved in a wide range of applications including composite fabrication, filtration, compact heat exchangers, fuel cell technology, and tissue engineering to name a few. Fibrous structures, such as metalfoams, have unique characteristics such as low weight, high porosity, high mechanical strength, and high surface to volume ratio. More importantly, in many applications the fibrous microstructures can be tailored to meet a range of requirements. Therefore, fibrous materials have the potential to be used in emerging sustainable energy conversion applications. The first step for analyzing transport phenomena in porous materials is to determine the micro/macroscopic flow-field inside the medium. In applications where the porous media is confined in a channel, the system performance is tightly related to the flow properties of the porous medium and its interaction with the channel walls, i.e., macroscopic velocity distribution. Therefore, the focus of the study has been on: developing new mechanistic model(s) for determining permeability and inertial coefficient of fibrous porous materials; investigating the effects of microstructural and mechanical parameters such as porosity, fiber orientation, mechanical compression, and fiber distribution on the flow properties and pressure drop of fibrous structures; determining the macroscopic flow-field in confined porous media where the porous structure fills the channel cross-section totally or partially. A systematic approach has been followed to study different aspects of the flow through fibrous materials. The complex microstructure of real materials has been modelled using unit cells that have been assumed to be repeated throughout the media. Implementing various exact and approximate analytical techniques such as integral technique, point matching, blending rules, and scale analysis the flow properties of such media have been modelled; the targeted properties include permeability and inertial
On the emergence of macroscopic transport barriers from staircase structures
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Diamond, P. H.
2017-01-01
This paper presents a theory for the formation and evolution of coupled density staircases and zonal shear profiles in a simple model of drift-wave turbulence. Density, vorticity, and fluctuation potential enstrophy are the fields evolved in this system. Formation of staircase structures is due to inhomogeneous mixing of generalized potential vorticity (PV), resulting in the sharpening of density and vorticity gradients in some regions, and weakening them in others. When the PV gradients steepen, the density staircase structure develops into a lattice of mesoscale "jumps," and "steps," which are, respectively, the regions of local gradient steepening and flattening. The jumps merge and migrate in radius, leading to the development of macroscale profile structures from mesoscale elements. The positive feedback process, which drives the staircase formation occurs via a Rhines scale dependent mixing length. We present extensive studies of bifurcation physics of the global state, including results on the global flux-gradient relations (flux landscapes) predicted by the model. Furthermore, we demonstrate that, depending on the sources and boundary conditions, either a region of enhanced confinement, or a region with strong turbulence can form at the edge. This suggests that the profile self-organization is a global process, though one which can be described by a local, but nonlinear model. This model is the first to demonstrate how the mesoscale condensation of staircases leads to global states of enhanced confinement.
Emergence of Macroscopic Transport Barriers from Staircase Structures
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Diamond, Patrick H.
2016-10-01
A theory is presented for the formation and evolution of coupled density staircases (SC) and zonal shear profiles in a simple model of drift-wave turbulence. Density, vorticity and fluctuation potential enstrophy are the fields evolved for this system. Formation of SC structures is due to inhomogeneous mixing of generalized potential vorticity (PV), resulting in the sharpening of density and vorticity gradients in some regions and weakening them in others. The positive feedback which drives SC formation is implemented via a Rhines scale dependent mixing length. When PV gradients steepen, the density SC structure develops into a lattice of mesoscale `jumps', and `steps', which are respectively, regions of local gradient steepening and flattening. The jumps merge and migrate in radius, leading to the development of macroscale profile structures from mesoscale elements. Furthermore, depending on the sources and boundary conditions, either a region of enhanced confinement, or a region with strong turbulence can form at the edge. We present extensive studies of bifurcation physics of the global state, including results on the flux-gradient landscapes. This model is the first to demonstrate how mesoscale condensation of SCs leads to global states of enhanced confinement. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738 and DE-SC0008378.
Melittin-induced changes of the macroscopic structure of phosphatidylethanolamines
Batenburg, A.M.; van Esch, J.H.; Kruijff, B.
1988-04-05
The binding of melittin to phosphatidylethanolamine model systems and its influence on the supramolecular organization of the lipid were investigated with binding assays, differential scanning calorimetry, /sup 31/P NMR, freeze-fracture electron microscopy, and small-angle X-ray scattering. The results are compared with binding to an analogous phosphatidylcholine and structural consequences thereof. Melittin binds with similar affinity to both lipid types in the liquid-crystalline state; at gel-phase temperatures, in contrast, interaction with phosphatidylethanolmaine is much weaker and does not lead to the bilayer fragmentation observed for phosphatidylcholines. With regard to phosphatidylethanolamine polymorphism, it is shown that melittin acts as an inhibitor of H/sub II/-phase formation and as a stabilizer of the bilayer organization. It is demonstrated that the remarkable variety of effects of melittin on the polymorphism of different membrane phospholipids can be understood in a relatively simple concept, taking into account the relative position and the shape of the interacting components
NASA Astrophysics Data System (ADS)
Sandhage, Kenneth H.
2010-06-01
The scalable fabrication of nano-structured materials with complex morphologies and tailorable chemistries remains a significant challenge. One strategy for such synthesis consists of the generation of a solid structure with a desired morphology (a “preform”), followed by reactive conversion of the preform into a new chemistry. Several gas/solid and liquid/solid reaction processes that are capable of such chemical conversion into new micro-to-nano-structured materials, while preserving the macroscopic-to-microscopic preform morphologies, are described in this overview. Such shape-preserving chemical transformation of one material into another could be considered a modern type of materials “alchemy.”
NASA Astrophysics Data System (ADS)
Schricker, Klaus; Stambke, Martin; Bergmann, Jean Pierre; Bräutigam, Kevin; Henckell, Philipp
The increasing application of hybrid structures in component design and fabrication allows to constantly enhance the realization of lightweight potentials. Laser-based joining of metals to polymers can obtaina local bonding with high load bearing capability. During the process, the polymer gets molten by the energy input of the laser beam and penetrates into the structure of the metal surface by means of a defined joining pressure. Macroscopic structures on the metal surface, produced by cutting or laser processing, are possible surface treatmentsfor achieving thepolymer-metal joints. The optimal geometry and other key parameters for the macroscopic surface structures are only partially known at present, e.g. a rising structure density causes a higher load capacity. Based on grooves and drilled holes, as referencegeometries, the depth (0.1-0.9 mm), width (0.3-1.1 mm), alignment angle, diameter (1.0mm- 1.5mm), structure density and penetration depth of the molten polymer were correlated to the separation force. The results allow an essential insight into the main effects ofmacroscopic structures on the mechanical joint properties and the material performance of the polymer during the process.
López-López, María; Merk, Virginia; García-Ruiz, Carmen; Kneipp, Janina
2016-07-01
Gunshot residues (GSR) result from the discharge of a firearm being a potential piece of evidence in criminal investigations. The macroscopic GSR particles are basically formed by burned and non-burned gunpowder. Motivated by the demand of trace analysis of these samples, in this paper, the use of surface-enhanced Raman scattering (SERS) was evaluated for the analysis of gunpowders and macroscopic GSR particles. Twenty-one different smokeless gunpowders were extracted with ethanol. SERS spectra were obtained from the diluted extracts using gold nanoaggregates and an excitation wavelength of 633 nm. They show mainly bands that could be assigned to the stabilizers diphenylamine and ethylcentralite present in the gunpowders. Then, macroscopic GSR particles obtained after firing two different ammunition cartridges on clothing were also measured using the same procedure. SERS allowed the detection of the particles collected with an aluminum stub from cloth targets without interferences from the adhesive carbon. The results demonstrate the great potential of SERS for the analysis of macroscopic GSR particles. Furthermore, they indicate that the grain-to-grain inhomogeneity of the gunpowders needs to be considered. Graphical Abstract SERS allows the detection of GSR particles collected with adhesive stubs from cloth targets using gold nanoaggregates and an excitation wavelength of 633 nm.
Macroscopic spatial analysis of pedestrian and bicycle crashes.
Siddiqui, Chowdhury; Abdel-Aty, Mohamed; Choi, Keechoo
2012-03-01
This study investigates the effect of spatial correlation using a Bayesian spatial framework to model pedestrian and bicycle crashes in Traffic Analysis Zones (TAZs). Aggregate models for pedestrian and bicycle crashes were estimated as a function of variables related to roadway characteristics, and various demographic and socio-economic factors. It was found that significant differences were present between the predictor sets for pedestrian and bicycle crashes. The Bayesian Poisson-lognormal model accounting for spatial correlation for pedestrian crashes in the TAZs of the study counties retained nine variables significantly different from zero at 95% Bayesian credible interval. These variables were - total roadway length with 35 mph posted speed limit, total number of intersections per TAZ, median household income, total number of dwelling units, log of population per square mile of a TAZ, percentage of households with non-retired workers but zero auto, percentage of households with non-retired workers and one auto, long term parking cost, and log of total number of employment in a TAZ. A separate distinct set of predictors were found for the bicycle crash model. In all cases the Bayesian models with spatial correlation performed better than the models that did not account for spatial correlation among TAZs. This finding implies that spatial correlation should be considered while modeling pedestrian and bicycle crashes at the aggregate or macro-level.
NASA Astrophysics Data System (ADS)
Kalishyn, Yevhen Yu.; Khavrus, Vyacheslav O.; Strizhak, Peter E.; Seipel, Michael; Münster, Arno F.
2002-09-01
We report the formation of macroscopically structured cross-linked polyacrylamide hydrogel in the Belousov-Zhabotinsky (BZ) system (oxidation of malonic acid by bromate catalyzed by ferroin). Here, acrylamide, the cross-linker bis-acrylamide, and polymerization initiator are added into the BZ system. We show that the formation of waves and ripples in the polymer is governed by spatial structures emerging in the BZ system. Without any spatial structures in the BZ system only the formation of a spatially uniform polymer is observed. Without cross-linker, a spatially uniform polymer was observed as well. Structured polymer formation is caused by the interaction of chemical reactions in the BZ system and the polymerization process including gelation and cross-linking of the monomer units.
Majumdar, A.; Alencar, A. M.; Buldyrev, S. V.; Hantos, Z.; Stanley, H. E.; Suki, B.
2001-07-30
We analyze the problem of fluid flow in a bifurcating structure containing random blockages that can be removed by fluid pressure. We introduce an asymmetric tree model and find that the predicted pressure-volume relation is connected to the distribution {Pi}(n) of the generation number n of the tree's terminal segments. We use this relation to explore the branching structure of the lung by analyzing experimental pressure-volume data from dog lungs. The {Pi}(n) extracted from the data using the model agrees well with experimental data on the branching structure. We can thus obtain information about the asymmetric structure of the lung from macroscopic, noninvasive pressure-volume measurements.
NASA Astrophysics Data System (ADS)
Rowe, D. J.; McCoy, A. E.; Caprio, M. A.
2016-03-01
The nuclear collective models introduced by Bohr, Mottelson and Rainwater, together with the Mayer-Jensen shell model, have provided the central framework for the development of nuclear physics. This paper reviews the microscopic evolution of the collective models and their underlying foundations. In particular, it is shown that the Bohr-Mottelson models have expressions as macroscopic limits of microscopic models that have precisely defined expressions in many-nucleon quantum mechanics. Understanding collective models in this way is especially useful because it enables the analysis of nuclear properties in terms of them to be revisited and reassessed in the light of their microscopic foundations.
NASA Astrophysics Data System (ADS)
Hu, Yuan; Wang, Joseph
2017-03-01
This paper presents a fully kinetic particle particle-in-cell simulation study on the emission of a collisionless plasma plume consisting of cold beam ions and thermal electrons. Results are presented for both the two-dimensional macroscopic plume structure and the microscopic electron kinetic characteristics. We find that the macroscopic plume structure exhibits several distinctive regions, including an undisturbed core region, an electron cooling expansion region, and an electron isothermal expansion region. The properties of each region are determined by microscopic electron kinetic characteristics. The division between the undisturbed region and the cooling expansion region approximately matches the Mach line generated at the edge of the emission surface, and that between the cooling expansion region and the isothermal expansion region approximately matches the potential well established in the beam. The interactions between electrons and the potential well lead to a new, near-equilibrium state different from the initial distribution for the electrons in the isothermal expansion region. The electron kinetic characteristics in the plume are also very anisotropic. As the electron expansion process is mostly non-equilibrium and anisotropic, the commonly used assumption that the electrons in a collisionless, mesothermal plasma plume may be treated as a single equilibrium fluid in general is not valid.
Controlled preparation and structure characterization of BiFeO{sub 3} with macroscopic shapes
Wu, Qiang; Chen, Pengfei; Zhao, Li; Yao, Weifeng; Qi, Xuemei
2015-01-15
Graphical abstract: We firstly explored two facile and successful techniques for BiFeO{sub 3} immobilization on silica fiber, namely, a combined impregnation method with carbon nanofibers (CNFs) templates route, and a combined solvothermal method with CNFs templates route. It is expected that such materials with direct macroscopic shapes would hold promise as highly functionalized materials for potential practical applications, especially in photocatalysis. - Highlights: • BiFeO{sub 3} with macroscopic shape was successfully obtained. • The synthetic methods used here are facile, effective, and reproducible. • Phase composition was strongly affected by calcination temperatures. • The obtained materials are promising visible-light-driven photocatalysts. - Abstract: BiFeO{sub 3} was successfully immobilized on silica fiber via two synthetic techniques (a combined impregnation method with carbon nanofibers templates route; a combined solvothermal method with carbon nanofibers templates route). The phase structure, morphology and optical absorption property of the samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and ultraviolet–visible diffuse reflectance spectroscopy. The results confirmed that carbon nanofibers can act as effective templates for BiFeO{sub 3} immobilization on silica fiber with the applied two methods. Compared with solvent thermal method, impregnation method tends to form a relatively uniform particle size distribution and highly-crystallized phase when the calcination temperature was kept at 773 K for 5 h. It turned out the phase composition of the samples is strongly affected by the calcination temperatures for both cases. Such materials with direct macroscopic shapes would hold promise as highly functionalized materials for potential practical applications, especially in photocatalysis.
Gunji, Yukio-Pegio; Shinohara, Shuji; Haruna, Taichi; Basios, Vasileios
2017-02-01
To overcome the dualism between mind and matter and to implement consciousness in science, a physical entity has to be embedded with a measurement process. Although quantum mechanics have been regarded as a candidate for implementing consciousness, nature at its macroscopic level is inconsistent with quantum mechanics. We propose a measurement-oriented inference system comprising Bayesian and inverse Bayesian inferences. While Bayesian inference contracts probability space, the newly defined inverse one relaxes the space. These two inferences allow an agent to make a decision corresponding to an immediate change in their environment. They generate a particular pattern of joint probability for data and hypotheses, comprising multiple diagonal and noisy matrices. This is expressed as a nondistributive orthomodular lattice equivalent to quantum logic. We also show that an orthomodular lattice can reveal information generated by inverse syllogism as well as the solutions to the frame and symbol-grounding problems. Our model is the first to connect macroscopic cognitive processes with the mathematical structure of quantum mechanics with no additional assumptions.
State-space based analysis and forecasting of macroscopic road safety trends in Greece.
Antoniou, Constantinos; Yannis, George
2013-11-01
In this paper, macroscopic road safety trends in Greece are analyzed using state-space models and data for 52 years (1960-2011). Seemingly unrelated time series equations (SUTSE) models are developed first, followed by richer latent risk time-series (LRT) models. As reliable estimates of vehicle-kilometers are not available for Greece, the number of vehicles in circulation is used as a proxy to the exposure. Alternative considered models are presented and discussed, including diagnostics for the assessment of their model quality and recommendations for further enrichment of this model. Important interventions were incorporated in the models developed (1986 financial crisis, 1991 old-car exchange scheme, 1996 new road fatality definition) and found statistically significant. Furthermore, the forecasting results using data up to 2008 were compared with final actual data (2009-2011) indicating that the models perform properly, even in unusual situations, like the current strong financial crisis in Greece. Forecasting results up to 2020 are also presented and compared with the forecasts of a model that explicitly considers the currently on-going recession. Modeling the recession, and assuming that it will end by 2013, results in more reasonable estimates of risk and vehicle-kilometers for the 2020 horizon. This research demonstrates the benefits of using advanced state-space modeling techniques for modeling macroscopic road safety trends, such as allowing the explicit modeling of interventions. The challenges associated with the application of such state-of-the-art models for macroscopic phenomena, such as traffic fatalities in a region or country, are also highlighted. Furthermore, it is demonstrated that it is possible to apply such complex models using the relatively short time-series that are available in macroscopic road safety analysis.
Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale.
Furukawa, Shuhei; Reboul, Julien; Diring, Stéphane; Sumida, Kenji; Kitagawa, Susumu
2014-08-21
The assembly of metal ions with organic ligands through the formation of coordination bonds gives crystalline framework materials, known as metal-organic frameworks (MOFs), which recently emerged as a new class of porous materials. Besides the structural designability of MOFs at the molecular length scale, the researchers in this field very recently made important advances in creating more complex architectures at the mesoscopic/macroscopic scale, in which MOF nanocrystals are used as building units to construct higher-order superstructures. The structuring of MOFs in such a hierarchical order certainly opens a new opportunity to improve the material performance via design of the physical form rather than altering the chemical component. This review highlights these superstructures and their applications by categorizing them into four dimensionalities, zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) superstructures. Because the key issue for structuring of MOFs is to spatially control the nucleation process in desired locations, this review conceptually categorizes the available synthetic methodologies from the viewpoint of the reaction system.
Nono, Yoshihiro; Mouri, Emiko; Nakata, Munetaka; Nakato, Teruyuki
2016-03-01
Multiscale structures of anisotropic nanoparticles up to macroscopic scales are important in order to produce practical materials through nanotechnology. As an example of such structures, hierarchical organization of colloidal liquid crystals of niobium oxide nanosheets yields stripe textures observable by naked eyes. The stripes are generated by the growth of liquid crystalline domains (tactoids) and the alignment of the tactoids under an electric field and gravity applied in the directions orthogonal to each other. The nanosheets forming the tactoids are unidirectionally aligned along the flow induced by gravity, and the aligned tactoids are stretched to be connected each other to form the stripes. Time evolution of the stripes indicates that they are generated during the settlement of the nanosheets. The nanosheets are debundled with the settlement, and thus the stripes are gradually degenerated during the settlement. Larger tactoids cause faster nanosheet settlement and stripe degeneration. The electric field applied orthogonally to gravity has roles of pinning the nanosheets to slow down their settlement and retains the stripes for several hours.
NASA Astrophysics Data System (ADS)
Kanick, Stephen C.
2016-03-01
The onset and progression of cancer introduces changes to the intra-cellular ultrastructural components and to the morphology of the extracellular matrix. While previous work has shown that localized scatter imaging is sensitive to pathology-induced differences in these aspects of tissue microstructure, wide adaptation this knowledge for surgical guidance is limited by two factors. First, the time required to image with confocal-level localization of the remission signal can be substantial. Second, localized (i.e. sub-diffuse) scatter remission intensity is influenced interchangeably by parameters that define scattering frequency and anisotropy. This similarity relationship must be carefully considered in order to obtain unique estimates of biomarkers that define either the scatter density or features that describe the distribution (e.g. shape, size, and orientation) of scatterers. This study presents a novel approach that uses structured light imaging to address both of these limitations. Monte Carlo data were used to model the reflectance intensity over a wide range of spatial frequencies, reduced scattering coefficients, absorption coefficients, and a metric of the scattering phase function that directly maps to the fractal dimension of scatter sizes. The approach is validated in tissue-simulating phantoms constructed with user-tuned scattering phase functions. The validation analysis shows that the phase function can be described in the presence of different scatter densities or background absorptions. Preliminary data from clinical tissue specimens show quantitative images of both the scatter density and the tissue fractal dimension for various tissue types and pathologies. These data represent a novel wide-field quantitative approach to mapping microscopic structural biomarkers that cannot be obtained with standard diffuse imaging. Implications for the use of this approach to assess surgical margins will be discussed.
Macroscopic and histological characteristics of fluid-filled ovarian structures in dairy cows.
Balogh, Orsolya Gabriella; Túry, Ernő; Abonyi-Tóth, Zsolt; Kastelic, John; Gábor, György
2014-06-01
The primary objective of this study was to use macroscopic and histological features of corpora lutea with a cavity and anovulatory cystic ovarian structures, present in 90 pairs of abattoir-derived dairy cow ovaries, as the basis to clarify the nomenclature of ovarian structures. Excluding morphologically normal ovarian fol-licles (antrum < 2 cm, wall < 1 mm), there were 27 fluid-filled ovarian structures. Ovulatory structures > 16 mm in diameter were designated as Group A (cavity ≤ 10 mm and wall > 10 mm) or Group B (cavity > 10 mm and wall < 10 mm). The volume of luteal tissue was less (P < 0.05) in Group B than in Group A, whereas that of a solid corpus luteum (CL) was intermediate (least square means ± SEM: 72 ± 1.92, 11.22 ± 1.57 and 5.84 ± 1.92 cm3, respectively). There was a greater proportion (P < 0.05) of small luteal cells in Group B compared to a solid CL, whereas Group A was intermediate (58.6 ± 5.3, 37.4 ± 5.3 and 44.0 ± 4.4%, respectively). Connective tissue was thicker (P < 0.05) in Group B than in Group A (295.4 ± 46.9 vs. 153.9 ± 38.2 μm). Based on the above-mentioned characteristics and differences, Groups A and B were designated as a CL with a cavity and a cystic CL, respectively. Furthermore, there were three groups of anovulatory ovarian structures. Structures in Group C were termed persistent/anovulatory follicles (overall diameter and wall thickness ≤ 20 and 1-3 mm, respectively). Finally, Groups D and E were designated as a follicle-fibrous cyst and a follicle-luteinised cyst (based on histological structure) for anovulatory structures with an overall diameter and wall thickness of ≥ 20 and ≤ 3 mm, and ≥ 20 and ≥ 3 mm, respectively.
NASA Astrophysics Data System (ADS)
Watanabe, Ikumu; Terada, Kenjiro; Neto, Eduardo Alberto de Souza; Perić, Djordje
The objective of this contribution is to develop an elastic-plastic-damage constitutive model for crystal grain and to incorporate it with two-scale finite element analyses based on mathematical homogenization method, in order to characterize the macroscopic tensile strength of polycrystalline metals. More specifically, the constitutive model for single crystal is obtained by combining hyperelasticity, a rate-independent single crystal plasticity and a continuum damage model. The evolution equations, stress update algorithm and consistent tangent are derived within the framework of standard elastoplasticity at finite strain. By employing two-scale finite element analysis, the ductile behaviour of polycrystalline metals and corresponding tensile strength are evaluated. The importance of finite element formulation is examined by comparing performance of several finite elements and their convergence behaviour is assessed with mesh refinement. Finally, the grain size effect on yield and tensile strength is analysed in order to illustrate the versatility of the proposed two-scale model.
Carreón-Calderón, Bernardo
2012-10-14
Stability analysis is generally used to verify that the solution to phase equilibrium calculations corresponds to a stable state (minimum of the free energy). In this work, tangent plane distance analysis for stability of macroscopic mixtures is also used for analyzing the nucleation process, reconciling thus this analysis with classical nucleation theories. In the context of the revised nucleation theory, the driving force and the nucleation work are expressed as a function of the Lagrange multiplier corresponding to the mole fraction constraint from the minimization problem of stability analysis. Using a van der Waals fluid applied to a ternary mixture, Lagrange multiplier properties are illustrated. In particular, it is shown how the Lagrange multiplier value is equal to one on the binodal and spinodal curves at the same time as the driving force of nucleation vanishes on these curves. Finally, it is shown that, on the spinodal curve, the nucleation work from the revised and generalized nucleation theories are characterized by two different local minima from stability analysis, irrespective of any interfacial tension models.
NASA Astrophysics Data System (ADS)
Mittnenzweig, Markus; Mielke, Alexander
2017-03-01
We show that all Lindblad operators (i.e., generators of quantum Markov semigroups) on a finite-dimensional Hilbert space satisfying the detailed balance condition with respect to the thermal equilibrium state can be written as a gradient system with respect to the relative entropy. We discuss also thermodynamically consistent couplings to macroscopic systems, either as damped Hamiltonian systems with constant temperature or as GENERIC systems.
Braunschweig, Björn; Schulze-Zachau, Felix; Nagel, Eva; Engelhardt, Kathrin; Stoyanov, Stefan; Gochev, Georgi; Khristov, Khr; Mileva, Elena; Exerowa, Dotchi; Miller, Reinhard; Peukert, Wolfgang
2016-07-06
β-Lactoglobulin (BLG) adsorption layers at air-water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca(2+) concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy - from the ubiquitous air-water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O-H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca(2+) concentrations above 1 mM causes an apparent change in the polarity of aromatic C-H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca(2+) concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca(2+), micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca(2+) concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes.
A Macroscopic Mathematical Model for Cell Migration Assays Using a Real-Time Cell Analysis
Angelini, Claudia; Carfora, Maria Francesca; Carriero, Maria Vincenza; Natalini, Roberto
2016-01-01
Experiments of cell migration and chemotaxis assays have been classically performed in the so-called Boyden Chambers. A recent technology, xCELLigence Real Time Cell Analysis, is now allowing to monitor the cell migration in real time. This technology measures impedance changes caused by the gradual increase of electrode surface occupation by cells during the course of time and provide a Cell Index which is proportional to cellular morphology, spreading, ruffling and adhesion quality as well as cell number. In this paper we propose a macroscopic mathematical model, based on advection-reaction-diffusion partial differential equations, describing the cell migration assay using the real-time technology. We carried out numerical simulations to compare simulated model dynamics with data of observed biological experiments on three different cell lines and in two experimental settings: absence of chemotactic signals (basal migration) and presence of a chemoattractant. Overall we conclude that our minimal mathematical model is able to describe the phenomenon in the real time scale and numerical results show a good agreement with the experimental evidences. PMID:27680883
A Macroscopic Mathematical Model for Cell Migration Assays Using a Real-Time Cell Analysis.
Di Costanzo, Ezio; Ingangi, Vincenzo; Angelini, Claudia; Carfora, Maria Francesca; Carriero, Maria Vincenza; Natalini, Roberto
Experiments of cell migration and chemotaxis assays have been classically performed in the so-called Boyden Chambers. A recent technology, xCELLigence Real Time Cell Analysis, is now allowing to monitor the cell migration in real time. This technology measures impedance changes caused by the gradual increase of electrode surface occupation by cells during the course of time and provide a Cell Index which is proportional to cellular morphology, spreading, ruffling and adhesion quality as well as cell number. In this paper we propose a macroscopic mathematical model, based on advection-reaction-diffusion partial differential equations, describing the cell migration assay using the real-time technology. We carried out numerical simulations to compare simulated model dynamics with data of observed biological experiments on three different cell lines and in two experimental settings: absence of chemotactic signals (basal migration) and presence of a chemoattractant. Overall we conclude that our minimal mathematical model is able to describe the phenomenon in the real time scale and numerical results show a good agreement with the experimental evidences.
NASA Astrophysics Data System (ADS)
Fuchs, Alexander N.; Wirth, Franz X.; Rinck, Philipp; Zaeh, Michael F.
Structural lightweight construction is increasingly utilized in the aerospace and automotive industry. Hybrid structures have great potential, especially with regard to load-specific component layouts. Usually, a surface pre-treatment is applied prior to joining dissimilar materials to improve bonding mechanisms such as form closure. In previous studies pulsed wave (pw) lasers were used for structuring metals. This paper presents the results of aluminum pre-treatment via a continuous wave (cw) single-mode fiber laser: macroscopic and microscopic structures were generated on the aluminum surface; the samples were joined with glass fiber reinforced polyamide using Friction Press Joining (FPJ), a method for joining metals and thermoplastic polymers in lap joint configuration. Using these new methods for surface structuring, shear strength was increased by 40% compared to previous studies with pw lasers.
Moran, J M; Nigg, D W; Wheeler, F J; Bauer, W F
1992-01-01
Calculations of radiation flux and dose distributions for boron neutron capture therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This paper describes such a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for the tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for this model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous-tissue model. Comparison of the results showed that peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10%-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.
Shi, Xiaomeng; Ye, Zhirui; Shiwakoti, Nirajan; Tang, Dounan; Wang, Chao; Wang, Wei
2016-10-01
A recent crowd stampede during a New Year's Eve celebration in Shanghai, China resulted in 36 fatalities and over 49 serious injuries. Many of such tragic crowd accidents around the world resulted from complex multi-direction crowd movement such as merging behavior. Although there are a few studies on merging crowd behavior, none of them have conducted a systematic analysis considering the impact of both merging angle and flow direction towards the safety of pedestrian crowd movement. In this study, a series of controlled laboratory experiments were conducted to examine the safety constraints of merging pedestrian crowd movements considering merging angle (60°, 90° and 180°) and flow direction under slow running and blocked vision condition. Then, macroscopic and microscopic properties of crowd dynamics are obtained and visualized through the analysis of pedestrian crowd trajectory data derived from video footage. It was found that merging angle had a significant influence on the fluctuations of pedestrian flows, which is important in a critical situation such as emergency evacuation. As the merging angle increased, mean velocity and mean flow at the measuring region in the exit corridors decreased, while mean density increased. A similar trend was observed for the number of weaving and overtaking conflicts, which resulted in the increase of mean headway. Further, flow direction had a significant impact on the outflow of the individuals while blocked vision had an influence on pedestrian crowd interactions and merging process. Finally, this paper discusses safety assessments on crowd merging behaviors along with some recommendations for future research. Findings from this study can assist in the development and validation of pedestrian crowd simulation models as well as organization and control of crowd events.
Wilson, Samantha L; Guilbert, Marie; Sulé-Suso, Josep; Torbet, Jim; Jeannesson, Pierre; Sockalingum, Ganesh D; Yang, Ying
2014-01-01
During aging, collagen structure changes, detrimentally affecting tissues' biophysical and biomechanical properties due to an accumulation of advanced glycation end-products (AGEs). In this investigation, we conducted a parallel study of microscopic and macroscopic properties of different-aged collagens from newborn to 2-yr-old rats, to examine the effect of aging on fibrillogenesis, mechanical and contractile properties of reconstituted hydrogels from these collagens seeded with or without fibroblasts. In addition to fibrillogenesis of collagen under the conventional conditions, some fibrillogenesis was conducted alongside a 12-T magnetic field, and gelation rate and AGE content were measured. A nondestructive indentation technique and optical coherence tomography were used to determine the elastic modulus and dimensional changes, respectively. It was revealed that in comparison to younger specimens, older collagens exhibited higher viscosity, faster gelation rates, and a higher AGE-specific fluorescence. Exceptionally, only young collagens formed highly aligned fibrils under magnetic fields. The youngest collagen demonstrated a higher elastic modulus and contraction in comparison to the older collagen. We conclude that aging changes collagen monomer structure, which considerably affects the fibrillogenesis process, the architecture of the resulting collagen fibers and the global network, and the macroscopic properties of the formed constructs.
Wu, Qiang; Zhao, Li; Wu, Meixia; Yao, Weifeng; Qi, Meixue; Shi, Xiaoyan
2014-03-01
Graphical abstract: Fabrication of nanofibrous La{sub 1−x}Ce{sub x}CoO{sub 3} (x = 0.05, 0.1, 0.2) and LaMn{sub x}Co{sub 1−x}O{sub 3} (x = 0.2, 0.5, 0.8) perovskite-type oxides with macroscopic structures can be successfully achieved by using carbon nanofibers (CNFs) as templates. Furthermore, their application for the combustion of carbon black (CB), which is a model of particulate matter exhausted from diesel engines, was demonstrated. - Highlights: • Nanofibrous perovskites with macroscopic shapes were successfully obtained. • CNFs template method used here is facile, effective and reproducible. • This method might be applicable to other novel material fabrication. • The obtained materials show superior catalytic activity in soot combustion. - Abstract: Fabrication of nanofibrous La{sub 1−x}Ce{sub x}CoO{sub 3} (x = 0.05, 0.1, 0.2) and LaMn{sub x}Co{sub 1−x}O{sub 3} (x = 0.2, 0.5, 0.8) perovskite-type oxides with macroscopic structures can be successfully achieved by using carbon nanofibers (CNFs) as templates. Field emission scanning electron microscopy (FE-SEM), coupled with X-ray diffraction (XRD) analysis confirmed the template effect and formation of the perovskite-type oxides on the macroscopic substrate. It turned out that this facile method can ensure the desired single-phase perovskite-type oxides formation by controlling the corresponding metal ratio during the preparation procedure. In addition, the immobilized nanofibrous La{sub 1−x}Ce{sub x}CoO{sub 3} (x = 0.05) and LaMn{sub x}Co{sub 1−x}O{sub 3} (x = 0.5) perovskite-type oxides can greatly decrease the combustion temperature of nanosized carbon black particles, which has the high potential application prospects in the treatment of diesel soot particles.
No effect of schizophrenia risk genes MIR137, TCF4, and ZNF804A on macroscopic brain structure.
Cousijn, Helena; Eissing, Marc; Fernández, Guillén; Fisher, Simon E; Franke, Barbara; Zwiers, Marcel; Harrison, Paul J; Arias-Vásquez, Alejandro
2014-11-01
Single nucleotide polymorphisms (SNPs) within the MIR137, TCF4, and ZNF804A genes show genome-wide association to schizophrenia. However, the biological basis for the associations is unknown. Here, we tested the effects of these genes on brain structure in 1300 healthy adults. Using volumetry and voxel-based morphometry, neither gene-wide effects--including the combined effect of the genes--nor single SNP effects--including specific psychosis risk SNPs--were found on total brain volume, grey matter, white matter, or hippocampal volume. These results suggest that the associations between these risk genes and schizophrenia are unlikely to be mediated via effects on macroscopic brain structure.
NASA Astrophysics Data System (ADS)
Iyer, Mrinal; Radhakrishnan, Balachandran; Gavini, Vikram
2015-03-01
We employed a real-space formulation of orbital-free density functional theory using finite-element basis to study the defect-core and energetics of an edge dislocation in Aluminum. Our study shows that the core-size of a perfect edge dislocation is around ten times the magnitude of the Burgers vector. This finding is contrary to the widely accepted notion that continuum descriptions of dislocation energetics are accurate beyond ∼1-3 Burgers vector from the dislocation line. Consistent with prior electronic-structure studies, we find that the perfect edge dislocation dissociates into two Shockley partials with a partial separation distance of 12.8 Å. Interestingly, our study revealed a significant influence of macroscopic deformations on the core-energy of Shockley partials. We show that this dependence of the core-energy on macroscopic deformations results in an additional force on dislocations, beyond the Peach-Koehler force, that is proportional to strain gradients. Further, we demonstrate that this force from core-effects can be significant and can play an important role in governing the dislocation behavior in regions of inhomogeneous deformations.
Heinola, T; Sukura, A; Virkki, L M; Sillat, T; Lekszycki, T; Konttinen, Y T
2014-04-01
A high percentage of osteoarthritis (OA)-like patellar groove lesions in the stifle joint in calcium-deficient bulls has been recently reported. The prevalence of these lesions in bulls deficient in or supplemented with calcium was compared to findings in culled and healthy bulls to determine whether they represent normal anatomical variations, developmental anomalies or OA. It was hypothesized that the patellar groove lesions may represent OA. Distal cartilage samples from 160 femurs were analysed using a macroscopic Société Française d'Arthroscopie (SFA) OA grading system. Samples representing different SFA grades were subjected to Osteoarthritis Research Society International (OARSI) histological and high-mobility group box 1 (HMGB1) immunohistological OA grading. For a qualitative analysis three OA samples were immunostained for interleukin (IL)-1β, matrix metalloproteinase (MMP)-13 and collagenase-produced COL2-3/4M neoepitopes. Patellar groove lesions were found in 48% of the femurs and were highest in calcium-deficient animals (71%, P<0.001). All three different grading systems disclosed OA in culled bulls, but no focal areas of cartilage necrosis. OARSI and HMGB1 grades were fairly concordant (Spearman's ρ=0.95, P<0.001; Cohen's κ=0.23, P<0.005), both with a slight disparity with the SFA grade (ρ=0.80 and 0.87, P<0.01; κ=0.36 and 0.46, P<0.001). IL-1β, MMP-13 and COL2-3/4M staining patterns were compatible with OA. The study showed that patellar groove lesions are common in bulls. In all SFA, OARSI and HMGB1 graded samples the lesions clearly demonstrated OA and showed OA-typical pathophysiology. Arthroscopic SFA grading showed similar changes in calcium-deficient and calcium-supplemented bulls, but in the absence of a time course study and histological data the primary nature of these lesions could not be established with certainty.
Lucia, Umberto
2016-01-01
The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes. PMID:27762333
NASA Astrophysics Data System (ADS)
Lucia, Umberto
2016-10-01
The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes.
Lin, Naibo; Liu, Xiang Yang
2015-11-07
This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted
ERIC Educational Resources Information Center
Burson, Kristen M.; Schlexer, Philomena; Bu¨chner, Christin; Lichtenstein, Leonid; Heyde, Markus; Freund, Hans-Joachim
2015-01-01
A two-part experiment using bubble rafts to analyze amorphous structures is presented. In the first part, the distinctions between crystalline and vitreous structures are examined. In the second part, the interface between crystalline and amorphous regions is considered. Bubble rafts are easy to produce and provide excellent analogy to recent…
NASA Astrophysics Data System (ADS)
Tune, Travis; Irving, Tom; Sponberg, Simon
Muscle is a unique hierarchical material composed of millions of molecular motors arranged on filaments in a regular lattice structure. The macroscopic, material behavior of muscle can be characterized by its workloop, a periodically activated force-length curve. Muscle is capable of operating as a spring, motor, brake, or strut, defined by its workloop. We are interested in the multiscale physics of muscle that drive its ``energetic versatility'' - the ability of muscle to alter its function. Here we introduce a system of two muscles from the cockroach whose workloops are not explained by our current understanding of the determinants of workloop function (the classic force-length, force-velocity, and twitch response). Differences in material behavior may arise from structural differences in the muscle's active lattice. Using the BIOCat beam at the Advanced Photon Source at Argonne NL, we tested for differences in the two muscles' lattice structure. Small-angle x-ray scattering (SAXS) revealed a difference of 4-8
NASA Technical Reports Server (NTRS)
1991-01-01
After an 800-foot-tall offshore oil recovery platform collapsed, the engineers at Engineering Dynamics, Inc., Kenner, LA, needed to learn the cause of the collapse, and analyze the proposed repairs. They used STAGSC-1, a NASA structural analysis program with geometric and nonlinear buckling analysis. The program allowed engineers to determine the deflected and buckling shapes of the structural elements. They could then view the proposed repairs under the pressure that caused the original collapse.
Ryan, M.P.; Koyanagi, R.Y.; Fiske, R.S.
1981-08-10
We report the results of modeling the three-dimensional internal structure of Kilauea's magmatic passageways. The approach uses a clear plexiglass model containing equally-spaced levels upon which well-located seismic hypocenters are plotted. Application of constraining geologic and geophysical criteria to this distributed volume of earthquakes permits the interpretation of seismic structures produced by fracturing in response to locally high fluid pressures. Four magma transport and storage structures produce have been identified within and beneath Kilauea: (1) Primary conduit. The conduit transporting magma into Kilauea's summit storage reservoir rises from the model base (14.6 km) to 6.5 km depth level. It is a zone of intense fracturing and inferred intrusion, whose horizontal sections are elliptical in planform. Over its height, the average major axis of component horizontal section is 3.3 km, with an average minor axis of 1.7 km. This yields an aspect ratio of xi = 0.52. At the 14.6 km level, the strike of the major axis is N67 /sup 0/E. During passage from the upper mantle through the oceanic crust, this axis rotates in a right-handed sense, until the strike is N41 /sup 0/W at the 6.5 km level. (2) Magma chamber complex floor. The interval from 6.5 to 5.7 km, immediately over the primary conduit, is aseismic. This suggests differentially high fluid-to-rock ratios, and relatively weak pathways for further vertical transport into higher levels of the storage complex, as well as lateral leakage eastward into the Mauna Ulu staging area: for later vertical ascent beneath the upper east rift zone. Seismicity within the immediately subjacent rocks that form the top of the primary conduit (at 6.5 km) suggests that this inferred magma-rich horizon forms the effective floor of the summit storage complex. (3) Magma chamber crown. Intense seismicity over the 1.1--1.9 km depth interval defines an elliptical region in plan view.
NASA Astrophysics Data System (ADS)
Pohlman, E.; Smith, J. R.
2005-12-01
Spring-deposited carbonates (tufas) along the flanks of the Libyan Escarpment in Dakhleh and Kharga Oasis record relatively humid conditions which prevailed in the Egyptian Sahara periodically throughout the Pleistocene. Previous work, particularly Nicoll et al.(1999), has suggested the Western Desert tufas, though certainly displaying evidence of secondary cementation by sparry calcite, aggrading neomorphism, etc. do in many instances preserve primary features, particularly organosedimentary lamination, and a clotted microbial texture. In order to facilitate field-based selection of suitable, unaltered samples for geochemical analysis, we undertook a petrographic examination of tufa samples in order to determine whether certain macroscopic features (e.g., color, porosity, presence of detrital iron oxides, preservation of visible plant casts) could be quantitatively correlated to the degree of diagenesis present in thin sections as indicated by percent calcite spar. We also determined total organic content through peroxide digestion, as younger samples (determined by U-series dating and by geomorphic context) qualitatively appeared to contain both more casts of botanical remains, and better defined microbial textures. Older and more altered tufas also generally had heavier (less organically-influenced) carbon isotopic signatures, further suggesting a relationship between diagenesis, organic content, and age. Petrographic analysis included descriptions of sample texture, spatial relationship of textural elements (e.g., pores, plant casts, detrital material), and frequency of biological inclusions or casts. Point counts were performed to estimate sample mineralogy and porosity. Tufas are predominantly micritic calcite, with little (generally <2%) sparry calcite. Porosity may be as great as 46%. Most samples examined displayed some evidence of primary (generally microbial) textures. The expected relationship between porosity and diagenetic alteration, however, was not
Yang, Wenchao; Yao, Yao Wu, Chang-Qin
2015-04-21
In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.
NASA Astrophysics Data System (ADS)
Yang, Wenchao; Yao, Yao; Wu, Chang-Qin
2015-04-01
In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (Rrec-V) and the current density-voltage (J-V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted Rrec data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the Rrec-V characteristics. For the perovskites of increased band gaps, the Rrec's are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the Rrec decrease slowly with the increasing voltage, which leads to increased open circuit voltage.
Jha, Amit K.; Malik, Manisha S.; Farach-Carson, Mary C.; Duncan, Randall L.; Jia, Xinqiao
2010-01-01
We aimed to develop biomimetic hydrogel matrices that not only exhibit structural hierarchy and mechanical integrity, but also present biological cues in a controlled fashion. To this end, photocrosslinkable, hyaluronic acid (HA)-based hydrogel particles (HGPs) were synthesized via an inverse emulsion crosslinking process followed by chemical modification with glycidyl methacrylate (GMA). HA modified with GMA (HA-GMA) was employed as the soluble macromer. Macroscopic hydrogels containing covalently integrated hydrogel particles (HA-c-HGP) were prepared by radical polymerization of HA-GMA in the presence of crosslinkable HGPs. The covalent linkages between the hydrogel particles and the secondary HA matrix resulted in the formation of a diffuse, fibrilar interface around the particles. Compared to the traditional bulk gels synthesized by photocrosslinking of HA-GMA, these hydrogels exhibited a reduced sol fraction and a lower equilibrium swelling ratio. When tested under uniaxial compression, the HA-c-HGP gels were more pliable than the HA-p-HGP gels and fractured at higher strain than the HA-GMA gels. Primary bovine chondrocytes were photoencapsulated in the HA matrices with minimal cell damage. The 3D microenvironment created by HA-GMA and HA HGPs not only maintained the chondrocyte phenotype but also fostered the production of cartilage specific extracellular matrix. To further improve the biological activities of the HA-c-HGP gels, bone morphogenetic protein 2 (BMP-2) was loaded into the immobilized HGPs. BMP-2 was released from the HA-c-HGP gels in a controlled manner with reduced initial burst over prolonged periods of time. The HA-c-HGP gels are promising candidates for use as bioactive matrices for cartilage tissue engineering. PMID:20936090
Axnér, E; Holm, D; Gavier-Widén, D; Söderberg, A; Bergqvist, A S
2015-09-15
Although monitoring wild animals in the field is essential for estimations of population size and development, there are pitfalls associated with field monitoring. In addition, some detailed data about reproductive physiology can be difficult to obtain in wild live animals. Studying reproductive organs from the Eurasian lynx killed at hunting or found dead could be used as a valuable addition to other field data. We evaluated reproductive organs from 39 Eurasian lynx females (Lynx lynx) killed in Sweden during the hunting seasons in 2009, 2010, and 2011. According to notes on ovarian structures, the animals were categorized as being in one of four different reproductive stages: juvenile (n = 10), follicular stage (n = 8), luteal stage (n = 11), and anestrus (n = 10). Corpora lutea were classified as fresh CL from the present season or as luteal bodies from previous cycles. Microscopic evaluations were blindly coded while the outer measurements of the vagina and uterus were taken at the time of organ retrieval. The width of the endometrium, myometrium, outer width of the uterine horns, and the diameter of the vagina differed significantly with the reproductive stage (P < 0.001) and were largest in the follicular and luteal phases. The number of endometrial glands evaluated blindly coded on a subjective scale was significantly associated with the reproductive stage (P < 0.0001) and was significantly higher in the luteal phase than that in any other reproductive stages (P < 0.05). Cornification of the vaginal epithelium was only observed in females in the follicular stage or in females with signs of a recent ovulation. In conclusion, both macroscopic and histologic measurements are useful for a correct classification of the reproductive stage when evaluating reproductive organs in the Eurasian lynx killed during the hunting season. Routine evaluation of reproductive organs has a potential to be a useful additional tool to field studies of live lynx to monitor their
A new macroscopic method of fabric analysis based upon Fresnel’s theorem
NASA Astrophysics Data System (ADS)
Shan, Yehua; Xiao, Wenjiao
2011-09-01
Fresnel's theorem used in optical crystallography is applicable to fabric analysis, strain analysis and stress analysis due to the similarity in formulation between the optical indicatrix, the fabric ellipsoid, the strain ellipsoid and the stress ellipsoid. It describes the relationship between the fabric trace on any section and the circular sections of the fabric ellipsoid. Its explicit expression is equivalent to the expression of the Wallace-Bott hypothesis for stress inversion. A new method is thus developed in this paper to determine the fabric ellipsoid from no less than four independent sectional measurements. Artificial and real examples are taken to illustrate the feasibility of this new method. The advantage of the method over some of the existing graphic methods is that it can deal with any set of sectional measurements.
NASA Astrophysics Data System (ADS)
Oleksik, Mihaela; Oleksik, Valentin
2013-05-01
The current paper intends to realise a fast method for determining the material characteristics in the case of composite materials used in the airbags manufacturing. For determining the material data needed for other complex numerical simulations at macroscopic level there was used the inverse analysis method. In fact, there were carried out tensile tests for the composite material extracted along two directions - the direction of the weft and the direction of the warp and afterwards there were realised numerical simulations (using the Ls-Dyna software). A second stage consisted in the numerical simulation through the finite element method and the experimental testing for the Bias test. The material characteristics of the composite fabric material were then obtained by applying a multicriterial analysis using the Ls-Opt software, for which there was imposed a decrease of the mismatch between the force-displacement curves obtained numerically and experimentally, respectively, for both directions (weft and warp) as well as the decrease of the mismatch between the strain - extension curves for two points at the Bias test.
Minker, Katharine R; Biedrzycki, Meredith L; Kolagunda, Abhishek; Rhein, Stephen; Perina, Fabiano J; Jacobs, Samuel S; Moore, Michael; Jamann, Tiffany M; Yang, Qin; Nelson, Rebecca; Balint-Kurti, Peter; Kambhamettu, Chandra; Wisser, Randall J; Caplan, Jeffrey L
2016-06-25
The study of phenotypic variation in plant pathogenesis provides fundamental information about the nature of disease resistance. Cellular mechanisms that alter pathogenesis can be elucidated with confocal microscopy; however, systematic phenotyping platforms-from sample processing to image analysis-to investigate this do not exist. We have developed a platform for 3D phenotyping of cellular features underlying variation in disease development by fluorescence-specific resolution of host and pathogen interactions across time (4D). A confocal microscopy phenotyping platform compatible with different maize-fungal pathosystems (fungi: Setosphaeria turcica, Cochliobolus heterostrophus, and Cercospora zeae-maydis) was developed. Protocols and techniques were standardized for sample fixation, optical clearing, species-specific combinatorial fluorescence staining, multisample imaging, and image processing for investigation at the macroscale. The sample preparation methods presented here overcome challenges to fluorescence imaging such as specimen thickness and topography as well as physiological characteristics of the samples such as tissue autofluorescence and presence of cuticle. The resulting imaging techniques provide interesting qualitative and quantitative information not possible with conventional light or electron 2D imaging. Microsc. Res. Tech., 2016. © 2016 Wiley Periodicals, Inc.
Rukmangadachar, Lokesh A.; Makharia, Govind K.; Mishra, Asha; Das, Prasenjit; Hariprasad, Gururao; Srinivasan, Alagiri; Gupta, Siddhartha Datta; Ahuja, Vineet; Acharya, Subrat K.
2016-01-01
Differentiation between intestinal tuberculosis (ITB) and Crohn’s disease (CD) is challenging in geographical regions where both these diseases are prevalent. There is a need of biomarkers for differentiation between these two disorders. Colonic biopsies from inflamed mucosa of treatment-naive patients with ITB, CD and controls were used for analysis. Protein extracted from biopsies was digested with trypsin and resulting peptides were labeled with iTRAQ reagents. The peptides were subsequently analyzed using LC-MS/MS for identification and quantification. Gene ontology annotation for proteins was analyzed in PANTHER. Validation experiments were done for six differentially expressed proteins using immunohistochemistry. 533 proteins were identified and 241 proteins were quantified from 5 sets of iTRAQ experiments. While 63 were differentially expressed in colonic mucosa of patients with CD and ITB in at least one set of iTRAQ experiment, 11 proteins were differentially expressed in more than one set of experiments. Six proteins used for validation using immunohistochemistry in a larger cohort of patients; none of them however was differentially expressed in patients with ITB and CD. There are differentially expressed proteins in tissue proteome of CD and ITB. Further experiments are required using a larger cohort of homogeneous tissue samples. PMID:26988818
The macroscopic pancake bounce
NASA Astrophysics Data System (ADS)
Andersen Bro, Jonas; Sternberg Brogaard Jensen, Kasper; Nygaard Larsen, Alex; Yeomans, Julia M.; Hecksher, Tina
2017-01-01
We demonstrate that the so-called pancake bounce of millimetric water droplets on surfaces patterned with hydrophobic posts (Liu et al 2014 Nat. Phys. 10 515) can be reproduced on larger scales. In our experiment, a bed of nails plays the role of the structured surface and a water balloon models the water droplet. The macroscopic version largely reproduces the features of the microscopic experiment, including the Weber number dependence and the reduced contact time for pancake bouncing. The scalability of the experiment confirms the mechanisms of pancake bouncing, and allows us to measure the force exerted on the surface during the bounce. The experiment is simple and inexpensive and is an example where front-line research is accessible to student projects.
NASA Astrophysics Data System (ADS)
Boffy, R.; Peuget, S.; Schweins, R.; Beaucour, J.; Bermejo, F. J.
2016-05-01
The behaviour of four alkali-borosilicate glasses under homogeneous thermal neutron irradiation has been studied. These materials are used for the manufacturing of neutron guides which are installed in most facilities as devices to transport neutrons from intense sources such as nuclear reactors or spallation sources up to scientific instruments. Several experimental techniques such as Raman, NMR, SANS and STEM have been employed in order to understand the rather different macroscopic behaviour under irradiation of materials that belong to a same glass family. The results have shown that the remarkable glass shrinking observed for neutron doses below 0.5 ·1018 n/cm2 critically depends upon the presence of domains where silicate and borate network do not mix.
ERIC Educational Resources Information Center
Rahayu, Sri; Kita, Masakazu
2010-01-01
This study investigated Indonesian and Japanese students' understandings of macroscopic and submicroscopic levels of representing matter and its changes and the difficulties they have with these concepts. A multiple-choice questionnaire was constructed and delivered to 447 Indonesian and 446 Japanese public senior high school students. The data…
Noffke, Nora
2015-02-01
Sandstone beds of the <3.7 Ga Gillespie Lake Member on Mars have been interpreted as evidence of an ancient playa lake environment. On Earth, such environments have been sites of colonization by microbial mats from the early Archean to the present time. Terrestrial microbial mats in playa lake environments form microbialites known as microbially induced sedimentary structures (MISS). On Mars, three lithofacies of the Gillespie Lake Member sandstone display centimeter- to meter-scale structures similar in macroscopic morphology to terrestrial MISS that include "erosional remnants and pockets," "mat chips," "roll-ups," "desiccation cracks," and "gas domes." The microbially induced sedimentary-like structures identified in Curiosity rover mission images do not have a random distribution. Rather, they were found to be arranged in spatial associations and temporal successions that indicate they changed over time. On Earth, if such MISS occurred with this type of spatial association and temporal succession, they would be interpreted as having recorded the growth of a microbially dominated ecosystem that thrived in pools that later dried completely: erosional pockets, mat chips, and roll-ups resulted from water eroding an ancient microbial mat-covered sedimentary surface; during the course of subsequent water recess, channels would have cut deep into the microbial mats, leaving erosional remnants behind; desiccation cracks and gas domes would have occurred during a final period of subaerial exposure of the microbial mats. In this paper, the similarities of the macroscopic morphologies, spatial associations, and temporal succession of sedimentary structures on Mars to MISS preserved on Earth has led to the following hypothesis: The sedimentary structures in the <3.7 Ga Gillespie Lake Member on Mars are ancient MISS produced by interactions between microbial mats and their environment. Proposed here is a strategy for detecting, identifying, confirming, and differentiating
Sun, Jia-Lin; Zhu, Jia-Lin; Zhao, Xingchen; Bao, Yang
2011-01-21
Macroscopically long core/shell structured Ag/Ag(2)S coaxial nanowires and Ag(2)S nanowires have been fabricated using the solid-state ionics method for Ag nanowires, combined with a subsequent gas-solid reaction, and characterized at different spatial scales. The photoconductive properties of such samples are investigated by performing transport measurements with 532 nm laser illumination ON/OFF cycles under different bias. A significant change in the photoconductivity from negative to positive has been observed in the coaxial structured Ag/Ag(2)S nanowires when the Ag(2)S layer thickness increases to a certain level. Such behaviors are ascribed to two photoconductive mechanisms in the Ag core and the Ag(2)S shell, respectively. These results indicate a promising approach to fabricate nanoscale photoswitches with different dark resistances and photoinduced currents based on the Ag/Ag(2)S coaxial nanowires for various optoelectronic applications.
NASA Astrophysics Data System (ADS)
Sun, Jia-Lin; Zhu, Jia-Lin; Zhao, Xingchen; Bao, Yang
2011-01-01
Macroscopically long core/shell structured Ag/Ag2S coaxial nanowires and Ag2S nanowires have been fabricated using the solid-state ionics method for Ag nanowires, combined with a subsequent gas-solid reaction, and characterized at different spatial scales. The photoconductive properties of such samples are investigated by performing transport measurements with 532 nm laser illumination ON/OFF cycles under different bias. A significant change in the photoconductivity from negative to positive has been observed in the coaxial structured Ag/Ag2S nanowires when the Ag2S layer thickness increases to a certain level. Such behaviors are ascribed to two photoconductive mechanisms in the Ag core and the Ag2S shell, respectively. These results indicate a promising approach to fabricate nanoscale photoswitches with different dark resistances and photoinduced currents based on the Ag/Ag2S coaxial nanowires for various optoelectronic applications.
Nielen, Michel W F; van Beek, Teris A
2014-11-01
Laser-ablation electrospray ionization (LAESI) mass spectrometry imaging (MSI) does not require very flat surfaces, high-precision sample preparation, or the addition of matrix. Because of these features, LAESI-MSI may be the method of choice for spatially-resolved food analysis. In this work, LAESI time-of-flight MSI was investigated for macroscopic and microscopic imaging of pesticides, mycotoxins, and plant metabolites on rose leaves, orange and lemon fruit, ergot bodies, cherry tomatoes, and maize kernels. Accurate mass ion-map data were acquired at sampling locations with an x-y center-to-center distance of 0.2-1.0 mm and were superimposed onto co-registered optical images. The spatially-resolved ion maps of pesticides on rose leaves suggest co-application of registered and banned pesticides. Ion maps of the fungicide imazalil reveal that this compound is only localized on the peel of citrus fruit. However, according to three-dimensional LAESI-MSI the penetration depth of imazalil into the peel has significant local variation. Ion maps of different plant alkaloids on ergot bodies from rye reveal co-localization in accordance with expectations. The feasibility of using untargeted MSI for food analysis was revealed by ion maps of plant metabolites in cherry tomatoes and maize-kernel slices. For tomatoes, traveling-wave ion mobility (TWIM) was used to discriminate between different lycoperoside glycoalkaloid isomers; for maize quadrupole time-of-flight tandem mass spectrometry (MS-MS) was successfully used to elucidate the structure of a localized unknown. It is envisaged that LAESI-MSI will contribute to future research in food science, agriforensics, and plant metabolomics.
Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state
Haghpanah, Babak; Papadopoulos, Jim; Mousanezhad, Davood; Nayeb-Hashemi, Hamid; Vaziri, Ashkan
2014-01-01
An approach to obtain analytical closed-form expressions for the macroscopic ‘buckling strength’ of various two-dimensional cellular structures is presented. The method is based on classical beam-column end-moment behaviour expressed in a matrix form. It is applied to sample honeycombs with square, triangular and hexagonal unit cells to determine their buckling strength under a general macroscopic in-plane stress state. The results were verified using finite-element Eigenvalue analysis. PMID:25002823
Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael
2016-01-01
We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures. PMID:26892169
NASA Astrophysics Data System (ADS)
Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael
2016-02-01
We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures.
Schulze-Zachau, Felix; Braunschweig, Björn
2017-03-20
Air/water interfaces were modified by oppositely charged poly(sodium 4-styrenesulfonate) (NaPSS) and hexadecyltrimethylammonium bromide (CTAB) polyelectrolyte/surfactant mixtures and were studied on a molecular level with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry. In order to deduce structure property relations, our results on the interfacial molecular structure and lateral interactions of PSS(-)/CTA(+) complexes were compared to the stability and structure of macroscopic foam as well as to bulk properties. For that, the CTAB concentration was fixed to 0.1 mM, while the NaPSS concentration was varied. At NaPSS monomer concentrations <0.1 mM, PSS(-)/CTA(+) complexes start to replace free CTA(+) surfactants at the interface and thus reduce the interfacial electric field in the process. This causes the O-H bands from interfacial H2O molecules in our SFG spectra to decrease substantially, which reach a local minimum in intensity close to equimolar concentrations. Once electrostatic repulsion is fully screened at the interface, hydrophobic PSS(-)/CTA(+) complexes dominate and tend to aggregate at the interface and in the bulk solution. As a consequence, adsorbate layers with the highest film thickness, surface pressure and dilatational elasticity are formed. These surface layers provide much higher stabilities and foamabilities of polyhedral macroscopic foams. Mixtures around this concentration show precipitation after a few days, while their surfaces to air are in a local equilibrium state. Concentrations >0.1 mM result in a significant decrease in surface pressure and a complete loss in foamability. However, SFG and surface dilatational rheology provide strong evidence for the existence of PSS(-)/CTA(+) complexes at the interface. At polyelectrolyte concentrations >10 mM, air-water interfaces are dominated by an excess of free PSS(-) polyelectrolytes and small amounts of PSS(-)/CTA(+) complexes which
Rank distributions: A panoramic macroscopic outlook
NASA Astrophysics Data System (ADS)
Eliazar, Iddo I.; Cohen, Morrel H.
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
Rank distributions: a panoramic macroscopic outlook.
Eliazar, Iddo I; Cohen, Morrel H
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions-top-down, bottom-up, and global-and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
Nagaoka, Masataka
2015-12-31
A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.
NASA Astrophysics Data System (ADS)
Nagaoka, Masataka
2015-12-01
A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical `atomistic' molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.
NASA Astrophysics Data System (ADS)
Flament, C.; Gallet, F.; Graner, F.; Goldmann, M.; Peterson, I.; Renault, A.
1994-06-01
Grazing incidence X-ray diffraction is performed on a Langmuir monolayer made of pure fluorescent NBD-stearic acid, spread at the free surface of water. It shows several intense narrow peaks in the solid phase, at the same wavevectors as the brightest peaks observed earlier by electron diffraction, for a monolayer transferred onto an amorphous polymer substrate. Thus the solid phase has the same crystalline structure on water and on solid substrate. The relative peak intensities are comparable in both experiments, and in the proposed model for the molecular structure. This model also accounts for the very large anisotropy of the crystalline phase and its optical properties. This phase could be ferroelectric, as previously assumed in order to explain the elongated shape of the crystals. Une monocouche de Langmuir, composée d'acide NBD-stéarique fluorescent pur, déposée à la surface libre de l'eau, est analysée par diffraction de rayons X sous incidence rasante. On détecte plusieurs pics étroits et intenses dans la phase solide, aux mêmes vecteurs d'onde que les pics les plus brillants précédemment observés par diffraction électronique, pour une monocouche transférée sur un substrat de polymère amorphe. La phase solide a donc la même structure cristalline sur l'eau et sur substrat solide. Les intensités relatives des pics sont comparables dans les deux expériences, ainsi que dans le modèle proposé pour la structure moléculaire. Ce modèle rend également compte de l'anisotropie très importante de la phase cristalline et de ses propriétés optiques. Il pourrait s'agir d'une phase ferroélectrique, comme cela avait été précédemment supposé pour expliquer la forme allongée des cristaux.
Goutman, Juan D; Escobar, Ariel L; Calvo, Daniel J
2005-01-01
Lanthanide-induced modulation of GABAC receptors expressed in Xenopus oocytes was studied. We obtained two-electrode voltage-clamp recordings of ionic currents mediated by recombinant homomeric GABAρ1 receptors and performed numerical simulations of kinetic models of the macroscopic ionic currents. GABA-evoked chloride currents were potentiated by La3+, Lu3+ and Gd3+ in the micromolar range. Lanthanide effects were rapid, reversible and voltage independent. The degree of potentiation was reduced by increasing GABA concentration. Lu3+ also induced receptor desensitization and decreased the deactivation rate of GABAρ1 currents. In the presence of 300 μM Lu3+, dose–response curves for GABA-evoked currents showed a significant enhancement of the maximum amplitude and an increase of the apparent affinity. The rate of onset of TPMPA and picrotoxin antagonism of GABAρ1 receptors was modulated by Lu3+. These results suggest that the potentiation of the anionic current was the result of a direct lanthanide–receptor interaction at a site capable of allosterically modulating channel properties. Based on kinetic schemes, which included a second open state and a nonconducting desensitized state that closely reproduced the experimental results, two nonexclusive probable models of GABAρ1 channels gating are proposed. PMID:16231008
NASA Technical Reports Server (NTRS)
1984-01-01
Nonlinear structural analysis techniques for engine structures and components are addressed. The finite element method and boundary element method are discussed in terms of stress and structural analyses of shells, plates, and laminates.
Nuclear physics: Macroscopic aspects
Swiatecki, W.J.
1993-12-01
A systematic macroscopic, leptodermous approach to nuclear statics and dynamics is described, based formally on the assumptions {h_bar} {yields} 0 and b/R << 1, where b is the surface diffuseness and R the nuclear radius. The resulting static model of shell-corrected nuclear binding energies and deformabilities is accurate to better than 1 part in a thousand and yields a firm determination of the principal properties of the nuclear fluid. As regards dynamics, the above approach suggests that nuclear shape evolutions will often be dominated by dissipation, but quantitative comparisons with experimental data are more difficult than in the case of statics. In its simplest liquid drop version the model exhibits interesting formal connections to the classic astronomical problem of rotating gravitating masses.
Local realism of macroscopic correlations.
Ramanathan, R; Paterek, T; Kay, A; Kurzyński, P; Kaszlikowski, D
2011-08-05
We identify conditions under which correlations resulting from quantum measurements performed on macroscopic systems (systems composed of a number of particles of the order of the Avogadro number) can be described by local realism. We argue that the emergence of local realism at the macroscopic level is caused by an interplay between the monogamous nature of quantum correlations and the fact that macroscopic measurements do not reveal properties of individual particles.
Local Realism of Macroscopic Correlations
NASA Astrophysics Data System (ADS)
Ramanathan, R.; Paterek, T.; Kay, A.; Kurzyński, P.; Kaszlikowski, D.
2011-08-01
We identify conditions under which correlations resulting from quantum measurements performed on macroscopic systems (systems composed of a number of particles of the order of the Avogadro number) can be described by local realism. We argue that the emergence of local realism at the macroscopic level is caused by an interplay between the monogamous nature of quantum correlations and the fact that macroscopic measurements do not reveal properties of individual particles.
Mokshyna, E; Nedostup, V I; Polishchuk, P G; Kuzmin, V E
2014-10-01
Rational approach towards the QSAR/QSPR modeling requires the descriptors to be computationally efficient, yet physically and chemically meaningful. On the basis of existing simplex representation of molecular structure (SiRMS) the novel 'quasi-mixture' descriptors were developed in order to accomplish the goal of characterization molecules on 2D level (i.e. without explicit generation of 3D structure and exhaustive conformational search) with account for potential intermolecular interactions. The critical properties of organic compounds were chosen as target properties for the estimation of descriptors' efficacy because of their well-known physical nature, rigorously estimated experimental errors and large quantity of experimental data. Among described properties are critical temperature, pressure and volume. Obtained models have high statistical characteristics, therefore showing the efficacy of suggested 'quasi-mixture' approach. Moreover, 'quasi-mixture' approach, as a branch of the SiRMS, allows to interpret results in terms of simple basic molecular properties. The obtained picture of influences corresponds to the accepted theoretical views.
Anovitz, Lawrence M; Mamontov, Eugene; ben Ishai, Paul; Kolesnikov, Alexander I
2013-11-01
The properties of fluids can be significantly altered by the geometry of their confining environments. While there has been significant work on the properties of such confined fluids, the properties of fluids under ultraconfinement, environments where, at least in one plane, the dimensions of the confining environment are similar to that of the confined molecule, have not been investigated. This paper investigates the dynamic properties of water in beryl (Be(3)Al(2)Si(6)O(18)), the structure of which contains approximately 5-Å-diam channels parallel to the c axis. Three techniques, inelastic neutron scattering, quasielastic neutron scattering, and dielectric spectroscopy, have been used to quantify these properties over a dynamic range covering approximately 16 orders of magnitude. Because beryl can be obtained in large single crystals we were able to quantify directional variations, perpendicular and parallel to the channel directions, in the dynamics of the confined fluid. These are significantly anisotropic and, somewhat counterintuitively, show that vibrations parallel to the c-axis channels are significantly more hindered than those perpendicular to the channels. The effective potential for vibrations in the c direction is harder than the potential in directions perpendicular to it. There is evidence of single-file diffusion of water molecules along the channels at higher temperatures, but below 150 K this diffusion is strongly suppressed. No such suppression, however, has been observed in the channel-perpendicular direction. Inelastic neutron scattering spectra include an intramolecular stretching O-H peak at ~465 meV. As this is nearly coincident with that known for free water molecules and approximately 30 meV higher than that in liquid water or ice, this suggests that there is no hydrogen bonding constraining vibrations between the channel water and the beryl structure. However, dielectric spectroscopic measurements at higher temperatures and lower
NASA Astrophysics Data System (ADS)
Anovitz, Lawrence M.; Mamontov, Eugene; ben Ishai, Paul; Kolesnikov, Alexander I.
2013-11-01
The properties of fluids can be significantly altered by the geometry of their confining environments. While there has been significant work on the properties of such confined fluids, the properties of fluids under ultraconfinement, environments where, at least in one plane, the dimensions of the confining environment are similar to that of the confined molecule, have not been investigated. This paper investigates the dynamic properties of water in beryl (Be3Al2Si6O18), the structure of which contains approximately 5-Å-diam channels parallel to the c axis. Three techniques, inelastic neutron scattering, quasielastic neutron scattering, and dielectric spectroscopy, have been used to quantify these properties over a dynamic range covering approximately 16 orders of magnitude. Because beryl can be obtained in large single crystals we were able to quantify directional variations, perpendicular and parallel to the channel directions, in the dynamics of the confined fluid. These are significantly anisotropic and, somewhat counterintuitively, show that vibrations parallel to the c-axis channels are significantly more hindered than those perpendicular to the channels. The effective potential for vibrations in the c direction is harder than the potential in directions perpendicular to it. There is evidence of single-file diffusion of water molecules along the channels at higher temperatures, but below 150 K this diffusion is strongly suppressed. No such suppression, however, has been observed in the channel-perpendicular direction. Inelastic neutron scattering spectra include an intramolecular stretching O-H peak at ˜465 meV. As this is nearly coincident with that known for free water molecules and approximately 30 meV higher than that in liquid water or ice, this suggests that there is no hydrogen bonding constraining vibrations between the channel water and the beryl structure. However, dielectric spectroscopic measurements at higher temperatures and lower frequencies
De Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolò
2009-09-04
We show that all macroscopic quantum superpositions (MQS) based on phase-covariant quantum cloning are characterized by an anomalous high resilence to the decoherence processes. The analysis supports the results of recent MQS experiments and leads to conceive a useful conjecture regarding the realization of complex decoherence-free structures for quantum information, such as the quantum computer.
NASA Astrophysics Data System (ADS)
de Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolò
2009-09-01
We show that all macroscopic quantum superpositions (MQS) based on phase-covariant quantum cloning are characterized by an anomalous high resilence to the decoherence processes. The analysis supports the results of recent MQS experiments and leads to conceive a useful conjecture regarding the realization of complex decoherence-free structures for quantum information, such as the quantum computer.
NASA Technical Reports Server (NTRS)
Assaad, Mahmoud; Arnold, Steven M.
1999-01-01
A special class of composite laminates composed of soft rubbery matrices and stiff reinforcements made of steel wires or synthetic fibers is examined, where each constituent behaves in a nonlinear fashion even in the small strain domain. Composite laminates made of piles stacked at alternating small orientation angles with respect to the applied axial strain are primarily dominated by the nonlinear behavior of the reinforcing fibers. However; composites with large ply orientations or those perpendicular to the loading axis, will approximate the behavior of the matrix phase and respond in even a more complex fashion for arbitrarily stacked piles. The geometric nonlinearity due to small cord rotations during loading was deemed here to have a second order effect and consequently dropped from any consideration. The user subroutine USRMAT within the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC), was utilized to introduce the constituent material nonlinear behavior. Stress-strain behavior at the macro level was experimentally generated for single and multi ply composites comprised of continuous Nylon-66 reinforcements embedded in a carbon black loaded rubbery matrix. Comparisons between the predicted macro composite behavior and experimental results are excellent when material nonlinearity is included in the analysis. In this paper, a brief review of GMC is provided, along with a description of the nonlinear behavior of the constituents and associated constituent constitutive relations, and the improved macro (or composite) behavior predictions are documented and illustrated.
Generalized Structured Component Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Takane, Yoshio
2004-01-01
We propose an alternative method to partial least squares for path analysis with components, called generalized structured component analysis. The proposed method replaces factors by exact linear combinations of observed variables. It employs a well-defined least squares criterion to estimate model parameters. As a result, the proposed method…
Macroscopic characterisations of Web accessibility
NASA Astrophysics Data System (ADS)
Lopes, Rui; Carriço, Luis
2010-12-01
The Web Science framework poses fundamental questions on the analysis of the Web, by focusing on how microscopic properties (e.g. at the level of a Web page or Web site) emerge into macroscopic properties and phenomena. One research topic on the analysis of the Web is Web accessibility evaluation, which centres on understanding how accessible a Web page is for people with disabilities. However, when framing Web accessibility evaluation on Web Science, we have found that existing research stays at the microscopic level. This article presents an experimental study on framing Web accessibility evaluation into Web Science's goals. This study resulted in novel accessibility properties of the Web not found at microscopic levels, as well as of Web accessibility evaluation processes themselves. We observed at large scale some of the empirical knowledge on how accessibility is perceived by designers and developers, such as the disparity of interpretations of accessibility evaluation tools warnings. We also found a direct relation between accessibility quality and Web page complexity. We provide a set of guidelines for designing Web pages, education on Web accessibility, as well as on the computational limits of large-scale Web accessibility evaluations.
Continuous Feedback and Macroscopic Coherence
NASA Technical Reports Server (NTRS)
Tombesi, Paolo; Vitali, David
1996-01-01
We show that a model, recently introduced for quantum nondemolition measurements of a quantum observable, can be adapted to obtain a measurement scheme which is able to slow down the destruction of macroscopic coherence due to the measurement apparatus.
Macroscopic constraints on string unification
Taylor, T.R.
1989-03-01
The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs.
NASA Technical Reports Server (NTRS)
Kobayashi, Tsunehiro
1996-01-01
Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
Structural analysis of glucans
Novak, Miroslav
2014-01-01
Glucans are most widespread polysaccharides in the nature. There is a large diversity in their molecular weight and configuration depending on the original source. According to the anomeric structure of glucose units it is possible to distinguish linear and branched α-, β- as well as mixed α,β-glucans with various glycoside bond positions and molecular masses. Isolation of glucans from raw sources needs removal of ballast compounds including proteins, lipids, polyphenols and other polysaccharides. Purity control of glucan fractions is necessary to evaluate the isolation and purification steps; more rigorous structural analyses of purified polysaccharides are required to clarify their structure. A set of spectroscopic, chemical and separation methods are used for this purpose. Among them, NMR spectroscopy is known as a powerful tool in structural analysis of glucans both in solution and in solid state. Along with chemolytic methods [methylation analysis (MA), periodate oxidation, partial chemical or enzymatic hydrolysis, etc.], correlation NMR experiments are able to determine the exact structure of tested polysaccharides. Vibration spectroscopic methods (FTIR, Raman) are sensitive to anomeric structure of glucans and can be used for purity control as well. Molecular weight distribution, homogeneity and branching of glucans can be estimated by size-exclusion chromatography (SEC), laser light scattering (LLS) and viscometry. PMID:25332993
Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating.
Cheng, Mengjiao; Shi, Feng; Li, Jianshu; Lin, Zaifu; Jiang, Chao; Xiao, Meng; Zhang, Liqun; Yang, Wantai; Nishi, Toshio
2014-05-21
Macroscopic supramolecular assembly is a promising method for manufacturing macroscopic, ordered structures for tissue-engineering scaffolds. A flexible spacing coating is shown to overcome undesired surface and size effects and to enable assembly of macroscopic cubes with host/guest groups. The assembled pairs disassembled upon introduction of competitive guest molecules, thereby demonstrating a multivalent assembly mechanism.
Active Polar Two-Fluid Macroscopic Dynamics
NASA Astrophysics Data System (ADS)
Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.
2014-03-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.
Macroscopic quantum mechanics in a classical spacetime.
Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei
2013-04-26
We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.
Macroscopic transport by synthetic molecular machines
NASA Astrophysics Data System (ADS)
Berná, José; Leigh, David A.; Lubomska, Monika; Mendoza, Sandra M.; Pérez, Emilio M.; Rudolf, Petra; Teobaldi, Gilberto; Zerbetto, Francesco
2005-09-01
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with-and perform physical tasks in-the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (`molecular shuttles') to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.
Design oriented structural analysis
NASA Technical Reports Server (NTRS)
Giles, Gary L.
1994-01-01
Desirable characteristics and benefits of design oriented analysis methods are described and illustrated by presenting a synoptic description of the development and uses of the Equivalent Laminated Plate Solution (ELAPS) computer code. ELAPS is a design oriented structural analysis method which is intended for use in the early design of aircraft wing structures. Model preparation is minimized by using a few large plate segments to model the wing box structure. Computational efficiency is achieved by using a limited number of global displacement functions that encompass all segments over the wing planform. Coupling with other codes is facilitated since the output quantities such as deflections and stresses are calculated as continuous functions over the plate segments. Various aspects of the ELAPS development are discussed including the analytical formulation, verification of results by comparison with finite element analysis results, coupling with other codes, and calculation of sensitivity derivatives. The effectiveness of ELAPS for multidisciplinary design application is illustrated by describing its use in design studies of high speed civil transport wing structures.
NASA Technical Reports Server (NTRS)
Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.
1985-01-01
Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.
NASA Astrophysics Data System (ADS)
Serpieri, Roberto; Travascio, Francesco
2016-03-01
In poroelasticity, the effective stress law relates the external stress applied to the medium to the macroscopic strain of the solid phase and the interstitial pressure of the fluid saturating the mixture. Such relationship has been formerly introduced by Terzaghi in form of a principle. To date, no poroelastic theory is capable of recovering a stress partitioning law in agreement with Terzaghi's postulated one in the absence of ad hoc constitutive assumptions on the medium. We recently proposed a variational macroscopic continuum description of two-phase poroelasticity to derive a general biphasic formulation at finite deformations, termed variational macroscopic theory of porous media (VMTPM). Such approach proceeds from the inclusion of the intrinsic volumetric strain among the kinematic descriptors aside to macroscopic displacements, and as a variational theory, uses the Hamilton least-action principle as the unique primitive concept of mechanics invoked to derive momentum balance equations. In a previous related work it was shown that, for the subclass of undrained problems, VMTPM predicts that stress is partitioned in the two phases in strict compliance with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. In the present contribution, we further develop the linearized framework of VMTPM to arrive at a general operative formula that allows the quantitative determination of stress partitioning in a jacketed test over a generic isotropic biphasic specimen. This formula is quantitative and general, in that it relates the partial phase stresses to the externally applied stress as function of partitioning coefficients that are all derived by strictly following a purely variational and purely macroscopic approach, and in the absence of any specific hypothesis on the microstructural or constitutive features of a given medium. To achieve this result, the stiffness coefficients of the theory are derived by using
Harnessing Macroscopic Forces in Catalysis
2009-11-09
that macroscopic deformation of an elastomeric support could result in molecular deformation of embedded, stress-bearing catalysts and influence their... elastomeric support could result in molecular deformation of embedded, stress-bearing catalysts and influence their reactivity. The focus was on the...a mechanocatalyst. Our Specific Aims were: Specific Aim 1. Synthesize elastomeric organogels and bulk rubbers with embedded, stress-bearing
Structural Analysis Made 'NESSUSary'
NASA Technical Reports Server (NTRS)
2005-01-01
Everywhere you look, chances are something that was designed and tested by a computer will be in plain view. Computers are now utilized to design and test just about everything imaginable, from automobiles and airplanes to bridges and boats, and elevators and escalators to streets and skyscrapers. Computer-design engineering first emerged in the 1970s, in the automobile and aerospace industries. Since computers were in their infancy, however, architects and engineers during the time were limited to producing only designs similar to hand-drafted drawings. (At the end of 1970s, a typical computer-aided design system was a 16-bit minicomputer with a price tag of $125,000.) Eventually, computers became more affordable and related software became more sophisticated, offering designers the "bells and whistles" to go beyond the limits of basic drafting and rendering, and venture into more skillful applications. One of the major advancements was the ability to test the objects being designed for the probability of failure. This advancement was especially important for the aerospace industry, where complicated and expensive structures are designed. The ability to perform reliability and risk assessment without using extensive hardware testing is critical to design and certification. In 1984, NASA initiated the Probabilistic Structural Analysis Methods (PSAM) project at Glenn Research Center to develop analysis methods and computer programs for the probabilistic structural analysis of select engine components for current Space Shuttle and future space propulsion systems. NASA envisioned that these methods and computational tools would play a critical role in establishing increased system performance and durability, and assist in structural system qualification and certification. Not only was the PSAM project beneficial to aerospace, it paved the way for a commercial risk- probability tool that is evaluating risks in diverse, down- to-Earth application
Pathways toward understanding Macroscopic Quantum Phenomena
NASA Astrophysics Data System (ADS)
Hu, B. L.; Subaşi, Y.
2013-06-01
Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a
Structural Analysis of Biodiversity
Sirovich, Lawrence; Stoeckle, Mark Y.; Zhang, Yu
2010-01-01
Large, recently-available genomic databases cover a wide range of life forms, suggesting opportunity for insights into genetic structure of biodiversity. In this study we refine our recently-described technique using indicator vectors to analyze and visualize nucleotide sequences. The indicator vector approach generates correlation matrices, dubbed Klee diagrams, which represent a novel way of assembling and viewing large genomic datasets. To explore its potential utility, here we apply the improved algorithm to a collection of almost 17000 DNA barcode sequences covering 12 widely-separated animal taxa, demonstrating that indicator vectors for classification gave correct assignment in all 11000 test cases. Indicator vector analysis revealed discontinuities corresponding to species- and higher-level taxonomic divisions, suggesting an efficient approach to classification of organisms from poorly-studied groups. As compared to standard distance metrics, indicator vectors preserve diagnostic character probabilities, enable automated classification of test sequences, and generate high-information density single-page displays. These results support application of indicator vectors for comparative analysis of large nucleotide data sets and raise prospect of gaining insight into broad-scale patterns in the genetic structure of biodiversity. PMID:20195371
Relating Macroscopic Thermal Phenomena with Molecular Models
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.
2002-03-01
A series of observations and activities have been developed to help students enrich their understanding of how physicists can use model building to construct self-consistent models of physical reality.* This talk will describe the instructional use of integrated microcomputer-based laboratory measurements of macroscopic phenomena and digital video analysis of simulated microscopic events to help students understand the ideal gas law, the first law of thermodynamics, and heat engines. *Workshop Physics Activity Guide (Module 3), P. Laws, (John Wiley and Sons, Inc., NY, 1997).
Determining the Macroscopic Properties of Relativistic Jets
NASA Astrophysics Data System (ADS)
Hardee, P. E.
2004-08-01
The resolved relativistic jets contain structures whose observed proper motions are typically assumed to indicate the jet flow speed. In addition to structures moving with the flow, various normal mode structures such as pinching or helical and elliptical twisting can be produced by ejection events or twisting perturbations to the jet flow. The normal mode structures associated with relativistic jets, as revealed by numerical simulation, theoretical calculation, and suggested by observation, move more slowly than the jet speed. The pattern speed is related to the jet speed by the sound speed in the jet and in the surrounding medium. In the event that normal mode structures are observed, and where proper motions of pattern and flow speed are available or can be estimated, it is possible to determine the sound speed in the jet and surrounding medium. Where spatial development of normal mode structures is observed, it is possible to make inferences as to the heating rate/macroscopic viscosity of the jet fluid. Ultimately it may prove possible to separate the microscopic energization of the synchrotron radiating particles from the macroscopic heating of the jet fluid. Here I present the relevant properties of useful normal mode structures and illustrate the use of this technique. Various aspects of the work presented here have involved collaboration with I. Agudo (Max-Planck, Bonn), M.A. Aloy (Max-Planck, Garching), J. Eilek (NM Tech), J.L. Gómez (U. Valencia), P. Hughes (U. Michigan), A. Lobanov (Max-Planck, Bonn), J.M. Martí (U. Valencia), & C. Walker (NRAO).
Macroscopic quantum electrodynamics and duality.
Buhmann, Stefan Yoshi; Scheel, Stefan
2009-04-10
We discuss under what conditions the duality between electric and magnetic fields is a valid symmetry of macroscopic quantum electrodynamics. It is shown that Maxwell's equations in the absence of free charges satisfy duality invariance on an operator level, whereas this is not true for Lorentz forces and atom-field couplings in general. We prove that derived quantities such as Casimir forces, local-field corrected decay rates, as well as van der Waals potentials are invariant with respect to a global exchange of electric and magnetic quantities. This exact symmetry can be used to deduce the physics of new configurations on the basis of already established ones.
Zhou Jian; Bian Guoqing; Zhu Qinyu; Zhang Yong; Li Chunying; Dai Jie
2009-02-15
A low temperature solvothermal method has been successfully used for preparation of two semiconductor compounds CuSbQ{sub 2} (Q=S(1), Se(2)) by the reactions of Cu, Sb and S(or Se) powders in 1,2-diaminopropane at 160 deg. C for 10 days. The crystal structure of 2 was determined first time using single crystal X-ray diffraction analyses. The structures of 1 and 2 are discussed in the view of covalent bonds and weak interactions. Double CuSbQ{sub 2} layers are assembled to a 3-D network structure by Cu...Sb and Q...Sb secondary bonds. In contrast with the isostructure of the two materials, the crystal morphology of them is quite different, brick-like crystals for CuSbS{sub 2} and plank-like crystals for CuSbSe{sub 2}. The phenomenon is related to their different inter-planar interactions. Semiconductor properties of the microcrystal samples are measured and the band gaps of 1 and 2 are 1.38 and 1.05 eV, respectively. - Graphical abstract: Two isostructural compounds, CuSbQ{sub 2} (Q=S, Se), display different morphologies in crystals, which is explained by comparing the strength of the interlayer interactions based on the crystal structure data.
Macroscopic model for solvated ion dynamics
NASA Astrophysics Data System (ADS)
Chen, J.-H.; Adelman, S. A.
1980-02-01
A macroscopic treatment of solvated ion dynamics is developed and applied to calculate the limiting (zero concentration) conductance of cations in several aprotic solvents. The theory is based on a coupled set of electrostatic and hydrodynamic equations for the density, flow, and polarization fields induced in the polar solvent by a moving ion. These equations, which are derived by the Mori projection technique, include crucial local solvent structure (ion solvation) effects through solvent compressibility, and local constitutive parameters. If solvent structure is suppressed, the equations reduce to those derived previously by Onsager and Hubbard [J. B. Hubbard and L. Onsager, J. Chem. Phys. 67, 4850 (1977)]. The macroscopic equations are approximately decoupled into electrostatic and hydrodynamic parts. The decoupled equations are solved assuming a step density, viscosity, and dielectric constant model for the local solvent structure and dynamics. This yields analytic expressions for the viscous, ζV, and dielectric ζD, contributions to the ion friction coefficient. These expressions generalize, respectively, the Stokes and Zwanzig results for the (slip) viscous and dielectric friction so as to account for ion solvation effects. The friction coefficients involve a desolvation function Δ which depends on the local structure (density) and dynamics of the solvent. The drag coefficient results reduce in form to those of Zwanzig (within a flow gradient correction factor of 2/3) and Stokes for both weak (Δ→1) and strong (Δ→0) ion-solvent interaction. For Δ→1 the true ionic radius Ri appears in the drag formulas while for Δ→0 a renormalized solvated ion radius σ=Ri+2Rs (where Rs=solvent molecule radius) appears. The theory is fit to experimental cation conductances in pyridine, acetone, and acetonitrile by representing Δ by a two parameter switching function. Agreement between the model and experiment is satisfactory for all three solvents. Moreover
ERIC Educational Resources Information Center
Casanova, Manuel F.; El-Baz, Ayman; Mott, Meghan; Mannheim, Glenn; Hassan, Hossam; Fahmi, Rachid; Giedd, Jay; Rumsey, Judith M.; Switala, Andrew E.; Farag, Aly
2009-01-01
Minicolumnar changes that generalize throughout a significant portion of the cortex have macroscopic structural correlates that may be visualized with modern structural neuroimaging techniques. In magnetic resonance images (MRIs) of fourteen autistic patients and 28 controls, the present study found macroscopic morphological correlates to recent…
Making Macroscopic Assemblies of Aligned Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Smalley, Richard E.; Colbert, Daniel T.; Smith, Ken A.; Walters, Deron A.; Casavant, Michael J.; Qin, Xiaochuan; Yakobson, Boris; Hauge, Robert H.; Saini, Rajesh Kumar; Chiung, Wan-Ting; Huffman, Charles B.
2005-01-01
A method of aligning and assembling single-wall carbon nanotubes (SWNTs) to fabricate macroscopic structures has been invented. The method entails suspending SWNTs in a fluid, orienting the SWNTs by use of a magnetic and/or electric field, and then removing the aligned SWNTs from suspension in such a way as to assemble them while maintaining the alignment. SWNTs are essentially tubular extensions of fullerene molecules. It is desirable to assemble aligned SWNTs into macroscopic structures because the common alignment of the SWNTs in such a structure makes it possible to exploit, on a macroscopic scale, the unique mechanical, chemical, and electrical properties that individual oriented SWNTs exhibit at the molecular level. Because of their small size and high electrical conductivity, carbon nanotubes, and especially SWNTs, are useful for making electrical connectors in integrated circuits. Carbon nanotubes can be used as antennas at optical frequencies, and as probes in scanning tunneling microscopes, atomic-force microscopes, and the like. Carbon nanotubes can be used with or instead of carbon black in tires. Carbon nanotubes are useful as supports for catalysts. Ropes of SWNTs are metallic and, as such, are potentially useful in some applications in which electrical conductors are needed - for example, they could be used as additives in formulating electrically conductive paints. Finally, macroscopic assemblies of aligned SWNTs can serve as templates for the growth of more and larger structures of the same type. The great variety of tubular fullerene molecules and of the structures that could be formed by assembling them in various ways precludes a complete description of the present method within the limits of this article. It must suffice to present a typical example of the use of one of many possible variants of the method to form a membrane comprising SWNTs aligned substantially parallel to each other in the membrane plane. The apparatus used in this variant
Macroscopic dynamics of cancer growth
NASA Astrophysics Data System (ADS)
Menchón, S. A.; Condat, C. A.
2007-04-01
Macroscopic modeling is used to describe various aspects of cancer growth. A recently proposed “dysnamical exponent” hypothesis is critically examined in the context of the angiogenic development. It is also shown that the emergence of necroses facilitates the growth of avascular tumors; the model yields an excellent fit to available experimental data, allowing for the determination of growth parameters. Finally, the global effects of an applied antitumoral immunotherapy are investigated. It is shown that, in the long run, the application of a therapeutical course leads to bigger tumors by weakening the intraspecific competition between surviving viable cancer cells. The strength of this model lies in its simplicity and in the amount of information that can be gleaned using only very general ideas.
NASA Astrophysics Data System (ADS)
Pokrovsky, O. S.; Pokrovski, G. S.; Schott, J.; Galy, A.
2006-07-01
Adsorption of germanium on goethite was studied at 25 °C in batch reactors as a function of pH (1-12), germanium concentration in solution (10 -7 to 0.002 M) and solid/solution ratio (1.8-17 g/L). The maximal surface site density determined via Ge adsorption experiments at pH from 6 to 10 is equal to 2.5 ± 0.1 μmol/m 2. The percentage of adsorbed Ge increases with pH at pH < 9, reaches a maximum at pH ˜ 9 and slightly decreases when pH is further increased to 11. These results allowed generation of a 2-p K Surface Complexation Model (SCM) which implies a constant capacitance of the electric double layer and postulates the presence of two Ge complexes, >FeO-Ge(OH)30 and >FeO-GeO(OH)2-, at the goethite-solution interface. Coprecipitation of Ge with iron oxy(hydr)oxides formed during Fe(II) oxidation by atmospheric oxygen or by Fe(III) hydrolysis in neutral solutions led to high Ge incorporations in solid with maximal Ge/Fe molar ratio close to 0.5. The molar Ge/Fe ratio in precipitated solid is proportional to that in the initial solution according to the equation (Ge/Fe) solid = k × (Ge/Fe) solution with 0.7 ⩽ k ⩽ 1.0. The structure of adsorbed and coprecipitated Ge complexes was further characterized using XAFS spectroscopy. In agreement with previous data on oxyanions adsorption on goethite, bi-dentate bi-nuclear surface complexes composed of tetrahedrally coordinated Ge attached to the corners of two adjacent Fe octahedra represent the dominant contribution to the EXAFS signal. Coprecipitated samples with Ge/Fe molar ratios >0.1, and samples not aged in solution (<1 day) having intermediate Ge/Fe ratios (0.01-0.1) show 4 ± 0.3 oxygen atoms at 1.76 ± 0.01 Å around Ge. Samples less concentrated in Ge (0.001 < Ge/Fe < 0.10) and aged longer times in solution (up to 280 days) exhibit a splitting of the first atomic shell with Ge in both tetrahedral ( R = 1.77 ± 0.02 Å) and octahedral ( R = 1.92 ± 0.03 Å) coordination with oxygen. In these samples
Program for Nonlinear Structural Analysis
1981-09-01
November 1970. 2. R. E. Jones and W. L. Salus , "Survey and Development of Finite Elements for Nonlineer Structural Analysis", Volume II, "Nonlinear Shell...1970. 2. R. E. Jones and W. L. Salus , "Survey and Development of Finite Elements for Nonlinear Structural Analysis," Volume II, "Nonlinear Shell
Bell-inequality tests with macroscopic entangled states of light
Stobinska, M.; Sekatski, P.; Gisin, N.; Buraczewski, A.; Leuchs, G.
2011-09-15
Quantum correlations may violate the Bell inequalities. Most experimental schemes confirming this prediction have been realized in all-optical Bell tests suffering from the detection loophole. Experiments which simultaneously close this loophole and the locality loophole are highly desirable and remain challenging. An approach to loophole-free Bell tests is based on amplification of the entangled photons (i.e., on macroscopic entanglement), for which an optical signal should be easy to detect. However, the macroscopic states are partially indistinguishable by classical detectors. An interesting idea to overcome these limitations is to replace the postselection by an appropriate preselection immediately after the amplification. This is in the spirit of state preprocessing revealing hidden nonlocality. Here, we examine one of the possible preselections, but the presented tools can be used for analysis of other schemes. Filtering methods making the macroscopic entanglement useful for Bell tests and quantum protocols are the subject of an intensive study in the field nowadays.
Characterization of Macroscopic Ordering in Exciton Rings
NASA Astrophysics Data System (ADS)
Yang, Sen; Levitov, L. S.; Simons, B. D.; Gossard, A. C.
2005-03-01
Recently observed complex PL patterns in 2D QW structures exhibit the inner [1,3] and the outer [1-4] exciton rings, localized bright spots [1,3], and the macroscopically ordered exciton state (MOES) [1,3]. The latter appears at the outer ring via its fragmentation into a periodic array of aggregates. While the gross features have been explained within classical framework, attributing the inner rings to nonradiative exciton transport and cooling [1], and the outermost rings and the bright spots to macroscopic charge separation [3,4], the origin of the MOES remains unidentified [5]. Here, for the first time, we report experiments demonstrating the exciton energy modulation over the MOES as well as the phase diagram of MOES in exciton density and temperature coordinates. The experiments shed new light on the dynamical origin of MOES. Besides, we present the studies of dynamical processes within MOES including the observation of aggregate instabilities and bifurcations that point to the spontaneous character of the instability.[1] L.V. Butov, A.C. Gossard, D.S. Chemla, Nature 418, 751 (2002). [2] D. Snoke, S. Denev, Y. Liu, L. Pfeiffer, K. West, Nature 418, 754 (2002). [3] L.V. Butov, L.S. Levitov, A.V. Mintsev, B.D. Simons, A.C. Gossard, D.S. Chemla PRL 92, 117404 (2004). [4] R. Rapaport, G. Chen, D. Snoke, S.H. Simon, L. Pfeiffer, K. West, Y. Liu, S. Denev PRL 92, 117405 (2004). [5] L.S. Levitov, B.D. Simons, L.V. Butov, cond-mat/0403377.
Links between microscopic and macroscopic fluid mechanics
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, C. G.
2003-01-01
The microscopic and macroscopic versions of fluid mechanics differ qualitatively. Microscopic particles obey time-reversible ordinary differential equations. The resulting particle trajectories {q(t)} may be time-averaged or ensemble-averaged so as to generate field quantities corresponding to macroscopic variables. On the other hand, the macroscopic continuum fields described by fluid mechanics follow irreversible partial differential equations. Smooth particle methods bridge the gap separating these two views of fluids by solving the macroscopic field equations with particle dynamics that resemble molecular dynamics. Recently, nonlinear dynamics have provided some useful tools for understanding the relationship between the microscopic and macroscopic points of view. Chaos and fractals play key roles in this new understanding. Non-equilibrium phase-space averages look very different from their equilibrium counterparts. Away from equilibrium the smooth phase-space distributions are replaced by fractional-dimensional singular distributions that exhibit time irreversibility.
Regularized Generalized Structured Component Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun
2009-01-01
Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…
Macroscopic theory of dark sector
NASA Astrophysics Data System (ADS)
Meierovich, Boris
A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
[Macroscopic observations on corneal epithelial wound healing in the rabbit].
Hayashi, K
1991-02-01
A newly-developed macroscope was applied to observe the healing process of corneal epithelial wound in vivo. After removing epithelium of the central cornea, the changes of the corneal surface were observed with the macroscope and the findings were compared with histological examinations. At 12 hours after abrasion, areas unstained with Richardson's staining (R staining) appeared. In the histological section, a single layer of regenerating epithelial cells covered the same area. At 24 and 36 hours after abrasion, the epithelial defects became smaller but surrounding epithelium was rough and showed dot-like staining with R solution. By 2 days, the epithelial defects disappeared. On macroscopic observation, the central corneal surface showed a pavement-like appearance. Histology revealed that the regenerating epithelium still consisted of one or two layers. At 3 days, dot-like stainings were present only in the center and the corneal surface appeared considerably smooth. Histology also showed that regenerating epithelium became columnar and multilayered, thereby suggesting stratification. By 7 days, the abraded corneal surface had recovered its smooth appearance. Histologic sections also demonstrated that the epithelium had regained its normal structure. Thus, using this macroscope, findings suggesting the process of epithelial migration and proliferation could be observed.
Collective Phenomena in Macroscopic Systems
NASA Astrophysics Data System (ADS)
Bertin, G.; Pozzoli, R.; Romé, M.; Sreenivasan, K. R.
2007-08-01
A hypothesis of the magnetostatic turbulence and its implications of astrophysics / D.D. Ryutov and B.A. Remingtonn-- Coherent structures and turbulence in electron plasmas / M. Rome ... [et al.] -- Self-organization of non-linear vortices in plasma lens for ion-beam-focusing in crossed radial electrical and longitudinal magnetic fields / V. Maslov, I. Onishchenko and A. Goncharov -- Collective processes at kinetic levels in dusty plasmas / P.K. Shukla and B. Eliasson -- Magnetic field generation in anisotropic relativistic plasma regimes / F. Pegoraro, F. Califano and D. del Sarto -- Generation and observation of coherent, long-lived structures in a laser-plasma channel / T. V. Liseykina ... [et al.] -- Theoretical resolution of magnetic reconnection in high energy plasmas / B. Coppi -- The power of being flat: conformal invariance in two-dimensional turbulence / A. Celani -- Stochastic resonance: from climate to biology / R. Benzi -- Energy-enstrophy theory for coupled fluid/rotating sphere system-exact solutions for super-rotations / C. C. Lim -- Thermophoretic convection of silica nanoparticles / A. Vailati ... [et al.] -- Fluctuations and pattern formation in fluids with competing interactions / A. Imperio, D. Pini and L. Reatto -- Alternatives and paradoxes in rotational and gravitational instabilities / J.P. Goedbloed -- Poynting jets and MHD winds from rapidly rotating magnetized stars / R.V.E. Lovelace, M.M. Romanova, G.V. Ustyugova and A.V. Koldoba -- Turbulence and transport in astrophysical accretion disks / J.M. Stone -- Gravitational instabilities in gaseous discs and the formation of supermassive Black Hole seeds at high redshifts / G. Lodato -- Fine Structure and Dynamics of Sunspot Penumbra / M. Ryutova, T. Berger and A. Title -- Phase Mixing in Mond / L. Ciotti, C. Nipoti and P. Londrillo -- MHD simulations of jet acceleration: the role of disk resistivity / G. Bodo ... [et al.] -- Hamiltonian structure of a collisionless reconnection model valid
New Tests of Macroscopic Local Realism
NASA Astrophysics Data System (ADS)
Reid, M. D.
We show that quantum mechanics predicts an Einstein-Podolsky-Rosen paradox (EPR), and also a contradiction with local hidden variable theories, for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new, very strong premise, called macroscopic local realism. We link this premise to the Schrodinger-cat paradox. Our proposed experiments ensure all fields incident on each measurement apparatus are macroscopic. We show that an alternative measurement scheme corresponds to balanced homodyne detection of quadrature phase amplitudes. The implication is that where either EPR correlations or failure of local realism is predicted for quadrature phase amplitude measurements, one can potentially perform a modified experiment which would lead to conclusions about the much stronger premise of macroscopic local realism.
Analysis of structures causing instabilities.
Wilhelm, Thomas
2007-07-01
We present a simple new method to systematically identify all topological structures (e.g., positive feedback loops) potentially leading to locally unstable steady states: ICSA-The instability causing structure analysis. Systems without any instability causing structure (i.e., not fulfilling the necessary topological condition for instabilities) cannot have unstable steady states. It follows that common bistability or multistability and Hopf bifurcations are excluded and sustained oscillations and deterministic chaos are most unlikely. The ICSA leads to new insights into the topological organization of chemical and biochemical systems, such as metabolic, gene regulatory, and signal transduction networks.
Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically
Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro
2015-01-01
Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (∼10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure. PMID:26416086
Macroscopic Simulation of Deformation in Soft Microporous Composites.
Evans, Jack D; Coudert, François-Xavier
2017-03-23
Soft microporous materials exhibit properties, such as gated adsorption and breathing, which are highly desirable for many applications. These properties are largely studied for single crystals; however, many potential applications expect to construct structured or composite systems, examples of which include monoliths and mixed-matrix membranes. Herein, we use finite element methods to predict the macroscopic mechanical response of composite microporous materials. This implementation connects the microscopic treatment of crystalline structures to the response of a macroscopic sample. Our simulations reveal the bulk modulus of an embedded adsorbent within a composite is affected by the thickness and properties of the encapsulating layer. Subsequently, we employ this methodology to examine mixed-matrix membranes and materials of negative linear compressibility. This application of finite element methods allows for unprecedented insight into the mechanical properties of real-world systems and supports the development of composites containing mechanically anomalous porous materials.
NASA Astrophysics Data System (ADS)
Timm, David M.; Chen, Jianbo; Sing, David; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Raphael, Robert M.; Dehghani, Mehdi; Rosenblatt, Kevin P.; Killian, T. C.; Tseng, Hubert; Souza, Glauco R.
2013-10-01
There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures.
Structural Analysis of Communication Development.
ERIC Educational Resources Information Center
Conville, Richard L.
This paper discusses the question of the legitimacy of applying structural analysis to actual human behavior and illustrates its legitimacy by using the reasoning in an essay by Paul Ricoeur. It then asks if the principles of communication development (obliqueness, exchange, and dying) derived from Helen Keller's experience of communication…
Structural Analysis and Design Software
NASA Technical Reports Server (NTRS)
1997-01-01
Collier Research and Development Corporation received a one-of-a-kind computer code for designing exotic hypersonic aircraft called ST-SIZE in the first ever Langley Research Center software copyright license agreement. Collier transformed the NASA computer code into a commercial software package called HyperSizer, which integrates with other Finite Element Modeling and Finite Analysis private-sector structural analysis program. ST-SIZE was chiefly conceived as a means to improve and speed the structural design of a future aerospace plane for Langley Hypersonic Vehicles Office. Including the NASA computer code into HyperSizer has enabled the company to also apply the software to applications other than aerospace, including improved design and construction for offices, marine structures, cargo containers, commercial and military aircraft, rail cars, and a host of everyday consumer products.
Macroscopic quantum phenomena from the large N perspective
NASA Astrophysics Data System (ADS)
Chou, C. H.; Hu, B. L.; Subaşi, Y.
2011-07-01
Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori
QA system for structural analysis
NASA Astrophysics Data System (ADS)
Raiko, Heikki
The activities to be addressed by an organization involved in structural analysis by numerical methods and/or development and maintenance of such computer codes or systems are described. The requirements are based on International Standard 9001. The interpretation of the requirements is done according to an application presented by a Quality Analysis (QA) working group. The purpose of a quality analysis system is to help anyone to do a better job. Emphasis on technical documentation to speed up operations is recommended. The first steps in implementing a finite element quality assurance system in an organization are as follows: constitute a technical body with responsibility and authority for the analysis quality system; agree on management responsibilities for each quality analysis activity; and review current practices against the quality system standard requirements. Experience shows that it is mainly a process of rationalizing, formalizing, and reinforcing existing practices.
The Proell Effect: A Macroscopic Maxwell's Demon
NASA Astrophysics Data System (ADS)
Rauen, Kenneth M.
2011-12-01
Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.
The macroscopic delamination of thin films from elastic substrates
Vella, Dominic; Bico, José; Boudaoud, Arezki; Roman, Benoit; Reis, Pedro M.
2009-01-01
The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical properties because stretching or twisting of the substrate is mostly accommodated through bending of the film, which minimizes fatigue or fracture. To date, applications in this context have used substrate patterning to create an anisotropic substrate-film adhesion energy, thereby producing a controlled array of delamination “blisters.” However, even in the absence of such patterning, blisters appear spontaneously, with a characteristic size. Here, we perform well-controlled experiments at macroscopic scales to study what sets the dimensions of these blisters in terms of the material properties and explain our results by using a combination of scaling and analytical methods. Besides pointing to a method for determining the interfacial toughness, our analysis suggests a number of design guidelines for the thin films used in flexible electronic applications. Crucially, we show that, to avoid the possibility that delamination may cause fatigue damage, the thin film thickness must be greater than a critical value, which we determine. PMID:19556551
NASA Astrophysics Data System (ADS)
Wu, Y.; Chen, G. L.; Hui, X. D.; Liu, C. T.; Lin, Y.; Shang, X. C.; Lu, Z. P.
2009-10-01
Based on mechanical instability of individual shear transformation zones (STZs), a quantitative link between the microplastic instability and macroscopic deformation behavior of metallic glasses was proposed. Our analysis confirms that macroscopic metallic glasses comprise a statistical distribution of STZ embryos with distributed values of activation energy, and the microplastic instability of all the individual STZs dictates the macroscopic deformation behavior of amorphous solids. The statistical model presented in this paper can successfully reproduce the macroscopic stress-strain curves determined experimentally and readily be used to predict strain-rate effects on the macroscopic responses with the availability of the material parameters at a certain strain rate, which offer new insights into understanding the actual deformation mechanism in amorphous solids.
Efficient Analysis of Complex Structures
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.
2000-01-01
Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).
Structural analysis of vibroacoustical processes
NASA Technical Reports Server (NTRS)
Gromov, A. P.; Myasnikov, L. L.; Myasnikova, Y. N.; Finagin, B. A.
1973-01-01
The method of automatic identification of acoustical signals, by means of the segmentation was used to investigate noises and vibrations in machines and mechanisms, for cybernetic diagnostics. The structural analysis consists of presentation of a noise or vibroacoustical signal as a sequence of segments, determined by the time quantization, in which each segment is characterized by specific spectral characteristics. The structural spectrum is plotted as a histogram of the segments, also as a relation of the probability density of appearance of a segment to the segment type. It is assumed that the conditions of ergodic processes are maintained.
Macroscopic Description for Networks of Spiking Neurons
NASA Astrophysics Data System (ADS)
Montbrió, Ernest; Pazó, Diego; Roxin, Alex
2015-04-01
A major goal of neuroscience, statistical physics, and nonlinear dynamics is to understand how brain function arises from the collective dynamics of networks of spiking neurons. This challenge has been chiefly addressed through large-scale numerical simulations. Alternatively, researchers have formulated mean-field theories to gain insight into macroscopic states of large neuronal networks in terms of the collective firing activity of the neurons, or the firing rate. However, these theories have not succeeded in establishing an exact correspondence between the firing rate of the network and the underlying microscopic state of the spiking neurons. This has largely constrained the range of applicability of such macroscopic descriptions, particularly when trying to describe neuronal synchronization. Here, we provide the derivation of a set of exact macroscopic equations for a network of spiking neurons. Our results reveal that the spike generation mechanism of individual neurons introduces an effective coupling between two biophysically relevant macroscopic quantities, the firing rate and the mean membrane potential, which together govern the evolution of the neuronal network. The resulting equations exactly describe all possible macroscopic dynamical states of the network, including states of synchronous spiking activity. Finally, we show that the firing-rate description is related, via a conformal map, to a low-dimensional description in terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate that our results will be an important tool in investigating how large networks of spiking neurons self-organize in time to process and encode information in the brain.
HOST structural analysis program overview
NASA Technical Reports Server (NTRS)
Thompson, Robert L.
1986-01-01
Hot-section components of aircraft gas turbine engines are subjected to severe thermal structural loading conditions, especially during the startup and takeoff portions of the engine cycle. The most severe and damaging stresses and strains are those induced by the steep thermal gradients induced during the startup transient. These transient stresses and strains are also the most difficult to predict, in part because the temperature gradients and distributions are not well known or readily predictable and, in part, because the cyclic elastic-viscoplastic behavior of the materials at these extremes of temperature and strain are not well known or readily predictable. A broad spectrum of structures related technology programs is underway to address these deficiencies at the basic as well as the applied level. The three key program elements in the HOST structural analysis program are computations, constitutive modeling, and experiments for each research activity. Also shown are tables summarizing each of the activities.
Nanoplasmon-enabled macroscopic thermal management
Jonsson, Gustav Edman; Miljkovic, Vladimir; Dmitriev, Alexandre
2014-01-01
In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive nanoplasmonic materials. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. Naturally, approaches to the direct experimental probing of macroscopic temperature increase resulting from these absorbers are welcomed. Here we derive a general quantitative method of characterizing heat-generating properties of optically absorptive layers via macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to a large number of applications where thermal management is crucial. PMID:24870613
Macroscopic anisotropy in AA5019A sheets
Choi, S.H.; Brem, J.C.; Barlat, F.; Oh, K.H.
2000-05-11
The macroscopic anisotropy for typical texture components in aluminum alloys and AA5019A sheet samples (H48 and O temper conditions) were investigated. In order to simultaneously consider the effects of morphological texture and crystallographic texture on macroscopic anisotropy, predictions of plastic properties were carried out using a full-constraints Taylor model and a visco-plastic self-consistent (VPSC) polycrystal model. The yield stress and r-value (width-to-thickness plastic strain ratio in uniaxial tension) anisotropy predicted using the VPSC model were in good agreement with experimental data.
Effects of Microstructure Variations on Macroscopic Terahertz Metafilm Properties
O'Hara, John F.; Smirnova, Evgenya; Azad, Abul K.; ...
2007-01-01
The properties of planar, single-layer metamaterials, or metafilms, are studied by varying the structural components of the split-ring resonators used to comprise the overall medium. Measurements and simulations reveal how minor design variations in split-ring resonator structures can result in significant changes in the macroscopic properties of the metafilm. A transmission-line/circuit model is also used to clarify some of the behavior and design limitations of the metafilms. Though our results are illustrated in the terahertz frequency range, the work has broader implications, particularly with respect to filtering, modulation, and switching devices.
Structural Analysis of Fungal Cerebrosides
Barreto-Bergter, Eliana; Sassaki, Guilherme L.; de Souza, Lauro M.
2011-01-01
Of the ceramide monohexosides (CMHs), gluco- and galactosyl-ceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry, electrospray ionization, and energy collision-induced dissociation mass spectrometry. Nuclear magnetic resonance has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as high-performance thin layer chromatography and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, Aspergillus fumigatus, and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH) analysis, we now describe new approaches, combining conventional thin layer chromatography and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by secondary ion mass spectrometry and imaging matrix-assisted laser desorption ionization time-of-flight. PMID:22164155
Villalobos, Mario; Pérez-Gallegos, Ayax
2008-10-15
The goethite surface structure has been extensively studied, but no convincing quantitative description of its highly variable surface reactivity as inversely related to its specific surface area (SSA) has been found. The present study adds experimental evidence and provides a unified macroscopic explanation to this anomalous behavior from differences in average adsorption capacities, and not in average adsorption affinities. We investigated the chromate anion and lead(II) cation adsorption behavior onto three different goethites with SSA varying from 50 to 94 m(2)/g, and analyzed an extensive set of published anion adsorption and proton charging data for variable SSA goethites. Maximum chromate adsorption was found to occupy on average from 3.1 to 9.7 sites/nm(2), inversely related to SSA. Congruency of oxyanion and Pb(II) adsorption behavior based on fractional site occupancy using these values, and a site density analysis suggest that: (i) ion binding occurs to singly and doubly coordinated sites, (ii) proton binding occurs to singly and triply coordinated sites (ranging from 6.2 to 8 total sites/nm(2), in most cases), and (iii) a predominance of (210) and/or (010) faces explains the high reactivity of low SSA goethites. The results imply that the macroscopic goethite adsorption behavior may be predicted without a need to investigate extensive structural details of each specific goethite of interest.
Immobilization of WO{sub 3} or MoO{sub 3} on macroscopic silica fiber via CNFs template
Wu, Qiang Zhao, Li; Han, Ruobing
2013-08-01
Graphical abstract: Uniform immobilization of tungsten trioxide (WO{sub 3}) or molybdenum trioxide (MoO{sub 3}) on silica fiber was successfully achieved by using carbon nanofibers (CNFs) as template. FE-SEM coupled with XRD analysis confirmed the template effect and the existence of WO{sub 3} or MoO{sub 3} immobilized on silica fiber. It is expected that such materials with direct macroscopic shapes would hold promise as highly functionalized materials for potential practical applications, especially in photocatalysis. - Highlights: • WO{sub 3} or MoO{sub 3} with macroscopic shapes were successfully obtained. • WO{sub 3} and MoO{sub 3} immobilization depended on CNFs templates. • FE-SEM and XRD confirmed the structure and phase composition. - Abstract: Uniform immobilization of tungsten trioxide (WO{sub 3}) or molybdenum trioxide (MoO{sub 3}) on silica fiber was successfully achieved by using carbon nanofibers (CNFs) as template. Field emission scanning electron microscopy (FE-SEM), coupled with X-ray diffraction (XRD) analysis confirmed the template effect and the existence of WO{sub 3} or MoO{sub 3} immobilized on silica fiber. It is expected that such materials with direct macroscopic shapes would hold promise as highly functionalized materials for potential practical applications, especially in photocatalysis.
Nonlocal correlations in a macroscopic measurement scenario
NASA Astrophysics Data System (ADS)
Kunkri, Samir; Banik, Manik; Ghosh, Sibasish
2017-02-01
Nonlocality is one of the main characteristic features of quantum systems involving more than one spatially separated subsystem. It is manifested theoretically as well as experimentally through violation of some local realistic inequality. On the other hand, classical behavior of all physical phenomena in the macroscopic limit gives a general intuition that any physical theory for describing microscopic phenomena should resemble classical physics in the macroscopic regime, the so-called macrorealism. In the 2-2-2 scenario (two parties, with each performing two measurements and each measurement having two outcomes), contemplating all the no-signaling correlations, we characterize which of them would exhibit classical (local realistic) behavior in the macroscopic limit. Interestingly, we find correlations which at the single-copy level violate the Bell-Clauser-Horne-Shimony-Holt inequality by an amount less than the optimal quantum violation (i.e., Cirel'son bound 2 √{2 } ), but in the macroscopic limit gives rise to a value which is higher than 2 √{2 } . Such correlations are therefore not considered physical. Our study thus provides a sufficient criterion to identify some of unphysical correlations.
Macroscopic Modeling of Polymer-Electrolyte Membranes
Weber, A.Z.; Newman, J.
2007-04-01
In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.
Macroscopic Quantum Cotunneling of Phase Slips
NASA Astrophysics Data System (ADS)
Belkin, Andrey; Belkin, Maxim; Vakaryuk, Victor; Khlebnikov, Sergei; Bezryadin, Alexey
2014-03-01
Quantum phenomena that do not have analogues in the classical world include quantum superposition and tunneling. Despite significant efforts invested into demonstration of quantum effects at the macroscopic level, the main principles that govern the transition from classical to quantum are not well understood. Here we report a study of macroscopic quantum tunneling of phase slips that involve both superconducting and normal degrees of freedom in a superconducting nanowire loop. We discover that in addition to single phase slips that unwind the phase difference along the loop by 2 π, there are transitions that change the phase by 4 π. Experimentally we identify the regime in which, surprisingly, 4 π phase slips are more likely than 2 π ones. We interpret our observations in terms of macroscopic cotunneling effect defined as an exact synchronization of two macroscopic phase slip events. The work was supported by grant the DOE Award No. DE-FG0207ER46453, and the NSF No. DMR10-05645
[Macroscopic hematuria in an adolescent in Chad].
Ballivet de Régloix, S; Maurin, O; Douniama Ondaï, C
2012-01-01
We report the case of a 16-year-old Chadian boy referred for chronic macroscopic hematuria and dysuria, diagnosed as urinary schistosomiasis, contracted while bathing in contaminated fresh water. The diagnostic approach and treatment in light of the limited resources available in Africa are described in detail.
Berkeley Experiments on Superfluid Macroscopic Quantum Effects
Packard, Richard
2006-09-07
This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He.
Functional Generalized Structured Component Analysis.
Suk, Hye Won; Hwang, Heungsun
2016-12-01
An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.
Chung, Hayoung; Choi, Joonmyung; Yun, Jung-Hoon; Cho, Maenghyo
2016-01-01
A liquid crystal network whose chromophores are functionalized by photochromic dye exhibits light-induced mechanical behaviour. As a result, the micro-scaled thermotropic traits of the network and the macroscopic phase behaviour are both influenced as light alternates the shape of the dyes. In this paper, we present an analysis of this photomechanical behaviour based on the proposed multiscale framework, which incorporates the molecular details of microstate evolution into a continuum-based understanding. The effects of trans-to-cis photoisomerization driven by actinic light irradiation are first examined using molecular dynamics simulations, and are compared against the predictions of the classical dilution model; this reveals certain characteristics of mesogenic interaction upon isomerization, followed by changes in the polymeric structure. We then upscale the thermotropic phase-related information with the aid of a nonlinear finite element analysis; macroscopic deflection with respect to the wide ranges of temperature and actinic light intensity are thereby examined, which reveals that the classical model underestimates the true deformation. This work therefore provides measures for analysing photomechanics in general by bridging the gap between the micro- and macro-scales. PMID:26828417
NASA Astrophysics Data System (ADS)
Chung, Hayoung; Choi, Joonmyung; Yun, Jung-Hoon; Cho, Maenghyo
2016-02-01
A liquid crystal network whose chromophores are functionalized by photochromic dye exhibits light-induced mechanical behaviour. As a result, the micro-scaled thermotropic traits of the network and the macroscopic phase behaviour are both influenced as light alternates the shape of the dyes. In this paper, we present an analysis of this photomechanical behaviour based on the proposed multiscale framework, which incorporates the molecular details of microstate evolution into a continuum-based understanding. The effects of trans-to-cis photoisomerization driven by actinic light irradiation are first examined using molecular dynamics simulations, and are compared against the predictions of the classical dilution model; this reveals certain characteristics of mesogenic interaction upon isomerization, followed by changes in the polymeric structure. We then upscale the thermotropic phase-related information with the aid of a nonlinear finite element analysis; macroscopic deflection with respect to the wide ranges of temperature and actinic light intensity are thereby examined, which reveals that the classical model underestimates the true deformation. This work therefore provides measures for analysing photomechanics in general by bridging the gap between the micro- and macro-scales.
Microwave Diffraction Techniques from Macroscopic Crystal Models
ERIC Educational Resources Information Center
Murray, William Henry
1974-01-01
Discusses the construction of a diffractometer table and four microwave models which are built of styrofoam balls with implanted metallic reflecting spheres and designed to simulate the structures of carbon (graphite structure), sodium chloride, tin oxide, and palladium oxide. Included are samples of Bragg patterns and computer-analysis results.…
Progress in thermostructural analysis of space structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Mahaney, J.; Pandey, A. K.
1982-01-01
A finite element space structures research focused on the interdisciplinary problems of heating, thermal, and structural analysis is discussed. Slender member shadowing effects, and cable stiffened structures are described.
Connecting Pore Scale Dynamics to Macroscopic Models for Two-Fluid Phase Flow
NASA Astrophysics Data System (ADS)
McClure, J. E.; Dye, A. L.; Miller, C. T.; Gray, W. G.
2015-12-01
Imaging technologies such as computed micro-tomography (CMT) provide high resolution three-dimensional images of real porous medium systems that reveal the true geometric structure of fluid and solid phases. Simulation and analysis tools are essential to extract knowledge from this raw data, and can be applied in tandem to provide information that is otherwise inaccessible. Guidance from multi-scale averaging theory is used to develop a multi-scale analysis framework to determine phase connectivity and extract interfacial areas, curvatures, common line length, contact angle and the velocities of the interface and common curve. The approach is applied to analyze pore-scale dynamics based on a multiphase lattice Boltzmann method. Dense sets of simulations are performed to evaluate the equilibrium relationship between capillary pressure, saturation and interfacial area for several experimentally imaged porous media. The approach is also used study the evolution of macroscopic quantities under dynamic conditions, which is compared to the equilibrium data.
Jin Cheng; Le, Anh-Thu; Lin, C. D.
2009-05-15
We investigate high-order harmonic generation (HHG) in a thin macroscopic medium by solving Maxwell's equation using microscopic single-atom induced dipole moment calculated from the recently developed quantitative rescattering (QRS) theory. We show that macroscopic HHG yields calculated from QRS compared well with those obtained from solving the single-atom time-dependent Schroedinger equation but with great saving of computer time. We also show that macroscopic HHG can be expressed as a product of a 'macroscopic wave packet' and the photorecombination cross section of the target gas. The latter enables us to extract target structure from the experimentally measured HHG spectra, thus paves the way to use few-cycle infrared lasers for time-resolved chemical imaging of transient molecules with few-femtosecond temporal resolution.
Proton irradiation effects on beryllium – A macroscopic assessment
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando
2016-07-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.
Proton irradiation effects on beryllium - A macroscopic assessment
NASA Astrophysics Data System (ADS)
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando
2016-10-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.
Proton irradiation effects on beryllium – A macroscopic assessment
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...
2016-07-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
Interdisciplinary applications of network dynamics: From microscopic to Macroscopic
NASA Astrophysics Data System (ADS)
Jeong, Hawoong
``Everything touches everything.'' We are living in a connected world, which has been modeled successfully by complex networks. Ever since, network science becomes new paradigm for understanding our connected yet complex world. After investigating network structure itself, our focus naturally moved to dynamics of/on the network because our connected world is not static but dynamic. In this presentation, we will briefly review the historical development of network science and show some applications of network dynamics ranging from microscopic (metabolic engineering, PNAS, 104 13638) to macroscopic scale (price of anarchy in transportation network, Phys.Rev.Lett. 101 128701). Supported by National Research Foundation of Korea through Grant No. 2011-0028908.
Macroscopic invisibility cloaking of visible light
Chen, Xianzhong; Luo, Yu; Zhang, Jingjing; Jiang, Kyle; Pendry, John B.; Zhang, Shuang
2011-01-01
Invisibility cloaks, which used to be confined to the realm of fiction, have now been turned into a scientific reality thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realization of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices. PMID:21285954
Macroscopic Quantum Superposition in Cavity Optomechanics
NASA Astrophysics Data System (ADS)
Liao, Jie-Qiao; Tian, Lin
Quantum superposition in mechanical systems is not only a key evidence of macroscopic quantum coherence, but can also be utilized in modern quantum technology. Here we propose an efficient approach for creating macroscopically distinct mechanical superposition states in a two-mode optomechanical system. Photon hopping between the two cavity-modes is modulated sinusoidally. The modulated photon tunneling enables an ultrastrong radiation-pressure force acting on the mechanical resonator, and hence significantly increases the mechanical displacement induced by a single photon. We present systematic studies on the generation of the Yurke-Stoler-like states in the presence of system dissipations. The state generation method is general and it can be implemented with either optomechanical or electromechanical systems. The authors are supported by the National Science Foundation under Award No. NSF-DMR-0956064 and the DARPA ORCHID program through AFOSR.
Macroscopic entrainment of periodically forced oscillatory ensembles.
Popovych, Oleksandr V; Tass, Peter A
2011-03-01
Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.
Probing Macroscopic Realism via Ramsey Correlation Measurements
NASA Astrophysics Data System (ADS)
Asadian, A.; Brukner, C.; Rabl, P.
2014-05-01
We describe a new and experimentally feasible protocol for performing fundamental tests of quantum mechanics with massive objects. In our approach, a single two-level system is used to probe the motion of a nanomechanical resonator via multiple Ramsey interference measurements. This scheme enables the measurement of modular variables of macroscopic continuous-variable systems; we show that correlations thereof violate a Leggett-Garg inequality and can be applied for tests of quantum contextuality. Our method can be implemented with a variety of different solid-state or photonic qubit-resonator systems, and it provides a clear experimental signature to distinguish the predictions of quantum mechanics from those of other alternative theories at a macroscopic scale.
Shot Noise in Linear Macroscopic Resistors
NASA Astrophysics Data System (ADS)
Gomila, G.; Pennetta, C.; Reggiani, L.; Sampietro, M.; Ferrari, G.; Bertuccio, G.
2004-06-01
We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.
Polarization properties of macroscopic Bell states
Iskhakov, Timur Sh.; Chekhova, Maria V.; Leuchs, Gerd
2011-10-15
The four two-photon polarization Bell states are one of the main instruments in the toolbox of quantum optics and quantum information. In our experiment we produce their multiphoton counterparts, macroscopic Bell states. These are relevant to applications in quantum technologies because they provide efficient interactions with material quantum objects and with each other via nonlinear interactions. Furthermore, we study the polarization properties of these states using the concept of second-order degree of polarization and its higher-order generalization.
Evaluation of arthroscopy and macroscopic scoring
af Klint, Erik; Catrina, Anca I; Matt, Peter; Neregråd, Petra; Lampa, Jon; Ulfgren, Ann-Kristin; Klareskog, Lars; Lindblad, Staffan
2009-01-01
Introduction Arthroscopy is a minimally invasive technique for retrieving synovial biopsies in rheumatology during the past 20 years. Vital for its use is continual evaluation of its safety and efficacy. Important for sampling is the fact of intraarticular variation for synovial markers. For microscopic measurements scoring systems have been developed and validated, but for macroscopic evaluations there is a need for further comprehensive description and validation of equivalent scoring systems. Methods We studied the complication rate and yield of arthroscopies performed at our clinic between 1998 and 2005. We also created and evaluated a macroscopic score set of instructions for synovitis. Results Of 408 procedures, we had two major and one minor complication; two haemarthrosis and one wound infection, respectively. Pain was most often not a problem, but 12 procedures had to be prematurely ended due to pain. Yield of biopsies adequate for histology were 83% over all, 94% for knee joints and 34% for smaller joints. Video printer photographs of synovium taken during arthroscopy were jointly and individually reviewed by seven raters in several settings, and intra and inter rater variation was calculated. A macroscopic synovial scoring system for arthroscopy was created (Macro-score), based upon hypertrophy, vascularity and global synovitis. These written instructions were evaluated by five control-raters, and when evaluated individual parameters were without greater intra or inter rater variability, indicating that the score is reliable and easy to use. Conclusions In our hands rheumatologic arthroscopy is a safe method with very few complications. For knee joints it is a reliable method to retrieve representative tissue in clinical longitudinal studies. We also created an easy to use macroscopic score, that needs to be validated against other methodologies. We hope it will be of value in further developing international standards in this area. PMID:19490631
Multivariate crash modeling for motor vehicle and non-motorized modes at the macroscopic level.
Lee, Jaeyoung; Abdel-Aty, Mohamed; Jiang, Ximiao
2015-05-01
Macroscopic traffic crash analyses have been conducted to incorporate traffic safety into long-term transportation planning. This study aims at developing a multivariate Poisson lognormal conditional autoregressive model at the macroscopic level for crashes by different transportation modes such as motor vehicle, bicycle, and pedestrian crashes. Many previous studies have shown the presence of common unobserved factors across different crash types. Thus, it was expected that adopting multivariate model structure would show a better modeling performance since it can capture shared unobserved features across various types. The multivariate model and univariate model were estimated based on traffic analysis zones (TAZs) and compared. It was found that the multivariate model significantly outperforms the univariate model. It is expected that the findings from this study can contribute to more reliable traffic crash modeling, especially when focusing on different modes. Also, variables that are found significant for each mode can be used to guide traffic safety policy decision makers to allocate resources more efficiently for the zones with higher risk of a particular transportation mode.
Percolation and hysteresis in macroscopic capillarity
NASA Astrophysics Data System (ADS)
Hilfer, Rudolf
2010-05-01
The concepts of relative permeability and capillary pressure are crucial for the accepted traditional theory of two phase flow in porous media. Recently a theoretical approach was introduced that does not require these concepts as input [1][2][3]. Instead it was based on the concept of hydraulic percolation of fluid phases. The presentation will describe this novel approach. It allows to simulate processes with simultaneous occurence of drainage and imbibition. Furthermore, it predicts residual saturations and their spatiotemporal changes during two phase immiscible displacement [1][2][3][4][5]. [1] R. Hilfer. Capillary Pressure, Hysteresis and Residual Saturation in Porous Media, Physica A, vol. 359, pp. 119, 2006. [2] R. Hilfer. Macroscopic Capillarity and Hysteresis for Flow in Porous Media, Physical Review E, vol. 73, pp. 016307, 2006. [3] R. Hilfer. Macroscopic capillarity without a constitutive capillary pressure function, Physica A, vol. 371, pp. 209, 2006. [4] R. Hilfer. Modeling and Simulation of Macrocapillarity, in: P. Garrido et al. (eds.) Modeling and Simulation of Materials vol. CP1091, pp. 141, American Institute of Physcis, New York, 2009. [5] R. Hilfer and F. Doster. Percolation as a basic concept for macroscopic capillarity, Transport in Porous Media, DOI 10.1007/s11242-009-9395-0, in print, 2009.
Multiscale modelling of pharmaceutical powders: Macroscopic behaviour prediction
NASA Astrophysics Data System (ADS)
Loh, Jonathan; Ketterhagen, William; Elliott, James
2013-06-01
The pharmaceutical industry uses computer models at many stages during drug development. Quantum and molecular models are used to predict the crystal structures of potential active pharmaceutical ingredients (APIs), whereas discrete element models are used to optimise the mechanical properties of mixtures of APIs and excipient powders. The present work combines the strengths of modelling from all of the mentioned length scales to predict the behaviour of macroscopic powder granules from first principles using the molecular and crystal structures of acetazolamide as an example API. Starting with a single molecule of acetazolamide, ab initio self-consistent field calculations were used to calculate the equilibrium gas phase structure, vibrational spectra, interaction energy with water molecules and perform potential energy scans. By using these results and following the CHARMM General Force Field parameterisation process, all of the parameters required to perform a molecular dynamics simulation were iteratively determined using the CHARMM program. Next, by using crystallographic data from literature, the monoclinic and triclinic forms of the acetazolamide crystal were simulated. Material properties like the Young's modulus and Poisson ratio, and surface energies have been calculated. These material properties are then used as input parameters in a discrete element model containing Thornton's plastic model and the JKR cohesive force to predict the behaviour of macroscopic acetazolamide powder in angle of repose tests and tabletting simulations. Similar methodologies can be employed in the future to evaluate at an early stage the performance of novel APIs and excipients for tabletting applications.
Macroscopic modeling for traffic flow on three-lane highways
NASA Astrophysics Data System (ADS)
Chen, Jianzhong; Fang, Yuan
2015-04-01
In this paper, a macroscopic traffic flow model for three-lane highways is proposed. The model is an extension of the speed gradient model by taking into account the lane changing. The new source and sink terms of lane change rate are added into the continuity equations and the speed dynamic equations to describe the lane-changing behavior. The result of the steady state analysis shows that our model can describe the lane usage inversion phenomenon. The numerical results demonstrate that the present model effectively reproduces several traffic phenomena observed in real traffic such as shock and rarefaction waves, stop-and-go waves and local clusters.
NASA Astrophysics Data System (ADS)
Gawad, J.; Khairullah, Md; Roose, D.; Van Bael, A.
2016-08-01
Multi-scale simulations are computationally expensive if a two-way coupling is employed. In the context of sheet metal forming simulations, a fine-scale representative volume element (RVE) crystal plasticity (CP) model would supply the Finite Element analysis with plastic properties, taking into account the evolution of crystallographic texture and other microstructural features. The main bottleneck is that the fine-scale model must be evaluated at virtually every integration point in the macroscopic FE mesh. We propose to address this issue by exploiting a verifiable assumption that fine-scale state variables of similar RVEs, as well as the derived properties, subjected to similar macroscopic boundary conditions evolve along nearly identical trajectories. Furthermore, the macroscopic field variables primarily responsible for the evolution of fine-scale state variables often feature local quasi-homogeneities. Adjacent integration points in the FE mesh can be then clustered together in the regions where the field responsible for the evolution shows low variance. This way the fine-scale evolution is tracked only at a limited number of material points and the derived plastic properties are propagated to the surrounding integration points subjected to similar deformation. Optimal configurations of the clusters vary in time as the local deformation conditions may change during the forming process, so the clusters must be periodically adapted. We consider two operations on the clusters of integration points: splitting (refinement) and merging (unrefinement). The concept is tested in the Hierarchical Multi-Scale (HMS) framework [1] that computes macroscopic deformations by means of the FEM, whereas the micro-structural evolution at the individual FE integration points is predicted by a CP model. The HMS locally and adaptively approximates homogenized stress responses of the CP model by means of analytical plastic potential or yield criterion function. Our earlier work
Schulze-Zachau, Felix; Nagel, Eva; Engelhardt, Kathrin; Stoyanov, Stefan; Gochev, Georgi; Khristov, Khr.; Mileva, Elena; Exerowa, Dotchi; Miller, Reinhard; Peukert, Wolfgang
2016-01-01
β-Lactoglobulin (BLG) adsorption layers at air–water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca2+ concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy – from the ubiquitous air–water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O–H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca2+ concentrations above 1 mM causes an apparent change in the polarity of aromatic C–H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca2+ concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca2+, micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca2+ concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes. PMID:27337699
Macroscopic Subdivision of Silica Aerogel Collectors for Sample Return Missions
Ishii, H A; Bradley, J P
2005-09-14
Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large-scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller-scale cutting capabilities previously described [Westphal (2004), Ishii (2005a, 2005b)] for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis.
Modeling, Analysis, and Optimization Issues for Large Space Structures
NASA Technical Reports Server (NTRS)
Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)
1983-01-01
Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.
Ding, W; Li, A; Wu, J; Yang, Z; Meng, Y; Wang, S; Gong, H
2013-08-01
Acquiring a whole mouse brain at the micrometer scale is a complex, continuous and time-consuming process. Because of defects caused by sample preparation and microscopy, the acquired image data sets suffer from various macroscopic density artefacts that worsen the image quality. We have to develop the available preprocessing methods to improve image quality by removing the artefacts that effect cell segmentation, vascular tracing and visualization. In this study, a set of automatic artefact removal methods is proposed for images obtained by tissue staining and optical microscopy. These methods significantly improve the complicated images that contain various structures, including cells and blood vessels. The whole mouse brain data set with Nissl staining was tested, and the intensity of the processed images was uniformly distributed throughout different brain areas. Furthermore, the processed image data set with its uniform brightness and high quality is now a fundamental atlas for image analysis, including cell segmentation, vascular tracing and visualization.
Micro and macroscopic investigation to quantify tillage impact on soil hydrodynamic behaviour
NASA Astrophysics Data System (ADS)
Beckers, E.; Roisin, C.; Plougonven, E.; Deraedt, D.; Léonard, A.; Degré, A.
2012-04-01
Nowadays, tillage simplification is an increasing practice. Many advantages are cited in the literature, such as energy saving, soil conservation etc. Agricultural management practices influence soil structure, but consequent changes in soil hydrodynamic behaviour at the field scale are still not well understood. Many studies focus only on macroscopic measurements which do not provide mechanistic explanations. Moreover, research shows divergent conclusions over structure modification. The aim of this work is to fill this gap by quantifying soil structure modification depending on tillage intensity through both macroscopic and microscopic measurements, the latter improving our comprehension of the fundamental mechanisms involved. Our experiment takes place in Gentinnes (Walloon Brabant, Belgium), on a field organized in a Latin square scheme. Since 2004, plots have been cultivated in conventional tillage (CT) or in reduced tillage (RT). The latter consists in sowing after stubble ploughing of about 10cm. The crop rotation is sugar beet followed by winter wheat. The soil is mainly composed of silt loam and can be classified as a Luvisol. Macroscopic investigations consist in establishing pF and K(h) curves and 3D soil strength profiles. At the microscale, 3D morphologic parameters are measured using X-ray microtomography. Because of the variation of working depth between management practices (10cm for RT vs. 25cm for CT), two horizons were investigated: H1 between 0-10cm and H2 between 12-25cm. 3D soil strength profiles were established thanks to a fully automated penetrometer (30° angle cone with a base area of 10mm2) which covered a 160 × 80cm2 area with 5cm spacing between neighbouring points. At each node, penetration was performed and soil strength measurements were collected every 1cm from 5 to 55cm depth. K(h) curves were provided by 20cm diameter tension-infiltrometer measurements (Eijkelkamp Agrisearch Equipment). Undisturbed soil samples were removed from
General framework for quantum macroscopicity in terms of coherence
NASA Astrophysics Data System (ADS)
Yadin, Benjamin; Vedral, Vlatko
2016-02-01
We propose a universal language to assess macroscopic quantumness in terms of coherence, with a set of conditions that should be satisfied by any measure of macroscopic coherence. We link the framework to the resource theory of asymmetry. We show that the quantum Fisher information gives a good measure of macroscopic coherence, enabling a rigorous justification of a previously proposed measure of macroscopicity. This picture lets us draw connections between different measures of macroscopicity and evaluate them; we show that another widely studied measure fails one of our criteria.
Observation of complementarity in the macroscopic domain
Cao Dezhong; Xiong Jun; Tang Hua; Lin Lufang; Zhang Suheng; Wang Kaige
2007-09-15
Complementarity is usually considered as a phenomenon of microscopic systems. In this paper, we report an experimental observation of complementarity in correlated double-slit interference with a pseudothermal light source. The thermal light beam is divided into test and reference beams which are correlated with each other. The double slit is set in the test arm, and an interference pattern can be observed in the intensity correlation between the two arms. The experimental results show that the disappearance of the interference fringe depends on whether which-path information is gained through the reference arm. The experiment therefore shows complementarity occurring in the macroscopic domain.
Compressor Has No Moving Macroscopic Parts
NASA Technical Reports Server (NTRS)
Gasser, Max
1995-01-01
Compressor containing no moving macroscopic parts functions by alternating piston and valve actions of successive beds of magnetic particles. Fabricated easily because no need for precisely fitting parts rotating or sliding on each other. Also no need for lubricant fluid contaminating fluid to be compressed. Compressor operates continuously, eliminating troublesome on/off cycling of other compressors, and decreasing consumption of energy. Phased cells push fluid from bottom to top, adding increments of pressure. Each cell contains magnetic powder particles loose when electromagnet coil deenergized, but tightly packed when coil energized.
Structural analysis considerations for wind turbine blades
NASA Technical Reports Server (NTRS)
Spera, D. A.
1979-01-01
Approaches to the structural analysis of wind turbine blade designs are reviewed. Specifications and materials data are discussed along with the analysis of vibrations, loads, stresses, and failure modes.
Mathematical analysis of compressive/tensile molecular and nuclear structures
NASA Astrophysics Data System (ADS)
Wang, Dayu
Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.
Micro- and macroscopic photonic control of matter
NASA Astrophysics Data System (ADS)
Ryabtsev, Anton
parameters. In order for measurements not to be skewed, these interactions need to be taken into account and mitigated at the time of the experiment or handled later in data analysis and simulations. Experimental results are presented in four chapters. Chapter 2 describes two topics: (1) single-shot real-time monitoring and correction of spectral phase drifts, which commonly originate from temperature and pointing fluctuations inside the laser cavity when the pulses are generated; (2) an all-optical method for controlling the dispersion of femtosecond pulses using other pulses. Chapter 3 focuses on the effects of the propagation media--how intense laser pulses modify media and how, in turn, the media modifies them back--and how these effects can be counteracted. Self-action effects in fused silica are discussed, along with some interesting and unexpected results. A method is then proposed for mitigating self-action processes using binary modulation of the spectral phases of laser pulses. Chapter 4 outlines the design of two laser systems, which are specifically tailored for particular spectroscopic applications and incorporate the comprehensive pulse control described in previous chapters. Chapter 5 shows how control of spatial beam characteristics can be applied to measurements of the mechanical motion of microscale particles and how it can potentially be applied to molecular motion. It also describes an experiment on laser-induced flow in air in which attempts were made to control the macroscopic molecular rotation of gases. My research, with a pulse shaper as the enabling tool, provides important insights into ultrafast scientific studies by making femtosecond laser research more predictable, reliable and practical for measurement and control. In the long term, some of the research methods in this thesis may help the transition of femtosecond lasers from the laboratory environment into clinics, factories, airports, and other everyday settings.
Dai, Zhaohe; Liu, Luqi; Qi, Xiaoying; Kuang, Jun; Wei, Yueguang; Zhu, Hongwei; Zhang, Zhong
2016-01-01
Efficient assembly of carbon nanotube (CNT) based cellular solids with appropriate structure is the key to fully realize the potential of individual nanotubes in macroscopic architecture. In this work, the macroscopic CNT sponge consisting of randomly interconnected individual carbon nanotubes was grown by CVD, exhibiting a combination of super-elasticity, high strength to weight ratio, fatigue resistance, thermo-mechanical stability and electro-mechanical stability. To deeply understand such extraordinary mechanical performance compared to that of conventional cellular materials and other nanostructured cellular architectures, a thorough study on the response of this CNT-based spongy structure to compression is conducted based on classic elastic theory. The strong inter-tube bonding between neighboring nanotubes is examined, believed to play a critical role in the reversible deformation such as bending and buckling without structural collapse under compression. Based on in-situ scanning electron microscopy observation and nanotube deformation analysis, structural evolution (completely elastic bending-buckling transition) of the carbon nanotubes sponges to deformation is proposed to clarify their mechanical properties and nonlinear electromechanical coupling behavior. PMID:26732143
Spin models as microfoundation of macroscopic market models
NASA Astrophysics Data System (ADS)
Krause, Sebastian M.; Bornholdt, Stefan
2013-09-01
Macroscopic price evolution models are commonly used for investment strategies. There are first promising achievements in defining microscopic agent based models for the same purpose. Microscopic models allow a deeper understanding of mechanisms in the market than the purely phenomenological macroscopic models, and thus bear the chance for better models for market regulation. However microscopic models and macroscopic models are commonly studied separately. Here, we exemplify a unified view of a microscopic and a macroscopic market model in a case study, deducing a macroscopic Langevin equation from a microscopic spin market model closely related to the Ising model. The interplay of the microscopic and the macroscopic view allows for a better understanding and adjustment of the microscopic model, as well, and may guide the construction of agent based market models as basis of macroscopic models.
NASA Astrophysics Data System (ADS)
Beckers, E.; Plougonven, E.; Gigot, N.; Léonard, A.; Roisin, C.; Brostaux, Y.; Degré, A.
2014-05-01
Agricultural management practices influence soil structure, but the characterization of these modifications and consequences are still not completely understood. In this study, we combine X-ray microtomography with retention and hydraulic conductivity measurements in the context of tillage simplification. First, this association is used to validate microtomography information with a quick scan method. Secondly, X-ray microtomography is used to increase our knowledge of soil structural differences. Notably, we show a good match for retention and conductivity functions between macroscopic measurements and microtomographic information. Microtomography refines the shape of the retention function, highlighting the presence of a secondary pore system in our soils. Analysis of structural parameters for these pores appears to be of interest and offers additional clues for soil structure differentiation, through - among others - connectivity and tortuosity parameters. These elements make microtomography a highly competitive instrument for routine soil characterization.
Macroscopic theory for capillary-pressure hysteresis.
Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry
2015-03-03
In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.
A Macroscopic Realization of the Weak Interaction
NASA Technical Reports Server (NTRS)
Nishimori, Arito
2003-01-01
A.J.Leggett suggested in 1977 that a permanent electric dipole moment due to the parity-nonconserving electron-nucleon interaction, even though it is extremely small, could be measured in the superfluid He-3 B because the moment should be proportional to the size of the sample in this system. If this moment is observed, it will be the first example of a macroscopic realization of the weak interaction. In our planned experiments, a high electric field of up to 6 kV/cm is applied between two parallel electrodes in the He-3 sample. We expect to observe the NMR frequency of the lowest-lying spin-wave mode trapped by the liquid crystal-like texture of the B phase rotation axis in our geometry. The interaction of the electric field and the macroscopic permanent electric dipole moment, which is oriented along the rotation axis, will cause a small change in the texture and hence a small increase in the frequency of the spin wave mode. Besides the basic ideas, we present the purpose and the design of our first cell that is under construction.
Measurement contextuality is implied by macroscopic realism
Chen Zeqian; Montina, A.
2011-04-15
Ontological theories of quantum mechanics provide a realistic description of single systems by means of well-defined quantities conditioning the measurement outcomes. In order to be complete, they should also fulfill the minimal condition of macroscopic realism. Under the assumption of outcome determinism and for Hilbert space dimension greater than 2, they were all proved to be contextual for projective measurements. In recent years a generalized concept of noncontextuality was introduced that applies also to the case of outcome indeterminism and unsharp measurements. It was pointed out that the Beltrametti-Bugajski model is an example of measurement noncontextual indeterminist theory. Here we provide a simple proof that this model is the only one with such a feature for projective measurements and Hilbert space dimension greater than 2. In other words, there is no extension of quantum theory providing more accurate predictions of outcomes and simultaneously preserving the minimal labeling of events through projective operators. As a corollary, noncontextuality for projective measurements implies noncontextuality for unsharp measurements. By noting that the condition of macroscopic realism requires an extension of quantum theory, unless a breaking of unitarity is invoked, we arrive at the conclusion that the only way to solve the measurement problem in the framework of an ontological theory is by relaxing the hypothesis of measurement noncontextuality in its generalized sense.
Deterministic Creation of Macroscopic Cat States
Lombardo, Daniel; Twamley, Jason
2015-01-01
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane’s opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane’s position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157
Assessing Macroscopic Evapotranspiration Function Response to Climate
NASA Astrophysics Data System (ADS)
Gharun, M.; Vervoort, R. W.; Turnbull, T.; Henry, J.; Adams, M.
2012-12-01
Evapotranspiration (ET) by forests can reach up to 100% of rainfall in Australia, and is a substantial component of the water balance. Transpiration is a major part of the ET and it is well-known that transpiration depends on a combination of physiological and environmental controls. As a consequence of well-ventilated canopies of eucalypt forests and close decoupling to the atmosphere, atmospheric conditions exert a large control over transpiration. We measured a suit of environmental variables including temperature, humidity, radiation, and soil moisture concurrently with transpiration in a range of eucalypt forests. We observed that atmospheric demand (VPD) exerts the strongest control over transpiration. Experimental evidence also showed a strong dependency of the control on soil moisture abundance in the top soil layer. In many eco-hydrological models actual ET is represented with a linear transformation of potential ET based on the soil moisture condition, a so-called macroscopic approach. Such ET functions lump various soil and plant factors, are not experimentally supported and therefore quite poorly validated. Different combinations of atmospheric demand and soil moisture availability lead to diverse behaviour of the macroscopic ET function. Based on our observations in this study, we propose a novel approach that improves portray of transpiration, evaporation, drainage and hence the loss of water from the root zone. We used a modified version of the Norwegian HBV model to test our approach over a medium size catchment (150 km2) in south east Australia.
Macroscopic Behavior of Nematics with D2d Symmetry
NASA Astrophysics Data System (ADS)
Pleiner, Harald; Brand, Helmut R.
2010-03-01
We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with D2d symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is non-polar. While this phase could resemble the classic D∞h nematic in the polarizing microscope, it has many static as well as reversible and irreversible properties unknown to non-polar nematics without octupolar order. In particular, there is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric liquid crystals. Finally, we discuss certain nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other structural nonlinear hydrodynamic effects.
The behavior of a macroscopic granular material in vortex flow
NASA Astrophysics Data System (ADS)
Nishikawa, Asami
A granular material is defined as a collection of discrete particles such as powder and grain. Granular materials display a large number of complex behaviors. In this project, the behavior of macroscopic granular materials under tornado-like vortex airflow, with varying airflow velocity, was observed and studied. The experimental system was composed of a 9.20-cm inner diameter acrylic pipe with a metal mesh bottom holding the particles, a PVC duct, and an airflow source controlled by a variable auto-transformer, and a power-meter. A fixed fan blade was attached to the duct's inner wall to create a tornado-like vortex airflow from straight flow. As the airflow velocity was increased gradually, the behavior of a set of same-diameter granular materials was observed. The observed behaviors were classified into six phases based on the macroscopic mechanical dynamics. Through this project, we gained insights on the significant parameters for a computer simulation of a similar system by Heath Rice [5]. Comparing computationally and experimentally observed phase diagrams, we can see similar structure. The experimental observations showed the effect of initial arrangement of particles on the phase transitions.
Quantum correlations of lights in macroscopic environments
NASA Astrophysics Data System (ADS)
Sua, Yong Meng
This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear
Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.
ERIC Educational Resources Information Center
Chesick, John P.
1989-01-01
Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)
Computer applications for engineering/structural analysis
Zaslawsky, M.; Samaddar, S.K.
1991-01-01
Analysts and organizations have a tendency to lock themselves into specific codes with the obvious consequences of not addressing the real problem and thus reaching the wrong conclusion. This paper discusses the role of the analyst in selecting computer codes. The participation and support of a computation division in modifying the source program, configuration management, and pre- and post-processing of codes are among the subjects discussed. Specific examples illustrating the computer code selection process are described in the following problem areas: soil structure interaction, structural analysis of nuclear reactors, analysis of waste tanks where fluid structure interaction is important, analysis of equipment, structure-structure interaction, analysis of the operation of the superconductor supercollider which includes friction and transient temperature, and 3D analysis of the 10-meter telescope being built in Hawaii. Validation and verification of computer codes and their impact on the selection process are also discussed.
A macroscopic analytical model of collaboration in distributed robotic systems.
Lerman, K; Galstyan, A; Martinoli, A; Ijspeert, A
2001-01-01
In this article, we present a macroscopic analytical model of collaboration in a group of reactive robots. The model consists of a series of coupled differential equations that describe the dynamics of group behavior. After presenting the general model, we analyze in detail a case study of collaboration, the stick-pulling experiment, studied experimentally and in simulation by Ijspeert et al. [Autonomous Robots, 11, 149-171]. The robots' task is to pull sticks out of their holes, and it can be successfully achieved only through the collaboration of two robots. There is no explicit communication or coordination between the robots. Unlike microscopic simulations (sensor-based or using a probabilistic numerical model), in which computational time scales with the robot group size, the macroscopic model is computationally efficient, because its solutions are independent of robot group size. Analysis reproduces several qualitative conclusions of Ijspeert et al.: namely, the different dynamical regimes for different values of the ratio of robots to sticks, the existence of optimal control parameters that maximize system performance as a function of group size, and the transition from superlinear to sublinear performance as the number of robots is increased.
Microscopic and macroscopic instabilities in hyperelastic fiber composites
NASA Astrophysics Data System (ADS)
Slesarenko, Viacheslav; Rudykh, Stephan
2017-02-01
In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites.
NASA Structural Analysis System (NASTRAN)
NASA Technical Reports Server (NTRS)
Purves, L.
1991-01-01
Program aids in structural design of wide range of objects, from high-impact printer parts to turbine engine blades, and fully validated. Since source code included, NASTRAN modified or enhanced for new applications.
Graphene-based macroscopic assemblies and architectures: an emerging material system.
Cong, Huai-Ping; Chen, Jia-Fu; Yu, Shu-Hong
2014-11-07
Due to the outstanding physicochemical properties arising from its truly two-dimensional (2D) planar structure with a single-atom thickness, graphene exhibits great potential for use in sensors, catalysts, electrodes, and in biological applications, etc. With further developments in the theoretical understanding and assembly techniques, graphene should enable great changes both in scientific research and practical industrial applications. By the look of development, it is of fundamental and practical significance to translate the novel physical and chemical properties of individual graphene nanosheets into the macroscale by the assembly of graphene building blocks into macroscopic architectures with structural specialities and functional novelties. The combined features of a 2D planar structure and abundant functional groups of graphene oxide (GO) should provide great possibilities for the assembly of GO nanosheets into macroscopic architectures with different macroscaled shapes through various assembly techniques under different bonding interactions. Moreover, macroscopic graphene frameworks can be used as ideal scaffolds for the incorporation of functional materials to offset the shortage of pure graphene in the specific desired functionality. The advantages of light weight, supra-flexibility, large surface area, tough mechanical strength, and high electrical conductivity guarantee graphene-based architectures wide application fields. This critical review mainly addresses recent advances in the design and fabrication of graphene-based macroscopic assemblies and architectures and their potential applications. Herein, we first provide overviews of the functional macroscopic graphene materials from three aspects, i.e., 1D graphene fibers/ribbons, 2D graphene films/papers, 3D network-structured graphene monoliths, and their composite counterparts with either polymers or nano-objects. Then, we present the promising potential applications of graphene-based macroscopic
New inroads in an old subject: Plasticity, from around the atomic to the macroscopic scale
NASA Astrophysics Data System (ADS)
Acharya, Amit
2010-05-01
Nonsingular, stressed, dislocation (wall) profiles are shown to be 1-d equilibria of a non-equilibrium theory of Field Dislocation Mechanics (FDM). It is also shown that such equilibrium profiles corresponding to a given level of load cannot generally serve as a travelling wave profile of the governing equation for other values of nearby constant load; however, one case of soft loading with a special form of the dislocation velocity law is demonstrated to have no 'Peierls barrier' in this sense. The analysis is facilitated by the formulation of a 1-d, scalar, time-dependent, Hamilton-Jacobi equation as an exact special case of the full 3-d FDM theory accounting for non-convex elastic energy, small, Nye-tensor-dependent core energy, and possibly an energy contribution based on incompatible slip. Relevant nonlinear stability questions, including that of nucleation, are formulated in a non-equilibrium setting. Elementary averaging ideas show a singular perturbation structure in the evolution of the (unsymmetric) macroscopic plastic distortion, thus pointing to the possibility of predicting generally rate-insensitive slow response constrained to a tensorial 'yield' surface, while allowing fast excursions off it, even though only simple kinetic assumptions are employed in the microscopic FDM theory. The emergent small viscosity on averaging that serves as the small parameter for the perturbation structure is a robust, almost-geometric consequence of large gradients of slip in the dislocation core and the persistent presence of a large number of dislocations in the averaging volume. In the simplest approximation, the macroscopic yield criterion displays anisotropy based on the microscopic dislocation line and Burgers vector distribution, a dependence on the Laplacian of the incompatible slip tensor and a nonlocal term related to a Stokes-Helmholtz-curl projection of an 'internal stress' derived from the incompatible slip energy.
Structural analysis of ultra-high speed aircraft structural components
NASA Technical Reports Server (NTRS)
Lenzen, K. H.; Siegel, W. H.
1977-01-01
The buckling characteristics of a hypersonic beaded skin panel were investigated under pure compression with boundary conditions similar to those found in a wing mounted condition. The primary phases of analysis reported include: (1) experimental testing of the panel to failure; (2) finite element structural analysis of the beaded panel with the computer program NASTRAN; and (3) summary of the semiclassical buckling equations for the beaded panel under purely compressive loads. A comparison of each of the analysis methods is also included.
Paéz-García, Catherine Teresa; Valdés-Parada, Francisco J; Lasseux, Didier
2017-02-01
Modeling flow in porous media is usually focused on the governing equations for mass and momentum transport, which yield the velocity and pressure at the pore or Darcy scales. However, in many applications, it is important to determine the work (or power) needed to induce flow in porous media, and this can be achieved when the mechanical energy equation is taken into account. At the macroscopic scale, this equation may be postulated to be the result of the inner product of Darcy's law and the seepage velocity. However, near the porous medium boundaries, this postulate seems questionable due to the spatial variations of the effective properties (velocity, permeability, porosity, etc.). In this work we derive the macroscopic mechanical energy equation using the method of volume averaging for the simple case of incompressible single-phase flow in porous media. Our analysis shows that the result of averaging the pore-scale version of the mechanical energy equation at the Darcy scale is not, in general, the expected product of Darcy's law and the seepage velocity. As a matter of fact, this result is only applicable in the bulk region of the porous medium and, in the derivation of this result, the properties of the permeability tensor are determinant. Furthermore, near the porous medium boundaries, a more novel version of the mechanical energy equation is obtained, which incorporates additional terms that take into account the rapid variations of structural properties taking place in this particular portion of the system. This analysis can be applied to multiphase and compressible flows in porous media and in many other multiscale systems.
NASA Astrophysics Data System (ADS)
Paéz-García, Catherine Teresa; Valdés-Parada, Francisco J.; Lasseux, Didier
2017-02-01
Modeling flow in porous media is usually focused on the governing equations for mass and momentum transport, which yield the velocity and pressure at the pore or Darcy scales. However, in many applications, it is important to determine the work (or power) needed to induce flow in porous media, and this can be achieved when the mechanical energy equation is taken into account. At the macroscopic scale, this equation may be postulated to be the result of the inner product of Darcy's law and the seepage velocity. However, near the porous medium boundaries, this postulate seems questionable due to the spatial variations of the effective properties (velocity, permeability, porosity, etc.). In this work we derive the macroscopic mechanical energy equation using the method of volume averaging for the simple case of incompressible single-phase flow in porous media. Our analysis shows that the result of averaging the pore-scale version of the mechanical energy equation at the Darcy scale is not, in general, the expected product of Darcy's law and the seepage velocity. As a matter of fact, this result is only applicable in the bulk region of the porous medium and, in the derivation of this result, the properties of the permeability tensor are determinant. Furthermore, near the porous medium boundaries, a more novel version of the mechanical energy equation is obtained, which incorporates additional terms that take into account the rapid variations of structural properties taking place in this particular portion of the system. This analysis can be applied to multiphase and compressible flows in porous media and in many other multiscale systems.
Macroscopic quantum entanglement in modulated optomechanics
NASA Astrophysics Data System (ADS)
Wang, Mei; Lü, Xin-You; Wang, Ying-Dan; You, J. Q.; Wu, Ying
2016-11-01
Quantum entanglement in mechanical systems is not only a key signature of macroscopic quantum effects but has wide applications in quantum technologies. Here we propose an effective approach for creating strong steady-state entanglement between two directly coupled mechanical oscillators (or a mechanical oscillator and a microwave resonator) in a modulated optomechanical system. The entanglement is achieved by combining the processes of a cavity cooling and the two-mode parametric interaction, which can surpass the bound on the maximal stationary entanglement from the two-mode parametric interaction. In principle, our proposal allows one to cool the system from an initial thermal state to an entangled state with high purity by a monochromatic driving laser. Also, the obtained entangled state can be used to implement the continuous-variable teleportation with high fidelity. Moreover, our proposal is robust against the thermal fluctuations of the mechanical modes under the condition of strong optical pumping.
Macroscopic model of scanning force microscope
Guerra-Vela, Claudio; Zypman, Fredy R.
2004-10-05
A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.
Variability of macroscopic dimensions of Moso bamboo.
Cui, Le; Peng, Wanxi; Sun, Zhengjun; Sun, Zhengjun; Sun, Zhengjun; Lu, Huangfei; Chen, Guoning
2015-03-01
In order to the macroscopic geometry distributions of vascular bundles in Moso bamboo tubes. The circumference of bamboo tubes was measured, used a simple quadratic diameter formula to analyze the differences between the tubes in bamboo culm, and the arrangement of vascular bundles was investigated by cross sectional images of bamboo tubes. The results shown that the vascular bundles were differently distributed in a bamboo tube. In the outer layer, the vascular bundles had a variety of shapes, and were aligned parallel to each other. In the inner layers, the vascular bundles weren't aligned but uniform in shape. It was concluded that the vascular bundle sections arranged in parallel should be separated from the non-parallel sections for the maximum bamboo utilization.
Macromolecular recognition and macroscopic interactions by cyclodextrins.
Harada, Akira; Takashima, Yoshinori
2013-10-01
Herein macromolecular recognition by cyclodextrins (CDs) is summarized. Recognition of macromolecules by CDs is classified as main-chain recognition or side-chain recognition. We found that CDs form inclusion complexes with various polymers with high selectivity. Polyrotaxanes in which many CDs are entrapped in a polymer chain were prepared. Tubular polymers were prepared from the polyrotaxanes. CDs were found to recognize side-chains of polymers selectively. CD host polymers were found to form gels with guest polymers in water. These gels showed self-healing properties. When azobenzene was used as a guest, the gel showed sol-gel transition by photoirradiation. When ferrocene was used, redox-responsive gels were obtained. Macroscopic self-assembly through molecular recognition has been discovered. Photoswitchable gel association and dissociation have been observed.
Macroscopically local correlations can violate information causality.
Cavalcanti, Daniel; Salles, Alejo; Scarani, Valerio
2010-01-01
Although quantum mechanics is a very successful theory, its foundations are still a subject of intense debate. One of the main problems is that quantum mechanics is based on abstract mathematical axioms, rather than on physical principles. Quantum information theory has recently provided new ideas from which one could obtain physical axioms constraining the resulting statistics one can obtain in experiments. Information causality (IC) and macroscopic locality (ML) are two principles recently proposed to solve this problem. However, none of them were proven to define the set of correlations one can observe. In this study, we show an extension of IC and study its consequences. It is shown that the two above-mentioned principles are inequivalent: if the correlations allowed by nature were the ones satisfying ML, IC would be violated. This gives more confidence in IC as a physical principle, defining the possible correlation allowed by nature.
Macroscopic balance model for wave rotors
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.
Black holes and quantumness on macroscopic scales
NASA Astrophysics Data System (ADS)
Flassig, Daniel; Pritzel, Alexander; Wintergerst, Nico
2013-04-01
It has recently been suggested that black holes may be described as condensates of weakly interacting gravitons at a critical point, exhibiting strong quantum effects. In this paper, we study a model system of attractive bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate explicitly that indeed quantum effects are important at the critical point, even if the number of particles is macroscopic. Most prominently, we evaluate the entropy of entanglement between different momentum modes and observe it to become maximal at the critical point. Furthermore, we explicitly see that the leading entanglement is between long-wavelength modes and is hence a feature independent of ultraviolet physics. If applicable to black holes, our findings substantiate the conjectured breakdown of semiclassical physics even for large black holes. This can resolve long-standing mysteries, such as the information paradox and the no-hair theorem.
Structural analysis consultation using artificial intelligence
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Marcal, P. V.; Berke, L.
1978-01-01
The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems.
Macroscopic and direct light propulsion of bulk graphene material
NASA Astrophysics Data System (ADS)
Zhang, Tengfei; Chang, Huicong; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng
2015-07-01
It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work the direct light propulsion of matter is observed on a macroscopic scale using a bulk graphene-based material. The unique structure and properties of graphene, and the novel morphology of the bulk three-dimensional linked graphene material make it capable not only of absorbing light at various wavelengths but also of emitting energetic electrons efficiently enough to drive the bulk material, following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk-scale light manipulation with the potential to realize long-sought applications in areas such as the solar sail and space transportation driven directly by sunlight.
Zhao, Namula; Li, Xue-en; Wang, Mei; Hu, Da-lai
2009-08-01
Splintage external fixation in Chinese Mongolian osteopathy is a biological macroscopic model. In this model, the ideas of self-life "unity of mind and body" and vital natural "correspondence of nature and human" combine the physiological and psychological self-fixation with supplementary external fixation of fracture using small splints. This model implies macroscopic ideas of uncovering fixation and healing: structural stability integrating geometrical "dynamic" stability with mechanical "dynamic" equilibrium and the stability of state integrating statics with dynamics, and osteoblasts with osteoclasts, and psychological stability integrating closed and open systems of human and nature. These ideas indicate a trend of development in modern osteopathy.
Static Nonlinear Analysis In Concrete Structures
Hemmati, Ali
2008-07-08
Push-over analysis is a simple and applied approach which can be used for estimation of demand responses influenced by earthquake stimulations. The analysis is non-linear static analysis of the structure affected under increasing lateral loads and specifying the displacement--load diagram or structure capacity curve, draw the curve the base shear values and lateral deflection on the roof level of the building will be used. However, for estimation of the real behavior of the structure against earthquake, the non-linear dynamic analysis approaches and various accelerographs should be applied. Of course it should be noted that this approach especially in relation with tall buildings is complex and time consuming. In the article, the different patterns of lateral loading in push-over analysis have been compared with non-linear dynamic analysis approach so that the results represented accordingly. The researches indicated the uniformly--distributed loading is closer to real status.
NASA Technical Reports Server (NTRS)
Johnson, Adriel D.
1992-01-01
Conditions simulating low- and high-gravity, reveal changes in macroscopic pattern formation in selected microorganisms, but whether these structures are gravity dependent is not clear. Two theories have been identified in the fluid dynamics community which support macroscopic pattern formation. The first one is gravity dependent (fluid density models) where small concentrated regions of organisms sink unstably, and the second is gravity independent (wave reinforcement theory) where organisms align their movements in concert, such that either their swimming strokes beat in phase or their vortices entrain neighbors to follow parallel paths. Studies have shown that macroscopic pattern formation is consistent with the fluid density models for protozoa and algae and wave reinforcement hypothesis for caprine spermatozoa.
NAPS: Network Analysis of Protein Structures
Chakrabarty, Broto; Parekh, Nita
2016-01-01
Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201
Thermal and structural analysis of Hermes
NASA Astrophysics Data System (ADS)
Petiau, C.
1989-08-01
After a brief recap of Hermes TPS and structure principles, we present the organization of thermal and structural analysis of the Hermes project, and we describe the way to resolve the problems of connections between calculations performed by the different Hermes partners. We describe in detail the interactions between the general model of TPS, used for global dimensioning of insulation, and refined thermal models giving an accurate temperature map inside details of "hot" and "cold" structures. The organization for structural analysis is based on a finite element general model which supports preliminary design, loads and vibration analyses. Boundary conditions for refined subpart analyses are cut to size, into the general model by a super element technique. This process involves the use by all partners of efficient computer codes, in the field of structural analysis and optimization integrated with CAD; for this Dassault proposes as a reference: the CATIA-ELFINI system.
Semantic Antinomies and Deep Structure Analysis
ERIC Educational Resources Information Center
Zuber, Ryszard
1975-01-01
This article discusses constructions known as semantic antinomies, that is, the paradoxical results of false presuppositions, and how they can be dealt with by means of deep structure analysis. See FL 508 186 for availability. (CLK)
Macroscopic Characteristics of Unsteady Granular Flows in Rotating Tumblers
NASA Astrophysics Data System (ADS)
Paprocki, Daniel; Pohlman, Nicholas
2010-11-01
Flow of silicate beads in rotating tumblers of triangular cross-sections are explored with respect to transient response of macroscopic properties. High-speed digital images are synchronized to tumbler orientation through an in-line rotary encoder. Image processing toolboxes are utilized to generate quantitative data for analysis. Time-dependent properties of free surface length, flowing layer curvature, and dynamic angle of repose are reported. The correlation of these properties with the orientation exhibits a phase difference that is a function of tumbler dimensions and fill fraction. Concurrent measurements of input energy to the system may lead to control algorithms to generate steady flow in inherently unsteady systems that would improve efficiency of granular transport methods.
Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials
NASA Astrophysics Data System (ADS)
Savinov, V.; Fedotov, V. A.; Zheludev, N. I.
2014-05-01
The toroidal dipole is a peculiar electromagnetic excitation that can not be presented in terms of standard electric and magnetic multipoles. A static toroidal dipole has been shown to lead to violation of parity in atomic spectra and many other unusual electromagnetic phenomena. The existence of electromagnetic resonances of toroidal nature was experimentally demonstrated only recently, first in the microwave metamaterials, and then at optical frequencies, where they could be important in spectroscopy analysis of a wide class of media with constituents of toroidal symmetry, such as complex organic molecules, fullerenes, bacteriophages, etc. Despite the experimental progress in studying toroidal resonances, no direct link has yet been established between microscopic toroidal excitations and macroscopic scattering characteristics of the medium. To address this essential gap in the electromagnetic theory, we have developed an analytical approach for calculating the transmissivity and reflectivity of thin slabs of materials that exhibit toroidal dipolar excitations.
Histochemical Analysis of Plant Secretory Structures.
Demarco, Diego
2017-01-01
Histochemical analysis is essential for the study of plant secretory structures whose classification is based, at least partially, on the composition of their secretion. As each gland may produce one or more types of substances, a correct analysis of its secretion should be done using various histochemical tests to detect metabolites of different chemical classes. Here I describe some of the most used methods to detect carbohydrates, proteins, lipids, phenolic compounds, and alkaloids in the secretory structures.
Vaidyanathan, T K; Schulman, A; Nielsen, J P; Shalita, S
1981-01-01
Radiographic analysis of uniform cylindrical castings fabricated by the centrifugal casting technique has revealed that the macroscopic porosity is dependent on the location of the sprue attachment to the casting. This is attributed to the significant pressure gradient associated with the centrifugal casting technique. The pressure gradient results in different heat transfer rates at portions of the castings near and away from the free surface of the button. Consequently, the macroscopic porosity is invariably at portions of the casting close to the free surface of the button. In addition, some optimized sprue-reservoir combinations could be predicted and proved, based on this pressure gradient concept.
NASA Astrophysics Data System (ADS)
Carlisle, Andrew; Kwon, Hyukjoon; Jeong, Hyunseok; Ferraro, Alessandro; Paternostro, Mauro
2015-08-01
Optomechanics is currently believed to provide a promising route towards the achievement of genuine quantum effects at the large, massive-system scale. By using a recently proposed figure of merit that is well suited to address continuous-variable systems, in this paper we analyze the requirements needed for the state of a mechanical mode (embodied by an end-cavity cantilever or a membrane placed within an optical cavity) to be qualified as macroscopic. We show that according to the phase-space-based criterion that we have chosen for our quantitative analysis, the state achieved through strong single-photon radiation-pressure coupling to a quantized field of light and conditioned by measurements operated on the latter might be interpreted as macroscopically quantum. In general, though, genuine macroscopic quantum superpositions appear to be possible only under quite demanding experimental conditions.
Hybrid methods for witnessing entanglement in a microscopic-macroscopic system
Spagnolo, Nicolo; Vitelli, Chiara; Paternostro, Mauro; De Martini, Francesco; Sciarrino, Fabio
2011-09-15
We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.
Structural Dynamics and Data Analysis
NASA Technical Reports Server (NTRS)
Luthman, Briana L.
2013-01-01
This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash
Fourier Analysis Of Vibrations Of Round Structures
NASA Technical Reports Server (NTRS)
Davis, Gary A.
1990-01-01
Fourier-series representation developed for analysis of vibrations in complicated, round structures like turbopump impellers. Method eliminates guesswork involved in characterization of shapes of vibrational modes. Easy way to characterize complicated modes, leading to determination of responsiveness of given mode to various forcing functions. Used in conjunction with finite-element numerical simulation of vibrational modes of structure.
Structural analysis of second-generation heliostats
Dunder, V.D.
1981-12-01
As part of the overall evaluation of the four second-generation heliostats, a finite element analysis was performed to evaluate structure performance of the mirror modules subjected to gravity, operational wind loads and survival wind loads. All designs evaluated were found to be structurally adequate.
Covariance Structure Analysis of Ordinal Ipsative Data.
ERIC Educational Resources Information Center
Chan, Wai; Bentler, Peter M.
1998-01-01
Proposes a two-stage estimation method for the analysis of covariance structure models with ordinal ipsative data (OID). A goodness-of-fit statistic is given for testing the hypothesized covariance structure matrix, and simulation results show that the method works well with a large sample. (SLD)
Generalized Structured Component Analysis with Latent Interactions
ERIC Educational Resources Information Center
Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan
2010-01-01
Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…
ERIC Educational Resources Information Center
Cook, Michelle; Wiebe, Eric N.; Carter, Glenda
2008-01-01
Previous research has indicated that the use of multiple representations with macroscopic and molecular features can improve conceptual understanding; however, the influence of prior knowledge of the domain cannot be overlooked. Using eye-tracking technology and sequential analysis, this study investigated how high school students (n = 54) with…
Impact analysis of composite aircraft structures
NASA Technical Reports Server (NTRS)
Pifko, Allan B.; Kushner, Alan S.
1993-01-01
The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.
Structural Analysis in a Conceptual Design Framework
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.
2012-01-01
Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
Investigation of dissipative forces near macroscopic media
Becker, R.S.
1982-12-01
The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.
Cloud Macroscopic Organization: Order Emerging from Randomness
NASA Technical Reports Server (NTRS)
Yuan, Tianle
2011-01-01
Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.
Macroscopic superpositions and gravimetry with quantum magnetomechanics
NASA Astrophysics Data System (ADS)
Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason
2016-11-01
Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10‑10 Hz‑1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.
Macroscopic superpositions and gravimetry with quantum magnetomechanics
Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason
2016-01-01
Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10−10 Hz−1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters. PMID:27869142
Macroscopic car condensation in a parking garage.
Ha, Meesoon; Den Nijs, Marcel
2002-09-01
An asymmetric exclusion process type process, where cars move forward along a closed road that starts and terminates at a parking garage, displays dynamic phase transitions into two types of condensate phases where the garage becomes macroscopically occupied. The total car density rho(o) and the exit probability alpha from the garage are the two control parameters. At the transition, the number of parked cars N(p) diverges in both cases, with the length of the road N(s), as N(p) approximately N(y(p))(s) with y(p)=1/2. Towards the transition, the number of parked cars vanishes as N(p) approximately epsilon(beta) with beta=1, epsilon=/alpha-alpha(*)/ or epsilon=|rho(*)(o)-rho(o)/ being the distance from the transition. The transition into the normal phase represents also the onset of transmission of information through the garage. This gives rise to unusual parked car autocorrelations and car density profiles near the garage, which depend strongly on the group velocity of the fluctuations along the road.
Macroscopic liquid-state molecular hydrodynamics
Keanini, R. G.; Tkacik, Peter T.; Fleischhauer, Eric; Shahinian, Hossein; Sholar, Jodie; Azimi, Farzad; Mullany, Brid
2017-01-01
Experimental evidence and theoretical modeling suggest that piles of confined, high-restitution grains, subject to low-amplitude vibration, can serve as experimentally-accessible analogs for studying a range of liquid-state molecular hydrodynamic processes. Experiments expose single-grain and multiple-grain, collective dynamic features that mimic those either observed or predicted in molecular-scale, liquid state systems, including: (i) near-collision-time-scale hydrodynamic organization of single-molecule dynamics, (ii) nonequilibrium, long-time-scale excitation of collective/hydrodynamic modes, and (iii) long-time-scale emergence of continuum, viscous flow. In order to connect directly observable macroscale granular dynamics to inaccessible and/or indirectly measured molecular hydrodynamic processes, we recast traditional microscale equilibrium and nonequilibrium statistical mechanics for dense, interacting microscale systems into self-consistent, macroscale form. The proposed macroscopic models, which appear to be new with respect to granular physics, and which differ significantly from traditional kinetic-theory-based, macroscale statistical mechanics models, are used to rigorously derive the continuum equations governing viscous, liquid-like granular flow. The models allow physically-consistent interpretation and prediction of observed equilibrium and non-equilibrium, single-grain, and collective, multiple-grain dynamics. PMID:28139711
Seismic analysis of nuclear power plant structures
NASA Technical Reports Server (NTRS)
Go, J. C.
1973-01-01
Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.
A protein structure data and analysis system.
Tian, Hao; Sunderraman, Rajshekhar; Weber, Irene; Wang, Haibin; Yang, Hong
2005-01-01
In this paper, we present the design and implementation of a protein structure data and analysis system that is only used in the lab for analyzing the proprietary data. It is capable of storing public protein data, such as the data in Protein Data Bank (PDB) [1], and life scientists' proprietary data. This toolkit is targeted at life scientists who want to maintain proprietary protein structure data (may be incomplete), to search and query publicly known protein structures and to compare their structure data with others. The comparison functions can be used to find structure differences between two proteins at atom level, especially in mutant versions of proteins. The system can also be used as a tool of choosing better protein structure template in new protein's tertiary structure prediction. The system is developed in Java and the protein data is stored in a relational database (Oracle 9i).
Structural-Thermal-Optical-Performance (STOP) Analysis
NASA Technical Reports Server (NTRS)
Bolognese, Jeffrey; Irish, Sandra
2015-01-01
The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). A STOP analysis is a multidiscipline analysis, consisting of Structural, Thermal and Optical Performance Analyses, that is performed for all space flight instruments and satellites. This course will explain the different parts of performing this analysis. The student will learn how to effectively interact with each discipline in order to accurately obtain the system analysis results.
Simultaneous analysis and design. [in structural engineering
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1985-01-01
Optimization techniques are increasingly being used for performing nonlinear structural analysis. The development of element by element (EBE) preconditioned conjugate gradient (CG) techniques is expected to extend this trend to linear analysis. Under these circumstances the structural design problem can be viewed as a nested optimization problem. There are computational benefits to treating this nested problem as a large single optimization problem. The response variables (such as displacements) and the structural parameters are all treated as design variables in a unified formulation which performs simultaneously the design and analysis. Two examples are used for demonstration. A seventy-two bar truss is optimized subject to linear stress constraints and a wing box structure is optimized subject to nonlinear collapse constraints. Both examples show substantial computational savings with the unified approach as compared to the traditional nested approach.
Thermal and structural analysis of Hermes
NASA Astrophysics Data System (ADS)
Petiau, C.
1989-01-01
The organization of the thermal and structural analysis of the Hermes project is described. A way to resolve the problem of connections between calculations performed by the different Hermes partners is outlined. The interactions between the general model of TPS (thermal protection system) used for global dimensioning of insulation, and refined thermal models giving accurate temperature map details of hot and cold structures, are described. The organization of the structural analysis is based on a finite element general model which supports preliminary design, loads and vibration analyses. Boundary conditions for refined subpart analyses, are cut to size, into the general model by super element techniques. This process involves the use by all partners of efficient computer codes. The Catia-Elfini software system is proposed as a possible code system for structural analysis and optimization purposes.
The Specific Analysis of Structural Equation Models.
McDonald, Roderick P
2004-10-01
Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory checks identifiability and lists and tests the implied constraints. This approach is complete for Markov models, but has remained incomplete for models with correlated disturbances. Some new algebraic results overcome the limitations of DAG theory and give a specific form of structural equation analysis that checks identifiability, tests the implied constraints, equation by equation, and gives consistent estimators of the parameters in closed form from the equations. At present the method is limited to recursive models subject to exclusion conditions. With further work, specific structural equation modeling may yield a complete alternative to the present, rather unsatisfactory, global covariance structure analysis.
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri
2014-01-01
A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.
Thermal-Structural Analysis of Sunshield Membranes
NASA Technical Reports Server (NTRS)
Johnston, John; Parrish, Keith
2003-01-01
Future large infrared space telescopes, such as the James Webb Space Telescope (JWST), will require deployable sunshields to provide passive cooling for optics and instruments. Deployable sunshield structures for such applications typically consist of multiple thin-film membrane layers supported by deployable booms. The mechanical design of the sunshield must accommodate thermal strains due to layer-to-layer temperature differences as well as potentially large in-plane temperature gradients within individual film layers. This paper describes a thermal-structural analysis for predicting the stress state in a thin-film membrane subject to both mechanical thermal loads that could aid in the mechanical design of future sunshield structures. First the temperature field predicted by a thermal analysis is mapped to a structural finite element model, and then the structural response is predicted using a nonlinear static analysis. The structural model uses membrane elements in conjunction with a tension field material model to predict the response of the thin-film membrane layer. The tension field material model accounts for no-compression behavior associated with wrinkling and slackness. This approach was used to study the problem of a single membrane layer from the NASA reference concept for the JWST sunshield. Results from the analysis show that the membrane can experience a loss of tensile preload due to the presence of an in-plane temperature gradient representative of the cold-side layer temperature distribution predicted for the reference concept JWST.
ITER Central Solenoid support structure analysis
Freudenberg, Kevin D; Myatt, R.
2011-01-01
The ITER Central Solenoid (CS) is comprised of six independent coils held together by a pre-compression support structure. This structure must provide enough preload to maintain sufficient coil-to-coil contact and interface load throughout the current pulse. End of burn (EOB) represents one of the most extreme time-points doing the reference scenario when the currents in the CS3 coils oppose those of CS1 & CS2. The CS structure is performance limited by the room temperature static yield requirements needed to support the roughly 180 MN preload to resist coil separation during operation. This preload is applied by inner and external tie plates along the length of the coil stack by mechanical fastening methods utilizing Superbolt technology. The preloading structure satisfies the magnet structural design criteria of ITER and will be verified during mockup studies. The solenoid is supported from the bottom of the toroidal field (TF) coil casing in both the vertical radial directions. The upper support of the CS coil structure maintains radial registration with the TF coil in the event of vertical disruptions (VDE) loads and earthquakes. All of these structure systems are analyzed via a global finite element analysis (FEA). The model includes a complete sector of the TF coil and the CS coil/structure in one self-consistent analysis. The corresponding results and design descriptions are described in this report.
Structural analysis for a 40-story building
NASA Technical Reports Server (NTRS)
Hua, L.
1972-01-01
NASTRAN was chosen as the principal analytical tool for structural analysis of the Illinois Center Plaza Hotel Building in Chicago, Illinois. The building is a 40-story, reinforced concrete structure utilizing a monolithic slab-column system. The displacements, member stresses, and foundation loads due to wind load, live load, and dead load were obtained through a series of NASTRAN runs. These analyses and the input technique are described.
Estrada, Nicolas; Lizcano, Arcesio; Taboada, Alfredo
2010-07-01
This is the second of two papers investigating the mechanical response of cemented granular materials by means of contact dynamics simulations. In this paper, a two-dimensional polydisperse sample with high void ratio is sheared in a load-controlled simple shear numerical device until the stress state of the sample reaches the yield stress. We first study the stress transmission properties of the granular material in terms of the fabric of different subsets of contacts characterized by the magnitude of their normal forces. This analysis highlights the existence of a peculiar force carrying structure in the cemented material, which is reminiscent of the bimodal stress transmission reported for cohesionless granular media. Then, the evolution of contact forces and torques is investigated trying to identify the micromechanical conditions that trigger macroscopic yielding. It is shown that global failure can be associated to the apparition of a group of particles whose contacts fulfill at least one of the local rupture conditions. In particular, these particles form a large region that percolates through the sample at the moment of failure, evidencing the relationship between macroscopic yielding and the emergence of large-scale correlations in the system.
On the structural analysis of textile composites
NASA Astrophysics Data System (ADS)
Bogdanovich, Alexander E.; Pastore, Christopher M.
The local structural inhomogeneities which distinguish textile composites from laminated materials are discussed. Techniques for quantifying these inhomogeneities through three dimensional geometric modelling are introduced and methods of translating them into elastic properties are presented. Some basic ideas on application of spline functions to the stress field analysis in textile composites are proposed. The significance of internal continuity conditions for these materials is emphasized. Several analytical techniques based on the concept of a meso-volume are discussed. An example is presented to demonstrate the application of the method to structural analysis of textile composites.
Structural sensitivity analysis: Methods, applications and needs
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.
1984-01-01
Innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. The techniques include a finite difference step size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Some of the critical needs in the structural sensitivity area are indicated along with plans for dealing with some of those needs.
Structural sensitivity analysis: Methods, applications, and needs
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.
1984-01-01
Some innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. These techniques include a finite-difference step-size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, a simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Finally, some of the critical needs in the structural sensitivity area are indicated along with Langley plans for dealing with some of these needs.
Improving transient analysis technology for aircraft structures
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Chargin, Mladen
1989-01-01
Aircraft dynamic analyses are demanding of computer simulation capabilities. The modeling complexities of semi-monocoque construction, irregular geometry, high-performance materials, and high-accuracy analysis are present. At issue are the safety of the passengers and the integrity of the structure for a wide variety of flight-operating and emergency conditions. The technology which supports engineering of aircraft structures using computer simulation is examined. Available computer support is briefly described and improvement of accuracy and efficiency are recommended. Improved accuracy of simulation will lead to a more economical structure. Improved efficiency will result in lowering development time and expense.
Failure Analysis of Composite Structure Materials.
1986-05-01
listed in order of preference, based on applicability, reliability, cost , and sample requirements. Figure 5-4. Failure Analysis Technique...development of a methodology in which optical analysis is used to increase the time and cost effectiveness of analyzing failed composite material struc...regarding the integrity of the bond. Accurate bondline defect information was achieved in such structures utilizing a transportable californium -252 (2 5 2
Experimental demonstration of macroscopic quantum coherence in Gaussian states
Marquardt, Christoph; Leuchs, Gerd; Andersen, Ulrik L.; Takeno, Yuishi; Yukawa, Mitsuyoshi; Yonezawa, Hidehiro; Furusawa, Akira
2007-09-15
We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51{+-}0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any nonclassical effect. For squeezed and entangled states the effect may be larger but depends critically on the state purity.
Simplified method for nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1983-01-01
A simplified inelastic analysis computer program was developed for predicting the stress-strain history of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a simulated plasticity hardening model. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, and different materials and plasticity models. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
Structural Target Analysis And Recognition System
NASA Astrophysics Data System (ADS)
Lee, Harry C.
1984-06-01
The structural target analysis and recognition system (STARS) is a pyramid and syntactical based vision system that uniquely classifies targets, using their viewable internal structure. Being a totally structural approach, STARS uses a resolution sequence to develop a hierarchical pyramid organized segmentation and formal language to perform the recognition function. Global structure of the target is derived by the segment connectivity of the inter-resolution levels, while local structure is based on the local relationship of segments at a single level. The relationships of both the global and local structures form a resolution syntax tree (RST). Two targets are said to be structurally similar if they have similar RSTs. The matching process of the RSTs proceeds from the root to the leaves of the tree. The depth to which the match progresses before failure or completion determines the degree of patch in a resolution sense. RSTs from various views of a target are grouped together to form a formal language. The underlying grammar is transformed into a stochastic grammar so as to accommodate segmentation and environmental variations. Recognition metrics are a function of the resolution structure and posterior probability at each resolution level. Because of the inherent resolution sequence, STARS can accommodate both candidate and reference targets from various resolutions.
Turbine blade nonlinear structural and life analysis
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Laflen, J. H.; Halford, G. R.; Kaufman, A.
1982-01-01
The utility of advanced structural analysis and life prediction techniques was evaluated for the life assessment of a commercial air-cooled turbine blade with a history of tip cracking. Three dimensional, nonlinear finite element structural analyses were performed for the blade tip region. The computed strain-temperature history of the critical location was imposed on a uniaxial strain controlled test specimen to evaluate the validity of the structural analysis method. Experimental results indicated higher peak stresses and greater stress relaxation than the analytical predictions. Life predictions using the Strainrange Partitioning and Frequency Modified approaches predicted 1200 to 4420 cycles and 2700 cycles to crack initiation, respectively, compared to an observed life of 3000 cycles.
Numerical analysis of soil-structure interaction
NASA Astrophysics Data System (ADS)
Vanlangen, Harry
1991-05-01
A study to improve some existing procedures for the finite element analysis of soil deformation and collapse is presented. Special attention is paid to problems of soil structure interaction. Emphasis is put on the behavior of soil rather than on that of structures. This seems to be justifiable if static interaction of stiff structures and soft soil is considered. In such a case nonlinear response will exclusively stem from soil deformation. In addition, the quality of the results depends to a high extent on the proper modeling of soil flow along structures and not on the modeling of the structure itself. An exception is made when geotextile reinforcement is considered. In that case the structural element, i.e., the geotextile, is highly flexible. The equation of continuum equilibrium, which serves as a starting point for the finite element formulation of large deformation elastoplasticity, is discussed with special attention being paid to the interpretation of some objective stress rate tensors. The solution of nonlinear finite element equations is addressed. Soil deformation in the prefailure range is discussed. Large deformation effect in the analysis of soil deformation is touched on.
Out of plane analysis for composite structures
NASA Technical Reports Server (NTRS)
Paul, P. C.; Saff, C. R.; Sanger, Kenneth B.; Mahler, M. A.; Kan, Han Pin; Kautz, Edward F.
1990-01-01
Simple two dimensional analysis techniques were developed to aid in the design of strong joints for integrally stiffened/bonded composite structures subjected to out of plane loads. It was found that most out of plane failures were due to induced stresses arising from rapid changes in load path direction or geometry, induced stresses due to changes in geometry caused by buckling, or direct stresses produced by fuel pressure or bearing loads. While the analysis techniques were developed to address a great variety of out of plane loading conditions, they were primarily derived to address the conditions described above. The methods were developed and verified using existing element test data. The methods were demonstrated using the data from a test failure of a high strain wingbox that was designed, built, and tested under a previous program. Subsequently, a set of design guidelines were assembled to assist in the design of safe, strong integral composite structures using the analysis techniques developed.
Economic Evaluation of Computerized Structural Analysis
NASA Technical Reports Server (NTRS)
Fortin, P. E.
1985-01-01
This completed effort involved a technical and economic study of the capabilities of computer programs in the area of structural analysis. The applicability of the programs to NASA projects and to other users was studied. The applications in other industries was explored including both research and development and applied areas. The costs of several alternative analysis programs were compared. A literature search covered applicable technical literature including journals, trade publications and books. In addition to the literature search, several commercial companies that have developed computerized structural analysis programs were contacted and their technical brochures reviewed. These programs include SDRC I-DEAS, MSC/NASTRAN, SCADA, SUPERSAP, NISA/DISPLAY, STAAD-III, MICAS, GTSTRUDL, and STARS. These programs were briefly reviewed as applicable to NASA projects.
NASA Astrophysics Data System (ADS)
Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N =4 8 ) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data analysis was based on a qualitative content analysis where students' responses to the macroscopic- and microscopic-level items were categorized to provide insight into the consistency of the students' ideas; if students relied on the same idea at both levels, they ended up in the same category at both levels, and their use of the second law was consistent. The most essential finding is that a majority of students, 52%-69% depending on the physical system under evaluation, used the second law of thermodynamics consistently at macroscopic and microscopic levels; approximately 40% of the students used it correctly in terms of physics while others relied on erroneous ideas, such as the idea of conserving entropy. The most common inconsistency harbored by 10%-15% of the students (depending on the physical system under evaluation) was students' tendency to consider the number of accessible microstates to remain constant even if the entropy was stated to increase in a similar process; other inconsistencies were only seen in the answers of a few students. In order to address the observed inconsistencies, we would suggest that lecturers should utilize tasks that challenge students to evaluate phenomena at macroscopic and microscopic levels concurrently and tasks that would guide students in their search for contradictions in their thinking.
High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope
Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M
2011-01-01
Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462
Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.
Calonne, Neige; Geindreau, Christian; Flin, Frédéric
2014-11-26
Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.
Challenge to macroscopic probes of quantum spacetime based on noncommutative geometry.
Amelino-Camelia, Giovanni
2013-09-06
Over the last decade, a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However, I here observe that the arguments that originally led to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And, I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles, then for the center of mass of a composite macroscopic body the quantization of spacetime is much weaker than Planckian. These results suggest that the center-of-mass observables of macroscopic bodies should not provide good opportunities for uncovering quantum properties of spacetime. And, they also raise some conceptual challenges for theories of mechanics in quantum spacetime, in which, for example, free protons and free atoms should feel the effects of spacetime quantization differently.
NASA Astrophysics Data System (ADS)
Sarfraz, M.; Yoon, P. H.; Saeed, Sundas; Abbas, G.; Shah, H. A.
2017-01-01
A number of different microinstabilities are known to be responsible for regulating the upper bound of temperature anisotropies in solar wind protons, alpha particles, and electrons. In the present paper, quasilinear kinetic theory is employed to investigate the time variation in electron temperature anisotropies in response to the excitation of parallel electron firehose instability in homogeneous and non-collisional solar wind plasma under the condition of T∥e>T⊥e . By assuming the bi-Maxwellian form of velocity distribution functions, various velocity moments of the particle kinetic equation are taken in order to reduce the theory to macroscopic model in which the wave-particle interaction is incorporated, hence, the macroscopic quasilinear theory. The threshold condition for the parallel electron firehose instability, empirically constructed as a curve in (β∥e,T⊥e/T∥e) phase space, is implicit in the present macroscopic quasilinear calculation. Even though the present calculation excludes the oblique firehose instability, which is known to possess a higher growth rate, the basic methodology may be further extended to include such a mode. Among the findings is that the parallel electron firehose instability dynamically couples the electrons and protons, which implies that this instability may be important for overall solar wind dynamics. The present analysis shows that the macroscopic quasilinear approach may eventually be incorporated in global-kinetic models of the solar wind electrons and ions.
Podoshvedov, Sergey A.; Kim, Jaewan
2006-09-15
We suggest an all-optical scheme to generate entangled superposition of a single photon with macroscopic entangled states for testing macroscopic realism. The scheme consists of source of single photons, a Mach-Zehnder interferometer in routes of which a system of coupled-down converters with type-I phase matching is inserted, and a beam splitter for the other auxiliary modes of the scheme. We use quantization of the pumping modes, depletion of the coherent states passing through the system, and interference effect in the pumping modes in the process of erasing which-path information of the single-photon on exit from the Mach-Zehnder interferometer. We show the macroscopic fields of the output superposition are distinguishable states. This scheme generates macroscopic entangled state that violates Bell's inequality. Moreover, the detailed analysis concerning change of amplitudes of entangled superposition by means of repeating this process many times is accomplished. We show our scheme works without photon number resolving detection and it is robust to detector inefficiency.
Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films
NASA Astrophysics Data System (ADS)
Kono, Junichiro
One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.
Macroscopic quantum tunnelling of protons in the KHCO 3 crystal
NASA Astrophysics Data System (ADS)
Fillaux, François; Cousson, Alain; Gutmann, Matthias J.
2006-06-01
Macroscopic quantum entanglement reveals an unforeseen mechanism for proton transfer across hydrogen bonds in the solid state. We utilize neutron scattering techniques to study proton dynamics in the crystal of potassiumhydrogencarbonate (KHCO 3) composed of small planar centrosymmetric dimer entities ( linked by moderately strong hydrogen bonds. All protons are indistinguishable, they behave as fermions, and they are degenerate. The sublattice of protons is a superposition of macroscopic single-particle states. At elevated temperature, protons are progressively transferred to secondary sites at ≈0.6 Å from the main position, via tunnelling along hydrogen bonds. The macroscopic quantum entanglement, still observed at 300 K, reveals that proton transfer is a coherent process throughout the crystal arising from a superposition of macroscopic tunnelling states.
Anatomy of the ethmoid: CT, endoscopic, and macroscopic
Terrier, F.; Weber, W.; Ruefenacht, D.; Porcellini, B.
1985-03-01
The authors illustrate the normal CT anatomy of the ethmoid region and correlate it with the endoscopic and macroscopic anatomy to define landmarks that can be recognized on CT and during endoscopically controlled transnasal ethmoidectomy.
Large Deviations for the Macroscopic Motion of an Interface
NASA Astrophysics Data System (ADS)
Birmpa, P.; Dirr, N.; Tsagkarogiannis, D.
2017-03-01
We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable phases of a ferromagnetic system and in the macroscopic scale are represented by sharp transitions. We derive quantitative estimates for the upper and the lower bound of the cost functional that penalizes all possible deviations and obtain explicit error terms which are valid also in the macroscopic scale. Furthermore, using the result of a companion paper about the minimizers of this cost functional for the macroscopic motion of the interface in a fixed time, we prove that the probability of such events can concentrate on nucleations should the transition happen fast enough.
Macroscopic test of quantum mechanics versus stochastic electrodynamics
NASA Astrophysics Data System (ADS)
Chaturvedi, S.; Drummond, Peter D.
1997-02-01
We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic electrodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below threshold.
Segmentation of histological structures for fractal analysis
NASA Astrophysics Data System (ADS)
Dixon, Vanessa; Kouznetsov, Alexei; Tambasco, Mauro
2009-02-01
Pathologists examine histology sections to make diagnostic and prognostic assessments regarding cancer based on deviations in cellular and/or glandular structures. However, these assessments are subjective and exhibit some degree of observer variability. Recent studies have shown that fractal dimension (a quantitative measure of structural complexity) has proven useful for characterizing structural deviations and exhibits great potential for automated cancer diagnosis and prognosis. Computing fractal dimension relies on accurate image segmentation to capture the architectural complexity of the histology specimen. For this purpose, previous studies have used techniques such as intensity histogram analysis and edge detection algorithms. However, care must be taken when segmenting pathologically relevant structures since improper edge detection can result in an inaccurate estimation of fractal dimension. In this study, we established a reliable method for segmenting edges from grayscale images. We used a Koch snowflake, an object of known fractal dimension, to investigate the accuracy of various edge detection algorithms and selected the most appropriate algorithm to extract the outline structures. Next, we created validation objects ranging in fractal dimension from 1.3 to 1.9 imitating the size, structural complexity, and spatial pixel intensity distribution of stained histology section images. We applied increasing intensity thresholds to the validation objects to extract the outline structures and observe the effects on the corresponding segmentation and fractal dimension. The intensity threshold yielding the maximum fractal dimension provided the most accurate fractal dimension and segmentation, indicating that this quantitative method could be used in an automated classification system for histology specimens.
Static Structural and Modal Analysis Using Isogeometric Analysis
NASA Astrophysics Data System (ADS)
Gondegaon, Sangamesh; Voruganti, Hari K.
2016-12-01
Isogeometric Analysis (IGA) is a new analysis method for unification of Computer Aided Design (CAD) and Computer Aided Engineering (CAE). With the use of NURBS basis functions for both modelling and analysis, the bottleneck of meshing is avoided and a seamless integration is achieved. The CAD and computational geometry concepts in IGA are new to the analysis community. Though, there is a steady growth of literature, details of calculations, explanations and examples are not reported. The content of the paper is complimentary to the existing literature and addresses the gaps. It includes summary of the literature, overview of the methodology, step-by-step calculations and Matlab codes for example problems in static structural and modal analysis in 1-D and 2-D. At appropriate places, comparison with the Finite Element Analysis (FEM) is also included, so that those familiar with FEM can appreciate IGA better.
Stochastic Simulation Tool for Aerospace Structural Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F.; Moore, David F.
2006-01-01
Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures
NASA Astrophysics Data System (ADS)
Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel
2015-04-01
This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.
Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel
2015-04-07
This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures
Liu, Yen Vinokur, Marcel; Panesi, Marco; Sahai, Amal
2015-04-07
This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy
Coupled Aerodynamic-Thermal-Structural (CATS) Analysis
NASA Technical Reports Server (NTRS)
1995-01-01
Coupled Aerodynamic-Thermal-Structural (CATS) Analysis is a focused effort within the Numerical Propulsion System Simulation (NPSS) program to streamline multidisciplinary analysis of aeropropulsion components and assemblies. Multidisciplinary analysis of axial-flow compressor performance has been selected for the initial focus of this project. CATS will permit more accurate compressor system analysis by enabling users to include thermal and mechanical effects as an integral part of the aerodynamic analysis of the compressor primary flowpath. Thus, critical details, such as the variation of blade tip clearances and the deformation of the flowpath geometry, can be more accurately modeled and included in the aerodynamic analyses. The benefits of this coupled analysis capability are (1) performance and stall line predictions are improved by the inclusion of tip clearances and hot geometries, (2) design alternatives can be readily analyzed, and (3) higher fidelity analysis by researchers in various disciplines is possible. The goals for this project are a 10-percent improvement in stall margin predictions and a 2:1 speed-up in multidisciplinary analysis times. Working cooperatively with Pratt & Whitney, the Lewis CATS team defined the engineering processes and identified the software products necessary for streamlining these processes. The basic approach is to integrate the aerodynamic, thermal, and structural computational analyses by using data management and Non-Uniform Rational B-Splines (NURBS) based data mapping. Five software products have been defined for this task: (1) a primary flowpath data mapper, (2) a two-dimensional data mapper, (3) a database interface, (4) a blade structural pre- and post-processor, and (5) a computational fluid dynamics code for aerothermal analysis of the drum rotor. Thus far (1) a cooperative agreement has been established with Pratt & Whitney, (2) a Primary Flowpath Data Mapper has been prototyped and delivered to General Electric
Lasing optical cavities based on macroscopic scattering elements
NASA Astrophysics Data System (ADS)
Consoli, Antonio; López, Cefe
2017-01-01
Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for lasing action. Recently, we demonstrated a novel architecture in which scattering nanoparticles and active element are spatially separated and random lasing is observed. Here we show that this approach can be extended to scattering media with macroscopic size, namely, a pair of sand grains, which act as feedback elements and output couplers, resulting in lasing emission. We demonstrate that the number of lasing modes depends on the surface roughness of the sand grains in use which affect the coherent feedback and thus the emission spectrum. Our findings offer a new perspective of material science and photonic structures, facilitating a novel and simple approach for the realization of new photonics devices based on natural scattering materials.
Lasing optical cavities based on macroscopic scattering elements.
Consoli, Antonio; López, Cefe
2017-01-10
Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for lasing action. Recently, we demonstrated a novel architecture in which scattering nanoparticles and active element are spatially separated and random lasing is observed. Here we show that this approach can be extended to scattering media with macroscopic size, namely, a pair of sand grains, which act as feedback elements and output couplers, resulting in lasing emission. We demonstrate that the number of lasing modes depends on the surface roughness of the sand grains in use which affect the coherent feedback and thus the emission spectrum. Our findings offer a new perspective of material science and photonic structures, facilitating a novel and simple approach for the realization of new photonics devices based on natural scattering materials.
Lasing optical cavities based on macroscopic scattering elements
Consoli, Antonio; López, Cefe
2017-01-01
Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for lasing action. Recently, we demonstrated a novel architecture in which scattering nanoparticles and active element are spatially separated and random lasing is observed. Here we show that this approach can be extended to scattering media with macroscopic size, namely, a pair of sand grains, which act as feedback elements and output couplers, resulting in lasing emission. We demonstrate that the number of lasing modes depends on the surface roughness of the sand grains in use which affect the coherent feedback and thus the emission spectrum. Our findings offer a new perspective of material science and photonic structures, facilitating a novel and simple approach for the realization of new photonics devices based on natural scattering materials. PMID:28071675
Structural analysis of light aircraft using NASTRAN
NASA Technical Reports Server (NTRS)
Wilkinson, M. T.; Bruce, A. C.
1973-01-01
An application of NASTRAN to the structural analysis of light aircraft was conducted to determine the cost effectiveness. A model of the Baby Ace D model homebuilt aircraft was used. The NASTRAN model of the aircraft consists of 193 grid points connected by 352 structural members. All members are either rod or beam elements, including bending of unsymmetrical cross sections and torsion of noncircular cross sections. The aerodynamic loads applied to the aircraft were in accordance with FAA regulations governing the utility category aircraft.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Huang, H.; Hartle, M.
1992-01-01
Accomplishments are described for the third years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) structural analysis capability specialized for graded composite structures including large deformation and deformation position eigenanalysis technologies; (2) a thermal analyzer specialized for graded composite structures; (3) absorption of electromagnetic waves by graded composite structures; and (4) coupled structural thermal/electromagnetic analysis of graded composite structures.
Irreversibility in macroscopic physics: From Carnot cycle to dissipative structures
NASA Astrophysics Data System (ADS)
Glansdorff, P.
1987-07-01
The conceptual foundations of the modern thermodynamic theory related to a large category of far-from-equilibrium phenomena are outlined, and the historical continuity with early developments based on the impossibility of perpetual motion is discussed. In this perspective the discovery of thermodynamic stability criteria around steady or periodic processes, together with a general evolution criterion that is valid in the non-linear region (and thus implying creation of order and applicability to living systems), appears as a most remarkable development indeed. The leading role played by the Brussels school and particularly by Ilya Prigogine is emphasized.
Irreversibility in macroscopic physics: from Carnot cycle to dissipative structures
Glansdorff, P.
1987-07-01
The conceptual foundations of the modern thermodynamic theory related to a large category of far-from-equilibrium phenomena are outlined, and the historical continuity with early developments based on the impossibility of perpetual motion is discussed. In this perspective the discovery of thermodynamic stability criteria around steady or periodic processes, together with a general evolution criterion that is valid in the non-linear region (and thus implying creation of order and applicability to living systems), appears as a most remarkable development indeed. The leading role played by the Brussels school and particularly by Ilya Prigogine is emphasized.
Macroscopic magnetic structures with balanced gain and loss
NASA Astrophysics Data System (ADS)
Lee, J. M.; Kottos, T.; Shapiro, B.
2015-03-01
We investigate magnetic nanostructures with balanced gain and loss and show that such configurations can result in a new type of dynamics for magnetization. Using the simplest possible setup consisting of two coupled ferromagnetic films, one with loss and another one with a balanced amount of gain, we demonstrate the existence of an exceptional point where both the eigenfrequencies and eigenvectors become degenerate. This point corresponds to a particular value of the gain and loss parameter α =αc . For α <αc the frequency spectrum is real, indicating stable dynamics, while for α >αc it is complex, signaling unstable dynamics which is, however, stabilized by nonlinearity.
Energy flow analysis of coupled structures
NASA Astrophysics Data System (ADS)
Cho, Phillip Eung-Ho
1993-01-01
Energy flow analysis (EFA) is an analytical tool for prediction of the frequency-averaged vibrational response of built-up structures at high audible frequencies. The procedure is based on two developments; firstly, the derivation of the partial differential equations that govern the propagation of energy-related quantities in simple structural elements such as rods, beams, plates, and acoustic cavities; secondly, the derivation of coupling relationships in terms of energy-related quantities that describe the transfer of energy for various joints (e.g., beam-to-beam, plate-to-plate, and structure-to acoustic field couplings). In this investigation, EFA is used to predict the vibrational response of various coupled structures. In the process of predicting the vibrational response of the coupled structures, the energy flow coupling relationships at the joints of these structures are derived. In addition, the finite element formulation of the governing energy equations are developed. Because the energy density is discontinuous at the joint, a special global assembly procedure is developed to assemble the finite element matrix equations into global matrix equations. The global matrix assembly procedure is predicated on the development of joint element matrix equations using energy flow coupling relationships for various structural joints. The results predicted by EFA for a frame structure with a three-dimensional joint, where four wave types propagate in the structure, are shown to be a reasonable approximation of the frequency-averaged 'exact' energetics, which are computed from classical displacement solutions. The accuracy of the results predicted by EFA increased with high mode count and modal overlap factor or high non-dimensional wavenumber band and non-dimensional damped wavenumber band in the frequency band of interest. An experimental investigation of vibrational response of a light truck frame structure was performed to verify the results of EFA when applied
CARES - CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES
NASA Technical Reports Server (NTRS)
Nemeth, N. N.
1994-01-01
The beneficial properties of structural ceramics include their high-temperature strength, light weight, hardness, and corrosion and oxidation resistance. For advanced heat engines, ceramics have demonstrated functional abilities at temperatures well beyond the operational limits of metals. This is offset by the fact that ceramic materials tend to be brittle. When a load is applied, their lack of significant plastic deformation causes the material to crack at microscopic flaws, destroying the component. CARES calculates the fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings. The program uses results from a commercial structural analysis program (MSC/NASTRAN or ANSYS) to evaluate component reliability due to inherent surface and/or volume type flaws. A multiple material capability allows the finite element model reliability to be a function of many different ceramic material statistical characterizations. The reliability analysis uses element stress, temperature, area, and volume output, which are obtained from two dimensional shell and three dimensional solid isoparametric or axisymmetric finite elements. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effects of multi-axial stress states on material strength. The shear-sensitive Batdorf model requires a user-selected flaw geometry and a mixed-mode fracture criterion. Flaws intersecting the surface and imperfections embedded in the volume can be modeled. The total strain energy release rate theory is used as a mixed mode fracture criterion for co-planar crack extension. Out-of-plane crack extension criteria are approximated by a simple equation with a semi-empirical constant that can model the maximum tangential stress theory, the minimum strain energy density criterion, the maximum strain energy release rate theory, or experimental
Structural analysis of ITER magnet feeders
Ilyin, Yuri; Gung, Chen-Yu; Bauer, Pierre; Chen, Yonghua; Jong, Cornelis; Devred, Arnaud; Mitchell, Neil; Lorriere, Philippe; Farek, Jaromir; Nannini, Matthieu
2012-06-15
This paper summarizes the results of the static structural analyses, which were conducted in support of the ITER magnet feeder design with the aim of validating certain components against the structural design criteria. While almost every feeder has unique features, they all share many common constructional elements and the same functional specifications. The analysis approach to assess the load conditions and stresses that have driven the design is equivalent for all feeders, except for particularities that needed to be modeled in each case. The mechanical analysis of the feeders follows the sub-modeling approach: the results of the global mechanical model of a feeder assembly are used as input for the detailed models of the feeder' sub-assemblies or single components. Examples of such approach, including the load conditions, stress assessment criteria and solutions for the most critical components, are discussed. It has been concluded that the feeder system is safe in the referential operation scenarios. (authors)
Microfluidic Approaches for Protein Crystal Structure Analysis.
Maeki, Masatoshi; Yamaguchi, Hiroshi; Tokeshi, Manabu; Miyazaki, Masaya
2016-01-01
This review summarizes two microfluidic-based protein crystallization methods, protein crystallization behavior in the microfluidic devices, and their applications for X-ray crystal structure analysis. Microfluidic devices provide many advantages for protein crystallography; they require small sample volumes, provide high-throughput screening, and allow control of the protein crystallization. A droplet-based protein crystallization method is a useful technique for high-throughput screening and the formation of a single crystal without any complicated device fabrication process. Well-based microfluidic platforms also enable effective protein crystallization. This review also summarizes the protein crystal growth behavior in microfluidic devices as, is known from viewpoints of theoretical and experimental approaches. Finally, we introduce applications of microfluidic devices for on-chip crystal structure analysis.
Structure analysis for plane geometry figures
NASA Astrophysics Data System (ADS)
Feng, Tianxiao; Lu, Xiaoqing; Liu, Lu; Li, Keqiang; Tang, Zhi
2013-12-01
As there are increasing numbers of digital documents for education purpose, we realize that there is not a retrieval application for mathematic plane geometry images. In this paper, we propose a method for retrieving plane geometry figures (PGFs), which often appear in geometry books and digital documents. First, detecting algorithms are applied to detect common basic geometry shapes from a PGF image. Based on all basic shapes, we analyze the structural relationships between two basic shapes and combine some of them to a compound shape to build the PGF descriptor. Afterwards, we apply matching function to retrieve candidate PGF images with ranking. The great contribution of the paper is that we propose a structure analysis method to better describe the spatial relationships in such image composed of many overlapped shapes. Experimental results demonstrate that our analysis method and shape descriptor can obtain good retrieval results with relatively high effectiveness and efficiency.
Properties of nuclear matter from macroscopic-microscopic mass formulas
NASA Astrophysics Data System (ADS)
Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun
2015-12-01
Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.
LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views
NASA Astrophysics Data System (ADS)
Anacleto, Joaquim; Pereira, Mário G.
2009-05-01
The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.
Macroscopic Neural Oscillation during Skilled Reaching Movements in Humans
Chung, Chun Kee
2016-01-01
The neural mechanism of skilled movements, such as reaching, has been considered to differ from that of rhythmic movement such as locomotion. It is generally thought that skilled movements are consciously controlled by the brain, while rhythmic movements are usually controlled autonomously by the spinal cord and brain stem. However, several studies in recent decades have suggested that neural networks in the spinal cord may also be involved in the generation of skilled movements. Moreover, a recent study revealed that neural activities in the motor cortex exhibit rhythmic oscillations corresponding to movement frequency during reaching movements as rhythmic movements. However, whether the oscillations are generated in the spinal cord or the cortical circuit in the motor cortex causes the oscillations is unclear. If the spinal cord is involved in the skilled movements, then similar rhythmic oscillations with time delays should be found in macroscopic neural activity. We measured whole-brain MEG signals during reaching. The MEG signals were analyzed using a dynamical analysis method. We found that rhythmic oscillations with time delays occur in all subjects during reaching movements. The results suggest that the corticospinal system is involved in the generation and control of the skilled movements as rhythmic movements. PMID:27524996
Macroscopic acousto-mechanical analogy of a microbubble.
Chaline, Jennifer; Jiménez, Noé; Mehrem, Ahmed; Bouakaz, Ayache; Dos Santos, Serge; Sánchez-Morcillo, Víctor J
2015-12-01
Microbubbles, either in the form of free gas bubbles surrounded by a fluid or encapsulated bubbles used currently as contrast agents for medical echography, exhibit complex dynamics under specific acoustic excitations. Nonetheless, considering their micron size and the complexity of their interaction phenomenon with ultrasound waves, expensive and complex experiments and/or simulations are required for their analysis. The behavior of a microbubble along its equator can be linked to a system of coupled oscillators. In this study, the oscillatory behavior of a microbubble has been investigated through an acousto-mechanical analogy based on a ring-shaped chain of coupled pendula. Observation of parametric vibration modes of the pendula ring excited at frequencies between 1 and 5 Hz is presented. Simulations have been carried out and show mode mixing phenomena. The relevance of the analogy between a microbubble and the macroscopic acousto-mechanical setup is discussed and suggested as an alternative way to investigate the complexity of microbubble dynamics.
Structural analysis at aircraft conceptual design stage
NASA Astrophysics Data System (ADS)
Mansouri, Reza
In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions
RNA Structure Analysis of Viruses Using SHAPE
Burrill, Cecily P.; Andino, Raul
2016-01-01
Selective 2'hydroxyl acylation analyzed by primer extension (SHAPE) provides a means to investigate RNA structure with better resolution and higher throughput than has been possible with traditional methods. We present several protocols, which are based on a variety of previously published methods and were adapted and optimized for the analysis of poliovirus RNA in the Andino laboratory. These include methods for non-denaturing RNA extraction, RNA modification and primer extension, and data processing in ShapeFinder. PMID:24510890
USNO Analysis Center for Source Structure Report
2013-06-01
IVS determination of the "definition and maintenance of the celestial reference frame." These include, primarily, radio frequency images of...International Celestial Reference Frame (ICRF) sources, intrinsic structure models derived from the radio images, and an assessment of the astrometric...pointing your browser to http://rorf.usno.navy.mil/ivs_saac/ The primary service of the Analysis Center is the Radio Reference Frame Image Database
Probabilistic structural analysis methods and applications
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.
1988-01-01
An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.
A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media
NASA Astrophysics Data System (ADS)
Lasseux, D.; Parada, F. J. Valdes; Tapia, J. A. Ochoa; Goyeau, B.
2014-05-01
The study of gas slip-flow in porous media is relevant in many applications ranging from nanotechnology to enhanced oil recovery and in any situation involving low-pressure gas-transport through structures having sufficiently small pores. In this paper, we use the method of volume averaging for deriving effective-medium equations in the framework of a slightly compressible gas flow. The result of the upscaling process is an effective-medium model subjected to time- and length-scale constraints, which are clearly identified in our derivation. At the first order in the Knudsen number, the macroscopic momentum transport equation corresponds to a Darcy-like model involving the classical intrinsic permeability tensor and a slip-flow correction tensor that is also intrinsic. It generalizes the Darcy-Klinkenberg equation for ideal gas flow, and exhibits a more complex form for dense gas. The component values of the two intrinsic tensors were computed by solving the associated closure problems on two- and three-dimensional periodic unit cells. Furthermore, the dependence of the slip-flow correction with the porosity was also verified to agree with approximate analytical results. Our predictions show a power-law relationship between the permeability and the slip-flow correction that is consistent with other works. Nevertheless, the generalization of such a relationship to any configuration requires more analysis.
Niu, Z.; Bruckman, M.; Li, S.; Lee, A.; Lee, B.; Pingali, S.-V.; Thiyagarajan, P.; Wang, Q.; Univ. of South Carolina
2007-06-05
One-dimensional (1D) polyaniline/tobacco mosaic virus (TMV) composite nanofibers and macroscopic bundles of such fibers were generated via a self-assembly process of TMV assisted by in-situ polymerization of polyaniline on the surface of TMV. At near-neutral reaction pH, branched polyaniline formed on the surface of TMV preventing lateral association. Therefore, long 1D nanofibers were observed with high aspect ratios and excellent processibility. At a lower pH, transmission electron microscopy (TEM) analysis revealed that initially long nanofibers were formed which resulted in bundled structures upon long-time reaction, presumably mediated by the hydrophobic interaction because of the polyaniline on the surface of TMV. In-situ time-resolved small-angle X-ray scattering study of TMV at different reaction conditions supported this mechanism. This novel strategy to assemble TMV into 1D and 3D supramolecular composites could be utilized in the fabrication of advanced materials for potential applications including electronics, optics, sensing, and biomedical engineering.
Industrial entrepreneurial network: Structural and functional analysis
NASA Astrophysics Data System (ADS)
Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.
2016-12-01
Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.
Evaluation, analysis and prediction of geologic structures
NASA Astrophysics Data System (ADS)
Woodward, Nicholas B.
2012-08-01
Balanced cross-sections claim to be better because they apply a rigorous set of rules to develop the conceptual model of the structures present in an area. Balanced cross-sections can be further improved and become more useful to understanding real physical problems by collection of additional data such as seismic reflection surveys, collection of additional stratigraphic data, or collection of rock fabric information. The additional information validates the initial model and provides details on deformation conditions and on local rock responses to the deformation. Although individual cross-sections are two dimensional, the objective of evaluation and analysis of deformed regions should be three dimensional whenever possible to recognize the challenges of the real world. Subsurface system analysis derived from the hydrologic community emphasizes conceptual model development through model verification, validation, uncertainty quantification, benchmarking and meta-analysis. Their approach includes many steps informally used by the structural geology community but in a much more explicit way. Newer geological applications of structural geology would benefit from this more rigorous approach for designing and doing performance predictions as technological needs become more socially sensitive such as for carbon storage sites, new areas of energy exploration in higher population density areas, or for nuclear waste storage facilities.
Remote geologic structural analysis of Yucca Flat
NASA Astrophysics Data System (ADS)
Foley, M. G.; Heasler, P. G.; Hoover, K. A.; Rynes, N. J.; Thiessen, R. L.; Alfaro, J. L.
1991-12-01
The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the U.S. Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures.
Remote geologic structural analysis of Yucca Flat
Foley, M.G.; Heasler, P.G.; Hoover, K.A. ); Rynes, N.J. ); Thiessen, R.L.; Alfaro, J.L. )
1991-12-01
The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.
Remote geologic structural analysis of Yucca Flat
Foley, M.G.; Heasler, P.G.; Hoover, K.A.; Rynes, N.J.; Thiessen, R.L.; Alfaro, J.L.
1991-12-01
The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.
Nanoscale analysis of structural synaptic plasticity
Bourne, Jennifer N.; Harris, Kristen M.
2011-01-01
In the 1950’s, transmission electron microscopy was first used to reveal the diversity in synaptic structure and composition in the central nervous system [1;2]. Since then, visualization and reconstruction of serial thin sections have provided three-dimensional contexts in which to understand how synapses are modified with plasticity, learning, and sensory input [3–17]. Three-dimensional reconstruction from serial section electron microscopy (ssEM) has proven invaluable for the comprehensive analysis of structural synaptic plasticity. It has provided the needed nanometer resolution to localize and measure key subcellular structures, such as the postsynaptic density (PSD) and presynaptic vesicles which define a synapse, polyribosomes as sites of local protein synthesis, smooth endoplasmic reticulum (SER) for local regulation of calcium and trafficking of membrane proteins, endosomes for recycling, and fine astroglial processes at the perimeter of some synapses. Thus, ssEM is an essential tool for nanoscale analysis of the cell biological and anatomical modifications that underlie changes in synaptic strength. Here we discuss several important issues associated with interpreting the functional significance of structural synaptic plasticity, especially during long-term potentiation, a widely studied cellular model of learning and memory. PMID:22088391
On cavitation and macroscopic behaviour of amorphous polymer-rubber blends.
Belayachi, Naima; Benseddiq, Noureddine; Naït-Abdelaziz, Moussa; Hamdi, Adel
2008-04-01
The macroscopic behaviour of rubber-modified polymethyl methacrylate (PMMA) was investigated by taking into account the microdeformation mechanisms of rubber cavitation. The dependence of the macroscopic stress-strain behaviour of matrix deformation on the cavitation of rubber particles was discussed. A phenomenological elastic-viscoplastic model was used to model the behaviour of the matrix material, while the rubber particles were modelled with the hyperelasticity theory. A two-phase composite material with a periodic arrangement of reinforcing particles of a circular unit cell section was considered. Finite-element analysis was used to determine the local stresses and strains in the two-phase composite. In order to describe the cavitation of the rubber particles, a criterion of void nucleation is implemented in the finite-element (FE) code. A comparison of the numerically predicted response with experimental result indicates that the numerical homogenisation analysis gives satisfactory prediction results.
On cavitation and macroscopic behaviour of amorphous polymer-rubber blends
Belayachi, Naima; Benseddiq, Noureddine; Naït-Abdelaziz, Moussa; Hamdi, Adel
2008-01-01
The macroscopic behaviour of rubber-modified polymethyl methacrylate (PMMA) was investigated by taking into account the microdeformation mechanisms of rubber cavitation. The dependence of the macroscopic stress–strain behaviour of matrix deformation on the cavitation of rubber particles was discussed. A phenomenological elastic-viscoplastic model was used to model the behaviour of the matrix material, while the rubber particles were modelled with the hyperelasticity theory. A two-phase composite material with a periodic arrangement of reinforcing particles of a circular unit cell section was considered. Finite-element analysis was used to determine the local stresses and strains in the two-phase composite. In order to describe the cavitation of the rubber particles, a criterion of void nucleation is implemented in the finite-element (FE) code. A comparison of the numerically predicted response with experimental result indicates that the numerical homogenisation analysis gives satisfactory prediction results. PMID:27877983
Probabilistic analysis of a materially nonlinear structure
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.
1990-01-01
A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.
Structural Analysis Using Computer Based Methods
NASA Technical Reports Server (NTRS)
Dietz, Matthew R.
2013-01-01
The stiffness of a flex hose that will be used in the umbilical arms of the Space Launch Systems mobile launcher needed to be determined in order to properly qualify ground umbilical plate behavior during vehicle separation post T-0. This data is also necessary to properly size and design the motors used to retract the umbilical arms. Therefore an experiment was created to determine the stiffness of the hose. Before the test apparatus for the experiment could be built, the structure had to be analyzed to ensure it would not fail under given loading conditions. The design model was imported into the analysis software and optimized to decrease runtime while still providing accurate restlts and allow for seamless meshing. Areas exceeding the allowable stresses in the structure were located and modified before submitting the design for fabrication. In addition, a mock up of a deep space habitat and the support frame was designed and needed to be analyzed for structural integrity under different loading conditions. The load cases were provided by the customer and were applied to the structure after optimizing the geometry. Once again, weak points in the structure were located and recommended design changes were made to the customer and the process was repeated until the load conditions were met without exceeding the allowable stresses. After the stresses met the required factors of safety the designs were released for fabrication.
Nuclear magnetic resonance studies of macroscopic morphology and dynamics
Barrall, Geoffrey Alden
1995-09-01
Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.
Structural Analysis of Sandwich Foam Panels
Kosny, Jan; Huo, X. Sharon
2010-04-01
The Sandwich Panel Technologies including Structural Insulated Panels (SIPs) can be used to replace the conventional wooden-frame construction method. The main purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and SGI Venture, Inc. was to design a novel high R-value type of metal sandwich panelized technology. This CRADA project report presents design concept discussion and numerical analysis results from thermal performance study of this new building envelope system. The main objective of this work was to develop a basic concept of a new generation of wall panel technologies which will have R-value over R-20 will use thermal mass to improve energy performance in cooling dominated climates and will be 100% termite resistant. The main advantages of using sandwich panels are as follows: (1) better energy saving structural panels with high and uniform overall wall R-value across the elevation that could not be achieved in traditional walls; and (2) reducing the use of raw materials or need for virgin lumber. For better utilization of these Sandwich panels, engineers need to have a thorough understanding of the actual performance of the panels and system. Detailed analysis and study on the capacities and deformation of individual panels and its assembly have to be performed to achieve that goal. The major project activity was to conduct structural analysis of the stresses, strains, load capacities, and deformations of individual sandwich components under various load cases. The analysis simulated the actual loading conditions of the regular residential building and used actual material properties of the steel facings and foam.
Fe(II) uptake on natural montmorillonites. I. Macroscopic and spectroscopic characterization.
Soltermann, Daniela; Marques Fernandes, Maria; Baeyens, Bart; Dähn, Rainer; Joshi, Prachi A; Scheinost, Andreas C; Gorski, Christopher A
2014-01-01
Iron is an important redox-active element that is ubiquitous in both engineered and natural environments. In this study, the retention mechanism of Fe(II) on clay minerals was investigated using macroscopic sorption experiments combined with Mössbauer and extended X-ray absorption fine structure (EXAFS) spectroscopy. Sorption edges and isotherms were measured under anoxic conditions on natural Fe-bearing montmorillonites (STx, SWy, and SWa) having different structural Fe contents ranging from 0.5 to 15.4 wt % and different initial Fe redox states. Batch experiments indicated that, in the case of low Fe-bearing (STx) and dithionite-reduced clays, the Fe(II) uptake follows the sorption behavior of other divalent transition metals, whereas Fe(II) sorption increased by up to 2 orders of magnitude on the unreduced, Fe(III)-rich montmorillonites (SWy and SWa). Mössbauer spectroscopy analysis revealed that nearly all the sorbed Fe(II) was oxidized to surface-bound Fe(III) and secondary Fe(III) precipitates were formed on the Fe(III)-rich montmorillonite, while sorbed Fe is predominantly present as Fe(II) on Fe-low and dithionite-reduced clays. The results provide compelling evidence that Fe(II) uptake characteristics on clay minerals are strongly correlated to the redox properties of the structural Fe(III). The improved understanding of the interfacial redox interactions between sorbed Fe(II) and clay minerals gained in this study is essential for future studies developing Fe(II) sorption models on natural montmorillonites.
Structural dynamic analysis of composite beams
NASA Astrophysics Data System (ADS)
Suresh, J. K.; Venkatesan, C.; Ramamurti, V.
1990-12-01
In the treatment of the structural dynamic problem of composite materials, two alternate types of formulations, based on the elastic modulus and compliance quantities, exist in the literature. The definitions of the various rigidities are observed to differ in these two approaches. Following these two types of formulation, the structural dynamic characteristics of a composite beam are analyzed. The results of the analysis are compared with those available in the literature. Based on the comparison, the influence of the warping function in defining the coupling terms in the modulus approach and also on the natural frequencies of the beam has been identified. It is found from the analysis that, in certain cases, the difference between the results of the two approaches is appreciable. These differences may be attributed to the constraints imposed on the deformation and flexibility of the beam by the choice of the description of the warping behaviour. Finally, the influence of material properties on the structural dynamic characteristics of the beam is studied for different composites for various angles of orthotropy.
Molecular Eigensolution Symmetry Analysis and Fine Structure
Harter, William G.; Mitchell, Justin C.
2013-01-01
Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041
Bacterial macroscopic rope-like fibers with cytopathic and adhesive properties.
Xicohtencatl-Cortes, Juan; Saldaña, Zeus; Deng, Wanyin; Castañeda, Elsa; Freer, Enrique; Tarr, Phil I; Finlay, B Brett; Puente, José Luis; Girón, Jorge A
2010-10-15
We present a body of ultrastructural, biochemical, and genetic evidence that demonstrates the oligomerization of virulence-associated autotransporter proteins EspC or EspP produced by deadly human pathogens enterohemorrhagic and enteropathogenic Escherichia coli into novel macroscopic rope-like structures (>1 cm long). The rope-like structures showed high aggregation and insolubility, stability to anionic detergents and high temperature, and binding to Congo Red and thioflavin T dyes. These are properties also exhibited by human amyloidogenic proteins. These macroscopic ropes were not observed in cultures of nonpathogenic Escherichia coli or isogenic espP or espC deletion mutants of enterohemorrhagic or enteropathogenic Escherichia coli but were produced by an Escherichia coli K-12 strain carrying a plasmid expressing espP. Purified recombinant EspP monomers were able to self-assemble into macroscopic ropes upon incubation, suggesting that no other protein was required for assembly. The ropes bound to and showed cytopathic effects on cultured epithelial cells, served as a substratum for bacterial adherence and biofilm formation, and protected bacteria from antimicrobial compounds. We hypothesize that these ropes play a biologically significant role in the survival and pathogenic scheme of these organisms.
Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers.
Liu, Yingjun; Xu, Zhen; Gao, Weiwei; Cheng, Zhengdong; Gao, Chao
2017-02-24
Two-dimensional colloidal nanomaterials are running into renaissance after the enlightening researches of graphene. Macroscopic one-dimensional fiber is an optimal ordered structural form to express the in-plane merits of 2D nanomaterials, and the formation of liquid crystals (LCs) allows the creation of continuous fibers. In the correlated system from LCs to fibers, understanding their macroscopic organizing behavior and transforming them into new solid fibers is greatly significant for applications. Herein, we retrospect the history of 2D colloids and discuss about the concept of 2D nanomaterial fibers in the context of LCs, elaborating the motivation, principle and possible strategies of fabrication. Then we highlight the creation, development and typical applications of graphene fibers. Additionally, the latest advances of other 2D nanomaterial fibers are also summarized. Finally, conclusions, challenges and perspectives are provided to show great expectations of better and more fibrous materials of 2D nanomaterials. This review gives a comprehensive retrospect of the past century-long effort about the whole development of 2D colloids, and plots a clear roadmap - "lamellar solid - LCs - macroscopic fibers - flexible devices", which will certainly open a new era of structural-multifunctional application for the conventional 2D colloids.
Bacterial Macroscopic Rope-like Fibers with Cytopathic and Adhesive Properties*
Xicohtencatl-Cortes, Juan; Saldaña, Zeus; Deng, Wanyin; Castañeda, Elsa; Freer, Enrique; Tarr, Phil I.; Finlay, B. Brett; Puente, José Luis; Girón, Jorge A.
2010-01-01
We present a body of ultrastructural, biochemical, and genetic evidence that demonstrates the oligomerization of virulence-associated autotransporter proteins EspC or EspP produced by deadly human pathogens enterohemorrhagic and enteropathogenic Escherichia coli into novel macroscopic rope-like structures (>1 cm long). The rope-like structures showed high aggregation and insolubility, stability to anionic detergents and high temperature, and binding to Congo Red and thioflavin T dyes. These are properties also exhibited by human amyloidogenic proteins. These macroscopic ropes were not observed in cultures of nonpathogenic Escherichia coli or isogenic espP or espC deletion mutants of enterohemorrhagic or enteropathogenic Escherichia coli but were produced by an Escherichia coli K-12 strain carrying a plasmid expressing espP. Purified recombinant EspP monomers were able to self-assemble into macroscopic ropes upon incubation, suggesting that no other protein was required for assembly. The ropes bound to and showed cytopathic effects on cultured epithelial cells, served as a substratum for bacterial adherence and biofilm formation, and protected bacteria from antimicrobial compounds. We hypothesize that these ropes play a biologically significant role in the survival and pathogenic scheme of these organisms. PMID:20688909
Study of Fission Barrier Heights of Uranium Isotopes by the Macroscopic-Microscopic Method
NASA Astrophysics Data System (ADS)
Zhong, Chun-Lai; Fan, Tie-Shuan
2014-09-01
Potential energy surfaces of uranium nuclei in the range of mass numbers 229 through 244 are investigated in the framework of the macroscopic-microscopic model and the heights of static fission barriers are obtained in terms of a double-humped structure. The macroscopic part of the nuclear energy is calculated according to Lublin—Strasbourg-drop (LSD) model. Shell and pairing corrections as the microscopic part are calculated with a folded-Yukawa single-particle potential. The calculation is carried out in a five-dimensional parameter space of the generalized Lawrence shapes. In order to extract saddle points on the potential energy surface, a new algorithm which can effectively find an optimal fission path leading from the ground state to the scission point is developed. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.
Extracting Macroscopic Information from Web Links.
ERIC Educational Resources Information Center
Thelwall, Mike
2001-01-01
Discussion of Web-based link analysis focuses on an evaluation of Ingversen's proposed external Web Impact Factor for the original use of the Web, namely the interlinking of academic research. Studies relationships between academic hyperlinks and research activities for British universities and discusses the use of search engines for Web link…
Nonlinear frequency response analysis of structural vibrations
NASA Astrophysics Data System (ADS)
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Mitter, Christian; Jakab, András; Brugger, Peter C.; Ricken, Gerda; Gruber, Gerlinde M.; Bettelheim, Dieter; Scharrer, Anke; Langs, Georg; Hainfellner, Johannes A.; Prayer, Daniela; Kasprian, Gregor
2015-01-01
Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in utero DTI as a clinical imaging tool, an independent comparison between macroscopic imaging and microscopic histology data in the same subject is needed. The present study aimed to cross-validate normal as well as abnormal in utero tractography results of commissural and internal capsule fibers in human fetal brains using postmortem histological structure tensor (ST) analysis. In utero tractography findings from two structurally unremarkable and five abnormal fetal brains were compared to the results of postmortem ST analysis applied to digitalized whole hemisphere sections of the same subjects. An approach to perform ST-based deterministic tractography in histological sections was implemented to overcome limitations in correlating in utero tractography to postmortem histology data. ST analysis and histology-based tractography of fetal brain sections enabled the direct assessment of the anisotropic organization and main fiber orientation of fetal telencephalic layers on a micro- and macroscopic scale, and validated in utero tractography results of corpus callosum and internal capsule fiber tracts. Cross-validation of abnormal in utero tractography results could be achieved in four subjects with agenesis of the corpus callosum (ACC) and in two cases with malformations of internal capsule fibers. In addition, potential limitations of current DTI-based in utero tractography could be demonstrated in several brain regions. Combining the three-dimensional nature of DTI-based in utero tractography with the microscopic resolution provided by histological ST analysis may ultimately facilitate a more complete morphologic
Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.
Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel
2015-11-19
The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and
Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography
NASA Astrophysics Data System (ADS)
Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel
2015-11-01
The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and
Graphene chiral liquid crystals and macroscopic assembled fibres
Xu, Zhen; Gao, Chao
2011-01-01
Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390
Microscopic to Macroscopic Dynamical Models of Sociality
NASA Astrophysics Data System (ADS)
Solis Salas, Citlali; Woolley, Thomas; Pearce, Eiluned; Dunbar, Robin; Maini, Philip; Social; Evolutionary Neuroscience Research Group (Senrg) Collaboration
To help them survive, social animals, such as humans, need to share knowledge and responsibilities with other members of the species. The larger their social network, the bigger the pool of knowledge available to them. Since time is a limited resource, a way of optimising its use is meeting amongst individuals whilst fulfilling other necessities. In this sense it is useful to know how many, and how often, early humans could meet during a given period of time whilst performing other necessary tasks, such as food gathering. Using a simplified model of these dynamics, which comprehend encounter and memory, we aim at producing a lower-bound to the number of meetings hunter-gatherers could have during a year. We compare the stochastic agent-based model to its mean-field approximation and explore some of the features necessary for the difference between low population dynamics and its continuum limit. We observe an emergent property that could have an inference in the layered structure seen in each person's social organisation. This could give some insight into hunter-gatherer's lives and the development of the social layered structure we have today. With support from the Mexican Council for Science and Technology (CONACyT), the Public Education Secretariat (SEP), and the Mexican National Autonomous University's Foundation (Fundacion UNAM).
Geometrically nonlinear analysis of laminated elastic structures
NASA Technical Reports Server (NTRS)
Reddy, J. N.
1984-01-01
Laminated composite plates and shells that can be used to model automobile bodies, aircraft wings and fuselages, and pressure vessels among many other were analyzed. The finite element method, a numerical technique for engineering analysis of structures, is used to model the geometry and approximate the solution. Various alternative formulations for analyzing laminated plates and shells are developed and their finite element models are tested for accuracy and economy in computation. These include the shear deformation laminate theory and degenerated 3-D elasticity theory for laminates.
Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.
1990-01-01
This manual describes how to use the Ceramics Analysis and Reliability Evaluation of Structures (CARES) computer program. The primary function of the code is to calculate the fast fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. The program uses results from MSC/NASTRAN or ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effect of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or unifrom uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-square analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests, ninety percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan ninety percent confidence band values are also provided. The probabilistic fast-fracture theories used in CARES, along with the input and output for CARES, are described. Example problems to demonstrate various feature of the program are also included. This manual describes the MSC/NASTRAN version of the CARES program.
The matrix exponential in transient structural analysis
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
1987-01-01
The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.
Structural reliability analysis of laminated CMC components
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Palko, Joseph L.; Gyekenyesi, John P.
1991-01-01
For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution.
Analysis of Diffraction Anomalous Fine Structure
NASA Astrophysics Data System (ADS)
Cross, Julie Olmsted
This thesis presents a systematic study of the application of DAFS to determine site-specific local structural and chemical information in complex materials, and the first application of state-of-the-art theoretical XAFS calculations using the computer program scFEFF to model DAFS data. In addition, the iterative dispersion analysis method, first suggested by Pickering, et al., has been generalized to accommodate the off-resonance anomalous scattering from heavy atoms in the unit cell. The generalized algorithm scKKFIT was applied to DAFS data from eight (00 l) reflections of the high-T _{c} superconductor YBa _2Cu_3O_ {6.8} to obtain the weighted complex resonant scattering amplitudes Delta f_{ rm w}(Q, E). The fine-structure functions chi_{rm w}(Q, E) isolated from the Delta f_{ rm w}(Q, E) are linear combinations of the individual site fine structure functions chi _{rm w}(Q, E) = Sigma_{i}W_{i,{ bf Q}}chi_{i}(E) from the two inequivalent Cu sites, added together according to the structure factor for the Cu sublattice. The chi_{rm w}(Q, E) were fit en masse using the XAFS analysis program scFEFFIT under a set of constraints on the coefficients W _{i,{bf Q}} based on the structure factor for kinematic scattering. The W_{i,{bf Q}} determined by scFEFFIT were used to obtain the fully separated complex resonant scattering amplitudes Delta f(E) for the two Cu sites. The theoretical connection between DAFS and XAFS is used to justify the application of state-of-the-art theoretical XAFS calculations to DAFS analysis. The polarization dependence of DAFS is described in terms of individual virtual photoelectron scattering paths in the Rehr-Albers separable curved-wave formalism. Polarization is shown to be an important factor in all DAFS experiments. Three experimental constraints are found necessary for obtaining site-separated Delta f(E) from DAFS data by linear inversion of the W_{i, {bf Q}} matrix and scKKFIT isolated Delta f_{rm w }(Q, E): (1) The diffraction must be
Scaling of macroscopic superpositions close to a quantum phase transition
NASA Astrophysics Data System (ADS)
Abad, Tahereh; Karimipour, Vahid
2016-05-01
It is well known that in a quantum phase transition (QPT), entanglement remains short ranged [Osterloh et al., Nature (London) 416, 608 (2005), 10.1038/416608a]. We ask if there is a quantum property entailing the whole system which diverges near this point. Using the recently proposed measures of quantum macroscopicity, we show that near a quantum critical point, it is the effective size of macroscopic superposition between the two symmetry breaking states which grows to the scale of system size, and its derivative with respect to the coupling shows both singular behavior and scaling properties.
NASA Technical Reports Server (NTRS)
Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.
Klibansky, N; Scharf, F S
2015-10-01
For two protogynous hermaphrodite fish species, the performance of visual gonad analysis techniques was evaluated to determine when the use of macroscopic methods was sufficient and when microscopic techniques were necessary. Simple macroscopic gonad analysis was found to be a powerful tool for distinguishing sex and whether or not females were spawning capable or ripe for black sea bass Centropristis striata (n = 1443) and red porgy Pagrus pagrus (n = 980), often producing results that were in close agreement with more complex and expensive microscopic techniques. Estimates of key reproductive variables, such as size-dependent sex-change ogives, spawning season duration, spawning fraction and batch number, were also very similar or equal between methods. Apparent seasonal spawning activity was also predicted similarly by each method and the patterns were highly correlated with seasonal patterns in gonado-somatic indices. In contrast, distinguishing between immature females and those that were mature, but inactive, proved difficult when using macroscopic methods and, in these cases, predictions often differed from those produced microscopically. In turn, maturity ogives differed significantly between methods for C. striata (maturity ogives could not be generated for P. pagrus as nearly all fish encountered were mature). Agreement rates among male phases were also very low. Macroscopic methods were able to identify signs of sex transition in very advanced specimens, but early signs were only evident microscopically. While much more detail is visible microscopically, here several population-scale parameters important for fisheries management were estimated equally well with the unaided eye for C. striata and P. pagrus. For comprehensive, fishery-independent surveys and long-term research programmes in particular, determining when microscopic techniques are and are not necessary can greatly improve efficiency and reduce costs without compromising data quality.
Rhetorical structure theory and text analysis
NASA Astrophysics Data System (ADS)
Mann, William C.; Matthiessen, Christian M. I. M.; Thompson, Sandra A.
1989-11-01
Recent research on text generation has shown that there is a need for stronger linguistic theories that tell in detail how texts communicate. The prevailing theories are very difficult to compare, and it is also very difficult to see how they might be combined into stronger theories. To make comparison and combination a bit more approachable, we have created a book which is designed to encourage comparison. A dozen different authors or teams, all experienced in discourse research, are given exactly the same text to analyze. The text is an appeal for money by a lobbying organization in Washington, DC. It informs, stimulates and manipulates the reader in a fascinating way. The joint analysis is far more insightful than any one team's analysis alone. This paper is our contribution to the book. Rhetorical Structure Theory (RST), the focus of this paper, is a way to account for the functional potential of text, its capacity to achieve the purposes of speakers and produce effects in hearers. It also shows a way to distinguish coherent texts from incoherent ones, and identifies consequences of text structure.
A review of macroscopic ductile failure criteria.
Corona, Edmundo; Reedlunn, Benjamin
2013-09-01
The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.
Automatic Detection of Malignant Melanoma using Macroscopic Images
Ramezani, Maryam; Karimian, Alireza; Moallem, Payman
2014-01-01
In order to distinguish between benign and malignant types of pigmented skin lesions, computerized procedures have been developed for images taken by different equipment that the most available one of them is conventional digital cameras. In this research, a new procedure to detect malignant melanoma from benign pigmented lesions using macroscopic images is presented. The images are taken by conventional digital cameras with spatial resolution higher than one megapixel and by considering no constraints and special conditions during imaging. In the proposed procedure, new methods to weaken the effect of nonuniform illumination, correction of the effect of thick hairs and large glows on the lesion and also, a new threshold-based segmentation algorithm are presented. 187 features representing asymmetry, border irregularity, color variation, diameter and texture are extracted from the lesion area and after reducing the number of features using principal component analysis (PCA), lesions are determined as malignant or benign using support vector machine classifier. According to the dermatologist diagnosis, the proposed processing methods have the ability to detect lesions area with high accuracy. The evaluation measures of classification have indicated that 13 features extracted by PCA method lead to better results than all of the extracted features. These results led to an accuracy of 82.2%, sensitivity of 77% and specificity of 86.93%. The proposed method may help dermatologists to detect the malignant lesions in the primary stages due to the minimum constraints during imaging, the ease of usage by the public and nonexperts, and high accuracy in detection of the lesion type. PMID:25426432
Studies into the averaging problem: Macroscopic gravity and precision cosmology
NASA Astrophysics Data System (ADS)
Wijenayake, Tharake S.
2016-08-01
With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model
High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion.
Anderson, Cyrus A; Jones, Amanda R; Briggs, Ellen M; Novitsky, Eric J; Kuykendall, Darrell W; Sottos, Nancy R; Zimmerman, Steven C
2013-05-15
Adhesion phenomena are essential to many biological processes and to synthetic adhesives and manufactured coatings and composites. Supramolecular interactions are often implicated in various adhesion mechanisms. Recently, supramolecular building blocks, such as synthetic DNA base-pair mimics, have drawn attention in the context of molecular recognition, self-assembly, and supramolecular polymers. These reversible, hydrogen-bonding interactions have been studied extensively for their adhesive capabilities at the nano- and microscale, however, much less is known about their utility for practical adhesion in macroscopic systems. Herein, we report the preparation and evaluation of supramolecular coupling agents based on high-affinity, high-fidelity quadruple hydrogen-bonding units (e.g., DAN·DeUG, Kassoc = 10(8) M(-1) in chloroform). Macroscopic adhesion between polystyrene films and glass surfaces modified with 2,7-diamidonaphthyridine (DAN) and ureido-7-deazaguanine (DeUG) units was evaluated by mechanical testing. Structure-property relationships indicate that the designed supramolecular interaction at the nanoscale plays a key role in the observed macroscopic adhesive response. Experiments probing reversible adhesion or self-healing properties of bulk samples indicate that significant recovery of initial strength can be realized after failure but that the designed noncovalent interaction does not lead to healing during the process of adhesion loss.
Macroscopic Graphene Fibers Directly Assembled from CVD-Grown Fiber-Shaped Hollow Graphene Tubes.
Chen, Tao; Dai, Liming
2015-12-01
Using a copper wire as the substrate for the CVD growth of a hollow multilayer graphene tube, we prepared a macroscopic porous graphene fiber by removing the copper in an aqueous mixture solution of iron chloride (FeCl3, 1 M) and hydrochloric acid (HCl, 3 M) and continuously drawing the newly released graphene tube out of the liquid. The length of the macroscopic graphene fiber thus produced is determined mainly by the length of the copper wire used. The resultant macroscopic graphene fiber with the integrated graphene structure exhibited a high electrical conductivity (127.3 S cm(-1)) and good flexibility over thousands bending cycles, showing great promise as flexible electrodes for wearable optoelectronics and energy devices-exemplified by its use as a flexible conductive wire for lighting a LED and a cathode in a fiber-shaped dye-sensitized solar cell (DSSC) with one of the highest energy conversion efficiencies (3.25%) among fiber-shaped DSSCs.
Macroscopic stability of high β MAST plasmas
NASA Astrophysics Data System (ADS)
Chapman, I. T.; Cooper, W. A.; Graves, J. P.; Gryaznevich, M. P.; Hastie, R. J.; Hender, T. C.; Howell, D. F.; Hua, M.-D.; Huysmans, G. T. A.; Keeling, D. L.; Liu, Y. Q.; Meyer, H. F.; Michael, C. A.; Pinches, S. D.; Saarelma, S.; Sabbagh, S. A.; MAST Team
2011-07-01
The high-beta capability of the spherical tokamak, coupled with a suite of world-leading diagnostics on MAST, has facilitated significant improvements in the understanding of performance-limiting core instabilities in high performance plasmas. For instance, the newly installed motional Stark effect diagnostic, with radial resolution <25 mm, has enabled detailed study of saturated long-lived modes in hybrid scenarios. Similarly, the upgraded Thomson scattering system, with radial resolution <10 mm and the possibility of temporal resolution of 1 µs, has allowed detailed analysis of the density and temperature profiles during transient activity in the plasma, such as at a sawtooth crash. High resolution charge exchange recombination spectroscopy provided measurement of rotation braking induced by both applied magnetic fields and by magnetohydrodynamic (MHD) instabilities, allowing tests of neoclassical toroidal viscosity theory predictions. Finally, MAST is also equipped with internal and external coils that allow non-axisymmetric fields to be applied for active MHD spectroscopy of instabilities near the no-wall beta limit. MAST has been able to operate above the pressure at which the resonant field amplification is observed to strongly increase. In order to access such high pressures, the resistive wall mode must be damped, and so numerical modelling has focused on assessing the kinetic damping of the mode and its nonlinear interaction with other instabilities. The enhanced understanding of the physical mechanisms driving deleterious MHD activity given by these leading-edge capabilities has provided guidance to optimize operating scenarios for improved plasma performance.
Coifman, R R; Lafon, S; Lee, A B; Maggioni, M; Nadler, B; Warner, F; Zucker, S W
2005-05-24
In the companion article, a framework for structural multiscale geometric organization of subsets of R(n) and of graphs was introduced. Here, diffusion semigroups are used to generate multiscale analyses in order to organize and represent complex structures. We emphasize the multiscale nature of these problems and build scaling functions of Markov matrices (describing local transitions) that lead to macroscopic descriptions at different scales. The process of iterating or diffusing the Markov matrix is seen as a generalization of some aspects of the Newtonian paradigm, in which local infinitesimal transitions of a system lead to global macroscopic descriptions by integration. This article deals with the construction of fast-order N algorithms for data representation and for homogenization of heterogeneous structures.
From macroscopic yield criteria to atomic stresses in polymer glasses
MacNeill, David; Rottler, Joerg
2010-01-15
The relationship between macroscopic shear yield criteria and local stress distributions in deformed polymer glasses is investigated via molecular dynamics simulations on different scales of coarse-graining. Macroscopic shear stresses at the yield point obey a pressure-modified von Mises (pmvM) criterion for many different loading conditions and strain rates. Average local stresses in small volume elements obey the same yield criterion for volumes containing approx. 100 atoms or more. Qualitatively different behavior is observed on smaller scales: the average octahedral atomic shear stress has a simple linear relationship to hydrostatic pressure regardless of macroscopic stress state and failure mode. Local plastic events are identified through a threshold in the mean-squared nonaffine displacement and compared to the local stress state. We find that the pmvM criterion only predicts local yield events when stress and displacements are averaged over at least 100 atoms. By contrast, macroscopic shear yield criteria appear to lose their ability to predict plastic activity on the atomic scale.
A Macroscopic Analogue of the Nuclear Pairing Potential
ERIC Educational Resources Information Center
Dunlap, Richard A.
2013-01-01
A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…
Macroscopic Computational Model of Dielectric Barrier Discharge Plasma Actuators
2006-02-01
Impulse Density Weighting ....................I-16 20. Boeuf and Pitchford Estimation of Wall- Jet Velocity...I-17 21. Boeuf and Pitchford Estimation of Wall- Jet Velocity (Close-up) ...........................I-17 22. Macroscopic View of X-momentum...II-4 28. Estimated Wall Jet Peak Velocity Magnitude (m/s) Compared to the Free Stream Velocity (m/s
Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory.
Ge, Hao; Qian, Hong
2016-11-01
Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation dF^{(meso)}/dt=E_{in}-e_{p} in which the free energy input rate E_{in} and dissipation rate e_{p} are both non-negative, and E_{in}≤e_{p}. We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F^{(meso)} converges to φ^{ss}, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φ^{ss} now satisfies a balance equation dφ^{ss}(x)/dt=cmf(x)-σ(x), in which x represents chemical concentration. The chemical motive force cmf(x) and entropy production rate σ(x) are both non-negative, and cmf(x)≤σ(x). The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.
Implementing the Deutsch-Jozsa algorithm with macroscopic ensembles
NASA Astrophysics Data System (ADS)
Semenenko, Henry; Byrnes, Tim
2016-05-01
Quantum computing implementations under consideration today typically deal with systems with microscopic degrees of freedom such as photons, ions, cold atoms, and superconducting circuits. The quantum information is stored typically in low-dimensional Hilbert spaces such as qubits, as quantum effects are strongest in such systems. It has, however, been demonstrated that quantum effects can be observed in mesoscopic and macroscopic systems, such as nanomechanical systems and gas ensembles. While few-qubit quantum information demonstrations have been performed with such macroscopic systems, a quantum algorithm showing exponential speedup over classical algorithms is yet to be shown. Here, we show that the Deutsch-Jozsa algorithm can be implemented with macroscopic ensembles. The encoding that we use avoids the detrimental effects of decoherence that normally plagues macroscopic implementations. We discuss two mapping procedures which can be chosen depending upon the constraints of the oracle and the experiment. Both methods have an exponential speedup over the classical case, and only require control of the ensembles at the level of the total spin of the ensembles. It is shown that both approaches reproduce the qubit Deutsch-Jozsa algorithm, and are robust under decoherence.
LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY
The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...
Stereodynamics: From elementary processes to macroscopic chemical reactions
Kasai, Toshio; Che, Dock-Chil; Tsai, Po-Yu; Lin, King-Chuen; Palazzetti, Federico; Aquilanti, Vincenzo
2015-12-31
This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.
Macroscopic and histological variations in the cellular tapetum in dogs.
Yamaue, Yasuhiro; Hosaka, Yoshinao Z; Uehara, Masato
2014-08-01
We aimed to document macroscopic variations in the cellular tapetum in the dog, to provide a histologic description of the macroscopic results and to evaluate the correlation between the macroscopic appearance and aging. Fifty three dogs including 5 beagles, 1 Chihuahua and 47 mixed breeds of each gender were used. For a macroscopic study, the fresh tapetal fundi were photographed using digital camera. For a histological study, the glutaraldehyde-formalin fixed eyes were embedded in nitrocellulose and stained with hematoxylin-eosin or thionine. The normal tapetum was triangular with the rounded angles and the smooth contour. The atypical tapetum was smaller and more variable in shape, contour and color than the normal one. In severe cases, the fundus was devoid of the tapetum. The atypical tapetum tended to increase in frequency with aging. Retinal pigment epithelial cells on the normal tapetum were unpigmented. In the eye with the atypical tapetum, regardless of tapetal size and shape, unpigmented retinal pigment epithelial cells showed a similar distribution to that on the normal tapetum, even in a dog without a tapetum. Although there is a congenitally hypoplastic tapetum, the atypical tapetum tends to increase in incidence and severity with aging.
Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory
NASA Astrophysics Data System (ADS)
Ge, Hao; Qian, Hong
2016-11-01
Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation d F(meso)/d t =Ein-ep in which the free energy input rate Ein and dissipation rate ep are both non-negative, and Ein≤ep . We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F(meso) converges to φss, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φss now satisfies a balance equation d φss(x ) /d t =cmf(x ) -σ (x ) , in which x represents chemical concentration. The chemical motive force cmf(x ) and entropy production rate σ (x ) are both non-negative, and cmf(x )≤σ (x ) . The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.
Management of macroscopic haematuria in the emergency department.
Hicks, Derek; Li, Chi-Ying
2007-06-01
Macroscopic haematuria is a commonly seen condition in the emergency department (ED), which has a variety of causes. However, most importantly, macroscopic haematuria has a high diagnostic yield for urological malignancy. 30% of patients presenting with painless haematuria are found to have a malignancy. The majority of these patients can be managed in the outpatient setting. This review of current literature suggests a management pathway that can be used in the ED. A literature search was done using Medline, PubMed and Google. In men aged >60 years, the positive predictive value of macroscopic haematuria for urological malignancy is 22.1%, and in women of the same age it is 8.3%. In terms of the need for follow-up investigation, a single episode of haematuria is equally important as recurrent episodes. Baseline investigation in the ED includes full blood count, urea and electrolyte levels, midstream urine dipstick, beta human chorionic gonadotrophin, and formal microscopy, culture and sensitivities. Treatment of macroscopic haematuria aims at RESP--Resuscitation, Ensuring, Safe and Prompt. Indications for admission include clot retention, cardiovascular instability, uncontrolled pain, sepsis, acute renal failure, coagulopathy, severe comorbidity, heavy haematuria or social restrictions. Discharged patients should drink plenty of clear fluids and return for further medical attention if the following occur: clot retention, worsening haematuria despite adequate fluid intake, uncontrolled pain or fever, or inability to cope at home. Follow-up by a urological team should be promptly arranged, ideally within the 2-week cancer referral target.
Albéric, Marie; Dean, Mason N.; Gourrier, Aurélien; Wagermaier, Wolfgang; Dunlop, John W. C.; Staude, Andreas; Fratzl, Peter; Reiche, Ina
2017-01-01
Macroscopic, periodic, dark and bright patterns are observed on sections of elephant tusk, in the dentin part (ivory). The motifs—also called Schreger pattern—vary depending on the orientation in the tusk: on sections perpendicular to the tusk axis, a checkerboard pattern is present whereas on sections longitudinal to it, alternating stripes are observed. This pattern has been used to identify elephant and mammoth ivory in archeological artifacts and informs on the continuous tissue growth mechanisms of tusk. However, its origin, assumed to be related to the 3D structure of empty microtubules surrounded by the ivory matrix has yet to be characterized unequivocally. Based on 2D observations of the ivory microtubules by means of a variety of imaging techniques of three different planes (transverse, longitudinal and tangential to the tusk axis), we show that the dark areas of the macroscopic pattern are due to tubules oblique to the surface whereas bright areas are related to tubules parallel to it. The different microstructures observed in the three planes as well as the 3D data obtained by SR-μCT analysis allow us to propose a 3D model of the microtubule network with helical tubules phase-shifted in the tangential direction. The phase shift is a combination of a continuous phase shift of π every 1 mm with a stepwise phase shift of π/2 every 500 μm. By using 3D modeling, we show how the 3D helical model better represents the experimental microstructure observed in 2D planes compared to previous models in the literature. This brings new information on the origin of the unique Schreger pattern of elephant ivory, crucial for better understanding how archaeological objects were processed and for opening new routes to rethink how biological materials are built. PMID:28125603
Basic Characteristics of a Macroscopic Measure for Detecting Abnormal Changes in a Multiagent System
Kinoshita, Tetsuo
2015-01-01
Multiagent application systems must deal with various changes in both the system and the system environment at runtime. Generally, such changes have undesirable negative effects on the system. To manage and control the system, it is important to observe and detect negative effects using an appropriate observation function of the system’s behavior. This paper focuses on the design of this function and proposes a new macroscopic measure with which to observe behavioral characteristics of a runtime multiagent system. The proposed measure is designed as the variance of fluctuation of a macroscopic activity factor of the whole system, based on theoretical analysis of the macroscopic behavioral model of a multiagent system. Experiments are conducted to investigate basic characteristics of the proposed measure, using a test bed system. The results of experiments show that the proposed measure reacts quickly and increases drastically in response to abnormal changes in the system. Hence, the proposed measure is considered a measure that can be used to detect undesirable changes in a multiagent system. PMID:25897499
Recent developments in structural sensitivity analysis
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Adelman, Howard M.
1988-01-01
Recent developments are reviewed in two major areas of structural sensitivity analysis: sensitivity of static and transient response; and sensitivity of vibration and buckling eigenproblems. Recent developments from the standpoint of computational cost, accuracy, and ease of implementation are presented. In the area of static response, current interest is focused on sensitivity to shape variation and sensitivity of nonlinear response. Two general approaches are used for computing sensitivities: differentiation of the continuum equations followed by discretization, and the reverse approach of discretization followed by differentiation. It is shown that the choice of methods has important accuracy and implementation implications. In the area of eigenproblem sensitivity, there is a great deal of interest and significant progress in sensitivity of problems with repeated eigenvalues. In addition to reviewing recent contributions in this area, the paper raises the issue of differentiability and continuity associated with the occurrence of repeated eigenvalues.
Structured analysis and modeling of complex systems
NASA Technical Reports Server (NTRS)
Strome, David R.; Dalrymple, Mathieu A.
1992-01-01
The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.
A macroscopic non-destructive testing system based on the cantilever-sample contact resonance
NASA Astrophysics Data System (ADS)
Fu, Ji; Lin, Lizhi; Zhou, Xilong; Li, Yingwei; Li, Faxin
2012-12-01
Detecting the inside or buried defects in materials and structures is always a challenge in the field of nondestructive testing (NDT). In this paper, enlightened by the operation principle of the contact resonance force microscopy or atomic force acoustic microscopy (AFAM), we proposed a macroscopic NDT system based on contact resonance of the cantilever-sample surface to detect the local stiffness variations in materials or structures. We fabricated a piezoelectric unimorph with the dimension typically of 150 mm × 8 mm × 2 mm to act as a macroscopic cantilever, whose flexural mode vibration was driven by a wideband power amplifier together with a signal generator. The vibration signal of the macroscopic cantilever is detected by a high sensitive strain gauge bonded on the cantilever surface which is much more stable than the laser diode sensor in AFAM, thus making it very suitable for outdoor operations. Scanning is realized by a three-dimensional motorized stage with the Z axis for pressing force setting. The whole system is controlled by a LabVIEW-based homemade software. Like the AFAM, this NDT system can also work in two modes, i.e., the single-frequency mode and the resonance-tracking mode. In the latter mode, the contact stiffness at each pixel of the sample can be obtained by using the measured contact resonance frequency and a beam dynamics model. Testing results of this NDT system on a grid structure with an opaque panel show that in both modes the prefabricated defect beneath the panel can be detected and the grid structures can be clearly "seen," which indicates the validity of this NDT system. The sensitivity of this NDT system was also examined.
Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces.
Gillies, Andrew G; Henry, Amy; Lin, Hauwen; Ren, Angela; Shiuan, Kevin; Fearing, Ronald S; Full, Robert J
2014-01-15
The role in adhesion of the toes and lamellae - intermediate-sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and lamellae by examining gecko adhesion on controlled, macroscopically rough surfaces. We used live Tokay geckos, Gekko gecko, to observe the maximum shear force a gecko foot can attain on an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Findings on the larger scale structures in the hierarchy of gecko foot function could provide the biological inspiration to drive the design of more effective and versatile synthetic fibrillar adhesives.
NASA Astrophysics Data System (ADS)
Tertre, Emmanuel; Delville, Alfred; Prêt, Dimitri; Hubert, Fabien; Ferrage, Eric
2015-01-01
This study investigates the diffusion process of calcium cations confined in the interlayer space of 5 mm disks of vermiculite swelling clay minerals during the Na-for-Ca exchange process. Diffusion experiments were performed at four NaCl salinities (3 × 10-3, 5 × 10-2, 0.1 and 1 M) of the exchanger solution. A macroscopic analysis of the diffusion process based on the aqueous calcium concentrations released in the solution and on Ca-profiles obtained in the solid was performed using a pore diffusion model that has been classically used in the literature. The results obtained at the macroscopic scale showed that the apparent diffusion coefficients describing both aqueous and profiles data for Ca depend on the diffusion time and salinity of the aqueous reservoir. Such variations suggested that interlayer diffusion was driven by (1) the gradient of the sorbed species in the interlayer, which depends on the diffusion time due to the ion exchange equilibrium; and (2) the discontinuity, due to Donnan equilibrium, existing at the limit between the "internal disk border" and the "external disk border" in contact with the aqueous reservoir. Then, a set of molecular and Brownian dynamics simulations was used to (1) assess such interpretations and (2) quantitatively predict aqueous and profile data obtained at the macroscopic scale. For an aqueous reservoir with high salinity (1 M NaCl), a good agreement was obtained between the macroscopic data and the predictions obtained from Brownian dynamics simulations, confirming the role played by the gradient of the interlayer species that is suggested at the macroscopic scale and which is at the basis of the "surface diffusion models" published in literature. In addition, for aqueous reservoirs with lower salinity (5 × 10-2 M), the results obtained by Brownian dynamics simulations and normalized to the exchange rate measured at infinite time showed that the diffusion properties of the species in the aqueous reservoir cannot be
Multi-grid for structures analysis
NASA Technical Reports Server (NTRS)
Kascak, Albert F.
1989-01-01
In structural analysis the amount of computational time necessary for a solution is proportional to the number of degrees of freedom times the bandwidth squared. In implicit time analysis, this must be done at each discrete point in time. If, in addition, the problem is nonlinear, then this solution must be iterated at each point in time. If the bandwidth is large, the size of the problem that can be analyzed is severely limited. The multi-grid method is a possible algorithm which can make this solution much more computationally efficient. This method has been used for years in computational fluid mechanics. It works on the fact that relaxation is very efficient on the high frequency components of the solution (nearest neighbor interactions) and not very good on low frequency components of the solution (far interactions). The multi-grid method is then to relax the solution on a particular model until the residual stops changing. This indicates that the solution contains the higher frequency components. A coarse model is then generated for the lower frequency components to the solution. The model is then relaxed for the lower frequency components of the solution. These lower frequency components are then interpolated to the fine model. In computational fluid mechanics the equations are usually expressed as finite differences.
Inverse Analysis of Cavitation Impact Phenomena on Structures
2007-07-02
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--07-9051 Inverse Analysis of Cavitation Impact Phenomena on Structures July 2, 2007...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Inverse Analysis of Cavitation Impact Phenomena on Structures S.G. Lambrakos and N.E...signature analysis A general methodology is presented for in situ detection of cavitation impact phenomena on structures based on inverse analysis of
a Macroscopic Analysis of Eddy Currents in Nonferrous Metals
NASA Astrophysics Data System (ADS)
Holder, Morris Eugene
1992-01-01
The original purpose of this research was to determine if the signals produced by the eddy currents induced into nonferrous metals as they pass through a static magnetic field could be used to distinguish between these metals. First, it was shown that for samples of the same size and shape, the maximum negative response produced by a Hall-effect sensor varied directly with the conductivity of the sample material. This was true for all shapes tested including rectangles, disks, rings, and cylinders. Samples of aluminum, brass, copper, lead, and zinc were easily distinguished from each other using the maximum negative response measured. The largest dimension of any sample tested was 4 inches, but algorithms could be developed for larger samples according to the statistics. The correlation coefficients for all sets of data collected in a randomized factorial design experiment were greater than 0.96. An algorithm was developed which correctly predicted the form of the response of the sensing apparatus to the passing of a thin copper ring through the static magnetic field. This involved writing an expression for the magnetic field produced by the eddy currents in the ring as the ring dropped from above, through, and beyond the static magnetic field. The inductive character of the nonferrous metals was incorporated into the model by introducing convolution. The currents produced by the induced emf were convolved with the residual decaying eddy currents to produce the net current. The model was responsive to the time constant associated with the conductivity, size, and shape of the samples. With convolution included, the simulated response produced by the model developed herein agreed well with the actual response measured. A new expression for the distribution of eddy currents in a nonferrous ring as it passes through a static magnetic field was developed to support the experimental findings. The new current distribution expression has the form of a fourth-order exponential function of the wall width.
Strategies for Nonlinear Analysis of Marine Structures
1988-08-01
Many such structures may be seen in the Gulf of Mexico. On the other hana, large- volumed production structures made of concrete and steel that...height, d = water depth and y = elevation from bottom. Assuming that the linear t...ca.i " appli up to t.e frcc .rf-, , th-, tztal f;,rce is obtained...the structure is expected to encounter during its design lifetime. For fixed structures, for example, steel piled and concrete gravity structures, a
Macroscopic ferroelectricity and piezoelectricity in nanostructured NaNbO3 ceramics
NASA Astrophysics Data System (ADS)
Chao, Lumen; Hou, Yudong; Zheng, Mupeng; Yue, Yunge; Zhu, Mankang
2017-03-01
NaNbO3 sits at an instability between its ferroelectric and antiferroelectric phases, but its nanoscale polarization behavior is rarely reported. In this work, we produced high-density NaNbO3 nanostructured ceramics with a grain size of 50 nm by spark plasma sintering of nanocrystalline powder, which was obtained by mechanosynthesis. The nanostructured ceramics exhibited a symmetrical ferroelectric loop and increased relative permittivity. We believe that the increased internal stress at the nanoscale stabilized the ferroelectric domain structure, which promoted macroscopic piezoelectricity, demonstrating its potential uses in nanoelectromechanical systems.
Electromagnetic duality symmetry and helicity conservation for the macroscopic Maxwell's equations.
Fernandez-Corbaton, Ivan; Zambrana-Puyalto, Xavier; Tischler, Nora; Vidal, Xavier; Juan, Mathieu L; Molina-Terriza, Gabriel
2013-08-09
In this Letter, we show that the electromagnetic duality symmetry, broken in the microscopic Maxwell's equations by the presence of charges, can be restored for the macroscopic Maxwell's equations. The restoration of this symmetry is shown to be independent of the geometry of the problem. These results provide a tool for the study of light-matter interactions within the framework of symmetries and conservation laws. We illustrate its use by determining the helicity content of the natural modes of structures possessing spatial inversion symmetries and by elucidating the root causes for some surprising effects in the scattering off magnetic spheres.
Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method
Cao, Haibo
2003-01-01
In this work, they try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. They found a strong correlation between amino acid sequences and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, they give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part includes discussions of interactions among amino acids residues, lattice HP model, and the design ability principle. In the second part, they try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in the eigenvector study of protein contact matrix. They believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, they discuss a threading method based on the correlation between amino acid sequences and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, they list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.
Macroscopic drift current in the inverse Faraday effect
NASA Astrophysics Data System (ADS)
Hertel, Riccardo; Fähnle, Manfred
2015-01-01
The inverse Faraday effect (IFE) describes the spontaneous magnetization of a conducting or dielectric medium due to irradiation with a circularly polarized electromagnetic wave. The effect has recently been discussed in the context of laser-induced magnetic switching of solids. We analyze analytically the electron dynamics induced by a circularly polarized laser beam within the framework of plasma theory. A macroscopic drift current is obtained, which circulates around the perimeter of the laser beam. The magnetic moment due to this macroscopic current has an opposite sign and half of the magnitude of the magnetic moment that is generated directly by the IFE. This constitutes an important contribution of angular momentum transferred from the wave to the medium and a classical mechanism for the light-induced generation of magnetic fields.
From 1D to 3D - macroscopic nanowire aerogel monoliths
NASA Astrophysics Data System (ADS)
Cheng, Wei; Rechberger, Felix; Niederberger, Markus
2016-07-01
Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h
Emergent thermodynamics in a system of macroscopic, chaotic surface waves
NASA Astrophysics Data System (ADS)
Welch, Kyle J.
The properties of conventional materials are inextricably linked with their molecular composition; to make water flow like wine would require changing its molecular identity. To circumvent this restriction, I have constructed and characterized a two-dimensional metafluid, so-called because its constitutive dynamics are derived not from atoms and molecules but from macroscopic, chaotic surface waves excited on a vertically agitated fluid. Unlike in conventional fluids, the viscosity and temperature of this metafluid are independently tunable. Despite this unconventional property, our system is surprisingly consistent with equilibrium thermodynamics, despite being constructed from macroscopic, non-equilibrium elements. As a programmable material, our metafluid represents a new platform on which to study complex phenomena such as self-assembly and pattern formation. We demonstrate one such application in our study of short-chain polymer analogs embedded in our system.
Microscopic versus macroscopic approaches to non-equilibrium systems
NASA Astrophysics Data System (ADS)
Derrida, Bernard
2011-01-01
The one-dimensional symmetric simple exclusion process (SSEP) is one of the very few exactly soluble models of non-equilibrium statistical physics. It describes a system of particles which diffuse with hard core repulsion on a one-dimensional lattice in contact with two reservoirs of particles at unequal densities. The goal of this paper is to review the two main approaches which lead to the exact expression of the large deviation functional of the density of the SSEP in its steady state: a microscopic approach (based on the matrix product ansatz and an additivity property) and a macroscopic approach (based on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim).
Indirect measurement of interfacial melting from macroscopic ice observations.
Saruya, Tomotaka; Kurita, Kei; Rempel, Alan W
2014-06-01
Premelted water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state well below the bulk melting temperature and can supply the segregated growth of ice lenses. Using macroscopic measurements of ice-lens initiation position in step-freezing experiments, we infer how the nanometer-scale thicknesses of premelted films depend on temperature depression below bulk melting. The interfacial interactions between ice, liquid, and soda-lime glass particles exhibit a power-law behavior that suggests premelting in our system is dominated by short-range electrostatic forces. Using our inferred film thicknesses as inputs to a simple force-balance model with no adjustable parameters, we obtain good quantitative agreement between numerical predictions and observed ice-lens thickness. Macroscopic observations of lensing behavior have the potential as probes of premelting behavior in other systems.
Macroscopic Discontinuous Shear Thickening versus Local Shear Jamming in Cornstarch
NASA Astrophysics Data System (ADS)
Fall, A.; Bertrand, F.; Hautemayou, D.; Mezière, C.; Moucheront, P.; Lemaître, A.; Ovarlez, G.
2015-03-01
We study the emergence of discontinuous shear thickening (DST) in cornstarch by combining macroscopic rheometry with local magnetic resonance imaging measurements. We bring evidence that macroscopic DST is observed only when the flow separates into a low-density flowing and a high-density jammed region. In the shear-thickened steady state, the local rheology in the flowing region is not DST but, strikingly, is often shear thinning. Our data thus show that the stress jump measured during DST, in cornstarch, does not capture a secondary, high-viscosity branch of the local steady rheology but results from the existence of a shear jamming limit at volume fractions quite significantly below random close packing.
Nonclassicality tests and entanglement witnesses for macroscopic mechanical superposition states
NASA Astrophysics Data System (ADS)
Gittsovich, Oleg; Moroder, Tobias; Asadian, Ali; Gühne, Otfried; Rabl, Peter
2015-02-01
We describe a set of measurement protocols for performing nonclassicality tests and the verification of entangled superposition states of macroscopic continuous variable systems, such as nanomechanical resonators. Following earlier works, we first consider a setup where a two-level system is used to indirectly probe the motion of the mechanical system via Ramsey measurements and discuss the application of this method for detecting nonclassical mechanical states. We then show that the generalization of this technique to multiple resonator modes allows the conditioned preparation and the detection of entangled mechanical superposition states. The proposed measurement protocols can be implemented in various qubit-resonator systems that are currently under experimental investigation and find applications in future tests of quantum mechanics at a macroscopic scale.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Huang, H.
1992-01-01
Accomplishments are described for the first year effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) the results of the selective literature survey; (2) 8-, 16-, and 20-noded isoparametric plate and shell elements; (3) large deformation structural analysis; (4) eigenanalysis; (5) anisotropic heat transfer analysis; and (6) anisotropic electromagnetic analysis.
Structural and vibrational analysis of thymoquinone
NASA Astrophysics Data System (ADS)
Raschi, A. B.; Romano, E.; Benavente, A. M.; Altabef, A. Ben; Tuttolomondo, M. E.
2010-10-01
The molecular structure of 2-isopropyl-5-methyl-1,4-benzoquinone, C 6O 2H 2 (CH 3) 3CH, has been optimized using methods based on density functional theory (DFT) and Moller-Plesset second-order perturbation theory (MP2). As regards C 6O 2H 2 (CH 3) 3CH, two populated conformations with C 1 ( trans) and C s ( cis) symmetries are obtained, the former being more stable than the latter. The theoretical data indicate that although both anti and cis conformers are possible by rotation about the C-C bond, the preferred conformation is trans. The effects governing the torsion barriers and preferred conformations were analyzed at B3LYP/6-311++G** level. The atoms in molecules (AIM) theory and natural bond orbital (NBO) analysis was applied to the cis and trans conformers in order to detect intramolecular contacts. Furthermore, the infrared spectra for the gas and solid phases and the Raman spectrum for the solid one, were recorded and the observed bands assigned to the vibrational modes.
A structural analysis model for clay caps
Wu, Tsu-te; Yau, Wen Foo
1993-12-31
This paper presents a structural analysis model for clay caps used in the landfill of low-level nuclear waste to minimize the migration of fluid through the soil. The clay cap resting on the soil foundation is treated as an axially symmetric elastic plate supported by an elastic foundation. A circular hole (concentric with the plate) in the elastic foundation represents an underlying cavity formed in the landfill due to waste decomposition and volume reduction. Unlike the models that commonly represent the soil foundation with equivalent springs, this model treats the foundation as a semi-infinite space and accounts for the work done by both compression and shear stresses in the foundation. The governing equation of the plate is based upon the classical theory of plate bending, whereas the governing equation derived by using Vlasov`s general variational method describes the soil foundation. The solutions are expressed in terms of Basset functions. A FORTRAN program was written to carry out the numerical calculations.
Gaige, Terry A; Kwon, Hyuk Sang; Dai, Guangping; Cabral, Victor C; Wang, Ruopeng; Nam, Yoon Sung; Engelward, Bevin P; Wedeen, Van J; So, Peter T C; Gilbert, Richard J
2008-01-01
The tongue consists of a complex, multiscale array of myofibers that comprise the anatomical underpinning of lingual mechanical function. 3-D myoarchitecture was imaged in mouse tongues with diffusion spectrum magnetic resonance imaging (DSI) at 9.4 T (b(max) 7000 smm, 150-microm isotropic voxels), a method that derives the preferential diffusion of water/voxel, and high-throughput (10 fps) two-photon microscope (TPM). Net fiber alignment was represented for each method in terms of the local maxima of an orientational distribution function (ODF) derived from the local diffusion (DSI) and 3-D structural autocorrelation (TPM), respectively. Mesoscale myofiber tracts were generated by alignment of the principal orientation vectors of the ODFs. These data revealed a consistent relationship between the properties of the respective ODFs and the virtual superimposition of the distributed mesoscale myofiber tracts. The identification of a mesoscale anatomical construct, which specifically links the microscopic and macroscopic spatial scales, provides a method for relating the orientation and distribution of cells and subcellular components with overall tissue morphology, thus contributing to the development of multiscale methods for mechanical analysis.
Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.
Tsai, Jaw-Shen
2010-01-01
Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.
Macroscopic superposition of ultracold atoms with orbital degrees of freedom
Garcia-March, M. A.; Carr, L. D.; Dounas-Frazer, D. R.
2011-04-15
We introduce higher dimensions into the problem of Bose-Einstein condensates in a double-well potential, taking into account orbital angular momentum. We completely characterize the eigenstates of this system, delineating new regimes via both analytical high-order perturbation theory and numerical exact diagonalization. Among these regimes are mixed Josephson- and Fock-like behavior, crossings in both excited and ground states, and shadows of macroscopic superposition states.
Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics
NASA Astrophysics Data System (ADS)
Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.
2016-09-01
A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.
Fission barriers in a macroscopic-microscopic model
Dobrowolski, A.; Pomorski, K.; Bartel, J.
2007-02-15
In the framework of the macroscopic-microscopic model, this study investigates fission barriers in the region of actinide nuclei. A very effective four-dimensional shape parametrization for fissioning nuclei is proposed. Taking, in particular, the left-right mass asymmetric and nonaxial shapes into account is demonstrated to have a substantial effect on fission barrier heights. The influence of proton versus neutron deformation differences on the potential energy landscape of fissioning nuclei is also discussed.
Enhancement of macroscopic quantum tunneling by Landau-Zener transitions.
Ankerhold, Joachim; Grabert, Hermann
2003-07-04
Motivated by recent realizations of qubits with a readout by macroscopic quantum tunneling in a Josephson junction, we study the problem of barrier penetration in the presence of coupling to a spin-1 / 2 system. It is shown that, when the diabatic potentials for fixed spin intersect in the barrier region, Landau-Zener transitions lead to an enhancement of the tunneling rate. The effect of these spin flips in imaginary time is in qualitative agreement with experimental observations.
Macroscopic inspection of ape feces: what's in a quantification method?
Phillips, Caroline A; McGrew, William C
2014-06-01
Macroscopic inspection of feces has been used to investigate primate diet. The limitations of this method to identify food-items to species level have long been recognized, but ascertaining aspects of diet (e.g., folivory) are achievable by quantifying food-items in feces. Quantification methods applied include rating food-items using a scale of abundance, estimating their percentage volume, and weighing food-items. However, verification as to whether or not composition data differ, depending on which quantification method is used during macroscopic inspection, has not been done. We analyzed feces collected from ten adult chimpanzees (Pan troglodytes schweinfurthii) of the Kanyawara community in Kibale National Park, Uganda. We compare dietary composition totals obtained from using different quantification methods and ascertain if sieve mesh size influences totals calculated. Finally, this study validates findings from direct observation of feeding by the same individuals from whom the fecal samples had been collected. Contrasting diet composition totals obtained by using different quantification methods and sieve mesh sizes can influence folivory and frugivory estimates. However, our findings were based on the assumption that fibrous matter contained pith and leaf fragments only, which remains to be verified. We advocate macroscopic inspection of feces can be a valuable tool to provide a generalized overview of dietary composition for primate populations. As most populations remain unhabituated, scrutinizing and validating indirect measures are important if they are to be applied to further understand inter- and intra-species dietary variation.
Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives
NASA Astrophysics Data System (ADS)
Chou, C. H.; Hu, B. L.; Subaşi, Y.
2011-12-01
In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper [1] we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large Script N (field components), 2PI and second order perturbative expansions, illustrating how N and Script N enter in these three aspects of quantum correlations, coherence and coupling strength. 3) the behavior of an interacting quantum system near its critical point, the effects of quantum and thermal fluctuations and the conditions under which the system manifests infrared dimensional reduction. We also discuss how the effective field theory concept bears on macroscopic quantum phenomena: the running of the coupling parameters with energy or scale imparts a dynamical-dependent and an interaction-sensitive definition of 'macroscopia'.
Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems
NASA Astrophysics Data System (ADS)
Jarzynski, Christopher
2017-01-01
We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E . Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton's equations in the full phase space.
Macroscopic character of composite high-temperature superconducting wires
NASA Astrophysics Data System (ADS)
Kivelson, S. A.; Spivak, B.
2015-11-01
The "d -wave" symmetry of the superconducting order in the cuprate high temperature superconductors is a well established fact [J. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000), 10.1103/RevModPhys.72.969 and D. J. Vanharlingen, Rev. Mod. Phys. 67, 515 (1995), 10.1103/RevModPhys.67.515], and one which identifies them as "unconventional." However, in macroscopic contexts—including many potential applications (i.e., superconducting "wires")—the material is a composite of randomly oriented superconducting grains in a metallic matrix, in which Josephson coupling between grains mediates the onset of long-range phase coherence. [See, e.g., D. C. Larbalestier et al., Nat. Mater. 13, 375 (2014), 10.1038/nmat3887, A. P. Malozemoff, MRS Bull. 36, 601 (2011), 10.1557/mrs.2011.160, and K. Heine et al., Appl. Phys. Lett. 55, 2441 (1989), 10.1063/1.102295] Here we analyze the physics at length scales that are large compared to the size of such grains, and in particular the macroscopic character of the long-range order that emerges. While X Y -superconducting glass order and macroscopic d -wave superconductivity may be possible, we show that under many circumstances—especially when the d -wave superconducting grains are embedded in a metallic matrix—the most likely order has global s -wave symmetry.
Noise-driven interfaces and their macroscopic representation
NASA Astrophysics Data System (ADS)
Dentz, Marco; Neuweiler, Insa; Méheust, Yves; Tartakovsky, Daniel M.
2016-11-01
We study the macroscopic representation of noise-driven interfaces in stochastic interface growth models in (1 +1 ) dimensions. The interface is characterized macroscopically by saturation, which represents the fluctuating sharp interface by a smoothly varying phase field with values between 0 and 1. We determine the one-point interface height statistics for the Edwards-Wilkinson (EW) and Kadar-Paris-Zhang (KPZ) models in order to determine explicit deterministic equations for the phase saturation for each of them. While we obtain exact results for the EW model, we develop a Gaussian closure approximation for the KPZ model. We identify an interface compression term, which is related to mass transfer perpendicular to the growth direction, and a diffusion term that tends to increase the interface width. The interface compression rate depends on the mesoscopic mass transfer process along the interface and in this sense provides a relation between meso- and macroscopic interface dynamics. These results shed light on the relation between mesoscale and macroscale interface models, and provide a systematic framework for the upscaling of stochastic interface dynamics.
Fameau, Anne-Laure; Saint-Jalmes, Arnaud
2014-05-28
In this article, we show that stimuli-induced microscopic transformations of self-assembled surfactant structures can be used to tune the macroscopic bulk and interfacial rheological properties. Previously, we had described the formation of micron-sized 12-hydroxystearic acid tubes having a temperature-tunable diameter in the bulk, and also adsorbing at the air-water interface. We report now a detailed study of the bulk and interfacial rheological properties of this solution of thermoresponsive tubes as a function of temperature. In the bulk, the structural modifications of tubes with temperature lead to sharp and non-monotonous changes of rheological behavior. As well, at the air-water interface, the interfacial layer is shifted several times from rigid-like to fluid-like as the temperature is increased, due to morphological changes of the adsorbed interfacial layer. The temperature-induced variations in the fatty acid supramolecular organization and the richness in structural transitions at this microscopic level lead to unique rheological responses in comparison with conventional surfactant systems. Also, this study provides new insights into the required packing conditions for the jamming of anisotropic soft objects and highlights the fact that this system becomes glassy under heating. Due to these unique macroscopic properties both in the bulk and at the interface, this simple system with stimuli-responsive viscoelasticity is of interest for their potential applications in pharmacology or cosmetic formulations.
ERIC Educational Resources Information Center
Thompson, Bruce
A general linear model (GLM) framework is used to suggest that structure coefficients ought to be interpreted in structural equation modeling confirmatory factor analysis (CFA) studies in which factors are correlated. The computation of structure coefficients in explanatory factor analysis and CFA is explained. Two heuristic data sets are used to…
Development of a probabilistic analysis methodology for structural reliability estimation
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.
1991-01-01
The novel probabilistic analysis method for assessment of structural reliability presented, which combines fast-convolution with an efficient structural reliability analysis, can after identifying the most important point of a limit state proceed to establish a quadratic-performance function. It then transforms the quadratic function into a linear one, and applies fast convolution. The method is applicable to problems requiring computer-intensive structural analysis. Five illustrative examples of the method's application are given.
Structural weight analysis of hypersonic aircraft
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1972-01-01
The weights of major structural components of hypersonic, liquid hydrogen fueled aircraft are estimated and discussed. The major components are the body structure, body thermal protection system tankage and wing structure. The method of estimating body structure weight is presented in detail while the weights of the other components are estimated by methods given in referenced papers. Two nominal vehicle concepts are considered. The advanced concept employs a wing-body configuration and hot structure with a nonintegral tank, while the potential concept employs an all body configuration and cold, integral pillow tankage structure. Characteristics of these two concepts are discussed and parametric data relating their weight fractions to variations in vehicle shape and size design criteria and mission requirements, and structural arrangement are presented. Although the potential concept is shown to have a weight advantage over the advanced, it involves more design uncertainties since it is farther removed in design from existing aircraft.
Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E
2010-02-01
Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.
An endoscope for simultaneous macroscopic navigation and microscopic inspection of luminal sidewalls
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Sturgis, Jennifer; Robinson, J. Paul
2008-02-01
Endoscopic techniques are commonly used for esophageal and gastrointestinal screening. In this process, atypical regions are identified by gross visual and morphological changes. These regions are then biopsied for pathological confirmation prior to determining treatment. In an effort to increase the sensitivity of endoscopic screening, many groups have performed work in developing microscopic endoscopes capable of inspecting tissues on a cellular level. These microscopic endoscopes are generally implemented as either a stand-alone fiber or through the working channel of a traditional endoscope, and are oriented in a manner similar to traditional flexible endoscopes, imaging the region directly ahead of the endoscope with a wide-angle lens. However, this may not be the optimum configuration for microscopic inspection of luminal sidewalls. We present a novel optical configuration for an endoscope that can simultaneously function as a traditional forward-viewing macroscopic endoscope and as a sidewall-viewing microscopic endoscope. With the first prototype, we have realized a water-emersion microscopic that is capable of imaging tissues on a single-cell level. In addition, microscopic side-port configuration enables efficient mapping of the luminal wall. Utilizing simultaneous macroscopic and microscopic imaging, we are developing software for image registration and analysis that will enable localization of microscopic features within a macroscopic frame of reference. Through a combination of microscopic sidewall imaging and software for image analysis, we aim to provide the clinician with the equivalent of an in vivo biopsy, increasing screening effectiveness and decreasing discomfort and costs related to performing multiple biopsies of suspected regions.
Advances in Computational Stability Analysis of Composite Aerospace Structures
Degenhardt, R.; Araujo, F. C. de
2010-09-30
European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS
T. Misiak
1996-06-26
The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.
Macroscopic complexity from an autonomous network of networks of theta neurons
Luke, Tanushree B.; Barreto, Ernest; So, Paul
2014-01-01
We examine the emergence of collective dynamical structures and complexity in a network of interacting populations of neuronal oscillators. Each population consists of a heterogeneous collection of globally-coupled theta neurons, which are a canonical representation of Type-1 neurons. For simplicity, the populations are arranged in a fully autonomous driver-response configuration, and we obtain a full description of the asymptotic macroscopic dynamics of this network. We find that the collective macroscopic behavior of the response population can exhibit equilibrium and limit cycle states, multistability, quasiperiodicity, and chaos, and we obtain detailed bifurcation diagrams that clarify the transitions between these macrostates. Furthermore, we show that despite the complexity that emerges, it is possible to understand the complicated dynamical structure of this system by building on the understanding of the collective behavior of a single population of theta neurons. This work is a first step in the construction of a mathematically-tractable network-of-networks representation of neuronal network dynamics. PMID:25477811
Fabrication and Characterization of Three-Dimensional Macroscopic All-Carbon Scaffolds
Lalwani, Gaurav; Kwaczala, Andrea Trinward; Kanakia, Shruti; Patel, Sunny C.; Judex, Stefan; Sitharaman, Balaji
2012-01-01
We report a simple method to fabricate macroscopic, 3-D, free standing, all-carbon scaffolds (porous structures) using multiwalled carbon nanotubes (MWCNTs) as the starting materials. The scaffolds prepared by radical initiated thermal crosslinking, and annealing of MWCNTs possess macroscale interconnected pores, robust structural integrity, stability, and conductivity. The porosity of the three-dimensional structure can be controlled by varying the amount of radical initiator, thereby allowing the design of porous scaffolds tailored towards specific potential applications. This method also allows the fabrication of 3-D scaffolds using other carbon nanomaterials such as single-walled carbon nanotubes, fullerenes, and graphene indicating that it could be used as a versatile method for 3-D assembly of carbon nanostructures with pi bond networks. PMID:23436939
Advertising Agencies: An Analysis of Industry Structure.
ERIC Educational Resources Information Center
Smith, Sandra J.
Noting that advertising agencies have not been examined as a collective industry, this paper looks at the development and structure of the advertising agency industry. The first portion of the paper discusses the development of the agency. The remaining two sections deal with trends in and the structure of the industry including: (1) the growth of…
Optimum structural design based on reliability analysis
NASA Technical Reports Server (NTRS)
Heer, E.; Shinozuka, M.; Yang, J. N.
1970-01-01
Proof-load test improves statistical confidence in the estimate of reliability, numerical examples indicate a definite advantage of the proof-load approach in terms of savings in structural weight. The cost of establishing the statistical distribution of strength of the structural material is also introduced into the cost formulation
The Specific Analysis of Structural Equation Models
ERIC Educational Resources Information Center
McDonald, Roderick P.
2004-01-01
Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…
Crystal structure analysis of intermetallic compounds
NASA Technical Reports Server (NTRS)
Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.
1968-01-01
Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.
Reliability analysis applied to structural tests
NASA Technical Reports Server (NTRS)
Diamond, P.; Payne, A. O.
1972-01-01
The application of reliability theory to predict, from structural fatigue test data, the risk of failure of a structure under service conditions because its load-carrying capability is progressively reduced by the extension of a fatigue crack, is considered. The procedure is applicable to both safe-life and fail-safe structures and, for a prescribed safety level, it will enable an inspection procedure to be planned or, if inspection is not feasible, it will evaluate the life to replacement. The theory has been further developed to cope with the case of structures with initial cracks, such as can occur in modern high-strength materials which are susceptible to the formation of small flaws during the production process. The method has been applied to a structure of high-strength steel and the results are compared with those obtained by the current life estimation procedures. This has shown that the conventional methods can be unconservative in certain cases, depending on the characteristics of the structure and the design operating conditions. The suitability of the probabilistic approach to the interpretation of the results from full-scale fatigue testing of aircraft structures is discussed and the assumptions involved are examined.
NASA Astrophysics Data System (ADS)
Harti, Ralph P.; Strobl, Markus; Betz, Benedikt; Jefimovs, Konstantins; Kagias, Matias; Grünzweig, Christian
2017-03-01
Neutron imaging and scattering give data of significantly different nature and traditional methods leave a gap of accessible structure sizes at around 10 micrometers. Only in recent years overlap in the probed size ranges could be achieved by independent application of high resolution scattering and imaging methods, however without providing full structural information when microstructures vary on a macroscopic scale. In this study we show how quantitative neutron dark-field imaging with a novel experimental approach provides both sub-pixel resolution with respect to microscopic correlation lengths and imaging of macroscopic variations of the microstructure. Thus it provides combined information on multiple length scales. A dispersion of micrometer sized polystyrene colloids was chosen as a model system to study gravity induced crystallisation of microspheres on a macro scale, including the identification of ordered as well as unordered phases. Our results pave the way to study heterogeneous systems locally in a previously impossible manner.
Harti, Ralph P.; Strobl, Markus; Betz, Benedikt; Jefimovs, Konstantins; Kagias, Matias; Grünzweig, Christian
2017-01-01
Neutron imaging and scattering give data of significantly different nature and traditional methods leave a gap of accessible structure sizes at around 10 micrometers. Only in recent years overlap in the probed size ranges could be achieved by independent application of high resolution scattering and imaging methods, however without providing full structural information when microstructures vary on a macroscopic scale. In this study we show how quantitative neutron dark-field imaging with a novel experimental approach provides both sub-pixel resolution with respect to microscopic correlation lengths and imaging of macroscopic variations of the microstructure. Thus it provides combined information on multiple length scales. A dispersion of micrometer sized polystyrene colloids was chosen as a model system to study gravity induced crystallisation of microspheres on a macro scale, including the identification of ordered as well as unordered phases. Our results pave the way to study heterogeneous systems locally in a previously impossible manner. PMID:28303923
Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.
2016-01-01
Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.
An analysis of doping modulated superlattice structures
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.
1985-01-01
A new method of growing doping modulated superlattice structures is discussed. This method uses organo-metallic chemical vapor deposition (MO-CVD) with the added feature of controlled plasma in the growth regions. The main objective was to study how the growth environment affected the electronic and optical properties of the superlattice structures. Because a serious safety hazard was discovered in the growth process, no superlattice structures were fabricated and the research on this material had to be terminated. The hazard had to do with the lack of adequate means for the disposal of toxic elemental beryllium.
Enabling Rapid and Robust Structural Analysis During Conceptual Design
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu
2015-01-01
This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.
A novel CFD/structural analysis of a cross parachute
LaFarge, R.A.; Nelsen, J.M.; Gwinn, K.W.
1993-12-31
A novel CFD/structural analysis was performed to predict functionality of a cross parachute under loadings near the structural limits of the parachute. The determination of parachute functionality was based on the computed structural integrity of the canopy and suspension lines. In addition to the standard aerodynamic pressure loading on the canopy, the structural analysis considered the reduction in fabric strength due to the computed aerodynamic heating. The intent was to illustrate the feasibility of such an analysis with the commercially available software PATRAN.
Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.
Nottale, Laurent; Auffray, Charles
2008-05-01
In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential
Maximum Entropy Methods as the Bridge Between Microscopic and Macroscopic Theory
NASA Astrophysics Data System (ADS)
Taylor, Jamie M.
2016-09-01
This paper is concerned with an investigation into a function of macroscopic variables known as the singular potential, building on previous work by Ball and Majumdar. The singular potential is a function of the admissible statistical averages of probability distributions on a state space, defined so that it corresponds to the maximum possible entropy given known observed statistical averages, although non-classical entropy-like objective functions will also be considered. First the set of admissible moments must be established, and under the conditions presented in this work the set is open, bounded and convex allowing a description in terms of supporting hyperplanes, which provides estimates on the development of singularities for related probability distributions. Under appropriate conditions it is shown that the singular potential is strictly convex, as differentiable as the microscopic entropy, and blows up uniformly as the macroscopic variable tends to the boundary of the set of admissible moments. Applications of the singular potential are then discussed, and particular consideration will be given to certain free-energy functionals typical in mean-field theory, demonstrating an equivalence between certain microscopic and macroscopic free-energy functionals. This allows statements about L^1-local minimisers of Onsager's free energy to be obtained which cannot be given by two-sided variations, and overcomes the need to ensure local minimisers are bounded away from zero and +∞ before taking L^∞ variations. The analysis also permits the definition of a dual order parameter for which Onsager's free energy allows an explicit representation. Also, the difficulties in approximating the singular potential by everywhere defined functions, in particular by polynomial functions, are addressed, with examples demonstrating the failure of the Taylor approximation to preserve relevant shape properties of the singular potential.
Elucidation of molecular kinetic schemes from macroscopic traces using system identification.
Fribourg, Miguel; Logothetis, Diomedes E; González-Maeso, Javier; Sealfon, Stuart C; Galocha-Iragüen, Belén; Las-Heras Andrés, Fernando; Brezina, Vladimir
2017-02-01
Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully
Quantum dynamics of a macroscopic magnet operating as an environment of a mechanical oscillator
NASA Astrophysics Data System (ADS)
Foti, C.; Cuccoli, A.; Verrucchi, P.
2016-12-01
We study the dynamics of a bipartite quantum system in a way such that its formal description keeps holding even if one of its parts becomes macroscopic; the problem is related to the analysis of the quantum-to-classical crossover, but our approach implies that the whole system stays genuinely quantum. The aim of the work is to understand (1) if, (2) to what extent, and possibly (3) how the evolution of a macroscopic environment testifies to the coupling with its microscopic quantum companion. To this purpose we consider a magnetic environment made of a large number of spin-1/2 particles, coupled with a quantum mechanical oscillator, possibly in the presence of an external magnetic field. We take the value of the total environmental spin S constant and large, which allows us to consider the environment as one single macroscopic system, and further deal with the hurdles of the spin-algebra via approximations that are valid in the large-S limit. We find an insightful expression for the propagator of the whole system, where we identify an effective "back-action" term, i.e., an operator acting on the magnetic environment only, and yet missing in the absence of the quantum principal system. This operator emerges as a time-dependent magnetic anisotropy whose character, whether uniaxial or planar, also depends on the detuning between the frequency of the oscillator and the level splitting in the spectrum of the free magnetic system, induced by the possible presence of the external field. The time dependence of the anisotropy is analyzed, and its effects on the dynamics of the magnet, as well as its relation to the entangling evolution of the overall system, are discussed.
Elucidation of molecular kinetic schemes from macroscopic traces using system identification
González-Maeso, Javier; Sealfon, Stuart C.; Galocha-Iragüen, Belén; Brezina, Vladimir
2017-01-01
Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully
NASA Astrophysics Data System (ADS)
Chanin, Rochelle Jennifer
The purpose of this study was to investigate whether CHEM-PHYS 102 students' understanding of physical and chemical change was enhanced by experiencing an activity in which they interacted with visualizations of physical and chemical change at the macroscopic and particulate levels. Students were administered a pre test prior to instruction on physical and chemical change. Mid semester they participated in one of three visualization treatments, and at the end of the semester a post test was administered. The research questioned explored in this study were: 1) Does participation in the PCAct affect students' ability to correctly distinguish physical and chemical changes as measured by the pre and post PCA? 2) When students are specifically cued with particulate level visualizations is there an increase in the frequency of particulate level explanations? 3) Is the explanation perspective of the student consistent with the stimulus? And 4) How many particulate visualizations on the PCAct must students experience to increase the frequency of particulate level explanations on the post PCA? This study specifically analyzes the visualization treatment, physical and chemical change activity (PCAct), and uses scores on students' performance on the post test to measure gains. Methods of analysis included independent and dependent samples
Violation of smooth observable macroscopic realism in a harmonic oscillator.
Leshem, Amir; Gat, Omri
2009-08-14
We study the emergence of macrorealism in a harmonic oscillator subject to consecutive measurements of a squeezed action. We demonstrate a breakdown of dynamical realism in a wide parameter range that is maximized in a scaling limit of extreme squeezing, where it is based on measurements of smooth observables, implying that macroscopic realism is not valid in the harmonic oscillator. We propose an indirect experimental test of these predictions with entangled photons by demonstrating that local realism in a composite system implies dynamical realism in a subsystem.
Macroscopic test of the Aharonov-Bohm effect.
Caprez, Adam; Barwick, Brett; Batelaan, Herman
2007-11-23
The Aharonov-Bohm (AB) effect is a purely quantum mechanical effect. The original (classified as type-I) AB-phase shift exists in experimental conditions where the electromagnetic fields and forces are zero. It is the absence of forces that makes the AB effect entirely quantum mechanical. Although the AB-phase shift has been demonstrated unambiguously, the absence of forces in type-I AB effects has never been shown. Here, we report the observation of the absence of time delays associated with forces of the magnitude needed to explain the AB-phase shift for a macroscopic system.
Macroscopic Test of the Aharonov-Bohm Effect
Caprez, Adam; Barwick, Brett; Batelaan, Herman
2007-11-23
The Aharonov-Bohm (AB) effect is a purely quantum mechanical effect. The original (classified as type-I) AB-phase shift exists in experimental conditions where the electromagnetic fields and forces are zero. It is the absence of forces that makes the AB effect entirely quantum mechanical. Although the AB-phase shift has been demonstrated unambiguously, the absence of forces in type-I AB effects has never been shown. Here, we report the observation of the absence of time delays associated with forces of the magnitude needed to explain the AB-phase shift for a macroscopic system.
Macroscopic traffic modeling with the finite difference method
Mughabghab, S.; Azarm, A.; Stock, D.
1996-03-15
A traffic congestion forecasting model (ATOP), developed in the present investigation, is described briefly. Several macroscopic models, based on the solution of the partial differential equation of conservation of vehicles by the finite difference method, were tested using actual traffic data. The functional form, as well as the parameters, of the equation of state which describes the relation between traffic speed and traffic density, were determined for a section of the Long Island Expressway. The Lax method and the forward difference technique were applied. The results of extensive tests showed that the Lax method, in addition to giving very good agreement with the traffic data, produces stable solutions.
Dimensional Crossover in Quantum Networks: From Macroscopic to Mesoscopic Physics
NASA Astrophysics Data System (ADS)
Schopfer, Félicien; Mallet, François; Mailly, Dominique; Texier, Christophe; Montambaux, Gilles; Bäuerle, Christopher; Saminadayar, Laurent
2007-01-01
We report on magnetoconductance measurements of metallic networks of various sizes ranging from 10 to 106 plaquettes, with an anisotropic aspect ratio. Both Altshuler-Aronov-Spivak h/2e periodic oscillations and Aharonov-Bohm h/e periodic oscillations are observed for all networks. For large samples, the amplitude of both oscillations results from the incoherent superposition of contributions of phase coherent regions. When the transverse size becomes smaller than the phase coherent length Lϕ, one enters a new regime which is phase coherent (mesoscopic) along one direction and macroscopic along the other, leading to a new size dependence of the quantum oscillations.
Computer applications for engineering/structural analysis. Revision 1
Zaslawsky, M.; Samaddar, S.K.
1991-12-31
Analysts and organizations have a tendency to lock themselves into specific codes with the obvious consequences of not addressing the real problem and thus reaching the wrong conclusion. This paper discusses the role of the analyst in selecting computer codes. The participation and support of a computation division in modifying the source program, configuration management, and pre- and post-processing of codes are among the subjects discussed. Specific examples illustrating the computer code selection process are described in the following problem areas: soil structure interaction, structural analysis of nuclear reactors, analysis of waste tanks where fluid structure interaction is important, analysis of equipment, structure-structure interaction, analysis of the operation of the superconductor supercollider which includes friction and transient temperature, and 3D analysis of the 10-meter telescope being built in Hawaii. Validation and verification of computer codes and their impact on the selection process are also discussed.
Static Structural Analysis for a Neutron Shielding Block in ITER
NASA Astrophysics Data System (ADS)
Hao, Junchuan; Song, Yuntao; Wang, Xiaoyu; Ioki, K.; Du, Shuangsong; Ji, Xiang; Feng, Changle; Xu, Yang
2013-02-01
The ITER neutron shielding blocks are located between the outer shell and the inner shell of the vacuum vessel to provide neutron shielding. Considering the combined loads acting on the shielding blocks during ITER plasma operation, the structure of the shielding blocks must be evaluated. Using the finite element method with ANSYS analysis software, static structural analysis is performed, including elastic analysis and limit analysis for one typical shielding block. The evaluated results based on RCC-MR code show that the structure of this shielding block can meet the design requirement.
Shape design sensitivity analysis and optimal design of structural systems
NASA Technical Reports Server (NTRS)
Choi, Kyung K.
1987-01-01
The material derivative concept of continuum mechanics and an adjoint variable method of design sensitivity analysis are used to relate variations in structural shape to measures of structural performance. A domain method of shape design sensitivity analysis is used to best utilize the basic character of the finite element method that gives accurate information not on the boundary but in the domain. Implementation of shape design sensitivty analysis using finite element computer codes is discussed. Recent numerical results are used to demonstrate the accuracy obtainable using the method. Result of design sensitivity analysis is used to carry out design optimization of a built-up structure.
Rhetorical Structure Theory and Text Analysis
1989-11-01
O’Malley 73] Larkin, Don and Michael H. O’Malley, "Declarative Sentences and the Rule-Of-Conversation Hypothesis," in Papers from. the Ninth Regional...34Rhetorical Structure Theory: A Theory of Text Organization," in Livia Polanyi (ed.), The Structure of Discourse, Ablex, Norwood, N.J., 1989. Also...Characterization of the News of the BBC World News Service. Antwerp, Belgium, 1986. Antwerp Papers in Linguistics, Number 49. [Reddy 79] Reddy, Michael , "The
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Wilt, T. E.; Trowbridge, D.
2000-01-01
Extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis and life assessment of structures composed of advanced monolithic and composite (CMC, MMC, and PMC) materials. Recently, emphasis has been placed on concurrently addressing three important and related areas of constitutive and degradation modeling; i.e. (i) mathematical formulation, (ii) algorithmic developments for the updating (integrating) of external (e.g. stress) and internal state variable, as well as (iii) parameter estimation for the characterization of the specific model. This concurrent perspective has resulted in; i) the formulation of a fully-associative viscoelastoplastic model (GVIPS), (ii) development of an efficient implicit integration and it's associative, symmetric, consistent tangent stiffness matrix algorithm for integration of the underlying rate flow/evolutionary equations, and iii) a robust, stand-alone, Constitutive Material Parameter Estimator (COMPARE) for automatically characterizing the various time-dependent, nonlinear, material models. Furthermore, to provide a robust multi-scale framework for the deformation and life analysis of structures composed of composite materials, NASA Glenn has aggressively pursued the development of a sufficiently general, accurate, and efficient micromechanics approach known as the generalized method of cells (GMC). This work has resulted in the development of MAC/GMC, a stand-alone micromechanics analysis tool that can easily and accurately design/analyze multiphase (composite) materials subjected to complex histories. MAC/GMC admits generalized, physically based, deformation and damage models for each constituent and provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that comprise the material. Consequently, MAC/GMC can
NASA Astrophysics Data System (ADS)
Lu, Peizhen
the 98% RH sample. However, HD zone shrinkage in both samples eventually slowed. Finally, we analyze this problem beginning with two-particle neck growth. We utilize Arzt's approach to connect macroscopic compact shrinkage to multiple scale microstructural variation. The connectivity of the compact is simulated through distinct element methods that specify certain structural parameters. The accuracy of this approach can be verified by measurements of high and low density zone dimensional behaviors followed by examination of the corresponding sintered state microstructures.
Food web structure of sandy beaches: Temporal and spatial variation using stable isotope analysis
NASA Astrophysics Data System (ADS)
Bergamino, Leandro; Lercari, Diego; Defeo, Omar
2011-03-01
The food web structure of two sandy beach ecosystems with contrasting morphodynamics (dissipative vs. reflective) was examined using stable carbon (δ 13C) and nitrogen (δ 15N) isotope analysis. Organic matter sources (POM: particulate organic matter; SOM: sediment organic matter) and consumers (zooplankton, benthic invertebrates and fishes) were sampled seasonally in both sandy beaches. Food webs significantly differed between beaches: even though both webs were mainly supported by POM, depleted δ 13C and δ 15N values for food sources and consumers were found in the dissipative system (following the reverse pattern in δ 13C values for consumers) for all the four seasons. Primary consumers (zooplankton and benthic invertebrates) use different organic matter sources on each beach and these differences are propagated up in the food web. The higher productivity found in the dissipative beach provided a significant amount of food for primary consumers, notably suspension feeders. Thus, the dissipative beach supported a more complex food web with more trophic links and a higher number of prey and top predators than the reflective beach. Morphodynamic factors could explain the contrasting differences in food web structure. The high degree of retention (nutrients and phytoplankton) recorded for the surf zone of the dissipative beach would result in the renewed accumulation of POM that sustains a more diverse and richer fauna than the reflective beach. Further studies directed to assess connections between the macroscopic food web, the surf-zone microbial loop and the interstitial compartment will provide a deeper understanding on the functioning of sandy beach ecosystems.
Probabilistic structural analysis of aerospace components using NESSUS
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.
1988-01-01
Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.
Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.
2016-01-01
Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758
Structural Analysis of the NCSX Vacuum Vessel
Fred Dahlgren; Art Brooks; Paul Goranson; Mike Cole; Peter Titus
2004-09-28
The NCSX (National Compact Stellarator Experiment) vacuum vessel has a rather unique shape being very closely coupled topologically to the three-fold stellarator symmetry of the plasma it contains. This shape does not permit the use of the common forms of pressure vessel analysis and necessitates the reliance on finite element analysis. The current paper describes the NCSX vacuum vessel stress analysis including external pressure, thermal, and electro-magnetic loading from internal plasma disruptions and bakeout temperatures of up to 400 degrees centigrade. Buckling and dynamic loading conditions are also considered.
Total-System Approach To Design And Analysis Of Structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1995-01-01
Paper presents overview and study of, and comprehensive approach to, multidisciplinary engineering design and analysis of structures. Emphasizes issues related to design of semistatic structures in environments in which spacecraft launched, underlying concepts applicable to other structures within unique terrestrial, marine, or flight environments. Purpose of study to understand interactions among traditionally separate engineering design disciplines with view toward optimizing not only structure but also overall design process.
Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture
NASA Astrophysics Data System (ADS)
Murata, Ken-Ichiro; Tanaka, Hajime
2012-05-01
The existence of more than two liquid states in a single-component substance and the ensuing liquid-liquid transitions (LLTs) has attracted considerable attention because of its counterintuitive nature and its importance in the fundamental understanding of the liquid state. Here we report direct experimental evidence for a genuine (isocompositional) LLT without macroscopic phase separation in an aqueous solution of glycerol. We show that liquid I transforms into liquid II by way of two types of kinetics: nucleation and growth, and spinodal decomposition. Although liquid II is metastable against crystallization, we could access both its static and dynamical properties experimentally. We find that liquids I and II differ in density, refractive index, structure, hydrogen bonding state, glass transition temperature and fragility, and that the transition between the two liquids is mainly driven by the local structuring of water rather than of glycerol, suggesting a link to a plausible LLT inpure water.
NASA Astrophysics Data System (ADS)
Sibley, David; Nold, Andreas; Kalliadasis, Serafim
2015-11-01
Density Functional Theory (DFT), a statistical mechanics of fluids approach, captures microscopic details of the fluid density structure in the vicinity of contact lines, as seen in computations in our recent study. Contact lines describe the location where interfaces between two fluids meet solid substrates, and have stimulated a wealth of research due to both their ubiquity in nature and technological applications and also due to their rich multiscale behaviour. Whilst progress can be made computationally to capture the microscopic to mesoscopic structure from DFT, complete analytical results to fully bridge to the macroscale are lacking. In this work, we describe our efforts to bring asymptotic methods to DFT to obtain results for contact angles and other macroscopic quantities in various parameter regimes. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States
NASA Astrophysics Data System (ADS)
Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.
2002-05-01
We formulate a dynamical fluctuation theory for stationary non-equilibrium states (SNS) which is tested explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Within this theory we derive the following results: the modification of the Onsager-Machlup theory in the SNS; a general Hamilton-Jacobi equation for the macroscopic entropy; a non-equilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems; an H theorem for the entropy. We discuss in detail two models of stochastic boundary driven lattice gases: the zero range and the simple exclusion processes. In the first model the invariant measure is explicitly known and we verify the predictions of the general theory. For the one dimensional simple exclusion process, as recently shown by Derrida, Lebowitz, and Speer, it is possible to express the macroscopic entropy in terms of the solution of a nonlinear ordinary differential equation; by using the Hamilton-Jacobi equation, we obtain a logically independent derivation of this result.
Macroscopic model and truncation error of discrete Boltzmann method
NASA Astrophysics Data System (ADS)
Hwang, Yao-Hsin
2016-10-01
A derivation procedure to secure the macroscopically equivalent equation and its truncation error for discrete Boltzmann method is proffered in this paper. Essential presumptions of two time scales and a small parameter in the Chapman-Enskog expansion are disposed of in the present formulation. Equilibrium particle distribution function instead of its original non-equilibrium form is chosen as key variable in the derivation route. Taylor series expansion encompassing fundamental algebraic manipulations is adequate to realize the macroscopically differential counterpart. A self-contained and comprehensive practice for the linear one-dimensional convection-diffusion equation is illustrated in details. Numerical validations on the incurred truncation error in one- and two-dimensional cases with various distribution functions are conducted to verify present formulation. As shown in the computational results, excellent agreement between numerical result and theoretical prediction are found in the test problems. Straightforward extensions to more complicated systems including convection-diffusion-reaction, multi-relaxation times in collision operator as well as multi-dimensional Navier-Stokes equations are also exposed in the Appendix to point out its expediency in solving complicated flow problems.
How does Planck’s constant influence the macroscopic world?
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2016-09-01
In physics, Planck’s constant is a fundamental physical constant accounting for the energy-quantization phenomenon in the microscopic world. The value of Planck’s constant also determines in which length scale the quantum phenomenon will become conspicuous. Some students think that if Planck’s constant were to have a larger value than it has now, the quantum effect would only become observable in a world with a larger size, whereas the macroscopic world might remain almost unchanged. After reasoning from some basic physical principles and theories, we found that doubling Planck’s constant might result in a radical change on the geometric sizes and apparent colors of macroscopic objects, the solar spectrum and luminosity, the climate and gravity on Earth, as well as energy conversion between light and materials such as the efficiency of solar cells and light-emitting diodes. From the discussions in this paper, students can appreciate how Planck’s constant affects various aspects of the world in which we are living now.
Confocal scanning beam laser microscope/macroscope: applications in fluorescence
NASA Astrophysics Data System (ADS)
Dixon, Arthur E.; Damaskinos, Savvas; Ribes, Alfonso
1996-03-01
A new confocal scanning beam laser microscope/macroscope is described that combines the rapid scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. This instrument combines an infinity-corrected confocal scanning laser microscope with a scanning laser macroscope that uses a telecentric f*(Theta) laser scan lens to produce a confocal imaging system with a resolution of 0.25 microns at a field of view of 25 microns and 5 microns at a field of view of 75,000 microns. The frame rate is 5 seconds per frame for a 512 by 512 pixel image, and 25 seconds for a 2048 by 2048 pixel image. Applications in fluorescence are discussed that focus on two important advantages of the instrument over a confocal scanning laser microscope: an extremely wide range of magnification, and the ability to image very large specimens. Examples are presented of fluorescence and reflected-light images of high quality printing, fluorescence images of latent fingerprints, packaging foam, and confocal autofluorescence images of a cricket.
Duality in entanglement of macroscopic states of light
NASA Astrophysics Data System (ADS)
Lee, Su-Yong; Lee, Chang-Woo; Kurzyński, Paweł; Kaszlikowski, Dagomir; Kim, Jaewan
2016-08-01
We investigate duality in entanglement of a bipartite multiphoton system generated from a coherent state of light. The system can exhibit polarization entanglement if the two parts are distinguished by their parity, or parity entanglement if the parts are distinguished by polarization. It was shown in Phys. Rev. Lett. 110, 140404 (2013), 10.1103/PhysRevLett.110.140404 that this phenomenon can be exploited as a method to test indistinguishability of two particles and it was conjectured that one can also test indistinguishability of macroscopic systems. We propose a setup to test this conjecture. Contrary to the previous studies using two-particle interference effect as in the Hong-Ou- Mandel setup, our setup neither assumes that the tested state is composed of single particles nor requires that the total number of particles be fixed. Consequently, the notion of entanglement duality is shown to be compatible with a broader class of physical systems. Moreover, by observing duality in entanglement in the above system one can confirm that macroscopic systems exhibit quantum behavior. As a practical side, entanglement duality is a useful concept that enables adaptive conversion of entanglement of one degree of freedom (DOF) to that of another DOF according to varying quantum protocols.
Tribological behaviour of graphite powders at nano- and macroscopic scales
NASA Astrophysics Data System (ADS)
Schmitt, M.; Bistac, S.; Jradi, K.
2007-04-01
With its high resistance, good hardness and electrical conductibility in the basal plans, graphite is used for many years in various tribological fields such as seals, bearings or electrical motor brushes, and also for applications needing excellent lubrication and wearreducing properties. But thanks to its low density, graphite is at the moment destined for technologies which need a reducing of the weight combined with an enhancement of the efficiency, as it is the case in aeronautical industry. In this contexte, the friction and wear of natural (named graphite A) and synthetic (called graphites B and C) powders were evaluated, first at the macroscopic scale when sliding against steel counterfaces, under various applied normal loads. Scanning Electron Microscopy and AFM in tapping mode were used to observe the morphological modifications of the graphites. It is noticed that an enlargement of the applied normal load leads to an increase of the friction coefficient for graphites A and C; but for the graphite B, it seems that a ''limit'' load can induce a complete change of the tribological behaviour. At the same time, the nano-friction properties of these powders were evaluated by AFM measurements in contact mode, at different contact loads. As it was the case at the macroscopic scale, an increase of the nano-contact load induces higher friction coefficients. The determining of the friction and wear mechanisms of the graphite powders, as a function of both their intrinsic characteristics and the applied normal load, is then possible.
Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon
Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.
2009-06-01
Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.
Macroscopic Biological Characteristics of Individualized Therapy in Chinese Mongolian Osteopathy
NASA Astrophysics Data System (ADS)
Namula, Zhao; Mei, Wang; Li, Xue-en
Objective: Chinese Mongolian osteopathy has been passed down from ancient times and includes unique practices and favorable efficacy. In this study, we investigate the macroscopic biological characteristics of individualized Chinese Mongolian osteopathy, in order to provide new principle and methods for the treatment of bone fracture. Method: With a view to provide a vital link between nature and humans, the four stages of Chinese Mongolian osteopathy focus on the unity of the mind and body, the limbs and body organs, the body and its functions, and humans and nature. Results: We discuss the merits of individualized osteopathy in terms of the underlying concepts, and evaluate the approaches and principles of traditional medicine, as well as biomechanics. Conclusions: Individualized Mongolian osteopathy targets macroscopic biological components including dynamic reduction, natural fixation, and functional healing. Chinese Mongolian osteopathy is a natural, ecological and non-invasive osteopathy that values the link between nature and humans, including the unity of mind and body. The biological components not only serve as a foundation for Chinese Mongolian osteopathy but are also important for the future development of modern osteopathy, focusing on individualization, actualization and integration.
Is ergodicity a reasonable hypothesis for macroscopic systems?
NASA Astrophysics Data System (ADS)
Gaveau, B.; Schulman, L. S.
2015-07-01
In the physics literature "ergodicity" is sometimes taken to mean that a system, including a macroscopic one, visits all microscopic states in a relatively short time. However, many authors have realized that this is impossible and we provide a rigorous bound demonstrating this fact. A related concept is the "thermal distribution." This enters in an understanding of dissipation, comparing the thermal state (the Boltzmann or Gibbs distribution) to its time evolute using relative entropy. The thermal distribution is based on the microcanonical ensemble, whose equal probability assumption is another phrasing of ergodicity in a macroscopic physical context. The puzzle then is why the results of these assumptions are in agreement with experience. We suggest (as others also have) reasons for this limited agreement, but note that the foundations of statistical mechanics make much stronger assumptions, assumptions that do not have the support of either reason or experience. This article is supplemented with comments by P. Gaspard, Y. Pomeau and H. Qian and a final reply by the authors.
Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Cohen, Morrel H.
2014-01-01
An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.
Macroscopic, freestanding, and tubular graphene architectures fabricated via thermal annealing.
Nguyen, Duc Dung; Suzuki, Seiya; Kato, Shuji; To, Bao Dong; Hsu, Chia Chen; Murata, Hidekazu; Rokuta, Eiji; Tai, Nyan-Hwa; Yoshimura, Masamichi
2015-03-24
Manipulation of individual graphene sheets/films into specific architectures at macroscopic scales is crucially important for practical uses of graphene. We present herein a versatile and robust method based on annealing of solid carbon precursors on nickel templates and thermo-assisted removal of poly(methyl methacrylate) under low vacuum of ∼0.6 Pa for fabrication of macroscopic, freestanding, and tubular graphene (TG) architectures. Specifically, the TG architectures can be obtained as individual and woven tubes with a diameter of ∼50 μm, a wall thickness in the range of 2.1-2.9 nm, a density of ∼1.53 mg·cm(-3), a thermal stability up to 600 °C in air, an electrical conductivity of ∼1.48 × 10(6) S·m(-1), and field emission current densities on the order of 10(4) A·cm(-2) at low applied electrical fields of 0.6-0.7 V·μm(-1). These properties show great promise for applications in flexible and lightweight electronics, electron guns, or X-ray tube sources.
Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram
NASA Astrophysics Data System (ADS)
Knoop, Victor L.; van Lint, Hans; Hoogendoorn, Serge P.
2015-11-01
Literature shows that-under specific conditions-the Macroscopic Fundamental Diagram (MFD) describes a crisp relationship between the average flow (production) and the average density in an entire network. The limiting condition is that traffic conditions must be homogeneous over the whole network. Recent works describe hysteresis effects: systematic deviations from the MFD as a result of loading and unloading. This article proposes a two dimensional generalization of the MFD, the so-called Generalized Macroscopic Fundamental Diagram (GMFD), which relates the average flow to both the average density and the (spatial) inhomogeneity of density. The most important contribution is that we show this is a continuous function, of which the MFD is a projection. Using the GMFD, we can describe the mentioned hysteresis patterns in the MFD. The underlying traffic phenomenon explaining the two dimensional surface described by the GMFD is that congestion concentrates (and subsequently spreads out) around the bottlenecks that oversaturate first. We call this the nucleation effect. Due to this effect, the network flow is not constant for a fixed number of vehicles as predicted by the MFD, but decreases due to local queueing and spill back processes around the congestion "nuclei". During this build up of congestion, the production hence decreases, which gives the hysteresis effects.
Improved macroscopic traffic flow model for aggressive drivers
Mendez, A. R.; Velasco, R. M.
2011-03-24
As has been done for the treatment of diluted gases, kinetic methods are formulated for the study of unidirectional freeway traffic. Fluid dynamic models obtained from kinetic equations have inherent restrictions, the principal one is the restriction to the low density regime. Macroscopic models obtained from kinetic equations tends to selfrestrict to this regime and makes impossible to observe the medium density region. In this work, we present some results heading to improve this model and extend the observable region. Now, we are presenting a fluid dynamic model for aggressive drivers obtained from kinetic assumptions to extend the model to the medium density region in order to study synchronization phenomena which is a very interesting transition phase between free flow and traffic jams. We are changing the constant variance prefactor condition imposed before by a variance prefactor density dependent, the numerical solution of the model is presented, analyzed and contrasted with the previous one. We are also comparing our results with heuristic macroscopic models and real traffic observations.
Structural Analysis Using NX Nastran 9.0
NASA Technical Reports Server (NTRS)
Rolewicz, Benjamin M.
2014-01-01
NX Nastran is a powerful Finite Element Analysis (FEA) software package used to solve linear and non-linear models for structural and thermal systems. The software, which consists of both a solver and user interface, breaks down analysis into four files, each of which are important to the end results of the analysis. The software offers capabilities for a variety of types of analysis, and also contains a respectable modeling program. Over the course of ten weeks, I was trained to effectively implement NX Nastran into structural analysis and refinement for parts of two missions at NASA's Kennedy Space Center, the Restore mission and the Orion mission.
Micro- and macroscopic magnetism in Li xNiO 2
NASA Astrophysics Data System (ADS)
Mukai, K.; Sugiyama, J.; Ikedo, Y.; Russo, P. L.; Andreica, D.; Amato, A.; Ariyoshi, K.; Ohzuku, T.
Both macro- and microscopic magnetic nature of Li xNiO 2 (0.1 ≤ x ≤ 1) were studied by susceptibility (χ) and muon-spin rotation and relaxation (μ+ SR) measurements in order to understand the change in magnetism of Li xNiO 2 with x. The χ measurements showed the presence of spin-glass-like freezing at Tf ∼ 11 K for the samples in the whole x range measured. This implies that the macroscopic magnetism is not sensitive to x, although the crystal structure and average oxidation state of the Ni ions of Li xNiO 2 alter as a function of x. On the other hand, the microscopic magnetism of Li xNiO 2 is found to be quite different from the macroscopic one. That is, a static antiferromagnetic ordered phase appears at low T for the samples with 0.6 ≤ x ≤ 1 , while a spin-glass-like disordered phase presents for the 0.25 ≤ x ≤ 0.5 samples below 10 K.
A Virtual Soil System to Study Macroscopic Manifestation of Pore-Scale Biogeochemical Processes
NASA Astrophysics Data System (ADS)
Liu, C.; Fang, Y.; Shang, J.; Bailey, V. L.
2012-12-01
Mechanistic soil biogeochemical processes occur at the pore-scale that fundamentally control the moisture and CO2 fluxes at the soil and atmosphere interface. This presentation will present an on-going research to investigate pore-scale moisture migration and biogeochemical processes of organic carbon degradation, and their macroscopic manifestation in soils. Soil cores collected from Rattlesnake Mountain in southeastern Washington, USA, where a field experiment was conducted to investigate dynamic response of soil biogeochemistry to changing climate conditions, were used as an example for this study. The cores were examined using computerized x-ray tomography (XCT) to determine soil pore structures. The XCT imaging, together with various measurements of soil properties such as porosity, moisture content, organic carbon, biochemistry, etc are used to establish a virtual soil core with a high spatial resolution (~20um). The virtual soil system is then used to simulate soil moisture migration and organic carbon degradation, to identify important physical and biogeochemical factors controlling macroscopic moisture and CO2 fluxes in response to changing climate conditions, and to develop and evaluate pragmatic biogeochemical process models for larger scale applications. Core-scale measurements of CO2 flux and moisture change are used for development and validation of the process models.
Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass
Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua
2016-01-01
The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the “work softening” behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses. PMID:26902264
Lunn, David J.; Gould, Oliver E. C.; Whittell, George R.; Armstrong, Daniel P.; Mineart, Kenneth P.; Winnik, Mitchell A.; Spontak, Richard J.; Pringle, Paul G.; Manners, Ian
2016-01-01
Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale. PMID:27538877
NASA Astrophysics Data System (ADS)
Okajima-Kaneko, Maiko; Hayasaka-Kaneko, Daisaku; Miyazato, Shinji; Kaneko, Tatsuo
2007-05-01
We report an efficient method for extraction of anionic polysaccharides (PS) from cyanobacteria, Aphanothece sacrum; we used a hot alkaline solution (0.01 N NaOH) as an elution solvent in the first step of the extraction and isopropanol as a precipitation solvent in the last step. Thin fibers of PS were obtained at a high yield (50-80 % to the weight of the raw cyanobacterial sample). The spectroscopy and elemental analyses indicated the PS contains fucose, uronic acids (14.2 % by a carbazole-sulfuric acid method), a sugar unit containing amides. The solution of PS with a concentration of 1 wt% showed a very high viscosity (80 000cps) implying a high molecular weight, and a strong macroscopic birefringence with a texture typical of nematic liquid crystals was confirmed by crossed-polarizing microscopy (more than 0.5 wt%). The PS from A. sacrum may form a special structure rigid-rod enough to show LC phase and macroscopic birefringence.
Macroscopic description of complex adaptive networks coevolving with dynamic node states.
Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Development of the Liver in Alpaca (Vicugna pacos): A Microscopic and Macroscopic Description.
Castro, A N C; Domínguez, M T; Gómez, S A; Mendoza Torres, G J; Llerena Zavala, C A; Ghezzi, M D; Barbeito, C G
2016-06-01
South American camelids have several biological, morphological and behavioural adaptations that allow them to live in geographical areas dominated by high altitudes. The liver has hematopoietic functions during the prenatal life, which could be modified in response to the unfavorable habitat. However, there are no previous data on the prenatal development of the liver in these species. In the present work, a study on the macroscopic and microscopic morphology of the liver of the alpaca during ontogeny was performed. Forty-one animals ranging in age from 20 days of embryonic development to adults were studied. Macroscopic and microscopic observations were performed on samples subjected to different techniques. Less than 7-g specimens were studied with stereoscopic magnifying glass. The general characteristics of the prenatal liver are similar to those of other mammals, and the structures related to hematopoietic function follow an ontogenic pattern similar to that of previously studied precocial species. However, there are differences in morphology when compared to descriptions for the Old World camelids, including the absence of relation between the caudate lobe and the right kidney and the lack of interlobular connective tissue.
An Efficient Analysis Methodology for Fluted-Core Composite Structures
NASA Technical Reports Server (NTRS)
Oremont, Leonard; Schultz, Marc R.
2012-01-01
The primary loading condition in launch-vehicle barrel sections is axial compression, and it is therefore important to understand the compression behavior of any structures, structural concepts, and materials considered in launch-vehicle designs. This understanding will necessarily come from a combination of test and analysis. However, certain potentially beneficial structures and structural concepts do not lend themselves to commonly used simplified analysis methods, and therefore innovative analysis methodologies must be developed if these structures and structural concepts are to be considered. This paper discusses such an analysis technique for the fluted-core sandwich composite structural concept. The presented technique is based on commercially available finite-element codes, and uses shell elements to capture behavior that would normally require solid elements to capture the detailed mechanical response of the structure. The shell thicknesses and offsets using this analysis technique are parameterized, and the parameters are adjusted through a heuristic procedure until this model matches the mechanical behavior of a more detailed shell-and-solid model. Additionally, the detailed shell-and-solid model can be strategically placed in a larger, global shell-only model to capture important local behavior. Comparisons between shell-only models, experiments, and more detailed shell-and-solid models show excellent agreement. The discussed analysis methodology, though only discussed in the context of fluted-core composites, is widely applicable to other concepts.
Cognitive Diagnostic Analysis Using Hierarchically Structured Skills
ERIC Educational Resources Information Center
Su, Yu-Lan
2013-01-01
This dissertation proposes two modified cognitive diagnostic models (CDMs), the deterministic, inputs, noisy, "and" gate with hierarchy (DINA-H) model and the deterministic, inputs, noisy, "or" gate with hierarchy (DINO-H) model. Both models incorporate the hierarchical structures of the cognitive skills in the model estimation…
Theses "Discussion" Sections: A Structural Move Analysis
ERIC Educational Resources Information Center
Nodoushan, Mohammad Ali Salmani; Khakbaz, Nafiseh
2011-01-01
The current study aimed at finding the probable differences between the move structure of Iranian MA graduates' thesis discussion subgenres and those of their non-Iranian counterparts, on the one hand, and those of journal paper authors, on the other. It also aimed at identifying the moves that are considered obligatory, conventional, or optional…
Structural analysis of hydroxyapatite coatings on titanium.
Ducheyne, P; Van Raemdonck, W; Heughebaert, J C; Heughebaert, M
1986-03-01
Hydroxyapatite from two sources was electrophoretically deposited onto flat titanium plate material. Depending upon the deposition conditions various changes in the structure of the ceramic were identified. A well-adhering Ti-P compound was present at the interface. Hydroxyapatite oxygenated to various degrees and tetracalcium phosphate were reproducibly formed in the coating.
Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.
1989-01-01
The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.
Experiences with a preliminary NICE/SPAR structural analysis system
NASA Technical Reports Server (NTRS)
Lotts, C. G.; Greene, W. H.
1985-01-01
Development of a new structural analysis system based on the original SPAR finite element code and the NICE system is described. The system is denoted NICE/SPAR. NICE was designed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Engineering Information Systems, Inc. It includes many complementary structural analysis and utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring new computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with the SPAR computational modules.
Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach
NASA Astrophysics Data System (ADS)
Ngoduy, D.
2013-10-01
This paper proposes a macroscopic model to describe the operations of cooperative adaptive cruise control (CACC) traffic flow, which is an extension of adaptive cruise control (ACC) traffic flow. In CACC traffic flow a vehicle can exchange information with many preceding vehicles through wireless communication. Due to such communication the CACC vehicle can follow its leader at a closer distance than the ACC vehicle. The stability diagrams are constructed from the developed model based on the linear and nonlinear stability method for a certain model parameter set. It is found analytically that CACC vehicles enhance the stabilization of traffic flow with respect to both small and large perturbations compared to ACC vehicles. Numerical simulation is carried out to support our analytical findings. Based on the nonlinear stability analysis, we will show analytically and numerically that the CACC system better improves the dynamic equilibrium capacity over the ACC system. We have argued that in parallel to microscopic models for CACC traffic flow, the newly developed macroscopic will provide a complete insight into the dynamics of intelligent traffic flow.
Monte Carlo simulation of superdiffusion and subdiffusion in macroscopically heterogeneous media
NASA Astrophysics Data System (ADS)
Zhang, Yong; Labolle, Eric M.; Pohlmann, Karl
2009-10-01
Monte Carlo simulations are developed to approximate one-dimensional superdiffusion and subdiffusion in macroscopically heterogeneous media with discontinuous or continuous transport parameters. For superdiffusion characterized by a space fractional (α-order) derivative model, one empirical reflection scheme is built to track particle trajectory across an interface with discontinuous dispersion coefficient D, where the reflection probability depends on both α and the ratio of D. Different from the superdiffusive case, anomalous diffusion described by a time fractional derivative model can be decomposed into a motion component and a hitting time process, where the discontinuity affects only the motion process, implying an efficient Monte Carlo simulation of decoupled continuous time random walks. The discontinuity of effective porosity n is also discussed, and results show the influence of the ratio of n on solute particle dynamics. In addition, for anomalous superdiffusion and subdiffusion in heterogeneous media with spatially continuous D and n, Langevin analysis reveals that the corresponding particle dynamics contain three independent stable Lévy noises scaled by D, the gradient of D, and the gradient of ln(n). A new implicit Eulerian finite difference method is also developed to solve the spatiotemporal fractional derivative models and then extensively cross verify the Lagrangian solutions. Further testing against one field example of mixed superdiffusion and subdiffusion reveals the applicability and flexibility of the novel Monte Carlo approach in simulating realistic plumes in macroscopically heterogeneous media with locally variable transport parameters.
NASA Astrophysics Data System (ADS)
Hong, S. Lee; Bodfish, James W.; Newell, Karl M.
2006-03-01
We investigated the relationship between macroscopic entropy and microscopic complexity of the dynamics of body rocking and sitting still across adults with stereotyped movement disorder and mental retardation (profound and severe) against controls matched for age, height, and weight. This analysis was performed through the examination of center of pressure (COP) motion on the mediolateral (side-to-side) and anteroposterior (fore-aft) dimensions and the entropy of the relative phase between the two dimensions of motion. Intentional body rocking and stereotypical body rocking possessed similar slopes for their respective frequency spectra, but differences were revealed during maintenance of sitting postures. The dynamics of sitting in the control group produced lower spectral slopes and higher complexity (approximate entropy). In the controls, the higher complexity found on each dimension of motion was related to a weaker coupling between dimensions. Information entropy of the relative phase between the two dimensions of COP motion and irregularity (complexity) of their respective motions fitted a power-law function, revealing a relationship between macroscopic entropy and microscopic complexity across both groups and behaviors. This power-law relation affords the postulation that the organization of movement and posture dynamics occurs as a fractal process.
Global properties of even-even superheavy nuclei in macroscopic-microscopic models
Baran, Andrzej; Lojewski, Zdzislaw; Sieja, Kamila; Kowal, Michal
2005-10-01
A systematic study of global properties of superheavy nuclei in the framework of macroscopic-microscopic method is performed. Equilibrium deformations, masses, quadrupole moments, radii, shell energies, fission barriers and half-lives are calculated using the following macroscopic models: Myers-Swiatecki liquid drop, droplet, Yukawa-plus-exponential, and Lublin-Strasbourg drop. Shell and pairing energies are calculated in Woods-Saxon potential with a universal set of parameters. The analysis covers a wide range of even-even superheavy nuclei from Z=100 to 122. Magic and semimagic numbers occurring in this region are indicated and their influence on the observables is discussed. The strongest shell effects appear at proton number Z=114 and at neutron number N=184. Deformed shell closures are found at N=152 and 162. Spontaneous fission half-lives are calculated in a dynamical approach where the full minimization of the action integral in a three-dimensional deformation space of {beta} deformations is performed. The fission half-lives obtained this way are two orders of magnitude smaller than the ones resulting from static calculations. The agreement of theoretical results and experimental data is satisfying.
Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons.
Luke, Tanushree B; Barreto, Ernest; So, Paul
2013-12-01
We design and analyze the dynamics of a large network of theta neurons, which are idealized type I neurons. The network is heterogeneous in that it includes both inherently spiking and excitable neurons. The coupling is global, via pulselike synapses of adjustable sharpness. Using recently developed analytical methods, we identify all possible asymptotic states that can be exhibited by a mean field variable that captures the network's macroscopic state. These consist of two equilibrium states that reflect partial synchronization in the network and a limit cycle state in which the degree of network synchronization oscillates in time. Our approach also permits a complete bifurcation analysis, which we carry out with respect to parameters that capture the degree of excitability of the neurons, the heterogeneity in the population, and the coupling strength (which can be excitatory or inhibitory). We find that the network typically tends toward the two macroscopic equilibrium states when the neuron's intrinsic dynamics and the network interactions reinforce one another. In contrast, the limit cycle state, bifurcations, and multistability tend to occur when there is competition among these network features. Finally, we show that our results are exhibited by finite network realizations of reasonable size.
Probabilistic Computer Analysis for Rapid Evaluation of Structures.
XU, JIM
2007-03-29
P-CARES 2.0.0, Probabilistic Computer Analysis for Rapid Evaluation of Structures, was developed for NRC staff use to determine the validity and accuracy of the analysis methods used by various utilities for structural safety evaluations of nuclear power plants. P-CARES provides the capability to effectively evaluate the probabilistic seismic response using simplified soil and structural models and to quickly check the validity and/or accuracy of the SSI data received from applicants and licensees. The code is organized in a modular format with the basic modules of the system performing static, seismic, and nonlinear analysis.
ANOVA like analysis for structured families of stochastic matrices
NASA Astrophysics Data System (ADS)
Dias, Cristina; Santos, Carla; Varadinov, Maria; Mexia, João T.
2016-12-01
Symmetric stochastic matrices width a width a dominant eigenvalue λ and the corresponding eigenvector α appears in many applications. Such matrices can be written as M =λ α αt+E¯. Thus β = λ α will be the structure vector. When the matrices in such families correspond to the treatments of a base design we can carry out a ANOVA like analysis of the action of the treatments in the model on the structured vectors. This analysis can be transversal-when we worked width homologous components and - longitudinal when we consider contrast on the components of each structure vector. The analysis will be briefly considered at the end of our presentation.
Analysis and Synthesis of Robust Data Structures
1990-08-01
1.3.2 Multiversion Software. .. .. .. .. .. .... .. ... .. ...... 5 1.3.3 Robust Data Structure .. .. .. .. .. .. .. .. .. ... .. ..... 6 1.4...context are 0 multiversion software, which is an adaptation oi N-modulo redundancy (NMR) tech- nique. * recovery blocks, which is an adaptation of...implementations using these features for such a hybrid approach. 1.3.2 Multiversion Software Avizienis [AC77] was the first to adapt NMR technique into
Acoustic Emission Analysis of Prestressed Concrete Structures
NASA Astrophysics Data System (ADS)
Elfergani, H. A.; Pullin, R.; Holford, K. M.
2011-07-01
Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.
Graphene in macroscopic order: liquid crystals and wet-spun fibers.
Xu, Zhen; Gao, Chao
2014-04-15
In nanotechnology, the creation of new nanoparticles consistently feeds back into efforts to design and fabricate new macroscopic materials with specific properties. As a two-dimensional (2D) building block of new materials, graphene has received widespread attention due to its exceptional mechanical, electrical, and thermal properties. But harnessing these attributes into new materials requires developing methods to assemble single-atom-thick carbon flakes into macroscopically ordered structures. Because the melt processing of carbon materials is impossible, fluid assembly is the only viable approach for meeting this challenge. But in the meantime, researchers need to solve two fundamental problems: creating orientational ordering in fluids and the subsequent phase-transformation from ordered fluids into ordered solid materials. To address these problems, this Account highlights our graphene chemistry methods that take advantage of liquid crystals to produce graphene fibers. We have successfully synthesized graphene oxide (GO) from graphite in a scalable manner. Using the size of graphite particles and post fractionation, we successfully tuned the lateral size of GO from submicron sizes to dozens of microns. Based on the rich chemistry of GO, we developed reliable methods for chemical or physical functionalization of graphene and produced a series of functionalized, highly soluble graphene derivatives that behave as single layers even at high concentrations. In the dispersive system of GO and functionalized graphenes, rich liquid crystals (LCs) formed spontaneously. Some of these liquid crystals had a conventional nematic phase with orientational order; others had a lamellar phase. Importantly, we observed a new chiral mesophase featuring a helical-lamellar structural model with frustrated disinclinations. The graphene-based LCs show ordered assembly behaviors in the fluid state of 2D colloids and lay a foundation for the design of ordered materials with optimal
ASSESSMENT OF SEISMIC ANALYSIS METHODOLOGIES FOR DEEPLY EMBEDDED NPP STRUCTURES.
XU, J.; MILLER, C.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H. .
2005-07-01
Several of the new generation nuclear power plant designs have structural configurations which are proposed to be deeply embedded. Since current seismic analysis methodologies have been applied to shallow embedded structures (e.g., ASCE 4 suggest that simple formulations may be used to model embedment effect when the depth of embedment is less than 30% of its foundation radius), the US Nuclear Regulatory Commission is sponsoring a program at the Brookhaven National Laboratory with the objective of investigating the extent to which procedures acceptable for shallow embedment depths are adequate for larger embedment depths. This paper presents the results of a study comparing the response spectra obtained from two of the more popular analysis methods for structural configurations varying from shallow embedment to complete embedment. A typical safety related structure embedded in a soil profile representative of a typical nuclear power plant site was utilized in the study and the depths of burial (DOB) considered range from 25-100% the height of the structure. Included in the paper are: (1) the description of a simplified analysis and a detailed approach for the SSI analyses of a structure with various DOB, (2) the comparison of the analysis results for the different DOBs between the two methods, and (3) the performance assessment of the analysis methodologies for SSI analyses of deeply embedded structures. The resulting assessment from this study has indicated that simplified methods may be capable of capturing the seismic response for much deeper embedded structures than would be normally allowed by the standard practice.
Template matching method for the analysis of interstellar cloud structure
NASA Astrophysics Data System (ADS)
Juvela, M.
2016-09-01
Context. The structure of interstellar medium can be characterised at large scales in terms of its global statistics (e.g. power spectra) and at small scales by the properties of individual cores. Interest has been increasing in structures at intermediate scales, resulting in a number of methods being developed for the analysis of filamentary structures. Aims: We describe the application of the generic template-matching (TM) method to the analysis of maps. Our aim is to show that it provides a fast and still relatively robust way to identify elongated structures or other image features. Methods: We present the implementation of a TM algorithm for map analysis. The results are compared against rolling Hough transform (RHT), one of the methods previously used to identify filamentary structures. We illustrate the method by applying it to Herschel surface brightness data. Results: The performance of the TM method is found to be comparable to that of RHT but TM appears to be more robust regarding the input parameters, for example, those related to the selected spatial scales. Small modifications of TM enable one to target structures at different size and intensity levels. In addition to elongated features, we demonstrate the possibility of using TM to also identify other types of structures. Conclusions: The TM method is a viable tool for data quality control, exploratory data analysis, and even quantitative analysis of structures in image data.
Macroscopic surface tension in a lattice Bhatnagar-Gross-Krook model of two immiscible fluids
NASA Astrophysics Data System (ADS)
Halliday, I.; Thompson, S. P.; Care, C. M.
1998-01-01
We present a method by which an interface generating algorithm, similar to that of earlier lattice Boltzmann models of immiscible fluids, may be extended to a two component, two-speed two-dimensional (D2), nine-link (Q9) lattice Bhatnagar-Gross-Krook fluid. For two-dimensional, microcurrent-free planar interfaces between the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the two fluids. Extending our analysis to curved interfaces, we propose a scheme for incorporating the influence of interfacial microcurrents that is based upon general symmetry arguments and is correct to second order in lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second-order influence upon the macroscopic behavior of the model. We find good agreement between our calculations and simulation results based on the microcurrent stream function and surface tension results from the pressure tensor or Laplace law.
Macroscopic Surface Tension in a Lattice Boltzmann BGK Model of Two Immiscible Fluids.
NASA Astrophysics Data System (ADS)
Thompson, S. P.; Halliday, I.; Care, C. M.
1997-08-01
We present a method by which an interface generating algorithm, similar to that of earlier lattice Boltzmann models of immisible fluids, may be extended to a two component, two-speed D2Q9 lattice Bhatnagar Gross Krook fluid. For two-dimensional, microcurrent-free planar interfaces between the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the two fluids. Extending our analysis to curved interfaces we propose a scheme for incorporating the influence of interfacial microcurrents which is based upon general symmetry arguments and is correct to second order in lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second order influence upon the macroscopic behaviour of the model. We find good agreement between our calculations and simulation results based on the microcurrent stream function and surface tension results from the pressure tensor or Laplace law.
Structural dynamic analysis of a ball joint
NASA Astrophysics Data System (ADS)
Hwang, Seok-Cheol; Lee, Kwon-Hee
2012-11-01
Ball joint is a rotating and swiveling element that is typically installed at the interface between two parts. In an automobile, the ball joint is the component that connects the control arms to the steering knuckle. The ball joint can also be installed in linkage systems for motion control applications. This paper describes the simulation strategy for a ball joint analysis, considering manufacturing process. Its manufacturing process can be divided into plugging and spinning. Then, the interested responses is selected as the stress distribution generated between its ball and bearing. In this paper, a commercial code of NX DAFUL using an implicit integration method is introduced to calculate the response. In addition, the gap analysis is performed to investigate the fitness, focusing on the response of the displacement of a ball stud. Also, the optimum design is suggested through case studies.
Structural analysis of hierarchically organized zeolites
Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier
2015-01-01
Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.
1995-01-01
NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.
Statistical energy analysis of complex structures, phase 2
NASA Technical Reports Server (NTRS)
Trudell, R. W.; Yano, L. I.
1980-01-01
A method for estimating the structural vibration properties of complex systems in high frequency environments was investigated. The structure analyzed was the Materials Experiment Assembly, (MEA), which is a portion of the OST-2A payload for the space transportation system. Statistical energy analysis (SEA) techniques were used to model the structure and predict the structural element response to acoustic excitation. A comparison of the intial response predictions and measured acoustic test data is presented. The conclusions indicate that: the SEA predicted the response of primary structure to acoustic excitation over a wide range of frequencies; and the contribution of mechanically induced random vibration to the total MEA is not significant.
Seismic Response Analysis and Design of Structure with Base Isolation
Rosko, Peter
2010-05-21
The paper reports the study on seismic response and energy distribution of a multi-story civil structure. The nonlinear analysis used the 2003 Bam earthquake acceleration record as the excitation input to the structural model. The displacement response was analyzed in time domain and in frequency domain. The displacement and its derivatives result energy components. The energy distribution in each story provides useful information for the structural upgrade with help of added devices. The objective is the structural displacement response minimization. The application of the structural seismic response research is presented in base-isolation example.
Applications of mass spectrometry to structural analysis of marine oligosaccharides.
Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli
2014-06-30
Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.
Applications of Mass Spectrometry to Structural Analysis of Marine Oligosaccharides
Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli
2014-01-01
Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out. PMID:24983643
Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures
NASA Technical Reports Server (NTRS)
Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)
1983-01-01
The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.
Convected transient analysis for large space structures maneuver and deployment
NASA Technical Reports Server (NTRS)
Housner, J.
1984-01-01
Convected-transient analysis techniques in the finite-element method are used to investigate the deployment and maneuver of large spacecraft structures with multiple-member flexible trusses and frames. Numerical results are presented for several sample problems.
Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.
1999-01-01
A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.
Structure analysis on synthetic emerald crystals
NASA Astrophysics Data System (ADS)
Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou
2013-05-01
Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.
Structural and quantitative analysis of Equisetum alkaloids.
Cramer, Luise; Ernst, Ludger; Lubienski, Marcus; Papke, Uli; Schiebel, Hans-Martin; Jerz, Gerold; Beuerle, Till
2015-08-01
Equisetum palustre L. is known for its toxicity for livestock. Several studies in the past addressed the isolation and identification of the responsible alkaloids. So far, palustrine (1) and N(5)-formylpalustrine (2) are known alkaloids of E. palustre. A HPLC-ESI-MS/MS method in combination with simple sample work-up was developed to identify and quantitate Equisetum alkaloids. Besides the two known alkaloids six related alkaloids were detected in different Equisetum samples. The structure of the alkaloid palustridiene (3) was derived by comprehensive 1D and 2D NMR experiments. N(5)-Acetylpalustrine (4) was also thoroughly characterized by NMR for the first time. The structure of N(5)-formylpalustridiene (5) is proposed based on mass spectrometry results. Twenty-two E. palustre samples were screened by a HPLC-ESI-MS/MS method after development of a simple sample work-up and in most cases the set of all eight alkaloids were detected in all parts of the plant. A high variability of the alkaloid content and distribution was found depending on plant organ, plant origin and season ranging from 88 to 597mg/kg dried weight. However, palustrine (1) and the alkaloid palustridiene (3) always represented the main alkaloids. For the first time, a comprehensive identification, quantitation and distribution of Equisetum alkaloids was achieved.
Nonlinear transient analysis of joint dominated structures
NASA Technical Reports Server (NTRS)
Chapman, J. M.; Shaw, F. H.; Russell, W. C.
1987-01-01
A residual force technique is presented that can perform the transient analyses of large, flexible, and joint dominated structures. The technique permits substantial size reduction in the number of degrees of freedom describing the nonlinear structural models and can account for such nonlinear joint phenomena as free-play and hysteresis. In general, joints can have arbitrary force-state map representations but these are used in the form of residual force maps. One essential feature of the technique is to replace the arbitrary force-state maps describing the nonlinear joints with residual force maps describing the truss links. The main advantage of this replacement is that the incrementally small relative displacements and velocities across a joint are not monitored directly thereby avoiding numerical difficulties. Instead, very small and 'soft' residual forces are defined giving a numerically attractive form for the equations of motion and thereby permitting numerically stable integration algorithms. The technique was successfully applied to the transient analyses of a large 58 bay, 60 meter truss having nonlinear joints. A method to perform link testing is also presented.
Macroscopic quantum entanglement of a Kondo cloud at finite temperature.
Lee, S-S B; Park, Jinhong; Sim, H-S
2015-02-06
We propose a variational approach for computing the macroscopic entanglement in a many-body mixed state, based on entanglement witness operators, and compute the entanglement of formation (EoF), a mixed-state generalization of the entanglement entropy, in single- and two-channel Kondo systems at finite temperature. The thermal suppression of the EoF obeys power-law scaling at low temperature. The scaling exponent is halved from the single- to the two-channel system, which is attributed, using a bosonization method, to the non-Fermi liquid behavior of a Majorana fermion, a "half" of a complex fermion, emerging in the two-channel system. Moreover, the EoF characterizes the size and power-law tail of the Kondo screening cloud of the single-channel system.
A macroscopic model of traffic jams in axons.
Kuznetsov, A V; Avramenko, A A
2009-04-01
The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model's predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out.
Macroscopic heat transport equations and heat waves in nonequilibrium states
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Jou, David; Wang, Moran
2017-03-01
Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.
Quantum interference in a macroscopic van der Waals conductor
NASA Astrophysics Data System (ADS)
Rischau, C. W.; Wiedmann, S.; Seyfarth, G.; LeBoeuf, D.; Behnia, K.; Fauqué, B.
2017-02-01
Quantum corrections to charge transport can give rise to an oscillatory magnetoconductance, typically observed in mesoscopic samples with a length shorter than or comparable to the phase coherence length. Here, we report the observation of magnetoconductance oscillations periodic in magnetic field with an amplitude of the order of e2/h in macroscopic samples of highly oriented pyrolytic graphite (HOPG). The observed effect emerges when all carriers are confined to their lowest Landau levels. We argue that this quantum interference phenomenon can be explained by invoking moiré superlattices with a discrete distribution in periodicity. According to our results, when the magnetic length ℓB, the Fermi wavelength λF, and the length scale of fluctuations in local chemical potential are comparable in a layered conductor, quantum corrections can be detected over centimetric length scales.
Tunable Broadband Transparency of Macroscopic Quantum Superconducting Metamaterials
NASA Astrophysics Data System (ADS)
Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Anlage, Steven M.
2015-10-01
Narrow-band invisibility in an otherwise opaque medium has been achieved by electromagnetically induced transparency (EIT) in atomic systems. The quantum EIT behavior can be classically mimicked by specially engineered metamaterials via carefully controlled interference with a "dark mode." However, the narrow transparency window limits the potential applications that require a tunable wideband transparent performance. Here, we present a macroscopic quantum superconducting metamaterial with manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional EIT or its classical analogs. A near-complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bistability of the meta-atoms and can be tuned on and off easily by altering rf and dc magnetic fields, temperature, and history. Hysteretic in situ 100% tunability of transparency paves the way for autocloaking metamaterials, intensity-dependent filters, and fast-tunable power limiters.
Innovating e-waste management: From macroscopic to microscopic scales.
Zeng, Xianlai; Yang, Congren; Chiang, Joseph F; Li, Jinhui
2017-01-01
Waste electrical and electronic equipment (WEEE or e-waste) has become a global problem, due to its potential environmental pollution and human health risk, and its containing valuable resources (e.g., metals, plastics). Recycling for e-waste will be a necessity, not only to address the shortage of mineral resources for electronics industry, but also to decline environmental pollution and human health risk. To systematically solve the e-waste problem, more attention of e-waste management should transfer from macroscopic to microscopic scales. E-waste processing technology should be significantly improved to diminish and even avoid toxic substance entering into downstream of material. The regulation or policy related to new production of hazardous substances in recycled materials should also be carried out on the agenda. All the findings can hopefully improve WEEE legislation for regulated countries and non-regulated countries.
Double-Slit Interference Pattern for a Macroscopic Quantum System
NASA Astrophysics Data System (ADS)
Naeij, Hamid Reza; Shafiee, Afshin
2016-12-01
In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.