Science.gov

Sample records for macrostatistical hydrodynamics progress

  1. Macrostatistical hydrodynamics

    SciTech Connect

    Brenner, H.

    1992-01-01

    During the course of these efforts we have been studying suspension of particles in Newtonian and non-Newtonian liquids, embodying a combination of analysis, experiments, and numerical simulations. Experiments primarily involved tracking small balls as they fall slowly through otherwise quiescent suspensions of neutrally buoyant particles. Detailed trajectories of the balls, obtained either with new experimental techniques or by numerical simulation, were statistically interpreted in terms of the mean settling velocity and the dispersion about the mean. We showed that falling-ball rheometry, using small balls relative to the suspended particles, could be a means of measuring the macroscopic zero-shear-rate viscosity without significantly disturbing the original microstructure; therefore, falling-ball rheometry can be a powerful tool for use in studying the effects of microstructures on the macroscopic properties of suspensions. We plan to extend this work to the study of more complex, structured fluids, and to use other tools (e.g., rolling-ball rheometry) to study boundary effects. We also propose to study flowing suspensions to obtain non-zero-shear-rate viscosities. The intent is to develop an understanding of the basic principles needed to treat generic multiphase flow problems, through a detailed study of model systems. 8 refs.

  2. Macrostatistical hydrodynamics

    SciTech Connect

    Brenner, H.

    1989-01-01

    Work performed during this contract period involved performing trajectory measurements of the three-dimensional position of the falling ball as a function of time. This has allowed us to calculate the dispersivity of the falling ball around its mean settling velocity. Whereas the mean settling velocity predicts the continuum behavior of the suspension, the dispersivity allows insight into the non-continuum behavior of the suspension caused by the presence of the macroscopic suspended spheres. Experiments were performed for several sphere sizes (0.635 and 0.3125 cm diameter) as a function of volume fraction ({phi} = 0.30 and 0.50) and relative size ratio of the settling to suspended sphere diameter (0.5 to 4.0). In addition, the bulk behavior of monodisperse and bidisperse sphere suspensions were examined for both Poiseuille and Couette flows. This allowed qualitative analysis of shear-induced particle migration phenomena observed during the processing of highly-concentrated suspensions. Finally, numerical methods are being developed to allow a more complete understanding of the micromechanical effects which cause the dispersivity phenomenon in both falling-ball and shear-induced particle migration experiments.

  3. Macrostatistical hydrodynamics. Progress report, April 15, 1991--September 14, 1992

    SciTech Connect

    Brenner, H.

    1992-06-01

    During the course of these efforts we have been studying suspension of particles in Newtonian and non-Newtonian liquids, embodying a combination of analysis, experiments, and numerical simulations. Experiments primarily involved tracking small balls as they fall slowly through otherwise quiescent suspensions of neutrally buoyant particles. Detailed trajectories of the balls, obtained either with new experimental techniques or by numerical simulation, were statistically interpreted in terms of the mean settling velocity and the dispersion about the mean. We showed that falling-ball rheometry, using small balls relative to the suspended particles, could be a means of measuring the macroscopic zero-shear-rate viscosity without significantly disturbing the original microstructure; therefore, falling-ball rheometry can be a powerful tool for use in studying the effects of microstructures on the macroscopic properties of suspensions. We plan to extend this work to the study of more complex, structured fluids, and to use other tools (e.g., rolling-ball rheometry) to study boundary effects. We also propose to study flowing suspensions to obtain non-zero-shear-rate viscosities. The intent is to develop an understanding of the basic principles needed to treat generic multiphase flow problems, through a detailed study of model systems. 8 refs.

  4. Progress in smooth particle hydrodynamics

    SciTech Connect

    Wingate, C.A.; Dilts, G.A.; Mandell, D.A.; Crotzer, L.A.; Knapp, C.E.

    1998-07-01

    Smooth Particle Hydrodynamics (SPH) is a meshless, Lagrangian numerical method for hydrodynamics calculations where calculational elements are fuzzy particles which move according to the hydrodynamic equations of motion. Each particle carries local values of density, temperature, pressure and other hydrodynamic parameters. A major advantage of SPH is that it is meshless, thus large deformation calculations can be easily done with no connectivity complications. Interface positions are known and there are no problems with advecting quantities through a mesh that typical Eulerian codes have. These underlying SPH features make fracture physics easy and natural and in fact, much of the applications work revolves around simulating fracture. Debris particles from impacts can be easily transported across large voids with SPH. While SPH has considerable promise, there are some problems inherent in the technique that have so far limited its usefulness. The most serious problem is the well known instability in tension leading to particle clumping and numerical fracture. Another problem is that the SPH interpolation is only correct when particles are uniformly spaced a half particle apart leading to incorrect strain rates, accelerations and other quantities for general particle distributions. SPH calculations are also sensitive to particle locations. The standard artificial viscosity treatment in SPH leads to spurious viscosity in shear flows. This paper will demonstrate solutions for these problems that they and others have been developing. The most promising is to replace the SPH interpolant with the moving least squares (MLS) interpolant invented by Lancaster and Salkauskas in 1981. SPH and MLS are closely related with MLS being essentially SPH with corrected particle volumes. When formulated correctly, JLS is conservative, stable in both compression and tension, does not have the SPH boundary problems and is not sensitive to particle placement. The other approach to

  5. Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    EPA Science Inventory

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...

  6. Progress and challenges in coupled hydrodynamic-ecological estuarine modeling

    PubMed Central

    Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O’Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy M.; Vaudrey, Jamie M.P.

    2016-01-01

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy. PMID:27721675

  7. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.

    PubMed

    Buchanan, Cara; Rylander, Marissa Nichole

    2013-08-01

    The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment. PMID:23616255

  8. Hydrodynamics of exploding foils: Progress on similarity solution and a stability analysis for early time

    SciTech Connect

    Hunter, J.H.

    1986-11-25

    This report addresses two broad aspects of the behaviors of hydrodynamic flows, resulting from laser heated, exploding foils. In Part I, various aspects of the similarity solutions are considered, whereas in Part II the stability of the flows at early times are examined, before the similarity solutions are established. 5 refs., 3 figs.

  9. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    SciTech Connect

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  10. Hydrodynamic models for slurry bubble column reactors. Fourth technical progress report

    SciTech Connect

    Gidaspow, D.

    1995-07-01

    The objective of this investigation is to convert our ``learning gas-solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. The simulation of Air Product methanol reactors described in this paper are continuing. Granular temperatures and viscosities have been computed. Preliminary measurements of granular temperatures using the Air Product catalysts were obtained using our CCD camera.

  11. Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front

    SciTech Connect

    Casner, A. Masse, L.; Huser, G.; Galmiche, D.; Liberatore, S.; Riazuelo, G.; Delorme, B.; Martinez, D.; Remington, B.; Smalyuk, V. A.; Igumenshchev, I.; Michel, D. T.; Froula, D.; Seka, W.; Goncharov, V. N.; Olazabal-Loumé, M.; Nicolaï, Ph.; Breil, J.; Tikhonchuk, V. T.; Fujioka, S.; and others

    2014-12-15

    Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experiments performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. The foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.

  12. Hydrodynamic models for slurry bubble column reactors. Sixth technical progress report

    SciTech Connect

    Gidaspow, D.

    1996-01-01

    The objective of this investigation is to convert the gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. This report presents measurements of granular temperature of Air Products catalyst. The report is in the form of a preliminary paper, entitled ``Dynamics of Liquid-Solid Fluidized Beds with Small Catalyst Particles.`` The principal results are as follows: (1) For the liquid-solid system the granular temperature is much smaller than for a corresponding gas-solid system. This may be due to the larger viscosity of the liquid in comparison to air. (2) The collisional viscosity of the catalyst is correspondingly much smaller than that of catalyst particles in the air. (3) The dominant frequency of density oscillations is near two Hertz, as expected for a gas-solid fluidized bed. There exists a link between this low frequency and the high frequency of catalyst particle oscillations. The Air Products fluidized bed reactor is designed to produce methanol and synthetic fuels from synthesis gas.

  13. Hydrodynamically induced dryout and post dryout important to heavy water reactors: A yearly progress report

    SciTech Connect

    Ishii, M.; Revankar, S.T.; Babelli, I.; Lele, S.

    1992-06-01

    Recently, the safety of low pressure liquid cooled nuclear reactors has become a very important issue with reference to the operation of the heavy water reactors at Savannah River Plant. Under accident conditions such as loss-of-flow or loss-of-coolant, these reactors typically encounter unstable two-phase flow which may lead to the occurrence of dryout and subsequent fuel failure. An analytical study using the one-dimensional drift flux model was carried out to investigate the two-phase flow instability for Westinghouse Savannah River Site reactor. The analysis indicates that the first and higher order instabilities exist in the possible transient operational conditions. The instabilities are encountered at higher heat fluxes or lower flow rates. The subcooling has a stabilizing effect except at very low subcooling. An experimental loop has been designed and constructed to study the CBF induced by various flow instabilities. Details of this test loop are presented. Initial test results have been presented. The two-phase flow regimes and hydrodynamic behaviors in the post dryout region have been studied under propagating rewetting conditions. The effect of subcooling and inlet velocity on flow transition as well as on the quench front propagation was investigated. The test liquid was Freon 113 which was introduced into the bottom of the quartz test section whose walls were maintained well above the film boiling temperature of the test liquid, via a transparent heat transfer fluid. The flow regimes observed down stream of the upward moving quench front were the rough wavy, the agitated, and the dispersed droplet/ligaments. A correlation for the flow regime transition between the inverted annular and the dispersed droplet/ligament flow patterns was developed. The correlation showed a marked dependence on the void fraction at the CBF location and hence on the flow regime encountered in the pre-CBF region.

  14. Novel techniques for slurry bubble column hydrodynamics. Annual technical progress report No. 1, July 1, 1995--June 30, 1996

    SciTech Connect

    Dudukovic, M.P.; Fan, L.S.; Chang, Min

    1997-05-01

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research and Engineering Company is to improve the basis for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. The first year of this three year program was spent on developing and tuning the experimental tools that can provide accurate measurement of pertinent hydrodynamic quantities, such as velocity field and holdup distribution, for validation of hydrodynamic models. Advances made in preparing the unique Computer Automated Radioactive Particle Tracing (CARPT) technique for use in high pressure systems are described in this report The work done on developing a reliable beat transfer coefficient measurement probe at operating conditions of interest is also described. Finally, the work done in preparing the Exxon pilot plant facilities for high pressure runs and pertinent hydrodynamic measurements is outlined together with preliminary studies of matching the fluid dynamics program predictions and data in a two dimensional column.

  15. Hydrodynamics, mixing, and segregation in gas fluidized beds: Technical progress report, 22 October 1987 to 21 January 1988

    SciTech Connect

    Chen, M.M.; Chao, B.T.

    1988-01-01

    This progress report covers the work performed during the period 22 October 1987 through 21 January 1988. Efforts have been focused on experimental measurements of bed fluctuation frequencies using the swarm particle tracking technique and on the continuing theoretical analysis of the gas-mediated heat transfer to immersed surfaces due to particle impact. 3 refs., 5 figs.

  16. Ship Hydrodynamics

    ERIC Educational Resources Information Center

    Lafrance, Pierre

    1978-01-01

    Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)

  17. Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish

  18. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  19. Hydrodynamic synchronization of colloidal oscillators

    PubMed Central

    Kotar, Jurij; Leoni, Marco; Bassetti, Bruno; Lagomarsino, Marco Cosentino; Cicuta, Pietro

    2010-01-01

    Two colloidal spheres are maintained in oscillation by switching the position of an optical trap when a sphere reaches a limit position, leading to oscillations that are bounded in amplitude but free in phase and period. The interaction between the oscillators is only through the hydrodynamic flow induced by their motion. We prove that in the absence of stochastic noise the antiphase dynamical state is stable, and we show how the period depends on coupling strength. Both features are observed experimentally. As the natural frequencies of the oscillators are made progressively different, the coordination is quickly lost. These results help one to understand the origin of hydrodynamic synchronization and how the dynamics can be tuned. Cilia and flagella are biological systems coupled hydrodynamically, exhibiting dramatic collective motions. We propose that weakly correlated phase fluctuations, with one of the oscillators typically precessing the other, are characteristic of hydrodynamically coupled systems in the presence of thermal noise. PMID:20385848

  20. Supernova hydrodynamics

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.

    1981-11-01

    The physics as well as astrophysics of the supernova (SN) phenomenon are illustrated with the appropriate numbers. The explosion of a star, a supernova, occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN, or it may collapse, type I and type II SN, leaving a neutron star remnant. The type I progenitor is thought to be an old accreting white dwarf, 1.4 interior mass, with a close companion star. A type II SN is thought to be a massive young star, 6 to 10 interior mass. The mechanism of explosion is still a challenge to model, being the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe.

  1. Restoration of Haemoglobin Level Using Hydrodynamic Gene Therapy with Erythropoietin Does Not Alleviate the Disease Progression in an Anaemic Mouse Model for TGFβ1-Induced Chronic Kidney Disease

    PubMed Central

    Pedersen, Lea; Wogensen, Lise; Marcussen, Niels; Cecchi, Claudia R.; Dalsgaard, Trine; Dagnæs-Hansen, Frederik

    2015-01-01

    Erythropoietin, Epo, is a 30.4 kDa glycoprotein hormone produced primarily by the fetal liver and the adult kidney. Epo exerts its haematopoietic effects by stimulating the proliferation and differentiation of erythrocytes with subsequent improved tissue oxygenation. Epo receptors are furthermore expressed in non-haematopoietic tissue and today, Epo is recognised as a cytokine with many pleiotropic effects. We hypothesize that hydrodynamic gene therapy with Epo can restore haemoglobin levels in anaemic transgenic mice and that this will attenuate the extracellular matrix accumulation in the kidneys. The experiment is conducted by hydrodynamic gene transfer of a plasmid encoding murine Epo in a transgenic mouse model that overexpresses TGF-β1 locally in the kidneys. This model develops anaemia due to chronic kidney disease characterised by thickening of the glomerular basement membrane, deposition of mesangial matrix and mild interstitial fibrosis. A group of age matched wildtype littermates are treated accordingly. After a single hydrodynamic administration of plasmid DNA containing murine EPO gene, sustained high haemoglobin levels are observed in both transgenic and wildtype mice from 7.5 ± 0.6 mmol/L to 9.4 ± 1.2 mmol/L and 10.7 ± 0.3 mmol/L to 15.5 ± 0.5 mmol/L, respectively. We did not observe any effects in the thickness of glomerular or tubular basement membrane, on the expression of different collagen types in the kidneys or in kidney function after prolonged treatment with Epo. Thus, Epo treatment in this model of chronic kidney disease normalises haemoglobin levels but has no effect on kidney fibrosis or function. PMID:26046536

  2. Nonlocal transport and the hydrodynamic shear viscosity in graphene

    NASA Astrophysics Data System (ADS)

    Torre, Iacopo; Tomadin, Andrea; Geim, Andre K.; Polini, Marco

    2015-10-01

    Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultrahigh mobilities up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of nonlocal resistances in multiterminal Hall bar devices can be used to extract the hydrodynamic shear viscosity of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.

  3. Resurgence in extended hydrodynamics

    NASA Astrophysics Data System (ADS)

    Aniceto, Inês; Spaliński, Michał

    2016-04-01

    It has recently been understood that the hydrodynamic series generated by the Müller-Israel-Stewart theory is divergent and that this large-order behavior is consistent with the theory of resurgence. Furthermore, it was observed that the physical origin of this is the presence of a purely damped nonhydrodynamic mode. It is very interesting to ask whether this picture persists in cases where the spectrum of nonhydrodynamic modes is richer. We take the first step in this direction by considering the simplest hydrodynamic theory which, instead of the purely damped mode, contains a pair of nonhydrodynamic modes of complex conjugate frequencies. This mimics the pattern of black brane quasinormal modes which appear on the gravity side of the AdS/CFT description of N =4 supersymmetric Yang-Mills plasma. We find that the resulting hydrodynamic series is divergent in a way consistent with resurgence and precisely encodes information about the nonhydrodynamic modes of the theory.

  4. Dispersive hydrodynamics: Preface

    NASA Astrophysics Data System (ADS)

    Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.

    2016-10-01

    This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.

  5. Synchronization via Hydrodynamic Interactions

    NASA Astrophysics Data System (ADS)

    Kendelbacher, Franziska; Stark, Holger

    2013-12-01

    An object moving in a viscous fluid creates a flow field that influences the motion of neighboring objects. We review examples from nature in the microscopic world where such hydrodynamic interactions synchronize beating or rotating filaments. Bacteria propel themselves using a bundle of rotating helical filaments called flagella which have to be synchronized in phase. Other micro-organisms are covered with a carpet of smaller filaments called cilia on their surfaces. They beat highly synchronized so that metachronal waves propagate along the cell surfaces. We explore both examples with the help of simple model systems and identify generic properties for observing synchronization by hydrodynamic interactions.

  6. Skew resisting hydrodynamic seal

    DOEpatents

    Conroy, William T.; Dietle, Lannie L.; Gobeli, Jeffrey D.; Kalsi, Manmohan S.

    2001-01-01

    A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.

  7. Hydrodynamics of Turning Flocks.

    PubMed

    Yang, Xingbo; Marchetti, M Cristina

    2015-12-18

    We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.

  8. Hydrodynamics of Turning Flocks.

    PubMed

    Yang, Xingbo; Marchetti, M Cristina

    2015-12-18

    We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks. PMID:26722945

  9. Fluctuations in relativistic causal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.

    2014-05-01

    Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.

  10. Hydrodynamic blade guide

    DOEpatents

    Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.

    2000-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  11. Hydrodynamics of fossil fishes

    PubMed Central

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-01-01

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377

  12. Hydrodynamics of insect spermatozoa

    NASA Astrophysics Data System (ADS)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  13. Hydrodynamics of fossil fishes.

    PubMed

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-08-01

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377

  14. Hydrodynamic test problems

    SciTech Connect

    Moran, B

    2005-06-02

    We present test problems that can be used to check the hydrodynamic implementation in computer codes designed to model the implosion of a National Ignition Facility (NIF) capsule. The problems are simplified, yet one of them is three-dimensional. It consists of a nearly-spherical incompressible imploding shell subjected to an exponentially decaying pressure on its outer surface. We present a semi-analytic solution for the time-evolution of that shell with arbitrary small three-dimensional perturbations on its inner and outer surfaces. The perturbations on the shell surfaces are intended to model the imperfections that are created during capsule manufacturing.

  15. Molecular Hydrodynamics from Memory Kernels.

    PubMed

    Lesnicki, Dominika; Vuilleumier, Rodolphe; Carof, Antoine; Rotenberg, Benjamin

    2016-04-01

    The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t^{-3/2}. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius. PMID:27104730

  16. Load responsive hydrodynamic bearing

    DOEpatents

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  17. Hydrodynamics of pronuclear migration

    NASA Astrophysics Data System (ADS)

    Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael

    2014-11-01

    Microtubule (MT) filaments play a key role in many processes involved in cell devision including spindle formation, chromosome segregation, and pronuclear positioning. We present a direct numerical technique to simulate MT dynamics in such processes. Our method includes hydrodynamically mediated interactions between MTs and other cytoskeletal objects, using singularity methods for Stokes flow. Long-ranged many-body hydrodynamic interactions are computed using a highly efficient and scalable fast multipole method, enabling the simulation of thousands of MTs. Our simulation method also takes into account the flexibility of MTs using Euler-Bernoulli beam theory as well as their dynamic instability. Using this technique, we simulate pronuclear migration in single-celled Caenorhabditis elegans embryos. Two different positioning mechanisms, based on the interactions of MTs with the motor proteins and the cell cortex, are explored: cytoplasmic pulling and cortical pushing. We find that although the pronuclear complex migrates towards the center of the cell in both models, the generated cytoplasmic flows are fundamentally different. This suggest that cytoplasmic flow visualization during pronuclear migration can be utilized to differentiate between the two mechanisms.

  18. Hydrodynamics of Bacterial Cooperation

    NASA Astrophysics Data System (ADS)

    Petroff, A.; Libchaber, A.

    2012-12-01

    Over the course of the last several decades, the study of microbial communities has identified countless examples of cooperation between microorganisms. Generally—as in the case of quorum sensing—cooperation is coordinated by a chemical signal that diffuses through the community. Less well understood is a second class of cooperation that is mediated through physical interactions between individuals. To better understand how the bacteria use hydrodynamics to manipulate their environment and coordinate their actions, we study the sulfur-oxidizing bacterium Thiovulum majus. These bacteria live in the diffusive boundary layer just above the muddy bottoms of ponds. As buried organic material decays, sulfide diffuses out of the mud. Oxygen from the pond diffuses into the boundary layer from above. These bacteria form communities—called veils— which are able to transport nutrients through the boundary layer faster than diffusion, thereby increasing their metabolic rate. In these communities, bacteria attach to surfaces and swim in place. As millions of bacteria beat their flagella, the community induces a macroscopic fluid flow, which mix the boundary layer. Here we present experimental observations and mathematical models that elucidate the hydrodynamics linking the behavior of an individual bacterium to the collective dynamics of the community. We begin by characterizing the flow of water around an individual bacterium swimming in place. We then discuss the flow of water and nutrients around a small number of individuals. Finally, we present observations and models detailing the macroscopic dynamics of a Thiovulum veil.

  19. General formulation of transverse hydrodynamics

    SciTech Connect

    Ryblewski, Radoslaw; Florkowski, Wojciech

    2008-06-15

    General formulation of hydrodynamics describing transversally thermalized matter created at the early stages of ultrarelativistic heavy-ion collisions is presented. Similarities and differences with the standard three-dimensionally thermalized relativistic hydrodynamics are discussed. The role of the conservation laws as well as the thermodynamic consistency of two-dimensional thermodynamic variables characterizing transversally thermalized matter is emphasized.

  20. Hydrodynamics of Peristaltic Propulsion

    NASA Astrophysics Data System (ADS)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  1. Synchronization and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Qian, Bian; Breuer, Kenneth

    2008-03-01

    Cilia and flagella commonly beat in a coordinated manner. Examples include the flagella that Volvox colonies use to move, the cilia that sweep foreign particles up out of the human airway, and the nodal cilia that set up the flow that determines the left-right axis in developing vertebrate embryos. In this talk we present an experimental study of how hydrodynamic interactions can lead to coordination in a simple idealized system: two nearby paddles driven with fixed torques in a highly viscous fluid. The paddles attain a synchronized state in which they rotate together with a phase difference of 90 degrees. We discuss how synchronization depends on system parameters and present numerical calculations using the method of regularized stokeslets.

  2. Hydrodynamics, resurgence, and transasymptotics

    NASA Astrophysics Data System (ADS)

    Başar, Gökçe; Dunne, Gerald V.

    2015-12-01

    The second order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost-invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the nonhydrodynamic modes that are exponentially suppressed at late times, analogous to the quasinormal modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semiclassical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these nonhydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with initial conditions.

  3. Hydrodynamic effects on coalescence.

    SciTech Connect

    Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael; Gorby, Allen D.; Brooks, Carlton, F.

    2006-10-01

    The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.

  4. Hydrodynamics of sediment threshold

    NASA Astrophysics Data System (ADS)

    Ali, Sk Zeeshan; Dey, Subhasish

    2016-07-01

    A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.

  5. Recent development of hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  6. Constraining relativistic viscous hydrodynamical evolution

    SciTech Connect

    Martinez, Mauricio; Strickland, Michael

    2009-04-15

    We show that by requiring positivity of the longitudinal pressure it is possible to constrain the initial conditions one can use in second-order viscous hydrodynamical simulations of ultrarelativistic heavy-ion collisions. We demonstrate this explicitly for (0+1)-dimensional viscous hydrodynamics and discuss how the constraint extends to higher dimensions. Additionally, we present an analytic approximation to the solution of (0+1)-dimensional second-order viscous hydrodynamical evolution equations appropriate to describe the evolution of matter in an ultrarelativistic heavy-ion collision.

  7. Spin hydrodynamic generation

    NASA Astrophysics Data System (ADS)

    Takahashi, R.; Matsuo, M.; Ono, M.; Harii, K.; Chudo, H.; Okayasu, S.; Ieda, J.; Takahashi, S.; Maekawa, S.; Saitoh, E.

    2016-01-01

    Magnetohydrodynamic generation is the conversion of fluid kinetic energy into electricity. Such conversion, which has been applied to various types of electric power generation, is driven by the Lorentz force acting on charged particles and thus a magnetic field is necessary. On the other hand, recent studies of spintronics have revealed the similarity between the function of a magnetic field and that of spin-orbit interactions in condensed matter. This suggests the existence of an undiscovered route to realize the conversion of fluid dynamics into electricity without using magnetic fields. Here we show electric voltage generation from fluid dynamics free from magnetic fields; we excited liquid-metal flows in a narrow channel and observed longitudinal voltage generation in the liquid. This voltage has nothing to do with electrification or thermoelectric effects, but turned out to follow a universal scaling rule based on a spin-mediated scenario. The result shows that the observed voltage is caused by spin-current generation from a fluid motion: spin hydrodynamic generation. The observed phenomenon allows us to make mechanical spin-current and electric generators, opening a door to fluid spintronics.

  8. Hydrodynamics of micropipette aspiration.

    PubMed Central

    Drury, J L; Dembo, M

    1999-01-01

    The dynamics of human neutrophils during micropipette aspiration are frequently analyzed by approximating these cells as simple slippery droplets of viscous fluid. Here, we present computations that reveal the detailed predictions of the simplest and most idealized case of such a scheme; namely, the case where the fluid of the droplet is homogeneous and Newtonian, and the surface tension of the droplet is constant. We have investigated the behavior of this model as a function of surface tension, droplet radius, viscosity, aspiration pressure, and pipette radius. In addition, we have tabulated a dimensionless factor, M, which can be utilized to calculate the apparent viscosity of the slippery droplet. Computations were carried out using a low Reynolds number hydrodynamics transport code based on the finite-element method. Although idealized and simplistic, we find that the slippery droplet model predicts many observed features of neutrophil aspiration. However, there are certain features that are not observed in neutrophils. In particular, the model predicts dilation of the membrane past the point of being continuous, as well as a reentrant jet at high aspiration pressures. PMID:9876128

  9. Reciprocal relations in dissipationless hydrodynamics

    SciTech Connect

    Melnikovsky, L. A.

    2014-12-15

    Hidden symmetry in dissipationless terms of arbitrary hydrodynamics equations is recognized. We demonstrate that all fluxes are generated by a single function and derive conventional Euler equations using the proposed formalism.

  10. Relativistic hydrodynamics on graphic cards

    NASA Astrophysics Data System (ADS)

    Gerhard, Jochen; Lindenstruth, Volker; Bleicher, Marcus

    2013-02-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  11. Hydrodynamic escape from planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  12. Black brane entropy and hydrodynamics

    SciTech Connect

    Booth, Ivan; Heller, Michal P.; Spalinski, Michal

    2011-03-15

    Recent advances in holography have led to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics of higher dimensional black holes. This paper introduces a correspondence between phenomenologically defined entropy currents in relativistic hydrodynamics and 'generalized horizons' of near-equilibrium black objects in a dual gravitational description. A general formula is given, expressing the divergence of the entropy current in terms of geometric objects which appear naturally in the gravity dual geometry. The proposed definition is explicitly covariant with respect to boundary diffeomorphisms and reproduces known results when evaluated for the event horizon.

  13. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  14. Hydrodynamic slip in silicon nanochannels

    NASA Astrophysics Data System (ADS)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-03-01

    Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.

  15. Topics in fluctuating nonlinear hydrodynamics

    SciTech Connect

    Milner, S.T.

    1986-01-01

    Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers.

  16. Radiation-hydrodynamic simulations of quasar disk winds

    NASA Astrophysics Data System (ADS)

    Higginbottom, N.

    2015-09-01

    Disk winds are a compelling candidate to provide geometrical unification between Broad Absorption Line QSOs (BALQSOs) and Type1 Quasars. However, the geometry of these winds, and even the driving mech- anism remain largely unknown. Progress has been made through RT simulations and theoretical analysis of simplified wind geometries but there are several outstanding issues including the problem of shielding the low ionization BAL gas from the intense X-ray radiation from the central corona, and also how to produce the strong emission lines which exemplify Type 1 Quasars. A complex, clumpy geometry may provide a solution, and a full hydrodynamic model in which such structure may well spontaneously develop is something we wish to investigate. We have already demonstrated that the previous generation of hydrodynamic models of BALQSOs suffer from the fact that radiation transfer (RT) was necessarily simplified to permit computation, thereby neglecting the effects of multiple scattering and reprocessing of photons within the wind (potentially very important processes). We have therefore embarked upon a project to marry together a RT code with a hydrodynamics code to permit full radiation hydrodynamics simulations to be carried out on QSO disk winds. Here we present details of the project and results to date.

  17. Anomalous hydrodynamics of fractional quantum Hall states

    SciTech Connect

    Wiegmann, P.

    2013-09-15

    We propose a comprehensive framework for quantum hydrodynamics of the fractional quantum Hall (FQH) states. We suggest that the electronic fluid in the FQH regime can be phenomenologically described by the quantized hydrodynamics of vortices in an incompressible rotating liquid. We demonstrate that such hydrodynamics captures all major features of FQH states, including the subtle effect of the Lorentz shear stress. We present a consistent quantization of the hydrodynamics of an incompressible fluid, providing a powerful framework to study the FQH effect and superfluids. We obtain the quantum hydrodynamics of the vortex flow by quantizing the Kirchhoff equations for vortex dynamics.

  18. Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Murante, G.; Borgani, S.; Brunino, R.; Cha, S.-H.

    2011-10-01

    We present results based on an implementation of the Godunov smoothed particle hydrodynamics (GSPH), originally developed by Inutsuka, in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b) the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear-flow test and the 'blob' test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha, Inutsuka & Nayakshin: (i) GSPH provides a much improved description of contact discontinuities, with respect to smoothed particle hydrodynamics (SPH), thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the 'blob' test. Besides comparing the results of GSPH with those from standard SPH implementations, we also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation: choice of the number of neighbours, accuracy of the interpolation procedure to locate the interface between two fluid elements (particles) for the solution of the Riemann problem, order of the reconstruction for the assignment of variables at the interface, choice of the limiter to prevent oscillations of

  19. Hydrodynamics from Landau initial conditions

    SciTech Connect

    Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read jr, Kenneth F.; Wong, Cheuk-Yin

    2015-01-01

    We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2

  20. Algorithm refinement for fluctuating hydrodynamics

    SciTech Connect

    Williams, Sarah A.; Bell, John B.; Garcia, Alejandro L.

    2007-07-03

    This paper introduces an adaptive mesh and algorithmrefinement method for fluctuating hydrodynamics. This particle-continuumhybrid simulates the dynamics of a compressible fluid with thermalfluctuations. The particle algorithm is direct simulation Monte Carlo(DSMC), a molecular-level scheme based on the Boltzmann equation. Thecontinuum algorithm is based on the Landau-Lifshitz Navier-Stokes (LLNS)equations, which incorporate thermal fluctuations into macroscopichydrodynamics by using stochastic fluxes. It uses a recently-developedsolver for LLNS, based on third-order Runge-Kutta. We present numericaltests of systems in and out of equilibrium, including time-dependentsystems, and demonstrate dynamic adaptive refinement by the computationof a moving shock wave. Mean system behavior and second moment statisticsof our simulations match theoretical values and benchmarks well. We findthat particular attention should be paid to the spectrum of the flux atthe interface between the particle and continuum methods, specificallyfor the non-hydrodynamic (kinetic) time scales.

  1. Particle hydrodynamics with tessellation techniques

    NASA Astrophysics Data System (ADS)

    Heß, Steffen; Springel, Volker

    2010-08-01

    Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. We find that the new `Voronoi Particle Hydrodynamics' (VPH) described here produces comparable results to SPH in shocks, and better ones in turbulent regimes of pure hydrodynamical simulations. We also discuss formulations of the artificial viscosity needed in this scheme and how judiciously chosen correction forces can be derived in order to maintain a high degree of particle order and hence a regular Voronoi mesh. This is especially helpful in simulating self-gravitating fluids with existing gravity solvers used for N-body simulations.

  2. The Gulf of Lions' hydrodynamics

    NASA Astrophysics Data System (ADS)

    Millot, Claude

    1990-09-01

    From an hydrodynamical point of view, the Gulf of Lions can be considered as a very complex region, because several intense and highly variable phenomena compete simultaneously. These processes include the powerful general circulation along the continental slope, the formation of dense water both on the shelf and offshore, a seasonal variation of stratification and the extreme energies associated with meteorological conditions. The cloudless atmospheric conditions encountered generally in the northwestern Mediterranean Sea have enabled us to make use of, over more than 10 years, large use of various satellite imageries. The large space and time variability of the hydrodynamical features, a complex topography and a noticeable fishing activity, represent certain difficulties to the collection of observations in situ. We have obtained, therefore, only a few current time series on the slope; those obtained on the shelf only cover the summer period. Models have been elaborated to help us understand the reasons for the general circulation. Observational programmes to be carried out in the forthcoming years will probably provide us with more definitive results on the Gulf of Lions' hydrodynamics.

  3. Hyperbolic self-gravity solver for large scale hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Hirai, Ryosuke; Nagakura, Hiroki; Okawa, Hirotada; Fujisawa, Kotaro

    2016-04-01

    A new computationally efficient method has been introduced to treat self-gravity in Eulerian hydrodynamical simulations. It is applied simply by modifying the Poisson equation into an inhomogeneous wave equation. This roughly corresponds to the weak field limit of the Einstein equations in general relativity, and as long as the gravitation propagation speed is taken to be larger than the hydrodynamical characteristic speed, the results agree with solutions for the Poisson equation. The solutions almost perfectly agree if the domain is taken large enough, or appropriate boundary conditions are given. Our new method cannot only significantly reduce the computational time compared with existent methods, but is also fully compatible with massive parallel computation, nested grids, and adaptive mesh refinement techniques, all of which can accelerate the progress in computational astrophysics and cosmology.

  4. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    SciTech Connect

    R. Paul Drake

    2005-12-01

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  5. Forced wetting and hydrodynamic assist

    NASA Astrophysics Data System (ADS)

    Blake, Terence D.; Fernandez-Toledano, Juan-Carlos; Doyen, Guillaume; De Coninck, Joël

    2015-11-01

    Wetting is a prerequisite for coating a uniform layer of liquid onto a solid. Wetting failure and air entrainment set the ultimate limit to coating speed. It is well known in the coating art that this limit can be postponed by manipulating the coating flow to generate what has been termed "hydrodynamic assist," but the underlying mechanism is unclear. Experiments have shown that the conditions that postpone air entrainment also reduce the apparent dynamic contact angle, suggesting a direct link, but how the flow might affect the contact angle remains to be established. Here, we use molecular dynamics to compare the outcome of steady forced wetting with previous results for the spontaneous spreading of liquid drops and apply the molecular-kinetic theory of dynamic wetting to rationalize our findings and place them on a quantitative footing. The forced wetting simulations reveal significant slip at the solid-liquid interface and details of the flow immediately adjacent to the moving contact line. Our results confirm that the local, microscopic contact angle is dependent not simply only on the velocity of wetting but also on the nature of the flow that drives it. In particular, they support an earlier suggestion that during forced wetting, an intense shear stress in the vicinity of the contact line can assist surface tension forces in promoting dynamic wetting, thus reducing the velocity-dependence of the contact angle. Hydrodynamic assist then appears as a natural consequence of wetting that emerges when the contact line is driven by a strong and highly confined flow. Our theoretical approach also provides a self-consistent model of molecular slip at the solid-liquid interface that enables its magnitude to be estimated from dynamic contact angle measurements. In addition, the model predicts how hydrodynamic assist and slip may be influenced by liquid viscosity and solid-liquid interactions.

  6. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect

    Waltz, Jacob I.

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  7. Hydrodynamic Synchronisation of Model Microswimmers

    NASA Astrophysics Data System (ADS)

    Putz, V. B.; Yeomans, J. M.

    2009-12-01

    We define a model microswimmer with a variable cycle time, thus allowing the possibility of phase locking driven by hydrodynamic interactions between swimmers. We find that, for extensile or contractile swimmers, phase locking does occur, with the relative phase of the two swimmers being, in general, close to 0 or π, depending on their relative position and orientation. We show that, as expected on grounds of symmetry, self T-dual swimmers, which are time-reversal covariant, do not phase-lock. We also discuss the phase behaviour of a line of tethered swimmers, or pumps. These show oscillations in their relative phases reminiscent of the metachronal waves of cilia.

  8. Ergoregion instability: The hydrodynamic vortex

    NASA Astrophysics Data System (ADS)

    Oliveira, Leandro A.; Cardoso, Vitor; Crispino, Luís C. B.

    2014-06-01

    Four-dimensional, asymptotically flat spacetimes with an ergoregion but no horizon have been shown to be linearly unstable against a superradiant-triggered mechanism. This result has wide implications in the search for astrophysically viable alternatives to black holes, but also in the understanding of black holes and Hawking evaporation. Here we investigate this instability in detail for a particular setup that can be realized in the laboratory: the hydrodynamic vortex, an effective geometry for sound waves, with ergoregion and without an event horizon.

  9. Hydrodynamic instability modeling for ICF

    SciTech Connect

    Haan, S.W.

    1993-03-31

    The intent of this paper is to review how instability growth is modeled in ICF targets, and to identify the principal issues. Most of the material has been published previously, but is not familiar to a wide audience. Hydrodynamic instabilities are a key issue in ICF. Along with laser-plasma instabilities, they determine the regime in which ignition is possible. At higher laser energies, the same issues determine the achievable gain. Quantitative predictions are therefore of the utmost importance to planning the ICF program, as well as to understanding current Nova results. The key fact that underlies all this work is the stabilization of short wavelengths.

  10. Effective actions for anomalous hydrodynamics

    NASA Astrophysics Data System (ADS)

    Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund

    2014-03-01

    We argue that an effective field theory of local fluid elements captures the constraints on hydrodynamic transport stemming from the presence of quantum anomalies in the underlying microscopic theory. Focussing on global current anomalies for an arbitrary flavour group, we derive the anomalous constitutive relations in arbitrary even dimensions. We demonstrate that our results agree with the constraints on anomaly governed transport derived hitherto using a local version of the second law of thermodynamics. The construction crucially uses the anomaly inflow mechanism and involves a novel thermofield double construction. In particular, we show that the anomalous Ward identities necessitate non-trivial interaction between the two parts of the Schwinger-Keldysh contour.

  11. Hydrodynamic loading of tensegrity structures

    NASA Astrophysics Data System (ADS)

    Wroldsen, Anders S.; Johansen, Vegar; Skelton, Robert E.; Sørensen, Asgeir J.

    2006-03-01

    This paper introduces hydrodynamic loads for tensegrity structures, to examine their behavior in marine environments. Wave compliant structures are of general interest when considering large marine structures, and we are motivated by the aquaculture industry where new concepts are investigated in order to make offshore installations for seafood production. This paper adds to the existing models and software simulations of tensegrity structures exposed to environmental loading from waves and current. A number of simulations are run to show behavior of the structure as a function of pretension level and string stiffness for a given loading condition.

  12. Hydrodynamical models of young SNRs.

    NASA Astrophysics Data System (ADS)

    Kosenko, D. I.; Blinnikov, S. I.; Postnov, K. A.; Sorokina, E. I.

    X-ray observations of the Tycho supernova (SN) remnant by XMM-Newton telescope present radial profiles of the remnant in emission lines from silicon and iron \\citep{decour}. To reproduce observed spectrum and X-ray profiles hydrodynamical modelling of the remnant was performed by \\citet{elka}. Standard computational SN models cannot reproduce observed spacial behavoir of the X-ray profiles of the remnant in the emission lines. We perform analysis of these numerical models and find conditions under which it is possible to reproduce observed profiles.

  13. Microscale hydrodynamics near moving contact lines

    NASA Technical Reports Server (NTRS)

    Garoff, Stephen; Chen, Q.; Rame, Enrique; Willson, K. R.

    1994-01-01

    The hydrodynamics governing the fluid motions on a microscopic scale near moving contact lines are different from those governing motion far from the contact line. We explore these unique hydrodynamics by detailed measurement of the shape of a fluid meniscus very close to a moving contact line. The validity of present models of the hydrodynamics near moving contact lines as well as the dynamic wetting characteristics of a family of polymer liquids are discussed.

  14. Thermal transport in a noncommutative hydrodynamics

    SciTech Connect

    Geracie, M. Son, D. T.

    2015-03-15

    We find the hydrodynamic equations of a system of particles constrained to be in the lowest Landau level. We interpret the hydrodynamic theory as a Hamiltonian system with the Poisson brackets between the hydrodynamic variables determined from the noncommutativity of space. We argue that the most general hydrodynamic theory can be obtained from this Hamiltonian system by allowing the Righi-Leduc coefficient to be an arbitrary function of thermodynamic variables. We compute the Righi-Leduc coefficient at high temperatures and show that it satisfies the requirements of particle-hole symmetry, which we outline.

  15. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Dimitri Gidaspow

    1996-10-01

    The objective of this investigation is to convert learning gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computers the phase velocities and the volume fi-actions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. As promised in the SIXTH TECHNICAL PROGRESS REPORT, January 1996, this report presents measurements of radial distribution function for 450 micron glass particles in liquid-solid fluidized bed. The report is in the form of a preliminary paper. The authors need the radial distribution function to compute the viscosity and the equation of state for particles. The principal results are as follows: (1) The measured radial distribution function, g{sub 0}, is a monotonic function of the solid volume fraction. The values of the radial distribution function g{sub 0} are in the range of the predictions from Bagnold equation and Carnahan and Starling equation. (2) The position of the first peak of the radial distribution function does not lie at r = d at contact (d is particle diameter). This differs from the predications from the hard sphere model and the measurements in the gas-solid system (Gidaspow and Huilin, 1996). This is due to a liquid film lubrication effect in the liquid-solid system.

  16. Active and driven hydrodynamic crystals.

    PubMed

    Desreumaux, N; Florent, N; Lauga, E; Bartolo, D

    2012-08-01

    Motivated by the experimental ability to produce monodisperse particles in microfluidic devices, we study theoretically the hydrodynamic stability of driven and active crystals. We first recall the theoretical tools allowing to quantify the dynamics of elongated particles in a confined fluid. In this regime hydrodynamic interactions between particles arise from a superposition of potential dipolar singularities. We exploit this feature to derive the equations of motion for the particle positions and orientations. After showing that all five planar Bravais lattices are stationary solutions of the equations of motion, we consider separately the case where the particles are passively driven by an external force, and the situation where they are self-propelling. We first demonstrate that phonon modes propagate in driven crystals, which are always marginally stable. The spatial structures of the eigenmodes depend solely on the symmetries of the lattices, and on the orientation of the driving force. For active crystals, the stability of the particle positions and orientations depends not only on the symmetry of the crystals but also on the perturbation wavelengths and on the crystal density. Unlike unconfined fluids, the stability of active crystals is independent of the nature of the propulsion mechanism at the single-particle level. The square and rectangular lattices are found to be linearly unstable at short wavelengths provided the volume fraction of the crystals is high enough. Differently, hexagonal, oblique, and face-centered crystals are always unstable. Our work provides a theoretical basis for future experimental work on flowing microfluidic crystals. PMID:22864543

  17. Hydromechanical transmission with hydrodynamic drive

    DOEpatents

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.

  18. The hydrodynamics of lamprey locomotion

    NASA Astrophysics Data System (ADS)

    Leftwich, Megan C.

    The lamprey, an anguilliform swimmer, propels itself by undulating most of its body. This type of swimming produces flow patterns that are highly three-dimensional in nature and not very well understood. However, substantial previous work has been done to understand two-dimensional unsteady propulsion, the possible wake structures and thrust performance. Limited studies of three-dimensional propulsors with simple geometries have displayed the importance of the third dimension in designing unsteady swimmers. Some of the results of those studies, primarily the ways in which vorticity is organized in the wake region, are seen in lamprey swimming as well. In the current work, the third dimension is not the only important factor, but complex geometry and body undulations also contribute to the hydrodynamics. Through dye flow visualization, particle induced velocimetry and pressure measurements, the hydrodynamics of anguilliform swimming are studied using a custom built robotic lamprey. These studies all indicate that the undulations of the body are not producing thrust. Instead, it is the tail which acts to propel the animal. This conclusion led to further investigation of the tail, specifically the role of varying tail flexibility on hydrodymnamics. It is found that by making the tail more flexible, one decreases the coherence of the vorticity in the lamprey's wake. Additional flexibility also yields less thrust.

  19. Hydrodynamic effects on a predator approaching a group of preys

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    A numerical approach to predict the hydrodynamics involving a predator approaching a group of 100 preys is presented. A collective behavioural model is adopted to predict the two-dimensional space-time evolution of the predator-preys system that is supposed to be immersed in a fluid. The preys manifest mutual repulsion, attraction and orientation, while the predator is idealized as an individual to be strongly repulsed. During the motion, the predator experiences a resistance induced by the encompassing fluid. Such effect is accounted for by computing the hydrodynamic force and by modifying the predator’s velocity given by the behavioural equations. A numerical campaign is carried out by varying the predator’s drag coefficient. Moreover, analyses characterized by progressively wider predator’s perception areas are performed, thus highlighting the role of the hydrodynamics over the behavioural interactions. In order to estimate the predator’s performance, an ad-hoc parameter is proposed. Moreover, findings in terms of trajectories and angular momentum of the group of preys are discussed. Present findings show that the sole collective behavioural equations are insufficient to predict the performance of a predator that is immersed in a fluid, since its motion is drastically affected by the resistance of the surrounding fluid.

  20. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  1. Hydrodynamic models of a Cepheid atmosphere

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1975-01-01

    Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.

  2. Hydrodynamic description for ballistic annihilation systems

    SciTech Connect

    Garcia de Soria, Maria Isabel; Trizac, Emmanuel; Maynar, Pablo; Schehr, Gregory; Barrat, Alain

    2009-01-21

    The problem of the validity of a hydrodynamic description for a system in which there are no collisional invariants is addressed. Hydrodynamic equations have been derived and successfully tested against simulation data for a system where particles annihilate with a probability p, or collide elastically otherwise. The response of the system to a linear perturbation is analyzed as well.

  3. Comparative Hydrodynamics of Bacterial Polymorphism

    NASA Astrophysics Data System (ADS)

    Spagnolie, Saverio E.; Lauga, Eric

    2011-02-01

    Most bacteria swim through fluids by rotating helical flagella which can take one of 12 distinct polymorphic shapes, the most common of which is the normal form used during forward swimming runs. To shed light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of the various polymorphic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form is found to be the most efficient of the 12 polymorphic forms by a significant margin—a conclusion valid for both the peritrichous and polar flagellar families, and robust to a change in the effective flagellum diameter or length. Hence, although energetic costs of locomotion are small for bacteria, fluid mechanical forces may have played a significant role in the evolution of the flagellum.

  4. Hydrodynamic enhanced dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2003-12-09

    Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.

  5. Radiation hydrodynamics in solar flares

    SciTech Connect

    Fisher, G.H.

    1985-10-18

    Solar flares are rather violent and extremely complicated phenomena, and it should be made clear at the outset that a physically complete picture describing all aspects of flares does not exist. From the wealth of data which is available, it is apparent that many different types of physical processes are involved during flares: energetic particle acceleration, rapid magnetohydrodynamic motion of complex field structures, magnetic reconnection, violent mass motion along magnetic field lines, and the heating of plasma to tens of millions of degrees, to name a few. The goal of this paper is to explore just one aspect of solar flares, namely, the interaction of hydrodynamics and radiation processes in fluid being rapidly heated along closed magnetic field lines. The models discussed are therefore necessarily restrictive, and will address only a few of the observed or observable phenomena. 46 refs., 6 figs.

  6. Integration of quantum hydrodynamical equation

    NASA Astrophysics Data System (ADS)

    Ulyanova, Vera G.; Sanin, Andrey L.

    2007-04-01

    Quantum hydrodynamics equations describing the dynamics of quantum fluid are a subject of this report (QFD).These equations can be used to decide the wide class of problem. But there are the calculated difficulties for the equations, which take place for nonlinear hyperbolic systems. In this connection, It is necessary to impose the additional restrictions which assure the existence and unique of solutions. As test sample, we use the free wave packet and study its behavior at the different initial and boundary conditions. The calculations of wave packet propagation cause in numerical algorithm the division. In numerical algorithm at the calculations of wave packet propagation, there arises the problem of division by zero. To overcome this problem we have to sew together discrete numerical and analytical continuous solutions on the boundary. We demonstrate here for the free wave packet that the numerical solution corresponds to the analytical solution.

  7. Hydrodynamic assembly for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Tabak, Max; Clark, Daniel; Town, Richard; Hatchett, Stephen

    2007-11-01

    We present directly and indirectly driven implosion designs for Fast Ignition. Directly driven designs using various laser illumination wavelengths are described. We compare these designs with simple hydrodynamic efficiency models. Capsules illuminated with less than 1 MJ of light with perfect zooming at low intensity and low contrast ratio in power can assemble 4 mg of fuel to column density in excess of 3 g/cm^2. We contrast these designs with more optimized designs that lead to Guderley-style self similar implosions. Indirectly driven capsules absorbing 75 kJ of xrays can assemble 0.7 mg to column density 2.7 g/cm^2 in 1D simulations. We describe 2-D simulations including both capsules and attached cones driven by radiation. We describe issues in assembling fuel near the cone tip and cone disruption.

  8. Hydrodynamic model for drying emulsions.

    PubMed

    Feng, Huanhuan; Sprakel, Joris; van der Gucht, Jasper

    2015-08-01

    We present a hydrodynamic model for film formation in a dense oil-in-water emulsion under a unidirectional drying stress. Water flow through the plateau borders towards the drying end leads to the buildup of a pressure gradient. When the local pressure exceeds the critical disjoining pressure, the water films between droplets break and the droplets coalesce. We show that, depending on the critical pressure and the evaporation rate, the coalescence can occur in two distinct modes. At low critical pressures and low evaporation rates, coalescence occurs throughout the sample, whereas at high critical pressures and high evaporation rate, coalescence occurs only at the front. In the latter case, an oil layer develops on top of the film, which acts as a diffusive barrier and slows down film formation. Our findings, which are summarized in a state diagram for film formation, are in agreement with recent experimental findings.

  9. Anomalous hydrodynamics kicks neutron stars

    NASA Astrophysics Data System (ADS)

    Kaminski, Matthias; Uhlemann, Christoph F.; Bleicher, Marcus; Schaffner-Bielich, Jürgen

    2016-09-01

    Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.

  10. IKT for quantum hydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Tessarotto, Massimo; Ellero, Marco; Nicolini, Piero

    2007-11-01

    A striking feature of standard quantum mechanics (SQM) is its analogy with classical fluid dynamics. In fact, it is well-known that the Schr"odinger equation is equivalent to a closed set of partial differential equations for suitable real-valued functions of position and time (denoted as quantum fluid fields) [Madelung, 1928]. In particular, the corresponding quantum hydrodynamic equations (QHE) can be viewed as the equations of a classical compressible and non-viscous fluid, endowed with potential velocity and quantized velocity circulation. In this reference, an interesting theoretical problem, in its own right, is the construction of an inverse kinetic theory (IKT) for such a type of fluids. In this note we intend to investigate consequences of the IKT recently formulated for QHE [M.Tessarotto et al., Phys. Rev. A 75, 012105 (2007)]. In particular a basic issue is related to the definition of the quantum fluid fields.

  11. Effect of Surface Roughness on Hydrodynamic Bearings

    NASA Technical Reports Server (NTRS)

    Majumdar, B. C.; Hamrock, B. J.

    1981-01-01

    A theoretical analysis on the performance of hydrodynamic oil bearings is made considering surface roughness effect. The hydrodynamic as well as asperity contact load is found. The contact pressure was calculated with the assumption that the surface height distribution was Gaussian. The average Reynolds equation of partially lubricated surface was used to calculate hydrodynamic load. An analytical expression for average gap was found and was introduced to modify the average Reynolds equation. The resulting boundary value problem was then solved numerically by finite difference methods using the method of successive over relaxation. The pressure distribution and hydrodynamic load capacity of plane slider and journal bearings were calculated for various design data. The effects of attitude and roughness of surface on the bearing performance were shown. The results are compared with similar available solution of rough surface bearings. It is shown that: (1) the contribution of contact load is not significant; and (2) the hydrodynamic and contact load increase with surface roughness.

  12. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jose, Jordi

    2016-01-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  13. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    José, Jordi

    2015-12-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  14. The hydrodynamics of dolphin drafting

    PubMed Central

    Weihs, Daniel

    2004-01-01

    Background Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. Results Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris) is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. Conclusions A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members. PMID:15132740

  15. Simulating hydrodynamics on tidal mudflats

    NASA Astrophysics Data System (ADS)

    Cook, S.; Lippmann, T. C.

    2014-12-01

    Biogeochemical cycling in estuaries is governed by fluxes from both riverine sources and through estuarine sediment deposits. Although estimates from river sources are relatively common and easily sampled, estimates of nutrient fluxes through the fluid-sediment interface are less common and limited to deeper portions of the bays away from intertidal areas. Lack of quantifiable shear stress estimates over intertidal areas limits our overall understanding of nutrient budgets in estuaries. Unfortunately, observation of intertidal hydrodynamics and nutrient fluxes over tidal flats and near the water's edge is difficult owing to the temporally varying and spatially extensive region where the tides inundate, and thus numerical modeling is often employed. In this work, the Regional Ocean Modeling System (ROMS), a three dimensional numerical hydrodynamic model was used to investigate the shear stresses over intertidal mudflats in the Great Bay, a tidally-dominated New England estuary cut by several tidal channels and with over 50% of the estuary exposed at low tide. The ROMS wetting and drying scheme was used to simulate the rising and falling tide on the flats, a successful approach adapted in other regions of the world but not always inclusive of tidal channels. Bathymetric data obtained in 2009 and 2013 was used to define the model grid. Predicted tides are forced at Adam's Pt., a natural constriction in the estuary about 20 km upstream of the mouth and at the entrance to the Great Bay. Of particular interest are fluxes of material on-to and off-of the tidal flats which contribute to water quality conditions in the estuary, and are largely governed by shear stresses that drive nutrient fluxes at the fluid-sediment interface. Basin wide estimates of near-bottom shear stresses can be used to estimate first order nutrient fluxes over a tidal cycle and hence describe general biogeochemical dynamics of the estuary. Future work will include enhanced forcing of currents by

  16. Non abelian hydrodynamics and heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Calzetta, E.

    2014-01-01

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  17. Nonlinear waves in second order conformal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Fogaça, D. A.; Marrochio, H.; Navarra, F. S.; Noronha, J.

    2015-02-01

    In this work we study wave propagation in dissipative relativistic fluids described by a simplified set of the 2nd order viscous conformal hydrodynamic equations corresponding to Israel-Stewart theory. Small amplitude waves are studied within the linearization approximation while waves with large amplitude are investigated using the reductive perturbation method, which is generalized to the case of 2nd order relativistic hydrodynamics. Our results indicate the presence of a "soliton-like" wave solution in Israel-Stewart hydrodynamics despite the presence of dissipation and relaxation effects.

  18. Non abelian hydrodynamics and heavy ion collisions

    SciTech Connect

    Calzetta, E.

    2014-01-14

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  19. The Role of the Craniocervical Junction in Craniospinal Hydrodynamics and Neurodegenerative Conditions

    PubMed Central

    Flanagan, Michael F.

    2015-01-01

    The craniocervical junction (CCJ) is a potential choke point for craniospinal hydrodynamics and may play a causative or contributory role in the pathogenesis and progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, MS, and ALS, as well as many other neurological conditions including hydrocephalus, idiopathic intracranial hypertension, migraines, seizures, silent-strokes, affective disorders, schizophrenia, and psychosis. The purpose of this paper is to provide an overview of the critical role of the CCJ in craniospinal hydrodynamics and to stimulate further research that may lead to new approaches for the prevention and treatment of the above neurodegenerative and neurological conditions. PMID:26770824

  20. Hydrodynamic Instabilities Produced by Evaporation

    NASA Astrophysics Data System (ADS)

    Romo-Cruz, Julio Cesar Ruben; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo

    2012-11-01

    When a liquid layer (alcohol in the present work) is in an environment where its relative humidity is less than 100 percent evaporation appears. When RH is above a certain threshold the liquid is at rest. If RH decreases below this threshold the flow becomes unstable, and hydrodynamic cells develop. The aim of this work is to understand the formation of those cells and its main features. Firstly, we investigate how the cell size depends on the layer width. We also study how temperature depends on the vertical coordinate when the cells are present. An inverse temperature gradient is found, that is, the bottom of liquid layer is colder than the free surface. This shows that the intuitive idea that the cells are due to a direct temperature gradient, following a Marangoni-like process, does not work. We propose the hypothesis that the evaporation produce a pressure gradient that is responsible of the cell development. On the other hand, using a Schlieren technique we study the topography of the free surface when cells are present. Finally the alcohol vapor layer adjacent to the liquid surface is explored using scattering experiments, giving some insight on the plausibility of the hypothesis described previously. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''

  1. Hydrodynamic Simulations of Contact Binaries

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Marcello, Dominic; Motl, Patrick M.; Staff, Jan E.

    2015-01-01

    The motivation for our project is the peculiar case of the 'red nova" V1309 Sco which erupted in September 2008. The progenitor was, in fact, a contact binary system. We are developing a simulation of contact binaries, so that their formation, structural, and merger properties could be studied using hydrodynamics codes. The observed transient event was the disruption of the secondary star by the primary, and their subsequent merger into one star; hence to replicate this behavior, we need a core-envelope structure for both the stars. We achieve this using a combination of Self Consistant Field (SCF) technique and composite polytropes, also known as bipolytropes. So far we have been able to generate close binaries with various mass ratios. Another consequence of using bipolytropes is that according to theoretical calculations, the radius of a star should expand when the core mass fraction exceeds a critical value, resulting in interesting consequences in a binary system. We present some initial results of these simulations.

  2. Hydrodynamic aspects of fish olfaction

    PubMed Central

    Cox, Jonathan P.L

    2008-01-01

    Flow into and around the olfactory chamber of a fish determines how odorant from the fish's immediate environment is transported to the sensory surface (olfactory epithelium) lining the chamber. Diffusion times in water are long, even over comparatively short distances (millimetres). Therefore, transport from the external environment to the olfactory epithelium must be controlled by processes that rely on convection (i.e. the bulk flow of fluid). These include the beating of cilia lining the olfactory chamber and the relatively inexpensive pumping action of accessory sacs. Flow through the chamber may also be induced by an external flow. Flow over the olfactory epithelium appears to be laminar. Odorant transfer to the olfactory epithelium may be facilitated in several ways: if the olfactory organs are mounted on stalks that penetrate the boundary layer; by the steep velocity gradients generated by beating cilia; by devices that deflect flow into the olfactory chamber; by parallel arrays of olfactory lamellae; by mechanical agitation of the chamber (or olfactory stalks); and by vortices. Overall, however, our knowledge of the hydrodynamics of fish olfaction is far from complete. Several areas of future research are outlined. PMID:18184629

  3. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  4. Maximum entropy principle and relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    van Weert, Ch. G.

    1982-04-01

    A relativistic theory of hydrodynamics applicable beyond the hydrodynamic regime is developed on the basis of the maximum entropy principle. This allows the construction of a unique statistical operator representing the state of the system as specified by the values of the hydrodynamical densities. Special attention is paid to the thermodynamic limit and the virial theorem which leads to an expression for the pressure in terms of the field-theoretic energymomentum tensor of Coleman and Jackiw. It is argued that outside the hydrodynamic regime the notion of a local Gibbs relation, as usually postulated, must be abandoned in general. In the nontext of the linear approximation, the memory-retaining and non-local generalizations of the relativistic Navier-Stokes equations are derived from the underlying Heisenberg equations of motion. The formal similarity to the Zwanzig-Mori description of non-relativistic fluids is expounded.

  5. Hydrodynamic trapping of molecules in lipid bilayers

    PubMed Central

    Jönsson, Peter; McColl, James; Clarke, Richard W.; Ostanin, Victor P.; Jönsson, Bengt; Klenerman, David

    2012-01-01

    In this work we show how hydrodynamic forces can be used to locally trap molecules in a supported lipid bilayer (SLB). The method uses the hydrodynamic drag forces arising from a flow through a conical pipette with a tip radius of 1–1.5 μm, placed approximately 1 μm above the investigated SLB. This results in a localized forcefield that acts on molecules protruding from the SLB, yielding a hydrodynamic trap with a size approximately given by the size of the pipette tip. We demonstrate this concept by trapping the protein streptavidin, bound to biotin receptors in the SLB. It is also shown how static and kinetic information about the intermolecular interactions in the lipid bilayer can be obtained by relating how the magnitude of the hydrodynamic forces affects the accumulation of protein molecules in the trap. PMID:22699491

  6. Improvements to SOIL: An Eulerian hydrodynamics code

    SciTech Connect

    Davis, C.G.

    1988-04-01

    Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs.

  7. Flagellar Synchronization Independent of Hydrodynamic Interactions

    NASA Astrophysics Data System (ADS)

    Friedrich, Benjamin M.; Jülicher, Frank

    2012-09-01

    Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, we study theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynolds number by a revolving motion of a pair of spheres. We show that perfect synchronization between these two driven spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces. Hydrodynamic interactions, though crucial for net propulsion, contribute little to synchronization for this free-moving swimmer.

  8. Chemo-hydrodynamic patterns in porous media.

    PubMed

    De Wit, A

    2016-10-13

    Chemical reactions can interplay with hydrodynamic flows to generate chemo-hydrodynamic instabilities affecting the spatio-temporal evolution of the concentration of the chemicals. We review here such instabilities for porous media flows. We describe the influence of chemical reactions on viscous fingering, buoyancy-driven fingering in miscible systems, convective dissolution as well as precipitation patterns. Implications for environmental systems are discussed.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597788

  9. The hydrodynamic focusing effect inside rectangular microchannels

    NASA Astrophysics Data System (ADS)

    Lee, Gwo-Bin; Chang, Chih-Chang; Huang, Sung-Bin; Yang, Ruey-Jen

    2006-05-01

    This paper presents a theoretical and experimental investigation into the hydrodynamic focusing effect in rectangular microchannels. Two theoretical models for two-dimensional hydrodynamic focusing are proposed. The first model predicts the width of the focused stream in symmetric hydrodynamic focusing in microchannels of various aspect ratios. The second model predicts the location and the width of the focused stream in asymmetric hydrodynamic focusing in microchannels with a low or high aspect ratio. In both models, the theoretical results are shown to be in good agreement with the experimental data. Hence, the models provide a useful means of performing a theoretical analysis of flow control in microfluidic devices using hydrodynamic focusing effects. The ability of the proposed models to control the focused stream within a micro flow cytometer is verified in a series of experimental trials performed using polystyrene microparticles with a diameter of 20 µm. The experimental data show that the width of the focused stream can be reduced to the same order of magnitude as that of the particle size. Furthermore, it is shown that the microparticles can be successfully hydrodynamically focused and switched to the desired outlet port of the cytometer. Hence, the models presented in this study provide sufficient control to support cell/particle counting and sorting applications.

  10. Hydrodynamics `experiments' on supernovae and on Nova - the laser*

    NASA Astrophysics Data System (ADS)

    Remington, Bruce A.

    1996-11-01

    To make progress in understanding the complex phenomena of supernovae (SN), one does not have the luxury of setting up clean, well controlled experiments in the universe to test the physics of our models and theories. Consequently, creating a surrogate environment to serve as an experimental astrophysics testbed would be highly beneficial. The existence of highly sophisticated, modern research lasers in the 1-50 kJ class, developed largely as a result of the world-wide effort in inertial confinement fusion, opens a new potential for creating just such an experimental testbed utilizing well-controlled, well-diagnosed laser plasmas. The next generation MJ-class ``superlasers" planned for the U.S. and France offer incentive to invest effort now on gaining experience using current laser facilities to develop genuinely useful laser-plasma astrophysics experiments. I will discuss two areas of physics critical to an understanding of supernovae that are amenable to supporting research on large lasers: nonlinear hydrodynamic instability evolution in 2D and 3D and (2) the radiative shock hydrodynamics of colliding plasmas such as SN ejecta-circumstellar matter interactions. The astrophysical relevance of these areas to supernovae will be developed in a companion talk.^2 *Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. ^1In collaboration with S. G. Glendinning, J. Kane, J. Castor, A. Rubenchik, J. Colvin, R. P. Drake, R. London, E. Liang, and R. McCray. ^2Roger Chevalier, "The radiative hydrodynamics of supernova shock waves", these proceedings.

  11. New formulation of leading order anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo

    2015-05-01

    Anisotropic hydrodynamics is a reorganization of the relativistic hydrodynamics expansion, with the leading order already containing substantial momentum-space anisotropies. The latter are a cause of concern in the traditional viscous hydrodynamics, since large momentum anisotropies generated in ultrarelativistic heavy-ion collisions are not consistent with the hypothesis of small deviations from an isotropic background, i.e., from the local equilibrium distribution. We discuss the leading order of the expansion, presenting a new formulation for the (1+1)- dimensional case, namely, for the longitudinally boost invariant and cylindrically symmetric flow. This new approach is consistent with the well established framework of Israel and Stewart in the close to equilibrium limit (where we expect viscous hydrodynamics to work well). If we consider the (0+1)-dimensional case, that is, transversally homogeneous and longitudinally boost invariant flow, the new form of anisotropic hydrodynamics leads to better agreement with known solutions of the Boltzmann equation than the previous formulations, especially when we consider massive particles.

  12. Hydrodynamic modulation of pluripotent stem cells

    PubMed Central

    2012-01-01

    Controlled expansion and differentiation of pluripotent stem cells (PSCs) using reproducible, high-throughput methods could accelerate stem cell research for clinical therapies. Hydrodynamic culture systems for PSCs are increasingly being used for high-throughput studies and scale-up purposes; however, hydrodynamic cultures expose PSCs to complex physical and chemical environments that include spatially and temporally modulated fluid shear stresses and heterogeneous mass transport. Furthermore, the effects of fluid flow on PSCs cannot easily be attributed to any single environmental parameter since the cellular processes regulating self-renewal and differentiation are interconnected and the complex physical and chemical parameters associated with fluid flow are thus difficult to independently isolate. Regardless of the challenges posed by characterizing fluid dynamic properties, hydrodynamic culture systems offer several advantages over traditional static culture, including increased mass transfer and reduced cell handling. This article discusses the challenges and opportunities of hydrodynamic culture environments for the expansion and differentiation of PSCs in microfluidic systems and larger-volume suspension bioreactors. Ultimately, an improved understanding of the effects of hydrodynamics on the self-renewal and differentiation of PSCs could yield improved bioprocessing technologies to attain scalable PSC culture strategies that will probably be requisite for the development of therapeutic and diagnostic applications. PMID:23168068

  13. On the definition of discrete hydrodynamic variables.

    PubMed

    Español, Pep; Zúñiga, Ignacio

    2009-10-28

    The Green-Kubo formula for discrete hydrodynamic variables involves information about not only the fluid transport coefficients but also about discrete versions of the differential operators that govern the evolution of the discrete variables. This gives an intimate connection between discretization procedures in fluid dynamics and coarse-graining procedures used to obtain hydrodynamic behavior of molecular fluids. We observed that a natural definition of discrete hydrodynamic variables in terms of Voronoi cells leads to a Green-Kubo formula which is divergent, rendering the full coarse-graining strategy useless. In order to understand this subtle issue, in the present paper we consider the coarse graining of noninteracting Brownian particles. The discrete hydrodynamic variable for this problem is the number of particles within Voronoi cells. Thanks to the simplicity of the model we spot the origin of the singular behavior of the correlation functions. We offer an alternative definition, based on the concept of a Delaunay cell that behaves properly, suggesting the use of the Delaunay construction for the coarse graining of molecular fluids at the discrete hydrodynamic level.

  14. Hydrodynamics in Holocene Lake Mega-Chad

    NASA Astrophysics Data System (ADS)

    Bouchette, Frédéric; Schuster, Mathieu; Ghienne, Jean-François; Denamiel, Cléa; Roquin, Claude; Moussa, Abderamane; Marsaleix, Patrick; Duringer, Philippe

    2010-03-01

    Holocene Lake Mega-Chad (LMC) was the largest late Quaternary water-body in Africa. The development of this giant paleo-lake is related to a northward shift of the isohyetes interpreted as evidence for an enhanced Monsoon (African Humid Period). Numerous preserved coastal features have been described all around the LMC shore. Such features reveal the main paleo-hydrodynamical tendencies. In the context of a closed water-body like LMC, hydrodynamics are forced mainly by winds. We use a three-dimensional numerical model (SYMPHONIE) to simulate the mean hydrodynamics in LMC under both Harmattan-like (northeasterly trade winds) and Monsoon-like (southwesterly winds) forcings. The northern part of LMC displays coastal features, such as sand spits, that are consistent with the simulations forced by Harmattan-like winds. Geomorphic features related to Monsoon-driven hydrodynamics are not clearly expressed. They could have developed during the early stage of LMC but subsequently reworked. At the time of sand-spit building, Harmattan-like driven hydrodynamics prevailed and related coastal features were preferentially preserved in the sedimentary record.

  15. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J O; Remington, B A; Arnett, D; Fryxell, B A; Drake, R P

    1998-11-10

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, they are attempting to rigorously scale the physics of the laboratory in supernova. The scaling of hydrodynamics on microscopic laser scales to hydrodynamics on the SN-size scales is presented and requirements established. Initial results were reported in [1]. Next the appropriate conditions are generated on the NOVA laser. 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov instability and to the Rayleigh-Taylor instability as the interface decelerates is generated. This scales the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike bubble velocities using potential flow theory and Ott thin shell theory is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of Sn 1987A.

  16. Hydrodynamic approaches in relativistic heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Derradi de Souza, R.; Koide, T.; Kodama, T.

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation to the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to be answered to clarify the physics of collective phenomena in the relativistic heavy ion collisions are pointed out.

  17. Hydrodynamics of a unitary Bose gas

    NASA Astrophysics Data System (ADS)

    Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran

    2016-05-01

    In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.

  18. 17. Local Characteristic Algorithms for Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Font, Jose A.

    Numerical schemes for the general relativistic hydrodynamic equations are discussed. The use of conservative algorithms based upon the characteristic structure of those equations, developed during the last decade building on ideas first applied in Newtonian hydrodynamics, provides a robust methodology to obtain stable and accurate solutions even in the presence of discontinuities. The knowledge of the wave structure of the above system is essential in the construction of the so-called linearized Riemann solvers, a class of numerical schemes specifically designed to solve nonlinear hyperbolic systems of conservation laws. In the last part of the review some astrophysical applications of such schemes, using the coupled system of the (characteristic) Einstein and hydrodynamic equations, are also briefly presented.

  19. A hydrodynamic approach to cosmology - Methodology

    NASA Technical Reports Server (NTRS)

    Cen, Renyue

    1992-01-01

    The present study describes an accurate and efficient hydrodynamic code for evolving self-gravitating cosmological systems. The hydrodynamic code is a flux-based mesh code originally designed for engineering hydrodynamical applications. A variety of checks were performed which indicate that the resolution of the code is a few cells, providing accuracy for integral energy quantities in the present simulations of 1-3 percent over the whole runs. Six species (H I, H II, He I, He II, He III) are tracked separately, and relevant ionization and recombination processes, as well as line and continuum heating and cooling, are computed. The background radiation field is simultaneously determined in the range 1 eV to 100 keV, allowing for absorption, emission, and cosmological effects. It is shown how the inevitable numerical inaccuracies can be estimated and to some extent overcome.

  20. Toward a Fully Consistent Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2009-07-07

    Dimitri Mihalas set the standard for all work in radiation hydrodynamics since 1984. The present contribution builds on 'Foundations of Radiation Hydrodynamics' to explore the relativistic effects that have prevented having a consistent non-relativistic theory. Much of what I have to say is in FRH, but the 3-D development is new. Results are presented for the relativistic radiation transport equation in the frame obtained by a Lorentz boost with the fluid velocity, and the exact momentum-integrated moment equations. The special-relativistic hydrodynamic equations are summarized, including the radiation contributions, and it is shown that exact conservation is obtained, and certain puzzles in the non-relativistic radhydro equations are explained.

  1. On the hydrodynamics of swimming enzymes

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyu; Wolynes, Peter G.

    2015-10-01

    Several recent experiments suggest that rather generally the diffusion of enzymes may be augmented through their activity. We demonstrate that such swimming motility can emerge from the interplay between the enzyme energy landscape and the hydrodynamic coupling of the enzyme to its environment. Swimming thus occurs during the transit time of a transient allosteric change. We estimate the velocity during the transition. The analysis of such a swimming motion suggests the final stroke size is limited by the hydrodynamic size of the enzyme. This limit is quite a bit smaller than the values that can be inferred from the recent experiments. We also show that one proposed explanation of the experiments based on reaction heat effects can be ruled out using an extended hydrodynamic analysis. These results lead us to propose an alternate explanation of the fluorescence correlation measurements.

  2. Dynamo efficiency controlled by hydrodynamic bistability.

    PubMed

    Miralles, Sophie; Herault, Johann; Herault, Johann; Fauve, Stephan; Gissinger, Christophe; Pétrélis, François; Daviaud, François; Dubrulle, Bérengère; Boisson, Jean; Bourgoin, Mickaël; Verhille, Gautier; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas

    2014-06-01

    Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow-where one disk has been replaced by a propeller-are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated. PMID:25019895

  3. Hydrodynamic stellar interactions in dense star clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.

    1993-01-01

    Highly detailed HST observations of globular-cluster cores and galactic nuclei motivate new theoretical studies of the violent dynamical processes which govern the evolution of these very dense stellar systems. These processes include close stellar encounters and direct physical collisions between stars. Such hydrodynamic stellar interactions are thought to explain the large populations of blue stragglers, millisecond pulsars, X-ray binaries, and other peculiar sources observed in globular clusters. Three-dimensional hydrodynamics techniques now make it possible to perform realistic numerical simulations of these interactions. The results, when combined with those of N-body simulations of stellar dynamics, should provide for the first time a realistic description of dense star clusters. Here I review briefly current theoretical work on hydrodynamic stellar interactions, emphasizing its relevance to recent observations.

  4. Hydrodynamics of electrofluidization: Separation of pyrites from coal

    SciTech Connect

    Shih, Y.T.; Gidaspow, D.; Wasan, D.

    1987-08-01

    Dry, electrostatic separation is a potentially efficient method of removing pyrites from coal. However, progress in the past was hampered by a lack of a quantitative analysis of the process. To help design better separation equipment, the authors developed a hydrodynamic model of separation of pyrites from coal in a batch electrofluidized bed. The simulations were done on a Cray-2 computer. The input variables include the surface charge of the particles and the solids stress, which were measured. Realistic shapes and sizes of bubbles were computed with and without an applied electric field for a two-dimensional bed with a central jet. The bubble sizes and the rising velocities were smaller with an applied field, consistent with observations. Computed electrophoretic mobilities in the fluidized bed will be useful for a better design of continuous beds.

  5. Integration of hydrodynamic interactions between filaments

    NASA Astrophysics Data System (ADS)

    Man, Yi; Lauga, Eric

    2015-11-01

    In many biological situations, slender filaments interact through a viscous fluid, and these hydrodynamic interactions play a crucial cellular role. Examples include the ability of peritrichous bacteria to bundle their flagella or the generation of metachronal waves in cilia arrays. In most cases of interest, three distinct length scales characterize the filaments, their typical thickness a, relative distance h, and length L, which are asymptotically separated as a << h << L . In this talk, we demonstrate how to analytically develop a long-wavelength integration of hydrodynamic singularities in this biologically-relevant limit.

  6. Supernova hydrodynamics experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.; Wallace, R.J.; Rubenchik, A.; Kane, J.; Arnett, D.; Drake, R.P.; McCray, R.

    1997-04-01

    We are developing experiments using the Nova laser to investigate two areas of physics relevant to core-collapse supernovae (SN): (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications are discussed.

  7. Shadowfax: Moving mesh hydrodynamical integration code

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Bert

    2016-05-01

    Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

  8. Circumstellar Hydrodynamics and Spectral Radiation in ALGOLS

    NASA Astrophysics Data System (ADS)

    Terrell, Dirk Curtis

    1994-01-01

    Algols are the remnants of binary systems that have undergone large scale mass transfer. This dissertation presents the results of the coupling of a hydrodynamical model and a radiative model of the flow of gas from the inner Lagrangian point. The hydrodynamical model is a fully Lagrangian, three-dimensional scheme with a novel treatment of viscosity and an implementation of the smoothed particle hydrodynamics method to compute pressure gradients. Viscosity is implemented by allowing particles within a specified interaction length to share momentum. The hydrodynamical model includes a provision for computing the self-gravity of the disk material, although it is not used in the present application to Algols. Hydrogen line profiles and equivalent widths computed with a code by Drake and Ulrich are compared with observations of both short and long period Algols. More sophisticated radiative transfer computations are done with the escape probability code of Ko and Kallman which includes the spectral lines of thirteen elements. The locations and velocities of the gas particles, and the viscous heating from the hydro program are supplied to the radiative transfer program, which computes the equilibrium temperature of the gas and generates its emission spectrum. Intrinsic line profiles are assumed to be delta functions and are properly Doppler shifted and summed for gas particles that are not eclipsed by either star. Polarization curves are computed by combining the hydro program with the Wilson-Liou polarization program. Although the results are preliminary, they show that polarization observations show great promise for studying circumstellar matter.

  9. Stabilizing geometry for hydrodynamic rotary seals

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.

    2010-08-10

    A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.

  10. Hydrodynamic dispersion of microswimmers in suspension

    NASA Astrophysics Data System (ADS)

    Martin, Matthieu; Rafaï, Salima; Peyla, Philippe

    2014-11-01

    In our laboratory, we study hydrodynamics of suspensions of micro-swimmers. These micro-organisms are unicellular algae Chlamydomonas Rheinhardii which are able to swim by using their flagella. The swimming dynamics of these micro-swimmers can be seen as a random walk, in absence of any kind of interaction. In addition, these algae have the property of being phototactic, i.e. they swim towards the light. Combining this property with a hydrodynamic flow, we were able to reversibly separate algae from the rest of the fluid. But for sufficiently high volume fraction, these active particles interact with each other. We are now interested in how the coupling of hydrodynamic interactions between swimmers and phototaxis can modify the swimming dynamics at the scale of the suspension. To this aim, we conduct experiments in microfluidic devices to study the dispersion of the micro-organisms in a the liquid phase as a function of the volume fraction. We show that the dispersion of an assembly of puller type microswimmers is quantitatively affected by hydrodynamics interactions. Phd student.

  11. Simple Waves in Ideal Radiation Hydrodynamics

    SciTech Connect

    Johnson, B M

    2008-09-03

    In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material component with a large number of internal degrees of freedom and an internal energy greater than that of the radiation, the sound speed increases as the fluid is rarefied. These solutions are an excellent test for radiation hydrodynamic codes operating in the dynamic diffusion regime. The general approach may be useful in the development of Godunov numerical schemes for radiation hydrodynamics.

  12. Hydrodynamically driven colloidal assembly in dip coating.

    PubMed

    Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A

    2013-05-01

    We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] < 0.7, where Ca and Bo are the capillary and Bond numbers, respectively. An analytical model and numerical simulations are presented for the case of two-dimensional flow with circular particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.

  13. Livermore Unstructured Lagrange Explicit Shock Hydrodynamics

    2010-09-21

    LULESH v1.0 is a 3D unstructured Lagrange hydrodynamics simulation written specifically to solve a standard analytical test problem, known as the Sedov problem. In this problem, a quantum of energy is deposited into a gas and propagates through the gas over time.

  14. Boundary conditions in tunneling via quantum hydrodynamics

    NASA Technical Reports Server (NTRS)

    Nassar, Antonio B.

    1993-01-01

    Via the hydrodynamical formulation of quantum mechanics, an approach to the problem of tunneling through sharp-edged potential barriers is developed. Above all, it is shown how more general boundary conditions follow from the continuity of mass, momentum, and energy.

  15. Hydrodynamically Driven Colloidal Assembly in Dip Coating

    NASA Astrophysics Data System (ADS)

    Colosqui, Carlos E.; Morris, Jeffrey F.; Stone, Howard A.

    2013-05-01

    We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca2/3/Bo<0.7, where Ca and Bo are the capillary and Bond numbers, respectively. An analytical model and numerical simulations are presented for the case of two-dimensional flow with circular particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.

  16. Hydrodynamic Issues in PAMS Mandrel Target Fabrication

    SciTech Connect

    McQuillan, B M; Paguio, R; Subramanian, P; Takagi, M; Zebib, A

    2003-08-27

    Imperfections in PAMS mandrels critically govern the quality of final ICF targets. Imperfections in the mandrels can have a wide range of origins. Here, they present observations of 3 types of imperfections, and data to support the proposal that hydrodynamic factors during the curing of the mandrel are potential causes of these imperfections.

  17. HYDRODYNAMIC ISSUES IN PAMS MANDREL TARGET FABRICATION

    SciTech Connect

    McQUILLAN,B.W; PAGUIO,R; SUBRAMANIAN,P; TAKAGI,M; ZEBIB,A

    2003-09-01

    OAK-B135 Imperfections in PAMS mandrels critically govern the quality of final ICF targets. Imperfections in the mandrels can have a wide range of origins. Here, they present observations of 3 types of imperfections, and data to support the proposal that hydrodynamic factors during the curing of the mandrel are potential causes of these imperfections.

  18. Chiral Magnetic Effect in Hydrodynamic Approximation

    NASA Astrophysics Data System (ADS)

    Zakharov, Valentin I.

    We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of "chiral superconductivity". More precise description is a quantum ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitation is the exact chiral limit while temperature—excitingly enough—does not seemingly matter. What is still lacking, is a detailed quantum microscopic picture for the ChME in hydrodynamics. Probably, the chiral currents propagate through lower-dimensional defects, like vortices in superfluid. In case of superfluid, the prediction for the chiral magnetic effect remains unmodified although the emerging dynamical picture differs from the standard one.

  19. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    SciTech Connect

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  20. Testing different formulations of leading-order anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo; Ryblewski, Radoslaw; Florkowski, Wojciech; Strickland, Michael

    2016-02-01

    A recently obtained set of the equations for leading-order (3+1)D anisotropic hydrodynamics is tested against exact solutions of the Boltzmann equation with the collisional kernel treated in the relaxation time approximation. In order to perform detailed comparisons, the new anisotropic hydrodynamics equations are reduced to the boost-invariant and transversally homogeneous case. The agreement with the exact solutions found using the new anisotropic hydrodynamics equations is similar to that found using previous, less general formulations of anisotropic hydrodynamics. In addition, we find that, when compared to a state-of-the-art second-order viscous hydrodynamics framework, leading-order anisotropic hydrodynamics better reproduces the exact solution for the pressure anisotropy and gives comparable results for the bulk pressure evolution. Finally, we compare the transport coefficients obtained using linearized anisotropic hydrodynamics with results obtained using second-order viscous hydrodynamics.

  1. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J.O.

    1999-06-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-10{sup 4} s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.

  2. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Bazan, G.; Drake, R.P.; Fryxell, B.A.; Teyssier, R.

    1999-05-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane {ital et al.} [Astrophys. J. {bold 478}, L75 (1997) and B. A. Remington {ital et al.}, Phys. Plasmas {bold 4}, 1994 (1997)]. The Nova laser is used to generate a 10{endash}15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth due to the Richtmyer{endash}Meshkov instability, and to the Rayleigh{endash}Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few {times}10{sup 3}s. The scaling of hydrodynamics on microscopic laser scales to the SN-size scales is presented. The experiment is modeled using the hydrodynamics codes HYADES [J. T. Larson and S. M. Lane, J. Quant. Spect. Rad. Trans. {bold 51}, 179 (1994)] and CALE [R. T. Barton, {ital Numerical Astrophysics} (Jones and Bartlett, Boston, 1985), pp. 482{endash}497], and the supernova code PROMETHEUS [P. R. Woodward and P. Collela, J. Comp. Phys. {bold 54}, 115 (1984)]. Results of the experiments and simulations are presented. Analysis of the spike-and-bubble velocities using potential flow theory and Ott thin-shell theory is presented, as well as a study of 2D versus 3D differences in perturbation growth at the He-H interface of SN 1987A.

  3. 78 FR 9907 - Hydrodynamics, Inc.; Notice Denying Late Intervention

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hydrodynamics, Inc.; Notice Denying Late Intervention On June 24, 2010, Commission staff issued a three-year preliminary permit to Hydrodynamics, Inc. (Hydrodynamics) to study...

  4. A Hydrodynamic Analysis of Collective Flow in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Yan, Li

    Recent progress in the hydrodynamic simulation of heavy-ion collisions have characterized the fluctuating initial state and the viscous corrections to the corresponding collective flow. These fluctuations naturally explain the "ridge" and "shoulder" structure of the measured two-particle correlation functions at RHIC and the LHC. We introduce a cumulant expansion for analyzing the azimuthal fluctuations in the initial state. The cumulant definitions systematically describe the azimuthal anisotropy order by order. In particular, the dipole asymmetry epsilon 1 appears at third order in the expansion, and the response to this initial fluctuation produces a radipity even dipole flow v 1, which has been subsequently confirmed by experiment. In addition, the cumulant expansion organizes the study of the nonlinear response to the initial conditions. The linear and nonlinear response coefficients to a given initial state were calculated with ideal and viscous hydrodynamic simulations. The collective flow is generated either linearly or nonlinearly, and the relative contribution of these two mechanisms to the observed flow pattern is calculated as a function of harmonic order, collision centrality, and the shear viscosity. For non-central collisions and high harmonic orders n ≥ 4, the nonlinear response is the dominant mechanism. This result is also seen in event-by-event hydrodynamic simulations. Using the cumulant expansion and the corresponding linear and nonlinear response coefficients, we determine the event plane correlations and compare to first measurements of this type. The observed event plane correlations are rooted in the initial state participant plane correlations, but a large fraction of the observed correlations are determined by harmonic mixing during the bulk expansion. Viscous corrections to the hydrodynamic formulation of collective flow are reflected in hydrodynamic equations of motion, as well as the correction to the distribution function at freeze

  5. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2010-08-01

    In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  6. Direct characterization of hydrodynamic loading on a microelectromechanical systems microstructure

    NASA Astrophysics Data System (ADS)

    Mehrnezhad, Ali; Bashir, Rashid; Park, Kidong

    2016-03-01

    Hydrodynamic loading greatly affects resonant characteristic of microfabricated structures immersed in a viscous fluid. In this letter, we demonstrate a technique to measure hydrodynamic loading on a MEMS resonator in a broad range of actuation frequency. The extracted hydrodynamic loading is in a good agreement with an analytical solution of an oscillating sphere, and a highly accurate model is developed for the hydrodynamic loading of the resonator. The developed technique can directly characterize the hydrodynamic loading of a microstructure with an arbitrary geometry and will facilitate the optimization of MEMS devices and AFM probes operating in a viscous fluid.

  7. Preasymptotic hydrodynamic dispersion as a quantitative probe of permeability.

    PubMed

    Brosten, Tyler R; Vogt, Sarah J; Seymour, Joseph D; Codd, Sarah L; Maier, Robert S

    2012-04-01

    We interpret a generalized short-time expansion of stochastic hydrodynamic dispersion dynamics in the case of small Reynolds number flow through macroscopically homogenous permeable porous media to directly determine hydrodynamic permeability. The approach allows determination of hydrodynamic permeability from pulsed field gradient spin-echo nuclear magnetic resonance measurement of the short-time effective hydrodynamic dispersion coefficient. The analytical expansion of asymptotic dynamics agrees with experimental NMR data and lattice Boltzmann simulation of hydrodynamic dispersion in consolidated random sphere pack media. PMID:22680531

  8. Maneuvering hydrodynamics of fish and small underwater vehicles.

    PubMed

    Bandyopadhyay, Promode R

    2002-02-01

    The understanding of fish maneuvering and its application to underwater rigid bodies are considered. The goal is to gain insight into stealth. The recent progress made in NUWC is reviewed. Fish morphology suggests that control fins for maneuverability have unique scalar relationships irrespective of their speed type. Maneuvering experiments are carried out with fish that are fast yet maneuverable. The gap in maneuverability between fish and small underwater vehicles is quantified. The hydrodynamics of a dorsal fin based brisk maneuvering device and a dual flapping foil device, as applied to rigid cylindrical bodies, are described. The role of pectoral wings in maneuvering and station keeping near surface waves is discussed. A pendulum model of dolphin swimming is presented to show that body length and tail flapping frequency are related. For nearly neutrally buoyant bodies, Froude number and maneuverability are related. Analysis of measurements indicates that the Strouhal number of dolphins is a constant. The mechanism of discrete and deterministic vortex shedding from oscillating control surfaces has the property of large amplitude unsteady forcing and an exquisite phase dependence, which makes it inherently amenable to active control for precision maneuvering. Theoretical control studies are carried out to demonstrate the feasibility of maneuverability of biologically inspired bodies under surface waves. The application of fish hydrodynamics to the silencing of propulsors is considered. Two strategies for the reduction of radiated noise are developed. The effects of a reduction of rotational rate are modeled. The active cambering of blades made of digitally programmable artificial muscles, and their thrust enhancement, are demonstrated. Next, wake momentum filling is carried out by artificial muscles at the trailing edge of a stator blade of an upstream stator propulsor, and articulating them like a fish tail. A reduction of radiated noise, called blade tonals

  9. A two-dimensional hydrodynamic model of a tidal estuary

    USGS Publications Warehouse

    Walters, Roy A.; Cheng, Ralph T.

    1979-01-01

    A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.

  10. Hydrodynamic Instabilities in Blast-Driven Systems

    NASA Astrophysics Data System (ADS)

    Henry de Frahan, Marc; Johnsen, Eric

    2014-11-01

    Mixing from hydrodynamics instabilities such as Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz, occurs in a wide range of engineering applications such as inertial confinement fusion, supernova collapse, and scramjet combustion. The success of these applications depends on an accurate understanding of these phenomena. Following previous work investigating hydrodynamic mixing from the interaction of a perturbed interface with a planar blast wave, we model the perturbation growth by analyzing the different acceleration phases of a blast wave: an instantaneous acceleration (a pressure increase) followed by a gradual, time-dependent deceleration (a pressure decrease). Depending on the characteristics of these phases, the instability will be dominated by Richtmyer-Meshkov or Rayleigh-Taylor growth. We use a high-order accurate Discontinuous Galerkin method that prevents pressure errors at interfaces with variable specific heats ratios to simulate these systems and understand the different growth regimes.

  11. Hydrodynamics with spin in bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Belovs, M.; CÄ`bers, A.

    2016-06-01

    We describe a kind of self-propelling motion of bacteria based on the cooperative action of rotating flagella on the surface of bacteria. Describing the ensemble of rotating flagella in the framework of the hydrodynamics with spin, the reciprocal theorem of Stokesian hydrodynamics is generalized accordingly. The velocity of the self-propulsion is expressed in terms of the characteristics of the vector field of flagella orientation and it is shown that the unusually high velocities of Thiovulum majus bacteria may be explained by the cooperative action of the rotating flagella. The expressions obtained enable us to estimate the torque created by the rotary motors of the bacterium and show quantitative agreement with the existing experimental data.

  12. A Hydrodynamical Mechanism for Generating Astrophysical Jets

    NASA Astrophysics Data System (ADS)

    Hernández, X.; Rendón, P. L.; Rodríguez-Mota, R. G.; Capella, A.

    2014-04-01

    Whenever in a classical accretion disk the thin disk approximation fails interior to a certain radius, a transition from Keplerian to radial infalling trajectories should occur. We show that this transition is actually expected to occur interior to a certain critical radius, provided surface density profiles are steeper than Sigma(R) ~ R(-1/2) , and further, that it probably corresponds to the observationally inferred phenomena of thick hot walls internally limiting the extent of many stellar accretion disks. Infalling trajectories will lead to the convergent focusing and concentration of matter towards the very central regions, most of which will simply be swallowed by the central object. We show through a perturbative hydrodynamical analysis, that this will naturally develop a well collimated pair of polar jets. A first analytic treatment of the problem described is given, proving the feasibility of purely hydrodynamical mechanisms for astrophysical jet generation.

  13. Hydrodynamics of ultra-relativistic bubble walls

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel

    2016-04-01

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  14. Hydrodynamic approach to boost invariant free streaming

    NASA Astrophysics Data System (ADS)

    Calzetta, E.

    2015-08-01

    We consider a family of exact boost invariant solutions of the transport equation for free-streaming massless particles, where the one-particle distribution function is defined in terms of a function of a single variable. The evolution of second and third moments of the one-particle distribution function [the second moment being the energy momentum tensor (EMT) and the third moment the nonequilibrium current (NEC)] depends only on two moments of that function. Given those two moments, we show how to build a nonlinear hydrodynamic theory which reproduces the early time evolution of the EMT and the NEC. The structure of these theories may give insight on nonlinear hydrodynamic phenomena on short time scales.

  15. Pursuit and Synchronization in Hydrodynamic Dipoles

    NASA Astrophysics Data System (ADS)

    Kanso, Eva; Tsang, Alan Cheng Hou

    2015-10-01

    We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic Hele-Shaw type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly periodic domains and focus on the dynamics of pairs of swimmers. We obtain two families of "relative equilibria"-type solutions that correspond to pursuit and synchronization of the two swimmers. Interestingly, the pursuit mode is stable for large-tail swimmers, whereas the synchronization mode is stable for large-head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.

  16. Structure and hydrodynamics of colloidal systems

    NASA Astrophysics Data System (ADS)

    Hayter, John B.

    1986-02-01

    Invited paperColloidal phases (for example, micellar solutions, latex suspensions, ferrofluids and microemulsions) provide excellent model systems with which to test structural and hydrodynamic theories of the liquid state. Interparticle potentials may be attractive or repulsive, and the experimentalist is often free to control the strength, range and symmetry of the interactions. Small-angle neutron scattering (SANS) and small-angle neutron spin-echo (SANSE) provide excellent complementary tools for studying the structure and time-dependence of these systems, where correlation lengths typically vary from about one to several tens of nm. Correlation times are usually in the nsec to μsec range, but may be of order minutes in certain systems. This paper will review some of the current theories and their recent experimental tests, using colloidal systems in which the direct interaction potentials may have spherical, dipolar or cylindrical symmetry and the hydrodynamic interactions may be weak or strong.

  17. Structure and hydrodynamics of colloidal systems

    NASA Astrophysics Data System (ADS)

    Hayter, J. B.

    1985-07-01

    Colloidal phases (for example, micellar solutions, latex suspensions, ferrofluids and microemulsions) provide excellent model systems with which to test structural and hydrodynamic theories of the liquid state. Interparticle potentials may be attractive or repulsive, and the experimentalist is often free to control the strength, range and symmetry of the interactions. Small-angle neutron scattering (SANS) and small-angle neutron spin-echo (SANSE) provide excellent complementary tools for studying the structure and time-dependence of these systems, where correlation lengths typically vary from about one to several tens of nm. Correlation times are usually in the nsec to (MU) sec range, but may be of order minutes in certain systems. This paper will review some of the current theories and their recent experimental tests, using colloidal systems in which the direct interaction potentials may have spherical, dipolar or cylindrical symmetry and the hydrodynamic interactions may be weak or strong.

  18. Quasinormal modes of the polytropic hydrodynamic vortex

    NASA Astrophysics Data System (ADS)

    Oliveira, Leandro A.; Cardoso, Vitor; Crispino, Luís C. B.

    2015-07-01

    Analogue systems are a powerful instrument to investigate and understand in a controlled setting many general-relativistic effects. Here, we focus on superradiant-triggered instabilities and quasinormal modes. We consider a compressible hydrodynamic vortex characterized by a polytropic equation of state, the polytropic hydrodynamic vortex, a purely circulating system with an ergoregion but no event horizon. We compute the quasinormal modes of this system numerically with different methods, finding excellent agreement between them. When the fluid velocity is larger than the speed of sound, an ergoregion appears in the effective spacetime, triggering an "ergoregion instability." We study the details of the instability for the polytropic vortex, and in particular find analytic expressions for the marginally stable configuration.

  19. Electro-hydrodynamic synchronization of piezoelectric flags

    NASA Astrophysics Data System (ADS)

    Xia, Yifan; Doaré, Olivier; Michelin, Sébastien

    2016-08-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.

  20. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    PubMed

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens. PMID:23787690

  1. HYDRODYNAMIC SIMULATION OF THE UPPER POTOMAC ESTUARY.

    USGS Publications Warehouse

    Schaffranck, Raymond W.

    1986-01-01

    Hydrodynamics of the upper extent of the Potomac Estuary between Indian Head and Morgantown, Md. , are simulated using a two-dimensional model. The model computes water-surface elevations and depth-averaged velocities by numerically integrating finite-difference forms of the equations of mass and momentum conservation using the alternating direction implicit method. The fundamental, non-linear, unsteady-flow equations, upon which the model is formulated, include additional terms to account for Coriolis acceleration and meteorological influences. Preliminary model/prototype data comparisons show agreement to within 9% for tidal flow volumes and phase differences within the measured-data-recording interval. Use of the model to investigate the hydrodynamics and certain aspects of transport within this Potomac Estuary reach is demonstrated. Refs.

  2. SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction

    NASA Astrophysics Data System (ADS)

    Thompson, Robert

    2015-02-01

    SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access. SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).

  3. Hydrodynamics and electromyography: ergonomics aspects in aquatics.

    PubMed

    Clarys, J P

    1985-03-01

    In a quadruple approach we have suggested the ergonomics links between fundamental hydrodynamics, applied dynamics of swimming, electromyographical aspects and specific training. Fundamental and applied hydrodynamics were investigated in a Dutch Marine Ship model test station allowing for the measurement of passive drag in different positions and of active (swimming) drag. It was found that drag in a prone position under the water surface was greater than at the water surface, but active drag while swimming reached twice the drag values of any passive drag condition. This indicates that body form has no influence on drag and propulsion. Since it is merely the technical execution of the swimming movement that will influence performance, telemetric EMG of the involved musculature has allowed a complete kinesiological picture of the front crawl movements to be made. This knowledge is basic for the study of specific and alternative training systems, such as specific dry land training.

  4. The Radiation Transport Conundrum in Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2005-03-18

    The summary of this paper is: (1) The conundrum in the title is whether to treat radiation in the lab frame or the comoving frame in a radiation-hydrodynamic problem; (2) Several of the difficulties are associated with combining a somewhat relativistic treatment of radiation with a non-relativistic treatment of hydrodynamics; (3) The principal problem is a tradeoff between easily obtaining the correct diffusion limit and describing free-streaming radiation with the correct wave speed; (4) The computational problems of the comoving-frame formulation in more than one dimension, and the difficulty of obtaining both exact conservation and full u/c accuracy argue against this method; (5) As the interest in multi-D increases, as well as the power of computers, the lab-frame method is becoming more attractive; and (6) The Monte Carlo method combines the advantages of both lab-frame and comoving-frame approaches, its only disadvantage being cost.

  5. Structure and hydrodynamics of colloidal systems

    SciTech Connect

    Hayter, J.B.

    1985-07-01

    Colloidal phases (for example, micellar solutions, latex suspensions, ferrofluids and microemulsions) provide excellent model systems with which to test structural and hydrodynamic theories of the liquid state. Interparticle potentials may be attractive or repulsive, and the experimentalist is often free to control the strength, range and symmetry of the interactions. Small-angle neutron scattering (SANS) and small-angle neutron spin-echo (SANSE) provide excellent complementary tools for studying the structure and time-dependence of these systems, where correlation lengths typically vary from about one to several tens of nm. Correlation times are usually in the nsec to ..mu..sec range, but may be of order minutes in certain systems. This paper will review some of the current theories and their recent experimental tests, using colloidal systems in which the direct interaction potentials may have spherical, dipolar or cylindrical symmetry and the hydrodynamic interactions may be weak or strong.

  6. Protostellar Collapse Using Multigroup Radiation Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Vaytet, N.; Chabrier, G.; Audit, E.; Commerçon, B.; Masson, J.; González, M.; Ferguson, J.; Delahaye, F.

    2015-10-01

    Many simulations of protostellar collapse make use of a grey treatment of radiative transfer coupled to the hydrodynamics. However, interstellar gas and dust opacities present large variations as a function of frequency. In this paper, we present multigroup radiation hydrodynamics simulations of the collapse of a spherically symmetric cloud and the formation of the first and second Larson cores. We have used a non-ideal gas equation of state as well as an extensive set of spectral opacities. Small differences between grey and multigroup simulations were observed. The first and second core accretion shocks were found to be super- and sub-critical, respectively. Varying the initial size and mass of the parent cloud had little impact on the core properties (especially for the second core). We finally present early results from 3D simulations that were performed using the RAMSES code.

  7. Hydrodynamic Object Recognition: When Multipoles Count

    NASA Astrophysics Data System (ADS)

    Sichert, Andreas B.; Bamler, Robert; van Hemmen, J. Leo

    2009-02-01

    The lateral-line system is a unique mechanosensory facility of aquatic animals that enables them not only to localize prey, predator, obstacles, and conspecifics, but also to recognize hydrodynamic objects. Here we present an explicit model explaining how aquatic animals such as fish can distinguish differently shaped submerged moving objects. Our model is based on the hydrodynamic multipole expansion and uses the unambiguous set of multipole components to identify the corresponding object. Furthermore, we show that within the natural range of one fish length the velocity field contains far more information than that due to a dipole. Finally, the model we present is easy to implement both neuronally and technically, and agrees well with available neuronal, physiological, and behavioral data on the lateral-line system.

  8. Laser driven hydrodynamic instability experiments. Revision 1

    SciTech Connect

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-02-17

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.

  9. The Quantum Hydrodynamic Description of Tunneling

    SciTech Connect

    Kendrick, Brian K.

    2012-06-15

    The quantum hydrodynamic approach is based on the de Broglie-Bohm formulation of quantum mechanics. The resulting fluid-like equations of motion describe the flow of probability and an accurate solution to these equations is equivalent to solving the time-dependent Schroedinger equation. Furthermore, the hydrodynamic approach provides new insight into the mechanisms as well as an alternative computational approach for treating tunneling phenomena. New concepts include well-defined 'quantum trajectories', 'quantum potential', and 'quantum force' all of which have classical analogues. The quantum potential and its associated force give rise to all quantum mechanical effects such as zero point energy, tunneling, and interference. A new numerical approach called the Iterative Finite Difference Method (IFDM) will be discussed. The IFDM is used to solve the set of non-linear coupled hydrodynamic equations. It is 2nd-order accurate in both space and time and exhibits exponential convergence with respect to the iteration count. The stability and computational efficiency of the IFDM is significantly improved by using a 'smart' Eulerian grid which has the same computational advantages as a Lagrangian or Arbitrary Lagrangian Eulerian (ALE) grid. The IFDM is also capable of treating anharmonic potentials. Example calculations using the IFDM will be presented which include: a one-dimensional Gaussian wave packet tunneling through an Eckart barrier, a one-dimensional bound-state Morse oscillator, and a two-dimensional (2D) model collinear reaction using an anharmonic potential energy surface. Approximate treatments of the quantum hydrodynamic equations will also be discussed which could allow scaling of the calculations to hundreds of degrees of freedom which is important for treating tunneling phenomena in condensed phase systems.

  10. VH-1: Multidimensional ideal compressible hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Hawley, John; Blondin, John; Lindahl, Greg; Lufkin, Eric

    2012-04-01

    VH-1 is a multidimensional ideal compressible hydrodynamics code written in FORTRAN for use on any computing platform, from desktop workstations to supercomputers. It uses a Lagrangian remap version of the Piecewise Parabolic Method developed by Paul Woodward and Phil Colella in their 1984 paper. VH-1 comes in a variety of versions, from a simple one-dimensional serial variant to a multi-dimensional version scalable to thousands of processors.

  11. Novel techniques for slurry bubble column hydrodynamics

    SciTech Connect

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  12. Hydrodynamics of an Electrochemical Membrane Bioreactor

    PubMed Central

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-01-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment. PMID:25997399

  13. Hydrodynamic slip length as a surface property.

    PubMed

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G P

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems. PMID:26986407

  14. Testing hydrodynamics schemes in galaxy disc simulations

    NASA Astrophysics Data System (ADS)

    Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.

    2016-08-01

    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.

  15. Hydrodynamic slip length as a surface property

    NASA Astrophysics Data System (ADS)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  16. Hydrodynamic Forces on Microbubbles under Ultrasound Excitation

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2014-11-01

    Ultrasound (US) pressure waves exert a force on microbubbles that can be used to steer them in a flow. To control the motion of microbubbles under ultrasonic excitation, the coupling between the volume oscillations induced by the ultrasound pressure and the hydrodynamic forces needs to be well understood. We present experimental results for the motion of small, coated microbubbles, with similar sizes and physico-chemical properties as clinically-available ultrasound contrast agents (UCAs). The size distribution for the bubbles, resulting from the in-house manufacturing process, was characterized by analysis of high magnification microscopic images and determined to be bimodal. More than 99% of the volume is contained in microbubbles less than 10 microns in diameter, the size of a red blood cell. The motion of the microbubbles in a pulsatile flow, at different Reynolds and Womersley numbers, is studied from tracking of high-speed shadowgraphy. The influence of ultrasound forcing, at or near the resonant frequency of the bubbles, on the hydrodynamic forces due to the pulsatile flow is determined from the experimental measurements of the trajectories. Previous evidence of a sign reversal in Saffman lift is the focus of particular attention, as this is frequently the only hydrodynamic force acting in the direction perpendicular to the flow pathlines. Application of the understanding of this physical phenomenon to targeted drug delivery is analyzed in terms of the transport of the microbubbles. NSF GRFP.

  17. MUFASA: galaxy formation simulations with meshless hydrodynamics

    NASA Astrophysics Data System (ADS)

    Davé, Romeel; Thompson, Robert; Hopkins, Philip F.

    2016-11-01

    We present the MUFASA suite of cosmological hydrodynamic simulations, which employs the GIZMO meshless finite mass (MFM) code including H2-based star formation, nine-element chemical evolution, two-phase kinetic outflows following scalings from the Feedback in Realistic Environments zoom simulations, and evolving halo mass-based quenching. Our fiducial (50 h-1 Mpc)3 volume is evolved to z = 0 with a quarter billion elements. The predicted galaxy stellar mass functions (GSMFs) reproduces observations from z = 4 → 0 to ≲ 1.2σ in cosmic variance, providing an unprecedented match to this key diagnostic. The cosmic star formation history and stellar mass growth show general agreement with data, with a strong archaeological downsizing trend such that dwarf galaxies form the majority of their stars after z ˜ 1. We run 25 and 12.5 h-1 Mpc volumes to z = 2 with identical feedback prescriptions, the latter resolving all hydrogen-cooling haloes, and the three runs display fair resolution convergence. The specific star formation rates broadly agree with data at z = 0, but are underpredicted at z ˜ 2 by a factor of 3, re-emphasizing a longstanding puzzle in galaxy evolution models. We compare runs using MFM and two flavours of smoothed particle hydrodynamics, and show that the GSMF is sensitive to hydrodynamics methodology at the ˜×2 level, which is sub-dominant to choices for parametrizing feedback.

  18. Hydrodynamic slip length as a surface property.

    PubMed

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G P

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  19. Hydrodynamics of an Electrochemical Membrane Bioreactor

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  20. The quantum hydrodynamic model for semiconductor devices

    SciTech Connect

    Gardner, C.L. )

    1994-04-01

    The classical hydrodynamic equations can be extended to include quantum effects by incorporating the first quantum corrections. The full three-dimensional quantum hydrodynamic (QHD) model is derived for the first time by a moment expansion of the Wigner-Boltzmann equations. The QHD conservation laws have the same form as the classical hydrodynamic equations, but the energy density and stress tensor have additional quantum terms. These quantum terms allow particles to tunnel through potential barriers and to build up in potential wells. The three-dimensional QHD transport equations are mathematically classified as having two Schroedinger modes, two hyperbolic modes, and one parabolic mode. The one-dimensional steady-state QHD equations are discretized in conservation form using the second upwind method. Simulations of a resonant tunneling diode are presented that show charge buildup in the quantum well and negative differential resistance (NDR) in the current-voltage curve. These are the first simulations of the full QHD equations to show NDR in the resonant tunneling diode. The computed current-voltage curve agrees quantitatively with experimental measurements. NDR interpreted in terms of the time spent by electrons in the quantum well.

  1. Computer-assisted hydrodynamic gene delivery.

    PubMed

    Suda, Takeshi; Suda, Kieko; Liu, Dexi

    2008-06-01

    The recently developed hydrodynamic delivery method makes it possible to deliver DNA and RNA into parenchyma cells by intravascular injection of nucleic acid-containing solution. While this procedure is effective in rodents, it is difficult to perform in large animals, because manual control while delivering the injection cannot be sufficiently reliable for achieving a just-right hydrodynamic pressure in targeted tissue. In order to overcome this problem, we have developed a computer-controlled injection device that uses real-time intravascular pressure as a regulator. Using the new injection device, and mouse liver as the model organ, we demonstrated continuous injection at a single pressure and different pressures, and also serial (repeated) injections at intervals of 250 ms, by programming the computer according to the need. When assessed by reporter plasmids, the computer-controlled injection device exhibits gene delivery efficiency similar to that of conventional hydrodynamic injection. The device is also effective in gene delivery to kidney and muscle cells in rats, with plasmids or adenoviral vectors as gene carriers. Successful gene delivery to liver and kidney was also demonstrated in pigs, with the computer-controlled injection being combined with image-guided catheterization. These results represent a significant advance in in vivo gene delivery research, with potential for use in gene therapy in humans.

  2. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    SciTech Connect

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the “adiabat shaping” mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  3. Analysis of hydrodynamic phenomena in simulant experiments investigating cavity interactions following postulated vessel meltthrough

    SciTech Connect

    Sienicki, J.J.; Spencer, B.W.

    1984-01-01

    An analysis of hydrodynamic phenomena in simulant experiments examining aspects of ex-vessel material interactions in a PWR reactor cavity following postulated core meltdown and localized breaching of the reactor vessel has been carried out. While previous analyses of the tests examined thresholds for the onset of sweepout of fluid from the cavity, the present analysis considers the progression of specific hydrodynamic phenomena involved in the dispersal process: crater formation due to gas jet impingement, radial wave motion and growth, entrainment and transport of liquid droplets, liquid layer formation due to droplet recombination, fluidization of liquid remaining in the cavity, removal of fluidized liquid droplets from the cavity, and the ultimate removal of the remaining liquid layer within the tunnel passageway. Phenomenological models which may be used to predict the phenomena are presented.

  4. A hybrid Godunov method for radiation hydrodynamics

    SciTech Connect

    Sekora, Michael D.; Stone, James M.

    2010-09-20

    From a mathematical perspective, radiation hydrodynamics can be thought of as a system of hyperbolic balance laws with dual multiscale behavior (multiscale behavior associated with the hyperbolic wave speeds as well as multiscale behavior associated with source term relaxation). With this outlook in mind, this paper presents a hybrid Godunov method for one-dimensional radiation hydrodynamics that is uniformly well behaved from the photon free streaming (hyperbolic) limit through the weak equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion (hyperbolic) limit. Moreover, one finds that the technique preserves certain asymptotic limits. The method incorporates a backward Euler upwinding scheme for the radiation energy density E{sub r} and flux F{sub r} as well as a modified Godunov scheme for the material density {rho}, momentum density m, and energy density E. The backward Euler upwinding scheme is first-order accurate and uses an implicit HLLE flux function to temporally advance the radiation components according to the material flow scale. The modified Godunov scheme is second-order accurate and directly couples stiff source term effects to the hyperbolic structure of the system of balance laws. This Godunov technique is composed of a predictor step that is based on Duhamel's principle and a corrector step that is based on Picard iteration. The Godunov scheme is explicit on the material flow scale but is unsplit and fully couples matter and radiation without invoking a diffusion-type approximation for radiation hydrodynamics. This technique derives from earlier work by Miniati and Colella (2007) . Numerical tests demonstrate that the method is stable, robust, and accurate across various parameter regimes.

  5. Hydrodynamics of linked sphere model swimmers.

    PubMed

    Alexander, G P; Pooley, C M; Yeomans, J M

    2009-05-20

    We describe in detail the hydrodynamics of a simple model of linked sphere swimmers. We calculate the asymptotic form of both the time averaged flow field generated by a single swimmer and the interactions between swimmers in a dilute suspension, showing how each depends on the parameters describing the swimmer and its swimming stroke. We emphasize the importance of time reversal symmetry in determining the far field flow around a swimmer and show that the interactions between swimmers are highly dependent on the relative phase of their swimming strokes. PMID:21825517

  6. Hydrodynamics of linked sphere model swimmers

    NASA Astrophysics Data System (ADS)

    Alexander, G. P.; Pooley, C. M.; Yeomans, J. M.

    2009-05-01

    We describe in detail the hydrodynamics of a simple model of linked sphere swimmers. We calculate the asymptotic form of both the time averaged flow field generated by a single swimmer and the interactions between swimmers in a dilute suspension, showing how each depends on the parameters describing the swimmer and its swimming stroke. We emphasize the importance of time reversal symmetry in determining the far field flow around a swimmer and show that the interactions between swimmers are highly dependent on the relative phase of their swimming strokes.

  7. Nonisothermal fluctuating hydrodynamics and Brownian motion

    NASA Astrophysics Data System (ADS)

    Falasco, G.; Kroy, K.

    2016-03-01

    The classical theory of Brownian dynamics follows from coarse graining the underlying linearized fluctuating hydrodynamics of the solvent. We extend this procedure to globally nonisothermal conditions, requiring only a local thermal equilibration of the solvent. Starting from the conservation laws, we establish the stochastic equations of motion for the fluid momentum fluctuations in the presence of a suspended Brownian particle. These are then contracted to the nonisothermal generalized Langevin description of the suspended particle alone, for which the coupling to stochastic temperature fluctuations is found to be negligible under typical experimental conditions.

  8. Hydrodynamic and Spectral Simulations of HMXB Winds

    SciTech Connect

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2007-03-30

    We describe preliminary results of a global model of the radiatively-driven photoionized wind and accretion flow of the high-mass X-ray binary Vela X-1. The full model combines FLASH hydrodynamic calculations, XSTAR photoionization calculations, HULLAC atomic data, and Monte Carlo radiation transport. We present maps of the density, temperature, velocity, and ionization parameter from a FLASH two-dimensional time-dependent simulation of Vela X-1, as well as maps of the emissivity distributions of the X-ray emission lines.

  9. Experimental hydrodynamics of swimming in fishes

    NASA Astrophysics Data System (ADS)

    Tytell, Eric Daniel

    2005-11-01

    The great diversity of fish body shapes suggests that they have adapted to different selective pressures. For many fishes, the pressures include hydrodynamic demands: swimming efficiently or accelerating rapidly, for instance. However, the hydrodynamic advantages or disadvantages to specific morphologies are poorly understood. In particular, eels have been considered inefficient swimmers, but they migrate long distances without feeding, a task that requires efficient swimming. This dissertation, therefore, begins with an examination of the swimming hydrodynamics of American eels, Anguilla rostrata, at steady swimming speeds from 0.5 to 2 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s -2. The final chapter examines the hydrodynamic effects of body shape directly by describing three-dimensional flow around swimming bluegill sunfish, Lepomis macrochirus. In all chapters, flow is quantified using digital particle image velocimetry, and simultaneous kinematics are measured from high-resolution digital video. The wake behind a swimming eel in the horizontal midline plane is described first. Rather than producing a wake with fluid jets angled backwards, like in fishes such as sunfish, eels have a wake with exclusively lateral jets. The lack of downstream momentum indicates that eels balance the axial forces of thrust and drag evenly over time and over their bodies, and therefore do not change axial fluid momentum. This even balance, present at all steady swimming speeds, is probably due to the relatively uniform body shape of eels. As eels accelerate, thrust exceeds drag, axial momentum increases, and the wake approaches that of other fishes. During steady swimming, though, the lack of axial momentum prevents direct efficiency estimation. The effect of body shape was examined directly by measuring flow in multiple transverse planes along the body of bluegill sunfish swimming at 1.2 L s-1. The dorsal and anal fin, neglected in many previous

  10. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    PubMed

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  11. Some cautionary remarks about smoothed particle hydrodynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars

    1993-01-01

    Potential difficulties with smoothed particle hydrodynamics are discussed. In particular, empirical tests are used to demonstrate that the errors resulting from the use of variable smoothing can be much larger than commonly believed. Fortunately, however, these errors, which are normally small, do not appear to promote instability on small scales, such as fragmentation in self-gravitating fluids. Still, while SPH remains a useful tool for many problems of astrophysical interest, a rigorous formulation of it, which is adaptive but still satisfies conservation properties, is clearly wanting.

  12. Hydrodynamics of anisotropic quark and gluon fluids

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael

    2013-03-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  13. Consistent Hydrodynamics for Phase Field Crystals.

    PubMed

    Heinonen, V; Achim, C V; Kosterlitz, J M; Ying, See-Chen; Lowengrub, J; Ala-Nissila, T

    2016-01-15

    We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission. PMID:26824543

  14. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1993-07-01

    Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.

  15. Hydrodynamical Dispersion in Taylor-Couette Cells

    NASA Astrophysics Data System (ADS)

    Piva, M.; Calvo, A.; Aguirre, A.; Callegari, G.; Gabbanelli, S.; Rosen, M.; Wesfreid, J. E.

    1997-04-01

    In this article we study the mass tracer dispersion in organized flows. For this purpose we performed experiments in the flow arising from the Taylor-Couette hydrodynamic instability combined with axial flow. The tracer evolution is followed by means of optical measurements of the concentration. In this way transmission curves are obtained. We compare these curves with the solutions of the Gaussian models of mass diffusion and with phenomenological models including tracer trapping in the cells. This comparison gives us physical parameters related to the typical time and distances involved in the diffusive behaviour of tracers in the regions with recirculations and trapping.

  16. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    PubMed

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows. PMID:20867451

  17. Rapidity Correlation Structures from Causal Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gavin, Sean; Moschelli, George; Zin, Christopher

    2016-08-01

    Viscous diffusion can broaden the rapidity dependence of two-particle transverse momentum fluctuations. Surprisingly, measurements at RHIC by the STAR collaboration demonstrate that this broadening is accompanied by the appearance of unanticipated structure in the rapidity distribution of these fluctuations in the most central collisions. Although a first order classical Navier-Stokes theory can roughly explain the rapidity broadening, it cannot explain the additional structure. We propose that the rapidity structure can be explained using the second order causal Israel-Stewart hydrodynamics with stochastic noise.

  18. Newtonian Hydrodynamics with Arbitrary Volumetric Sources

    SciTech Connect

    Lowrie, Robert Byron

    2015-11-12

    In this note, we derive how to handle mass, momentum, and energy sources for Newtonian hydrodynamics. Much of this is classic, although we’re unaware of a reference that treats mass sources, necessary for certain physics and the method of manufactured solutions. In addition, we felt it important to emphasize that the integral form of the governing equations results in a straightforward treatment of the sources. With the integral form, we’ll demonstrate that there’s no ambiguity between the Lagrangian and Eulerian form of the equations, which is less clear with the differential forms.

  19. Newtonian hydrodynamics with general relativistic pressure

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim E-mail: hr@kasi.re.kr

    2013-10-01

    We present the general relativistic pressure correction terms in Newtonian hydrodynamic equations to the nonlinear order: these are equations (1.1)–(1.3). The derivation is made in the zero-shear gauge based on the fully nonlinear formulation of cosmological perturbation in Einstein's gravity. The correction terms differ from many of the previously suggested forms in the literature based on hand-waving manners. We confirm our results by comparing with (i) the nonlinear perturbation theory, (ii) the first order post-Newtonian approximation, and (iii) the special relativistic limit, and by checking (iv) the consistency with full Einstein's equation.

  20. The frontal method in hydrodynamics simulations

    USGS Publications Warehouse

    Walters, R.A.

    1980-01-01

    The frontal solution method has proven to be an effective means of solving the matrix equations resulting from the application of the finite element method to a variety of problems. In this study, several versions of the frontal method were compared in efficiency for several hydrodynamics problems. Three basic modifications were shown to be of value: 1. Elimination of equations with boundary conditions beforehand, 2. Modification of the pivoting procedures to allow dynamic management of the equation size, and 3. Storage of the eliminated equations in a vector. These modifications are sufficiently general to be applied to other classes of problems. ?? 1980.

  1. Vertical hydrodynamic focusing in glass microchannels

    PubMed Central

    Lin, Tony A.; Hosoi, A. E.; Ehrlich, Daniel J.

    2009-01-01

    Vertical hydrodynamic focusing in microfluidic devices is investigated through simulation and through direct experimental verification using a confocal microscope and a novel form of stroboscopic imaging. Optimization for microfluidic cytometry of biological cells is examined. By combining multiple crossing junctions, it is possible to confine cells to a single analytic layer of interest. Subtractive flows are investigated as a means to move the analysis layer vertically in the channel and to correct the flatness of this layer. The simulation software (ADINA and Coventor) is shown to accurately capture the complex dependencies of the layer interfaces, which vary strongly with channel geometry and relative flow rates. PMID:19693394

  2. Klein-Gordon Equation in Hydrodynamical Form

    SciTech Connect

    Wong, Cheuk-Yin

    2010-01-01

    We follow and modify the Feshbach-Villars formalism by separating the Klein-Gordon equation into two coupled time-dependent Schroedinger equations for the particle and antiparticle wave functions with positive probability densities. We find that the equation of motion for the probability densities is in the form of relativistic hydrodynamics where various forces have their physical and classical counterparts. An additional element is the presence of the quantum stress tensor that depends on the derivatives of the amplitude of the wave function.

  3. Nonisothermal fluctuating hydrodynamics and Brownian motion.

    PubMed

    Falasco, G; Kroy, K

    2016-03-01

    The classical theory of Brownian dynamics follows from coarse graining the underlying linearized fluctuating hydrodynamics of the solvent. We extend this procedure to globally nonisothermal conditions, requiring only a local thermal equilibration of the solvent. Starting from the conservation laws, we establish the stochastic equations of motion for the fluid momentum fluctuations in the presence of a suspended Brownian particle. These are then contracted to the nonisothermal generalized Langevin description of the suspended particle alone, for which the coupling to stochastic temperature fluctuations is found to be negligible under typical experimental conditions. PMID:27078335

  4. Consistent description of kinetics and hydrodynamics of dusty plasma

    SciTech Connect

    Markiv, B.; Tokarchuk, M.

    2014-02-15

    A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.

  5. Computer simulation of the fire-tube boiler hydrodynamics

    NASA Astrophysics Data System (ADS)

    Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Sheikin, Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  6. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella.

    PubMed

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella. PMID:26684142

  7. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  8. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella.

    PubMed

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  9. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    PubMed

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.

  10. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    PubMed

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear. PMID:17343698

  11. Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas

    NASA Technical Reports Server (NTRS)

    Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen

    2004-01-01

    In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.

  12. Active Matter: Liquid-Crystal Hydrodynamics With a Difference

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    2011-07-01

    Coherently moving flocks of beasts, birds and bacteria are an example of polar nematic liquid-crystalline order in the living world. The highly ordered local structures seen in the configurations of the biopolymeric filaments, energized by molecular motors, in the cytoskeleton of a living cell are another example; and chemically or mechanically agitated orientable particles such as catalytic colloidal rods or monolayers of macroscopic bits of wire are a third. There has been a great deal of progress in understanding the states, phase transitions, and fluctuations of these nonequilibrium systems, known broadly as Active Matter, and the methods used are a nice generalization of the hydrodynamic approach to liquid crystals. Among the interesting results that have emerged are some curious instabilities in bulk as well as thin-film geometries; the peculiar kinetics of domain growth of active nematics; anomalies in the dynamics of a stiff filament in an active medium, and the twisted instabilities of chiral active liquid crystals. My talk will provide some background, summarize the achievements of the field, including those of our group, and identify open problems and future directions.

  13. Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas

    SciTech Connect

    Ramshaw, J.D.; Chang, C.H.

    1995-12-31

    Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain driving forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.

  14. Chaos in hydrodynamic BL Herculis models

    NASA Astrophysics Data System (ADS)

    Smolec, R.; Moskalik, P.

    2014-06-01

    We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Particularly interesting are periodic windows which are intrinsic property of chaotic systems and are not necessarily caused by resonances between pulsation modes, as sometimes claimed in the literature.

  15. Hydrodynamics of Sperm Cells near Surfaces

    PubMed Central

    Elgeti, Jens; Kaupp, U. Benjamin; Gompper, Gerhard

    2010-01-01

    Sperm are propelled by an actively beating tail, and display a wide variety of swimming patterns. When confined between two parallel walls, sperm swim either in circles or on curvilinear trajectories close to the walls. We employ mesoscale hydrodynamics simulations in combination with a mechanical sperm model to study the swimming behavior near walls. The simulations show that sperm become captured at the wall due to the hydrodynamic flow fields which are generated by the flagellar beat. The circular trajectories are determined by the chiral asymmetry of the sperm shape. For strong (weak) chirality, sperm swim in tight (wide) circles, with the beating plane of the flagellum oriented perpendicular (parallel) to the wall. For comparison, we also perform simulations based on a local anisotropic friction of the flagellum. In this resistive force approximation, surface adhesion and circular swimming patterns are obtained as well. However, the adhesion mechanism is now due to steric repulsion, and the orientation of the beating plane is different. Our model provides a theoretical framework that explains several distinct swimming behaviors of sperm near and far from a wall. Moreover, the model suggests a mechanism by which sperm navigate in a chemical gradient via a change of their shape. PMID:20712984

  16. Hydrodynamic characteristics of the helical flow pump.

    PubMed

    Ishii, Kohei; Hosoda, Kyohei; Nishida, Masahiro; Isoyama, Takashi; Saito, Itsuro; Ariyoshi, Koki; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Sato, Masami; Hara, Sintaro; Lee, Xinyang; Wu, Sheng-Yuan; Imachi, Kou; Abe, Yusuke

    2015-09-01

    The helical flow pump (HFP) was invented to be an ideal pump for developing the TAH and the helical flow TAH (HFTAH) using two HFPs has been developed. However, since the HFP is quite a new pump, hydrodynamic characteristics inside the pump are not clarified. To analyze hydrodynamic characteristics of the HFP, flow visualization study using the particle image velocimetry and computational fluid dynamics analysis were performed. The experimental and computational models were developed to simulate the left HFP of the HFTAH and distributions of flow velocity vectors, shear stress and pressure inside the pump were examined. In distribution of flow velocity vectors, the vortexes in the vane were observed, which indicated that the HFP has a novel and quite unique working principle in which centrifugal force rotates the fluid in the helical volutes and the fluid is transferred from the inlet to the outlet helical volutes according to the helical structure. In distribution of shear stress, the highest shear stress that was considered to be occurred by the shunt flow across the impeller was found around the entrance of the inlet helical volute. However, it was not so high to cause hemolysis. This shunt flow is thought to be improved by redesigning the inlet and outlet helical volutes. In distribution of pressure, negative pressure was found near the entrance of the inlet helical volute. However, it was not high. Negative pressure is thought to be reduced with an improvement in the design of the impeller or the vane shape. PMID:25784463

  17. Hydrodynamic theory of quantum fluctuating superconductivity

    NASA Astrophysics Data System (ADS)

    Davison, Richard A.; Delacrétaz, Luca V.; Goutéraux, Blaise; Hartnoll, Sean A.

    2016-08-01

    A hydrodynamic theory of transport in quantum mechanically phase-disordered superconductors is possible when supercurrent relaxation can be treated as a slow process. We obtain general results for the frequency-dependent conductivity of such a regime. With time-reversal invariance, the conductivity is characterized by a Drude-type peak, with width given by the supercurrent relaxation rate. Using the memory matrix formalism, we obtain a formula for this width (and hence also the dc resistivity) when the supercurrent is relaxed by short-range density-density interactions. This leads to an effective field theoretic and fully quantum derivation of a classic result on flux flow resistance. With strong breaking of time-reversal invariance, the optical conductivity exhibits what we call a "hydrodynamic supercyclotron" resonance. We obtain the frequency and decay rate of this resonance for the case of supercurrent relaxation due to an emergent Chern-Simons gauge field. The supercurrent decay rate in this "topologically ordered superfluid vortex liquid" is determined by the conductivities of the normal fluid component, rather than the vortex core.

  18. Relativistic hydrodynamics on graphics processing units

    NASA Astrophysics Data System (ADS)

    Sikorski, Jan; Cygert, Sebastian; Porter-Sobieraj, Joanna; Słodkowski, Marcin; Krzyżanowski, Piotr; Ksiażek, Natalia; Duda, Przemysław

    2014-05-01

    Hydrodynamics calculations have been successfully used in studies of the bulk properties of the Quark-Gluon Plasma, particularly of elliptic flow and shear viscosity. However, there are areas (for instance event-by-event simulations for flow fluctuations and higher-order flow harmonics studies) where further advancement is hampered by lack of efficient and precise 3+1D program. This problem can be solved by using Graphics Processing Unit (GPU) computing, which offers unprecedented increase of the computing power compared to standard CPU simulations. In this work, we present an implementation of 3+1D ideal hydrodynamics simulations on the Graphics Processing Unit using Nvidia CUDA framework. MUSTA-FORCE (MUlti STAge, First ORder CEntral, with a slope limiter and MUSCL reconstruction) and WENO (Weighted Essentially Non-Oscillating) schemes are employed in the simulations, delivering second (MUSTA-FORCE), fifth and seventh (WENO) order of accuracy. Third order Runge-Kutta scheme was used for integration in the time domain. Our implementation improves the performance by about 2 orders of magnitude compared to a single threaded program. The algorithm tests of 1+1D shock tube and 3+1D simulations with ellipsoidal and Hubble-like expansion are presented.

  19. Anisotropic matching principle for the hydrodynamic expansion

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo

    2016-10-01

    Following the recent success of anisotropic hydrodynamics, I propose here a new, general prescription for the hydrodynamic expansion around an anisotropic background. The anisotropic distribution fixes exactly the complete energy-momentum tensor, just like the effective temperature fixes the proper energy density in the ordinary expansion around local equilibrium. This means that momentum anisotropies are already included at the leading order, allowing for large pressure anisotropies without the need of a next-to-leading-order treatment. The first moment of the Boltzmann equation (local four-momentum conservation) provides the time evolution of the proper energy density and the four-velocity. Differently from previous prescriptions, the dynamic equations for the pressure corrections are not derived from the zeroth or second moment of the Boltzmann equation, but they are taken directly from the exact evolution given by the Boltzmann equation. As known in the literature, the exact evolution of the pressure corrections involves higher moments of the Boltzmann distribution, which cannot be fixed by the anisotropic distribution alone. Neglecting the next-to-leading-order contributions corresponds to an approximation, which depends on the chosen form of the anisotropic distribution. I check the the effectiveness of the leading-order expansion around the generalized Romatschke-Stricklad distribution, comparing with the exact solution of the Boltzmann equation in the Bjorken limit with the collisional kernel treated in the relaxation-time approximation, finding an unprecedented agreement.

  20. Flagellar synchronization through direct hydrodynamic interactions

    PubMed Central

    Brumley, Douglas R; Wan, Kirsty Y; Polin, Marco; Goldstein, Raymond E

    2014-01-01

    Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties. DOI: http://dx.doi.org/10.7554/eLife.02750.001 PMID:25073925

  1. Kinetic and hydrodynamic models of chemotactic aggregation

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri; Sire, Clément

    2007-10-01

    We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean-field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the analogy between bacterial colonies and self-gravitating systems and between the chemotactic collapse and the gravitational collapse (Jeans instability). We also show that the basic equations of chemotaxis are similar to nonlinear mean-field Fokker-Planck equations so that a notion of effective generalized thermodynamics can be developed.

  2. Supernova Hydrodynamics on the Omega Laser

    SciTech Connect

    R. Paul Drake

    2004-01-16

    (B204)The fundamental motivation for our work is that supernovae are not well understood. Recent observations have clarified the depth of our ignorance, by producing observed phenomena that current theory and computer simulations cannot reproduce. Such theories and simulations involve, however, a number of physical mechanisms that have never been studied in isolation. We perform experiments, in compressible hydrodynamics and radiation hydrodynamics, relevant to supernovae and supernova remnants. These experiments produce phenomena in the laboratory that are believed, based on simulations, to be important to astrophysics but that have not been directly observed in either the laboratory or in an astrophysical system. During the period of this grant, we have focused on the scaling of an astrophysically relevant, radiative-precursor shock, on preliminary studies of collapsing radiative shocks, and on the multimode behavior and the three-dimensional, deeply nonlinear evolution of the Rayleigh-Taylor (RT) instability at a decelerating, embedded interface. These experiments required strong compression and decompression, strong shocks (Mach {approx}10 or greater), flexible geometries, and very smooth laser beams, which means that the 60-beam Omega laser is the only facility capable of carrying out this program.

  3. Flagellar synchronization through direct hydrodynamic interactions.

    PubMed

    Brumley, Douglas R; Wan, Kirsty Y; Polin, Marco; Goldstein, Raymond E

    2014-01-01

    Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties.DOI: http://dx.doi.org/10.7554/eLife.02750.001. PMID:25073925

  4. Generalized hydrodynamics model for strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Diaw, A.; Murillo, M. S.

    2015-07-01

    Beginning with the exact equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum, and stress tensor-moment equations. We close the moment equations with two closures, one that guarantees an equilibrium state given by density-functional theory and another that includes collisions in the relaxation of the stress tensor. The introduction of a density functional-theory closure ensures self-consistency in the equation-of-state properties of the plasma (ideal and excess pressure, electric fields, and correlations). The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency (viscoelastic) response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasilocalized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those of the current autocorrelation function obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. Generalizations of this model to mixtures and quantum systems should be straightforward.

  5. [Hemodynamic and hydrodynamic problems in kidney transplantation].

    PubMed

    Schuldt, H H

    1979-09-01

    On the basis of general realisations and own experimental or clinical observations haemodynamic and hydrodynamic problems, respectively, of renal conditioning in the organism of the donor, the perfusion preservation and the phase of repeated blood supply are represented and discussed. It is shown that an improvement of the renal blood supply and of she flow of the urine in the donor with "dead brain" by alpha-adrenergic blockade or stimulation of beta-receptors is not sufficient for overcoming restrictions of the renal function. A pulsatile perfusion and the permanent opening of the vascular lumen when the medium changes between blood and perfusate are regarded as most favourable hydrodynamic prerequisites for the initial hypothermal lavation of blood. In continuous machine perfusion with oxygenated protein-containing solutions a dilation of the renal vessels takes place, so that the cortical perfusion is guaranteed also in low pressures. After the transplantation there exists a significant pathogenetic correlation between the total blood supply of the kidney and its early function.

  6. Smoothed particle hydrodynamics with GRAPE-1A

    NASA Technical Reports Server (NTRS)

    Umemura, Masayuki; Fukushige, Toshiyuki; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro; Turner, Edwin L.; Loeb, Abraham

    1993-01-01

    We describe the implementation of a smoothed particle hydrodynamics (SPH) scheme using GRAPE-1A, a special-purpose processor used for gravitational N-body simulations. The GRAPE-1A calculates the gravitational force exerted on a particle from all other particles in a system, while simultaneously making a list of the nearest neighbors of the particle. It is found that GRAPE-1A accelerates SPH calculations by direct summation by about two orders of magnitudes for a ten thousand-particle simulation. The effective speed is 80 Mflops, which is about 30 percent of the peak speed of GRAPE-1A. Also, in order to investigate the accuracy of GRAPE-SPH, some test simulations were executed. We found that the force and position errors are smaller than those due to representing a fluid by a finite number of particles. The total energy and momentum were conserved within 0.2-0.4 percent and 2-5 x 10 exp -5, respectively, in simulations with several thousand particles. We conclude that GRAPE-SPH is quite effective and sufficiently accurate for self-gravitating hydrodynamics.

  7. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography

    PubMed Central

    Weiss, Nicolás; Obied, Khalid El Tayeb El; Kalkman, Jeroen; Lammertink, Rob G.H.; van Leeuwen, Ton G.

    2016-01-01

    We report on localized and simultaneous measurement of biofilm growth and local hydrodynamics in a microfluidic channel using optical coherence tomography. We measure independently with high spatio-temporal resolution the longitudinal flow velocity component parallel to the imaging beam and the transverse flow velocity component perpendicular to the imaging beam. Based on the measured velocities we calculate the shear-rates in the flow channel. We show the relation between the measured biofilm structure and flow velocities as biofilm growth progresses over the course of 48 hours.

  8. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography

    PubMed Central

    Weiss, Nicolás; Obied, Khalid El Tayeb El; Kalkman, Jeroen; Lammertink, Rob G.H.; van Leeuwen, Ton G.

    2016-01-01

    We report on localized and simultaneous measurement of biofilm growth and local hydrodynamics in a microfluidic channel using optical coherence tomography. We measure independently with high spatio-temporal resolution the longitudinal flow velocity component parallel to the imaging beam and the transverse flow velocity component perpendicular to the imaging beam. Based on the measured velocities we calculate the shear-rates in the flow channel. We show the relation between the measured biofilm structure and flow velocities as biofilm growth progresses over the course of 48 hours. PMID:27699116

  9. pyro: Python-based tutorial for computational methods for hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zingale, Michael

    2015-07-01

    pyro is a simple python-based tutorial on computational methods for hydrodynamics. It includes 2-d solvers for advection, compressible, incompressible, and low Mach number hydrodynamics, diffusion, and multigrid. It is written with ease of understanding in mind. An extensive set of notes that is part of the Open Astrophysics Bookshelf project provides details of the algorithms.

  10. Hydrodynamic Mass of Bluff Bodies with a Cavity

    NASA Astrophysics Data System (ADS)

    Elgabaili, Mohamed; Desabrais, Kenneth; Johari, Hamid

    2012-11-01

    Hydrodynamic mass of an object may be used to compute the contribution of unsteady drag resulting from potential flow. Even though the hydrodynamic mass of certain bluff bodies such as cylinder and sphere have been available from analytical considerations for a long time, there are no analytical solutions for a general bluff body with a cavity such as a cup facing the flow or a round parachute canopy. There is, however, an analytical solution for spherical shells of various concavities. The translational hydrodynamic mass of cups having various depth and thickness as well as round parachute canopies during inflation was computed using a finite element solver. The kinetic energy of the potential flow around the body was used to extract the hydrodynamic mass. Results indicate that the hydrodynamic mass of a cup can be decomposed into two components, the hydrodynamic mass of a cylinder whose axis is aligned with the flow and the mass of fluid within the cup cavity. Similarly, the hydrodynamic mass of a parachute canopy during various stages of inflation may be written as the hydrodynamic mass of a disk having the same area as the projected area of the canopy plus the mass of fluid enclosed by the canopy. Sponsored by the US Army Natick RDEC.

  11. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    ERIC Educational Resources Information Center

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  12. Hydrodynamic wave contributions to combustion instability in rockets

    NASA Astrophysics Data System (ADS)

    Abu-Irshaid, Esam M. T.

    Experimental measurements suggest that a new source of instability in rocket motors is due to hydrodynamic disturbances. These disturbances, if ignored, could impact our assessment of rocket motor performance. In this work, the corresponding problem of hydrodynamic instability is considered. A mathematical model for these disturbances is carried out by perturbing the continuity and momentum equations. A one dimensional model which represents the wave disturbances in time and space is implemented to quantify the amplification rate, in time or space, and the wave amplitude. The only available measurements of these disturbances arise in cold flow experiments that simulate the gas dynamics in a solid rocket motor and where no real combustion takes place. The reason for cold flow experiments is the difficulty in measuring the hydrodynamic disturbances in real rockets. To gain better understanding of the interaction between hydrodynamic and combustion driven disturbances, a new approach is implemented that accounts for hydrodynamic effects on the combustion instability net system amplitude. In this model the impact of spatial hydrodynamic vortices in solid rocket motors is projected on the net system amplitude calculations. Results show that some factors play a significant role in controlling the hydrodynamic disturbances. These factors include the injection Mach number, chamber aspect ratio, admittance function and the tangential wave number. Here, the influence of each of these factors is examined. Finally, the hydrodynamic energy density is calculated and found to be small in comparison to the vortical-acoustic one.

  13. Coupling relativistic viscous hydrodynamics to Boltzmann descriptions

    SciTech Connect

    Pratt, Scott; Torrieri, Giorgio

    2010-10-15

    Models of relativistic heavy-ion collisions typically involve both a hydrodynamic module to describe the high-density liquidlike phase and a Boltzmann module to simulate the low-density breakup phase, which is gaslike. Coupling the prescriptions is more complicated for viscous prescriptions if one wants to maintain continuity of the entire stress-energy tensor and currents. Derivations for the viscosity for a gas are reviewed, which then lead to expressions for changes in the phase-space occupation based on simple relaxation-time pictures of viscosity. These expressions are shown to consistently reproduce the nonequilibrium components of the stress-energy tensor. An algorithm for generating a Monte Carlo sampling of particles with which to initiate the Boltzmann calculations is also presented.

  14. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  15. Hydrodynamics on the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Son, Dam Thanh

    2015-06-01

    Using the recently developed approach to quantum Hall physics based on Newton-Cartan geometry, we consider the hydrodynamics of an interacting system on the lowest Landau level. We rephrase the non-relativistic fluid equations of motion in a manner that manifests the spacetime diffeomorphism invariance of the underlying theory. In the massless (or lowest Landau level) limit, the fluid obeys a force-free constraint which fixes the charge current. An entropy current analysis further constrains the energy response, determining four transverse response functions in terms of only two: an energy magnetization and a thermal Hall conductivity. Kubo formulas are presented for all transport coefficients and constraints from Weyl invariance derived. We also present a number of Středa-type formulas for the equilibrium response to external electric, magnetic and gravitational fields.

  16. Effects of hydrodynamic interactions in bacterial swimming.

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Suddhashil; Lun Wu, Xiao

    2008-03-01

    The lack of precise experimental data has prevented the investigation of the effects of long range hydrodynamic interactions in bacterial swimming. We perform measurements on various strains of bacteria with the aid of optical tweezers to shed light on this aspect of bacterial motility. Geometrical parameters recorded by fluorescence microscopy are used with theories which model flagella propulsion (Resistive force theory & Lighthill's formulation which includes long range interactions). Comparison of the predictions of these theories with experimental data, observed directly from swimming bacterium, led to the conclusion that while long range inetractions were important for single polar flagellated strains (Vibrio Alginolyticus & Caulobacter Crescentus), local force theory was adequate to describe the swimming of multi-flagellated Esherichia Coli. We performed additional measurements on E. Coli minicells (miniature cells with single polar flagellum) to try and determine the cause of this apparent effect of shielding of long range interactions in multiple flagellated bacteria.

  17. Off-shell hydrodynamics from holography

    DOE PAGES

    Crossley, Michael; Glorioso, Paolo; Liu, Hong; Wang, Yifan

    2016-02-18

    In this article, we outline a program for obtaining an action principle for dissipative fluid dynamics by considering the holographic Wilsonian renormalization group applied to systems with a gravity dual. As a first step, in this paper we restrict to systems with a non-dissipative horizon. By integrating out gapped degrees of freedom in the bulk gravitational system between an asymptotic boundary and a horizon, we are led to a formulation of hydrodynamics where the dynamical variables are not standard velocity and temperature fields, but the relative embedding of the boundary and horizon hypersurfaces. At zeroth order, this action reduces tomore » that proposed by Dubovsky et al. as an off-shell formulation of ideal fluid dynamics.« less

  18. Hydrodynamic instability of solar thermosyphon water heaters

    SciTech Connect

    Du, S.C.; Huang, B.J.; Yen, R.H. . Dept. of Mechanical Engineering)

    1994-02-01

    The flow instability of a solar thermosyphon water heater is studied analytically. A system dynamics model is derived by means of a one-dimensional approach and a linear perturbation method. The characteristic equation is obtained and the Nyquist criterion is used to examine the flow stability. The parameter M is a dimensionless parameter of system stability. The stability maps are plotted in terms of 14 parameters. The occurrence of hydrodynamic instability is determined by comparing the stability curves and the designed values of M. Flow instability is shown not to occur in most of solar water heaters commercially available, because the loop friction is relatively high in the design and because solar irradiation in field operation is still not high enough to cause flow instability.

  19. Weakly nonlinear hydrodynamic instabilities in inertial fusion

    SciTech Connect

    Haan, S.W. )

    1991-08-01

    For many cases of interest to inertial fusion, growth of Rayleigh--Taylor and other hydrodynamic instabilities is such that the perturbations remain linear or weakly nonlinear. The transition to nonlinearity is studied via a second-order solution for multimode classical Rayleigh--Taylor growth. The second-order solution shows how classical Rayleigh--Taylor systems forget initial amplitude information in the weakly nonlinear phase. Stabilized growth relevant to inertial fusion is qualitatively different, and initial amplitudes are not dominated by nonlinear effects. In all systems with a full spectrum of modes, nonlinear effects begin when mode amplitudes reach about 1/{ital Lk}{sup 2}, for modes of wave number {ital k} and system size {ital L}.

  20. Using river locks to teach hydrodynamic concepts

    NASA Astrophysics Data System (ADS)

    Carvalho-Santos, Vagson L.; Mendes, Thales C.; Silva, Enisvaldo C.; Rios, Márcio L.; Silva, Anderson A. P.

    2013-11-01

    In this work, the use of a river lock as a non-formal setting for teaching hydrodynamical concepts is proposed. In particular, we describe the operation of a river lock situated at the Sobradinho dam, on the São Francisco River (Brazil). A model to represent and to analyse the dynamics of river lock operation is presented and we derive the dynamical equations for the rising of the water column as an example to understand the Euler equation. Furthermore, with this activity, we enable the integration of content initially introduced in the classroom with practical applications, thereby allowing the association of physical themes to content relevant in disciplines such as history and geography. In addition, experiences of this kind enable teachers to talk about the environmental and social impacts caused by the construction of a dam and, consequently, a crossover of concepts has been made possible, leading to more meaningful learning for the students.

  1. An analysis of smoothed particle hydrodynamics

    SciTech Connect

    Swegle, J.W.; Attaway, S.W.; Heinstein, M.W.; Mello, F.J.; Hicks, D.L.

    1994-03-01

    SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. In the present study, the SPH algorithm has been subjected to detailed testing and analysis to determine its applicability in the field of solid dynamics. An important result of the work is a rigorous von Neumann stability analysis which provides a simple criterion for the stability or instability of the method in terms of the stress state and the second derivative of the kernel function. Instability, which typically occurs only for solids in tension, results not from the numerical time integration algorithm, but because the SPH algorithm creates an effective stress with a negative modulus. The analysis provides insight into possible methods for removing the instability. Also, SPH has been coupled into the transient dynamics finite element code PRONTO, and a weighted residual derivation of the SPH equations has been obtained.

  2. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Gidaspow, D.

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  3. Deformation of DNA molecules by hydrodynamic focusing

    NASA Astrophysics Data System (ADS)

    Wong, Pak Kin; Lee, Yi-Kuen; Ho, Chih-Ming

    2003-12-01

    The motion of a DNA molecule in a solvent flow reflects the deformation of a nano/microscale flexible mass spring structure by the forces exerted by the fluid molecules. The dynamics of individual molecules can reveal both fundamental properties of the DNA and basic understanding of the complex rheological properties of long-chain molecules. In this study, we report the dynamics of isolated DNA molecules under homogeneous extensional flow. Hydrodynamic focusing generates homogeneous extensional flow with uniform velocity in the transverse direction. The deformation of individual DNA molecules in the flow was visualized with video fluorescence microscopy. A coil stretch transition was observed when the Deborah number (De) is larger than 0.8. With a sudden stopping of the flow, the DNA molecule relaxes and recoils. The longest relaxation time of T2 DNA was determined to be 0.63 s when scaling viscosity to 0.9 cP.

  4. Hydrodynamics of primordial black hole formation

    NASA Technical Reports Server (NTRS)

    Nadezhin, D. K.; Novikov, I. D.; Polnarev, A. G.

    1979-01-01

    The hydrodynamic picture of the formation of primordial black holes (PBH) at the early stages of expansion of the Universe is considered. It is assumed that close to singularity, expansion occurs in a quasi-isotropic way. Using an EVM, a spherically symmetrical nonlinear problem of the evolution of primary strong deviation from the Fridman solution was solved. What these deviations must be, so that the formation of PBH occurred was clarified. Attention was devoted to the role of pressure gradients. It is pointed out that at the moment of formation of PBH, only a small part of matter enters into it, primarily the component of perturbation. It is also pointed out that at this moment, the mass of PBH essentially is smaller than the mass considered within the cosmic horizon. The possibility of changing the mass of the PBH as a result of accretion is analyzed.

  5. Off-shell hydrodynamics from holography

    NASA Astrophysics Data System (ADS)

    Crossley, Michael; Glorioso, Paolo; Liu, Hong; Wang, Yifan

    2016-02-01

    We outline a program for obtaining an action principle for dissipative fluid dynamics by considering the holographic Wilsonian renormalization group applied to systems with a gravity dual. As a first step, in this paper we restrict to systems with a non-dissipative horizon. By integrating out gapped degrees of freedom in the bulk gravitational system between an asymptotic boundary and a horizon, we are led to a formulation of hydrodynamics where the dynamical variables are not standard velocity and temperature fields, but the relative embedding of the boundary and horizon hypersurfaces. At zeroth order, this action reduces to that proposed by Dubovsky et al. as an off-shell formulation of ideal fluid dynamics.

  6. Cosmological Hydrodynamics on a Moving Mesh

    NASA Astrophysics Data System (ADS)

    Hernquist, Lars

    We propose to construct a model for the visible Universe using cosmological simulations of structure formation. Our simulations will include both dark matter and baryons, and will employ two entirely different schemes for evolving the gas: smoothed particle hydrodynamics (SPH) and a moving mesh approach as incorporated in the new code, AREPO. By performing simulations that are otherwise nearly identical, except for the hydrodynamics solver, we will isolate and understand differences in the properties of galaxies, galaxy groups and clusters, and the intergalactic medium caused by the computational approach that have plagued efforts to understand galaxy formation for nearly two decades. By performing simulations at different levels of resolution and with increasingly complex treatments of the gas physics, we will identify the results that are converged numerically and that are robust with respect to variations in unresolved physical processes, especially those related to star formation, black hole growth, and related feedback effects. In this manner, we aim to undertake a research program that will redefine the state of the art in cosmological hydrodynamics and galaxy formation. In particular, we will focus our scientific efforts on understanding: 1) the formation of galactic disks in a cosmological context; 2) the physical state of diffuse gas in galaxy clusters and groups so that they can be used as high-precision probes of cosmology; 3) the nature of gas inflows into galaxy halos and the subsequent accretion of gas by forming disks; 4) the co-evolution of galaxies and galaxy clusters with their central supermassive black holes and the implications of related feedback for galaxy evolution and the dichotomy between blue and red galaxies; 5) the physical state of the intergalactic medium (IGM) and the evolution of the metallicity of the IGM; and 6) the reaction of dark matter around galaxies to galaxy formation. Our proposed work will be of immediate significance for

  7. Phonon hydrodynamics in two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Marzari, Nicola

    2015-03-01

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific and technological applications of novel layered materials. Here, we use third order density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene and related materials (boron nitride, functionalized derivatives, transition-metal dichalcogenides...). Very good agreement is obtained with experimental data, where available, together with a microscopic understanding of the collective character of heat-carrying excitations, and the unusual length scales involved. Last, and at variance with typical three-dimensional solids, normal processes dominate over Umklapp scattering well above cryogenic conditions, extending to room temperature and more. As a result, novel hydrodynamics regimes, hitherto typically confined to ultra-low temperatures, become readily apparent. Work done in collaboration with Andrea Cepellotti, Giorgia Fugallo, Lorenzo Paulatto, Michele Lazzeri, and Francesco Mauri.

  8. Conduction Modelling Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.; Monaghan, Joseph J.

    1999-01-01

    Heat transfer is very important in many industrial and geophysical problems. Because these problems often have complicated fluid dynamics, there are advantages in solving them using Lagrangian methods like smoothed particle hydrodynamics (SPH). Since SPH particles become disordered, the second derivative terms may be estimated poorly, especially when materials with different properties are adjacent. In this paper we show how a simple alteration to the standard SPH formulation ensures continuity of heat flux across discontinuities in material properties. A set of rules is formulated for the construction of isothermal boundaries leading to accurate conduction solutions. A method for accurate prediction of heat fluxes through isothermal boundaries is also given. The accuracy of the SPH conduction solutions is demonstrated through a sequence of test problems of increasing complexity.

  9. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  10. Generalized hydrodynamic correlations and fractional memory functions

    NASA Astrophysics Data System (ADS)

    Rodríguez, Rosalio F.; Fujioka, Jorge

    2015-12-01

    A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.

  11. Hydrodynamics and control of microbial locomotion

    NASA Astrophysics Data System (ADS)

    Dunkel, Jorn; Kantsler, Vasily; Polin, Marco; Wioland, Hugo; Goldstein, Raymond

    2014-03-01

    Interactions between swimming cells, surfaces and fluid flow are essential to many microbiological processes, from the formation of biofilms to the fertilization of human egg cells. Yet, relatively little remains known quantitatively about the physical mechanisms that govern the response of bacteria, algae and sperm cells to flow velocity gradients and solid surfaces. A better understanding of cell-surface and cell-flow interactions promises new biological insights and may advance microfluidic techniques for controlling microbial and sperm locomotion, with potential applications in diagnostics and therapeutic protein synthesis. Here, we report new experimental measurements that quantify surface interactions of bacteria, unicellular green algae and mammalian spermatozoa. These experiments show that the subtle interplay of hydrodynamics and surface interactions can stabilize collective bacterial motion, that direct ciliary contact interactions dominate surface scattering of eukaryotic biflagellate algae, and that rheotaxis combined with steric surface interactions provides a robust long-range navigation mechanism for sperm cells.

  12. A new hydrodynamic analysis of double layers

    NASA Technical Reports Server (NTRS)

    Hora, Heinrich

    1987-01-01

    A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping. Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description. Results are the rotation of plasmas in magnetic fields and a new second harmonic resonance, explanation of the measured inverted double layers, explanation of the observed density-independent, second harmonics emission from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.

  13. Code Differentiation for Hydrodynamic Model Optimization

    SciTech Connect

    Henninger, R.J.; Maudlin, P.J.

    1999-06-27

    Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.

  14. Computational brittle fracture using smooth particle hydrodynamics

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.

    1996-10-01

    We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPBM. We describe a new brittle fracture model that we have implemented into SPBM. To illustrate the code`s current capability, we have simulated a number of experiments. We discuss three of these simulations in this paper. The first experiment consists of a brittle steel sphere impacting a plate. The experimental sphere fragment patterns are compared to the calculations. The second experiment is a steel flyer plate in which the recovered steel target crack patterns are compared to the calculated crack patterns. We also briefly describe a simulation of a tungsten rod impacting a heavily confined alumina target, which has been recently reported on in detail.

  15. A Modeling Study of Hydrodynamic Circulation in a Fjord of the Pacific Northwest

    SciTech Connect

    Wang, Taiping; Yang, Zhaoqing

    2012-10-01

    Increased eutrophication and degraded water quality in estuarine and coastal waters have been a worldwide environmental concern. While it is commonly accepted that anthropogenic impact plays a major role in many emerging water quality issues, natural conditions such as restricted water circulations controlled by geometry may also substantially contribute to unfavorable water quality in certain ecosystems. To elucidate the contributions from different factors, a hydrodynamic-water quality model that integrates both physical transport and pollutant loadings is particularly warranted. A preliminary modeling study using the Environmental Fluid Dynamic Code (EFDC) is conducted to investigate hydrodynamic circulation and low dissolved oxygen (DO) in Hood Canal, a representative fjord in the U.S. Pacific Northwest. Because the water quality modeling work is still ongoing, this paper focuses on the progress in hydrodynamic modeling component. The hydrodynamic model has been set up using the publicly available forcing data and was calibrated against field observations or NOAA predictions for tidal elevation, current, salinity and temperature. The calibrated model was also used to estimate physical transport timescales such as residence time in the estuary. The preliminary model results demonstrate that the EFDC Hood Canal model is capable of capturing the general circulation patterns in Hood Canal, including weak tidal current and strong vertical stratification. The long residence time (i.e., on the order of 100 days for the entire estuary) also indicates that restricted water circulation could contribute to low DO in the estuary and also makes the system especially susceptible to anthropogenic disturbance, such as excess nutrient input.

  16. Modelling the hydrodynamics of offshore sandbanks

    NASA Astrophysics Data System (ADS)

    Pan, S.; MacDonald, N.; Williams, J.; O'Connor, B. A.; Nicholson, J.; Davies, A. M.

    2007-05-01

    This paper describes the details of a quasi-three-dimensional model (3DBANK), which has been developed to investigate medium and long-term morphological evolution and development of offshore sandbanks. The model is based on a three-dimensional tidal module using the Galerkin-eigenfunction method, but also includes four sub-modules to compute: the instantaneous bedform characteristics from which the temporal and spatial variations of the shear stresses at the sea bed can be derived; the suspended sediment concentration through the water column; the bed-load and suspended sediment fluxes at a point-in-plan; and the resulting morphological changes, respectively. The model also includes the effects of the wind and waves at the sea surface, as well as the wave-current interaction (WCI), and operates with full hydrodynamic and morphodynamic interaction. The components of the model were tested against laboratory and field data, and the complete model was then applied to Middlekerke Bank off the Flemish coast where extensive field measurements were taken during the European Community (EC) funded Circulation and Sediment Transport Around Banks (CSTAB) Project using various advanced instrumentation including STABLE and HF OSCR. Comparisons of the model results with the field measurements and observations show that the model is capable of reproducing the current and wave-induced bedforms, bed roughness, tidal currents and tidal residuals around the sandbank satisfactorily, and can be used to study the long-term sandbank evolution under various offshore conditions. This paper, however, focuses on the hydrodynamic aspects of the model, while the details of the morphological components will be given in a companion paper.

  17. Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets

    NASA Astrophysics Data System (ADS)

    Langton, Jonathan; Laughlin, Gregory

    2008-02-01

    We employ a two-dimensional, grid-based hydrodynamic model to simulate upper atmospheric dynamics on extrasolar giant planets. The hydrodynamic equations of motion are integrated on a rotating, irradiated sphere using a pseudospectral algorithm. We use a two-frequency, two-stream approximation of radiative transfer to model the temperature forcing. This model is well suited to simulate the dynamics of the atmospheres of planets with high orbital eccentricity, which are subject to widely varying irradiation conditions. We identify six such planets, with eccentricities between e = 0.28 and e = 0.93 and semimajor axes from a = 0.0508 AU to a = 0.432 AU, as particularly interesting. For each, we determine the temperature profile and resulting infrared light curves in the 8 μm Spitzer band. Especially notable are the results for HD 80606b, which has the largest eccentricity (e = 0.9321) of any known planet, and HAT-P-2b, which transits its parent star, so that its physical properties are well constrained. Despite the varied orbital parameters, the atmospheric dynamics of these planets display a number of interesting common properties. In all cases, the atmospheric response is primarily driven by the intense irradiation at periastron. The resulting expansion of heated air produces high-velocity turbulent flow, including long-lived circumpolar vortices. In addition, a superrotating acoustic front develops on some planets; the strength of this disturbance depends on both the eccentricity and the temperature gradient from uneven heating. The specifics of the resulting infrared light curves depend strongly on the orbital geometry. We show, however, that the variations on HD 80606b and HAT-P-2b should be readily detectable at 4.5 and 8 μm using Spitzer. These two objects present the most attractive observational targets of all known high-e exoplanets.

  18. Variational description of multifluid hydrodynamics: Uncharged fluids

    NASA Astrophysics Data System (ADS)

    Prix, Reinhard

    2004-02-01

    We present a formalism for Newtonian multifluid hydrodynamics derived from an unconstrained variational principle. This approach provides a natural way of obtaining the general equations of motion for a wide range of hydrodynamic systems containing an arbitrary number of interacting fluids and superfluids. In addition to spatial variations we use “time shifts” in the variational principle, which allows us to describe dissipative processes with entropy creation, such as chemical reactions, friction or the effects of external non-conservative forces. The resulting framework incorporates the generalization of the entrainment effect originally discussed in the case of the mixture of two superfluids by Andreev and Bashkin. In addition to the conservation of energy and momentum, we derive the generalized conservation laws of vorticity and helicity, and the special case of Ertel’s theorem for the single perfect fluid. We explicitly discuss the application of this framework to thermally conducting fluids, superfluids, and superfluid neutron star matter. The equations governing thermally conducting fluids are found to be more general than the standard description, as the effect of entrainment usually seems to be overlooked in this context. In the case of superfluid 4He we recover the Landau-Khalatnikov equations of the two-fluid model via a translation to the “orthodox” framework of superfluidity, which is based on a rather awkward choice of variables. Our two-fluid model for superfluid neutron star matter allows for dissipation via mutual friction and also “transfusion” via β reactions between the neutron fluid and the proton-electron fluid.

  19. Two-field radiation hydrodynamics in n spatial dimensions

    NASA Astrophysics Data System (ADS)

    Larecki, Wieslaw; Banach, Zbigniew

    2016-03-01

    The two-field radiation hydrodynamics in n spatial dimensions is derived from the kinetic theory of radiation. Both the full-moment (frequency-independent) and spectral (frequency-dependent) formulations of radiation hydrodynamics are considered. The derivation is based on the entropy principle of extended thermodynamics of gases. In the case of the full-moment hydrodynamics, the formulation of the entropy principle introduced by Boillat and Ruggeri (1997 Contin. Mech. Thermodyn. 9 205) is adapted and this suffices to determine the radiation pressure tensor. In the full-moment formulation, the equations of radiation hydrodynamics take the same form for all possible types of radiation statistics. In the spectral formulation, the different radiation pressure tensors are assigned to Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann statistics, and consequently the different hydrodynamic equations are obtained for each of those statistics types. In order to derive the equations of the spectral radiation hydrodynamics, the relations for the radiation pressure tensor implied by the entropy principle must be supplemented by the additional conditions. Considering the limit of small heat flux, we arrive at the linearized equations of radiation hydrodynamics which assume the same form in both the full-moment and spectral formulations.

  20. Inducer Hydrodynamic Forces in a Cavitating Environment

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.

    2004-01-01

    Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional

  1. Metropolis Prize Winner: Numerical Hydrodynamics at Gravity's Extremes

    NASA Astrophysics Data System (ADS)

    East, William

    2015-04-01

    Einstein's theory of general relativity is currently our best understanding of how gravity works. However, there are a very limited number of analytically-known solutions to the set of coupled, non-linear PDEs that make up the field equations. This means numerical methods are essential to understanding many interesting strong-field phenomena like black hole formation or the generation of gravitational waves. There has been great progress in the field of numerical relativity, especially in the past decade, not only in terms of being able to accurately simulate the mergers of compact objects like black holes or neutron stars, but beyond. I will discuss some recent work developing computational methods for simulating hydrodynamics coupled to Einstein gravity, and applying them to new regimes and problems in high-energy astrophysics, gravitational-wave astronomy, and theoretical general relativity. This includes developing flexible and robust methods for solving the constraint part of the Einstein field equations in order to specify initial data for an evolution, as well as an algorithm for efficiently evolving the full non-linear evolution equations when the solution is dominated by a known background solution. I will emphasize how these computational tools allow us to push the domain of numerical relativity into more extreme regimes of gravity: exploring mergers of black holes and neutron stars with high orbital eccentricity; simulating the extreme-mass-ratios involved in the tidal disruption of a star by a black hole using full relativity; and studying ultrarelativistic collisions, where the gravitational pull of kinetic energy is strong enough to form a black hole.

  2. Hydrodynamic approach to the free electron laser instability

    SciTech Connect

    Tzenov, Stephan I.; Marinov, Kiril B.

    2011-09-15

    Starting from the Vlasov-Maxwell system, an exact relativistic hydrodynamic closure for a special type water bag distributions satisfying the Vlasov equation has been derived. It has been shown that the hydrodynamic equations are fully equivalent to the original Vlasov-Maxwell equations. The linear stability of the exact hydrodynamic closure has been studied as well. It has been shown that all basic features of the small signal gain can be derived from the fluid dynamic description developed here. Satisfactory agreement with previously reported results has been also found.

  3. Nucleation and chiral symmetry breaking under controlled hydrodynamic flows

    NASA Technical Reports Server (NTRS)

    Wu, Xiao-Lun; Martin, Brian; Tharrington, Arnold

    1994-01-01

    The effects of hydrodynamic convection on nucleation and broken chiral symmetry have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). Our experiment suggests that the symmetry breaking is a result of hydrodynamic amplification of rare nucleation events. The effect is more pronounced when the primary nucleation occurs on the solute-vapor interface, where mixing in the surface sublayer becomes important. The transition from the achiral to the chiral states appears to be smooth as the hydrodynamic parameters, such as flow rate, are varied.

  4. Ion holes in the hydrodynamic regime in ultracold neutral plasmas

    SciTech Connect

    McQuillen, P.; Castro, J.; Strickler, T.; Bradshaw, S. J.; Killian, T. C.

    2013-04-15

    We describe the creation of localized density perturbations, or ion holes, in an ultracold neutral plasma in the hydrodynamic regime, and show that the holes propagate at the local ion acoustic wave speed. We also observe the process of hole splitting, which results from the formation of a density depletion initially at rest in the plasma. One-dimensional, two-fluid hydrodynamic simulations describe the results well. Measurements of the ion velocity distribution also show the effects of the ion hole and confirm the hydrodynamic conditions in the plasma.

  5. From hyperbolic regularization to exact hydrodynamics for linearized Grad's equations.

    PubMed

    Colangeli, Matteo; Karlin, Iliya V; Kröger, Martin

    2007-05-01

    Inspired by a recent hyperbolic regularization of Burnett's hydrodynamic equations [A. Bobylev, J. Stat. Phys. 124, 371 (2006)], we introduce a method to derive hyperbolic equations of linear hydrodynamics to any desired accuracy in Knudsen number. The approach is based on a dynamic invariance principle which derives exact constitutive relations for the stress tensor and heat flux, and a transformation which renders the exact equations of hydrodynamics hyperbolic and stable. The method is described in detail for a simple kinetic model -- a 13 moment Grad system.

  6. An implicit Smooth Particle Hydrodynamic code

    SciTech Connect

    Charles E. Knapp

    2000-04-01

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  7. Cell spreading as a hydrodynamic process

    PubMed Central

    Fardin, M.A.; Rossier, O.M.; Rangamani, P.; Avigan, P.D.; Gauthier, N.C.; Vonnegut, W.; Mathur, A.; Hone, J.; Iyengar, R.; Sheetz, M.P.

    2011-01-01

    Many cell types have the ability to move themselves by crawling on extra-cellular matrices. Although cell motility is governed by actin and myosin filament assembly, the pattern of the movement follows the physical properties of the network ensemble average. The first step of motility, cell spreading on matrix substrates, involves a transition from round cells in suspension to polarized cells on substrates. Here we show that the spreading dynamics on 2D surfaces can be described as a hydrodynamic process. In particular, we show that the transition from isotropic spreading at early time to anisotropic spreading is reminiscent of the fingering instability observed in many spreading fluids. During cell spreading, the main driving force is the polymerization of actin filaments that push the membrane forward. From the equilibrium between the membrane force and the cytoskeleton, we derive a first order expression of the polymerization stress that reproduces the observed behavior. Our model also allows an interpretation of the effects of pharmacological agents altering the polymerization of actin. In particular we describe the influence of Cytochalasin D on the nucleation of the fingering instability. PMID:23908673

  8. Hydrodynamic simulation of multicellular embryo invagination

    NASA Astrophysics Data System (ADS)

    Pouille, Philippe-Alexandre; Farge, Emmanuel

    2008-03-01

    The mechanical aspects of embryonic morphogenesis have been widely analysed by numerical simulations of invagination in sea urchins and Drosophila gastrulation. Finite element models, which describe the tissue as a continuous medium, lead to the global invagination morphogenesis observed in vivo. Here we develop a simulation of multicellular embryo invagination that allows access to both cellular and multicellular mechanical behaviours of the embryo. In this model, the tissue is composed of adhesive individual cells, in which shape change dynamics is governed by internal acto-myosin forces and the hydrodynamic flow associated with membrane movements. We investigated the minimal structural and force elements sufficient to phenocopy mesoderm invagination. The minimal structures are cell membranes characterized by an acto-myosin cortical tension and connected by apical and basal junctions and an acto-myosin contractile ring connected to the apical junctions. An increase in the apical-cortical surface tension is the only control parameter change required to phenocopy most known multicellular and cellular shape changes of Drosophila gastrulation. Specifically, behaviours observed in vivo, including apical junction movements at the onset of gastrulation, cell elongation and subsequent shortening during invagination, and the development of a dorso-ventral gradient of thickness of the embryo, are predicted by this model as passive mechanical consequences of the genetically controlled increase in the apical surface tension in invaginating mesoderm cells, thus demonstrating the accurate description of structures at both global and single cell scales.

  9. Hydrodynamical approach to transport in nanostructures

    NASA Astrophysics Data System (ADS)

    D'Agosta, Roberto; di Ventra, Massimiliano

    2006-03-01

    The electrical resistance induced by the viscous properties of the electron liquid has been recently derived.^1 In addition, it is known that the geometric constriction experienced by electrons flowing in a nanostructure gives rise to a fast ``collisional'' process.^2 These facts allow us to derive Navier-Stokes-type of equations, and therefore describe the electron flow on a par with a viscous and compressible liquid. By using this hydrodynamical approach we study electron transport in nanoscale systems and derive the conditions for the transition from laminar to turbulent flow in quantum point contacts. We also discuss possible experimental tests of these predictions. ^1 N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Phys. Rev. Lett. 94, 186810 (2005).^2 M. Di Ventra and T.N. Todorov, J. Phys. Cond. Matt. 16, 8025 (2004); N. Bushong, N. Sai and, M. Di Ventra, Nano Lett. (in press).Work supported by the Department of Energy (DE-FG02-05ER46204)

  10. Hydrodynamic theory of rotating ultracold supersolids

    NASA Astrophysics Data System (ADS)

    Ghosh, Sankalpa; Sachdeva, Rashi

    2014-03-01

    Ultra cold atomic condensate with long range interaction is considered as a possible candidate to realize the supersolid phase. Such a supersolid phase can be subjected to artificial gauge field created either through rotation or by introducing space dependent coupling among hyperfine states of the atoms using Raman lasers. Starting from a Gross-Pitaevskii energy functional that describes such systems at zero temprature we construct hydrodynamic theory to describe the low energy long wavelength excitations of such rotating supersolid of weakly interacting ultra cold atoms for generic type of long range interaction. We treat the supersolid within the framework of well known two fluid approximation. We consider such system in the fast rotation limit where a vortex lattice in superfluid coexists with the supersolid lattice and analytically obtain the dispersion relations of collective excitations around this equilibrium state. The dispersion relation suggests a mode splitting due to the existence of two lattices which can be experimentally measured within the current technology. We point out that this can clearly identify such a ultra cold atomic supersolid phase. Ref. Rashi Sachdeva and Sankalpa Ghosh arXiv: 1308.1592 (Cond-Mat) Rashi Sachdev is supported by CSIR Fellowship, SG is supported by PDA grant from IIT Delhi.

  11. Hydrodynamic waves in an anomalous charged fluid

    NASA Astrophysics Data System (ADS)

    Abbasi, Navid; Davody, Ali; Hejazi, Kasra; Rezaei, Zahra

    2016-11-01

    We study the collective excitations in a relativistic fluid with an anomalous U (1) current. In 3 + 1 dimensions at zero chemical potential, in addition to ordinary sound modes we find two propagating modes in presence of an external magnetic field. The first one which is a transverse degenerate mode, propagates with a velocity proportional to the coefficient of gravitational anomaly; this is in fact the Chiral Alfvén wave recently found in [1]. Another one is a wave of density perturbation, namely a chiral magnetic wave (CMW). The velocity dependence of CMW on the chiral anomaly coefficient is well known. We compute the dependence of CMW's velocity on the coefficient of gravitational anomaly as well. We also show that the dissipation splits the degeneracy of CAW. At finite chiral charge density we show that in general there may exist five chiral hydrodynamic waves. Of these five waves, one is the CMW while the other four are mixed Modified Sound-Alfvén waves. It turns out that in propagation transverse to the magnetic field no anomaly effect appears while in parallel to the magnetic field we find sound waves become dispersive due to anomaly.

  12. Hydrodynamic interaction between particles near elastic interfaces.

    PubMed

    Daddi-Moussa-Ider, Abdallah; Gekle, Stephan

    2016-07-01

    We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of the approximations in our analytical results is demonstrated by corresponding boundary integral simulations which are in excellent agreement with the theoretical predictions. PMID:27394123

  13. Hydrodynamical spectral evolution for random matrices

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Grela, Jacek

    2016-02-01

    The eigenvalues of the matrix structure X+{X}(0), where X is a random Gaussian Hermitian matrix and {X}(0) is non-random or random independent of X, are closely related to Dyson Brownian motion. Previous works have shown how an infinite hierarchy of equations satisfied by the dynamical correlations become triangular in the infinite density limit, and give rise to the complex Burgers equation for the Green’s function of the corresponding one-point density function. We show how this and analogous partial differential equations, for chiral, circular and Jacobi versions of Dyson Brownian motion follow from a macroscopic hydrodynamical description involving the current density and continuity equation. The method of characteristics gives a systematic approach to solving the PDEs, and in the chiral case we show how this efficiently reclaims the characterization of the global eigenvalue density for non-central Wishart matrices due to Dozier and Silverstein. Collective variables provide another approach to deriving the complex Burgers equation in the Gaussian case, and we show that this approach applies equally as well to chiral matrices. We relate both the Gaussian and chiral cases to the asymptotics of matrix integrals.

  14. Numerical Convergence In Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Hernquist, Lars; Li, Yuexing

    2015-02-01

    We study the convergence properties of smoothed particle hydrodynamics (SPH) using numerical tests and simple analytic considerations. Our analysis shows that formal numerical convergence is possible in SPH only in the joint limit N → ∞, h → 0, and Nnb → ∞, where N is the total number of particles, h is the smoothing length, and Nnb is the number of neighbor particles within the smoothing volume used to compute smoothed estimates. Previous work has generally assumed that the conditions N → ∞ and h → 0 are sufficient to achieve convergence, while holding Nnb fixed. We demonstrate that if Nnb is held fixed as the resolution is increased, there will be a residual source of error that does not vanish as N → ∞ and h → 0. Formal numerical convergence in SPH is possible only if Nnb is increased systematically as the resolution is improved. Using analytic arguments, we derive an optimal compromise scaling for Nnb by requiring that this source of error balance that present in the smoothing procedure. For typical choices of the smoothing kernel, we find Nnb vpropN 0.5. This means that if SPH is to be used as a numerically convergent method, the required computational cost does not scale with particle number as O(N), but rather as O(N 1 + δ), where δ ≈ 0.5, with a weak dependence on the form of the smoothing kernel.

  15. A Smoothed Particle Hydrodynamics approach for poroelasticity

    NASA Astrophysics Data System (ADS)

    Osorno, Maria; Steeb, Holger

    2016-04-01

    Within the framework of the SHynergie project we look to investigate hydraulic fracturing and crack evolving in poroelastic media. We model biphasic media assuming incompressible solid grain and incompressible pore liquid. Modeling evolving fractures and fracture networks in elastic and poroelastic media by mesh-based numerical approaches, like X-FEM, is especially in 3-dim a challenging task. Therefore, we propose a meshless particle method for fractured media based on the Smoothed Particle Hydrodynamics (SPH) approach. SPH is a meshless Lagrangian method highly suitable for the simulation of large deformations including free surfaces and/or interfaces. Within the SPH method, the computational domain is discretized with particles, avoiding the computational expenses of meshing. Our SPH solution is implemented in a parallel computational framework, which allows to simulate large domains more representative of the scale of our study cases. Our implementation is carefully validated against classical mesh-based approaches and compared with classical solutions for consolidation problems. Furthermore, we discuss fracture initiation and propagation in poroelastic rocks at the reservoir scale.

  16. Hydrodynamic analysis and mechanisms of ciliary beating

    NASA Astrophysics Data System (ADS)

    Sangani, Ashok; Foster, Kenneth

    2015-11-01

    The scaffold of a cilium or eukaryotic flagellum, known as the axoneme, consists of nine microtubule doublets surrounding a pair of singlet microtubules. Attached to each doublet are periodically-spaced dynein motors that use energy from ATP hydrolysis to exert force on the neighboring doublet causing it to slide away from the cell body. In spite of the several theories that have been put forward over the last several decades to explain how these motors work collectively to produce steady beating this question remains unresolved: we shall show that the forces generated during the beating as determined from the detailed hydrodynamic analysis are inconsistent with the predictions of the existing theories. We shall also use the experimental data available in the literature to present empirical results for the beat properties, i.e. the frequency, amplitude, wavelength, and energy dissipation, as functions of ATP concentration and fluid viscosity. The power dissipated and the energy per wavelength are approximately the same independent of the viscosity of the fluid and the ATP concentration. We use these observations to suggest a new hypothesis regarding how the cilia beat. This work was supported by the National Science Foundation.

  17. Modeling the hydrodynamics of Phloem sieve plates.

    PubMed

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele; Bohr, Tomas; Knoblauch, Michael; Bruus, Henrik

    2012-01-01

    Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.

  18. Chemical and Hydrodynamical Models of Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2012-01-01

    Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.

  19. Hydrodynamics of diatom chains and semiflexible fibres.

    PubMed

    Nguyen, Hoa; Fauci, Lisa

    2014-07-01

    Diatoms are non-motile, unicellular phytoplankton that have the ability to form colonies in the form of chains. Depending upon the species of diatoms and the linking structures that hold the cells together, these chains can be quite stiff or very flexible. Recently, the bending rigidities of some species of diatom chains have been quantified. In an effort to understand the role of flexibility in nutrient uptake and aggregate formation, we begin by developing a three-dimensional model of the coupled elastic-hydrodynamic system of a diatom chain moving in an incompressible fluid. We find that simple beam theory does a good job of describing diatom chain deformation in a parabolic flow when its ends are tethered, but does not tell the whole story of chain deformations when they are subjected to compressive stresses in shear. While motivated by the fluid dynamics of diatom chains, our computational model of semiflexible fibres illustrates features that apply widely to other systems. The use of an adaptive immersed boundary framework allows us to capture complicated buckling and recovery dynamics of long, semiflexible fibres in shear. PMID:24789565

  20. Modeling Early Galaxies Using Radiation Hydrodynamics

    SciTech Connect

    2011-01-01

    This simulation uses a flux-limited diffusion solver to explore the radiation hydrodynamics of early galaxies, in particular, the ionizing radiation created by Population III stars. At the time of this rendering, the simulation has evolved to a redshift of 3.5. The simulation volume is 11.2 comoving megaparsecs, and has a uniform grid of 10243 cells, with over 1 billion dark matter and star particles. This animation shows a combined view of the baryon density, dark matter density, radiation energy and emissivity from this simulation. The multi-variate rendering is particularly useful because is shows both the baryonic matter ("normal") and dark matter, and the pressure and temperature variables are properties of only the baryonic matter. Visible in the gas density are "bubbles", or shells, created by the radiation feedback from young stars. Seeing the bubbles from feedback provides confirmation of the physics model implemented. Features such as these are difficult to identify algorithmically, but easily found when viewing the visualization. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.

  1. DBI scalar field theory for QGP hydrodynamics

    NASA Astrophysics Data System (ADS)

    Nastase, Horatiu

    2016-07-01

    A way to describe the hydrodynamics of the quark-gluon plasma using a Dirac-Born-Infeld (DBI) action is proposed, based on the model found by Heisenberg for high energy scattering of nucleons. The expanding plasma is described as a shockwave in a DBI model for a real scalar standing in for the pion, and I show that one obtains a fluid description in terms of a relativistic fluid that near the shock is approximately ideal (η ≃0 ) and conformal. One can introduce an extra term inside the square root of the DBI action that generates a shear viscosity term in the energy-momentum tensor near the shock, as well as a bulk viscosity, and regulates the behavior of the energy density at the shock, making it finite. The resulting fluid satisfies the relativistic Navier-Stokes equation with uμ,ρ ,P ,η defined in terms of ϕ and its derivatives. One finds a relation between the parameters of the theory and the quark-gluon plasma thermodynamics, α /β2=η /(s T ), and by fixing α and β from usual (low multiplicity) particle scattering, one finds T ∝mπ.

  2. Hydrodynamic interaction between particles near elastic interfaces

    NASA Astrophysics Data System (ADS)

    Daddi-Moussa-Ider, Abdallah; Gekle, Stephan

    2016-07-01

    We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of the approximations in our analytical results is demonstrated by corresponding boundary integral simulations which are in excellent agreement with the theoretical predictions.

  3. Hydrodynamically enforced entropic trapping of Brownian particles

    NASA Astrophysics Data System (ADS)

    Martens, Steffen; Schmid, Gerhard; Straube, Arthur; Schimansky-Geier, Lutz; Hänggi, Peter

    2014-03-01

    In small systems on length scales spatial confinement causes entropic forces that in turn implies spectacular consequences for the control for mass and charge transport. In view of its importance, recent efforts in theory triggered activities which allow for an approximate description that involves a reduction of dimensionality; thus making detailed predictions tractable. Up to present days, the focus was on the role of conservative forces and its interplay with confinement. Within the presented work, we overcome this limitation and succeeded in considering also non-conservative forces that derive from a vector potential [S. Martens et al., PRL 110, 010601 (2013)]. A relevant application is the fluid flow across microfluidic structures where a solute of Brownian particles is subject to both, an external bias and a pressure-driven flow. Then a new phenomenon emerges; namely, the intriguing finding of identically vanishing average particle flow which is accompanied by a colossal suppression of diffusion. This entropy-induced phenomenon, which we termed hydrodynamically enforced entropic trapping, offers the unique opportunity to separate particles of the same size in a tunable manner [S. Martens et al., Eur. Phys. ST 222, 2453-2463 (2013)].

  4. The hydrodynamics of an oscillating porous sphere

    NASA Astrophysics Data System (ADS)

    Looker, Jason R.; Carnie, Steven L.

    2004-01-01

    We determine the hydrodynamics of a rigid, weakly permeable sphere undergoing translational oscillations in an incompressible Newtonian fluid. We check using homogenization and scaling arguments that the flow inside the sphere may be modeled by Darcy's law and that the Beavers-Joseph-Saffman (BJS) boundary condition still applies for oscillatory flows, provided the frequency of oscillation is not too high. The BJS boundary condition introduces a slip velocity and to leading order in ɛ=√k /a, where k is the particle permeability and a is the radius, the particle may be regarded as impermeable with a slip length independent of frequency. Under these circumstances we solve for the flow field, pressure distribution and drag explicitly and show their behavior for 0⩽ɛ⩽0.05 and frequencies relevant to electroacoustics (1-10 MHz). From the drag we find the leading order corrections due to particle permeability of the pseudo-steady drag, Basset force and added mass.

  5. Rheological and fractal hydrodynamics of aerobic granules.

    PubMed

    Tijani, H I; Abdullah, N; Yuzir, A; Ujang, Zaini

    2015-06-01

    The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area.

  6. Hydrodynamic Simulations of Gaseous Argon Shock Experiments

    NASA Astrophysics Data System (ADS)

    Garcia, Daniel; Dattelbaum, Dana; Goodwin, Peter; Morris, John; Sheffield, Stephen; Burkett, Michael

    2015-06-01

    The lack of published Argon gas shock data motivated an evaluation of the Argon Equation of State (EOS) in gas phase initial density regimes never before reached. In particular, these regimes include initial pressures in the range of 200-500 psi (0.025 - 0.056 g/cc) and initial shock velocities around 0.2 cm/ μs. The objective of the numerical evaluation was to develop a physical understanding of the EOS behavior of shocked and subsequently multiply re-shocked Argon gas initially pressurized to 200-500 psi through Pagosa numerical hydrodynamic simulations utilizing the SESAME equation of state. Pagosa is a Los Alamos National Laboratory 2-D and 3-D Eulerian hydrocode capable of modeling high velocity compressible flow with multiple materials. The approach involved the use of gas gun experiments to evaluate the shock and multiple re-shock behavior of pressurized Argon gas to validate Pagosa simulations and the SESAME EOS. Additionally, the diagnostic capability within the experiments allowed for the EOS to be fully constrained with measured shock velocity, particle velocity and temperature. The simulations demonstrate excellent agreement with the experiments in the shock velocity/particle velocity space, but note unanticipated differences in the ionization front temperatures.

  7. Radiation energy transport through hydrodynamically evolving slits

    NASA Astrophysics Data System (ADS)

    Foster, J. M.; Graham, P.; Taylor, M.; Moore, A.; Sorce, C.; Reighard, A.; MacLaren, S.; Young, P.; Glendinning, G.; Blue, B.; Back, C.; Hund, J.

    2008-11-01

    Radiation transport through enclosed spaces with inwardly moving walls is a key component of the physics of laser-heated hohlraums. It arises in the cavity itself (where inward motion of the wall results in late-time stagnation of dense plasma on the hohlraum axis), and also in the laser-entry and diagnostic holes (where an understanding of hole-closure is important to hohlraum design and the interpretation of diagnostic data). To understand these phenomena better, we have carried out a series of experiments at the Omega laser facility. A laser-heated hohlraum is used to illuminate linear and annular slits machined in samples of solid-density tantalum and low-density, tantalum-oxide foam. Measurements of the transmitted energy are made indirectly (by measuring the temperature rise of a ``calorimeter'' hohlraum) and directly (by measuring the emission from the slit component, using a target in which the calorimeter hohlraum was omitted). The hydrodynamics is investigated by self-emission and absorption (backlighting) x-ray imaging of the closing slits. Simulations (using a 2-D Eulerian hydrocode) reproduce the overall energetics, the detail of the deceleration shock and axial stagnation region at the centre of the slit, and the complex shock interactions that occur at corners of the slits.

  8. Hydrodynamics of micro-swimmers in films

    NASA Astrophysics Data System (ADS)

    Mathijssen, A. J. T. M.; Doostmohammadi, A.; Yeomans, J. M.; Shendruk, T. N.

    2016-11-01

    One of the principal mechanisms by which surfaces and interfaces affect microbial life is by perturbing the hydrodynamic flows generated by swimming. By summing a recursive series of image systems we derive a numerically tractable approximation to the three-dimensional flow fields of a Stokeslet (point force) within a viscous film between a parallel no-slip surface and no-shear interface and, from this Green's function, we compute the flows produced by a force- and torque-free micro-swimmer. We also extend the exact solution of Liron & Mochon (1976) to the film geometry, which demonstrates that the image series gives a satisfactory approximation to the swimmer flow fields if the film is sufficiently thick compared to the swimmer size, and we derive the swimmer flows in the thin-film limit. Concentrating on the thick film case, we find that the dipole moment induces a bias towards swimmer accumulation at the no-slip wall rather than the water-air interface, but that higher-order multipole moments can oppose this. Based on the analytic predictions we propose an experimental method to find the multipole coefficient that induces circular swimming trajectories, allowing one to analytically determine the swimmer's three-dimensional position under a microscope.

  9. Modeling Fluid Instabilities in Inertial Confinement Fusion Hydrodynamics Codes

    NASA Astrophysics Data System (ADS)

    Zalesak, Steven

    2004-11-01

    When attempting to numerically model a physical phenomenon of any kind, we typically formulate the numerical requirements in terms of the range of spatial and temporal scales of interest. We then construct numerical software that adequately resolves those scales in each of the spatial and temporal dimensions. This software may use adaptive mesh refinement or other techniques to adequately resolve those scales of interest, and may use front-capturing algorithms or other techniques to avoid having to resolve scales that are not of interest to us. Knowing what constitutes the scales of interest is sometimes a difficult question. Harder still is knowing what constitutes adequate resolution. For many physical phenomena, adequate resolution may be obtained, for example, by simply demanding that the spatial and temporal derivatives of all scales of interest have errors less than some specified tolerance. But for other phenomena, in particular those in which physical instabilities are active, one must be much more precise in the specification of adequate resolution. In such situations one must ask detailed questions about the nature of the numerical errors, not just their size. The problem we have in mind is that of accurately modeling the evolution of small amplitude perturbations to a time-dependent flow, where the unperturbed flow itself exhibits large amplitude temporal and spatial variations. Any errors that we make in numerically modeling the unperturbed flow, if they have a projection onto the space of the perturbations of interest, can easily compromise the accuracy of those perturbations, even if the errors are small in terms of the unperturbed solution. Here we will discuss the progress that we have made over the past year in attempting to improve the ability of our radiation hydrodynamics code FASTRAD3D to accurately model the evolution of small-amplitude perturbations to an imploding ICF pellet, which is subject to both Richtmyer-Meshkov and Rayleigh

  10. Application of Hydrodynamic Cavitation for Food and Bioprocessing

    NASA Astrophysics Data System (ADS)

    Gogate, Parag R.

    Hydrodynamic cavitation can be simply generated by the alterations in the flow field in high speed/high pressure devices and also by passage of the liquid through a constriction such as orifice plate, venturi, or throttling valve. Hydrodynamic cavitation results in the formation of local hot spots, release of highly reactive free radicals, and enhanced mass transfer rates due to turbulence generated as a result of liquid circulation currents. These conditions can be suitably applied for intensification of different bioprocessing applications in an energy-efficient manner as compared to conventionally used ultrasound-based reactors. The current chapter aims at highlighting different aspects related to hydrodynamic cavitation, including the theoretical aspects for optimization of operating parameters, reactor designs, and overview of applications relevant to food and bioprocessing. Some case studies highlighting the comparison of hydrodynamic cavitation and acoustic cavitation reactors will also be discussed.

  11. Lattice-Boltzmann hydrodynamics of anisotropic active matter

    NASA Astrophysics Data System (ADS)

    de Graaf, Joost; Menke, Henri; Mathijssen, Arnold J. T. M.; Fabritius, Marc; Holm, Christian; Shendruk, Tyler N.

    2016-04-01

    A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries.

  12. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids

    PubMed Central

    Markesteijn, Anton; Karabasov, Sergey; Scukins, Arturs; Nerukh, Dmitry; Glotov, Vyacheslav; Goloviznin, Vasily

    2014-01-01

    Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space–time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space–time, a novel hybrid atomistic–fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. PMID:24982246

  13. Hydrodynamic screening of star polymers in shear flow.

    PubMed

    Ripoll, M; Winkler, R G; Gompper, G

    2007-08-01

    The mutual effects of the conformations of a star polymer in simple shear flow and the deformation of the solvent flow field are investigated by a hybrid mesoscale simulation technique. We characterize the flow field near the star polymer as a function of its functionality (arm number) f . A strong screening of the imposed flow is found inside the star polymer, which increases with increasing f . To elucidate the importance of hydrodynamic screening, we compare results for hydrodynamic and random solvents. The dependence of the polymer orientation angle on the Weissenberg number shows a power law behavior with super-universal exponent --independent of hydrodynamic and excluded-volume interactions. In contrast, the polymer rotation frequency changes qualitatively when hydrodynamic interactions are switched on.

  14. View of hydrodynamic support cylinders, removed from structure and relocated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of hydrodynamic support cylinders, removed from structure and relocated for reconditioning to return them to service. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  15. Foundation of Hydrodynamics for Systems with Strong Interactions

    SciTech Connect

    Wong, Cheuk-Yin

    2010-01-01

    For a dense and strongly interacting system such as a nucleus or a strongly coupled quark-gluon plasma, the foundation of hydrodynamics can be better found in the quantum description of constituents moving in the strong mean fields generated by all other particles. Using the result that the Schroedinger equation and the Klein-Gordon equation can be written in hydrodynamical forms, we find that the probability currents of the many-body system in the mean-field description obey a hydrodynamical equation with stress tensors arising from many contributions: quantum effects, mean-field interactions, and thermal fluctuations. The influence of various contributions to the hydrodynamical motion is expected to vary with the temperature, as the quantum and mean-field stress tensors play more important roles at low and moderate temperatures.

  16. Foundation of Hydrodynamics for Systems with Strong Interactions

    SciTech Connect

    Wong, Cheuk-Yin

    2010-12-14

    For a dense and strongly interacting system, such as a nucleus or a strongly-coupled quark-gluon plasma, the foundation of hydrodynamics can be better found in the quantum description of constituents moving in the strong mean fields generated by all other particles. Using the result that the Schroedinger equation and the Klein-Gordon equation can be written in hydrodynamical forms, we find that the probability currents of the many-body system in the mean-field description obey a hydrodynamical equation with stress tensors arising from many contributions: quantum effects, mean-field interactions, and thermal fluctuations. The influence of various contributions to the hydrodynamical motion is expected to vary with the temperature, as the quantum and mean-field stress tensors playing more important roles at low and moderate temperatures.

  17. Theoretical study of the crossover into hydrodynamic regime in graphene

    NASA Astrophysics Data System (ADS)

    Ho, Derek; Yudhistira, Indra; Hu, Ben Yu-Kuang; Adam, Shaffique

    Experiments on graphene have recently succeeded in entering the hydrodynamic regime, as demonstrated by successful observations of strong violation of Wiedemann-Franz law, the Gurzhi effect and electronic Poiseuille flow. It is known that electronic systems enter the hydrodynamic regime when electron-electron scattering dominates over electron-impurity and electron-phonon scattering. However, a quantitative study of this transition from the Fermi liquid to hydrodynamic regime is still lacking. In view of this, we quantitatively analyze the electron-electron, electron-impurity and electron-phonon scattering rates as a function of temperature, charge doping and disorder (charge puddle) strength. This yields a quantitative understanding of the onset of hydrodynamic electronic behavior in graphene samples. This work is supported by the National Research Foundation of Singapore under its Fellowship program (NRF-NRFF2012-01) and by the Singapore Ministry of Education and Yale-NUS College through Grant No. R-607-265-01312.

  18. Combining Hydrodynamic and Evolution Calculations of Rotating Stars

    NASA Astrophysics Data System (ADS)

    Deupree, R. G.

    1996-12-01

    Rotation has two primary effects on stellar evolutionary models: the direct influence on the model structure produced by the rotational terms, and the indirect influence produced by rotational instabilities which redistribute angular momentum and composition inside the model. Using a two dimensional, fully implicit finite difference code, I can follow events on both evolutionary and hydrodynamic timescales, thus allowing the simulation of both effects. However, there are several issues concerning how to integrate the results from hydrodynamic runs into evolutionary runs that must be examined. The schemes I have devised for the integration of the hydrodynamic simulations into evolutionary calculations are outlined, and the positive and negative features summarized. The practical differences among the various schemes are small, and a successful marriage between hydrodynamic and evolution calculations is possible.

  19. Small systems and regulator dependence in relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Spaliński, Michał

    2016-10-01

    Consistent theories of hydrodynamics necessarily include nonhydrodynamic modes, which can be viewed as a regulator necessary to ensure causality. Under many circumstances the choice of regulator is not relevant, but this is not always the case. In particular, for sufficiently small systems (such as those arising in pA or pp collisions) such dependence may be inevitable. We address this issue in the context of the modern version of Müller-Israel-Stewart theory of relativistic hydrodynamics. In this case, by demanding that the nonhydrodynamic modes do not dominate, we find that regulator dependence becomes inevitable only for multiplicities d N /d Y of the order of a few. This conclusion supports earlier studies based on hydrodynamic simulations of small systems, at the same time providing a simple physical picture of how hydrodynamics can be reliable even in such seemingly extreme conditions.

  20. Hydrodynamic and Salinity Intrusion Model in Selangor River Estuary

    NASA Astrophysics Data System (ADS)

    Haron, N. F.; Tahir, W.

    2016-07-01

    A multi-dimensional hydrodynamic and transport model has been used to develop the hydrodynamic and salinity intrusion model for Selangor River Estuary. Delft3D-FLOW was applied to the study area using a curvilinear, boundary fitted grid. External boundary forces included ocean water level, salinity, and stream flow. The hydrodynamic and salinity transport used for the simulation was calibrated and confirmed using data on November 2005 and from May to June 2014. A 13-day period for November 2005 data and a 6-day period of May to June 2014 data were chosen as the calibration and confirmation period because of the availability of data from the field-monitoring program conducted. From the calibration results, it shows that the model was well suited to predict the hydrodynamic and salinity intrusion characteristics of the study area.

  1. Lattice-Boltzmann hydrodynamics of anisotropic active matter.

    PubMed

    de Graaf, Joost; Menke, Henri; Mathijssen, Arnold J T M; Fabritius, Marc; Holm, Christian; Shendruk, Tyler N

    2016-04-01

    A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries. PMID:27059561

  2. Onset of superradiant instabilities in the hydrodynamic vortex model

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2014-07-01

    The hydrodynamic vortex, an effective spacetime geometry for propagating sound waves, is studied analytically. In contrast with the familiar Kerr black hole spacetime, the hydrodynamic vortex model is described by an effective acoustic geometry which has no horizons. However, this acoustic spacetime possesses an ergoregion, a property which it shares with the rotating Kerr spacetime. It has recently been shown numerically that this physical system is linearly unstable due to the superradiant scattering of sound waves in the ergoregion of the effective spacetime. In the present study we use analytical tools in order to explore the onset of these superradiant instabilities which characterize the effective spacetime geometry. In particular, we derive a simple analytical formula which describes the physical properties of the hydrodynamic vortex system in its critical (marginally stable) state, the state which marks the boundary between stable and unstable fluid configurations. The analytically derived formula is shown to agree with the recently published numerical data for the hydrodynamic vortex system.

  3. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    SciTech Connect

    Joseph, Ilon

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  4. Relativistic viscous hydrodynamics for high energy heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Vredevoogd, Joshua Aaron

    It has been over a decade since the first experimental data from gold nuclei collisions at the Relativistic Heavy Ion Collider suggested hydrodynamic behavior. Early ideal hydrodynamical models ignored the large longitudinal gradients that imply viscosity playing an important role in the dynamics. In addition, at that time, much less was known about the equation of state predicted by lattice calculations of quantum chromodynamics and the effects of late (dilute) stage rescattering were handled within the hydrodynamic framework. This dissertation presents a three-dimensional viscous hydrodynamics code with a realistic equation of state coupled consistently to a hadron resonance gas calculation. This code is capable of making significant comparisons to experimental data as part of an effort to learn about the structure of experimental constraints on the microscopic interactions of dense, hot quark matter.

  5. Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Aharon, I.; Shaw, B. D.

    1995-01-01

    This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects.

  6. Hydrodynamic Instability of Ionization Fronts in HII Regions

    SciTech Connect

    Mizuta, A; Kane, J; Ryutov, D; Remington, B; Takabe, H; Pound, M

    2003-08-21

    The authors investigate hydrodynamic instability of accelerating ionization fronts with two dimensional hydrodynamic simulations. When recombination in the ionized region is turned off, Rayleigh-Taylor instability is effective. Perturbation grows up with classical Rayleigh-Taylor growth rate. In the case with recombination, the local difference of absorption profile works to smooth the surface. The perturbation does not grow and the amplitude follows a damped oscillations with time.

  7. A new three-dimensional general-relativistic hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Baiotti, L.; Hawke, I.; Montero, P. J.; Rezzolla, L.

    We present a new three-dimensional general relativistic hydrodynamics code, the Whisky code. This code incorporates the expertise developed over the past years in the numerical solution of Einstein equations and of the hydrodynamics equations in a curved spacetime, and is the result of a collaboration of several European Institutes. We here discuss the ability of the code to carry out long-term accurate evolutions of the linear and nonlinear dynamics of isolated relativistic stars.

  8. Use of hydrodynamic cavitation in (waste)water treatment.

    PubMed

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning.

  9. Leading-order anisotropic hydrodynamics for central collisions

    NASA Astrophysics Data System (ADS)

    Nopoush, Mohammad; Strickland, Michael; Ryblewski, Radoslaw; Bazow, Dennis; Heinz, Ulrich; Martinez, Mauricio

    2015-10-01

    We use leading-order anisotropic hydrodynamics to study an azimuthally symmetric boost-invariant quark-gluon plasma. We impose a realistic lattice-based equation of state and perform self-consistent anisotropic freeze-out to hadronic degrees of freedom. We then compare our results for the full spatiotemporal evolution of the quark-gluon plasma and its subsequent freeze-out to results obtained using 1+1D Israel-Stewart second-order viscous hydrodynamics. We find that for small shear viscosities, 4 π η /s ˜1 , the two methods agree well for nucleus-nucleus collisions; however, for large-shear-viscosity-to-entropy-density ratios or proton-nucleus collisions we find important corrections to the Israel-Stewart results for the final particle spectra and the total number of charged particles. Finally, we demonstrate that the total number of charged particles produced is a monotonically increasing function of 4 π η /s in Israel-Stewart viscous hydrodynamics, whereas in anisotropic hydrodynamics it has a maximum at 4 π η /s ˜10 . For all 4 π η /s >0 , we find that for Pb-Pb collisions Israel-Stewart viscous hydrodynamics predicts more dissipative particle production than anisotropic hydrodynamics.

  10. Supernova-relevant hydrodynamic instability experiment on the Nova laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Castor, J.; Rubenchik, A.; Berning, M.

    1996-02-12

    Supernova 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. On quite a separate front, the detrimental effect of hydrodynamic instabilities in inertial confinement fusion (ICF) has long been known. Tools from both areas are being tested on a common project. At Lawrence Livermore National Laboratory (LLNL), the Nova Laser is being used in scaled laboratory experiments of hydrodynamic mixing under supernova-relevant conditions. Numerical simulations of the experiments are being done, using hydrodynamics codes at the Laboratory, and astrophysical codes successfully used to model the hydrodynamics of supernovae. A two-layer package composed of Cu and CH{sub 2} with a single mode sinusoidal 1D perturbation at the interface, shocked by indirect laser drive from the Cu side of the package, produced significant Rayleigh-Taylor (RT) growth in the nonlinear regime. The scale and gross structure of the growth was successfully modeled, by mapping an early-time simulation done with 1D HYADES, a radiation transport code, into 2D CALE, a LLNL hydrodynamics code. The HYADES result was also mapped in 2D into the supernova code PROMETHEUS, which was also able to reproduce the scale and gross structure of the growth.

  11. Annual Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    SciTech Connect

    R. Paul Drake

    2007-04-05

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  12. Hydrodynamics of maneuvering bodies: LDRD final report

    SciTech Connect

    Kempka, S.N.; Strickland, J.H.

    1994-01-01

    The objective of the ``Hydrodynamics of Maneuvering Bodies`` LDRD project was to develop a Lagrangian, vorticity-based numerical simulation of the fluid dynamics associated with a maneuvering submarine. Three major tasks were completed. First, a vortex model to simulate the wake behind a maneuvering submarine was completed, assuming the flow to be inviscid and of constant density. Several simulations were performed for a dive maneuver, each requiring less than 20 cpu seconds on a workstation. The technical details of the model and the simulations are described in a separate document, but are reviewed herein. Second, a gridless method to simulate diffusion processes was developed that has significant advantages over previous Lagrangian diffusion models. In this model, viscous diffusion of vorticity is represented by moving vortices at a diffusion velocity, and expanding the vortices as specified by the kinematics for a compressible velocity field. This work has also been documented previously, and is only reviewed herein. The third major task completed was the development of a vortex model to describe inviscid internal wave phenomena, and is the focus of this document. Internal wave phenomena in the stratified ocean can affect an evolving wake, and thus must be considered for naval applications. The vortex model for internal wave phenomena includes a new formulation for the generation of vorticity due to fluid density variations, and a vortex adoption algorithm that allows solutions to be carried to much longer times than previous investigations. Since many practical problems require long-time solutions, this new adoption algorithm is a significant step toward making vortex methods applicable to practical problems. Several simulations are described and compared with previous results to validate and show the advantages of the new model. An overview of this project is also included.

  13. Magneto-hydrodynamically stable axisymmetric mirrors

    NASA Astrophysics Data System (ADS)

    Ryutov, Dmitri

    2010-11-01

    The achievement of high beta (60%) plasma with near classical confinement in a linear axisymmetric magnetic configuration has sparked interest in the Gas Dynamic Trap concept. The significance of these results is that they can be projected directly to a neutron source for materials testing. The possibility of axisymmetric mirrors (AM) being magneto-hydrodynamically (MHD) stable is also of interest from a general physics standpoint (as it seemingly contradicts to well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a brief summary of classical results (in particular of the Rosenbluth-Longmire theory and of the energy principle as applied to AM) several approaches towards achieving MHD stabilization of the AM will be considered: 1) Employing the favorable field-line curvature in the end tanks; 2) Using the line-tying effect; 3) Setting the plasma in a slow or fast differential rotation; 4) Imposing a divertor configuration on the solenoidal magnetic field; 5) Controlling the plasma dynamics by the ponderomotive force; 6) Other techniques. Several of these approaches go beyond pure MHD and require accounting for finite Larmor radius effects and trapped particle modes. Some illuminative theoretical approaches for understanding axisymmetric mirror stability will be described. Wherever possible comparison of theoretical and experimental results on AM will be provided. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors will be discussed and the constraints on the plasma parameters will be formulated. Prepared by LLNL under Contract DE-AC52-07NA27344.

  14. Hydrodynamics of maneuvering bodies: LDRD Final Report

    NASA Astrophysics Data System (ADS)

    Kempka, S. N.; Strickland, J. H.

    1994-01-01

    The objective of the 'Hydrodynamics of Maneuvering Bodies' LDRD project was to develop a Lagrangian, vorticity-based numerical simulation of the fluid dynamics associated with a maneuvering submarine. Three major tasks were completed. First, a vortex model to simulate the wake behind a maneuvering submarine was completed, assuming the flow to be inviscid and of constant density. Several simulations were performed for a dive maneuver, each requiring less than 20 cpu seconds on a workstation. The technical details of the model and the simulations are described in a separate document, but are reviewed herein. Second, a gridless method to simulate diffusion processes was developed that has significant advantages over previous Lagrangian diffusion models. In this model, viscous diffusion of vorticity is represented by moving vortices at a diffusion velocity, and expanding the vortices as specified by the kinematics for a compressible velocity field. This work was also documented previously and is only reviewed herein. The third major task completed was the development of a vortex model to describe inviscid internal wave phenomena and is the focus of this document. Internal wave phenomena in the stratified ocean can affect an evolving wake and thus, must be considered for naval applications. The vortex model for internal wave phenomena includes a new formulation for the generation of vorticity due to fluid density variations and a vortex adoption algorithm that allows solutions to be carried to much longer times than previous investigations. Since many practical problems require long-time solutions, this new adoption algorithm is a significant step toward making vortex methods applicable to practical problems. Several simulations are described and compared with previous results to validate and show the advantages of the new model. An overview of this project is also included.

  15. Hydrodynamical Simulations of Unevenly Irradiated Jovian Planets

    NASA Astrophysics Data System (ADS)

    Langton, Jonathan

    2007-05-01

    We discuss a series of two-dimensional hydrodynamical simulations which model the global time-dependent radiative responses and surface flow patterns of Jovian planets subject to strongly variable atmospheric irradiation. We treat the planetary atmosphere as a thin compressible fluid-layer subject to time-dependent radiative heating and cooling.We consider planets in several environments, including hot Jupiters on circular orbits, short-period planets on eccentric orbits such as HD 118203 b (in which libration effects are important), and planets on highly eccentric orbits. Particular attention is given to HD 80606 b, which has the highest known eccentricity (e=0.932) of any planet. Its orbital period is P=111.4d, and at periastron, it passes within 7 RSun of its parent star. As a result of spin pseudo-synchronization, the rotation period of the planet is expected to be 36.8 hours, allowing the initial conditions for the simulation to determined with confidence. We show that the atmospheric response during the periastron passage of HD 80606 b will likely be observable by the Spitzer Space telescope at all infrared bands. We show that photometric observations taken during periastron passage can determine the effective radiative time constant in the planet's atmosphere. We show that a direct measurement of the radiative time constant can be used to clarify interpretation of infrared observations of other short-period planets. This research has been supported by the NSF through CAREER Grant AST-0449986, and by the NASA Planetary Geology and Geophysics Program through Grant NNG04GK19G.

  16. Bacterial Swarming: social behaviour or hydrodynamics?

    NASA Astrophysics Data System (ADS)

    Vermant, Jan

    2010-03-01

    Bacterial swarming of colonies is typically described as a social phenomenon between bacteria, whereby groups of bacteria collectively move atop solid surfaces. This multicellular behavior, during which the organized bacterial populations are embedded in an extracellular slime layer, is connected to important features such as biofilm formation and virulence. Despite the possible intricate quorum sensing mechanisms that regulate swarming, several physico-chemical phenomena may play a role in the dynamics of swarming and biofilm formation. Especially the striking fingering patterns formed by some swarmer colonies on relatively soft sub phases have attracted the attention as they could be the signatures of an instability. Recently, a parallel has been drawn between the swarming patterns and the spreading of viscous drops under the influence of a surfactant, which lead to similar patterns [1]. Starting from the observation that several of the molecules, essential in swarming systems, are strong biosurfactants, the possibility of flows driven by gradients in surface tension, has been proposed. This Marangoni flows are known to lead to these characteristic patterns. For Rhizobium etli not only the pattern formation, but also the experimentally observed spreading speed has been shown to be consistent with the one expected for Marangoni flows for the surface pressures, thickness, and viscosities that have been observed [2]. We will present an experimental study of swarming colonies of the bacteria Pseudomonas aeruginosa, the pattern formation, the surfactant gradients and height profiles in comparison with predictions of a thin film hydrodynamic model.[4pt] [1] Matar O.K. and Troian S., Phys. Fluids 11 : 3232 (1999)[0pt] [2] Daniels, R et al., PNAS, 103 (40): 14965-14970 (2006)

  17. Early hydrodynamic evolution of a stellar collision

    SciTech Connect

    Kushnir, Doron; Katz, Boaz

    2014-04-20

    The early phase of the hydrodynamic evolution following the collision of two stars is analyzed. Two strong shocks propagate from the contact surface and move toward the center of each star at a velocity that is a small fraction of the velocity of the approaching stars. The shocked region near the contact surface has a planar symmetry and a uniform pressure. The density vanishes at the (Lagrangian) surface of contact, and the speed of sound diverges there. The temperature, however, reaches a finite value, since as the density vanishes, the finite pressure is radiation dominated. For carbon-oxygen white dwarf (CO WD) collisions, this temperature is too low for any appreciable nuclear burning shortly after the collision, which allows for a significant fraction of the mass to be highly compressed to the density required for efficient {sup 56}Ni production in the detonation wave that follows. This property is crucial for the viability of collisions of typical CO WD as progenitors of type Ia supernovae, since otherwise only massive (>0.9 M {sub ☉}) CO WDs would have led to such explosions (as required by all other progenitor models). The divergence of the speed of sound limits numerical studies of stellar collisions, as it makes convergence tests exceedingly expensive unless dedicated schemes are used. We provide a new one-dimensional Lagrangian numerical scheme to achieve this. A self-similar planar solution is derived for zero-impact parameter collisions between two identical stars, under some simplifying assumptions (including a power-law density profile), which is the planar version of previous piston problems that were studied in cylindrical and spherical symmetries.

  18. One-Dimensional Lagrangian Code for Plasma Hydrodynamic Analysis of a Fusion Pellet Driven by Ion Beams.

    1986-12-01

    Version 00 The MEDUSA-IB code performs implosion and thermonuclear burn calculations of an ion beam driven ICF target, based on one-dimensional plasma hydrodynamics and transport theory. It can calculate the following values in spherical geometry through the progress of implosion and fuel burnup of a multi-layered target. (1) Hydrodynamic velocities, density, ion, electron and radiation temperature, radiation energy density, Rs and burn rate of target as a function of coordinates and time, (2) Fusion gainmore » as a function of time, (3) Ionization degree, (4) Temperature dependent ion beam energy deposition, (5) Radiation, -particle and neutron spectra as a function of time.« less

  19. Phonon hydrodynamics and its applications in nanoscale heat transport

    NASA Astrophysics Data System (ADS)

    Guo, Yangyu; Wang, Moran

    2015-09-01

    Phonon hydrodynamics is an effective macroscopic method to study heat transport in dielectric solid and semiconductor. It has a clear and intuitive physical picture, transforming the abstract and ambiguous heat transport process into a concrete and evident process of phonon gas flow. Furthermore, with the aid of the abundant models and methods developed in classical hydrodynamics, phonon hydrodynamics becomes much easier to implement in comparison to the current popular approaches based on the first-principle method and kinetic theories involving complicated computations. Therefore, it is a promising tool for studying micro- and nanoscale heat transport in rapidly developing micro and nano science and technology. However, there still lacks a comprehensive account of the theoretical foundations, development and implementation of this approach. This work represents such an attempt in providing a full landscape, from physical fundamental and kinetic theory of phonons to phonon hydrodynamics in view of descriptions of phonon systems at microscopic, mesoscopic and macroscopic levels. Thus a systematical kinetic framework, summing up so far scattered theoretical models and methods in phonon hydrodynamics as individual cases, is established through a frame of a Chapman-Enskog solution to phonon Boltzmann equation. Then the basic tenets and procedures in implementing phonon hydrodynamics in nanoscale heat transport are presented through a review of its recent wide applications in modeling thermal transport properties of nanostructures. Finally, we discuss some pending questions and perspectives highlighted by a novel concept of generalized phonon hydrodynamics and possible applications in micro/nano phononics, which will shed more light on more profound understanding and credible applications of this new approach in micro- and nanoscale heat transport science.

  20. Progress in MELCOR development and assessment

    SciTech Connect

    Summers, R.M.; Kmetyk, L.N.; Cole, R.K. Jr.; Smith, R.C.; Elsbernd, A.E.; Stuart, D.S.; Thompson, S.L.

    1995-04-01

    MELCOR models the progression of severe accidents in light water reactor nuclear power plants. Recent efforts in MELCOR development to incorporate CORCON-Mod3 models for core-concrete interactions, new models for advanced reactors, and improvements to several other existing models have resulted in release of MELCOR 1.8.3. In addition, continuing efforts to expand the code assessment database have filled in many of the gaps in phenomenological coverage. Efforts are now under way to develop models for chemical interactions of fission products with structural surfaces and for reactions of iodine in the presence of water, and work is also in progress to improve models for the scrubbing of fission products by water pools, the chemical reactions of boron carbide with steam, and the coupling of flow blockages with the hydrodynamics. Several code assessment analyses are in progress, and more are planned.

  1. Time-implicit hydrodynamical simulations of stellar interiors: Application to turbulent convection

    NASA Astrophysics Data System (ADS)

    Viallet, M.

    2012-12-01

    The talk described the first results on turbulent convection in the envelope of a red giant star obtained with the MUSIC code, a new multi-dimensional time-implicit code devoted to stellar interiors (Viallet, Baraffe & Walder, A&A, 2011). Currently, most of our physical understanding of stellar interiors and evolution largely relies on one-dimensional calculations. The description of complex physical processes like time-dependent turbulent convection, rotation or MHD processes mostly relies on simplified, phenomenological approaches, with a predictive power hampered by the use of several free parameters. These approaches have now reached their limits in the understanding of stellar structure and evolution. The development of multi-dimensional hydrodynamical simulations becomes crucial to progress in the field of stellar physics and to meet the enormous observational efforts aimed at producing data of unprecedented quality (COROT, Kepler GAIA). The MUSIC code solves the hydrodynamical equations in spherical geometry and is based on the finite volume method. The talk presented implicit large eddy simulations of the turbulent convection in a cold giant envelope both in 2D and 3D and covering 80% in radius of the stellar structure. The computational domain includes both the convective envelope and a significant fraction of the radiative zone, allowing for convective penetration. These simulations provide valuable insight to improve the description of turbulent convection in 1D models

  2. Hydrodynamic Efficiency of Ablation Propulsion with Pulsed Ion Beam

    SciTech Connect

    Buttapeng, Chainarong; Yazawa, Masaru; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    This paper presents the hydrodynamic efficiency of ablation plasma produced by pulsed ion beam on the basis of the ion beam-target interaction. We used a one-dimensional hydrodynamic fluid compressible to study the physics involved namely an ablation acceleration behavior and analyzed it as a rocketlike model in order to investigate its hydrodynamic variables for propulsion applications. These variables were estimated by the concept of ablation driven implosion in terms of ablated mass fraction, implosion efficiency, and hydrodynamic energy conversion. Herein, the energy conversion efficiency of 17.5% was achieved. In addition, the results show maximum energy efficiency of the ablation process (ablation efficiency) of 67% meaning the efficiency with which pulsed ion beam energy-ablation plasma conversion. The effects of ion beam energy deposition depth to hydrodynamic efficiency were briefly discussed. Further, an evaluation of propulsive force with high specific impulse of 4000s, total impulse of 34mN and momentum to energy ratio in the range of {mu}N/W was also analyzed.

  3. Influence of mass transfer on bubble plume hydrodynamics.

    PubMed

    Lima Neto, Iran E; Parente, Priscila A B

    2016-03-01

    This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes, gas flow rates and water depths. The results revealed a relevant impact when fine bubbles are considered, even for moderate water depths. Additionally, model simulations indicate that for weak bubble plumes (i.e., with relatively low flow rates and large depths and slip velocities), both dissolution and turbulence can affect plume hydrodynamics, which demonstrates the importance of taking the momentum amplification factor relationship into account. For deeper water conditions, simulations of bubble dissolution/decompression using the present model and classical models available in the literature resulted in a very good agreement for both aeration and oxygenation processes. Sensitivity analysis showed that the water depth, followed by the bubble size and the flow rate are the most important parameters that affect plume hydrodynamics. Lastly, dimensionless correlations are proposed to assess the impact of mass transfer on plume hydrodynamics, including both the aeration and oxygenation modes. PMID:26840001

  4. Hydrodynamic body shape analysis and their impact on swimming performance.

    PubMed

    Li, Tian-Zeng; Zhan, Jie-Min

    2015-01-01

    This study presents the hydrodynamic characteristics of different adult male swimmer's body shape using computational fluid dynamics method. This simulation strategy is carried out by CFD fluent code with solving the 3D incompressible Navier-Stokes equations using the RNG k-ε turbulence closure. The water free surface is captured by the volume of fluid (VOF) method. A set of full body models, which is based on the anthropometrical characteristics of the most common male swimmers, is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. The analysis of CFD results revealed that swimmer's body shape has a noticeable effect on the hydrodynamics performances. This explains why male swimmer with an inverted triangle body shape has good hydrodynamic characteristics for competitive swimming. PMID:26898107

  5. Relativistic nuclear hydrodynamics and phase transition to the deconfinement state

    SciTech Connect

    Barz, H.W.; Kaempfer, B.; Lukacs, B.

    1987-11-01

    The possible formation of nuclear matter in the phase of a quark--gluon plasma in relativistic heavy-ion collisions is considered in the framework of a hydrodynamic approach. The main results are obtained in a single-fluid model of the formation of a baryon-enriched plasma and relate to nuclear collisions at energies up to 10 GeV/nucleon. At higher energies, a two-fluid model predicts the formation of a plasma in the fragmentation region, but the baryon density is much lower. In all the investigations, including scaling hydrodynamics in the baryon-depleted region of intermediate rapidities, allowance is made for a delayed phase transition to the deconfinement state. A generally covariant formulation of relativistic hydrodynamics is presented as a useful numerical method, together with some extensions of the methods of the standard theory (selection of comoving coordinates, allowance for sink terms, and two-fluid interaction).

  6. Overlimiting current through ion concentration polarization layer: hydrodynamic convection effects.

    PubMed

    Cho, Inhee; Sung, Gun Yong; Kim, Sung Jae

    2014-05-01

    In this work, we experimentally investigated an effect of the hydrodynamic convective flow on ion transport through a nanoporous membrane in a micro/nanofluidic modeled system. The convective motion of ions in an ion concentration polarization (ICP) layer was controlled by external hydrodynamic inflows adjacent to the nanoporous membrane. The ion depletion region, which is regarded as a high electrical resistance, was spatially confined to a triangular shape with the additional hydrodynamic convective flow, resulting in a significant alteration in the classical ohmic-limiting-overlimiting current characteristics. Furthermore, the extreme spatial confinement can completely eliminate the limiting current region at a higher flow rate, while the ICP layer still exists. The presented results enable one to obtain a high current value which turns out to be a high electrical power efficiency. Therefore, this mechanism could be utilized as an optimizing power consumption strategy for various electrochemical membrane systems such as fuel-cells, electro-desalination systems and nanofluidic preconcentrators, etc.

  7. Relativistic Hydrodynamics with Sources for Cosmological K-Fluids

    NASA Astrophysics Data System (ADS)

    Diez-Tejedor, Alberto; Feinstein, Alexander

    We consider hydrodynamics with non-conserved number of particles and show that it can be modeled with effective fluid Lagrangians which explicitly depend on the velocity potentials. For such theories, the "shift symmetry" ϕ → ϕ + const leading to the conserved number of fluid particles in conventional hydrodynamics is globally broken and, as a result, the non-conservation of particle number appears as a source term in the continuity equation. The non-conservation of particle number is balanced by the entropy change, with both the entropy and the source term expressed in terms of the fluid velocity potential. Equations of hydrodynamics are derived using a modified version of Schutz's variational principle method. Examples of fluids described by such Lagrangians (tachyon condensate, K-essence) in spatially flat isotropic universe are briefly discussed.

  8. Separability of electrostatic and hydrodynamic forces in particle electrophoresis

    NASA Astrophysics Data System (ADS)

    Todd, Brian A.; Cohen, Joel A.

    2011-09-01

    By use of optical tweezers we explicitly measure the electrostatic and hydrodynamic forces that determine the electrophoretic mobility of a charged colloidal particle. We test the ansatz of O'Brien and White [J. Chem. Soc. Faraday IIJCFTBS0300-923810.1039/f29787401607 74, 1607 (1978)] that the electrostatically and hydrodynamically coupled electrophoresis problem is separable into two simpler problems: (1) a particle held fixed in an applied electric field with no flow field and (2) a particle held fixed in a flow field with no applied electric field. For a system in the Helmholtz-Smoluchowski and Debye-Hückel regimes, we find that the electrostatic and hydrodynamic forces measured independently accurately predict the electrophoretic mobility within our measurement precision of 7%; the O'Brien and White ansatz holds under the conditions of our experiment.

  9. Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry.

    PubMed

    Guo, L; Wong, P L; Guo, F; Liu, H C

    2014-09-10

    This paper introduces the application of dichromatic interferometry for the study of hydrodynamic lubrication. In conventional methods, two beams with different colors are projected consecutively on a static object. By contrast, the current method deals with hydrodynamic lubricated contacts under running conditions and two lasers with different colors are projected simultaneously to form interference images. Dichromatic interferometry incorporates the advantages of monochromatic and chromatic interferometry, which are widely used in lubrication research. This new approach was evaluated statically and dynamically by measuring the inclination of static wedge films and the thickness of the hydrodynamic lubricating film under running conditions, respectively. Results show that dichromatic interferometry can facilitate real-time determination of lubricating film thickness and is well suited for the study of transient or dynamic lubricating problems. PMID:25321689

  10. Hydrodynamics of spin-polarized transport and spin pendulum

    SciTech Connect

    Gurzhi, R. N. Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V.

    2007-07-15

    The dynamics of a nonequilibrium spin system dominated by collisions preserving the total quasimomentum of the interacting electrons and quasiparticles is considered. An analysis of the derived hydrodynamic equations shows that weakly attenuated spin-polarization waves associated with an oscillating drift current can exist in a magnetically inhomogeneous conducting ring. Spin-polarized transport in a ballistic regime of wave propagation through a conductor is also considered, and a simple method is proposed for distinguishing these waves from spin and current oscillations that develop in the hydrodynamic regime. It is shown that a potential difference arises between the leads of an open nonuniformly spin-polarized conductor as a manifestation of spin polarization of electron density. This spin-mediated electrical phenomenon occurs in both hydrodynamic and diffusive limits.

  11. Distant touch hydrodynamic imaging with an artificial lateral line.

    PubMed

    Yang, Yingchen; Chen, Jack; Engel, Jonathan; Pandya, Saunvit; Chen, Nannan; Tucker, Craig; Coombs, Sheryl; Jones, Douglas L; Liu, Chang

    2006-12-12

    Nearly all underwater vehicles and surface ships today use sonar and vision for imaging and navigation. However, sonar and vision systems face various limitations, e.g., sonar blind zones, dark or murky environments, etc. Evolved over millions of years, fish use the lateral line, a distributed linear array of flow sensing organs, for underwater hydrodynamic imaging and information extraction. We demonstrate here a proof-of-concept artificial lateral line system. It enables a distant touch hydrodynamic imaging capability to critically augment sonar and vision systems. We show that the artificial lateral line can successfully perform dipole source localization and hydrodynamic wake detection. The development of the artificial lateral line is aimed at fundamentally enhancing human ability to detect, navigate, and survive in the underwater environment.

  12. Hydrodynamic body shape analysis and their impact on swimming performance.

    PubMed

    Li, Tian-Zeng; Zhan, Jie-Min

    2015-01-01

    This study presents the hydrodynamic characteristics of different adult male swimmer's body shape using computational fluid dynamics method. This simulation strategy is carried out by CFD fluent code with solving the 3D incompressible Navier-Stokes equations using the RNG k-ε turbulence closure. The water free surface is captured by the volume of fluid (VOF) method. A set of full body models, which is based on the anthropometrical characteristics of the most common male swimmers, is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. The analysis of CFD results revealed that swimmer's body shape has a noticeable effect on the hydrodynamics performances. This explains why male swimmer with an inverted triangle body shape has good hydrodynamic characteristics for competitive swimming.

  13. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae).

    PubMed

    Hanke, Wolf; Wieskotten, Sven; Marshall, Christopher; Dehnhardt, Guido

    2013-06-01

    Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals' vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming. PMID:23180048

  14. Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids.

    PubMed

    Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2009-04-01

    A new multiscale coarse-graining (CG) methodology is developed to bridge molecular and hydrodynamic models of a fluid. The hydrodynamic representation considered in this work is based on the equations of fluctuating hydrodynamics (FH). The essence of this method is a mapping from the position and velocity vectors of a snapshot of a molecular dynamics (MD) simulation to the field variables on Eulerian cells of a hydrodynamic representation. By explicit consideration of the effective lengthscale d(mol) that characterizes the volume of a molecule, the computed density fluctuations from MD via our mapping procedure have volume dependence that corresponds to a grand canonical ensemble of a cold liquid even when a small cell length (5-10 A) is used in a hydrodynamic representation. For TIP3P water at 300 K and 1 atm, d(mol) is found to be 2.4 A, corresponding to the excluded radius of a water molecule as revealed by its center-of-mass radial distribution function. By matching the density fluctuations and autocorrelation functions of momentum fields computed from solving the FH equations with those computed from MD simulation, the sound velocity and shear and bulk viscosities of a CG hydrodynamic model can be determined directly from MD. Furthermore, a novel staggered discretization scheme is developed for solving the FH equations of an isothermal compressive fluid in a three dimensional space with a central difference method. This scheme demonstrates high accuracy in satisfying the fluctuation-dissipation theorem. Since the causative relationship between field variables and fluxes is captured, we demonstrate that the staggered discretization scheme also predicts correct physical behaviors in simulating transient fluid flows. The techniques presented in this work may also be employed to design multiscale strategies for modeling complex fluids and macromolecules in solution. PMID:19355721

  15. Hydrodynamic resistance and mobility of deformable objects in microfluidic channels.

    PubMed

    Sajeesh, P; Doble, M; Sen, A K

    2014-09-01

    This work reports experimental and theoretical studies of hydrodynamic behaviour of deformable objects such as droplets and cells in a microchannel. Effects of mechanical properties including size and viscosity of these objects on their deformability, mobility, and induced hydrodynamic resistance are investigated. The experimental results revealed that the deformability of droplets, which is quantified in terms of deformability index (D.I.), depends on the droplet-to-channel size ratio [Formula: see text] and droplet-to-medium viscosity ratio [Formula: see text]. Using a large set of experimental data, for the first time, we provide a mathematical formula that correlates induced hydrodynamic resistance of a single droplet [Formula: see text] with the droplet size [Formula: see text] and viscosity [Formula: see text]. A simple theoretical model is developed to obtain closed form expressions for droplet mobility [Formula: see text] and [Formula: see text]. The predictions of the theoretical model successfully confront the experimental results in terms of the droplet mobility [Formula: see text] and induced hydrodynamic resistance [Formula: see text]. Numerical simulations are carried out using volume-of-fluid model to predict droplet generation and deformation of droplets of different size ratio [Formula: see text] and viscosity ratio [Formula: see text], which compare well with that obtained from the experiments. In a novel effort, we performed experiments to measure the bulk induced hydrodynamic resistance [Formula: see text] of different biological cells (yeast, L6, and HEK 293). The results reveal that the bulk induced hydrodynamic resistance [Formula: see text] is related to the cell concentration and apparent viscosity of the cells. PMID:25538806

  16. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae).

    PubMed

    Hanke, Wolf; Wieskotten, Sven; Marshall, Christopher; Dehnhardt, Guido

    2013-06-01

    Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals' vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.

  17. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    SciTech Connect

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-04-15

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  18. Hydrodynamic self-consistent field theory for inhomogeneous polymer melts.

    PubMed

    Hall, David M; Lookman, Turab; Fredrickson, Glenn H; Banerjee, Sanjoy

    2006-09-15

    We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.

  19. Colliding Shock Waves and Hydrodynamics in Small Systems.

    PubMed

    Chesler, Paul M

    2015-12-11

    Using numerical holography, we study the collision of a planar sheet of energy with a bounded localized distribution of energy. The collision, which mimics proton-nucleus collisions, produces a localized lump of debris with transverse size R∼1/T_{eff} with T_{eff} the effective temperature, and has large gradients and large transverse flow. Nevertheless, the postcollision evolution is well described by viscous hydrodynamics. Our results bolster the notion that debris produced in proton-nucleus collisions may be modeled using hydrodynamics. PMID:26705624

  20. AMRA: An Adaptive Mesh Refinement hydrodynamic code for astrophysics

    NASA Astrophysics Data System (ADS)

    Plewa, T.; Müller, E.

    2001-08-01

    Implementation details and test cases of a newly developed hydrodynamic code, amra, are presented. The numerical scheme exploits the adaptive mesh refinement technique coupled to modern high-resolution schemes which are suitable for relativistic and non-relativistic flows. Various physical processes are incorporated using the operator splitting approach, and include self-gravity, nuclear burning, physical viscosity, implicit and explicit schemes for conductive transport, simplified photoionization, and radiative losses from an optically thin plasma. Several aspects related to the accuracy and stability of the scheme are discussed in the context of hydrodynamic and astrophysical flows.

  1. Anisotropic hydrodynamics for a mixture of quark and gluon fluids

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw; Tinti, Leonardo

    2015-11-01

    A system of equations for anisotropic hydrodynamics is derived that describes a mixture of anisotropic quark and gluon fluids. The consistent treatment of the zeroth, first, and second moments of the kinetic equations allows us to construct a new framework with more general forms of the anisotropic phase-space distribution functions than used before. In this way, the main deficiencies of the previous formulations of anisotropic hydrodynamics for mixtures are overcome and a good agreement with the exact kinetic-theory results is obtained.

  2. Generating Optimal Initial Conditions for Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Diehl, S.; Rockefeller, G.; Fryer, C. L.; Riethmiller, D.; Statler, T. S.

    2015-12-01

    We review existing smoothed particle hydrodynamics setup methods and outline their advantages, limitations, and drawbacks. We present a new method for constructing initial conditions for smoothed particle hydrodynamics simulations, which may also be of interest for N-body simulations, and demonstrate this method on a number of applications. This new method is inspired by adaptive binning techniques using weighted Voronoi tessellations. Particles are placed and iteratively moved based on their proximity to neighbouring particles and the desired spatial resolution. This new method can satisfy arbitrarily complex spatial resolution requirements.

  3. Charge-hyperscaling violating Lifshitz hydrodynamics from black-holes

    NASA Astrophysics Data System (ADS)

    Kiritsis, Elias; Matsuo, Yoshinori

    2015-12-01

    Non-equilibrium black hole horizons are considered in scaling theories with generic Lifshitz invariance and an unbroken U(1) symmetry. There is also charge-hyperscaling violation associated with a non-trivial conduction exponent. The boundary stress tensor is computed and renormalized and the associated hydrodynamic equations derived. Upon a non-trivial redefinition of boundary sources associated with the U(1) gauge field, the equations are mapped to the standard non-relativistic hydrodynamics equations coupled to a mass current and an external Newton potential in accordance with the general theory of [43]. The shear viscosity to entropy ratio is the same as in the relativistic case.

  4. Hydrodynamic instability of a thermosyphon loop with wall damping effect

    NASA Astrophysics Data System (ADS)

    Huang, Bin-Juine; Hu, S.-P.

    1992-04-01

    An analysis using linear system theory and Nyquist criterion was carried out in the present study to investigate the hydrodynamic instability of a thermosyphon loop. The analytical results show that the loop becomes more unstable (i.e., the area of the stable region is reduced) if the length of the heater or cooler section increases or the loop aspect ratio W/H decreases. The present results indicate that the consideration of hydrodynamic instability in the thermosyphon loop or many similar engineering systems could be overlooked if the damping effect of wall is present.

  5. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  6. Comparisons of hydrodynamic beam models with kinetic treatments

    NASA Astrophysics Data System (ADS)

    Boyd, J. K.; Mark, J. W.; Sharp, W. M.; Yu, S. S.

    1983-10-01

    Hydrodynamic models were derived to describe energetic self-pinched beams, such as those used in ion-beam fusion. The closure of the Mark-Yu model is obtained with adiabatic assumptions mathematically analogous to those of Chew, Goldberger, and Low for MHD. The other models treated here use an ideal gas closure and a closure by Newcomb based on an expansion in V/sub th//V/sub z/. Features of these hydrodynamic beam models are compared with a kinetic treatment.

  7. Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation

    NASA Astrophysics Data System (ADS)

    Heller, Michal P.; Spaliński, Michał

    2015-08-01

    Consistent formulations of relativistic viscous hydrodynamics involve short-lived modes, leading to asymptotic rather than convergent gradient expansions. In this Letter we consider the Müller-Israel-Stewart theory applied to a longitudinally expanding quark-gluon plasma system and identify hydrodynamics as a universal attractor without invoking the gradient expansion. We give strong evidence for the existence of this attractor and then show that it can be recovered from the divergent gradient expansion by Borel summation. This requires careful accounting for the short-lived modes which leads to an intricate mathematical structure known from the theory of resurgence.

  8. Kubo Formulas for Second-Order Hydrodynamic Coefficients

    SciTech Connect

    Moore, Guy D.; Sohrabi, Kiyoumars A.

    2011-03-25

    At second order in gradients, conformal relativistic hydrodynamics depends on the viscosity {eta} and on five additional ''second-order'' hydrodynamical coefficients {tau}{sub {Pi}}, {kappa}, {lambda}{sub 1}, {lambda}{sub 2}, and {lambda}{sub 3}. We derive Kubo relations for these coefficients, relating them to equilibrium, fully retarded three-point correlation functions of the stress tensor. We show that the coefficient {lambda}{sub 3} can be evaluated directly by Euclidean means and does not in general vanish.

  9. Quantum cohomology and quantum hydrodynamics from supersymmetric quiver gauge theories

    NASA Astrophysics Data System (ADS)

    Bonelli, Giulio; Sciarappa, Antonio; Tanzini, Alessandro; Vasko, Petr

    2016-11-01

    We study the connection between N = 2 supersymmetric gauge theories, quantum cohomology and quantum integrable systems of hydrodynamic type. We consider gauge theories on ALE spaces of A and D-type and discuss how they describe the quantum cohomology of the corresponding Nakajima's quiver varieties. We also discuss how the exact evaluation of local BPS observables in the gauge theory can be used to calculate the spectrum of quantum Hamiltonians of spin Calogero integrable systems and spin Intermediate Long Wave hydrodynamics. This is explicitly obtained by a Bethe Ansatz Equation provided by the quiver gauge theory in terms of its adjacency matrix.

  10. Numerical simulation of boiling water reactor ventclearing hydrodynamics

    SciTech Connect

    Nichols, B.D.; Hirt, C.W.

    1980-02-01

    Pressure suppression pools used in nuclear reactors are subject to hydrodynamic processes involving complicated free surface configurations. A new numerical method, SOLA-VOF, developed to handle such problems is described and evaluated through comparisons with laboratory test data. Results from numerous computations provide a detailed understanding of the hydrodynamic phenomena associated with boiling water reactor vent-clearing processes. In addition, calculations show the sensitivity of the results to variations in the water vapor content, vent submergence depth, vent orifice size, and to the influence of fluid-structure interactions.

  11. Hydrodynamics of Hemostasis in Sickle-Cell Disease

    NASA Astrophysics Data System (ADS)

    Cohen, S. I. A.; Mahadevan, L.

    2013-03-01

    Vaso-occlusion, the stoppage of blood flow in sickle-cell disease, is a complex dynamical process spanning multiple time and length scales. Motivated by recent ex vivo microfluidic measurements of hemostasis using blood from sickle-cell patients, we develop a multiphase model that couples the kinetics and hydrodynamics of a flowing suspension of normal and sickled cells in a fluid. We use the model to derive expressions for the cell velocities and concentrations that quantify the hydrodynamics of hemostasis, and provide simple criteria as well as a phase diagram for occlusion, consistent with our simulations and earlier observations.

  12. Purely hydrodynamic origin for swarming of swimming particles

    NASA Astrophysics Data System (ADS)

    Oyama, Norihiro; Molina, John Jairo; Yamamoto, Ryoichi

    2016-04-01

    Three-dimensional simulations with fully resolved hydrodynamics are performed to study the collective motion of model swimmers in bulk and confinement. Calculating the dynamic structure factor, we clarified that the swarming in bulk systems can be understood as a pseudoacoustic mode. Under confinement between flat parallel walls, this pseudoacoustic mode leads to a traveling wavelike motion. This swarming behavior is due purely to the hydrodynamic interactions between the swimmers and depends strongly on the type and strength of swimming (i.e., pusher or puller).

  13. Hydrodynamic controls on particle transport through heterogeneous porous media. Technical progress report

    SciTech Connect

    Silliman, S.E.

    1992-09-30

    The initial stages of this project have been focused on equipment development and preliminary experimental efforts. Among the accomplishments to date are the development of a successful flow cell design, proof of the utility of the UV resin, adjustment of the Laser Particle Counter to produce reliable readings, installation of a low particle content water supply, installation of a microscope for viewing discharge samples, development of a fiber/rod optic system for freezing the UV resin in situ and performance of initial experiments on layered and complex heterogeneities. The work is currently following very closely the original schedule for research efforts. Continuing efforts in year one will include continued efforts in simple and complex heterogeneity in two-dimensions, extension into three-dimensions, consideration of the most appropriate methods for creating geologically realistic structures in the laboratory, interaction with other SSP research programs and organization of the spring meeting on intermediate-scale experimentation to be held at Notre Dame. Efforts in year two will be focused on three-dimensional experiments in saturated media, extension of results into unsaturated media, development of techniques for unsaturated media characterization, and development of research ties with outside research interests.

  14. Topics in physico-chemical hydrodynamics. Progress report No. 2, November 1, 1989--October 31, 1990

    SciTech Connect

    Sivashinsky, G.

    1990-12-31

    This report discusses: Theory of turbulent flame speed; flame extinction by periodic flow field; influence of swirl on the structure and extinction of premixed flames; propagation and extinction of nonsteady spherical flame fronts; geometrically invariant formulation of the intrinsic dynamics of premixed flames; nonlinear dynamics of oscillatory regime of premixed combustion; and pattern formation in premixed flames. (LSP)

  15. A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

    NASA Astrophysics Data System (ADS)

    Alaia, Alessandro; Puppo, Gabriella

    2012-06-01

    In this work we present a non stationary domain decomposition algorithm for multiscale hydrodynamic-kinetic problems, in which the Knudsen number may span from equilibrium to highly rarefied regimes. Our approach is characterized by using the full Boltzmann equation for the kinetic regime, the Compressible Euler equations for equilibrium, with a buffer zone in which the BGK-ES equation is used to represent the transition between fully kinetic to equilibrium flows. In this fashion, the Boltzmann solver is used only when the collision integral is non-stiff, and the mean free path is of the same order as the mesh size needed to capture variations in macroscopic quantities. Thus, in principle, the same mesh size and time steps can be used in the whole computation. Moreover, the time step is limited only by convective terms. Since the Boltzmann solver is applied only in wholly kinetic regimes, we use the reduced noise DSMC scheme we have proposed in Part I of the present work. This ensures a smooth exchange of information across the different domains, with a natural way to construct interface numerical fluxes. Several tests comparing our hybrid scheme with full Boltzmann DSMC computations show the good agreement between the two solutions, on a wide range of Knudsen numbers.

  16. Effective hydrodynamic field theory and condensation picture of topological insulators

    NASA Astrophysics Data System (ADS)

    Chan, AtMa P. O.; Kvorning, Thomas; Ryu, Shinsei; Fradkin, Eduardo

    2016-04-01

    While many features of topological band insulators are commonly discussed at the level of single-particle electron wave functions, such as the gapless Dirac boundary spectrum, it remains elusive to develop a hydrodynamic or collective description of fermionic topological band insulators in 3+1 dimensions. As the Chern-Simons theory for the 2+1-dimensional quantum Hall effect, such a hydrodynamic effective field theory provides a universal description of topological band insulators, even in the presence of interactions, and that of putative fractional topological insulators. In this paper, we undertake this task by using the functional bosonization. The effective field theory in the functional bosonization is written in terms of a two-form gauge field, which couples to a U (1 ) gauge field that arises by gauging the continuous symmetry of the target system [the U (1 ) particle number conservation]. Integrating over the U (1 ) gauge field by using the electromagnetic duality, the resulting theory describes topological band insulators as a condensation phase of the U (1 ) gauge theory (or as a monopole condensation phase of the dual gauge field). The hydrodynamic description of the surface of topological insulators and the implication of its duality are also discussed. We also touch upon the hydrodynamic theory of fractional topological insulators by using the parton construction.

  17. [New procedure for protein spinning: the hydrodynamic process].

    PubMed

    Castaigne, F; Liber, E; Carbillet, L; Boulet, M; Riel, R R

    1978-01-01

    In this text, we describe a new protein spinning process called hydrodynamic process. Parameters which are related to production of fibers and which can influence diameter and texture are explained extensively. In this process, a spinning dope is extruded through a spinnerette in a moving coagulation bath in which the fibers are coagulated, stretched and carried.

  18. Effect of hydrodynamic pressure processing on chevon quality characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrodynamic pressure processing (HDP) technology, which involves exposure of packaged meat to a supersonic shock wave under water created by a small amount of explosive, has been shown to improve meat tenderness, but its effect on chevon tenderness has not been studied so far. The objective of this...

  19. Accurate simulation dynamics of microscopic filaments using ``caterpillar'' Oseen hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bailey, A. G.; Lowe, C. P.; Pagonabarraga, I.; Lagomarsino, M. Cosentino

    2009-10-01

    Microscopic semiflexible filaments suspended in a viscous fluid are widely encountered in biophysical problems. The classic example is the flagella used by microorganisms to generate propulsion. Simulating the dynamics of these filaments numerically is complicated because of the coupling between the motion of the filament and that of the surrounding fluid. An attractive idea is to simplify this coupling by modeling the fluid motion by using Stokeslets distributed at equal intervals along the model filament. We show that, with an appropriate choice of the hydrodynamic radii, one can recover accurate hydrodynamic behavior of a filament with a finite cross section without requiring an explicit surface. This is true, however, only if the hydrodynamic radii take specific values and that they differ in the parallel and perpendicular directions leading to a caterpillarlike hydrodynamic shape. Having demonstrated this, we use the model to compare with analytic theory of filament deformation and rotation in the small deformation limit. Generalization of the methodology, including application to simulations using the Rotne-Prager tensor, is discussed.

  20. Hydrodynamic Properties of Planing Surfaces and Flying Boats

    NASA Technical Reports Server (NTRS)

    Sokolov, N. A.

    1950-01-01

    The study of the hydrodynamic properties of planing bottom of flying boats and seaplane floats is at the present time based exclusively on the curves of towing tests conducted in tanks. In order to provide a rational basis for the test procedure in tanks and practical design data, a theoretical study must be made of the flow at the step and relations derived that show not only qualitatively but quantitatively the inter-relations of the various factors involved. The general solution of the problem of the development of hydrodynamic forces during the motion of the seaplane float or flying boat is very difficult for it is necessary to give a three-dimensional solution, which does not always permit reducing the analysis to the form of workable computation formulas. On the other had, the problem is complicated by the fact that the object of the analysis is concerned with two fluid mediums, namely, air and water, which have a surface of density discontinuity between them. The theoretical and experimental investigations on the hydrodynamics of a ship cannot be completely carried over to the design of floats and flying-boat hulls, because of the difference in the shape of the contour lines of the bodies, and, because of the entirely different flow conditions from the hydrodynamic viewpoint.

  1. Multiparticle adhesive dynamics: Hydrodynamic recruitment of rolling leukocytes

    PubMed Central

    King, Michael R.; Hammer, Daniel A.

    2001-01-01

    The slow rolling motion of leukocytes along the walls of blood vessels mediated by specific receptor-ligand adhesion is important in inflammation and occurs in postcapillary venules over a wide range of wall shear stresses and vessel diameters. The ability of hydrodynamic collisions between cells to induce capture of free-stream leukocytes to a selectin-bearing surface under shear flow was studied experimentally by using a cell-free assay. It was found that carbohydrate-coated spherical beads, representing model leukocytes, tend to attach to the adhesive wall 4–5 cell diameters up- or downstream of a slowly rolling or stationary adhesive bead. A key feature of such “hydrodynamic recruitment” is that only glancing, indirect collisions occurring close to the plane will result in downstream attachment. A direct numerical simulation of cell capture and rolling that includes multiparticle hydrodynamic interactions is shown to reproduce the observed behavior accurately. The theory predicts that hydrodynamic recruitment will occur in the absence of buoyancy effects and over a range of shear rates, suggesting that the mechanism may be important in vivo. This theory is supported by measurements of leukocyte capture in vivo using the hamster cheek pouch model. PMID:11752440

  2. MONTE CARLO RADIATION-HYDRODYNAMICS WITH IMPLICIT METHODS

    SciTech Connect

    Roth, Nathaniel; Kasen, Daniel

    2015-03-15

    We explore the application of Monte Carlo transport methods to solving coupled radiation-hydrodynamics (RHD) problems. We use a time-dependent, frequency-dependent, three-dimensional radiation transport code that is special relativistic and includes some detailed microphysical interactions such as resonant line scattering. We couple the transport code to two different one-dimensional (non-relativistic) hydrodynamics solvers: a spherical Lagrangian scheme and a Eulerian Godunov solver. The gas–radiation energy coupling is treated implicitly, allowing us to take hydrodynamical time-steps that are much longer than the radiative cooling time. We validate the code and assess its performance using a suite of radiation hydrodynamical test problems, including ones in the radiation energy dominated regime. We also develop techniques that reduce the noise of the Monte Carlo estimated radiation force by using the spatial divergence of the radiation pressure tensor. The results suggest that Monte Carlo techniques hold promise for simulating the multi-dimensional RHD of astrophysical systems.

  3. Hydrodynamics of Collisionless Boltzmann Equation for a Highly Flattened Galaxy

    NASA Astrophysics Data System (ADS)

    Aoki, S.

    The collisionless Boltzmann equation is studied in order to be connected with hydrodynamic equations. Each of the later equations can be obtained by taking a moment of the former equation. The difficulty against the system of moment equations, called closure problem, can be overtaken by a trick of neglecting the terms of higher order moments under small-pressure assumption.

  4. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Berg, Jared; Harris, Michael F.

    2014-01-01

    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  5. Hydrodynamics of Inclusions in Freely Suspended Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Qi, Zhiyuan

    Hydrodynamic interaction of pairs of circular inclusions in two-dimensional (2D), fluid smectic membranes suspended in air has been studied systematically. By analyzing their Brownian motion, it is found that the radial mutual mobilities of identical inclusions are independent of their size but that the angular coupling becomes strongly size-dependent when their radius exceeds a characteristic hydrodynamic length. These observations are described well for arbitrary inclusion separations by a model that generalizes the Levine/MacKintosh theory of point-force response functions and uses a boundary-element approach to calculate the mobility matrix for inclusions of finite extent. Beyond that, 2D flow fields generated by a rigid, oscillating post inserted in the film have been measured by analyzing the motion of tracer particles and provide a detailed understanding of the hydrodynamic behavior in the film/gas system. The Brownian diffusion of micron-scale inclusions in freely suspended smectic A liquid crystal films a few nanometers thick and several millimeters in diameter depends strongly on the air surrounding the film. Near atmospheric pressure, the three-dimensionally coupled film/gas system is well described by Hughes/Pailthorpe/White hydrodynamic theory but at lower pressure, the diffusion coefficient increases substantially, tending in high vacuum toward the two-dimensional limit where it is determined by film size. In the absence of air, the films are found to be a nearly ideal physical realization of a two-dimensional, incompressible Newtonian fluid.

  6. Hydrodynamic coarsening in striped pattern formation with a conservation law.

    PubMed

    Shiwa, Y

    2005-07-01

    We observed in numerical simulations that the interaction of striped-pattern-forming instability and a neutrally stable zero mode induces patterns of domains of upflow hexagons coexisting with domains of downflow hexagons. They appear only when hydrodynamic flow is present.

  7. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  8. Machine learning and cosmological simulations - II. Hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Kamdar, Harshil M.; Turk, Matthew J.; Brunner, Robert J.

    2016-04-01

    We extend a machine learning (ML) framework presented previously to model galaxy formation and evolution in a hierarchical universe using N-body + hydrodynamical simulations. In this work, we show that ML is a promising technique to study galaxy formation in the backdrop of a hydrodynamical simulation. We use the Illustris simulation to train and test various sophisticated ML algorithms. By using only essential dark matter halo physical properties and no merger history, our model predicts the gas mass, stellar mass, black hole mass, star formation rate, g - r colour, and stellar metallicity fairly robustly. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon a solid hydrodynamical simulation. The promising reproduction of the listed galaxy properties demonstrably place ML as a promising and a significantly more computationally efficient tool to study small-scale structure formation. We find that ML mimics a full-blown hydrodynamical simulation surprisingly well in a computation time of mere minutes. The population of galaxies simulated by ML, while not numerically identical to Illustris, is statistically robust and physically consistent with Illustris galaxies and follows the same fundamental observational constraints. ML offers an intriguing and promising technique to create quick mock galaxy catalogues in the future.

  9. Dynamic density functional theory with hydrodynamic interactions and fluctuations.

    PubMed

    Donev, Aleksandar; Vanden-Eijnden, Eric

    2014-06-21

    We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, "Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps," Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, "A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law," J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.

  10. Prototype Mixed Finite Element Hydrodynamics Capability in ARES

    SciTech Connect

    Rieben, R N

    2008-07-10

    This document describes work on a prototype Mixed Finite Element Method (MFEM) hydrodynamics algorithm in the ARES code, and its application to a set of standard test problems. This work is motivated by the need for improvements to the algorithms used in the Lagrange hydrodynamics step to make them more robust. We begin by identifying the outstanding issues with traditional numerical hydrodynamics algorithms followed by a description of the proposed method and how it may address several of these longstanding issues. We give a theoretical overview of the proposed MFEM algorithm as well as a summary of the coding additions and modifications that were made to add this capability to the ARES code. We present results obtained with the new method on a set of canonical hydrodynamics test problems and demonstrate significant improvement in comparison to results obtained with traditional methods. We conclude with a summary of the issues still at hand and motivate the need for continued research to develop the proposed method into maturity.

  11. Comparison of hydrostatic and hydrodynamic pressure to inactivate foodborne viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high hydrostatic pressure (HPP) and hydrodynamic pressure (HDP), in combination with chemical treatments, was evaluated for inactivation of foodborne viruses and non-pathogenic surrogates in a pork sausage product. Sausages were immersed in water, 100 ppm EDTA, or 2 percent lactoferrin...

  12. Dynamic density functional theory with hydrodynamic interactions and fluctuations

    SciTech Connect

    Donev, Aleksandar Vanden-Eijnden, Eric

    2014-06-21

    We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, “Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps,” Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, “A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law,” J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.

  13. HYDRODYNAMIC AND TRANSPORT MODELING STUDY IN A HIGHLY STRATIFIED ESTUARY

    EPA Science Inventory

    This paper presents the preliminary results of hydrodynamic and salinity predictions and the implications to an ongoing contaminated sediment transport and fate modeling effort in the Lower Duwamish Waterway (LDW), Seattle, Washington. The LDW is highly strati-fied when freshwate...

  14. Inactivation and injury of pathogenic bacteria by hydrodynamic pressure treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrodynamic pressure processing (HDP) is an innovative non-thermal technology developed for improving meat tenderness. The shock waves generated in the HDP process cause significant disruption of myofibrillar proteins in muscle tissue resulting in improved tenderness of various beef cuts. The same ...

  15. The control method for the lattice hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Ge, Hong-Xia; Cui, Yu; Zhu, Ke-Qiang; Cheng, Rong-Jun

    2015-05-01

    The delayed-feedback control method is applied for lattice hydrodynamic model of traffic flow. The linear stability condition with and without control signal are derived through linear and nonlinear analysis. Numerical simulation is carried out and the results confirm that the traffic congested can be suppressed efficiently by considering the control signal.

  16. Hydrodynamic resistance of confined cells in rectangular microchannels

    NASA Astrophysics Data System (ADS)

    Khan, Zeina S.; Vanapalli, Siva A.

    2011-03-01

    Several microfluidic approaches have been developed to screen suspended cells mechanically in microchannels by exploiting characteristics that are linked to their individual mechanical properties. Typically changes in cell shape due to shear-induced deformation and transit times are reported; while these measurements are qualitative compared to more precise techniques such as atomic force microscopy and micropipette aspiration their advantage lies in throughput, with the ability to screen hundreds to thousands of cells in a minute. We study the potential of a microfluidic cell squeezer to characterize the hydrodynamic resistance of LNCaP prostate cancer cells by measuring dynamical pressure-drop variations along a micrometer-sized channel. The hydrodynamic resistance of the cell introduces an excess pressure drop in the narrow channel which depends on the mechanical stiffness of the cell. We additionally visualize the cell size and assess the influence of cell size on the hydrodynamic resistance of each cell, demonstrating the capability of the microfluidic cell squeezer to yield the hydrodynamic resistance as a mechanical fingerprint of cells.

  17. Thigmomorphogenetic responses of an aquatic macrophyte to hydrodynamic stress

    PubMed Central

    Schoelynck, Jonas; Puijalon, Sara; Meire, Patrick; Struyf, Eric

    2015-01-01

    The response of aquatic plants to abiotic factors is a crucial study topic, because the diversity of aquatic vegetation is strongly related to specific adaptations to a variety of environments. This biodiversity ensures resilience of aquatic communities to new and changing ecological conditions. In running water, hydrodynamic disturbance is one of the key factors in this context. While plant adaptations to resource stress (nutrients, light…) are well documented, adaptations to mechanical stress, particularly flow, are largely unknown. The submerged species Egeria densa was used in an experiment to detect whether the presence or absence of hydrodynamic stress causes plant thigmomorphogenetic responses (i) in terms of plant biogenic silica (BSi), cellulose and lignin concentrations, and (ii) in terms of plant strength. Plant silica concentrations, as well as lignin concentrations were significantly higher in presence of hydrodynamic stress. These physiological changes are accompanied by some significant changes in stem biomechanical traits: stem resistance to tensile forces (breaking force and breaking strength) and stiffness were higher for plants exposed to hydrodynamic stress. We conclude that the response of this aquatic plant species to mechanical stress is likely the explaining factor for a higher capacity to tolerate stress through the production of mechanically hardened shoots. PMID:25699070

  18. Hydrodynamic studies of oxygen, neon, and magnesium novae

    NASA Technical Reports Server (NTRS)

    Starrfield, Sumner; Sparks, W. M.; Truran, J. W.

    1987-01-01

    Results are presented from recent theoretical studies that have examined the properties of nova outbursts on ONeMg white dwarfs. These outbursts are much more violent and occur much more frequently than outbursts on CO white dwarfs. Hydrodynamic simulations of both kinds of outbursts are in excellent agreement with the observations.

  19. Alignments of galaxies and halos in hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Libeskind, Noam I.

    2016-10-01

    We use a 200 h -1Mpc cosmological hydrodynamical simulation to examine the alignments of galaxies with respect to the host halo. We do separate study for the different components of the halo, such as stars, gas and dark matter. We show that angular momentum of gas is more aligned with the angular momentum of host halo compared with the stellar component.

  20. Ecological consequences of major hydrodynamic disturbances on coral reefs.

    PubMed

    Madin, Joshua S; Connolly, Sean R

    2006-11-23

    A recent tsunami and an apparent increase in the frequency of severe tropical storms underscore the need to understand and predict the ecological consequences of major hydrodynamic disturbances. Reef corals provide the habitat structure that sustains the high biodiversity of tropical reefs, and thus provide the foundation for the ecosystem goods and services that are critical to many tropical societies. Here we integrate predictions from oceanographic models with engineering theory, to predict the dislodgement of benthic reef corals during hydrodynamic disturbances. This generalizes earlier work, by incorporating colonies of any shape and by explicitly examining the effects of hydrodynamic gradients on coral assemblage structure. A field test shows that this model accurately predicts changes in the mechanical vulnerability of coral colonies, and thus their size and shape, with distance from the reef crest. This work provides a general framework for understanding and predicting the effects of hydrodynamic disturbances on coral reef communities; such disturbances have a major role in determining species zonation and coexistence on coral reefs, and are critical determinants of how coral assemblages will respond to changes in the frequency and intensity of tropical storms associated with a changing climate. PMID:17122855

  1. Supernova-relevant hydrodynamic instability experiments on the Nova Laser

    SciTech Connect

    Kane, J.; arnett, D.; Remington, B.A.; Glendinning, S.G.; wallace, R.; Mangan, R.; Rubenchik, A.; Fryxell, B.A.

    1997-04-18

    Supernova 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. The target consists of two-layer planar package composed on 85 micron Cu backed by 500 micron CH2, having a single mode sinusoidal perturbation at the interface, with gamma = 200 microns, nuo + 20 microns. The Nova laser is used to generate a 10-15 Mbar (10- 15x10{sup 12} dynes/cm2) shock at the interface, which triggers perturbation growth, due to the Richtmyer-Meshov instability followed by the Raleigh-Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at the intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamic codes HYADES and CALE, and the supernova code PROMETHEUS. We are designing experiments to test the differences in the growth of 2D vs 3D single mode perturbations; such differences may help explain the high observed velocities of radioactive core material in SN1987A. Results of the experiments and simulations are presented.

  2. Fluctuating Hydrodynamics Confronts the Rapidity Dependence of Transverse Momentum Fluctuations

    NASA Astrophysics Data System (ADS)

    Pokharel, Rajendra; Gavin, Sean; Moschelli, George

    2012-10-01

    Interest in the development of the theory of fluctuating hydrodynamics is growing [1]. Early efforts suggested that viscous diffusion broadens the rapidity dependence of transverse momentum correlations [2]. That work stimulated an experimental analysis by STAR [3]. We attack this new data along two fronts. First, we compute STAR's fluctuation observable using the NeXSPheRIO code, which combines fluctuating initial conditions from a string fragmentation model with deterministic viscosity-free hydrodynamic evolution. We find that NeXSPheRIO produces a longitudinal narrowing, in contrast to the data. Second, we study the hydrodynamic evolution using second order causal viscous hydrodynamics including Langevin noise. We obtain a deterministic evolution equation for the transverse momentum density correlation function. We use the latest theoretical equations of state and transport coefficients to compute STAR's observable. The results are in excellent accord with the measured broadening. In addition, we predict features of the distribution that can distinguish 2nd and 1st order diffusion. [4pt] [1] J. Kapusta, B. Mueller, M. Stephanov, arXiv:1112.6405 [nucl-th].[0pt] [2] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006)[0pt] [3] H. Agakishiev et al., STAR, STAR, Phys. Lett. B704

  3. A Microfluidic-based Hydrodynamic Trap for Single Particles

    PubMed Central

    Johnson-Chavarria, Eric M.; Tanyeri, Melikhan; Schroeder, Charles M.

    2011-01-01

    The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in

  4. Warm dense mater: another application for pulsed power hydrodynamics

    SciTech Connect

    Reinovsky, Robert Emil

    2009-01-01

    Pulsed Power Hydrodynamics (PPH) is an application of low-impedance pulsed power, and high magnetic field technology to the study of advanced hydrodynamic problems, instabilities, turbulence, and material properties. PPH can potentially be applied to the study of the properties of warm dense matter (WDM) as well. Exploration of the properties of warm dense matter such as equation of state, viscosity, conductivity is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to slightly above solid density) and modest temperatures ({approx}1-10 eV). Conditions characteristic of WDM are difficult to obtain, and even more difficult to diagnose. One approach to producing WDM uses laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers are applying these techniques. Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through multiple shock compression and heating of normal density material between a massive, high density, energetic liner and a high density central 'anvil' are possible ways to reach relevant conditions. Another avenue to WDM conditions is through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. In this paper we will examine the challenges to pulsed power technology and to pulsed power systems presented by the opportunity to explore this interesting region of parameter space.

  5. Hydrodynamic outcomes of planet scattering in transitional discs

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas; Armitage, Philip J.

    2012-01-01

    A significant fraction of unstable multiple planet systems are likely to scatter during the transitional disc phase as gas damping becomes ineffectual. Using a large ensemble of FARGO hydrodynamic simulations and MERCURY N-body integrations, we directly follow the dynamics of planet-disc and planet-planet interactions through the clearing phase and through 50 Myr of planetary system evolution. Disc clearing is assumed to occur as a result of X-ray-driven photoevaporation. We find that the hydrodynamic evolution of individual scattering systems is complex, and can involve phases in which massive planets orbit within eccentric gaps, or accrete directly from the disc without a gap. Comparing the results to a reference gas-free model, we find that the N-body dynamics and hydrodynamics of scattering into one- and two-planet final states are almost identical. The eccentricity distributions in these channels are almost unaltered by the presence of gas. The hydrodynamic simulations, however, also form a population of low-eccentricity three-planet systems in long-term stable configurations, which are not found in N-body runs. The admixture of these systems results in modestly lower eccentricities in hydrodynamic as opposed to gas-free simulations. The precise incidence of these three-planet systems is likely a function of the initial conditions; different planet set-ups (number or spacing) may change the quantitative character of this result. We analyse the properties of surviving multiple planet systems, and show that only a small fraction (a few per cent) enter mean motion resonances after scattering, while a larger fraction form stable resonant chains and avoid scattering entirely. Our results remain consistent with the hypothesis that exoplanet eccentricity results from scattering, though the detailed agreement between observations and gas-free simulation results is likely coincidental. We discuss the prospects for further tests of scattering models by observing planets

  6. Event-by-event hydrodynamics: A better tool to study the Quark-Gluon plasma

    SciTech Connect

    Grassi, Frederique

    2013-03-25

    Hydrodynamics has been established as a good tool to describe many data from relativistic heavyion collisions performed at RHIC and LHC. More recently, it has become clear that it is necessary to use event-by-event hydrodynamics (i.e. describe each collision individually using hydrodynamics), an approach first developed in Brazil. In this paper, I review which data require the use of event-by-event hydrodynamics and what more we may learn on the Quark-Gluon Plasma with this.

  7. Models of Jupiter's growth incorporating thermal and hydrodynamic constraints

    NASA Astrophysics Data System (ADS)

    Lissauer, Jack J.; Hubickyj, Olenka; D'Angelo, Gennaro; Bodenheimer, Peter

    2009-02-01

    We model the growth of Jupiter via core nucleated accretion, applying constraints from hydrodynamical processes that result from the disk-planet interaction. We compute the planet's internal structure using a well tested planetary formation code that is based upon a Henyey-type stellar evolution code. The planet's interactions with the protoplanetary disk are calculated using 3-D hydrodynamic simulations. Previous models of Jupiter's growth have taken the radius of the planet to be approximately one Hill sphere radius, R. However, 3-D hydrodynamic simulations show that only gas within ˜0.25R remains bound to the planet, with the more distant gas eventually participating in the shear flow of the protoplanetary disk. Therefore in our new simulations, the planet's outer boundary is placed at the location where gas has the thermal energy to reach the portion of the flow not bound to the planet. We find that the smaller radius increases the time required for planetary growth by ˜5%. Thermal pressure limits the rate at which a planet less than a few dozen times as massive as Earth can accumulate gas from the protoplanetary disk, whereas hydrodynamics regulates the growth rate for more massive planets. Within a moderately viscous disk, the accretion rate peaks when the planet's mass is about equal to the mass of Saturn. In a less viscous disk hydrodynamical limits to accretion are smaller, and the accretion rate peaks at lower mass. Observations suggest that the typical lifetime of massive disks around young stellar objects is ˜3 Myr. To account for the dissipation of such disks, we perform some of our simulations of Jupiter's growth within a disk whose surface gas density decreases on this timescale. In all of the cases that we simulate, the planet's effective radiating temperature rises to well above 1000 K soon after hydrodynamic limits begin to control the rate of gas accretion and the planet's distended envelope begins to contract. According to our simulations

  8. Efficient three-dimensional reconstruction of aquatic vegetation geometry: Estimating morphological parameters influencing hydrodynamic drag

    NASA Astrophysics Data System (ADS)

    Liénard, Jean; Lynn, Kendra; Strigul, Nikolay; Norris, Benjamin K.; Gatziolis, Demetrios; Mullarney, Julia C.; Bryan, Karin, R.; Henderson, Stephen M.

    2016-09-01

    Aquatic vegetation can shelter coastlines from energetic waves and tidal currents, sometimes enabling accretion of fine sediments. Simulation of flow and sediment transport within submerged canopies requires quantification of vegetation geometry. However, field surveys used to determine vegetation geometry can be limited by the time required to obtain conventional caliper and ruler measurements. Building on recent progress in photogrammetry and computer vision, we present a method for reconstructing three-dimensional canopy geometry. The method was used to survey a dense canopy of aerial mangrove roots, called pneumatophores, in Vietnam's Mekong River Delta. Photogrammetric estimation of geometry required 1) taking numerous photographs at low tide from multiple viewpoints around 1 m2 quadrats, 2) computing relative camera locations and orientations by triangulation of key features present in multiple images and reconstructing a dense 3D point cloud, and 3) extracting pneumatophore locations and diameters from the point cloud data. Step 3) was accomplished by a new 'sector-slice' algorithm, yielding geometric parameters every 5 mm along a vertical profile. Photogrammetric analysis was compared with manual caliper measurements. In all 5 quadrats considered, agreement was found between manual and photogrammetric estimates of stem number, and of number × mean diameter, which is a key parameter appearing in hydrodynamic models. In two quadrats, pneumatophores were encrusted with numerous barnacles, generating a complex geometry not resolved by hand measurements. In remaining cases, moderate agreement between manual and photogrammetric estimates of stem diameter and solid volume fraction was found. By substantially reducing measurement time in the field while capturing in greater detail the 3D structure, photogrammetry has potential to improve input to hydrodynamic models, particularly for simulations of flow through large-scale, heterogenous canopies.

  9. Neutrino signature of supernova hydrodynamical instabilities in three dimensions.

    PubMed

    Tamborra, Irene; Hanke, Florian; Müller, Bernhard; Janka, Hans-Thomas; Raffelt, Georg

    2013-09-20

    The first full-scale three-dimensional core-collapse supernova (SN) simulations with sophisticated neutrino transport show pronounced effects of the standing accretion shock instability (SASI) for two high-mass progenitors (20 and 27 M([Symbol: see text])). In a low-mass progenitor (11.2 M([Symbol: see text])), large-scale convection is the dominant nonradial hydrodynamic instability in the postshock accretion layer. The SASI-associated modulation of the neutrino signal (80 Hz in our two examples) will be clearly detectable in IceCube or the future Hyper-Kamiokande detector, depending on progenitor properties, distance, and observer location relative to the main SASI sloshing direction. The neutrino signal from the next galactic SN can, therefore, diagnose the nature of the hydrodynamic instability.

  10. Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene.

    PubMed

    Strong, Steven E; Eaves, Joel D

    2016-05-19

    Mirroring their role in electrical and optical physics, two-dimensional crystals are emerging as novel platforms for fluid separations and water desalination, which are hydrodynamic processes that occur in nanoscale environments. For numerical simulation to play a predictive and descriptive role, one must have theoretically sound methods that span orders of magnitude in physical scales, from the atomistic motions of particles inside the channels to the large-scale hydrodynamic gradients that drive transport. Here, we use constraint dynamics to derive a nonequilibrium molecular dynamics method for simulating steady-state mass flow of a fluid moving through the nanoscopic spaces of a porous solid. After validating our method on a model system, we use it to study the hydrophobic effect of water moving through pores of electrically doped single-layer graphene. The trend in permeability that we calculate does not follow the hydrophobicity of the membrane but is instead governed by a crossover between two competing molecular transport mechanisms.

  11. Swimmers in Thin Films: From Swarming to Hydrodynamic Instabilities

    NASA Astrophysics Data System (ADS)

    Leoni, Marco; Liverpool, Tanniemola B.

    2010-12-01

    We investigate theoretically the collective dynamics of a suspension of low Reynolds number swimmers that are confined to two dimensions by a thin fluid film. Our model swimmer is characterized by internal degrees of freedom which locally exert active stresses on the fluid. We find that hydrodynamic interactions mediated by the film can give rise to spontaneous continuous symmetry breaking (swarming), to states with either polar or nematic homogeneous order. For dipolar swimmers, the stroke averaged dynamics are enough to determine the leading contributions to the collective behavior. In contrast, for quadrupolar swimmers, details of the internal dynamics are important in determining the bulk behavior. In the broken symmetry phases, fluctuations of hydrodynamic variables destabilize order. Interestingly, this instability is not generic and depends on the length scale.

  12. Hydrodynamic granular segregation induced by boundary heating and shear

    NASA Astrophysics Data System (ADS)

    Reyes, Francisco Vega; Garzó, Vicente; Khalil, Nagi

    2014-05-01

    Segregation induced by a thermal gradient of an impurity in a driven low-density granular gas is studied. The system is enclosed between two parallel walls from which we input thermal energy to the gas. We study here steady states occurring when the inelastic cooling is exactly balanced by some external energy input (stochastic force or viscous heating), resulting in a uniform heat flux. A segregation criterion based on Navier-Stokes granular hydrodynamics is written in terms of the tracer diffusion transport coefficients, whose dependence on the parameters of the system (masses, sizes, and coefficients of restitution) is explicitly determined from a solution of the inelastic Boltzmann equation. The theoretical predictions are validated by means of Monte Carlo and molecular dynamics simulations, showing that Navier-Stokes hydrodynamics produces accurate segregation criteria even under strong shearing and/or inelasticity.

  13. Hydrodynamic effects in the atmosphere of variable stars

    NASA Technical Reports Server (NTRS)

    Davis, C. G., Jr.; Bunker, S. S.

    1975-01-01

    Numerical models of variable stars are established, using a nonlinear radiative transfer coupled hydrodynamics code. The variable Eddington method of radiative transfer is used. Comparisons are for models of W Virginis, beta Doradus, and eta Aquilae. From these models it appears that shocks are formed in the atmospheres of classical Cepheids as well as W Virginis stars. In classical Cepheids, with periods from 7 to 10 days, the bumps occurring in the light and velocity curves appear as the result of a compression wave that reflects from the star's center. At the head of the outward going compression wave, shocks form in the atmosphere. Comparisons between the hydrodynamic motions in W Virginis and classical Cepheids are made. The strong shocks in W Virginis do not penetrate into the interior as do the compression waves formed in classical Cepheids. The shocks formed in W Virginis stars cause emission lines, while in classical Cepheids the shocks are weaker.

  14. 3D Kinematics and Hydrodynamic Analysis of Freely Swimming Cetacean

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Sheinberg, Dustin; Liu, Geng; Dong, Haibo; Fish, Frank; Javed, Joveria

    2015-11-01

    It's widely thought that flexibility and the ability to control flexibility are crucial elements in determining the performance of animal swimming. However, there is a lack of quantification of both span-wise and chord-wise deformation of Cetacean's flukes and associated hydrodynamic performance during actively swimming. To fill this gap, we examined the motion and flexure of both dolphin fluke and orca fluke in steady swimming using a combined experimental and computational approach. It is found that the fluke surface morphing can effectively modulate the flow structures and influence the propulsive performance. Findings from this work are fundamental for understanding key kinematic features of effective Cetacean propulsors, and for quantifying the hydrodynamic force production that naturally occurs during different types of swimming. This work is supported by ONR MURI N00014-14-1-0533 and NSF CBET-1313217.

  15. Hydrodynamic properties of rodlike and disklike particles in dilute solution

    NASA Astrophysics Data System (ADS)

    Ortega, A.; García de la Torre, J.

    2003-11-01

    The hydrodynamic properties of cylindrical (rodlike and discoidal) particles in dilute solution have been computed using the bead-shell model treatment. Previous results [Tirado and Garcı´a de la Torre, J. Chem. Phys. 71, 2581 (1979); 73, 1993 (1980)] for rods with length-to-diameter ratio p>2 are now extended to short cylinders and disks down to p=0.1. The intrinsic viscosity is obtained for rods and disks, and results are presented for the three rotational relaxation times of a cylindrical particle. The hydrodynamic properties are expressed in forms that have a weak variation with p, and are therefore useful for the analysis of experimental values. We present examples of the determination of the length and diameter of the cylindrical particles, for DNA oligonucleotides and tobacco mosaic virus.

  16. Hydrodynamic Simulations of Close and Contact Binary Systems using Bipolytropes

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan

    2016-01-01

    I will present the results of hydrodynamic simulations of close and contact bipolytropic binary systems. This project is motivated by the peculiar case of the red nova, V1309 Sco, which is indeed a merger of a contact binary. Both the stars are believed to have evolved off the main sequence by the time of the merger and possess a small helium core. In order to represent the binary accurately, I need a core-envelope structure for both the stars. I have achieved this using bipolytropes or composite polytropes. For the simulations, I use an explicit 3D Eulerian hydrodynamics code in cylindrical coordinates. I will discuss the evolution and merger scenarios of systems with different mass ratios and core mass fractions as well as the effects due to the treatment of the adiabatic exponent.

  17. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling

    PubMed Central

    Hou, Yan-Hua; Yu, Zhenhua

    2015-01-01

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations. PMID:26483090

  18. Hydrodynamic flow of ions and atoms in partially ionized plasmas

    NASA Astrophysics Data System (ADS)

    Nemirovsky, R. A.; Fredkin, D. R.; Ron, A.

    2002-12-01

    We have derived the hydrodynamic equations of motion for a partially ionized plasma, when the ionized component and the neutral components have different flow velocities and kinetic temperatures. Starting from the kinetic equations for a gas of ions and a gas of atoms we have considered various processes of encounters between the two species: self-collisions, interspecies collisions, ionization, recombination, and charge exchange. Our results were obtained by developing a general approach for the hydrodynamics of a gas in a binary mixture, in particular when the components drift with respect to each other. This was applied to a partially ionized plasma, when the neutral-species gas and the charged-species gas have separate velocities. We have further suggested a generalized version of the relaxation time approximation and obtained the contributions of the interspecies encounters to the transport equations.

  19. Hydrodynamic flow of ions and atoms in partially ionized plasmas.

    PubMed

    Nemirovsky, R A; Fredkin, D R; Ron, A

    2002-12-01

    We have derived the hydrodynamic equations of motion for a partially ionized plasma, when the ionized component and the neutral components have different flow velocities and kinetic temperatures. Starting from the kinetic equations for a gas of ions and a gas of atoms we have considered various processes of encounters between the two species: self-collisions, interspecies collisions, ionization, recombination, and charge exchange. Our results were obtained by developing a general approach for the hydrodynamics of a gas in a binary mixture, in particular when the components drift with respect to each other. This was applied to a partially ionized plasma, when the neutral-species gas and the charged-species gas have separate velocities. We have further suggested a generalized version of the relaxation time approximation and obtained the contributions of the interspecies encounters to the transport equations.

  20. Low torque hydrodynamic lip geometry for rotary seals

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  1. Hydrodynamic Burnett equations for inelastic Maxwell models of granular gases.

    PubMed

    Khalil, Nagi; Garzó, Vicente; Santos, Andrés

    2014-05-01

    The hydrodynamic Burnett equations and the associated transport coefficients are exactly evaluated for generalized inelastic Maxwell models. In those models, the one-particle distribution function obeys the inelastic Boltzmann equation, with a velocity-independent collision rate proportional to the γ power of the temperature. The pressure tensor and the heat flux are obtained to second order in the spatial gradients of the hydrodynamic fields with explicit expressions for all the Burnett transport coefficients as functions of γ, the coefficient of normal restitution, and the dimensionality of the system. Some transport coefficients that are related in a simple way in the elastic limit become decoupled in the inelastic case. As a byproduct, existing results in the literature for three-dimensional elastic systems are recovered, and a generalization to any dimension of the system is given. The structure of the present results is used to estimate the Burnett coefficients for inelastic hard spheres. PMID:25353781

  2. Hydrodynamical analysis of the effect of fish fins morphology

    NASA Astrophysics Data System (ADS)

    Azwadi Che Sidik, Nor; Yen, Tey Wah

    2013-12-01

    The previous works on the biomechanics of fishes focuses on the locomotion effect of the fish bodies. However, there is quite a insufficiency in unveiling the respective function of fins when the fishes pose statics and exposed to fluid flow. Accordingly, this paper's focus is to investigate the hydrodynamic effect of the fins configuration to the fluid flow of shark-shaped-inspired structure. The drag and lift coefficient is computed for different cases of fish fins addition and configuration. The k-epsilon turbulence model is deployed using finite volume method with the aid of commercial software ANSYS CFX. The finding will demystify some of the functions of the fish's fins in term of their contribution to the hydrodynamic flow around the fishes.

  3. Effect of hydrodynamic interaction on partially stretched polymers.

    PubMed

    Sain, Anirban

    2008-06-01

    We compute the effect of hydrodynamic interaction and stretching on the fluctuation properties of a polymer, with its end points held fixed. Computing the preaveraged hydrodynamic tensor exactly for this geometry, we study both flexible and semiflexible polymer chains, such as Zimm, freely jointed chain, and wormlike chain (WLC) models. We compare the spectra of relaxation-time scales for the effective normal modes of these models. The spectra differ across models with respect to the degree of stretch, but their power-law scaling with low mode numbers turns out to be the same. The characteristics of the transverse modes of WLC agree very well with the experimental data on DNA. The crossover scaling function for (1/r), the inverse of the distance along the polymer contour, yields a modified formula for the size of a "Pincus blob," appropriate for the fixed-end boundary condition.

  4. Load-Induced Hydrodynamic Lubrication of Porous Films.

    PubMed

    Khosla, Tushar; Cremaldi, Joseph; Erickson, Jeffrey S; Pesika, Noshir S

    2015-08-19

    We present an exploratory study of the tribological properties and mechanisms of porous polymer surfaces under applied loads in aqueous media. We show how it is possible to change the lubrication regime from boundary lubrication to hydrodynamic lubrication even at relatively low shearing velocities by the addition of vertical pores to a compliant polymer. It is hypothesized that the compressed, pressurized liquid in the pores produces a repulsive hydrodynamic force as it extrudes from the pores. The presence of the fluid between two shearing surfaces results in low coefficients of friction (μ ≈ 0.31). The coefficient of friction is reduced further by using a boundary lubricant. The tribological properties are studied for a range of applied loads and shear velocities to demonstrate the potential applications of such materials in total joint replacement devices.

  5. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    SciTech Connect

    Yi, S. A. Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H.; Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J.

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  6. Hydrodynamic interactions of cilia on a spherical body

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2016-03-01

    Microorganisms develop coordinated beating patterns on surfaces lined with cilia known as metachronal waves. For a chain of cilia attached to a flat ciliate, it has been shown that hydrodynamic interactions alone can lead the system to synchronize. However, several microorganisms possess a curve-shaped ciliate body and so to understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the natural periodicity in the geometry leads the system to synchronize. We also report an emergent wavelike behavior when an asymmetry is introduced to the system.

  7. Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts

    NASA Astrophysics Data System (ADS)

    Meyer, Hendrik

    We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found, also for alkanes with a force field optimized from neutron scattering. The physical mechanism considers that hydrodynamic interactions are not screened: they are time dependent because of increasing viscosity before the terminal relaxation time. The VHI are generally active in melts of any topology. They are most important at early times well before the terminal relaxation time and thus affect the nanosecond time range typically observable in dynamic neutron scattering experiments. We illustrate the effects with recent molecular dynamics simulations of linear, ring and star polymers. Work performed with A.N. Semenov and J. Farago.

  8. Hydrodynamic synchronization of nonlinear oscillators at low Reynolds number.

    PubMed

    Leoni, M; Liverpool, T B

    2012-04-01

    We introduce a generic model of a weakly nonlinear self-sustained oscillator as a simplified tool to study synchronization in a fluid at low Reynolds number. By averaging over the fast degrees of freedom, we examine the effect of hydrodynamic interactions on the slow dynamics of two oscillators and show that they can lead to synchronization. Furthermore, we find that synchronization is strongly enhanced when the oscillators are nonisochronous, which on the limit cycle means the oscillations have an amplitude-dependent frequency. Nonisochronity is determined by a nonlinear coupling α being nonzero. We find that its (α) sign determines if they synchronize in phase or antiphase. We then study an infinite array of oscillators in the long-wavelength limit, in the presence of noise. For α>0, hydrodynamic interactions can lead to a homogeneous synchronized state. Numerical simulations for a finite number of oscillators confirm this and, when α<0, show the propagation of waves, reminiscent of metachronal coordination.

  9. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    SciTech Connect

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  10. Microalgae Scatter off Solid Surfaces by Hydrodynamic and Contact Forces

    NASA Astrophysics Data System (ADS)

    Contino, Matteo; Lushi, Enkeleida; Tuval, Idan; Kantsler, Vasily; Polin, Marco

    2015-12-01

    Interactions between microorganisms and solid boundaries play an important role in biological processes, such as egg fertilization, biofilm formation, and soil colonization, where microswimmers move within a structured environment. Despite recent efforts to understand their origin, it is not clear whether these interactions can be understood as being fundamentally of hydrodynamic origin or hinging on the swimmer's direct contact with the obstacle. Using a combination of experiments and simulations, here we study in detail the interaction of the biflagellate green alga Chlamydomonas reinhardtii, widely used as a model puller microorganism, with convex obstacles, a geometry ideally suited to highlight the different roles of steric and hydrodynamic effects. Our results reveal that both kinds of forces are crucial for the correct description of the interaction of this class of flagellated microorganisms with boundaries.

  11. Hydrodynamic growth and mix experiments at National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Caggiano, J.; Casey, D.; Cerjan, C.; Clark, D. S.; Edwards, J.; Grim, G.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W.; Hurricane, O.; Kilkenny, J.; Kline, J.; Knauer, J.; Landen, O.; McNaney, J.; Mintz, M.; Nikroo, A.; Parham, T.; Park, H.-S.; Pino, J.; Raman, K.; Remington, B. A.; Robey, H. F.; Rowley, D.; Tipton, R.; Weber, S.; Yeamans, C.

    2016-03-01

    Hydrodynamic growth and its effects on implosion performance and mix were studied at the National Ignition Facility (NIF). Spherical shells with pre-imposed 2D modulations were used to measure Rayleigh-Taylor (RT) instability growth in the acceleration phase of implosions using in-flight x-ray radiography. In addition, implosion performance and mix have been studied at peak compression using plastic shells filled with tritium gas and imbedding localized CD diagnostic layer in various locations in the ablator. Neutron yield and ion temperature of the DT fusion reactions were used as a measure of shell-gas mix, while neutron yield of the TT fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits to yield degradation, with atomic ablator-gas mix playing a secondary role.

  12. A modified Henyey method for computing radiative transfer hydrodynamics

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1975-01-01

    The implicit hydrodynamic code of Kutter and Sparks (1972), which is limited to optically thick regions and employs the diffusion approximation for radiative transfer, is modified to include radiative transfer effects in the optically thin regions of a model star. A modified Henyey method is used to include the solution of the radiative transfer equation in this implicit code, and the convergence properties of this method are proven. A comparison is made between two hydrodynamic models of a classical Cepheid with a 12-day period, one of which was computed with the diffusion approximation and the other with the modified Henyey method. It is found that the two models produce nearly identical light and velocity curves, but differ in the fact that the former never has temperature inversions in the atmosphere while the latter does when sufficiently strong shocks are present.

  13. General relativistic magneto-hydrodynamics with the Einstein Toolkit

    NASA Astrophysics Data System (ADS)

    Moesta, Philipp; Mundim, Bruno; Faber, Joshua; Noble, Scott; Bode, Tanja; Haas, Roland; Loeffler, Frank; Ott, Christian; Reisswig, Christian; Schnetter, Erik

    2013-04-01

    The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Its aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of petascale computers and advanced cyberinfrastructure. The Einstein Toolkit currently consists of an open set of over 100 modules for the Cactus framework, primarily for computational relativity along with associated tools for simulation management and visualization. The toolkit includes solvers for vacuum spacetimes as well as relativistic magneto-hydrodynamics. This talk will present the current capabilities of the Einstein Toolkit with a particular focus on recent improvements made to the general relativistic magneto-hydrodynamics modeling and will point to information how to leverage it for future research.

  14. Hydrodynamic interactions of cilia on a spherical body

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2015-11-01

    The emergence of metachronal waves in ciliated microorganisms can arise solely from the hydrodynamic interactions between the cilia. For a chain of cilia attached to a flat ciliate, it was observed that fluid forces can lead the system to form a metachronal wave. However, several microorganisms such as paramecium and volvox possess a curved shaped ciliate body. To understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the embedded periodicity in the geometry leads the system to synchronize. We also report an emergent wave-like behavior when an asymmetry is introduced to the system.

  15. Hydrodynamic granular segregation induced by boundary heating and shear.

    PubMed

    Reyes, Francisco Vega; Garzó, Vicente; Khalil, Nagi

    2014-05-01

    Segregation induced by a thermal gradient of an impurity in a driven low-density granular gas is studied. The system is enclosed between two parallel walls from which we input thermal energy to the gas. We study here steady states occurring when the inelastic cooling is exactly balanced by some external energy input (stochastic force or viscous heating), resulting in a uniform heat flux. A segregation criterion based on Navier-Stokes granular hydrodynamics is written in terms of the tracer diffusion transport coefficients, whose dependence on the parameters of the system (masses, sizes, and coefficients of restitution) is explicitly determined from a solution of the inelastic Boltzmann equation. The theoretical predictions are validated by means of Monte Carlo and molecular dynamics simulations, showing that Navier-Stokes hydrodynamics produces accurate segregation criteria even under strong shearing and/or inelasticity.

  16. 3D hydrodynamic focusing microfluidics for emerging sensing technologies.

    PubMed

    Daniele, Michael A; Boyd, Darryl A; Mott, David R; Ligler, Frances S

    2015-05-15

    While the physics behind laminar flows has been studied for 200 years, understanding of how to use parallel flows to augment the capabilities of microfluidic systems has been a subject of study primarily over the last decade. The use of one flow to focus another within a microfluidic channel has graduated from a two-dimensional to a three-dimensional process and the design principles are only now becoming established. This review explores the underlying principles for hydrodynamic focusing in three dimensions (3D) using miscible fluids and the application of these principles for creation of biosensors, separation of cells and particles for sample manipulation, and fabrication of materials that could be used for biosensors. Where sufficient information is available, the practicality of devices implementing fluid flows directed in 3D is evaluated and the advantages and limitations of 3D hydrodynamic focusing for the particular application are highlighted.

  17. Development and Implementation of Radiation-Hydrodynamics Verification Test Problems

    SciTech Connect

    Marcath, Matthew J.; Wang, Matthew Y.; Ramsey, Scott D.

    2012-08-22

    Analytic solutions to the radiation-hydrodynamic equations are useful for verifying any large-scale numerical simulation software that solves the same set of equations. The one-dimensional, spherically symmetric Coggeshall No.9 and No.11 analytic solutions, cell-averaged over a uniform-grid have been developed to analyze the corresponding solutions from the Los Alamos National Laboratory Eulerian Applications Project radiation-hydrodynamics code xRAGE. These Coggeshall solutions have been shown to be independent of heat conduction, providing a unique opportunity for comparison with xRAGE solutions with and without the heat conduction module. Solution convergence was analyzed based on radial step size. Since no shocks are involved in either problem and the solutions are smooth, second-order convergence was expected for both cases. The global L1 errors were used to estimate the convergence rates with and without the heat conduction module implemented.

  18. On the Hydrodynamic Function of Sharkskin: A Computational Investigation

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron; Sotiropoulos, Fotis

    2014-11-01

    Denticles (placoid scales) are small structures that cover the epidermis of some sharks. The hydrodynamic function of denticles is unclear. Because they resemble riblets, they have been thought to passively reduce skin-friction-for which there is some experimental evidence. Others have experimentally shown that denticles increase skin-friction and have hypothesized that denticles act as vortex generators to delay separation. To help clarify their function, we use high-resolution large eddy and direct numerical simulations, with an immersed boundary method, to simulate flow patterns past and calculate the drag force on Mako Short Fin denticles. Simulations are carried out for the denticles placed in a canonical turbulent boundary layer as well as in the vicinity of a separation bubble. The computed results elucidate the three-dimensional structure of the flow around denticles and provide insights into the hydrodynamic function of sharkskin.

  19. Slurry F-T reactor hydrodynamics and scale-up

    SciTech Connect

    Smith, D.N.; O'Dowd, W.; Ruether, J.A.; Stiegel, G.J.; Shah, Y.T.

    1984-01-01

    The Fischer-Tropsch (F-T) synthesis of hydrocarbons by the hydrogenation of carbon monoxide over a catalyst via the indirect liquefaction route has only been demonstrated on a commercial scale in fixed-bed and entrained-bed reactors. The slurry reactor has been found to offer important advantages, such as low H/sub 2//CO feed ratios and isothermal stability on the laboratory and pilot-plant scale. Recent findings concerning slurry bubble column hydrodynamics are presented, and their relevance to slurry F-T reactor design and scale-up are discussed. The need for optimization of a slurry F-T reactor is apparent owing in large part to the nonselective formation of products on the catalyst, and the influence of hydrodynamics on the overall conversion of reactants. In this regard, the important transport resistances in the formation of products, and the influence of reactor dimensions on reactor performance are discussed. 9 refs., 14 figs., 1 tab.

  20. The lateral line system of fish as a ``hydrodynamic antenna''

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ristroph, Leif; Liao, James

    2013-11-01

    The lateral line of fish is a specialized flow detection system comprised of pressure- and shear-responsive sensors distributed over the body surface. Here, we explore how the arrangement of these sensors is related to the hydrodynamic information contained in flows. Using a cast model of a rainbow trout placed in a water tunnel, we devise ways to mimic the flows encountered by swimming fish while measuring the near-body flow field. Comparing our results to anatomical studies indicates that the lateral line sensors are well positioned to detect temporal and spatial changes in flow signals. These findings support a view of the lateral line as a ``hydrodynamic antenna'' that allows sophisticated behaviors such as rheotaxis and prey detection and tracking.

  1. Longitudinal hydrodynamics from event-by-event Landau initial conditions

    SciTech Connect

    Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read, Kenneth; Wong, Cheuk-Yin

    2015-02-02

    Here we investigate three-dimensional ideal hydrodynamic evolution, with Landau initial conditions, incorporating event-by-event variation with many events and transverse density inhomogeneities. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of θ (20%-30%) expected at freeze-out for most scenarios. Moreover, the deviation from boost invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, hydrodynamics where boost invariance holds at midrapidity is inadequate to extract transport coefficients of the quark-gluon plasma. We conclude by arguing that developing experimental probes of boost invariance is necessary, and suggest some promising directions in this regard.

  2. Validating hydrodynamic growth in National Ignition Facility implosions

    SciTech Connect

    Peterson, J. L. Casey, D. T.; Hurricane, O. A.; Raman, K. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    We present new hydrodynamic growth experiments at the National Ignition Facility, which extend previous measurements up to Legendre mode 160 and convergence ratio 4, continuing the growth factor dispersion curve comparison of the low foot and high foot pulses reported by Casey et al. [Phys. Rev. E 90, 011102(R) (2014)]. We show that the high foot pulse has lower growth factor and lower growth rate than the low foot pulse. Using novel on-capsule fiducial markers, we observe that mode 160 inverts sign (changes phase) for the high foot pulse, evidence of amplitude oscillations during the Richtmyer-Meshkov phase of a spherically convergent system. Post-shot simulations are consistent with the experimental measurements for all but the shortest wavelength perturbations, reinforcing the validity of radiation hydrodynamic simulations of ablation front growth in inertial confinement fusion capsules.

  3. Hydrodynamic interaction induced mechanical properties of SGF reinforced polyethersulfone

    NASA Astrophysics Data System (ADS)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    In order to explore the effect of short glass fiber (SGF) reinforcement on the mechanical properties of Polyethersulfone (PES), short glass fibers of different proportion (10 - 40 wt %) are reinforced into PES matrix. The free volume distribution of SGFR-PES composites derived from CONTIN-PALS2 program exhibits the narrow full width at half maximum (FWHM). This is attributed to the improved adhesion resulted by the hydrodynamic interaction between the polymeric chains of PES matrix and SGF. The hydrodynamic interaction parameter (h) decreases as a function of SGF wt% and becomes more negative for 40 wt% SGFR-PES composites suggest the generation of excess friction at the interface. This improves the adhesion between the polymeric chains of PES matrix and SGF and hence the mechanical strength of the SGFR-PES composites.

  4. Experimental Testbed for the Study of Hydrodynamic Issues in Supernovae

    SciTech Connect

    Robey, H F; Kane, J O; Remington, B A; Drake, R P; Hurricane, O A; Louis, H; Wallace, R J; Knauer, J; Keiter, P; Arnett, D

    2000-10-09

    More than a decade after the explosion of SN 1987A, unresolved discrepancies still remain in attempts to numerically simulate the mixing processes initiated by the passage of a very strong shock through the layered structure of the progenitor star. Numerically computed velocities of the radioactive {sup 56}Ni and {sup 56}CO, produced by shock-induced explosive burning within the silicon layer for example, are still more than 50% too low as compared with the measured velocities. In order to resolve such discrepancies between observation and simulation, an experimental testbed has been designed on the Omega Laser for the study of hydrodynamic issues of importance to supernovae (SNe). In this paper, we present results from a series of scaled laboratory experiments designed to isolate and explore several issues in the hydrodynamics of SN explosions. The results of the experiments are compared with numerical simulations and are generally found to be in reasonable agreement.

  5. Load-Induced Hydrodynamic Lubrication of Porous Films.

    PubMed

    Khosla, Tushar; Cremaldi, Joseph; Erickson, Jeffrey S; Pesika, Noshir S

    2015-08-19

    We present an exploratory study of the tribological properties and mechanisms of porous polymer surfaces under applied loads in aqueous media. We show how it is possible to change the lubrication regime from boundary lubrication to hydrodynamic lubrication even at relatively low shearing velocities by the addition of vertical pores to a compliant polymer. It is hypothesized that the compressed, pressurized liquid in the pores produces a repulsive hydrodynamic force as it extrudes from the pores. The presence of the fluid between two shearing surfaces results in low coefficients of friction (μ ≈ 0.31). The coefficient of friction is reduced further by using a boundary lubricant. The tribological properties are studied for a range of applied loads and shear velocities to demonstrate the potential applications of such materials in total joint replacement devices. PMID:26223011

  6. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    PubMed

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation. PMID:26807679

  7. Longitudinal hydrodynamics from event-by-event Landau initial conditions

    DOE PAGES

    Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read, Kenneth; Wong, Cheuk-Yin

    2015-02-02

    Here we investigate three-dimensional ideal hydrodynamic evolution, with Landau initial conditions, incorporating event-by-event variation with many events and transverse density inhomogeneities. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of θ (20%-30%) expected at freeze-out for most scenarios. Moreover, the deviation from boost invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, hydrodynamics where boost invariance holds at midrapidity ismore » inadequate to extract transport coefficients of the quark-gluon plasma. We conclude by arguing that developing experimental probes of boost invariance is necessary, and suggest some promising directions in this regard.« less

  8. A stochastic analysis approach for the calculation of hydrodynamic dampings

    SciTech Connect

    Karadeniz, H.

    1995-12-31

    This paper introduces an alternative linearization algorithm for nonlinear loading terms occurring in the spectral analysis of offshore structures. The algorithm makes use of member consistent forces for the linearization unlike the traditional linearization method. Different linearization criteria are used for different components of the member consistent forces. An equivalent second moment criterion is used to linearize the force component due to wave velocities while the components due to current and structural velocities are kept being stochastic. Calculation of their mean values is presented for the analysis. A deterministic added mass matrix and a stochastic hydrodynamic damping matrix are derived from the force component due to structural deformations. It is demonstrated that the mean value hydrodynamic damping ratios which are calculated in the paper are more realistic than those resulted from the linearization of the Morison`s equation.

  9. Hydrodynamic focusing of conducting fluids for conductivity-based biosensors.

    PubMed

    Nasir, Mansoor; Ateya, Daniel A; Burk, Diana; Golden, Joel P; Ligler, Frances S

    2010-02-15

    Hydrodynamic focusing of a conducting fluid by a non-conducting fluid to form a constricted current path between two sensing electrodes is implemented in order to enhance the sensitivity of a 4-electrode conductance-based biosensor. The sensor has a simple two-inlet T-junction design and performs four-point conductivity measurements to detect particles immobilized between the sensing electrode pair. Computational simulations conducted in conjunction with experimental flow studies using confocal microscopy show that a flat profile for the focused layer is dependent on the Reynolds number for the chosen flow parameters. The results also indicate that a flat focused layer is desirable for both increased sensitivity as well as surface-binding efficiency. Proof of concept for conductance measurements in a hydrodynamically focused conducting fluid was demonstrated with entrapped magnetic beads. PMID:19932019

  10. Hydrodynamic simulations of microjetting from shock-loaded grooves

    NASA Astrophysics Data System (ADS)

    Roland, Caroline; de Resseguier, Thibaut; Sollier, Arnaud; Lescoute, Emilien; Soulard, Laurent; Loison, Didier

    2015-06-01

    The interaction of a shock wave with a free surface presenting geometrical defects, such as cavities or grooves, may lead to the ejection of micrometric debris at velocities of km/s order. This process can be involved in many applications, like pyrotechnics or industrial safety. Laser shock experiments reported in this conference (T. de Resseguier, C. Roland et al., abstract ref.000066) provide insight into jet formation and peak velocities for various groove angles and shock pressures. Here, we present hydrodynamic simulations of these experiments, in both 2D and 3D geometries, using both finite element method and smoothed particles hydrodynamics. Numerical results are compared to several theoretical predictions including the Richtmyer-Meshkov instabilities. The role of the elastic-plastic behavior on jet formation is investigated. Finally, the possibility to simulate the late stages of jet expansion and fragmentation is explored, to evaluate the mass distribution of the ejecta and their ballistic properties, still essentially unknown in the experiments.

  11. Nanoscale swimmers: hydrodynamic interactions and propulsion of molecular machines

    NASA Astrophysics Data System (ADS)

    Sakaue, T.; Kapral, R.; Mikhailov, A. S.

    2010-06-01

    Molecular machines execute nearly regular cyclic conformational changes as a result of ligand binding and product release. This cyclic conformational dynamics is generally non-reciprocal so that under time reversal a different sequence of machine conformations is visited. Since such changes occur in a solvent, coupling to solvent hydrodynamic modes will generally result in self-propulsion of the molecular machine. These effects are investigated for a class of coarse grained models of protein machines consisting of a set of beads interacting through pair-wise additive potentials. Hydrodynamic effects are incorporated through a configuration-dependent mobility tensor, and expressions for the propulsion linear and angular velocities, as well as the stall force, are obtained. In the limit where conformational changes are small so that linear response theory is applicable, it is shown that propulsion is exponentially small; thus, propulsion is nonlinear phenomenon. The results are illustrated by computations on a simple model molecular machine.

  12. Matching pre-equilibrium dynamics and viscous hydrodynamics

    SciTech Connect

    Martinez, Mauricio; Strickland, Michael

    2010-02-15

    We demonstrate how to match pre-equilibrium dynamics of a 0+1-dimensional quark-gluon plasma to second-order viscous hydrodynamical evolution. The matching allows us to specify the initial values of the energy density and shear tensor at the initial time of hydrodynamical evolution as a function of the lifetime of the pre-equilibrium period. We compare two models for pre-equilibrium quark-gluon plasma, longitudinal free streaming and collisionally broadened longitudinal expansion, and present analytic formulas that can be used to fix the necessary components of the energy-momentum tensor. The resulting dynamical models can be used to assess the effect of pre-equilibrium dynamics on quark-gluon plasma observables. Additionally, we investigate the dependence of entropy production on pre-equilibrium dynamics and discuss the limitations of the standard definitions of nonequilibrium entropy.

  13. Dynamic regimes of hydrodynamically coupled self-propelling particles

    NASA Astrophysics Data System (ADS)

    Llopis, I.; Pagonabarraga, I.

    2006-09-01

    We analyze the collective dynamics of self-propelling particles (spps) which move at small Reynolds numbers including the hydrodynamic coupling to the suspending solvent through numerical simulations. The velocity distribution functions show marked deviations from Gaussian behavior at short times, and the mean-square displacement at long times shows a transition from diffusive to ballistic motion for appropriate driving mechanism at low concentrations. We discuss the structures the spps form at long times and how they correlate to their dynamic behavior.

  14. Skew and twist resistant hydrodynamic rotary shaft seal

    DOEpatents

    Dietle, Lannie; Kalsi, Manmohan Singh

    1999-01-01

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.

  15. Skew and twist resistant hydrodynamic rotary shaft seal

    DOEpatents

    Dietle, L.; Kalsi, M.S.

    1999-02-23

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.

  16. Hydrodynamic characterization of Corpus Christi Bay through modeling and observation.

    PubMed

    Islam, Mohammad S; Bonner, James S; Edge, Billy L; Page, Cheryl A

    2014-11-01

    Christi Bay is a relatively flat, shallow, wind-driven system with an average depth of 3-4 m and a mean tidal range of 0.3 m. It is completely mixed most of the time, and as a result, depth-averaged models have, historically, been applied for hydrodynamic characterization supporting regulatory decisions on Texas coastal management. The bay is highly stratified during transitory periods of the summer with low wind conditions. This has important implications on sediment transport, nutrient cycling, and water quality-related issues, including hypoxia which is a key water quality concern for the bay. Detailed hydrodynamic characterization of the bay during the summer months included analysis of simulation results of 2-D hydrodynamic model and high-frequency (HF) in situ observations. The HF radar system resolved surface currents, whereas an acoustic Doppler current profiler (ADCP) measured current at different depths of the water column. The developed model successfully captured water surface elevation variation at the mouth of the bay (i.e., onshore boundary of the Gulf of Mexico) and at times within the bay. However, large discrepancies exist between model-computed depth-averaged water currents and observed surface currents. These discrepancies suggested the presence of a vertical gradient in the current structure which was further substantiated by the observed bi-directional current movement within the water column. In addition, observed vertical density gradients proved that the water column was stratified. Under this condition, the bottom layer became hypoxic due to inadequate mixing with the aerated surface water. Understanding the disparities between observations and model predictions provides critical insights about hydrodynamics and physical processes controlling water quality. PMID:25096643

  17. Chiral Alfvén Wave in Anomalous Hydrodynamics.

    PubMed

    Yamamoto, Naoki

    2015-10-01

    We study the hydrodynamic regime of chiral plasmas at high temperature. We find a new type of gapless collective excitation induced by chiral effects in an external magnetic field. This is a transverse wave, and it is present even in incompressible fluids, unlike the chiral magnetic and chiral vortical waves. The velocity is proportional to the coefficient of the gravitational anomaly. We briefly discuss the possible relevance of this "chiral Alfvén wave" in physical systems. PMID:26551804

  18. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  19. Leading-order anisotropic hydrodynamics for systems with massive particles

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael; Tinti, Leonardo

    2014-05-01

    The framework of anisotropic hydrodynamics is generalized to include finite particle masses. Two schemes are introduced and their predictions compared with exact solutions of the kinetic equation in the relaxation time approximation. The first formulation uses the zeroth and first moments of the kinetic equation, whereas the second formulation uses the first and second moments. For the case of one-dimensional boost-invariant expansion, our numerical results indicate that the second formulation yields much better agreement with the exact solutions.

  20. Retrieval of vegetation hydrodynamic parameters from satellite multispectral data

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Degetto, Massimo; Righetti, Maurizio; Castelli, Fabio; Preti, Federico

    2013-04-01

    Riparian vegetation plays a crucial role on affecting the floodplain hydraulic roughness, which in turn significantly influences the dynamics of flood waves. This work explores the potential accuracies of retrieving vegetation hydrodynamic parameters through satellite multispectral data. The method is focused on estimation of vegetation height and flexural rigidity for herbaceous patterns and of plant density, tree height, stem diameter, crown base height and crown diameter of high-forest and coppice consociations for arboreal and shrub patterns. The retrieval algorithm performs: (1) classification procedure of riparian corridor; (2) land cover-based Principal Component Analysis of spectral channels; (3) explorative analysis of correlation structure between principal components and biomechanical properties and (4) model identification/estimation/validation for floodplain roughness parameterization. To capture the impacts of stiff/flexible vegetation, a GIS hydrodynamic model has been coupled with a flow resistance external routine that estimates the hydraulic roughness by using simulated water stages and the remote sensing-derived vegetation parameters. The procedure is tested along a 3-km reach of the Avisio river (Trentino Alto Adige, Italy) by comparing extended field surveys and a synchronous SPOT-5 multispectral image acquired on 28/08/2004. Results showed significant correlation values between spectral-derived information and hydrodynamic parameters. Predictive models provided high coefficients of determination, especially for mixed arboreal and shrub land covers. The generated structural parameter maps represent spatially explicit data layers that can be used as inputs to hydrodynamic models to analyze flow resistance effects in different submergence conditions of vegetation. The hydraulic modelling results showed that the new method is able to provide accurate hydraulic output data and to enhance the roughness estimation up to 73% with respect to a

  1. Smoothed Particle Hydrodynamics Model for Reactive Transport and Mineral Precipitation

    SciTech Connect

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Redden, George; Meakin, Paul; Fang, Yilin

    2006-06-30

    A new Lagrangian particle model based on smoothed particle hydrodynamics was used to simulate pore scale precipitation reactions. The side-by-side injection of reacting solutions into two halves of a two-dimensional granular porous medium was simulated. Precipitation on grain surfaces occurred along a narrow zone in the middle of the domain, where the reacting solutes mixed to generate a supersaturated reaction product. The numerical simulations qualitatively reproduced the behavior observed in related laboratory experiments.

  2. THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS

    SciTech Connect

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J.; Lubow, Stephen H.; Price, Daniel J.; Doğan, Suzan; King, Andrew

    2014-09-10

    We use three-dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems, and accretion onto supermassive black holes.

  3. Biomimetic shark skin: design, fabrication and hydrodynamic function.

    PubMed

    Wen, Li; Weaver, James C; Lauder, George V

    2014-05-15

    Although the functional properties of shark skin have been of considerable interest to both biologists and engineers because of the complex hydrodynamic effects of surface roughness, no study to date has successfully fabricated a flexible biomimetic shark skin that allows detailed study of hydrodynamic function. We present the first study of the design, fabrication and hydrodynamic testing of a synthetic, flexible, shark skin membrane. A three-dimensional (3D) model of shark skin denticles was constructed using micro-CT imaging of the skin of the shortfin mako (Isurus oxyrinchus). Using 3D printing, thousands of rigid synthetic shark denticles were placed on flexible membranes in a controlled, linear-arrayed pattern. This flexible 3D printed shark skin model was then tested in water using a robotic flapping device that allowed us to either hold the models in a stationary position or move them dynamically at their self-propelled swimming speed. Compared with a smooth control model without denticles, the 3D printed shark skin showed increased swimming speed with reduced energy consumption under certain motion programs. For example, at a heave frequency of 1.5 Hz and an amplitude of ± 1 cm, swimming speed increased by 6.6% and the energy cost-of-transport was reduced by 5.9%. In addition, a leading-edge vortex with greater vorticity than the smooth control was generated by the 3D printed shark skin, which may explain the increased swimming speeds. The ability to fabricate synthetic biomimetic shark skin opens up a wide array of possible manipulations of surface roughness parameters, and the ability to examine the hydrodynamic consequences of diverse skin denticle shapes present in different shark species.

  4. Emergence of Upstream Swimming via a Hydrodynamic Transition

    NASA Astrophysics Data System (ADS)

    Tung, Chih-kuan; Ardon, Florencia; Roy, Anubhab; Koch, Donald L.; Suarez, Susan S.; Wu, Mingming

    2015-03-01

    We demonstrate that upstream swimming of sperm emerges via an orientation disorder-order transition. The order parameter, the average orientation of the sperm head against the flow, follows a 0.5 power law with the deviation from the critical flow shear rate (γ -γc ). This transition is successfully explained by a hydrodynamic bifurcation theory, which extends the sperm upstream swimming to a broad class of near surface microswimmers that possess front-back asymmetry and circular motion.

  5. Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas

    SciTech Connect

    Veeresha, B. M.; Sen, A.; Kaw, P. K.

    2008-09-07

    A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.

  6. Analytical solutions of Landau (1+1)-dimensional hydrodynamics

    DOE PAGES

    Wong, Cheuk-Yin; Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read, Kenneth

    2014-12-17

    To help guide our intuition, summarize important features, and point out essential elements, we review the analytical solutions of Landau (1+1)-dimensional hydrodynamics and exhibit the full evolution of the dynamics from the very beginning to subsequent times. Special emphasis is placed on the matching and the interplay between the Khalatnikov solution and the Riemann simple wave solution at the earliest times and in the edge regions at later times.

  7. Electrohydrodynamics and other hydrodynamic phenomena in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1982-01-01

    The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow.

  8. Constructing higher-order hydrodynamics: The third order

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Kaplis, Nikolaos

    2016-03-01

    Hydrodynamics can be formulated as the gradient expansion of conserved currents in terms of the fundamental fields describing the near-equilibrium fluid flow. In the relativistic case, the Navier-Stokes equations follow from the conservation of the stress-energy tensor to first order in derivatives. In this paper, we go beyond the presently understood second-order hydrodynamics and discuss the systematization of obtaining the hydrodynamic expansion to an arbitrarily high order. As an example of the algorithm that we present, we fully classify the gradient expansion at third order for neutral fluids in four dimensions, thus finding the most general next-to-leading-order corrections to the relativistic Navier-Stokes equations in curved space-time. In doing so, we list 20 new transport coefficient candidates in the conformal case and 68 in the nonconformal case. As we do not consider any constraints that could potentially arise from the local entropy current analysis, this is the maximal possible set of neutral third-order transport coefficients. To investigate the physical implications of these new transport coefficients, we obtain the third-order corrections to the linear dispersion relations that describe the propagation of diffusion and sound waves in relativistic fluids. We also compute the corrections to the scalar (spin-2) two-point correlation function of the third-order stress-energy tensor. Furthermore, as an example of a nonlinear hydrodynamic flow, we calculate the third-order corrections to the energy density of a boost-invariant Bjorken flow. Finally, we apply our field theoretic results to the N =4 supersymmetric Yang-Mills fluid at infinite 't Hooft coupling and an infinite number of colors to find the values of five new linear combinations of the conformal transport coefficients.

  9. Newtonian hydrodynamic equations with relativistic pressure and velocity

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim; Fabris, Júlio; Piattella, Oliver F.; Zimdahl, Winfried

    2016-07-01

    We present a new approximation to include fully general relativistic pressure and velocity in Newtonian hydrodynamics. The energy conservation, momentum conservation and two Poisson's equations are consistently derived from Einstein's gravity in the zero-shear gauge assuming weak gravity and action-at-a-distance limit. The equations show proper special relativity limit in the absence of gravity. Our approximation is complementary to the post-Newtonian approximation and the equations are valid in fully nonlinear situations.

  10. Parameterization of wind turbine impacts on hydrodynamics and sediment transport

    NASA Astrophysics Data System (ADS)

    Rivier, Aurélie; Bennis, Anne-Claire; Pinon, Grégory; Magar, Vanesa; Gross, Markus

    2016-10-01

    Monopile foundations of offshore wind turbines modify the hydrodynamics and sediment transport at local and regional scales. The aim of this work is to assess these modifications and to parameterize them in a regional model. In the present study, this is achieved through a regional circulation model, coupled with a sediment transport module, using two approaches. One approach is to explicitly model the monopiles in the mesh as dry cells, and the other is to parameterize them by adding a drag force term to the momentum and turbulence equations. Idealised cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France), where an offshore windfarm is under planning, to assess the capacity of the model to reproduce the effect of the monopile on the environment. Then, the model is applied to a real configuration on an area including the future offshore windfarm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches, and modifications of the hydrodynamics and sediment transport are assessed over a tidal cycle. In relation to local hydrodynamic effects, it is observed that currents increase at the side of the monopile and decrease in front of and downstream of the monopile. In relation to sediment transport effect, the results show that resuspension and erosion occur around the monopile in locations where the current speed increases due to the monopile presence, and sediments deposit downstream where the bed shear stress is lower. During the tidal cycle, wakes downstream of the monopile reach the following monopile and modify the velocity magnitude and suspended sediment concentration patterns around the second monopile.

  11. Parameterization of wind turbine impacts on hydrodynamics and sediment transport

    NASA Astrophysics Data System (ADS)

    Rivier, Aurélie; Bennis, Anne-Claire; Pinon, Grégory; Magar, Vanesa; Gross, Markus

    2016-09-01

    Monopile foundations of offshore wind turbines modify the hydrodynamics and sediment transport at local and regional scales. The aim of this work is to assess these modifications and to parameterize them in a regional model. In the present study, this is achieved through a regional circulation model, coupled with a sediment transport module, using two approaches. One approach is to explicitly model the monopiles in the mesh as dry cells, and the other is to parameterize them by adding a drag force term to the momentum and turbulence equations. Idealised cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France), where an offshore windfarm is under planning, to assess the capacity of the model to reproduce the effect of the monopile on the environment. Then, the model is applied to a real configuration on an area including the future offshore windfarm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches, and modifications of the hydrodynamics and sediment transport are assessed over a tidal cycle. In relation to local hydrodynamic effects, it is observed that currents increase at the side of the monopile and decrease in front of and downstream of the monopile. In relation to sediment transport effect, the results show that resuspension and erosion occur around the monopile in locations where the current speed increases due to the monopile presence, and sediments deposit downstream where the bed shear stress is lower. During the tidal cycle, wakes downstream of the monopile reach the following monopile and modify the velocity magnitude and suspended sediment concentration patterns around the second monopile.

  12. Supernova-relevant hydrodynamic instability experiments on the Nova laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Wallace, R.; Managan, R.; Rubenchik, A.; Fryxell, B. A.

    1997-04-15

    Observations of Supernova 1987A suggest that hydrodynamic instabilities play a critical role in the evolution of supernovae. To test the modeling of these instabilities, and to study instability issues which are difficult to model, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. We use the Nova laser to generate a 10-15 Mbar shock at the interface between an 85 {mu}m thick layer of Cu and a 500 {mu}m layer of CH{sub 2}; our first target is planar. We impose a single mode sinusoidal material perturbation at the interface with {lambda}=200 {mu}m, {eta}{sub 0}=20 {mu}m, causing perturbation growth by the RM instability as the shock accelerates the interface, and by RT instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. We use the supernova code PROMETHEUS and the hydrodynamics codes HYADES and CALE to model the experiment. We are designing further experiments to compare results for 2D vs. 3D single mode perturbations; high resolution 3D modeling requires prohibitive time and computing resources, but we can perform and study 3D experiments as easily as 2D experiments. Low resolution simulations suggest that the perturbations grow 50% faster in 3D than in 2D; such a difference may help explain the high observed velocities of radioactive core material in SN1987A. We present the results of the experiments and simulations.

  13. Supernova-relevant hydrodynamic instability experiments on the Nova laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Wallace, R.; Managan, R.; Rubenchik, A. Rubenchik, A. Fryxell, B.A.

    1997-04-01

    Observations of Supernova 1987A suggest that hydrodynamic instabilities play a critical role in the evolution of supernovae. To test the modeling of these instabilities, and to study instability issues which are difficult to model, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. We use the Nova laser to generate a 10{endash}15 Mbar shock at the interface between an 85 {mu}m thick layer of Cu and a 500 {mu}m layer of CH{sub 2}; our first target is planar. We impose a single mode sinusoidal material perturbation at the interface with {lambda}=200{mu}m, {eta}{sub 0}=20{mu}m, causing perturbation growth by the RM instability as the shock accelerates the interface, and by RT instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few {times}10{sup 3}s. We use the supernova code PROMETHEUS and the hydrodynamics codes HYADES and CALE to model the experiment. We are designing further experiments to compare results for 2D vs. 3D single mode perturbations; high resolution 3D modeling requires prohibitive time and computing resources, but we can perform and study 3D experiments as easily as 2D experiments. Low resolution simulations suggest that the perturbations grow 50{percent} faster in 3D than in 2D; such a difference may help explain the high observed velocities of radioactive core material in SN1987A. We present the results of the experiments and simulations. {copyright} {ital 1997 American Institute of Physics.}

  14. Advanced three-dimensional Eulerian hydrodynamic algorithm development

    SciTech Connect

    Rider, W.J.; Kothe, D.B.; Mosso, S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project is to investigate, implement, and evaluate algorithms that have high potential for improving the robustness, fidelity and accuracy of three-dimensional Eulerian hydrodynamic simulations. Eulerian computations are necessary to simulate a number of important physical phenomena ranging from the molding process for metal parts to nuclear weapons safety issues to astrophysical phenomena such as that associated with a Type 2 supernovae. A number of algorithmic issues were explored in the course of this research including interface/volume tracking, surface physics integration, high resolution integration techniques, multilevel iterative methods, multimaterial hydrodynamics and coupling radiation with hydrodynamics. This project combines core strengths of several Laboratory divisions. The project has high institutional benefit given the renewed emphasis on numerical simulations in Science-Based Stockpile Stewardship and the Accelerated Strategic Computing Initiative and LANL`s tactical goals related to high performance computing and simulation.

  15. Deformable cells in confined geometries: From hemolysis to hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Abkarian, Manouk; Faivre, Magalie; Stone, Howard A.

    2004-11-01

    Recent developments in microfluidics allow a wide range of possibilities for studying cellular-scale hydrodynamics. Here we use microfluidic technology to address several open questions in the blood flow literature where cell deformation and hydrodynamic interactions are significant. In particular, we investigate the pressure-driven flow of a dilute suspension in a channel and characterize the transition from steady axisymmetric cell shapes (for which numerical calculations exist) to asymmetric, highly extended shapes, which are precursors to hemolysis (i.e. destruction of the cell). In addition, we examine the influence of geometry on hydrodynamic interactions of deformable cells by contrasting one-dimensional motion of a train of particles in a channel with two-dimensional motions in a Hele-Shaw cell. This study can help to understand flow of cells in microcirculation from the unidirectional flow in capillaries to the two-dimensional flow in the lung alveoli and provides the basic steps to understand certain aspects of microcirculatory deseases like sickle cell anemia for example.

  16. Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry

    DOEpatents

    Dietle, Lannie; Gobeli, Jeffrey D.

    1993-07-27

    A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

  17. Direct evidence of flagellar synchronization through hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas; Polin, Marco; Wan, Kirsty; Goldstein, Raymond

    2013-11-01

    Eukaryotic cilia and flagella exhibit striking coordination, from the synchronous beating of two flagella in Chlamydomonas to the metachronal waves and large-scale flows displayed by carpets of cilia. However, the precise mechanisms responsible for flagellar synchronization remain unclear. We perform a series of experiments involving two individual flagella in a quiescent fluid. Cells are isolated from the colonial alga Volvox carteri, held in place at a fixed distance d, and oriented so that their flagellar beating planes coincide. In this fashion, we are able to explicitly assess the role of hydrodynamics in achieving synchronization. For closely separated cells, the flagella are capable of exhibiting a phase-locked state for thousands of beats at a time, despite significant differences in their intrinsic frequencies. For intermediate values of d, synchronous periods are interrupted by brief phase slips, while for d >> 1 the flagellar phase difference drifts almost linearly with time. The coupling strength extracted through analysis of the synchronization statistics exhibits excellent agreement with hydrodynamic predictions. This study unambiguously reveals that flagella coupled only through hydrodynamics are capable of exhibiting robust synchrony.

  18. Correlating hydrodynamic radii with that of two-dimensional nanoparticles

    SciTech Connect

    Yue, Yuan; Kan, Yuwei; Clearfield, Abraham; Choi, Hyunho; Liang, Hong

    2015-12-21

    Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.

  19. Modelling the mechanics and hydrodynamics of swimming E. coli.

    PubMed

    Hu, Jinglei; Yang, Mingcheng; Gompper, Gerhard; Winkler, Roland G

    2015-10-28

    The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle collision dynamics method for the embedding fluid. The bacterium is composed of a spherocylindrical body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid. We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like pattern in the swimming plane and two vortices perpendicular to its swimming direction arising from counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and rotlet dipole, we extract the force-dipole and rotlet-dipole strengths for the bacterium and find that counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics of the bacterium.

  20. Modeling tidal hydrodynamics of San Diego Bay, California

    USGS Publications Warehouse

    Wang, P.-F.; Cheng, R.T.; Richter, K.; Gross, E.S.; Sutton, D.; Gartner, J.W.

    1998-01-01

    In 1983, current data were collected by the National Oceanic and Atmospheric Administration using mechanical current meters. During 1992 through 1996, acoustic Doppler current profilers as well as mechanical current meters and tide gauges were used. These measurements not only document tides and tidal currents in San Diego Bay, but also provide independent data sets for model calibration and verification. A high resolution (100-m grid), depth-averaged, numerical hydrodynamic model has been implemented for San Diego Bay to describe essential tidal hydrodynamic processes in the bay. The model is calibrated using the 1983 data set and verified using the more recent 1992-1996 data. Discrepancies between model predictions and field data in beth model calibration and verification are on the order of the magnitude of uncertainties in the field data. The calibrated and verified numerical model has been used to quantify residence time and dilution and flushing of contaminant effluent into San Diego Bay. Furthermore, the numerical model has become an important research tool in ongoing hydrodynamic and water quality studies and in guiding future field data collection programs.

  1. Relativistic hydrodynamics in the presence of puncture black holes

    SciTech Connect

    Faber, Joshua A.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke; Baumgarte, Thomas W.

    2007-11-15

    Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole-neutron star problem using conformal thin-sandwich initial data.

  2. A new hydrodynamics code for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2015-12-01

    A two-dimensional hydrodynamics code for Type Ia supernova (SNIa) simulations is presented. The code includes a fifth-order shock-capturing scheme WENO, detailed nuclear reaction network, flame-capturing scheme and sub-grid turbulence. For post-processing, we have developed a tracer particle scheme to record the thermodynamical history of the fluid elements. We also present a one-dimensional radiative transfer code for computing observational signals. The code solves the Lagrangian hydrodynamics and moment-integrated radiative transfer equations. A local ionization scheme and composition dependent opacity are included. Various verification tests are presented, including standard benchmark tests in one and two dimensions. SNIa models using the pure turbulent deflagration model and the delayed-detonation transition model are studied. The results are consistent with those in the literature. We compute the detailed chemical evolution using the tracer particles' histories, and we construct corresponding bolometric light curves from the hydrodynamics results. We also use a GPU to speed up the computation of some highly repetitive subroutines. We achieve an acceleration of 50 times for some subroutines and a factor of 6 in the global run time.

  3. Hydrodynamical assessment of 200[ital A] GeV collisions

    SciTech Connect

    Schnedermann, E.; Heinz, U. Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg )

    1994-09-01

    We are analyzing the hydrodynamics of 200[ital A] GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizable transverse flow develops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the overpopulation of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.

  4. Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks.

    PubMed

    Ji, Hantao; Burin, Michael; Schartman, Ethan; Goodman, Jeremy

    2006-11-16

    The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5-40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, and therefore essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial. Here we report a laboratory experiment, demonstrating that non-magnetic quasi-keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks.

  5. The Multiparametric Effects of Hydrodynamic Environments on Stem Cell Culture

    PubMed Central

    Kinney, Melissa A.; Sargent, Carolyn Y.

    2011-01-01

    Stem cells possess the unique capacity to differentiate into many clinically relevant somatic cell types, making them a promising cell source for tissue engineering applications and regenerative medicine therapies. However, in order for the therapeutic promise of stem cells to be fully realized, scalable approaches to efficiently direct differentiation must be developed. Traditionally, suspension culture systems are employed for the scale-up manufacturing of biologics via bioprocessing systems that heavily rely upon various types of bioreactors. However, in contrast to conventional bench-scale static cultures, large-scale suspension cultures impart complex hydrodynamic forces on cells and aggregates due to fluid mixing conditions. Stem cells are exquisitely sensitive to environmental perturbations, thus motivating the need for a more systematic understanding of the effects of hydrodynamic environments on stem cell expansion and differentiation. This article discusses the interdependent relationships between stem cell aggregation, metabolism, and phenotype in the context of hydrodynamic culture environments. Ultimately, an improved understanding of the multifactorial response of stem cells to mixed culture conditions will enable the design of bioreactors and bioprocessing systems for scalable directed differentiation approaches. PMID:21491967

  6. Hydrodynamic profile of young swimmers: changes over a competitive season.

    PubMed

    Barbosa, T M; Morais, J E; Marques, M C; Silva, A J; Marinho, D A; Kee, Y H

    2015-04-01

    The aim of this study was to analyze the changes in the hydrodynamic profile of young swimmers over a competitive season and to compare the variations according to a well-designed training periodization. Twenty-five swimmers (13 boys and 12 girls) were evaluated in (a) October (M1); (b) March (M2); and (c) June (M3). Inertial and anthropometrical measures included body mass, swimmer's added water mass, height, and trunk transverse surface area. Swimming efficiency was estimated by the speed fluctuation, stroke index, and approximate entropy. Active drag was estimated with the velocity perturbation method and the passive drag with the gliding decay method. Hydrodynamic dimensionless numbers (Froude and Reynolds numbers) and hull velocity (i.e., speed at Froude number = 0.42) were also calculated. No variable presented a significant gender effect. Anthropometrics and inertial parameters plus dimensionless numbers increased over time. Swimming efficiency improved between M1 and M3. There was a trend for both passive and active drag increase from M1 to M2, but being lower at M3 than at M1. Intra-individual changes between evaluation moments suggest high between- and within-subject variations. Therefore, hydrodynamic changes over a season occur in a non-linear fashion way, where the interplay between growth and training periodization explain the unique path flow selected by each young swimmer. PMID:24975756

  7. Effect of short range hydrodynamic on bimodal colloidal gel systems

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2015-03-01

    Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.

  8. Hydrodynamic starvation in first-feeding larval fishes

    PubMed Central

    China, Victor; Holzman, Roi

    2014-01-01

    Larval fishes suffer prodigious mortality rates, eliminating 99% of the brood within a few days after first feeding. Hjort (1914) famously attributed this “critical period” of low survival to the larvae’s inability to obtain sufficient food [Hjort (1914) Rapp P-v Réun Cons Int Explor Mer 20:1–228]. However, the cause of this poor feeding success remains to be identified. Here, we show that hydrodynamic constraints on the ubiquitous suction mechanism in first-feeding larvae limit their ability to capture prey, thereby reducing their feeding rates. Dynamic-scaling experiments revealed that larval size is the primary determinant of feeding rate, independent of other ontogenetic effects. We conclude that first-feeding larvae experience “hydrodynamic starvation,” in which low Reynolds numbers mechanistically limit their feeding performance even under high prey densities. Our results provide a hydrodynamic perspective on feeding of larval fishes that focuses on the physical properties of the larvae and prey, rather than on prey concentration and the rate of encounters. PMID:24843180

  9. A pure hydrodynamic origin of accretion disk turbulence

    NASA Astrophysics Data System (ADS)

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata

    2016-07-01

    Accretion disks consist of flows for which angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Since molecular viscosity is negligible in these systems, scientists have argued for turbulent viscosity for energy dissipation and hence to explain infall of matter. However, so far, the success to explain the origin of turbulence in accretion disks is done with caveats. Here we investigate the evolution of pure hydrodynamic perturbations in stochastically driven accretion disks. We show that the accretion flows, which are inevitably driven by stochastic noise, are hydrodynamically unstable under linear perturbations. We also argue that in accretion disks, stochastic forcing appears generically due to the presence of shear between different annuli of the disk. This work resolves the turbulence problem of accretion disks from pure hydrodynamics and explains the infall of matter for both hot and cold disks. This would help in explaining the origin of timing and spectral features in the disk flows generically.

  10. Correlating hydrodynamic radii with that of two-dimensional nanoparticles

    NASA Astrophysics Data System (ADS)

    Yue, Yuan; Kan, Yuwei; Choi, Hyunho; Clearfield, Abraham; Liang, Hong

    2015-12-01

    Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (Rh). However, the Rh represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y2O3) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.

  11. Hydrodynamic deposition: a novel method of cell immobilization.

    PubMed

    Salter, G J; Kell, D B; Ash, L A; Adams, J M; Brown, A J; James, R

    1990-06-01

    A novel method of cell immobilization is described. The cell support consists of ceramic microspheres of approximately 50-75 microns diameter. The spheres are hollow, having a wall thickness of 10-15 microns and one entrance (ca. 20 microns diameter). The walls are porous with a mean pore size of approximately 90 nm. When a cell suspension (of S. cerevisiae) is passed through a column of such particles, cells are immobilized. Conditions are devised such that the overwhelming majority of cells are held in the central cavity of the support and not between the particles. Provided turbulence is avoided, the distribution of cells along the column length in the steady state is rather homogeneous. The facts that (a) essentially all particles, regardless of orientation, entrap cells, and (b) nonporous particles also entrap cells with high efficiency, indicate that filtration effects are irrelevant and that heretofore unrecognized hydrodynamic forces are alone responsible for the cell immobilization. Cells can be immobilized to high biomass densities, while the hydrodynamic properties of columns containing such immobilized cells are excellent. We describe an on-line electronic method for the real-time measurement of immobilized cellular biomass. Cell growth (so recorded) and metabolism continue to occur in such particles at high rates. Using the glycolytic production of ethanol by S. cerevisiae as a model reaction, volumetric productivities as great as any published are obtained. Thus the "lobster-pot effect" or "hydrodynamic deposition" represents a novel, promising, and generally applicable method of cell immobilization.

  12. Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.

  13. Hydrodynamic Entrapment of Petroleum within the Llanos Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Person, M. A.; Villamil, T.; Gable, C. W.

    2012-12-01

    A three-dimensional groundwater flow model was constructed to evaluate hydrodynamic effects on secondary oil migration within the Llanos Basin, Colombia (Fig. 1a). Hydrodynamic stagnation zones formed within the Carbonara reservoir (Fig. 1b) in the eastern portion of the Llanos Basin where structural slopes are low and hydraulic head mounds associated with river networks drives ground water flow eastward down structural dip. Computed Hubbert oil potentials within the Carbonara-7 reservoir indicate a hydrodynamic stagnation zone formed in the vicinity of the Rubiales oil field (gray pattern, Fig. 1b); a giant, enigmatic hydrocarbon accumulation with no known structural closure. Flat to titled oil water contacts predicted by Hubbert oil potentials (Fig. 1c) were found to be consistent with observed oil-water contacts (Fig. 1d). Best agreement for the location of this stagnation zone occurred when using an oil density of API 12 suggesting that the Rubiales field's position is in dynamic equilibrium with modern head conditions and present-day oil densities.

  14. Quantification of hydrodynamic factors influencing cell lateral migration

    NASA Astrophysics Data System (ADS)

    Nix, Stephanie; Imai, Yohsuke; Ishikawa, Takuji

    2015-11-01

    The study of the migration of blood cells perpendicular to the direction of blood flow, or lateral migration, is motivated by the differing behavior of the various types of blood cells. In vivo, red blood cells are observed to flow in the central region of the blood vessel, particularly in the microcirculation, while other types of cells in the blood, including white blood cells and platelets, are observed to flow disproportionately near the vessel wall. However, the specifics regarding the effect of hydrodynamic and biological factors are still unknown. Thus, in this study, we aim to quantify the effect of hydrodynamic factors on a cell model numerically using the boundary integral method. By using the boundary integral method, we can isolate the effect of a single hydrodynamic factor, such as a wall or given flow distribution, in an otherwise infinite flow. Then, we can use the obtained numerical results to develop a semi-analytical model describing the cell lateral migration dependent on only the flow geometry and the viscosity ratio between the cell and external fluid.

  15. Second-order (2 +1 ) -dimensional anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bazow, Dennis; Heinz, Ulrich; Strickland, Michael

    2014-11-01

    We present a complete formulation of second-order (2 +1 ) -dimensional anisotropic hydrodynamics. The resulting framework generalizes leading-order anisotropic hydrodynamics by allowing for deviations of the one-particle distribution function from the spheroidal form assumed at leading order. We derive complete second-order equations of motion for the additional terms in the macroscopic currents generated by these deviations from their kinetic definition using a Grad-Israel-Stewart 14-moment ansatz. The result is a set of coupled partial differential equations for the momentum-space anisotropy parameter, effective temperature, the transverse components of the fluid four-velocity, and the viscous tensor components generated by deviations of the distribution from spheroidal form. We then perform a quantitative test of our approach by applying it to the case of one-dimensional boost-invariant expansion in the relaxation time approximation (RTA) in which case it is possible to numerically solve the Boltzmann equation exactly. We demonstrate that the second-order anisotropic hydrodynamics approach provides an excellent approximation to the exact (0+1)-dimensional RTA solution for both small and large values of the shear viscosity.

  16. Numerical simulation of hydrodynamic flows in the jet electric

    NASA Astrophysics Data System (ADS)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.

    2016-02-01

    On the basis of concepts from magnetic hydrodynamics the mathematical model of hydrodynamic flows in the stream of electric arc plasma, obtained between the rod electrode and the target located perpendicular to the flat conductive, was developed. The same phenomenon occurs in the welding arc, arc plasma and other injection sources of charged particles. The model is based on the equations of magnetic hydrodynamics with special boundary conditions. The obtained system of equations was solved by the numerical method of finite elements with an automatic selection of the time step. Calculations were carried out with regard to the normal plasma inleakage on the solid conducting surface and the surface with the orifice. It was found that the solid surface facilitates three swirling zones. Interaction of these zones leads to the formation of two stable swirling zones, one of which is located at a distance of two radii from the axis and midway between the electrodes, another is located in the immediate vicinity of the continuous electrode. In this zone plasma backflow scattering fine particles is created. Swirling zones are not formed by using the plane electrode with an orifice. Thus, the fine particles can pass through it and consolidate.

  17. Bivelocity Picture in the Nonrelativistic Limit of Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koide, Tomoi; Ramos, Rudnei O.; Vicente, Gustavo S.

    2015-02-01

    We discuss the nonrelativistic limit of the relativistic Navier-Fourier-Stokes (NFS) theory. The next-to-leading order relativistic corrections to the NFS theory for the Landau-Lifshitz fluid are obtained. While the lowest order truncation of the velocity expansion leads to the usual NFS equations of nonrelativistic fluids, we show that when the next-to-leading order relativistic corrections are included, the equations can be expressed concurrently with two different fluid velocities. One of the fluid velocities is parallel to the conserved charge current (which follows the Eckart definition) and the other one is parallel to the energy current (which follows the Landau-Lifshitz definition). We compare this next-to-leading order relativistic hydrodynamics with bivelocity hydrodynamics, which is one of the generalizations of the NFS theory and is formulated in such a way to include the usual mass velocity and also a new velocity, called the volume velocity. We find that the volume velocity can be identified with the velocity obtained in the Landau-Lifshitz definition. Then, the structure of bivelocity hydrodynamics, which is derived using various nontrivial assumptions, is reproduced in the NFS theory including the next-to-leading order relativistic corrections.

  18. Volume transport and generalized hydrodynamic equations for monatomic fluids.

    PubMed

    Eu, Byung Chan

    2008-10-01

    In this paper, the effects of volume transport on the generalized hydrodynamic equations for a pure simple fluid are examined from the standpoint of statistical mechanics and, in particular, kinetic theory of fluids. First, we derive the generalized hydrodynamic equations, namely, the constitutive equations for the stress tensor and heat flux for a single-component monatomic fluid, from the generalized Boltzmann equation in the presence of volume transport. Then their linear steady-state solutions are derived and examined with regard to the effects of volume transport on them. The generalized hydrodynamic equations and linear constitutive relations obtained for nonconserved variables make it possible to assess Brenner's proposition [Physica A 349, 11 (2005); Physica A 349, 60 (2005)] for volume transport and attendant mass and volume velocities as well as the effects of volume transport on the Newtonian law of viscosity, compression/dilatation (bulk viscosity) phenomena, and Fourier's law of heat conduction. On the basis of study made, it is concluded that the notion of volume transport is sufficiently significant to retain in irreversible thermodynamics of fluids and fluid mechanics.

  19. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    SciTech Connect

    Berry, G.F.; Chang, S.L.; Lottes, S.A.; Rimkus, W.A.

    1991-04-04

    Argonne National Laboratory is investigating the nonreacting jet-gas mixing patterns in an MHD second stage combustor by using a two-dimensional multi-phase hydrodynamics computer program and a three-dimensional single-phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A two-dimensional steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross-stream gas flow. A three-dimensional code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet-gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell. 17 refs., 25 figs.

  20. Calibrating an updated smoothed particle hydrodynamics scheme within gcd+

    NASA Astrophysics Data System (ADS)

    Kawata, D.; Okamoto, T.; Gibson, B. K.; Barnes, D. J.; Cen, R.

    2013-01-01

    We adapt a modern scheme of smoothed particle hydrodynamics (SPH) to our tree N-body/SPH galactic chemodynamics code gcd+. The applied scheme includes implementations of the artificial viscosity switch and artificial thermal conductivity proposed by Morris & Monaghan, Rosswog & Price and Price to model discontinuities and Kelvin-Helmholtz instabilities more accurately. We first present hydrodynamics test simulations and contrast the results to runs undertaken without artificial viscosity switch or thermal conduction. In addition, we also explore the different levels of smoothing by adopting larger or smaller smoothing lengths, i.e. a larger or smaller number of neighbour particles, Nnb. We demonstrate that the new version of gcd+ is capable of modelling Kelvin-Helmholtz instabilities to a similar level as the mesh code, athena. From the Gresho vortex, point-like explosion and self-similar collapse tests, we conclude that setting the smoothing length to keep Nnb as high as ˜58 is preferable to adopting smaller smoothing lengths. We present our optimized parameter sets from the hydrodynamics tests.

  1. Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures

    SciTech Connect

    Donev, Aleksandar Bhattacharjee, Amit Kumar; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.

    2015-03-15

    We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a

  2. EDITORIAL: Catalysing progress Catalysing progress

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-01-01

    Examples of the merits of blue-sky research in the history of science are legion. The invention of the laser, celebrating its 50th anniversary this year, is an excellent example. When it was invented it was considered to be 'a solution waiting for a problem', and yet the level to which it has now infiltrated our day-to-day technological landscape speaks volumes. At the same time it is also true to say that the direction of research is also at times rightly influenced by the needs and concerns of the general public. Over recent years, growing concerns about the environment have had a noticeable effect on research in nanotechnology, motivating work on a range of topics from green nanomaterial synthesis [1] to high-efficiency solar cells [2] and hydrogen storage [3]. The impact of the world's energy consumption on the welfare of the planet is now an enduring and well founded concern. In the face of an instinctive reluctance to curtail habits of comfort and convenience and the appendages of culture and consumerism, research into renewable and more efficient energy sources seem an encouraging approach to alleviating an impending energy crisis. Fuel cells present one alternative to traditional combustion cells that have huge benefits in terms of the efficiency of energy conversion and the limited harmful emissions. In last week's issue of Nanotechnology, Chuan-Jian Zhong and colleagues at the State University of New York at Binghamton in the USA presented an overview of research on nanostructured catalysts in fuel cells [4]. The topical review includes insights into the interactions between nanoparticles and between nanoparticles and their substrate as well as control over the composition and nanostructure of catalysts. The review also serves to highlight how the flourishing of nanotechnology research has heralded great progress in the exploitation of catalysts with nanostructures ingeniously controlled to maximize surface area and optimize energetics for synthesis

  3. EDITORIAL: Catalysing progress Catalysing progress

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-01-01

    Examples of the merits of blue-sky research in the history of science are legion. The invention of the laser, celebrating its 50th anniversary this year, is an excellent example. When it was invented it was considered to be 'a solution waiting for a problem', and yet the level to which it has now infiltrated our day-to-day technological landscape speaks volumes. At the same time it is also true to say that the direction of research is also at times rightly influenced by the needs and concerns of the general public. Over recent years, growing concerns about the environment have had a noticeable effect on research in nanotechnology, motivating work on a range of topics from green nanomaterial synthesis [1] to high-efficiency solar cells [2] and hydrogen storage [3]. The impact of the world's energy consumption on the welfare of the planet is now an enduring and well founded concern. In the face of an instinctive reluctance to curtail habits of comfort and convenience and the appendages of culture and consumerism, research into renewable and more efficient energy sources seem an encouraging approach to alleviating an impending energy crisis. Fuel cells present one alternative to traditional combustion cells that have huge benefits in terms of the efficiency of energy conversion and the limited harmful emissions. In last week's issue of Nanotechnology, Chuan-Jian Zhong and colleagues at the State University of New York at Binghamton in the USA presented an overview of research on nanostructured catalysts in fuel cells [4]. The topical review includes insights into the interactions between nanoparticles and between nanoparticles and their substrate as well as control over the composition and nanostructure of catalysts. The review also serves to highlight how the flourishing of nanotechnology research has heralded great progress in the exploitation of catalysts with nanostructures ingeniously controlled to maximize surface area and optimize energetics for synthesis

  4. An integrated coastal model for aeolian and hydrodynamic sediment transport

    NASA Astrophysics Data System (ADS)

    Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.

    2012-04-01

    Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than

  5. Learning numerical progressions.

    PubMed

    Vitz, P C; Hazan, D N

    1974-01-01

    Learning of simple numerical progressions and compound progressions formed by combining two or three simple progressions is investigated. In two experiments, time to solution was greater for compound vs simple progressions; greater the higher the progression's solution level; and greater if the progression consisted of large vs small numbers. A set of strategies is proposed to account for progression learning based on the assumption S computes differences between integers, differences between differences, etc., in a hierarchical fashion. Two measures of progression difficulty, each a summary of the strategies, are proposed; C1 is a count of the number of differences needed to solve a progression; C2 is the same count with higher level differences given more weight. The measures accurately predict in both experiments the mean time to solve 16 different progressions with C2 being somewhat superior. The measures also predict the learning difficulty of 10 other progressions reported by Bjork (1968).

  6. Progress in mix modeling

    SciTech Connect

    Harrison, A.K.

    1997-03-14

    We have identified the Cranfill multifluid turbulence model (Cranfill, 1992) as a starting point for development of subgrid models of instability, turbulent and mixing processes. We have differenced the closed system of equations in conservation form, and coded them in the object-oriented hydrodynamics code FLAG, which is to be used as a testbed for such models.

  7. Numerical Hydrodynamics in Strong-Field General Relativity

    NASA Astrophysics Data System (ADS)

    East, William Edward

    In this thesis we develop and test methods for numerically evolving hydrodynamics coupled to the Einstein field equations, and then apply them to several problems in gravitational physics and astrophysics. The hydrodynamics scheme utilizes high-resolution shock-capturing techniques with flux corrections while the Einstein equations are evolved in the generalized harmonic formulation using finite difference methods. We construct initial data by solving the constraint equations using a multigrid algorithm with free data chosen based on superposing isolated compact objects. One application we consider is the merger of black hole-neutron star and neutron star-neutron star binaries that form through dynamical capture, as may occur in globular clusters or galactic nuclei. These systems can merge with non-negligible orbital eccentricity and display significant variability in dynamics and outcome as a function of initial impact parameter. We study the electromagnetic and gravitational-wave transients that these mergers may produce and their prospects for being detected with upcoming observations. We also introduce a numerical technique that allows solutions to the full Einstein equations to be obtained for extreme-mass-ratio systems where the spacetime is dominated by a known background solution. This technique is based on using the knowledge of a background solution to subtract off its contribution to the truncation error. We use this to study the tidal effects and gravitational radiation from a solar-type star falling into a supermassive black hole. Finally, we utilize general-relativistic hydrodynamics to study ultrarelativistic black hole formation. We study the head-on collision of fluid particles well within the kinetic energy dominated regime (Lorentz factors of 8-12). We find that black hole formation does occur at energies a factor of a few below simple hoop conjecture estimates. We also find that near the threshold for black hole formation, the collision leads to

  8. An origin for pulsar kicks in supernova hydrodynamics

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Hayes, John

    1996-04-01

    It is now believed that pulsars comprise the fastest population of stars in the galaxy. With inferred mean, root-mean-square, and maximum 3-D pulsar speeds of ~300-500 km/s, ~500 km/s, and ~2000 km/s, respectively, the question of the origin of such singular proper motions becomes acute. What mechanism can account for speeds that range from zero to twice the galactic escape velocity? We speculate that a major vector component of a neutron star's proper motion comes from the hydrodynamic recoil of the nascent neutron star during the supernova explosion in which it is born. Recently, theorists have shown that asymmetries and instabilities are a natural aspect of supernova dynamics. In this paper, we highlight two phenomena: 1) the ``Brownian-like'' stochastic motion of the core in response to the convective ``boiling'' of the mantle of the protoneutron star during the post-bounce, pre-explosion accretion phase, and 2) the asymmetrical bounce and explosion of an aspherically collapsing Chandrasekhar core. In principle, either phenomenon can leave the young neutron star with a speed of hundreds of kilometers per second. However, neither has yet been adequately simulated or explored. The two-dimensional radiation/hydrodynamic calculations we present here provide only crude estimates of the potential impulses due to mass motions and neutrino emissions. A comprehensive and credible investigation will require fully three-dimensional numerical simulations not yet possible. Nevertheless, we have in the asymmetric hydrodynamics of supernovae a natural means of imparting respectable kicks to neutron stars at birth, though speeds approaching 1000 km/s are still problematic.

  9. Moving mesh cosmology: the hydrodynamics of galaxy formation

    NASA Astrophysics Data System (ADS)

    Sijacki, Debora; Vogelsberger, Mark; Kereš, Dušan; Springel, Volker; Hernquist, Lars

    2012-08-01

    We present a detailed comparison between the well-known smoothed particle hydrodynamics (SPH) code GADGET and the new moving-mesh code AREPO on a number of hydrodynamical test problems. Through a variety of numerical experiments with increasing complexity we establish a clear link between simple test problems with known analytic solutions and systematic numerical effects seen in cosmological simulations of galaxy formation. Our tests demonstrate deficiencies of the SPH method in several sectors. These accuracy problems not only manifest themselves in idealized hydrodynamical tests, but also propagate to more realistic simulation set-ups of galaxy formation, ultimately affecting local and global gas properties in the full cosmological framework, as highlighted in companion papers by Vogelsberger et al. and Keres et al. We find that an inadequate treatment of fluid instabilities in GADGET suppresses entropy generation by mixing, underestimates vorticity generation in curved shocks and prevents efficient gas stripping from infalling substructures. Moreover, in idealized tests of inside-out disc formation, the convergence rate of gas disc sizes is much slower in GADGET due to spurious angular momentum transport. In simulations where we follow the interaction between a forming central disc and orbiting substructures in a massive halo, the final disc morphology is strikingly different in the two codes. In AREPO, gas from infalling substructures is readily depleted and incorporated into the host halo atmosphere, facilitating the formation of an extended central disc. Conversely, gaseous sub-clumps are more coherent in GADGET simulations, morphologically transforming the central disc as they impact it. The numerical artefacts of the SPH solver are particularly severe for poorly resolved flows, and thus inevitably affect cosmological simulations due to their inherently hierarchical nature. Taken together, our numerical experiments clearly demonstrate that AREPO delivers a

  10. The helical flow pump with a hydrodynamic levitation impeller.

    PubMed

    Abe, Yusuke; Ishii, Kohei; Isoyama, Takashi; Saito, Itsuro; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Nakano, Emiko; Fukazawa, Kyoko; Ishihara, Kazuhiko; Fukunaga, Kazuyoshi; Ono, Minoru; Imachi, Kou

    2012-12-01

    The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19 l/min against 100 mmHg of pressure head and 11 % maximum efficiency. The profile of the H-Q (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000 rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative days 14 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203 days of pumping. In the second experiment, a white thrombus was found in the pump after 23 days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP. PMID:22926404

  11. Microfluidic hydrodynamic focusing for high-throughput applications

    NASA Astrophysics Data System (ADS)

    Zhao, Jingjing; You, Zheng

    2015-12-01

    Microfluidic hydrodynamic focusing is critical for chip-based bioanalytical systems to increase throughput and sensitivity, especially for microflow cytometers, enabling a sample flow to be confined to the center of a microchannel with a narrow cross-section. Current microfluidic hydrodynamic focusing designs are usually unable to maintain stable focusing in high flow velocity conditions, resulting in a large cross-section or even failed focusing. To overcome this challenge, this paper aims to develop a design that can achieve effective microfluidic hydrodynamic focusing at high velocity with favorable performance. For this purpose, specially designed structures and arc-shaped channels are used. Two focusing regions are modeled and optimized mathematically, and flow behavior is investigated using numerical simulations. The functional relationship between flow rates and the cross-sectional dimensions of the focused sample flow is explored, and a measurement method for testing the dimensions is developed. The design is implemented in glass chips and characterized experimentally. In a rectangular channel with a cross-section of 300 μm  ×  150 μm the sample flow can be focused down to 5-11 μm horizontally and 10-21 μm vertically at a roughly constant velocity of 4.4 m s-1 when the sample flow rate varies between 10 and 60 μl min-1. Effective focusing is accessible within a wide velocity range from 0.7 to 10 m s-1. The experimental results validate that the focusing design performs better than existing microfluidic designs at high velocities, while its performance is close to that of the designs used in conventional flow cytometers with much less volume and a simpler structure. The focusing design can serve as the basis for microflow cytometers or it can be integrated into various microfluidic systems where complete focusing is needed.

  12. Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study

    SciTech Connect

    Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger

    2010-04-10

    Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.

  13. New York Bight Study. Report 1. Hydrodynamic modeling. Technical report

    SciTech Connect

    Scheffner, N.W.; Vemulakonda, S.R.; Mark, D.J.; Butler, H.L.; Kim, K.W.

    1994-08-01

    As a part of the New York (NY) Bight Feasibility Study, a three-dimensional hydrodynamic model of the NY Bight was developed and applied by the Coastal Engineering R h Center of the U.S. Army Engineer Waterways Experiment Station. The study used the three-dimensional hydrodynamic model CH3D-WES for this purpose. A 76 x 45 cell boundary-fitted curvilinear grid was employed in the horizontal and five to ten sigma layers were used in the vertical. Steady-state and diagnostic tests were initially performed, using M, and mixed tides, cross-shelf gradients, winds, and freshwater flows in the Hudson River. All of the tests were successful in reproducing known circulation patterns of the NY Bight system. The model was next successfully calibrated and verified against prototype tidal elevations and currents measured during April and May 1976. As a demonstration of the feasibility of long-term modeling, the hydrodynamics, including salinity and temperature, were simulated for the period April-October 1976. Model results compared favorably with available prototype temperature measurements. Model output was furnished to a water quality model of the NY Bight, which successfully reproduced the hypoxic event of 1976. Model results also were used successfully to run particle tracking and oil spill models of the NY Bight. Finally, the model was demonstrated for the Long Island Sound and East River areas, for the period of May-July 1990. Computed results for elevation, velocity, salinity, and temperature in the Sound as well as net flux in the East River matched measurements reasonably.

  14. A moving frame algorithm for high Mach number hydrodynamics

    NASA Astrophysics Data System (ADS)

    Trac, Hy; Pen, Ue-Li

    2004-07-01

    We present a new approach to Eulerian computational fluid dynamics that is designed to work at high Mach numbers encountered in astrophysical hydrodynamic simulations. Standard Eulerian schemes that strictly conserve total energy suffer from the high Mach number problem and proposed solutions to additionally solve the entropy or thermal energy still have their limitations. In our approach, the Eulerian conservation equations are solved in an adaptive frame moving with the fluid where Mach numbers are minimized. The moving frame approach uses a velocity decomposition technique to define local kinetic variables while storing the bulk kinetic components in a smoothed background velocity field that is associated with the grid velocity. Gravitationally induced accelerations are added to the grid, thereby minimizing the spurious heating problem encountered in cold gas flows. Separately tracking local and bulk flow components allows thermodynamic variables to be accurately calculated in both subsonic and supersonic regions. A main feature of the algorithm, that is not possible in previous Eulerian implementations, is the ability to resolve shocks and prevent spurious heating where both the pre-shock and post-shock fluid are supersonic. The hybrid algorithm combines the high-resolution shock capturing ability of the second-order accurate Eulerian TVD scheme with a low-diffusion Lagrangian advection scheme. We have implemented a cosmological code where the hydrodynamic evolution of the baryons is captured using the moving frame algorithm while the gravitational evolution of the collisionless dark matter is tracked using a particle-mesh N-body algorithm. Hydrodynamic and cosmological tests are described and results presented. The current code is fast, memory-friendly, and parallelized for shared-memory machines.

  15. Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels.

    PubMed

    Stan, Claudiu A; Guglielmini, Laura; Ellerbee, Audrey K; Caviezel, Daniel; Stone, Howard A; Whitesides, George M

    2011-09-01

    Particles, bubbles, and drops carried by a fluid in a confined environment such as a pipe can be subjected to hydrodynamic lift forces, i.e., forces that are perpendicular to the direction of the flow. We investigated the positioning effect of lift forces acting on buoyant drops and bubbles suspended in a carrier fluid and flowing in a horizontal microchannel. We report experiments on drops of water in fluorocarbon liquid, and on bubbles of nitrogen in hydrocarbon liquid and silicone oil, inside microchannels with widths on the order of 0.1-1 mm. Despite their buoyancy, drops and bubbles could travel without contacting with the walls of channels; the most important parameters for reaching this flow regime in our experiments were the viscosity and the velocity of the carrier fluid, and the sizes of drops and bubbles. The dependencies of the transverse position of drops and bubbles on these parameters were investigated. At steady state, the trajectories of drops and bubbles approached the center of the channel for drops and bubbles almost as large as the channel, carried by rapidly flowing viscous liquids; among our experiments, these flow conditions were characterized by larger capillary numbers and smaller Reynolds numbers. Analytical models of lift forces developed for the flow of drops much smaller than the width of the channel failed to predict their transverse position, while computational fluid dynamic simulations of the experiments agreed better with the experimental measurements. The degrees of success of these predictions indicate the importance of confinement on generating strong hydrodynamic lift forces. We conclude that, inside microfluidic channels, it is possible to support and position buoyant drops and bubbles simply by flowing a single-stream (i.e., "sheathless") carrier liquid that has appropriate velocity and hydrodynamic properties.

  16. The influence of subsurface hydrodynamics on convective precipitation

    NASA Astrophysics Data System (ADS)

    Rahman, A. S. M. M.; Sulis, M.; Kollet, S. J.

    2014-12-01

    The terrestrial hydrological cycle comprises complex processes in the subsurface, land surface, and atmosphere, which are connected via complex non-linear feedback mechanisms. The influence of subsurface hydrodynamics on land surface mass and energy fluxes has been the subject of previous studies. Several studies have also investigated the soil moisture-precipitation feedback, neglecting however the connection with groundwater dynamics. The objective of this study is to examine the impact of subsurface hydrodynamics on convective precipitation events via shallow soil moisture and land surface processes. A scale-consistent Terrestrial System Modeling Platform (TerrSysMP) that consists of an atmospheric model (COSMO), a land surface model (CLM), and a three-dimensional variably saturated groundwater-surface water flow model (ParFlow), is used to simulate hourly mass and energy fluxes over days with convective rainfall events over the Rur catchment, Germany. In order to isolate the effect of groundwater dynamics on convective precipitation, two different model configurations with identical initial conditions are considered. The first configuration allows the groundwater table to evolve through time, while a spatially distributed, temporally constant groundwater table is prescribed as a lower boundary condition in the second configuration. The simulation results suggest that groundwater dynamics influence land surface soil moisture, which in turn affects the atmospheric boundary layer (ABL) height by modifying atmospheric thermals. It is demonstrated that because of this sensitivity of ABL height to soil moisture-temperature feedback, the onset and magnitude of convective precipitation is influenced by subsurface hydrodynamics. Thus, the results provide insight into the soil moisture-precipitation feedback including groundwater dynamics in a physically consistent manner by closing the water cycle from aquifers to the atmosphere.

  17. Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures

    SciTech Connect

    Zhao, Y.

    1996-12-01

    Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed.

  18. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  19. Nonlinear hydrodynamics of cosmological sheets. 1: Numerical techniques and tests

    NASA Astrophysics Data System (ADS)

    Anninos, Wenbo Y.; Norman, Michael J.

    1994-07-01

    We present the numerical techniques and tests used to construct and validate a computer code designed to study the multidimensional nonlinear hydrodynamics of large-scale sheet structures in the universe, especially the fragmentation of such structures under various instabilities. This code is composed of two codes, the hydrodynamical code ZEUS-2D and a particle-mesh code. The ZEUS-2D code solves the hydrodynamical equations in two dimensions using explicit Eulerian finite-difference techniques, with modifications made to incorporate the expansion of the universe and the gas cooling due to Compton scattering, bremsstrahlung, and hydrogen and helium cooling. The particle-mesh code solves the equation of motion for the collisionless dark matter. The code uses two-dimensional Cartesian coordinates with a nonuniform grid in one direction to provide high resolution for the sheet structures. A series of one-dimensional and two-dimensional linear perturbation tests are presented which are designed to test the hydro solver and the Poisson solver with and without the expansion of the universe. We also present a radiative shock wave test which is designed to ensure the code's capability to handle radiative cooling properly. And finally a series of one-dimensional Zel'dovich pancake tests used to test the dark matter code and the hydro solver in the nonlinear regime are discussed and compared with the results of Bond et al. (1984) and Shapiro & Struck-Marcell (1985). Overall, the code is shown to produce accurate and stable results, which provide us a powerful tool to further our studies.

  20. RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    SciTech Connect

    Zhang, Wei-Qun; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study

    2005-06-06

    The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.