Sample records for mads-box protein positively

  1. SVP-like MADS-box protein from Carya cathayensis forms higher-order complexes.

    PubMed

    Wang, Jingjing; Hou, Chuanming; Huang, Jianqin; Wang, Zhengjia; Xu, Yingwu

    2015-03-01

    To properly regulate plant flowering time and construct floral pattern, MADS-domain containing transcription factors must form multimers including homo- and hetero-dimers. They are also active in forming hetero-higher-order complexes with three to five different molecules. However, it is not well known if a MADS-box protein can also form homo-higher-order complex. In this study a biochemical approach is utilized to provide insight into the complex formation for an SVP-like MADS-box protein cloned from hickory. The results indicated that the protein is a heterogeneous higher-order complex with the peak population containing over 20 monomers. Y2H verified the protein to form homo-complex in yeast cells. Western blot of the hickory floral bud sample revealed that the protein exists in higher-order polymers in native. Deletion assays indicated that the flexible C-terminal residues are mainly responsible for the higher-order polymer formation and the heterogeneity. Current results provide direct biochemical evidences for an active MADS-box protein to be a high order complex, much higher than a quartermeric polymer. Analysis suggests that a MADS-box subset may be able to self-assemble into large complexes, and thereby differentiate one subfamily from the other in a higher-order structural manner. Present result is a valuable supplement to the action of mechanism for MADS-box proteins in plant development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Multiple interactions amongst floral homeotic MADS box proteins.

    PubMed Central

    Davies, B; Egea-Cortines, M; de Andrade Silva, E; Saedler, H; Sommer, H

    1996-01-01

    Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity. Images PMID:8861961

  3. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility

    PubMed Central

    2014-01-01

    Background The MADS-box transcription factors play fundamental roles in reproductive developmental control. Although the roles of many plant MADS-box proteins have been extensively studied, there are almost no functional studies of them in soybean, an important protein and oil crop in the world. In addition, the MADS-box protein orthologs may have species-specific functions. Controlling male fertility is an important goal in plant hybrid breeding but is difficult in some crops like soybean. The morphological structure of soybean flowers prevents the cross-pollination. Understanding the molecular mechanisms for floral development will aid in engineering new sterile materials that could be applied in hybrid breeding programs in soybean. Result Through microarray analysis, a flower-enriched gene in soybean was selected and designated as GmMADS28. GmMADS28 belongs to AGL9/SEP subfamily of MADS-box proteins, localized in nucleus and showed specific expression patterns in floral meristems as well as stamen and petal primordia. Expression of GmMADS28 in the stamens and petals of a soybean mutant NJS-10Hfs whose stamens are converted into petals was higher than in those of wild-type plants. Constitutive expression of GmMADS28 in tobacco promoted early flowering and converted stamens and sepals to petals. Interestingly, transgenic plants increased the numbers of sepal, petal and stamen from five to six and exhibited male sterility due to the shortened and curly filaments and the failure of pollen release from the anthers. The ectopic expression of GmMADS28 was found to be sufficient to activate expression of tobacco homologs of SOC1, LEAFY, AGL8/FUL, and DEF. In addition, we observed the interactions of GmMADS28 with soybean homologs of SOC1, AP1, and AGL8/FUL proteins. Conclusion In this study, we observed the roles of GmMADS28 in the regulation of floral organ number and petal identity. Compared to other plant AGL9/SEP proteins, GmMADS28 specifically regulates floral

  4. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility.

    PubMed

    Huang, Fang; Xu, Guangli; Chi, Yingjun; Liu, Haicui; Xue, Qian; Zhao, Tuanjie; Gai, Junyi; Yu, Deyue

    2014-04-02

    The MADS-box transcription factors play fundamental roles in reproductive developmental control. Although the roles of many plant MADS-box proteins have been extensively studied, there are almost no functional studies of them in soybean, an important protein and oil crop in the world. In addition, the MADS-box protein orthologs may have species-specific functions. Controlling male fertility is an important goal in plant hybrid breeding but is difficult in some crops like soybean. The morphological structure of soybean flowers prevents the cross-pollination. Understanding the molecular mechanisms for floral development will aid in engineering new sterile materials that could be applied in hybrid breeding programs in soybean. Through microarray analysis, a flower-enriched gene in soybean was selected and designated as GmMADS28. GmMADS28 belongs to AGL9/SEP subfamily of MADS-box proteins, localized in nucleus and showed specific expression patterns in floral meristems as well as stamen and petal primordia. Expression of GmMADS28 in the stamens and petals of a soybean mutant NJS-10Hfs whose stamens are converted into petals was higher than in those of wild-type plants. Constitutive expression of GmMADS28 in tobacco promoted early flowering and converted stamens and sepals to petals. Interestingly, transgenic plants increased the numbers of sepal, petal and stamen from five to six and exhibited male sterility due to the shortened and curly filaments and the failure of pollen release from the anthers. The ectopic expression of GmMADS28 was found to be sufficient to activate expression of tobacco homologs of SOC1, LEAFY, AGL8/FUL, and DEF. In addition, we observed the interactions of GmMADS28 with soybean homologs of SOC1, AP1, and AGL8/FUL proteins. In this study, we observed the roles of GmMADS28 in the regulation of floral organ number and petal identity. Compared to other plant AGL9/SEP proteins, GmMADS28 specifically regulates floral organ number, filament length and

  5. Characterization of an AGAMOUS-like MADS Box Protein, a Probable Constituent of Flowering and Fruit Ripening Regulatory System in Banana

    PubMed Central

    Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N.

    2012-01-01

    The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ∼95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development. PMID:22984496

  6. Characterization of an AGAMOUS-like MADS box protein, a probable constituent of flowering and fruit ripening regulatory system in banana.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2012-01-01

    The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ~95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development.

  7. HbMADS4, a MADS-box Transcription Factor from Hevea brasiliensis, Negatively Regulates HbSRPP.

    PubMed

    Li, Hui-Liang; Wei, Li-Ran; Guo, Dong; Wang, Ying; Zhu, Jia-Hong; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    In plants MADS-box transcription factors (TFs) play important roles in growth and development. However, no plant MADS-box gene has been identified to have a function related to secondary metabolites regulation. Here, a MADS-box TF gene, designated as HbMADS4 , was isolated from Hevea brasiliensis by the yeast one-hybrid experiment to screen the latex cDNA library using the promoter of the gene encoding H. brasiliensis small rubber particle protein (HbSRPP) as bait. HbMADS4 was 984-bp containing 633-bp open reading frame encoding a deduced protein of 230 amino acid residues with a typical conserved MADS-box motif at the N terminus. HbMADS4 was preferentially expressed in the latex, but little expression was detected in the leaves, flowers, and roots. Its expression was inducible by methyl jasmonate and ethylene. Furthermore, transient over-expression and over-expression of HbMADS4 in transgenic tobacco plants significantly suppressed the activity of the HbSRP promoter. Altogether, it is proposed that HbMADS4 is a negative regulator of HbSRPP which participates in the biosynthesis of natural rubber.

  8. Banana Ovate Family Protein MaOFP1 and MADS-Box Protein MuMADS1 Antagonistically Regulated Banana Fruit Ripening

    PubMed Central

    Hu, Wei; Miao, Hongxia; Zhang, Jianbin; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening. PMID:25886169

  9. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  10. MADS-box genes and floral development: the dark side.

    PubMed

    Heijmans, Klaas; Morel, Patrice; Vandenbussche, Michiel

    2012-09-01

    The origin of the flower during evolution has been a crucial step in further facilitating plants to colonize a wide range of different niches on our planet. The >250 000 species of flowering plants existing today display an astonishing diversity in floral architecture. For this reason, the flower is a very attractive subject for evolutionary developmental (evo-devo) genetics studies. Research during the last two decades has provided compelling evidence that the origin and functional diversification of MIKC(c) MADS-box transcription factors has played a critical role during evolution of flowering plants. As master regulators of floral organ identity, MADS-box proteins are at the heart of the classic ABC model for floral development. Despite the enormous progress made in the field of floral development, there still remain aspects that are less well understood. Here we highlight some of the dark corners within our current knowledge on MADS-box genes and flower development, which would be worthwhile investigating in more detail in future research. These include the general question of to what extent MADS-box gene functions are conserved between species, the function of TM8-clade MADS-box genes which so far have remained uncharacterized, the divergence within the A-function, and post-transcriptional regulation of the ABC-genes.

  11. A MADS Box Protein Interacts with a Mating-Type Protein and Is Required for Fruiting Body Development in the Homothallic Ascomycete Sordaria macrospora

    PubMed Central

    Nolting, Nicole; Pöggeler, Stefanie

    2006-01-01

    MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Δmcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development. PMID:16835449

  12. A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora.

    PubMed

    Nolting, Nicole; Pöggeler, Stefanie

    2006-07-01

    MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Deltamcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development.

  13. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants.

    PubMed

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-11-01

    MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is

  14. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants

    PubMed Central

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-01-01

    Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11–14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes. Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box

  15. The study of two barley Type I-like MADS-box genes as potential targets of epigenetic regulation during seed development

    PubMed Central

    2012-01-01

    Background MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. Results Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. Conclusions Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental

  16. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[W

    PubMed Central

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening. PMID:24415769

  17. Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization.

    PubMed

    Koshimizu, Shizuka; Kofuji, Rumiko; Sasaki-Sekimoto, Yuko; Kikkawa, Masahide; Shimojima, Mie; Ohta, Hiroyuki; Shigenobu, Shuji; Kabeya, Yukiko; Hiwatashi, Yuji; Tamada, Yosuke; Murata, Takashi; Hasebe, Mitsuyasu

    2018-01-01

    MIKC classic (MIKC C )-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKC C -type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKC C -type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKC C -type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.

  18. Characterization of two rice MADS box genes that control flowering time.

    PubMed

    Kang, H G; Jang, S; Chung, J E; Cho, Y G; An, G

    1997-08-31

    Plants contain a variety of the MADS box genes that encode regulatory proteins and play important roles in both the formation of flower meristem and the determination of floral organ identity. We have characterized two flower-specific cDNAs from rice, designated OsMADS7 and OsMADS8. The cDNAs displayed the structure of a typical plant MADS box gene, which consists of the MADS domain, I region, K domain, and C-terminal region. These genes were classified as members of the AGL2 gene family based on sequence homology. The OsMADS7 and 8 proteins were most homologous to OM1 and FBP2, respectively. The OsMADS7 and 8 transcripts were detectable primarily in carpels and also weakly in anthers. During flower development, the OsMADS genes started to express at the young flower stage and the expression continued to the late stage of flower development. The OsMADS7 and 8 genes were mapped on the long arms of the chromosome 8 and 9, respectively. To study the functions of the genes, the cDNA clones were expressed ectopically using the CaMV 35S promoter in a heterologous tobacco plant system. Transgenic plants expressing the OsMADS genes exhibited the phenotype of early flowering and dwarfism. The strength of the phenotypes was proportional to the levels of transgene expression and the phenotypes were co-inherited with the kanamycin resistant gene to the next generation. These results indicate that OsMADS7 and 8 are structurally related to the AGL2 family and are involved in controlling flowering time.

  19. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica)

    PubMed Central

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-01-01

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple. PMID:26856238

  20. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica).

    PubMed

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-02-09

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple.

  1. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.

    PubMed

    Hernández-Hernández, Tania; Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R

    2007-02-01

    B-class MADS-box genes have been shown to be the key regulators of petal and stamen specification in several eudicot model species such as Arabidopsis thaliana, Antirrhinum majus, and Petunia hybrida. Orthologs of these genes have been found across angiosperms and gymnosperms, and it is thought that the basic regulatory function of B proteins is conserved in seed plant lineages. The evolution of B genes is characterized by numerous duplications that might represent key elements fostering the functional diversification of duplicates with a deep impact on their role in the evolution of the floral developmental program. To evaluate this, we performed a rigorous statistical analysis with B gene sequences. Using maximum likelihood and Bayesian methods, we estimated molecular substitution rates and determined the selective regimes operating at each residue of B proteins. We implemented tests that rely on phylogenetic hypotheses and codon substitution models to detect significant differences in substitution rates (DSRs) and sites under positive adaptive selection (PS) in specific lineages before and after duplication events. With these methods, we identified several protein residues fixed by PS shortly after the origin of PISTILLATA-like and APETALA3-like lineages in angiosperms and shortly after the origin of the euAP3-like lineage in core eudicots, the 2 main B gene duplications. The residues inferred to have been fixed by positive selection lie mostly within the K domain of the protein, which is key to promote heterodimerization. Additionally, we used a likelihood method that accommodates DSRs among lineages to estimate duplication dates for AP3-PI and euAP3-TM6, calibrating with data from the fossil record. The dates obtained are consistent with angiosperm origins and diversification of core eudicots. Our results strongly suggest that novel multimer formation with other MADS proteins could have been crucial for the functional divergence of B MADS-box genes. We thus

  3. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    PubMed Central

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-01-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins. PMID:24621662

  4. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny

    PubMed Central

    Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R.

    2003-01-01

    Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. PMID:14597714

  5. Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L.

    PubMed

    Hoenicka, Hans; Nowitzki, Olaf; Hanelt, Dieter; Fladung, Matthias

    2008-04-01

    MADS-box genes have been shown to be important to flower and vegetative tissue development, senescence and winter dormancy in many plant species. Heterologous overexpression of known MADS-box genes has also been used for unravelling gene regulation mechanisms in forest tree species. The constitutive expression of the BpMADS4 gene from birch in poplar, known to induce early flowering in birch and apple, induced broad changes in senescence and winter dormancy but no early flowering. Other analyses revealed that 35S::BpMADS4 poplars maintained photosynthetic activity, chlorophyll and proteins in leaves under winter conditions. BpMADS4 may be influencing transcription factors regulating the senescence and dormancy process due to homology with poplar proteins related to both traits. Little is known of the regulatory genes that co-ordinate senescence, dormancy, chlorophyll/protein degradation, and photosynthesis at the molecular level. Dissecting the molecular characteristics of senescence regulation will probably involve the understanding of multiple and novel regulatory pathways. The results presented here open new horizons for the identification of regulatory mechanisms related to dormancy and senescence in poplar and other temperate tree species. They confirm recent reports of common signalling intermediates between flowering time and growth cessation in trees (Böhlenius et al. in Science 312:1040-1043, 2006) and additionally indicate similar connections between flowering time signals and senescence.

  6. Characterization of TM8, a MADS-box gene expressed in tomato flowers.

    PubMed

    Daminato, Margherita; Masiero, Simona; Resentini, Francesca; Lovisetto, Alessandro; Casadoro, Giorgio

    2014-11-30

    The identity of flower organs is specified by various MIKC MADS-box transcription factors which act in a combinatorial manner. TM8 is a MADS-box gene that was isolated from the floral meristem of a tomato mutant more than twenty years ago, but is still poorly known from a functional point of view in spite of being present in both Angiosperms and Gymnosperms, with some species harbouring more than one copy of the gene. This study reports a characterization of TM8 that was carried out in transgenic tomato plants with altered expression of the gene. Tomato plants over-expressing either TM8 or a chimeric repressor form of the gene (TM8:SRDX) were prepared. In the TM8 up-regulated plants it was possible to observe anomalous stamens with poorly viable pollen and altered expression of several floral identity genes, among them B-, C- and E-function ones, while no apparent morphological modifications were visible in the other whorls. Oblong ovaries and fruits, that were also parthenocarpic, were obtained in the plants expressing the TM8:SRDX repressor gene. Such ovaries showed modified expression of various carpel-related genes. No apparent modifications could be seen in the other flower whorls. The latter plants had also epinastic leaves and malformed flower abscission zones. By using yeast two hybrid assays it was possible to show that TM8 was able to interact in yeast with MACROCALIX. The impact of the ectopically altered TM8 expression on the reproductive structures suggests that this gene plays some role in the development of the tomato flower. MACROCALYX, a putative A-function MADS-box gene, was expressed in all the four whorls of fully developed flowers, and showed quantitative variations that were opposite to those of TM8 in the anomalous stamens and ovaries. Since the TM8 protein interacted in vitro only with the A-function MADS-box protein MACROCALYX, it seems that for the correct differentiation of the tomato reproductive structures possible interactions between

  7. MADS-Box gene diversity in seed plants 300 million years ago.

    PubMed

    Becker, A; Winter, K U; Meyer, B; Saedler, H; Theissen, G

    2000-10-01

    MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants ranging from root development to flower and fruit development. Through phylogeny reconstructions, most of these genes can be subdivided into defined monophyletic gene clades whose members share similar expression patterns and functions. Therefore, the establishment of the diversity of gene clades was probably an important event in land plant evolution. In order to determine when these clades originated, we isolated cDNAs of 19 different MADS-box genes from Gnetum gnemon, a gymnosperm model species and thus a representative of the sister group of the angiosperms. Phylogeny reconstructions involving all published MADS-box genes were then used to identify gene clades containing putative orthologs from both angiosperm and gymnosperm lineages. Thus, the minimal number of MADS-box genes that were already present in the last common ancestor of extant gymnosperms and angiosperms was determined. Comparative expression studies involving pairs of putatively orthologous genes revealed a diversity of patterns that has been largely conserved since the time when the angiosperm and gymnosperm lineages separated. Taken together, our data suggest that there were already at least seven different MADS-box genes present at the base of extant seed plants about 300 MYA. These genes were probably already quite diverse in terms of both sequence and function. In addition, our data demonstrate that the MADS-box gene families of extant gymnosperms and angiosperms are of similar complexities.

  8. MADS-box genes in maize: Frequent targets of selection during domestication

    USDA-ARS?s Scientific Manuscript database

    MADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 random loci from the maize genome and investigated their involvement in maize domestication and improvement. Using n...

  9. Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence.

    PubMed

    Wang, Runze; Ming, Meiling; Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling; Wu, Jun

    2017-01-01

    MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear ( Pyrus ), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.

  10. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening.

    PubMed

    Liu, Juhua; Xu, Biyu; Hu, Lifang; Li, Meiying; Su, Wei; Wu, Jing; Yang, Jinghao; Jin, Zhiqiang

    2009-01-01

    To investigate the regulation of MADS-box genes in banana (Musa acuminata L. AAA group cv. Brazilian) fruit development and postharvest ripening, we isolated from banana fruit a MADS-box gene designated MuMADS1. Amino acid alignment indicated MuMADS1 belongs to the AGAMOUS subfamily, and phylogenetic analysis indicates that this gene is most similar to class D MADS-box genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that MuMADS1 is expressed in the stamen and pistil of male and female flowers and in the rhizome, the vegetative reproductive organ of the banana plant. In preharvest banana fruit, MuMADS1 is likely expressed throughout banana fruit development. In postharvest banana ripening, MuMADS1 is associated with ethylene biosynthesis. Expression patterns of MuMADS1 during postharvest ripening as determined by real-time RT-PCR suggest that differential expression of MuMADS1 may not only be induced by ethylene biosynthesis associated with postharvest banana ripening, but also may be induced by exogenous ethylene.

  11. Control of Floral Meristem Determinacy in Petunia by MADS-Box Transcription Factors1[W

    PubMed Central

    Ferrario, Silvia; Shchennikova, Anna V.; Franken, John; Immink, Richard G.H.; Angenent, Gerco C.

    2006-01-01

    The shoot apical meristem (SAM), a small group of undifferentiated dividing cells, is responsible for the continuous growth of plants. Several genes have been identified that control the development and maintenance of the SAM. Among these, WUSCHEL (WUS) from Arabidopsis (Arabidopsis thaliana) is thought to be required for maintenance of a stem cell pool in the SAM. The MADS-box gene AGAMOUS, in combination with an unknown factor, has been proposed as a possible negative regulator of WUS, leading to the termination of meristematic activity within the floral meristem. Transgenic petunia (Petunia hybrida) plants were produced in which the E-type and D-type MADS-box genes FLORAL BINDING PROTEIN2 (FBP2) and FBP11, respectively, are simultaneously overexpressed. These plants show an early arrest in development at the cotyledon stage. Molecular analysis of these transgenic plants revealed a possible combined action of FBP2 and FBP11 in repressing the petunia WUS homolog, TERMINATOR. Furthermore, the ectopic up-regulation of the C-type and D-type homeotic genes FBP6 and FBP7, respectively, suggests that they may also participate in a complex, which causes the determinacy in transgenic plants. These data support the model that a transcription factor complex consisting of C-, D-, and E-type MADS-box proteins controls the stem cell population in the floral meristem. PMID:16428599

  12. Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence

    PubMed Central

    Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling

    2017-01-01

    MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear. PMID:28924499

  13. Functional Conservation of MIKC*-Type MADS Box Genes in Arabidopsis and Rice Pollen Maturation[C][W

    PubMed Central

    Liu, Yuan; Cui, Shaojie; Wu, Feng; Yan, Shuo; Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Schilling, Susanne; Theißen, Günter; Meng, Zheng

    2013-01-01

    There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKCC type and MIKC* type. In seed plants, the MIKCC type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago. PMID:23613199

  14. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)

    PubMed Central

    Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes. PMID:28742823

  15. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.).

    PubMed

    Ma, Jian; Yang, Yujie; Luo, Wei; Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes.

  16. A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis.

    PubMed

    Nolting, Nicole; Pöggeler, Stefanie

    2006-11-01

    The MADS box protein MCM1 controls diverse developmental processes and is essential for fruiting body formation in the homothallic ascomycete Sordaria macrospora. MADS box proteins derive their regulatory specificity from a wide range of different protein interactions. We have recently shown that the S. macrospora MCM1 is able to interact with the alpha-domain mating-type protein SMTA-1. To further evaluate the functional roles of MCM1, we used the yeast two-hybrid approach to identify MCM1-interacting proteins. From this screen, we isolated a protein with a putative N-terminal homeodomain and C-terminal C2/H2-Zn2+ finger domains. The protein is a member of the highly conserved fungal STE12 transcription factor family of proteins and was therefore termed STE12. Furthermore, we demonstrate by means of two-hybrid and far western analysis that in addition to MCM1, the S. macrospora STE12 protein is able to interact with the mating-type protein SMTA-1. Unlike the situation in the closely related heterothallic ascomycete Neurospora crassa, deletion (Delta) of the ste12 gene in S. macrospora neither affects vegetative growth nor fruiting body formation. However, ascus and ascospore development are highly impaired by the Deltaste12 mutation. Our data provide another example of the functional divergence within the fungal STE12 transcription factor family.

  17. Phylogenomics of MADS-Box Genes in Plants - Two Opposing Life Styles in One Gene Family.

    PubMed

    Gramzow, Lydia; Theißen, Günter

    2013-09-12

    The development of multicellular eukaryotes, according to their body plan, is often directed by members of multigene families that encode transcription factors. MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR)-box genes form one of those families controlling nearly all major aspects of plant development. Knowing the complete complement of MADS-box genes in sequenced plant genomes will allow a better understanding of the evolutionary patterns of these genes and the association of their evolution with the evolution of plant morphologies. Here, we have applied a combination of automatic and manual annotations to identify the complete set of MADS-box genes in 17 plant genomes. Furthermore, three plant genomes were reanalyzed and published datasets were used for four genomes such that more than 2,600 genes from 24 species were classified into the two types of MADS-box genes, Type I and Type II. Our results extend previous studies, highlighting the remarkably different evolutionary patterns of Type I and Type II genes and provide a basis for further studies on the evolution and function of MADS-box genes.

  18. IbMADS1 (Ipomoea batatas MADS-box 1 gene) is Involved in Tuberous Root Initiation in Sweet Potato (Ipomoea batatas)

    PubMed Central

    Ku, Amy Tsu; Huang, Yi-Shiuan; Wang, Yu-Shu; Ma, Daifu; Yeh, Kai-Wun

    2008-01-01

    Background and Aims The tuberization mechanism of sweet potato (Ipomoea batatas) has long been studied using various approaches. Morphological data have revealed that the tuberizing events result from the activation of the cambium, followed by cell proliferation. However, uncertainties still remain regarding the regulators participating in this signal-transduction pathway. An attempt was made to characterize the role of one MADS-box transcription factor, which was preferentially expressed in sweet potato roots at the early tuberization stage. Methods A differential expression level of IbMADS1 (Ipomoea batatas MADS-box 1) was detected temporally and spatially in sweet potato tissues. IbMADS1 responses to tuberization-related hormones were assessed. In order to identify the evolutionary significance, the expression pattern of IbMADS1 was surveyed in two tuber-deficient Ipomoea relatives, I. leucantha and I. trifida, and compared with sweet potato. In functional analyses, potato (Solanum tuberosum) was employed as a heterologous model. The resulting tuber morphogenesis was examined anatomically in order to address the physiological function of IbMADS1, which should act similarly in sweet potato. Key Results IbMADS1 was preferentially expressed as tuberous root development proceeded. Its expression was inducible by tuberization-related hormones, such as jasmonic acid and cytokinins. In situ hybridization data showed that IbMADS1 transcripts were specifically distributed around immature meristematic cells within the stele and lateral root primordia. Inter-species examination indicated that IbMADS1 expression was relatively active in sweet potato roots, but undetectable in tuber-deficient Ipomoea species. IbMADS1-transformed potatoes exhibited tuber morphogenesis in the fibrous roots. The partial swellings along fibrous roots were mainly due to anomalous proliferation and differentiation in the xylem. Conclusions Based on this study, it is proposed that IbMADS1 is an

  19. Cloning of a MADS box gene (GhMADS3) from cotton and analysis of its homeotic role in transgenic tobacco.

    PubMed

    Guo, Yulong; Zhu, Qinlong; Zheng, Shangyong; Li, Mingyang

    2007-06-01

    A MADS box gene (GhMADS3) was cloned from cotton (Gossypium hirsutum L.) based on EST sequences. The predicted protein sequence of GhMADS3 showed 85%, 73%, and 62% identity with Theobroma cacao TcAG, Antirrhinum majus FAR, and Arabidopsis thaliana AG, respectively, and was grouped with AG homologues when the full length sequences excluding N-extensions were compared. GhMADS3 expressed in the wild type cotton flower primarily in stamens and carpels, which was comparable to AG in Arabidopsis. However, it was not expressed in floral buds of a homeotic cotton variant chv1. Ectopic expression of GhMADS3 in tobacco (Nicotiana tabacum L.) resulted in flowers with sepal-to-carpel and petal-to-stamen transformation. The carpelloid first whorl organs, with stigmatic tissue on their upper edges, had a white appearance when compared with the dark green color of the wild type sepals. At times, long filaments were observed at the fusion site of the first carpelloid oranges. The second whorl organs in staminoid were usually smaller than the wild type and the color was changed from pink to white. These results suggest that GhMADS3 has a homeotic role in flower development.

  20. Cloning, Characterization, Regulation, and Function of Dormancy-Associated MADS-Box Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are SHORT VEGETATIVE PHASE–Like MADS box transcription factors linked to endodormancy induction. We have cloned and characterized several cDNA and genomic clones of DAM genes from the model perennial weed leafy spurge (Euphorbia esula). We present evidence fo...

  1. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia

    2014-10-01

    MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.

  2. Bearded-Ear Encodes a MADS-box Transcription Factor Critical for Maize Floral Development

    USDA-ARS?s Scientific Manuscript database

    We cloned bde by positional cloning and found that it encodes zag3, a MADS-box transcription factor in the conserved AGL6 clade. Mutants in the maize homolog of AGAMOUS, zag1, have a subset of bde floral defects. bde; zag1 double mutants have a severe ear phenotype, not observed in either single m...

  3. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.)

    PubMed Central

    Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan

    2016-01-01

    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines. PMID:28018414

  4. The pineapple AcMADS1 promoter confers high level expression in tomato and arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant

    USDA-ARS?s Scientific Manuscript database

    A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of e...

  5. Ancestral and more recently acquired syntenic relationships of MADS-box genes uncovered by the Physcomitrella patens pseudochromosomal genome assembly.

    PubMed

    Barker, Elizabeth I; Ashton, Neil W

    2016-03-01

    The Physcomitrella pseudochromosomal genome assembly revealed previously invisible synteny enabling realisation of the full potential of shared synteny as a tool for probing evolution of this plant's MADS-box gene family. Assembly of the sequenced genome of Physcomitrella patens into 27 mega-scaffolds (pseudochromosomes) has confirmed the major predictions of our earlier model of expansion of the MADS-box gene family in the Physcomitrella lineage. Additionally, microsynteny has been conserved in the immediate vicinity of some recent duplicates of MADS-box genes. However, comparison of non-syntenic MIKC MADS-box genes and neighbouring genes indicates that chromosomal rearrangements and/or sequence degeneration have destroyed shared synteny over longer distances (macrosynteny) around MADS-box genes despite subsets comprising two or three MIKC genes having remained syntenic. In contrast, half of the type I MADS-box genes have been transposed creating new syntenic relations with MIKC genes. This implies that conservation of ancient ancestral synteny of MIKC genes and of more recently acquired synteny of type I and MIKC genes may be selectively advantageous. Our revised model predicts the birth rate of MIKC genes in Physcomitrella is higher than that of type I genes. However, this difference is attributable to an early tandem duplication and an early segmental duplication of MIKC genes prior to the two polyploidisations that account for most of the expansion of the MADS-box gene family in Physcomitrella. Furthermore, this early segmental duplication spawned two chromosomal lineages: one with a MIKC (C) gene, belonging to the PPM2 clade, in close proximity to one or a pair of MIKC* genes and another with a MIKC (C) gene, belonging to the PpMADS-S clade, characterised by greater separation from syntenic MIKC* genes. Our model has evolutionary implications for the Physcomitrella karyotype.

  6. The regulation of MADS-box gene expression during ripening of banana and their regulatory interation with ethylene

    USDA-ARS?s Scientific Manuscript database

    MADS-box genes (MaMADS1-6), potential components of the developmental control of ripening have been cloned from Grand Nain banana cultivar. Similarity of these genes to tomato LeRIN is very low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns...

  7. Predicting the Impact of Alternative Splicing on Plant MADS Domain Protein Function

    PubMed Central

    Severing, Edouard I.; van Dijk, Aalt D. J.; Morabito, Giuseppa; Busscher-Lange, Jacqueline; Immink, Richard G. H.; van Ham, Roeland C. H. J.

    2012-01-01

    Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function. One example is the plant MADS-domain transcription factor family, members of which interact to form protein complexes that function in transcription regulation. Here, we perform an in silico analysis of the potential impact of AS on the protein-protein interaction capabilities of MIKC-type MADS-domain proteins. We first confirmed the expression of transcript isoforms resulting from predicted AS events. Expressed transcript isoforms were considered functional if they were likely to be translated and if their corresponding AS events either had an effect on predicted dimerisation motifs or occurred in regions known to be involved in multimeric complex formation, or otherwise, if their effect was conserved in different species. Nine out of twelve MIKC MADS-box genes predicted to produce multiple protein isoforms harbored putative functional AS events according to those criteria. AS events with conserved effects were only found at the borders of or within the K-box domain. We illustrate how AS can contribute to the evolution of interaction networks through an example of selective inclusion of a recently evolved interaction motif in the MADS AFFECTING FLOWERING1-3 (MAF1–3) subclade. Furthermore, we demonstrate the potential effect of an AS event in SHORT VEGETATIVE PHASE (SVP), resulting in the deletion of a short sequence stretch including a predicted interaction motif, by overexpression of the fully spliced and the alternatively spliced SVP transcripts. For most of the AS events we were able to formulate hypotheses about the potential impact on

  8. Molecular cloning and function analysis of two SQUAMOSA-Like MADS-box genes from Gossypium hirsutum L.

    PubMed

    Zhang, Wenxiang; Fan, Shuli; Pang, Chaoyou; Wei, Hengling; Ma, Jianhui; Song, Meizhen; Yu, Shuxun

    2013-07-01

    The MADS-box genes encode a large family of transcription factors having diverse roles in plant development. The SQUAMOSA (SQUA)/APETALA1 (AP1)/FRUITFULL (FUL) subfamily genes are essential regulators of floral transition and floral organ identity. Here we cloned two MADS-box genes, GhMADS22 and GhMADS23, belonging to the SQUA/AP1/FUL subgroup from Gossypium hirsutum L. Phylogenetic analysis and sequence alignment showed that GhMADS22 and GhMADS23 belonged to the euFUL and euAP1 subclades, respectively. The two genes both had eight exons and seven introns from the start codon to the stop codon according to the alignment between the obtained cDNA sequence and the Gossypium raimondii L. genome sequence. Expression profile analysis showed that GhMADS22 and GhMADS23 were highly expressed in developing shoot apices, bracts, and sepals. Gibberellic acid promoted GhMADS22 and GhMADS23 expression in the shoot apex. Transgenic Arabidopsis lines overexpressing 35S::GhMADS22 had abnormal flowers and bolted earlier than wild type under long-day conditions (16 h light/8 h dark). Moreover, GhMADS22 overexpression delayed floral organ senescence and abscission and it could also respond to abscisic acid. In summary, GhMADS22 may have functions in promoting flowering, improving resistance and delaying senescence for cotton and thus it may be a candidate target for promoting early-maturation in cotton breeding. © 2013 Institute of Botany, Chinese Academy of Sciences.

  9. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns

    PubMed Central

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, “What is their role in non-seed plants?” From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution. PMID:29720991

  10. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns.

    PubMed

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, "What is their role in non-seed plants?" From the studies reviewed here it can be gathered that unlike seed plants, MIKC C genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC * genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.

  11. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.

    PubMed

    Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-Ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji

    2007-06-01

    Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.

  12. Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop.

    PubMed

    Hubert, O; Piral, G; Galas, C; Baurens, F-C; Mbéguié-A-Mbéguié, D

    2014-06-01

    Banana finger drop was examined in ripening banana harvested at immature (iMG), early (eMG) and late mature green (lMG) stages, with contrasting ripening rates and ethylene sensitivities. Concomitantly, 11 ethylene signal transduction components (ESTC) and 6 MADS box gene expressions were comparatively studied in median (control zone, CZ) and pedicel rupture (drop zone DZ) areas in peel tissue. iMG fruit did not ripen or develop finger drop while eMG and lMG fruits displayed a similar finger drop pattern. Several ESTC and MADS box gene mRNAs were differentially induced in DZ and CZ and sequentially in eMG and lMG fruits. MaESR2, 3 and MaEIL1, MaMADS2 and MaMADS5 had a higher mRNA level in eMG and acted earlier, whereas MaERS1, MaCTR1, MaEIL3/AB266319, MaEIL4/AB266320 and MaEIL5/AB266321, MaMADS4 and to a lesser extent MaMADS2 and 5 acted later in lMG. In this fruit, MaERS1 and 3, MaCTR1, MaEIL3, 4 and MaEIL5/AB266321, and MaMADS4 were enhanced by finger drop, suggesting their specific involvement in this process. MaEIL1, MaMADS1 and 3, induced at comparable levels in DZ and CZ, are probably related to the overall fruit ripening process. These findings led us to consider that developmental cues are the predominant finger drop regulation factor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene

    PubMed Central

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J.; Goldschmidt, Eliezer E.; Friedman, Haya

    2010-01-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO2 peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  14. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene.

    PubMed

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya

    2010-03-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  15. Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.)

    PubMed Central

    Zhang, Xiaoni; Wang, Qijian; Yang, Shaozong; Lin, Shengnan; Bao, Manzhu; Wu, Quanshu; Wang, Caiyun; Fu, Xiaopeng

    2018-01-01

    Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation (DcaMADS) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKCc, two MIKC*, two Mα, and five Mγ). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE (SVP)), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 (AGL6), one SEEDSTICK (STK), one B sister, one SVP, and one Mα). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation. PMID:29617274

  16. Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.).

    PubMed

    Zhang, Xiaoni; Wang, Qijian; Yang, Shaozong; Lin, Shengnan; Bao, Manzhu; Bendahmane, Mohammed; Wu, Quanshu; Wang, Caiyun; Fu, Xiaopeng

    2018-04-04

    Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation ( DcaMADS ) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKC c , two MIKC*, two Mα, and five Mγ). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE ( SVP )), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 ( AGL6 ), one SEEDSTICK ( STK ), one B sister , one SVP , and one Mα ). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation.

  17. Early Cone Setting in Picea abies acrocona Is Associated with Increased Transcriptional Activity of a MADS Box Transcription Factor1[W][OA

    PubMed Central

    Uddenberg, Daniel; Reimegård, Johan; Clapham, David; Almqvist, Curt; von Arnold, Sara; Emanuelsson, Olof; Sundström, Jens F.

    2013-01-01

    Conifers normally go through a long juvenile period, for Norway spruce (Picea abies) around 20 to 25 years, before developing male and female cones. We have grown plants from inbred crosses of a naturally occurring spruce mutant (acrocona). One-fourth of the segregating acrocona plants initiate cones already in their second growth cycle, suggesting control by a single locus. The early cone-setting properties of the acrocona mutant were utilized to identify candidate genes involved in vegetative-to-reproductive phase change in Norway spruce. Poly(A+) RNA samples from apical and basal shoots of cone-setting and non-cone-setting plants were subjected to high-throughput sequencing (RNA-seq). We assembled and investigated 33,383 expressed putative protein-coding acrocona transcripts. Eight transcripts were differentially expressed between selected sample pairs. One of these (Acr42124_1) was significantly up-regulated in apical shoot samples from cone-setting acrocona plants, and the encoded protein belongs to the MADS box gene family of transcription factors. Using quantitative real-time polymerase chain reaction with independently derived plant material, we confirmed that the MADS box gene is up-regulated in both needles and buds of cone-inducing shoots when reproductive identity is determined. Our results constitute important steps for the development of a rapid cycling model system that can be used to study gene function in conifers. In addition, our data suggest the involvement of a MADS box transcription factor in the vegetative-to-reproductive phase change in Norway spruce. PMID:23221834

  18. Characterization, Expression and Function of DORMANCY ASSOCIATED MADS-BOX Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endo...

  19. Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco.

    PubMed

    Qu, Guan-Zheng; Zheng, Tangchun; Liu, Guifeng; Wang, Wenjie; Zang, Lina; Liu, Huanzhen; Yang, Chuanping

    2013-01-01

    In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco.

  20. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco.

    PubMed

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Hildebrandt, Britton; Leasia, Michael

    2013-11-01

    The K-domain of a blueberry-derived SOC1 -like gene promotes flowering in tobacco without negatively impacting yield, demonstrating potential for manipulation of flowering time in horticultural crops. The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and SOC1-likes, belonging to the MIKC(c) (type II) MADS-box gene subfamily, are major floral activators and integrators of plant flowering. Both MADS-domains and K (Keratin)-domains are highly conserved in MIKC(c)-type MADS proteins. While there are many reports on overexpression of intact MIKC(c)-type MADS-box genes, few studies have been conducted to investigate the effects of the K-domains. In this report, a 474-bp K-domain of Vaccinium SOC1-like (VcSOC1-K) was cloned from the cDNA library of the northern highbush blueberry (Vaccinium corymbosum L.). Functional analysis of the VcSOC1-K was conducted by ectopically expressing of 35S:VcSOC1-K in tobacco. Reverse transcription PCR confirmed expression of the VcSOC1-K in T0 plants. Phenotypically, T1 transgenic plants (10 T1 plants/event) flowered sooner after seeding, and were shorter with fewer leaves at the time of flowering, than nontransgenic plants; but seed pod production of transgenic plants was not significantly affected. These results demonstrate that overexpression of the K-domain of a MIKC(c)-type MADS-box gene alone is sufficient to promote early flowering and more importantly without affecting seed production.

  1. Overexpression of a MADS-Box Gene from Birch (Betula platyphylla) Promotes Flowering and Enhances Chloroplast Development in Transgenic Tobacco

    PubMed Central

    Qu, Guan-Zheng; Zheng, Tangchun; Liu, Guifeng; Wang, Wenjie; Zang, Lina; Liu, Huanzhen; Yang, Chuanping

    2013-01-01

    In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco. PMID:23691043

  2. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening. © 2015 Scandinavian Plant Physiology Society.

  3. SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple

    PubMed Central

    Wu, Rongmei; Tomes, Sumathi; Karunairetnam, Sakuntala; Tustin, Stuart D.; Hellens, Roger P.; Allan, Andrew C.; Macknight, Richard C.; Varkonyi-Gasic, Erika

    2017-01-01

    The annual growth cycle of trees is the result of seasonal cues. The onset of winter triggers an endodormant state preventing bud growth and, once a chilling requirement is satisfied, these buds enter an ecodormant state and resume growing. MADS-box genes with similarity to Arabidopsis SHORT VEGETATIVE PHASE (SVP) [the SVP-like and DORMANCY ASSOCIATED MADS-BOX (DAM) genes] have been implicated in regulating flowering and growth-dormancy cycles in perennials. Here, we identified and characterized three DAM-like (MdDAMs) and two SHORT VEGETATIVE PHASE-like (MdSVPs) genes from apple (Malus × domestica ‘Royal Gala’). The expression of MdDAMa and MdDAMc indicated they may play a role in triggering autumn growth cessation. In contrast, the expression of MdDAMb, MdSVPa and MdSVPb suggested a role in maintaining bud dormancy. Consistent with this, ectopic expression of MdDAMb and MdSVPa in ‘Royal Gala’ apple plants resulted in delayed budbreak and architecture change due to constrained lateral shoot outgrowth, but normal flower and fruit development. The association of MdSVPa and MdSVPb expression with floral bud development in the low fruiting ‘Off’ trees of a biennial bearing cultivar ‘Sciros’ suggested the SVP genes might also play a role in floral meristem identity. PMID:28421103

  4. Proteomics and SSH Analyses of ALA-Promoted Fruit Coloration and Evidence for the Involvement of a MADS-Box Gene, MdMADS1

    PubMed Central

    Feng, Xinxin; An, Yuyan; Zheng, Jie; Sun, Miao; Wang, Liangju

    2016-01-01

    Skin color is a key quality attribute of fruits and how to improve fruit coloration has long been a major concern. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, can significantly increase anthocyanin accumulation in fruit skin and therefore effectively improve coloration of many fruits, including apple. However, the molecular mechanism how ALA stimulates anthocyanin accumulation in fruit skin remains unknown. Here, we investigated the impact of ALA on apple skin at the protein and mRNA levels. A total of 85 differentially expressed proteins in apple skins between ALA and water treatment (control) were identified by complementary gel-based and gel-free separation techniques. Most of these differentially expressed proteins were up-regulated by ALA. Function analysis suggested that 87.06% of the ALA-responsive proteins were associated with fruit ripening. To further screen ALA-responsive regulators, we constructed a subtracted cDNA library (tester: ALA treatment; driver: control) and obtained 104 differentially expressed unigenes, of which 38 unigenes were indicators for the fruit ripening-related genes. The differentially changed proteins and transcripts did not correspond well at an individual level, but showed similar regulated direction in function at the pathway level. Among the identified fruit ripening-related genes, the expression of MdMADS1, a developmental transcription regulator of fruit ripening, was positively correlated with expression of anthocyanin biosynthetic genes (MdCHS, MdDFR, MdLDOX, and MdUFGT) in apple skin under ALA treatment. Moreover, overexpression of MdMADS1 enhanced anthocyanin content in transformed apple calli, which was further enhanced by ALA. The anthocyanin content in MdMADS1-silenced calli was less than that in the control with ALA treatment, but higher than that without ALA treatment. These results indicated that MdMADS1 is involved in ALA-induced anthocyanin accumulation. In addition, anthocyanin

  5. Cloning, characterization, regulation, and function of dormancy-associated MADS-BOX genes from leafy spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  6. Cloning, Characterization, Regulation, and Function of DORMANCY-ASSOCIATED MADS-BOX Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  7. DNA methylation and small interference RNAs participate in the regulation of MADS-box genes involved in dormancy in sweet cherry (Prunus avium L.).

    PubMed

    Rothkegel, Karin; Sánchez, Evelyn; Montes, Christian; Greve, Macarena; Tapia, Sebastián; Bravo, Soraya; Prieto, Humberto; Almeida, Andréa Miyasaka

    2017-12-01

    Epigenetic modifications can yield information about connections between genotype, phenotype variation and environmental conditions. Bud dormancy release in temperate perennial fruit trees depends on internal and environmental signals such as cold accumulation and photoperiod. Previous investigations have noted the participation of epigenetic mechanisms in the control of this physiological process. We examined whether epigenetic modifications were modulated in MADS-box genes, potential candidates for the regulation of bud dormancy and flowering in sweet cherry (Prunus avium L.). We identified and cloned two MADS-box genes homologous to the already-characterized dormancy regulators DORMANCY-ASSOCIATED MADS-box (DAM3 and DAM5) from Prunus persica (L.) Batsch. Bisulfite sequencing of the identified genes (PavMADS1 and PavMADS2), Methylated DNA Immunoprecipitation and small RNA deep sequencing were performed to analyze the presence of DNA methylations that could be guided by non-coding RNAs in the floral buds exposed to differential chilling hours. The results obtained reveal an increase in the level of DNA methylation and abundance of matching small interference RNAs (siRNAs) in the promoter of PavMADS1 when the chilling requirement is complete. For the first intron and 5' UTR of PavMADS1, de novo DNA methylation could be associated with the increase in the abundance of 24-nt siRNA matching the promoter area. Also, in the second large intron of PavMADS1, maintenance DNA methylation in all cytosine contexts is associated with the presence of homologous siRNAs in that zone. For PavMADS2, only maintenance methylation was present in the CG context, and no matching siRNAs were detected. Silencing of PavMADS1 and PavMADS2 coincided with an increase in Flowering Locus T expression during dormancy. In conclusion, DNA methylations and siRNAs appear to be involved in the silencing of PavMADS1 during cold accumulation and dormancy release in sweet cherry. © The Author 2017

  8. Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes.

    PubMed

    Alvarez-Buylla, Elena R; García-Ponce, Berenice; Garay-Arroyo, Adriana

    2006-01-01

    APETALA1 (AP1) and CAULIFLOWER (CAL) are closely related MADS box genes that are partially redundant during Arabidopsis thaliana floral meristem determination. AP1 is able to fully substitute for CAL functions, but not vice versa, and AP1 has unique sepal and petal identity specification functions. In this study, the unique and redundant functions of these two genes has been mapped to the four protein domains that characterize type-II MADS-domain proteins by expressing all 15 chimeric combinations of AP1 and CAL cDNA regions under control of the AP1 promoter in ap1-1 loss-of-function plants. The "in vivo" function of these chimeric genes was analysed in Arabidopsis plants by expressing the chimeras. Rescue of flower meristem and sepal/petal identities was scored in single and multiple insert homozygous transgenic lines. Using these chimeric lines, it was found that distinct residues of the AP1 K domain not shared by the same CAL domain are necessary and sufficient for complete recovery of floral meristem identity, in the context of the CAL protein sequence, while both AP1 COOH and K domains are indispensable for complete rescue of sepal identity. By contrast, either one of these two AP1 domains is necessary and sufficient for complete petal identity recovery. It was also found that there were positive and negative synergies among protein domains and their combinations, and that multiple-insert lines showed relatively better rescue than equivalent single-insert lines. Finally, several lines had flowers with extra sepals and petals suggesting that chimeric proteins yield abnormal transcriptional complexes that may alter the expression or regulation of genes that control floral organ number under normal conditions.

  9. Evolutionary Analysis of MIKCc-Type MADS-Box Genes in Gymnosperms and Angiosperms

    PubMed Central

    Chen, Fei; Zhang, Xingtan; Liu, Xing; Zhang, Liangsheng

    2017-01-01

    MIKCc-type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKCc originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKCc-type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP, AP1, GMADS, SOC1, AGL32, AP3/PI, SVP, AGL15, ANR1, and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP, SOC1, and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKCc gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKCc genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKCc genes in the ancestor of angiosperms triggered the first flower. PMID:28611810

  10. Evolutionary Analysis of MIKCc-Type MADS-Box Genes in Gymnosperms and Angiosperms.

    PubMed

    Chen, Fei; Zhang, Xingtan; Liu, Xing; Zhang, Liangsheng

    2017-01-01

    MIKC c -type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKC c originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKC c -type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP , AP1 , GMADS , SOC1 , AGL32 , AP3 / PI , SVP , AGL15 , ANR1 , and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP , SOC1 , and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKC c gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKC c genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKC c genes in the ancestor of angiosperms triggered the first flower.

  11. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.).

    PubMed

    Liu, Wei; Han, Xiangdong; Zhan, Ge; Zhao, Zhenfang; Feng, Yongjun; Wu, Cunxiang

    2015-08-31

    The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  12. Coordinating expression of FLOWERING LOCUS T by DORMANCY ASSOCIATED MADS-BOX-like genes in leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge is a noxious perennial weed that produces underground adventitious buds, which are crucial for generating new vegetative shoots following periods of freezing temperatures or exposure to various control measures. DORMANCY ASSOCIATED MADS-BOX (DAM) genes have been proposed to play a direc...

  13. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii).

    PubMed

    Nardeli, Sarah Muniz; Artico, Sinara; Aoyagi, Gustavo Mitsunori; de Moura, Stéfanie Menezes; da Franca Silva, Tatiane; Grossi-de-Sa, Maria Fatima; Romanel, Elisson; Alves-Ferreira, Marcio

    2018-06-01

    The MADS-box gene family encodes transcription factors that share a highly conserved domain known to bind to DNA. Members of this family control various processes of development in plants, from root formation to fruit ripening. In this work, a survey of diploid (Gossypium raimondii and Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes found a total of 147, 133 and 207 MADS-box genes, respectively, distributed in the MIKC, Mα, Mβ, Mγ, and Mδ subclades. A comparative phylogenetic analysis among cotton species, Arabidopsis, poplar and grapevine MADS-box homologous genes allowed us to evaluate the evolution of each MADS-box lineage in cotton plants and identify sequences within well-established subfamilies. Chromosomal localization and phylogenetic analysis revealed that G. raimondii and G. arboreum showed a conserved evolution of the MIKC subclade and a distinct pattern of duplication events in the Mα, Mγ and Mδ subclades. Additionally, G. hirsutum showed a combination of its parental subgenomes followed by a distinct evolutionary history including gene gain and loss in each subclade. qPCR analysis revealed the expression patterns of putative homologs in the AP1, AP3, AGL6, SEP4, AGL15, AG, AGL17, TM8, SVP, SOC and TT16 subfamilies of G. hirsutum. The identification of putative cotton orthologs is discussed in the light of evolution and gene expression data from other plants. This analysis of the MADS-box genes in Gossypium species opens an avenue to understanding the origin and evolution of each gene subfamily within diploid and polyploid species and paves the way for functional studies in cotton species. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wei, Jianghui; Fan, Shuli; Song, Meizhen; Pang, Chaoyou; Wei, Hengling; Wang, Chengshe; Yu, Shuxun

    2016-01-01

    In Arabidopsis flowering pathway, MADS-box genes encode transcription factors, with their structures and functions highly conserved in many species. In our study, two MADS-box genes GhSOC1 and GhMADS42 (Gossypium hirsutum L.) were cloned from upland cotton CCRI36 and transformed into Arabidopsis. GhSOC1 was additionally transformed into upland cotton. Comparative analysis demonstrated sequence conservation between GhSOC1 and GhMADS42 and genes of other plant species. Tissue-specific expression analysis of GhSOC1 and GhMADS42 revealed spatiotemporal expression patterns involving high transcript levels in leaves, shoot apical buds, and flowers. In addition, overexpression of both GhSOC1 and GhMADS42 in Arabidopsis accelerated flowering, with GhMADS42 transgenic plants showing abnormal floral organ phenotypes. Overexpression of GhSOC1 in upland cotton also produced variations in floral organs. Furthermore, chromatin immunoprecipitation assay demonstrated that GhSOC1 could regulate GhMADS41 and GhMADS42, but not FLOWERING LOCUS T, by directly binding to the genes promoter. Finally, yeast two-hybrid and bimolecular fluorescence complementation approaches were undertaken to better understand the interaction of GhSOC1 and other MADS-box factors. These experiments showed that GhSOC1 can interact with APETALA1/FRUITFULL-like proteins in cotton. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Structure of an intermediate conformer of the spindle checkpoint protein Mad2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Mayuko; Özkan, Engin; Sun, Hongbin

    2015-08-24

    The spindle checkpoint senses unattached kinetochores during prometaphase and inhibits the anaphase-promoting complex or cyclosome (APC/C), thus ensuring accurate chromosome segregation. The checkpoint protein mitotic arrest deficient 2 (Mad2) is an unusual protein with multiple folded states. Mad2 adopts the closed conformation (C-Mad2) in a Mad1–Mad2 core complex. In mitosis, kinetochore-bound Mad1–C-Mad2 recruits latent, open Mad2 (O-Mad2) from the cytosol and converts it to an intermediate conformer (I-Mad2), which can then bind and inhibit the APC/C activator cell division cycle 20 (Cdc20) as C-Mad2. In this paper, we report the crystal structure and NMR analysis of I-Mad2 bound to C-Mad2.more » Although I-Mad2 retains the O-Mad2 fold in crystal and in solution, its core structural elements undergo discernible rigid-body movements and more closely resemble C-Mad2. Residues exhibiting methyl chemical shift changes in I-Mad2 form a contiguous, interior network that connects its C-Mad2–binding site to the conformationally malleable C-terminal region. Mutations of residues at the I-Mad2–C-Mad2 interface hinder I-Mad2 formation and impede the structural transition of Mad2. Finally, our study provides insight into the conformational activation of Mad2 and establishes the basis of allosteric communication between two distal sites in Mad2.« less

  16. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals.

    PubMed

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-11-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth. © The Author 2014. Published by Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  17. Isolation and characterization of a SEPALLATA-like gene, ZjMADS1, from marine angiosperm Zostera japonica.

    PubMed

    Kakinuma, Makoto; Inoue, Miho; Morita, Teruwo; Tominaga, Hiroshi; Maegawa, Miyuki; Coury, Daniel A; Amano, Hideomi

    2012-05-01

    In flowering plants, floral homeotic MADS-box genes, which constitute a large multigene family, play important roles in the specification of floral organs as defined by the ABCDE model. In this study, a MADS-box gene, ZjMADS1, was isolated and characterized from the marine angiosperm Zostera japonica. The predicted length of the ZjMADS1 protein was 246 amino acids (AA), and the AA sequence was most similar to those of the SEPALLATA (SEP) subfamily, corresponding to E-function genes. Southern blot analysis suggested the presence of two SEP3-like genes in the Z. japonica genome. ZjMADS1 mRNA levels were extremely high in the spadices, regardless of the developmental stage, compared to other organs from the reproductive and vegetative shoots. These results suggest that the ZjMADS1 gene may be involved in spadix development in Z. japonica and act as an E-function gene in floral organ development in marine angiosperms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes.

    PubMed

    Dreni, Ludovico; Zhang, Dabing

    2016-03-01

    AGL6 is an ancient subfamily of MADS-box genes found in both gymnosperms and angiosperms. Its functions remained elusive despite the fact that the MADS-box genes and the ABC model have been studied for >20 years. Nevertheless, recent discoveries in petunia, rice, and maize support its involvement in the 'E' function of floral development, very similar to the closely related AGL2 (SEPALLATA) subfamily which has been well characterized. The known functions of AGL6 span from ancient conserved roles to new functions acquired in specific plant families. The AGL6 genes are involved in floral meristem regulation, in floral organs, and ovule (integument) and seed development, and have possible roles in both male and female germline and gametophyte development. In grasses, they are also important for the development of the first whorl of the flower, whereas in Arabidopsis they may play additional roles before floral meristem formation. This review covers these recent insights and some other aspects that are not yet fully elucidated, which deserve more studies in the future. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Molecular mechanisms of floral organ specification by MADS domain proteins.

    PubMed

    Yan, Wenhao; Chen, Dijun; Kaufmann, Kerstin

    2016-02-01

    Flower development is a model system to understand organ specification in plants. The identities of different types of floral organs are specified by homeotic MADS transcription factors that interact in a combinatorial fashion. Systematic identification of DNA-binding sites and target genes of these key regulators show that they have shared and unique sets of target genes. DNA binding by MADS proteins is not based on 'simple' recognition of a specific DNA sequence, but depends on DNA structure and combinatorial interactions. Homeotic MADS proteins regulate gene expression via alternative mechanisms, one of which may be to modulate chromatin structure and accessibility in their target gene promoters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia.

    PubMed

    Sundström, Jens; Engström, Peter

    2002-07-01

    The Norway spruce MADS-box genes DAL11, DAL12 and DAL13 are phylogenetically related to the angiosperm B-function MADS-box genes: genes that act together with A-function genes in specifying petal identity and with C-function genes in specifying stamen identity to floral organs. In this report we present evidence to suggest that the B-gene function in the specification of identity of the pollen-bearing organs has been conserved between conifers and angiosperms. Expression of DAL11 or DAL12 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expression of the endogenous B-genes. In similar experiments, flowers of Arabidopsis plants expressing DAL13 showed a different homeotic change in that they formed ectopic anthers in whorls one, two or four. We also demonstrate the capacity of the spruce gene products to form homodimers, and that DAL11 and DAL13 may form heterodimers with each other and with the Arabidopsis B-protein AP3, but not with PI, the second B-gene product in Arabidopsis. In situ hybridization experiments show that the conifer B-like genes are expressed specifically in developing pollen cones, but differ in both temporal and spatial distribution patterns. These results suggest that the B-function in conifers is dual and is separated into a meristem identity and an organ identity function, the latter function possibly being independent of an interaction with the C-function. Thus, even though an ancestral B-function may have acted in combination with C to specify micro- and megasporangia, the B-function has evolved differently in conifers and angiosperms.

  1. Dormancy-Associated MADS-Box (DAM) and the Abscisic Acid Pathway Regulate Pear Endodormancy Through a Feedback Mechanism.

    PubMed

    Tuan, Pham Anh; Bai, Songling; Saito, Takanori; Ito, Akiko; Moriguchi, Takaya

    2017-08-01

    In the pear 'Kosui' (Pyrus pyrifolia Nakai), the dormancy-associated MADS-box (PpDAM1 = PpMADS13-1) gene has been reported to play an essential role in bud endodormancy. Here, we found that PpDAM1 up-regulated expression of 9-cis-epoxycarotenoid dioxygenase (PpNCED3), which is a rate-limiting gene for ABA biosynthesis. Transient assays with a dual luciferase reporter system (LUC assay) and electrophoretic mobility shift assay (EMSA) showed that PpDAM1 activated PpNCED3 expression by binding to the CArG motif in the PpNCED3 promoter. PpNCED3 expression was increased toward endodormancy release in lateral flower buds of 'Kosui', which is consistent with the induced levels of ABA, its catabolism (ABA 8'-hydroxylase) and signaling genes (type 2C protein phosphatase genes and SNF1-related protein kinase 2 genes). In addition, we found that an ABA response element (ABRE)-binding transcription factor, PpAREB1, exhibiting high expression concomitant with endodormancy release, bound to three ABRE motifs in the promoter region of PpDAM1 and negatively regulated its activity. Taken together, our results suggested a feedback regulation between PpDAM1 and the ABA metabolism and signaling pathway during endodormancy of pear. This first evidence of an interaction between a DAM and ABA biosynthesis in vitro will provide further insights into bud endodormancy regulatory mechanisms of deciduous trees including pear. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants.

    PubMed

    Guo, Xuhu; Chen, Guoping; Naeem, Muhammad; Yu, Xiaohu; Tang, Boyan; Li, Anzhou; Hu, Zongli

    2017-05-01

    MADS-domain proteins are important transcription factors that are involved in many biological processes of plants. In the present study, SlMBP11, a member of the AGL15 subfamily, was cloned in tomato plants (Solanum lycopersicon M.). SlMBP11 is ubiquitously expressed in all of the tissues we examined, whereas the SlMBP11 transcription levels were significantly higher in reproductive tissues than in vegetative tissues. Plants exhibiting increased SlMBP11 levels displayed reduced plant height, leaf size, and internode length as well as a loss of dominance in young seedlings, highly branched growth from each leaf axil, and increased number of nodes and leaves. Moreover, overexpression lines also exhibited reproductive phenotypes, such as those having a shorter style and split ovary, leading to polycarpous fruits, while the wild type showed normal floral organization. In addition, delayed perianth senescence was observed in transgenic tomatoes. These phenotypes were further confirmed by analyzing the morphological, anatomical and molecular features of lines exhibiting overexpression. These results suggest that SlMBP11 plays an important role in regulating plant architecture and reproductive development in tomato plants. These findings add a new class of transcription factors to the group of genes controlling axillary bud growth and illuminate a previously uncharacterized function of MADS-box genes in tomato plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits

    USDA-ARS?s Scientific Manuscript database

    MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3, both displaying high expressio...

  4. KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1

    USDA-ARS?s Scientific Manuscript database

    Seeds employ sensory systems that assess various environmental cues over time to maximize the successful transition from embryo to seedling. Here, we show that the Arabidopsis F-Box protein Cold Temperature-Germinating (CTG)-10, identified by activation tagging, is a positive regulator during this p...

  5. Identification and Characterization of Three Orchid MADS-Box Genes of the AP1/AGL9 Subfamily during Floral Transition1

    PubMed Central

    Yu, Hao; Goh, Chong Jin

    2000-01-01

    Gene expressions associated with in vitro floral transition in an orchid hybrid (Dendrobium grex Madame Thong-In) were investigated by differential display. One clone, orchid transitional growth related gene 7 (otg7), encoding a new MADS-box gene, was identified to be specifically expressed in the transitional shoot apical meristem (TSAM). Using this clone as a probe, three orchid MADS-box genes, DOMADS1, DOMADS2, and DOMADS3, were subsequently isolated from the TSAM cDNA library. Phylogenetic analyses show that DOMADS1 and DOMADS2 are new members of the AGL2 subfamily and SQUA subfamily, respectively. DOMADS3 contains the signature amino acids as with the members in the independent OSMADS1 subfamily separated from the AGL2 subfamily. All three of the DOMADS genes were expressed in the TSAM during floral transition and later in mature flowers. DOMADS1 RNA was uniformly expressed in both of the inflorescence meristem and the floral primordium and later localized in all of the floral organs. DOMADS2 showed a novel expression pattern that has not been previously characterized for any other MADS-box genes. DOMADS2 transcript was expressed early in the 6-week-old vegetative shoot apical meristem in which the obvious morphological change to floral development had yet to occur. It was expressed throughout the process of floral transition and later in the columns of mature flowers. The onset of DOMADS3 transcription was in the early TSAM at the stage before the differentiation of the first flower primordium. Later, DOMADS3 transcript was only detectable in the pedicel tissues. Our results suggest that the DOMADS genes play important roles in the process of floral transition. PMID:10938351

  6. Molecular analyses of MADS-box genes trace back to Gymnosperms the invention of fleshy fruits.

    PubMed

    Lovisetto, Alessandro; Guzzo, Flavia; Tadiello, Alice; Toffali, Ketti; Favretto, Alessandro; Casadoro, Giorgio

    2012-01-01

    Botanical fruits derive from ovaries and their most important function is to favor seed dispersal. Fleshy fruits do so by attracting frugivorous animals that disperse seeds together with their own excrements (endozoochory). Gymnosperms make seeds but have no ovaries to be transformed into fruits. Many species surround their seeds with fleshy structures and use endozoochory to disperse them. Such structures are functionally fruits and can derive from different anatomical parts. Ginkgo biloba and Taxus baccata fruit-like structures differ in their anatomical origin since the outer seed integument becomes fleshy in Ginkgo, whereas in Taxus, the fleshy aril is formed de novo. The ripening characteristics are different, with Ginkgo more rudimentary and Taxus more similar to angiosperm fruits. MADS-box genes are known to be necessary for the formation of flowers and fruits in Angiosperms but also for making both male and female reproductive structures in Gymnosperms. Here, a series of different MADS-box genes have been shown for the first time to be involved also in the formation of gymnosperm fruit-like structures. Apparently, the same gene types have been recruited in phylogenetically distant species to make fleshy structures that also have different anatomical origins. This finding indicates that the main molecular networks operating in the development of fleshy fruits have independently appeared in distantly related Gymnosperm taxa. Hence, the appearance of the seed habit and the accompanying necessity of seed dispersal has led to the invention of the fruit habit that thus seems to have appeared independently of the presence of flowers.

  7. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development.

    PubMed

    Hu, Yun; Liang, Wanqi; Yin, Changsong; Yang, Xuelian; Ping, Baozhe; Li, Anxue; Jia, Ru; Chen, Mingjiao; Luo, Zhijing; Cai, Qiang; Zhao, Xiangxiang; Zhang, Dabing; Yuan, Zheng

    2015-09-01

    During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regulating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChIP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  8. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum.

    PubMed

    Yang, Cui; Liu, Huiquan; Li, Guotian; Liu, Meigang; Yun, Yingzi; Wang, Chenfang; Ma, Zhonghua; Xu, Jin-Rong

    2015-08-01

    In eukaryotic cells, MADS-box genes are known to play major regulatory roles in various biological processes by combinatorial interactions with other transcription factors. In this study, we functionally characterized the FgMCM1 MADS-box gene in Fusarium graminearum, the causal agent of wheat and barley head blight. Deletion of FgMCM1 resulted in the loss of perithecium production and phialide formation. The Fgmcm1 mutant was significantly reduced in virulence, deoxynivalenol biosynthesis and conidiation. In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and Fst12, two transcription factors important for sexual reproduction. Whereas Fgmcm1 mutants were unstable and produced stunted subcultures, Fgmcm1 mat1-1-1 but not Fgmcm1 fst12 double mutants were stable. Furthermore, spontaneous suppressor mutations occurred frequently in stunted subcultures to recover growth rate. Ribonucleic acid sequencing analysis indicated that a number of sexual reproduction-related genes were upregulated in stunted subcultures compared with the Fgmcm1 mutant, which was downregulated in the expression of genes involved in pathogenesis, secondary metabolism and conidiation. We also showed that culture instability was not observed in the Fvmcm1 mutants of the heterothallic Fusarium verticillioides. Overall, our data indicate that FgMcm1 plays a critical role in the regulation of cell identity, sexual and asexual reproduction, secondary metabolism and pathogenesis in F. graminearum. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Morphological "primary homology" and expression of AG-subfamily MADS-box genes in pines, podocarps, and yews.

    PubMed

    Englund, Marie; Carlsbecker, Annelie; Engström, Peter; Vergara-Silva, Francisco

    2011-01-01

    The morphological variation among reproductive organs of extant gymnosperms is remarkable, especially among conifers. Several hypotheses concerning morphological homology between various conifer reproductive organs have been put forward, in particular in relation to the pine ovuliferous scale. Here, we use the expression patterns of orthologs of the ABC-model MADS-box gene AGAMOUS (AG) for testing morphological homology hypotheses related to organs of the conifer female cone. To this end, we first developed a tailored 3'RACE procedure that allows reliable amplification of partial sequences highly similar to gymnosperm-derived members of the AG-subfamily of MADS-box genes. Expression patterns of two novel conifer AG orthologs cloned with this procedure-namely PodAG and TgAG, obtained from the podocarp Podocarpus reichei and the yew Taxus globosa, respectively-are then further characterized in the morphologically divergent female cones of these species. The expression patterns of PodAG and TgAG are compared with those of DAL2, a previously discovered Picea abies (Pinaceae) AG ortholog. By treating the expression patterns of DAL2, PodAG, and TgAG as character states mapped onto currently accepted cladogram topologies, we suggest that the epimatium-that is, the podocarp female cone organ previously postulated as a "modified" ovuliferous scale-and the canonical Pinaceae ovuliferous scale can be legitimally conceptualized as "primary homologs." Character state mapping for TgAG suggests in turn that the aril of Taxaceae should be considered as a different type of organ. This work demonstrates how the interaction between developmental-genetic data and formal cladistic theory could fruitfully contribute to gymnosperm systematics. © 2011 Wiley Periodicals, Inc.

  10. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex.

    PubMed

    Hewitt, Laura; Tighe, Anthony; Santaguida, Stefano; White, Anne M; Jones, Clifford D; Musacchio, Andrea; Green, Stephen; Taylor, Stephen S

    2010-07-12

    Mps1 is an essential component of the spindle assembly checkpoint. In this study, we describe a novel Mps1 inhibitor, AZ3146, and use it to probe the role of Mps1's catalytic activity during mitosis. When Mps1 is inhibited before mitotic entry, subsequent recruitment of Mad1 and Mad2 to kinetochores is abolished. However, if Mps1 is inhibited after mitotic entry, the Mad1-C-Mad2 core complex remains kinetochore bound, but O-Mad2 is not recruited to the core. Although inhibiting Mps1 also interferes with chromosome alignment, we see no obvious effect on aurora B activity. In contrast, kinetochore recruitment of centromere protein E (CENP-E), a kinesin-related motor protein, is severely impaired. Strikingly, inhibition of Mps1 significantly increases its own abundance at kinetochores. Furthermore, we show that Mps1 can dimerize and transphosphorylate in cells. We propose a model whereby Mps1 transphosphorylation results in its release from kinetochores, thus facilitating recruitment of O-Mad2 and CENP-E and thereby simultaneously promoting checkpoint signaling and chromosome congression.

  11. Max-E47, a Designed Minimalist Protein that Targets the E-Box DNA Site In Vivo and In Vitro

    PubMed Central

    Xu, Jing; Chen, Gang; De Jong, Antonia T.; Shahravan, S. Hesam; Shin, Jumi A.

    2009-01-01

    Max-E47 is a designed hybrid protein comprising the Max DNA-binding basic region and E47 HLH dimerization subdomain. In the yeast one-hybrid system (Y1H), Max-E47 shows strong transcriptional activation from the E-box site, 5'-CACGTG, targeted by the Myc/Max/Mad network of transcription factors; two mutants, Max-E47Y and Max-E47YF, activate more weakly from the E-box in the Y1H. Quantitative fluorescence anisotropy titrations to gain free energies of protein:DNA binding gave low nM Kd values for the native MaxbHLHZ, Max-E47, and the Y and YF mutants binding to the E-box site (14 nM, 15 nM, 9 nM, and 6 nM, respectively), with no detectable binding to a nonspecific control duplex. Because these minimalist, E-box-binding hybrids have no activation domain and no interactions with the c-MycbHLHZ, as shown by the yeast two-hybrid assay, they can potentially serve as dominant-negative inhibitors that suppress activation of E-box-responsive genes targeted by transcription factors including the c-Myc/Max complex. As proof-of-principle, we used our modified Y1H, which allows direct competition between two proteins vying for a DNA target, to show that Max-E47 effectively outcompetes the native MaxbHLHZ for the E-box; weaker competition is observed from the two mutants, consistent with Y1H results. These hybrids provide a minimalist scaffold for further exploration of the relationship between protein structure and DNA-binding function and may have applications as protein therapeutics or biochemical probes capable of targeting the E-box site. PMID:19449889

  12. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein–Protein Interactions

    PubMed Central

    Bartlett, Madelaine; Thompson, Beth; Brabazon, Holly; Del Gizzi, Robert; Zhang, Thompson; Whipple, Clinton

    2016-01-01

    Protein–protein interactions (PPIs) have widely acknowledged roles in the regulation of development, but few studies have addressed the timing and mechanism of shifting PPIs over evolutionary history. The B-class MADS-box transcription factors, PISTILLATA (PI) and APETALA3 (AP3) are key regulators of floral development. PI-like (PIL) and AP3-like (AP3L) proteins from a number of plants, including Arabidopsis thaliana (Arabidopsis) and the grass Zea mays (maize), bind DNA as obligate heterodimers. However, a PIL protein from the grass relative Joinvillea can bind DNA as a homodimer. To ascertain whether Joinvillea PIL homodimerization is an anomaly or indicative of broader trends, we characterized PIL dimerization across the Poales and uncovered unexpected evolutionary lability. Both obligate B-class heterodimerization and PIL homodimerization have evolved multiple times in the order, by distinct molecular mechanisms. For example, obligate B-class heterodimerization in maize evolved very recently from PIL homodimerization. A single amino acid change, fixed during domestication, is sufficient to toggle one maize PIL protein between homodimerization and obligate heterodimerization. We detected a signature of positive selection acting on residues preferentially clustered in predicted sites of contact between MADS-box monomers and dimers, and in motifs that mediate MADS PPI specificity in Arabidopsis. Changing one positively selected residue can alter PIL dimerization activity. Furthermore, ectopic expression of a Joinvillea PIL homodimer in Arabidopsis can homeotically transform sepals into petals. Our results provide a window into the evolutionary remodeling of PPIs, and show that novel interactions have the potential to alter plant form in a context-dependent manner. PMID:26908583

  13. The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones.

    PubMed

    Carlsbecker, Annelie; Sundström, Jens; Tandre, Karolina; Englund, Marie; Kvarnheden, Anders; Johanson, Urban; Engström, Peter

    2003-01-01

    Transcription factors encoded by different members of the MADS-box gene family have evolved central roles in the regulation of reproductive organ development in the flowering plants, the angiosperms. Development of the stamens and carpels, the pollen- and seed-bearing organs, involves the B- and C-organ-identity MADS-box genes. B- and C-type gene orthologs with activities specifically in developing pollen- and seed-bearing organs are also present in the distantly related gymnosperms: the conifers and the gnetophytes. We now report on the characterization of DAL10, a novel MADS-box gene from the conifer Norway spruce, which unlike the B- and C-type conifer genes shows no distinct orthology relationship to any angiosperm gene or clade in phylogenetic analyses. Like the B- and C-type genes, it is active specifically in developing pollen cones and seed cones. In situ RNA localization experiments show DAL10 to be expressed in the cone axis, which carry the microsporophylls of the young pollen cone. In contrast, in the seed cone it is expressed both in the cone axis and in the bracts, which subtend the ovuliferous scales. Expression data and the phenotype of transgenic Arabidopsis plants expressing DAL10 suggest that the gene may act upstream to or in concert with the B- and C-type genes in the establishment of reproductive identity of developing cones.

  14. Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA

    PubMed Central

    Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice

    2007-01-01

    Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273

  15. Loss of LOFSEP Transcription Factor Function Converts Spikelet to Leaf-Like Structures in Rice1[OPEN

    PubMed Central

    Zhu, Wanwan

    2018-01-01

    SEPALLATA (SEP)-like genes, which encode a subfamily of MADS-box transcription factors, are essential for specifying floral organ and meristem identity in angiosperms. Rice (Oryza sativa) has five SEP-like genes with partial redundancy and overlapping expression domains, yet their functions and evolutionary conservation are only partially known. Here, we describe the biological role of one of the SEP genes of rice, OsMADS5, in redundantly controlling spikelet morphogenesis. OsMADS5 belongs to the conserved LOFSEP subgroup along with OsMADS1 and OsMADS34. OsMADS5 was expressed strongly across a broad range of reproductive stages and tissues. No obvious phenotype was observed in the osmads5 single mutants when compared with the wild type, which was largely due to the functional redundancy among the three LOFSEP genes. Genetic and molecular analyses demonstrated that OsMADS1, OsMADS5, and OsMADS34 together regulate floral meristem determinacy and specify the identities of spikelet organs by positively regulating the other MADS-box floral homeotic genes. Experiments conducted in yeast also suggested that OsMADS1, OsMADS5, and OsMADS34 form protein-protein interactions with other MADS-box floral homeotic members, which seems to be a typical, conserved feature of plant SEP proteins. PMID:29217592

  16. Perspectives on MADS-box expression during orchid flower evolution and development.

    PubMed

    Mondragón-Palomino, Mariana

    2013-01-01

    The diverse morphology of orchid flowers and their complex, often deceptive strategies to become pollinated have fascinated researchers for a long time. However, it was not until the 20th century that the ontogeny of orchid flowers, the genetic basis of their morphology and the complex phylogeny of Orchidaceae were investigated. In parallel, the improvement of techniques for in vitro seed germination and tissue culture, together with studies on biochemistry, physiology, and cytology supported the progress of what is now a highly productive industry of orchid breeding and propagation. In the present century both basic research in orchid flower evo-devo and the interest for generating novel horticultural varieties have driven the characterization of many members of the MADS-box family encoding key regulators of flower development. This perspective summarizes the picture emerging from these studies and discusses the advantages and limitations of the comparative strategy employed so far. I address the growing role of natural and horticultural mutants in these studies and the emergence of several model species in orchid evo-devo and genomics. In this context, I make a plea for an increasingly integrative approach.

  17. Perspectives on MADS-box expression during orchid flower evolution and development

    PubMed Central

    Mondragón-Palomino, Mariana

    2013-01-01

    The diverse morphology of orchid flowers and their complex, often deceptive strategies to become pollinated have fascinated researchers for a long time. However, it was not until the 20th century that the ontogeny of orchid flowers, the genetic basis of their morphology and the complex phylogeny of Orchidaceae were investigated. In parallel, the improvement of techniques for in vitro seed germination and tissue culture, together with studies on biochemistry, physiology, and cytology supported the progress of what is now a highly productive industry of orchid breeding and propagation. In the present century both basic research in orchid flower evo-devo and the interest for generating novel horticultural varieties have driven the characterization of many members of the MADS-box family encoding key regulators of flower development. This perspective summarizes the picture emerging from these studies and discusses the advantages and limitations of the comparative strategy employed so far. I address the growing role of natural and horticultural mutants in these studies and the emergence of several model species in orchid evo-devo and genomics. In this context, I make a plea for an increasingly integrative approach. PMID:24065980

  18. MuMADS1 and MaOFP1 regulate fruit quality in a tomato ovate mutant.

    PubMed

    Liu, Juhua; Zhang, Jing; Wang, Jingyi; Zhang, Jianbin; Miao, Hongxia; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2018-05-01

    Fruit ripening and quality are common botanical phenomena that are closely linked and strictly regulated by transcription factors. It was previously discovered that a banana MADS-box protein named MuMADS1 interacted with an ovate family protein named MaOFP1 to regulate banana fruit ripening. To further investigate the role of MuMADS1 and MaOFP1 in the regulation of fruit quality, a combination of genetic transformation and transcriptional characterization was used. The results indicated that the co-expression of MuMADS1 and MaOFP1 in the ovate mutant could compensate for fruit shape and inferior qualities relating to fruit firmness, soluble solids and sugar content. The number of differentially expressed genes (DEGs) was 1395 in WT vs. ovate, with 883 up-regulated and 512 down-regulated genes, while the numbers of DEGs gradually decreased with the transformation of MuMADS1 and MaOFP1 into ovate. 'Starch and sucrose metabolism' constituted the primary metabolic pathway, and the gene numbers in this pathway were obviously different when MuMADS1 and MaOFP1 were integrated into ovate. A series of metabolic genes involved in cell wall biosynthesis were up-regulated in the WT vs. ovate, which probably resulted in the firmer texture and lower sugar contents in the ovate fruit. These results demonstrate that MuMADS1 and MaOFP1 are coregulators of fruit quality, facilitating the dissection of the molecular mechanisms underlying fruit quality formation. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. RED, a Spindle Pole-associated Protein, Is Required for Kinetochore Localization of MAD1, Mitotic Progression, and Activation of the Spindle Assembly Checkpoint*

    PubMed Central

    Yeh, Pei-Chi; Yeh, Chang-Ching; Chen, Yi-Cheng; Juang, Yue-Li

    2012-01-01

    The spindle assembly checkpoint (SAC) is essential for ensuring the proper attachment of kinetochores to the spindle and, thus, the precise separation of paired sister chromatids during mitosis. The SAC proteins are recruited to the unattached kinetochores for activation of the SAC in prometaphase. However, it has been less studied whether activation of the SAC also requires the proteins that do not localize to the kinetochores. Here, we show that the nuclear protein RED, also called IK, a down-regulator of human leukocyte antigen (HLA) II, interacts with the human SAC protein MAD1. Two RED-interacting regions identified in MAD1 are from amino acid residues 301–340 and 439–480, designated as MAD1(301–340) and MAD1(439–480), respectively. Our observations reveal that RED is a spindle pole-associated protein that colocalizes with MAD1 at the spindle poles in metaphase and anaphase. Depletion of RED can cause a shorter mitotic timing, a failure in the kinetochore localization of MAD1 in prometaphase, and a defect in the SAC. Furthermore, the RED-interacting peptides MAD1(301–340) and MAD1(439–480), fused to enhanced green fluorescence protein, can colocalize with RED at the spindle poles in prometaphase, and their expression can abrogate the SAC. Taken together, we conclude that RED is required for kinetochore localization of MAD1, mitotic progression, and activation of the SAC. PMID:22351768

  20. The Aspergillus fumigatus conidial melanin production is regulated by the bifunctional bHLH DevR and MADS-box RlmA transcription factors.

    PubMed

    Valiante, Vito; Baldin, Clara; Hortschansky, Peter; Jain, Radhika; Thywißen, Andreas; Straßburger, Maria; Shelest, Ekaterina; Heinekamp, Thorsten; Brakhage, Axel A

    2016-10-01

    Melanins play a crucial role in defending organisms against external stressors. In several pathogenic fungi, including the human pathogen Aspergillus fumigatus, melanin production was shown to contribute to virulence. A. fumigatus produces two different types of melanins, i.e., pyomelanin and dihydroxynaphthalene (DHN)-melanin. DHN-melanin forms the gray-green pigment characteristic for conidia, playing an important role in immune evasion of conidia and thus for fungal virulence. The DHN-melanin biosynthesis pathway is encoded by six genes organized in a cluster with the polyketide synthase gene pksP as a core element. Here, cross-species promoter analysis identified specific DNA binding sites in the DHN-melanin biosynthesis genes pksP-arp1 intergenic region that can be recognized by bHLH and MADS-box transcriptional regulators. Independent deletion of two genes coding for the transcription factors DevR (bHLH) and RlmA (MADS-box) interfered with sporulation and reduced the expression of the DHN-melanin gene cluster. In vitro and in vivo experiments proved that these transcription factors cooperatively regulate pksP expression acting both as repressors and activators in a mutually exclusive manner. The dual role executed by each regulator depends on specific DNA motifs recognized in the pksP promoter region. © 2016 John Wiley & Sons Ltd.

  1. A hitchhiker's guide to the MADS world of plants.

    PubMed

    Gramzow, Lydia; Theissen, Guenter

    2010-01-01

    Plant life critically depends on the function of MADS-box genes encoding MADS-domain transcription factors, which are present to a limited extent in nearly all major eukaryotic groups, but constitute a large gene family in land plants. There are two types of MADS-box genes, termed type I and type II, and in plants these groups are distinguished by exon-intron and domain structure, rates of evolution, developmental function and degree of functional redundancy. The type I genes are further subdivided into three groups - M alpha, M beta and M gamma - while the type II genes are subdivided into the MIKCC and MIKC* groups. The functional diversification of MIKCC genes is closely linked to the origin of developmental and morphological novelties in the sporophytic (usually diploid) generation of seed plants, most spectacularly the floral organs and fruits of angiosperms. Functional studies suggest different specializations for the different classes of genes; whereas type I genes may preferentially contribute to female gametophyte, embryo and seed development and MIKC*-group genes to male gametophyte development, the MIKCC-group genes became essential for diverse aspects of sporophyte development. Beyond the usual transcriptional regulation, including feedback and feed-forward loops, various specialized mechanisms have evolved to control the expression of MADS-box genes, such as epigenetic control and regulation by small RNAs. In future, more data from genome projects and reverse genetic studies will allow us to understand the birth, functional diversification and death of members of this dynamic and important family of transcription factors in much more detail.

  2. Thinking outside the Box

    ERIC Educational Resources Information Center

    Fanshawe, Simon; Sriskandarajah, Dhananjayan

    2010-01-01

    Britain is not only more diverse than ever before, but that diversity itself is growing more diverse. Britain's simplistic "tick-box" approach to identity is in danger of inhibiting the very equality it seeks to promote. To question the tick-box is not to accuse local authorities of "political correctness gone mad". The notion…

  3. Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS-box Proteins and Promotes Insect Colonization in a RAD23-Dependent Manner

    PubMed Central

    MacLean, Allyson M.; Orlovskis, Zigmunds; Kowitwanich, Krissana; Zdziarska, Anna M.; Angenent, Gerco C.; Immink, Richard G. H.; Hogenhout, Saskia A.

    2014-01-01

    Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants). PMID:24714165

  4. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression

    PubMed Central

    Garay-Arroyo, Adriana; Ortiz-Moreno, Enrique; de la Paz Sánchez, María; Murphy, Angus S; García-Ponce, Berenice; Marsch-Martínez, Nayelli; de Folter, Stefan; Corvera-Poiré, Adriana; Jaimes-Miranda, Fabiola; Pacheco-Escobedo, Mario A; Dubrovsky, Joseph G; Pelaz, Soraya; Álvarez-Buylla, Elena R

    2013-01-01

    Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporters; mutations in members of this gene family exhibit smaller roots with altered root meristems and stem-cell patterning. Direct regulators of PIN transcription have remained elusive. Here, we establish that a MADS-box gene (XAANTAL2, XAL2/AGL14) controls auxin transport via PIN transcriptional regulation during Arabidopsis root development; mutations in this gene exhibit altered stem-cell patterning, root meristem size, and root growth. XAL2 is necessary for normal shootward and rootward auxin transport, as well as for maintaining normal auxin distribution within the root. Furthermore, this MADS-domain transcription factor upregulates PIN1 and PIN4 by direct binding to regulatory regions and it is required for PIN4-dependent auxin response. In turn, XAL2 expression is regulated by auxin levels thus establishing a positive feedback loop between auxin levels and PIN regulation that is likely to be important for robust root patterning. PMID:24121311

  5. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security.

    PubMed

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J; Friedman, Haya

    2016-05-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching

    DOE PAGES

    Ye, Qiaozhen; Rosenberg, Scott C.; Moeller, Arne; ...

    2015-04-28

    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from amore » signaling-active ‘closed’ conformer to an inactive ‘open’ conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.« less

  7. Dual personality of Mad1: regulation of nuclear import by a spindle assembly checkpoint protein.

    PubMed

    Cairo, Lucas V; Ptak, Christopher; Wozniak, Richard W

    2013-01-01

    Nuclear transport is a dynamic process that can be modulated in response to changes in cellular physiology. We recently reported that the transport activity of yeast nuclear pore complexes (NPCs) is altered in response to kinetochore-microtubule (KT-MT) interaction defects. Specifically, KT detachment from MTs activates a signaling pathway that prevents the nuclear import of cargos by the nuclear transport factor Kap121p. This loss of Kap121p-mediated import is thought to influence the nuclear environment, including the phosphorylation state of nuclear proteins. A key regulator of this process is the spindle assembly checkpoint protein Mad1p. In response to unattached KTs, Mad1p dynamically cycles between NPCs and KTs. This cycling appears to induce NPC molecular rearrangements that prevent the nuclear import of Kap121p-cargo complexes. Here, we discuss the underlying mechanisms and the physiological relevance of Mad1p cycling and the inhibition of Kap121p-mediated nuclear import, focusing on outstanding questions within the pathway.

  8. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security1[OPEN

    PubMed Central

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J.

    2016-01-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. PMID:26956665

  9. [Madness in Foucault: art and madness, madness and unreason].

    PubMed

    Providello, Guilherme Gonzaga Duarte; Yasui, Silvio

    2013-10-01

    After presenting the ideas on madness and its interface with art as expressed in the writings of Michel Foucault, Peter Pál Pelbart, and Gilles Deleuze, the article explores how these authors question the relationship between art and madness. It begins with the notion that madness does not tell the truth about art, and vice versa, but that there are links between both that must be delved into if we are to engage in deeper reflection on the topic. The text problematizes the statement that madness is the absence of an oeuvre and examines how this impacts the possibility of achieving an artistic oeuvre. It further problematizes the idea of madness as excluded language, that is, the idea that madness implies not only the exclusion of the body but also the disqualification of discourse.

  10. Characterization and Functional Analysis of Five MADS-Box B Class Genes Related to Floral Organ Identification in Tagetes erecta.

    PubMed

    Ai, Ye; Zhang, Chunling; Sun, Yalin; Wang, Weining; He, Yanhong; Bao, Manzhu

    2017-01-01

    According to the floral organ development ABC model, B class genes specify petal and stamen identification. In order to study the function of B class genes in flower development of Tagetes erecta, five MADS-box B class genes were identified and their expression and putative functions were studied. Sequence comparisons and phylogenetic analyses indicated that there were one PI-like gene-TePI, two euAP3-like genes-TeAP3-1 and TeAP3-2, and two TM6-like genes-TeTM6-1 and TeTM6-2 in T. erecta. Strong expression levels of these genes were detected in stamens of the disk florets, but little or no expression was detected in bracts, receptacles or vegetative organs. Yeast hybrid experiments of the B class proteins showed that TePI protein could form a homodimer and heterodimers with all the other four B class proteins TeAP3-1, TeAP3-2, TeTM6-1 and TeTM6-2. No homodimer or interaction was observed between the euAP3 and TM6 clade members. Over-expression of five B class genes of T. erecta in Nicotiana rotundifolia showed that only the transgenic plants of 35S::TePI showed altered floral morphology compared with the non-transgenic line. This study could contribute to the understanding of the function of B class genes in flower development of T. erecta, and provide a theoretical basis for further research to change floral organ structures and create new materials for plant breeding.

  11. Evolution of AGL6-like MADS Box Genes in Grasses (Poaceae): Ovule Expression Is Ancient and Palea Expression Is New[W][OA

    PubMed Central

    Reinheimer, Renata; Kellogg, Elizabeth A.

    2009-01-01

    AGAMOUS-like6 (AGL6) genes encode MIKC-type MADS box transcription factors and are closely related to SEPALLATA and AP1/FUL-like genes. Here, we focus on the molecular evolution and expression of the AGL6-like genes in grasses. We have found that AGL6-like genes are expressed in ovules, lodicules (second whorl floral organs), paleas (putative first whorl floral organs), and floral meristems. Each of these expression domains was acquired at a different time in evolution, indicating that each represents a distinct function of the gene product and that the AGL6-like genes are pleiotropic. Expression in the inner integument of the ovule appears to be an ancient expression pattern corresponding to the expression of the gene in the megasporangium and integument in gymnosperms. Expression in floral meristems appears to have been acquired in the angiosperms and expression in second whorl organs in monocots. Early in grass evolution, AGL6-like orthologs acquired a new expression domain in the palea. Stamen expression is variable. Most grasses have a single AGL6-like gene (orthologous to the rice [Oryza sativa] gene MADS6). However, rice and other species of Oryza have a second copy (orthologous to rice MADS17) that appears to be the result of an ancient duplication. PMID:19749151

  12. Cofactor-dependent specificity of a DEAD-box protein.

    PubMed

    Young, Crystal L; Khoshnevis, Sohail; Karbstein, Katrin

    2013-07-16

    DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.

  13. Reciprocal Loss of CArG-Boxes and Auxin Response Elements Drives Expression Divergence of MPF2-Like MADS-Box Genes Controlling Calyx Inflation

    PubMed Central

    Khan, Muhammad Ramzan; Hu, Jinyong; Ali, Ghulam Muhammad

    2012-01-01

    Expression divergence is thought to be a hallmark of functional diversification between homologs post duplication. Modification in regulatory elements has been invoked to explain expression divergence after duplication for several MADS-box genes, however, verification of reciprocal loss of cis-regulatory elements is lacking in plants. Here, we report that the evolution of MPF2-like genes has entailed degenerative mutations in a core promoter CArG-box and an auxin response factor (ARF) binding element in the large 1st intron in the coding region. Previously, MPF2-like genes were duplicated into MPF2-like-A and -B through genome duplication in Withania and Tubocapsicum (Withaninae). The calyx of Withania grows exorbitantly after pollination unlike Tubocapsicum, where it degenerates. Besides inflated calyx syndrome formation, MPF2-like transcription factors are implicated in functions both during the vegetative and reproductive development as well as in phase transition. MPF2-like-A of Withania (WSA206) is strongly expressed in sepals, while MPF2-like-B (WSB206) is not. Interestingly, their combined expression patterns seem to replicate the pattern of their closely related hypothetical progenitors from Vassobia and Physalis. Using phylogenetic shadowing, site-directed mutagenesis and motif swapping, we could show that the loss of a conserved CArG-box in MPF2-like-B of Withania is responsible for impeding its expression in sepals. Conversely, loss of an ARE in MPF2-like-A relaxed the constraint on expression in sepals. Thus, the ARE is an active suppressor of MPF2-like gene expression in sepals, which in contrast is activated via the CArG-box. The observed expression divergence in MPF2-like genes due to reciprocal loss of cis-regulatory elements has added to genetic and phenotypic variations in the Withaninae and enhanced the potential of natural selection for the adaptive evolution of ICS. Moreover, these results provide insight into the interplay of floral

  14. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors

    PubMed Central

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios

    2017-01-01

    Abstract Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. PMID:28973457

  15. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant.

    PubMed Central

    Tsuchimoto, S; van der Krol, A R; Chua, N H

    1993-01-01

    We cloned a MADS-box gene, pMADS3, from Petunia hybrida, which shows high sequence homology to the Arabidopsis AGAMOUS and Antirrhinum PLENA. pMADS3 is expressed exclusively in stamens and carpels of wild-type petunia plants. In the petunia mutant blind, which shows homeotic conversions of corolla limbs into antheroid structures with pollen grains and small parts of sepals into carpelloid tissue, pMADS3 is expressed in all floral organs as well as in leaves. Ectopic expression of pMADS3 in transgenic petunia leads to phenocopies of the blind mutant, i.e., the formation of antheroid structures on limbs and carpelloid tissue on sepals. Transgenic tobacco plants that overexpress pMADS3 exhibit an even more severe phenotype, with the sepals forming a carpel-like structure encasing the interior floral organs. Our results identify BLIND as a negative regulator of pMADS3, which specifies stamens and carpels during petunia flower development. PMID:8104573

  16. The TRANSPARENT TESTA16 Locus Encodes the ARABIDOPSIS BSISTER MADS Domain Protein and Is Required for Proper Development and Pigmentation of the Seed Coat

    PubMed Central

    Nesi, Nathalie; Debeaujon, Isabelle; Jond, Clarisse; Stewart, Amanda J.; Jenkins, Gareth I.; Caboche, Michel; Lepiniec, Loïc

    2002-01-01

    Screening for seed pigmentation phenotypes in Arabidopsis led to the isolation of three allelic yellow-seeded mutants, which defined the novel TRANSPARENT TESTA16 (TT16) locus. Cloning of TT16 was performed by T-DNA tagging and confirmed by genetic complementation and sequencing of two mutant alleles. TT16 encodes the ARABIDOPSIS BSISTER (ABS) MADS domain protein. ABS belongs to the recently identified “B-sister” (BS) clade, which contains genes of unknown function that are expressed mainly in female organs. Phylogenetic analyses using a maximum parsimony approach confirmed that TT16/ABS and related proteins form a monophyletic group. TT16/ABS was expressed mainly in the ovule, as are the other members of the BS clade. TT16/ABS is necessary for BANYULS expression and proanthocyanidin accumulation in the endothelium of the seed coat, with the exception of the chalazal-micropylar area. In addition, mutant phenotype and ectopic expression analyses suggested that TT16/ABS also is involved in the specification of endothelial cells. Nevertheless, TT16/ABS apparently is not required for proper ovule function. We report the functional characterization of a member of the BS MADS box gene subfamily, demonstrating its involvement in endothelial cell specification as well as in the increasingly complex genetic control of flavonoid biosynthesis in the Arabidopsis seed coat. PMID:12368498

  17. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.

    PubMed

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos

    2017-09-29

    Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Small molecule therapeutics targeting F-box proteins in cancer.

    PubMed

    Liu, Yuan; Mallampalli, Rama K

    2016-02-01

    The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.

    PubMed

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-08-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

  20. Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica.

    PubMed

    Li, Qiaoxia; Huo, Qingdi; Wang, Juan; Zhao, Jing; Sun, Kun; He, Chaoying

    2016-07-07

    Some plants develop a breeding system that produces both chasmogamous (CH) and cleistogamous (CL) flowers. However, the underlying molecular mechanism remains elusive. In the present study, we observed that Viola philippica develops CH flowers with short daylight, whereas an extended photoperiod induces the formation of intermediate CL and CL flowers. In response to long daylight, the respective number and size of petals and stamens was lower and smaller than those of normally developed CH flowers, and a minimum of 14-h light induced complete CL flowers that had no petals but developed two stamens of reduced fertility. The floral ABC model indicates that B-class MADS-box genes largely influence the development of the affected two-whorl floral organs; therefore, we focused on characterizing these genes in V. philippica to understand this particular developmental transition. Three such genes were isolated and respectively designated as VpTM6-1, VpTM6-2, and VpPI. These were differentially expressed during floral development (particularly in petals and stamens) and the highest level of expression was observed in CH flowers; significantly low levels were detected in intermediate CL flowers, and the lowest level in CL flowers. The observed variations in the levels of expression after floral induction and organogenesis apparently occurred in response to variations in photoperiod. Therefore, inhibition of the development of petals and stamens might be due to the downregulation of B-class MADS-box gene expression by long daylight, thereby inducing the generation of CL flowers. Our work contributes to the understanding of the adaptive evolutionary formation of dimorphic flowers in plants.

  1. Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development

    PubMed Central

    Sehra, Bhupinder; Franks, Robert G.

    2017-01-01

    In the Arabidopsis thaliana seed pod, pod shatter and seed dispersal properties are in part determined by the development of a longitudinally orientated dehiscence zone (DZ) that derives from cells of the gynoecial valve margin (VM). Transcriptional regulation of the MADS protein encoding transcription factors genes SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are critical for proper VM identity specification and later on for DZ development. Current models of SHP1 and SHP2 regulation indicate that the transcription factors FRUITFULL (FUL) and REPLUMLESS (RPL) repress these SHP genes in the developing valve and replum domains, respectively. Thus the expression of the SHP genes is restricted to the VM. FUL encodes a MADS-box containing transcription factor that is predicted to act through CArG-box containing cis-regulatory motifs. Here we delimit functional modules within the SHP2 cis-regulatory region and examine the functional importance of CArG box motifs within these regulatory regions. We have characterized a 2.2kb region upstream of the SHP2 translation start site that drives early and late medial domain expression in the gynoecium, as well as expression within the VM and DZ. We identified two separable, independent cis-regulatory modules, a 1kb promoter region and a 700bp enhancer region, that are capable of giving VM and DZ expression. Our results argue for multiple independent cis-regulatory modules that support SHP2 expression during VM development and may contribute to the robustness of SHP2 expression in this tissue. Additionally, three closely positioned CArG box motifs located in the SHP2 upstream regulatory region were mutated in the context of the 2.2kb reporter construct. Mutating simultaneously all three CArG boxes caused a moderate de-repression of the SHP2 reporter that was detected within the valve domain, suggesting that these CArG boxes are involved in SHP2 repression in the valve. PMID:29085379

  2. OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice1[OPEN

    PubMed Central

    Khong, Giang Ngan; Richaud, Frédérique; Parizot, Boris; Mai, Chung Duc; Bès, Martine; Bourrié, Isabelle; Meynard, Donaldo; Beeckman, Tom; Selvaraj, Michael Gomez; Manabu, Ishitani; Brugidou, Christophe; Nang Do, Vinh; Guiderdoni, Emmanuel; Morel, Jean-Benoit; Gantet, Pascal

    2015-01-01

    Functional analyses of MADS-box transcription factors in plants have unraveled their role in major developmental programs (e.g. flowering and floral organ identity) as well as stress-related developmental processes, such as abscission, fruit ripening, and senescence. Overexpression of the rice (Oryza sativa) MADS26 gene in rice has revealed a possible function related to stress response. Here, we show that OsMADS26-down-regulated plants exhibit enhanced resistance against two major rice pathogens: Magnaporthe oryzae and Xanthomonas oryzae. Despite this enhanced resistance to biotic stresses, OsMADS26-down-regulated plants also displayed enhanced tolerance to water deficit. These phenotypes were observed in both controlled and field conditions. Interestingly, alteration of OsMADS26 expression does not have a strong impact on plant development. Gene expression profiling revealed that a majority of genes misregulated in overexpresser and down-regulated OsMADS26 lines compared with control plants are associated to biotic or abiotic stress response. Altogether, our data indicate that OsMADS26 acts as an upstream regulator of stress-associated genes and thereby, a hub to modulate the response to various stresses in the rice plant. PMID:26424158

  3. MicroRNA regulation of F-box proteins and its role in cancer.

    PubMed

    Wu, Zhao-Hui; Pfeffer, Lawrence M

    2016-02-01

    MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mad Cow Disease

    MedlinePlus

    ... Safe Videos for Educators Search English Español Mad Cow Disease KidsHealth / For Teens / Mad Cow Disease What's ... are people to get it? What Is Mad Cow Disease? Mad cow disease is an incurable, fatal ...

  5. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that el...

  6. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that eli...

  7. Efficient ASK-assisted system for expression and purification of plant F-box proteins.

    PubMed

    Li, Haiou; Yao, Ruifeng; Ma, Sui; Hu, Shuai; Li, Suhua; Wang, Yupei; Yan, Chun; Xie, Daoxin; Yan, Jianbin

    2017-11-01

    Ubiquitin-mediated protein degradation plays an essential role in plant growth and development as well as responses to environmental and endogenous signals. F-box protein is one of the key components of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which recruit specific substrate proteins for subsequent ubiquitination and 26S proteasome-mediated degradation to regulate developmental processes and signaling networks. However, it is not easy to obtain purified F-box proteins with high activity due to their unstable protein structures. Here, we found that Arabidopsis SKP-like proteins (ASKs) can significantly improve soluble expression of F-box proteins and maintain their bioactivity. We established an efficient ASK-assisted method to express and purify plant F-box proteins. The method meets a broad range of criteria required for the biochemical analysis or protein crystallization of plant F-box proteins. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Madness Decolonized?: Madness as Transnational Identity in Gail Hornstein's Agnes's Jacket.

    PubMed

    Miller, Gavin

    2017-02-13

    The US psychologist Gail Hornstein's monograph, Agnes's Jacket: A Psychologist's Search for the Meanings of Madness (2009), is an important intervention in the identity politics of the mad movement. Hornstein offers a resignified vision of mad identity that embroiders the central trope of an "anti-colonial" struggle to reclaim the experiential world "colonized" by psychiatry. A series of literal and figurative appeals makes recourse to the inner world and (corresponding) cultural world of the mad as well as to the ethno-symbolic cultural materials of dormant nationhood. This rhetoric is augmented by a model in which the mad comprise a diaspora without an origin, coalescing into a single transnational community. The mad are also depicted as persons displaced from their metaphorical homeland, the "inner" world "colonized" by the psychiatric regime. There are a number of difficulties with Hornstein's rhetoric, however. Her "ethnicity-and-rights" response to the oppression of the mad is symptomatic of Western parochialism, while her proposed transmutation of putative psychopathology from limit upon identity to parameter of successful identity is open to contestation. Moreover, unless one accepts Hornstein's porous vision of mad identity, her self-ascribed insider status in relation to the mad community may present a problematic "re-colonization" of mad experience.

  9. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.

    PubMed

    Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.

  10. Mad-X a worthy successor for MAD8?

    NASA Astrophysics Data System (ADS)

    Schmidt, F.

    2006-03-01

    MAD-X is the successor at CERN to MAD8, a program for accelerator design and simulation with a long history. We had to give up on MAD8 since the code had evolved in such a way that the maintenance and upgrades had become increasingly difficult. In particular, the memory management with the Zebra banks seemed outdated. MAD-X was first released in June, 2002. It offers most of the MAD8 functionality, with some additions, corrections, and extensions. The most important of these extensions is the interface to PTC, the Polymorphic Tracking Code by E. Forest. The most relevant new features of MAD-X are: languages: C, Fortran77, and Fortran90; dynamic memory allocation: in the core program written in C; strictly modular organization, modified and extended input language; symplectic and arbitrary exact description of all elements via PTC; Taylor Maps and Normal Form techniques using PTC. It is also important to note that we have adopted a new style for program development and maintenance that relies heavily on active maintenance of modules by the users themselves. Proposals for collaboration as with KEK, Japan and GSI, Germany are therefore very welcome.

  11. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  12. Mads.jl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinov, Velimir; O'Malley, Daniel; Lin, Youzuo

    2016-07-01

    Mads.jl (Model analysis and decision support in Julia) is a code that streamlines the process of using data and models for analysis and decision support. It is based on another open-source code developed at LANL and written in C/C++ (MADS; http://mads.lanl.gov; LA-CC-11- 035). Mads.jl can work with external models of arbitrary complexity as well as built-in models of flow and transport in porous media. It enables a number of data- and model-based analyses including model calibration, sensitivity analysis, uncertainty quantification, and decision analysis. The code also can use a series of alternative adaptive computational techniques for Bayesian sampling, Monte Carlo,more » and Bayesian Information-Gap Decision Theory. The code is implemented in the Julia programming language, and has high-performance (parallel) and memory management capabilities. The code uses a series of third party modules developed by others. The code development will also include contributions to the existing third party modules written in Julia; this contributions will be important for the efficient implementation of the algorithm used by Mads.jl. The code also uses a series of LANL developed modules that are developed by Dan O'Malley; these modules will be also a part of the Mads.jl release. Mads.jl will be released under GPL V3 license. The code will be distributed as a Git repo at gitlab.com and github.com. Mads.jl manual and documentation will be posted at madsjulia.lanl.gov.« less

  13. Rice MADS6 Interacts with the Floral Homeotic Genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in Specifying Floral Organ Identities and Meristem Fate[C][W][OA

    PubMed Central

    Li, Haifeng; Liang, Wanqi; Hu, Yun; Zhu, Lu; Yin, Changsong; Xu, Jie; Dreni, Ludovico; Kater, Martin M.; Zhang, Dabing

    2011-01-01

    AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meristem determinacy redundantly with SUPERWOMAN1/MADS16 (B-gene) or MADS3 (C-gene). MADS6 was shown to define carpel/ovule development and floral determinacy by interacting with MADS13 (D-gene) and control the palea and floral meristem identities together with the YABBY gene DROOPING LEAF. Expression analyses revealed that the transcript levels of six B-, C-, and E-class genes were reduced in mads6-1 at the early flower developmental stage, suggesting that MADS6 is a key regulator of early flower development. Moreover, MADS6 can directly bind to a putative regulatory motif on MADS58 (C-gene), and mads6-1 mads58 displayed phenotypes similar to that of mads6-1. These results suggest that MADS6 is a key player in specifying flower development via interacting with other floral homeotic genes in rice, thus providing new insights into the mechanism by which flower development is controlled. PMID:21784949

  14. Tomato Flower Abnormalities Induced by Low Temperatures Are Associated with Changes of Expression of MADS-Box Genes1

    PubMed Central

    Lozano, Rafael; Angosto, Trinidad; Gómez, Pedro; Payán, Carmen; Capel, Juan; Huijser, Peter; Salinas, Julio; Martínez-Zapater, José M.

    1998-01-01

    Flower and fruit development in tomato (Lycopersicon esculentum Mill.) were severely affected when plants were grown at low temperatures, displaying homeotic and meristic transformations and alterations in the fusion pattern of the organs. Most of these homeotic transformations modified the identity of stamens and carpels, giving rise to intermediate organs. Complete homeotic transformations were rarely found and always affected organs of the reproductive whorls. Meristic transformations were also commonly observed in the reproductive whorls, which developed with an excessive number of organs. Scanning electron microscopy revealed that meristic transformations take place very early in the development of the flower and are related to a significant increase in the floral meristem size. However, homeotic transformations should occur later during the development of the organ primordia. Steady-state levels of transcripts corresponding to tomato MADS-box genes TM4, TM5, TM6, and TAG1 were greatly increased by low temperatures and could be related to these flower abnormalities. Moreover, in situ hybridization analyses showed that low temperatures also altered the stage-specific expression of TM4. PMID:9576778

  15. High Mobility Group Box 1 Protein as an Auxiliary Biomarker for Dengue Diagnosis

    PubMed Central

    Allonso, Diego; Vázquez, Susana; Guzmán, Maria G.; Mohana-Borges, Ronaldo

    2013-01-01

    Despite the availability of many methods for rapid and early diagnosis of dengue, there is still a need to develop new approaches that not only combine low cost, specificity, and sensitivity, but also are capable of accurately detecting secondary infection in the early stages of the disease. We report the potential of the high mobility group box 1 protein as an auxiliary biomarker for early dengue diagnosis. We tested a 205-sample serum panel that included negative and positive samples from primary and secondary dengue cases, as well as samples from patients with dengue-like symptoms. We observed that high mobility group box 1 protein was generally detected only in dengue-positive samples for persons with primary and secondary infections. These results highlight the possibility of using this endogenous molecule as an auxiliary biomarker to aid in dengue detection and improve current methods for early diagnosis of dengue. PMID:23269659

  16. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice.

    PubMed

    Li, Haifeng; Liang, Wanqi; Jia, Ruidong; Yin, Changsong; Zong, Jie; Kong, Hongzhi; Zhang, Dabing

    2010-03-01

    Although AGAMOUS-LIKE6 (AGL6) MADS-box genes are ancient with wide distributions in gymnosperms and angiosperms, their functions remain poorly understood. Here, we show the biological role of the AGL6-like gene, OsMADS6, in specifying floral organ and meristem identities in rice (Oryza sativa L.). OsMADS6 was strongly expressed in the floral meristem at early stages. Subsequently, OsMADS6 transcripts were mainly detectable in paleas, lodicules, carpels and the integument of ovule, as well as in the receptacle. Compared to wild type plants, osmads6 mutants displayed altered palea identity, extra glume-like or mosaic organs, abnormal carpel development and loss of floral meristem determinacy. Strikingly, mutation of a SEPALLATA (SEP)-like gene, OsMADS1 (LHS1), enhanced the defect of osmads6 flowers, and no inner floral organs or glume-like structures were observed in whorls 2 and 3 of osmads1-z osmads6-1 flowers. Furthermore, the osmads1-z osmads6-1 double mutants developed severely indeterminate floral meristems. Our finding, therefore, suggests that the ancient OsMADS6 gene is able to specify "floral state" by determining floral organ and meristem identities in monocot crop rice together with OsMADS1.

  17. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  18. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  19. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  20. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  1. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  2. [Surrealism and madness].

    PubMed

    Flora, Κ

    2017-01-01

    This article attempts an approach of madness by surrealism, as reflected in the pathway of the surrealist movement. In the light of enlargement of the concept of mental illness and the experience of madness, an approach is being attempted regarding the early surrealist views as they precursory appear e.g. from the case of Hieronymus Bosch to the meeting of the dominant psychiatry and the surrealist movement in the 19th and 20th century. Then, the paper attempts to present the main positions of representatives of the movement, such as Breton, Dali and Kalas. These three surrealists were chosen among others, for this brief report, as the representatives of three remarkable moments in the surrealistic route. Breton introduces the element of fiction and hyper-reality while he questions the distinction between normal and abnormal element. Dali with his paranoid critical method reconciles actual representations with mythical and symbolic elements, breaking through the limits between objectivity and subjectivity. Kalas puts forward the social origin of insanity along with the fundamental surrealist notions of individual freedom and will. For a more complete understanding of this attempt, it was considered useful to include elements of the main views on madness from the standpoint of a critical approach in psychiatry and psychology. The surrealistic view seems to be close to this critical approach which is likely to have been affected by it on the level in which the movements and scientific fields meet and interact. The relationship between surrealism, the notion and expression of madness and the absurd seems to be inherent to the very development of the movement through its core and individual pursuits. In conclusion, the relationship between surrealism and the notion and expression of the madness and the absurd seems to be inherent to the very birth of the movement through its main positions and pursuits. The question of so-called reality, its overshoot and the vision of

  3. F-box proteins involved in cancer-associated drug resistance.

    PubMed

    Gong, Jian; Zhou, Yuqian; Liu, Deliang; Huo, Jirong

    2018-06-01

    The ubiquitin proteasome system (UPS) regulated human biological processes through the appropriate and efficient proteolysis of cellular proteins. F-box proteins are the vital components of SKP1-CUL1-FBP (SCF)-type E3 ubiquitin ligases that determine substrate specificity. As F-box proteins have the ability to control the degradation of several crucial protein targets associated with drug resistance, the dysregulation of these proteins may lead to induction of chemoresistance in cancer cells. Chemotherapy is one of the most conventional therapeutic approaches of treatment of patients with cancer. However, its exclusive application in clinical settings is restricted due to the development of chemoresistance, which typically results treatment failure. Therefore, overcoming drug resistance is considered as one of the most critical issues that researchers and clinician associated with oncology face. The present review serves to provide a comprehensive overview of F-box proteins and their possible targets as well as their correlation with the chemoresistance and chemosensitization of cancer cells. The article also presents an integrated representation of the complex regulatory mechanisms responsible for chemoresistance, which may lay the foundation to explore sensible candidate drugs for therapeutic intervention.

  4. How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes.

    PubMed

    Kwantes, Michiel; Liebsch, Daniela; Verelst, Wim

    2012-01-01

    Land plants have a remarkable life cycle that alternates between a diploid sporophytic and a haploid gametophytic generation, both of which are multicellular and changed drastically during evolution. Classical MIKC MADS-domain (MIKCC) transcription factors are famous for their role in sporophytic development and are considered crucial for its evolution. About the regulation of gametophyte development, in contrast, little is known. Recent evidence indicated that the closely related MIKC* MADS-domain proteins are important for the functioning of the Arabidopsis thaliana male gametophyte (pollen). Furthermore, also in bryophytes, several MIKC* genes are expressed in the haploid generation. Therefore, that MIKC* genes have a similar role in the evolution of the gametophytic phase as MIKCC genes have in the sporophyte is a tempting hypothesis. To get a comprehensive view of the involvement of MIKC* genes in gametophyte evolution, we isolated them from a broad variety of vascular plants, including the lycophyte Selaginella moellendorffii, the fern Ceratopteris richardii, and representatives of several flowering plant lineages. Phylogenetic analysis revealed an extraordinary conservation not found in MIKCC genes. Moreover, expression and interaction studies suggest that a conserved and characteristic network operates in the gametophytes of all tested model organisms. Additionally, we found that MIKC* genes probably evolved from an ancestral MIKCC-like gene by a duplication in the Keratin-like region. We propose that this event facilitated the independent evolution of MIKC* and MIKCC protein networks and argue that whereas MIKCC genes diversified and attained new functions, MIKC* genes retained a conserved role in the gametophyte during land plant evolution.

  5. Genetic Interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in Specifying Rice Floral Organ Identities and Meristem Determinacy1[W][OA

    PubMed Central

    Li, Haifeng; Liang, Wanqi; Yin, Changsong; Zhu, Lu; Zhang, Dabing

    2011-01-01

    Grass plants develop unique floral patterns that determine grain production. However, the molecular mechanism underlying the specification of floral organ identities and meristem determinacy, including the interaction among floral homeotic genes, remains largely unknown in grasses. Here, we report the interactions of rice (Oryza sativa) floral homeotic genes, OsMADS3 (a C-class gene), OsMADS13 (a D-class gene), and DROOPING LEAF (DL), in specifying floral organ identities and floral meristem determinacy. The interaction among these genes was revealed through the analysis of double mutants. osmads13-3 osmads3-4 displayed a loss of floral meristem determinacy and generated abundant carpelloid structures containing severe defective ovules in the flower center, which were not detectable in the single mutant. In addition, in situ hybridization and yeast two-hybrid analyses revealed that OsMADS13 and OsMADS3 did not regulate each other’s transcription or interact at the protein level. This indicates that OsMADS3 plays a synergistic role with OsMADS13 in both ovule development and floral meristem termination. Strikingly, osmads3-4 dl-sup6 displayed a severe loss of floral meristem determinacy and produced supernumerary whorls of lodicule-like organs at the forth whorl, suggesting that OsMADS3 and DL synergistically terminate the floral meristem. Furthermore, the defects of osmads13-3 dl-sup6 flowers appeared identical to those of dl-sup6, and the OsMADS13 expression was undetectable in dl-sup6 flowers. These observations suggest that DL and OsMADS13 may function in the same pathway specifying the identity of carpel/ovule and floral meristem. Collectively, we propose a model to illustrate the role of OsMADS3, DL, and OsMADS13 in the specification of flower organ identity and meristem determinacy in rice. PMID:21444646

  6. Measuring Helicase Inhibition of the DEAD-box Protein Dbp2 by Yra1

    PubMed Central

    Ma, Wai Kit; Tran, Elizabeth J.

    2016-01-01

    Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regulation by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of helicase regulation. The experiments described here can be adapted to RNA helicase and purified co-factor. PMID:25579587

  7. Mad Cow Disease (For Parents)

    MedlinePlus

    ... Safe Videos for Educators Search English Español Mad Cow Disease KidsHealth / For Parents / Mad Cow Disease What's ... Is Being Done About It Print About Mad Cow Disease Mad cow disease has been in the ...

  8. MAD2-p31comet axis deficiency reduces cell proliferation, migration and sensitivity of microtubule-interfering agents in glioma.

    PubMed

    Wu, Dang; Wang, Lepeng; Yang, Yanhong; Huang, Jin; Hu, Yuhua; Shu, Yongwei; Zhang, Jingyu; Zheng, Jing

    2018-03-25

    Mitotic arrest deficient-like-1 (MAD2, also known as MAD2L1) is thought to be an important spindle assembly checkpoint protein, which ensures accurate chromosome segregation and is closely associated with poor prognosis in many cancer. As a MAD2 binding protein, p31 comet counteracts the function of MAD2 and leads to mitotic checkpoint silence. In this study, we explore the function of MAD2-p31 comet axis in malignant glioma cells. Our results showed that disruption of MAD2-p31 comet axis by MAD2 knockdown or p31 comet overexpression suppressed cell proliferation, survival and migration of glioma, indicating that MAD2-p31 comet axis is required for maintaining glioma cells malignancy. It is noted that MAD2 depletion or p31 comet overexpression reduced the sensitivity of glioma cells to microtubule-interfering agents paclitaxel and vinblastine, providing clinical guidance for application of such drugs. Taken together, our findings suggest that MAD2-p31 comet axis may serve as a potential therapeutic target for glioma. Copyright © 2018. Published by Elsevier Inc.

  9. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte.

    PubMed

    Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine

    2014-06-01

    F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.

  10. Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burles, Kristin, E-mail: burles@ualberta.ca; Buuren, Nicholas van; Barry, Michele

    2014-11-15

    A notable feature of poxviruses is their ability to inhibit the antiviral response, including the nuclear factor kappa B (NFκB) pathway. NFκB is a transcription factor that is sequestered in the cytoplasm until cell stimulation, and relies on the SCF (Skp1, culllin-1, F-box) ubiquitin ligase to target its inhibitor, IκBα, for degradation. IκBα is recruited to the SCF by the F-box domain-containing protein βTrCP. Here, we show that ectromelia virus, the causative agent of mousepox, encodes four F-box-containing proteins, EVM002, EVM005, EVM154, and EVM165, all of which contain Ankyrin (Ank) domains. The Ank/F-box proteins inhibit NFκB nuclear translocation, and thismore » inhibition is dependent on the F-box domain. We also demonstrate that EVM002, EVM005, EVM154, and EVM165 prevent IκBα degradation, suggesting that they target the SCF. This study identifies a new mechanism by which ectromelia virus inhibits NFκB. - Highlights: • Ectromelia virus encodes four Ank/F-box proteins, EVM002, EVM005, EVM154 and EVM165. • The Ank/F-box proteins inhibit NFκB nuclear translocation, dependent on the F-box. • The Ank/F-box proteins prevent IκBα degradation, suggesting they target the SCF. • Deletion of a single Ank/F-box gene from ECTV does not prevent viral NFκB inhibition. • This study identifies a new mechanism by which ectromelia virus inhibits NFκB.« less

  11. The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine.

    PubMed

    Malabarba, Jaiana; Buffon, Vanessa; Mariath, Jorge E A; Gaeta, Marcos L; Dornelas, Marcelo C; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís F

    2017-03-01

    Despite the wide appreciation of seedless grapes, little is known about the molecular mechanisms that drive the stenospermocarpic seedless-type phenotype in grapevine. In order to address the molecular mechanisms that control seedlessness in grapevine, our study aimed to characterize VviAGL11, a class D MADS-box transcription factor gene that has been proposed as the major candidate gene involved in Vitis vinifera seed morphogenesis. VviAGL11 allelic variations in seeded and seedless grapevine cultivars were determined, and its correlations with allele-specific steady-state mRNA levels were investigated. VviAGL11 relative expression was significantly higher in seeds at 2, 4, and 6 weeks after fruit set, whereas in the seedless grape its transcript levels were extremely low in all stages analyzed. In situ hybridization revealed transcript accumulation specifically in the dual endotesta layer of the seeds, which is responsible for elongation and an increase of cell number, a necessary step to determine the lignification and the final seed size. No hybridization signals were visible in the seedless grapevine tissues, and a morphoanatomical analysis showed an apparent loss of identity of the endotesta layer of the seed traces. Ectopic expression of VviAGL11 in the Arabidopsis SEEDSTICK mutant background restored the wild-type phenotype and confirmed the direct role of VviAGL11 in seed morphogenesis, suggesting that depletion of its expression is responsible for the erroneous development of a highly essential seed layer, therefore culminating in the typical apirenic phenotype. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint.

    PubMed

    London, Nitobe; Biggins, Sue

    2014-01-15

    The spindle checkpoint is a conserved signaling pathway that ensures genomic integrity by preventing cell division when chromosomes are not correctly attached to the spindle. Checkpoint activation depends on the hierarchical recruitment of checkpoint proteins to generate a catalytic platform at the kinetochore. Although Mad1 kinetochore localization is the key regulatory downstream event in this cascade, its receptor and mechanism of recruitment have not been conclusively identified. Here, we demonstrate that Mad1 kinetochore association in budding yeast is mediated by phosphorylation of a region within the Bub1 checkpoint protein by the conserved protein kinase Mps1. Tethering this region of Bub1 to kinetochores bypasses the checkpoint requirement for Mps1-mediated kinetochore recruitment of upstream checkpoint proteins. The Mad1 interaction with Bub1 and kinetochores can be reconstituted in the presence of Mps1 and Mad2. Together, this work reveals a critical mechanism that determines kinetochore activation of the spindle checkpoint.

  13. Role of indirect readout mechanism in TATA box binding protein-DNA interaction.

    PubMed

    Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay

    2015-03-01

    Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.

  14. DEAD-box Helicases as Integrators of RNA, Nucleotide and Protein Binding

    PubMed Central

    Putnam, Andrea A.

    2013-01-01

    DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. PMID:23416748

  15. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures.

    PubMed

    Stefanowicz, Karolina; Lannoo, Nausicaä; Proost, Paul; Van Damme, Els J M

    2012-01-01

    The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence similarity between the C-terminal domain of these proteins and Nictaba, the hypothesis was put forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba proteins, both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and analyzed by affinity chromatography, agglutination assays and glycan micro-array binding assays. These results demonstrated that the C-terminal Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity that is specifically directed against N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc) and poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n) as well as Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Based on these findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides.

  16. Abject Magic: Reasoning Madness in Justine Larbalestier's "Magic or Madness" Trilogy

    ERIC Educational Resources Information Center

    Potter, Troy

    2013-01-01

    This paper explores the representation of magic and madness in Justine Larbalestier's "Magic or Madness" trilogy (2005-2007). Throughout the series, magic is constructed as an abject and disabling force that threatens to disable magic-wielders, either through madness or death. Despite being represented as a ubiquitous force, the…

  17. High mobility group box (HMGB) proteins of Plasmodium falciparum: DNA binding proteins with pro-inflammatory activity.

    PubMed

    Kumar, Krishan; Singal, Ankita; Rizvi, M Moshahid A; Chauhan, Virander S

    2008-06-01

    High mobility group box chromosomal protein 1 (HMGB1), known as an abundant, non-histone architectural chromosomal protein, is highly conserved across different species. Homologues of HMGB1 were identified and cloned from malaria parasite, Plasmodium falciparum. Sequence analyses showed that the P. falciparum HMGB1 (PfHMGB1) exhibits 45, 23 and 18%, while PfHMGB2 shares 42, 21 and 17% homology with Saccharomyces cerevisiae, human and mouse HMG box proteins respectively. Parasite PfHMGB1and PfHMGB2 proteins contain one HMG Box domain similar to B-Box of mammalian HMGB1. Electrophoretic Mobility Shift Assay (EMSA) showed that recombinant PfHMGB1 and PfHMGB2 bind to DNA. Immunofluorescence Assay using specific antibodies revealed that these proteins are expressed abundantly in the ring stage nuclei. Significant levels of PfHMGB1 and PfHMGB2 were also present in the parasite cytosol at trophozoite and schizont stages. Both, PfHMGB1 and PfHMGB2 were found to be potent inducers of pro-inflammatory cytokines such as TNFalpha from mouse peritoneal macrophages as analyzed by both reverse transcription PCR and by ELISA. These results suggest that secreted PfHMGB1 and PfHMGB2 may be responsible for eliciting/ triggering host inflammatory immune responses associated with malaria infection.

  18. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR

    PubMed Central

    Fujisawa, Masaki; Ito, Yasuhiro

    2013-01-01

    The developmental process of ripening is unique to fleshy fruits and a key factor in fruit quality. The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN), one of the earliest-acting ripening regulators, is required for broad aspects of ripening, including ethylene-dependent and -independent pathways. However, our knowledge of direct RIN target genes has been limited, considering the broad effects of RIN on ripening. In a recent work published in The Plant Cell, we identified 241 direct RIN target genes by chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) and transcriptome analysis. Functional classification of the targets revealed that RIN participates in the regulation of many biological processes including well-known ripening processes such as climacteric ethylene production and lycopene accumulation. In addition, we found that ethylene is required for the full expression of RIN and several RIN-targeting transcription factor genes at the ripening stage. Here, based on our recently published findings and additional data, we discuss the ripening processes regulated by RIN and the interplay between RIN and ethylene. PMID:23518588

  19. Mad Cow Disease and U.S. Beef Trade

    DTIC Science & Technology

    2006-12-06

    1 For additional details and background see CRS Report RS22345, BSE (“Mad Cow Disease:): A Brief Overview, and CRS Report RL32199, Bovine Spongiform ...foreign markets that banned U.S. beef when a cow in Washington state tested positive for bovine spongiform encephalopathy (BSE, or mad cow disease) in...rejection of three shipments of U.S. beef because of the presence of bone fragments. CRS-4 8 See also CRS Report RL32932, Bovine Spongiform

  20. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2011-03-08

    The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding an F-box protein that interacts with a EIN3 involved in an ethylene response of plants, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding an F-box protein. The inventions also relates to methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein.

  1. Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome.

    PubMed

    Cui, Hao-Ran; Zhang, Zheng-Rong; Lv, Wei; Xu, Jia-Ning; Wang, Xiao-Yun

    2015-08-01

    The F-box protein family is a large family that is characterized by conserved F-box domains of approximately 40-50 amino acids in the N-terminus. F-box proteins participate in diverse cellular processes, such as development of floral organs, signal transduction and response to stress, primarily as a component of the Skp1-cullin-F-box (SCF) complex. In this study, using a global search of the apple genome, 517 F-box protein-encoding genes (F-box genes for short) were identified and further subdivided into 12 groups according to the characterization of known functional domains, which suggests the different potential functions or processes that they were involved in. Among these domains, the galactose oxidase domain was analyzed for the first time in plants, and this domain was present with or without the Kelch domain. The F-box genes were distributed in all 17 apple chromosomes with various densities and tended to form gene clusters. Spatial expression profile analysis revealed that F-box genes have organ-specific expression and are widely expressed in all organs. Proteins that contained the galactose oxidase domain were highly expressed in leaves, flowers and seeds. From a fruit ripening expression profile, 166 F-box genes were identified. The expressions of most of these genes changed little during maturation, but five of them increased significantly. Using qRT-PCR to examine the expression of F-box genes encoding proteins with domains related to stress, the results revealed that F-box proteins were up- or down-regulated, which suggests that F-box genes were involved in abiotic stress. The results of this study helped to elucidate the functions of F-box proteins, especially in Rosaceae plants.

  2. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2015-11-20

    During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.

  3. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana

    PubMed Central

    Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke

    2017-01-01

    F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. PMID:28340173

  4. Human monocyte-derived suppressor cells control graft-versus-host disease by inducing regulatory forkhead box protein 3-positive CD8+ T lymphocytes.

    PubMed

    Janikashvili, Nona; Trad, Malika; Gautheron, Alexandrine; Samson, Maxime; Lamarthée, Baptiste; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Ciudad, Marion; Rekhviashvili, Khatuna; Seaphanh, Famky; Gaugler, Béatrice; Perruche, Sylvain; Bateman, Andrew; Martin, Laurent; Audia, Sylvain; Saas, Philippe; Larmonier, Nicolas; Bonnotte, Bernard

    2015-06-01

    Adoptive transfer of immunosuppressive cells has emerged as a promising strategy for the treatment of immune-mediated disorders. However, only a limited number of such cells can be isolated from in vivo specimens. Therefore efficient ex vivo differentiation and expansion procedures are critically needed to produce a clinically relevant amount of these suppressive cells. We sought to develop a novel, clinically relevant, and feasible approach to generate ex vivo a subpopulation of human suppressor cells of monocytic origin, referred to as human monocyte-derived suppressive cells (HuMoSCs), which can be used as an efficient therapeutic tool to treat inflammatory disorders. HuMoSCs were generated from human monocytes cultured for 7 days with GM-CSF and IL-6. The immune-regulatory properties of HuMoSCs were investigated in vitro and in vivo. The therapeutic efficacy of HuMoSCs was evaluated by using a graft-versus-host disease (GvHD) model of humanized mice (NOD/SCID/IL-2Rγc(-/-) [NSG] mice). CD33+ HuMoSCs are highly potent at inhibiting the proliferation and activation of autologous and allogeneic effector T lymphocytes in vitro and in vivo. The suppressive activity of these cells depends on signal transducer and activator of transcription 3 activation. Of therapeutic relevance, HuMoSCs induce long-lasting memory forkhead box protein 3-positive CD8+ regulatory T lymphocytes and significantly reduce GvHD induced with human PBMCs in NSG mice. Ex vivo-generated HuMoSCs inhibit effector T lymphocytes, promote the expansion of immunosuppressive forkhead box protein 3-positive CD8+ regulatory T cells, and can be used as an efficient therapeutic tool to prevent GvHD. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana

    PubMed Central

    Tekleyohans, Dawit G.; Wittkop, Benjamin; Snowdon, Rod J.

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner. PMID:27776173

  6. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis

    PubMed Central

    Heo, Jinho; Eki, Rebeka; Abbas, Tarek

    2015-01-01

    F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies. PMID:26432751

  7. Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs.

    PubMed

    Delgado Sandoval, Silvia del Carmen; Abraham Juárez, María Jazmín; Simpson, June

    2012-03-01

    Agave tequilana is a monocarpic perennial species that flowers after 5-8 years of vegetative growth signaling the end of the plant's life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.

  8. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.

    PubMed

    Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke; Inzé, Dirk

    2017-05-01

    F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  9. Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security

    USDA-ARS?s Scientific Manuscript database

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, ...

  10. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud

    PubMed Central

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKCC-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in ‘Suli’ pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy. PMID:26466664

  11. The B-Box Domain Protein BBX21 Promotes Photomorphogenesis.

    PubMed

    Xu, Dongqing; Jiang, Yan; Li, Jian; Holm, Magnus; Deng, Xing Wang

    2018-03-01

    B-box-containing (BBX) proteins play critical roles in a variety of cellular and developmental processes in plants. BBX21 (also known as SALT TOLERANCE HOMOLOG2), which contains two B-box domains in tandem at the N terminus, has been previously demonstrated as a key component involved in the COP1-HY5 signaling hub. However, the exact molecular and physiological roles of B-box domains in BBX21 are largely unclear. Here, we found that structurally disruption of the second B-box domain, but not the first one, in BBX21 completely abolishes its biological and physiological activity in conferring hyperphotomorphogenetic phenotype in Arabidopsis ( Arabidopsis thaliana ). Intact B-box domains in BBX21 are not required for interaction with COP1 and its degradation by COP1 via the 26S proteasome system. However, disruption of the second B-box of BBX21 nearly impairs its ability for binding of T/G-box within the HY5 promoter both in vitro and in vivo, as well as controlling HY5 and HY5-regulated gene expression in Arabidopsis seedlings. Taken together, this study provides a mechanistic framework in which BBX21 directly binds to the T/G-box present in the HY5 promoter possibly through its second B-box domain, which in turn controls HY5 and HY5-regulated gene expression to promote photomorphogenesis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  12. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei; Ecker, Joseph R.

    2010-02-02

    The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding a F-box protein, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding a F-box protein.

  13. Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex.

    PubMed

    van Buuren, Nick; Couturier, Brianne; Xiong, Yue; Barry, Michele

    2008-10-01

    Poxviruses are notorious for encoding multiple proteins that regulate cellular signaling pathways, including the ubiquitin-proteasome system. Bioinformatics indicated that ectromelia virus, the causative agent of lethal mousepox, encoded four proteins, EVM002, EVM005, EVM154, and EVM165, containing putative F-box domains. In contrast to cellular F-box proteins, the ectromelia virus proteins contain C-terminal F-box domains in conjunction with N-terminal ankyrin repeats, a combination that has not been previously reported for cellular proteins. These observations suggested that the ectromelia virus F-box proteins interact with SCF (Skp1, cullin-1, and F-box) ubiquitin ligases. We focused our studies on EVM005, since this protein had only one ortholog in cowpox virus. Using mass spectrometry, we identified cullin-1 as a binding partner for EVM005, and this interaction was confirmed by overexpression of hemagglutinin (HA)-cullin-1. During infection, Flag-EVM005 and HA-cullin-1 colocalized to distinct cellular bodies. Significantly, EVM005 coprecipitated with endogenous Skp1, cullin-1, and Roc1 and associated with conjugated ubiquitin, suggesting that EVM005 interacted with the components of a functional ubiquitin ligase. Interaction of EVM005 with cullin-1 and Skp1 was abolished upon deletion of the F-box, indicating that the F-box played a crucial role in interaction with the SCF complex. Additionally, EVM002 and EVM154 interacted with Skp1 and conjugated ubiquitin, suggesting that ectromelia virus encodes multiple F-box-containing proteins that regulate the SCF complex. Our results indicate that ectromelia virus has evolved multiple proteins that interact with the SCF complex.

  14. Characterization of a Smad motif similar to Drosophila mad in the mouse Msx 1 promoter.

    PubMed

    Alvarez Martinez, Cristina E; Binato, Renata; Gonzalez, Sayonara; Pereira, Monica; Robert, Benoit; Abdelhay, Eliana

    2002-03-01

    Mouse Msx 1 gene, orthologous of the Drosophila msh, is involved in several developmental processes. BMP family members are major proteins in the regulation of Msx 1 expression. BMP signaling activates Smad 1/5/8 proteins, which associate to Smad 4 before translocating to the nucleus. Analysis of Msx 1 promoter revealed the presence of three elements similar to the consensus established for Mad, the Smad 1 Drosophila counterpart. Notably, such an element was identified in an enhancer important for Msx 1 regulation. Gel shift analysis demonstrated that proteins from 13.5 dpc embryo associate to this enhancer. Remarkably, supershift assays showed that Smad proteins are present in the complex. Purified Smad 1 and 4 also bind to this fragment. We demonstrate that functional binding sites in this enhancer are confined to the Mad motif and flanking region. Our data suggest that this Mad motif may be functional in response to BMP signaling. ©2002 Elsevier Science (USA).

  15. Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex

    PubMed Central

    Vicente, Juan-Jesus; Cande, W. Zacheus

    2014-01-01

    The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered. PMID:25057014

  16. Sexual aggression: mad, bad, and mad.

    PubMed

    Schopp, Rovert F

    2003-06-01

    Legal institutions in the Western liberal tradition ordinarily rely primarily on the criminal justice system to address conduct by some individuals that deliberately harms other individuals. The mental health system provides an alternative institutional structure through which societies can address such harmful behavior. Those who deliberately engage in conduct that causes harm to others are traditionally addressed through either the criminal justice or mental health systems on the basis of their being categorized as either "bad or mad." This paper examines some of the relevant reasons for categorizing sexual aggression as bad or mad. It emphasizes the significance of such categorization for the broader set of legal institutions of coercive social control and for the manner in which we respond to persons within those institutions.

  17. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells.

    PubMed

    Lu, Shun; Wang, Jing; Ye, Jixing; Zou, Yulong; Zhu, Yunxiao; Wei, Qiang; Wang, Xin; Tang, Shengli; Liu, Hao; Fan, Jiaming; Zhang, Fugui; Farina, Evan M; Mohammed, Maryam M; Song, Dongzhe; Liao, Junyi; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Li, Li; Ma, Chao; Hu, Xue; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Zhou, Dongsheng; He, Tongchuan

    2016-01-01

    Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering.

  18. Is mad cow disease caused by a bacteria?

    PubMed

    Broxmeyer, L

    2004-01-01

    Transmissible spongioform enchephalopathies (TSE's), include bovine spongiform encephalopathy (also called BSE or "mad cow disease"), Creutzfeldt-Jakob disease (CJD) in humans, and scrapie in sheep. They remain a mystery, their cause hotly debated. But between 1994 and 1996, 12 people in England came down with CJD, the human form of mad cow, and all had eaten beef from suspect cows. Current mad cow diagnosis lies solely in the detection of late appearing "prions", an acronym for hypothesized, gene-less, misfolded proteins, somehow claimed to cause the disease. Yet laboratory preparations of prions contain other things, which could include unidentified bacteria or viruses. Furthermore, the rigors of prion purification alone, might, in and of themselves, have killed the causative virus or bacteria. Therefore, even if samples appear to infect animals, it is impossible to prove that prions are causative. Manuelidis found viral-like particles, which even when separated from prions, were responsible for spongiform STE's. Subsequently, Lasmezas's study showed that 55% of mice injected with cattle BSE, and who came down with disease, had no detectable prions. Still, incredibly, prions, are held as existing TSE dogma and Heino Dringer, who did pioneer work on their nature, candidly predicts "it will turn out that the prion concept is wrong." Many animals that die of spongiform TSE's never show evidence of misfolded proteins, and Dr. Frank Bastian, of Tulane, an authority, thinks the disorder is caused by the bacterial DNA he found in this group of diseases. Recently, Roels and Walravens isolated Mycobacterium bovis it from the brain of a cow with the clinical and histopathological signs of mad cow. Moreover, epidemiologic maps of the origins and peak incidence of BSE in the UK, suggestively match those of England's areas of highest bovine tuberculosis, the Southwest, where Britain's mad cow epidemic began. The neurotoxic potential for cow tuberculosis was shown in pre-1960

  19. Protection of neurons from high glucose-induced injury by deletion of MAD2B

    PubMed Central

    Meng, Xianfang; Wang, Xiaolan; Tian, Xiujuan; Yang, Zhihua; Li, Man; Zhang, Chun

    2014-01-01

    Diabetic encephalopathy may lead to cognitive deficits in diabetic patients and diminish quality of life. It has been shown that protracted hyperglycaemia is directly associated with neuronal apoptosis, which is involved in diabetic encephalopathy. The anaphase-promoting complex (APC) is essential for the survival of post-mitotic neurons. In our previous study, we found that the mitotic arrest deficient protein MAD2B, one of APC inhibitors, was expressed in neurons in central nervous system. However, whether MAD2B is involved in hyperglycaemia-induced apoptosis and thus takes part in diabetic encephalopathy is still unknown. To address this issue, we first explored the expression of MAD2B and cyclin B1 detected by immunofluorescence and Western blot. It was found that hyperglycaemia remarkably increased the expression of MAD2B and accumulation of cyclin B1 in cortices of diabetes mellitus rat model and in cultured primary neurons. To further explore the role of MAD2B in hyperglycaemia-induced neuronal injury, we depleted MAD2B expression by a specifically targeted shRNA against MAD2B. We observed that MAD2B deficiency alleviated cyclin B1 expression and apoptotic neuronal death. These results demonstrate that MAD2B expression is the main culprit for accumulation of cyclin B1 and apoptosis in neurons under high glucose. Moreover, inhibition of the expression of MAD2B prevented neurons from entering an aberrant S phase that led differentiated neurons into apoptotic cell death. These results suggest that hyperglycaemia induced neuronal apoptosis through inducing expression of MAD2B, which represents a novel mechanism of diabetic encephalopathy. PMID:24444371

  20. Genetic Enhancer Analysis Reveals that FLORAL ORGAN NUMBER2 and OsMADS3 Co-operatively Regulate Maintenance and Determinacy of the Flower Meristem in Rice.

    PubMed

    Yasui, Yukiko; Tanaka, Wakana; Sakamoto, Tomoaki; Kurata, Tetsuya; Hirano, Hiro-Yuki

    2017-05-01

    Meristems such as the shoot apical meristem and flower meristem (FM) act as a reservoir of stem cells, which reproduce themselves and supply daughter cells for the differentiation of lateral organs. In Oryza sativa (rice), the FLORAL ORGAN NUMBER2 (FON2) gene, which is similar to Arabidopsis CLAVATA3, is involved in meristem maintenance. In fon2 mutants, the numbers of floral organs are increased due to an enlargement of the FM. To identify new factors regulating meristem maintenance in rice, we performed a genetic screening of mutants that enhanced the fon2 mutation, and found a mutant line (2B-424) in which pistil number was dramatically increased. By using a map-based approach and next-generation sequencing, we found that the line 2B-424 had a complete loss-of-function mutation (a large deletion) in OsMADS3, a class C MADS-box gene that is known to be involved in stamen specification. Disruption of OsMADS3 in the fon2 mutant by CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9) technology caused a flower phenotype similar to that of 2B-424, confirming that the gene responsible for enhancement of fon2 was OsMADS3. Morphological analysis showed that the fon2 and osmads3 mutations synergistically affected pistil development and FM determinacy. We also found that whorl 3 was duplicated in mature flowers and the FM was enlarged at an early developmental stage in severe osmads3 single mutants. These findings suggest that OsMADS3 is involved not only in FM determinacy in late flower development but also in FM activity in early flower development. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates.

    PubMed

    Busa, Veronica F; Rector, Maxwell J; Russell, Rick

    2017-07-18

    DEAD-box proteins are nonprocessive RNA helicases that play diverse roles in cellular processes. The Neurospora crassa DEAD-box protein CYT-19 promotes mitochondrial group I intron splicing and functions as a general RNA chaperone. CYT-19 includes a disordered, arginine-rich "C-tail" that binds RNA, positioning the helicase core to capture and unwind nearby RNA helices. Here we probed the C-tail further by varying the number and positions of arginines within it. We found that removing sets of as few as four of the 11 arginines reduced RNA unwinding activity (k cat /K M ) to a degree equivalent to that seen upon removal of the C-tail, suggesting that a minimum or "threshold" number of arginines is required. In addition, a mutant with 16 arginines displayed RNA unwinding activity greater than that of wild-type CYT-19. The C-tail modifications impacted unwinding only of RNA helices within constructs that included an adjacent helix or structured RNA element that would allow C-tail binding, indicating that the helicase core remained active in the mutants. In addition, changes in RNA unwinding efficiency of the mutants were mirrored by changes in functional RNA affinity, as determined from the RNA concentration dependence of ATPase activity, suggesting that the C-tail functions primarily to increase RNA affinity. Interestingly, the salt concentration dependence of RNA unwinding activity is unaffected by C-tail composition, suggesting that the C-tail uses primarily hydrogen bonding, not electrostatic interactions, to bind double-stranded RNA. Our results provide insights into how an unstructured C-tail contributes to DEAD-box protein activity and suggest parallels with other families of RNA- and DNA-binding proteins.

  2. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways.

    PubMed

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  3. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways

    PubMed Central

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia. PMID:26157452

  4. MADS Users' Guide

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.

    2014-01-01

    MADS (Minimization Assistant for Dynamical Systems) is a trajectory optimization code in which a user-specified performance measure is directly minimized, subject to constraints placed on a low-order discretization of user-supplied plant ordinary differential equations. This document describes the mathematical formulation of the set of trajectory optimization problems for which MADS is suitable, and describes the user interface. Usage examples are provided.

  5. Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB.

    PubMed

    Burles, Kristin; van Buuren, Nicholas; Barry, Michele

    2014-11-01

    A notable feature of poxviruses is their ability to inhibit the antiviral response, including the nuclear factor kappa B (NFκB) pathway. NFκB is a transcription factor that is sequestered in the cytoplasm until cell stimulation, and relies on the SCF (Skp1, culllin-1, F-box) ubiquitin ligase to target its inhibitor, IκBα, for degradation. IκBα is recruited to the SCF by the F-box domain-containing protein βTrCP. Here, we show that ectromelia virus, the causative agent of mousepox, encodes four F-box-containing proteins, EVM002, EVM005, EVM154, and EVM165, all of which contain Ankyrin (Ank) domains. The Ank/F-box proteins inhibit NFκB nuclear translocation, and this inhibition is dependent on the F-box domain. We also demonstrate that EVM002, EVM005, EVM154, and EVM165 prevent IκBα degradation, suggesting that they target the SCF. This study identifies a new mechanism by which ectromelia virus inhibits NFκB. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. MadSciNet: The 24-hour exploding laboratory.

    Science.gov Websites

    Page New! Help Improve The Madsci Network Help Support MadSci MAD Head MAD egg Welcome to the laboratory that never sleeps! MadSci Network represents a collective cranium of scientists providing answers Sunday May 27, 2018. Lynn MadSci Network is a non-profit organization operating in partnership with Third

  7. Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators

    NASA Technical Reports Server (NTRS)

    Belaguli, N. S.; Sepulveda, J. L.; Nigam, V.; Charron, F.; Nemer, M.; Schwartz, R. J.

    2000-01-01

    Combinatorial interaction among cardiac tissue-restricted enriched transcription factors may facilitate the expression of cardiac tissue-restricted genes. Here we show that the MADS box factor serum response factor (SRF) cooperates with the zinc finger protein GATA-4 to synergistically activate numerous myogenic and nonmyogenic serum response element (SRE)-dependent promoters in CV1 fibroblasts. In the absence of GATA binding sites, synergistic activation depends on binding of SRF to the proximal CArG box sequence in the cardiac and skeletal alpha-actin promoter. GATA-4's C-terminal activation domain is obligatory for synergistic coactivation with SRF, and its N-terminal domain and first zinc finger are inhibitory. SRF and GATA-4 physically associate both in vivo and in vitro through their MADS box and the second zinc finger domains as determined by protein A pullout assays and by in vivo one-hybrid transfection assays using Gal4 fusion proteins. Other cardiovascular tissue-restricted GATA factors, such as GATA-5 and GATA-6, were equivalent to GATA-4 in coactivating SRE-dependent targets. Thus, interaction between the MADS box and C4 zinc finger proteins, a novel regulatory paradigm, mediates activation of SRF-dependent gene expression.

  8. Interpreting MAD within multiple accretion regimes

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Guo, Xinyi

    2015-02-01

    General relativistic magnetohydrodynamic (GRMHD) simulations of accreting black holes in the radiatively inefficient regime show that systems with sufficient magnetic poloidal flux become magnetically arrested disc (MAD) systems, with a well-defined relationship between the magnetic flux and the mass accretion rate. Recently, Zamaninasab et al. report that the jet magnetic flux and accretion disc luminosity are tightly correlated over 7 orders of magnitude for a sample of 76 radio-loud active galaxies, concluding that the data are explained by the MAD mode of accretion. Their analysis assumes radiatively efficient accretion, and their sample consists primarily of radiatively efficient sources, while GRMHD simulations of MAD thus far have been carried out in the radiatively inefficient regime. We propose a model to interpret MAD systems in the context of multiple accretion regimes, and apply it to the sample in Zamaninasab et al., along with additional radiatively inefficient sources from archival data. We show that most of the radiatively inefficient radio-loud galaxies are consistent with being MAD systems. Assuming the MAD relationship found in radiatively inefficient simulations holds at other accretion regimes, a significant fraction of our sample can be candidates for MAD systems. Future GRMHD simulations have yet to verify the validity of this assumption.

  9. Monopolar spindle 1 (MPS1) kinase promotes production of closed MAD2 (C-MAD2) conformer and assembly of the mitotic checkpoint complex.

    PubMed

    Tipton, Aaron R; Ji, Wenbin; Sturt-Gillespie, Brianne; Bekier, Michael E; Wang, Kexi; Taylor, William R; Liu, Song-Tao

    2013-12-06

    MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2(L13A)) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.

  10. F-BOX proteins in cancer cachexia and muscle wasting: emerging regulators and therapeutic opportunities

    PubMed Central

    Sukari, Ammar; Muqbil, Irfana; Mohammad, Ramzi M.; Philip, Philip A.; Azmi, Asfar S.

    2016-01-01

    Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder. PMID:26804424

  11. Wg Signaling via Zw3 and Mad Restricts Self-Renewal of Sensory Organ Precursor Cells in Drosophila

    PubMed Central

    Quijano, Janine C.; Stinchfield, Michael J.; Newfeld, Stuart J.

    2011-01-01

    It is well known that the Dpp signal transducer Mad is activated by phosphorylation at its carboxy-terminus. The role of phosphorylation on other regions of Mad is not as well understood. Here we report that the phosphorylation of Mad in the linker region by the Wg antagonist Zw3 (homolog of vertebrate Gsk3-β) regulates the development of sensory organs in the anterior–dorsal quadrant of the wing. Proneural expression of Mad-RNA interference (RNAi) or a Mad transgene with its Zw3/Gsk3-β phosphorylation sites mutated (MGM) generated wings with ectopic sensilla and chemosensory bristle duplications. Studies with pMad-Gsk (an antibody specific to Zw3/Gsk3-β-phosphorylated Mad) in larval wing disks revealed that this phosphorylation event is Wg dependent (via an unconventional mechanism), is restricted to anterior–dorsal sensory organ precursors (SOP) expressing Senseless (Sens), and is always co-expressed with the mitotic marker phospho-histone3. Quantitative analysis in both Mad-RNAi and MGM larval wing disks revealed a significant increase in the number of Sens SOP. We conclude that the phosphorylation of Mad by Zw3 functions to prevent the self-renewal of Sens SOP, perhaps facilitating their differentiation via asymmetric division. The conservation of Zw3/Gsk3-β phosphorylation sites in vertebrate homologs of Mad (Smads) suggests that this pathway, the first transforming growth factor β-independent role for any Smad protein, may be widely utilized for regulating mitosis during development. PMID:21868604

  12. Could inhibition of the proteasome cause mad cow disease?

    PubMed

    Hooper, Nigel M

    2003-04-01

    The proteasome is the cellular machinery responsible for the degradation of normal and misfolded proteins. Inhibitors of the proteasome are being evaluated as therapeutic agents and recent work suggests that such inhibition might promote the neurotoxic properties of the prion protein (the causative agent of mad cow disease) and its conformational conversion to the infectious form, thus raising the question as to whether proteasome inhibitors might facilitate the development of prion diseases.

  13. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities.

    PubMed

    Sukari, Ammar; Muqbil, Irfana; Mohammad, Ramzi M; Philip, Philip A; Azmi, Asfar S

    2016-02-01

    Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Compound Heterozygosity for Y Box Proteins Causes Sterility Due to Loss of Translational Repression

    PubMed Central

    Sharma, Manju; Dearth, Andrea; Smith, Benjamin; Braun, Robert E.

    2015-01-01

    The Y-box proteins YBX2 and YBX3 bind RNA and DNA and are required for metazoan development and fertility. However, possible functional redundancy between YBX2 and YBX3 has prevented elucidation of their molecular function as RNA masking proteins and identification of their target RNAs. To investigate possible functional redundancy between YBX2 and YBX3, we attempted to construct Ybx2 -/- ;Ybx3 -/- double mutants using a previously reported Ybx2 -/- model and a newly generated global Ybx3 -/- model. Loss of YBX3 resulted in reduced male fertility and defects in spermatid differentiation. However, homozygous double mutants could not be generated as haploinsufficiency of both Ybx2 and Ybx3 caused sterility characterized by extensive defects in spermatid differentiation. RNA sequence analysis of mRNP and polysome occupancy in single and compound Ybx2/3 heterozygotes revealed loss of translational repression almost exclusively in the compound Ybx2/3 heterozygotes. RNAseq analysis also demonstrated that Y-box protein dose-dependent loss of translational regulation was inversely correlated with the presence of a Y box recognition target sequence, suggesting that Y box proteins bind RNA hierarchically to modulate translation in a range of targets. PMID:26646932

  15. Generalized Majority Logic Criterion to Analyze the Statistical Strength of S-Boxes

    NASA Astrophysics Data System (ADS)

    Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan

    2012-05-01

    The majority logic criterion is applicable in the evaluation process of substitution boxes used in the advanced encryption standard (AES). The performance of modified or advanced substitution boxes is predicted by processing the results of statistical analysis by the majority logic criteria. In this paper, we use the majority logic criteria to analyze some popular and prevailing substitution boxes used in encryption processes. In particular, the majority logic criterion is applied to AES, affine power affine (APA), Gray, Lui J, residue prime, S8 AES, Skipjack, and Xyi substitution boxes. The majority logic criterion is further extended into a generalized majority logic criterion which has a broader spectrum of analyzing the effectiveness of substitution boxes in image encryption applications. The integral components of the statistical analyses used for the generalized majority logic criterion are derived from results of entropy analysis, contrast analysis, correlation analysis, homogeneity analysis, energy analysis, and mean of absolute deviation (MAD) analysis.

  16. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko

    2009-10-23

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint bymore » regulating Mad2p.« less

  17. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.

    PubMed

    Becker, A; Kaufmann, K; Freialdenhoven, A; Vincent, C; Li, M-A; Saedler, H; Theissen, G

    2002-02-01

    Class B floral homeotic genes specify the identity of petals and stamens during the development of angiosperm flowers. Recently, putative orthologs of these genes have been identified in different gymnosperms. Together, these genes constitute a clade, termed B genes. Here we report that diverse seed plants also contain members of a hitherto unknown sister clade of the B genes, termed B(sister) (B(s)) genes. We have isolated members of the B(s) clade from the gymnosperm Gnetum gnemon, the monocotyledonous angiosperm Zea mays and the eudicots Arabidopsis thaliana and Antirrhinum majus. In addition, MADS-box genes from the basal angiosperm Asarum europaeum and the eudicot Petunia hybrida were identified as B(s) genes. Comprehensive expression studies revealed that B(s) genes are mainly transcribed in female reproductive organs (ovules and carpel walls). This is in clear contrast to the B genes, which are predominantly expressed in male reproductive organs (and in angiosperm petals). Our data suggest that the B(s) genes played an important role during the evolution of the reproductive structures in seed plants. The establishment of distinct B and B(s) gene lineages after duplication of an ancestral gene may have accompanied the evolution of male microsporophylls and female megasporophylls 400-300 million years ago. During flower evolution, expression of B(s) genes diversified, but the focus of expression remained in female reproductive organs. Our findings imply that a clade of highly conserved close relatives of class B floral homeotic genes has been completely overlooked until recently and awaits further evaluation of its developmental and evolutionary importance. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00438-001-0615-8.

  18. MadDM: Computation of dark matter relic abundance

    NASA Astrophysics Data System (ADS)

    Backović, Mihailo; Kong, Kyoungchul; McCaskey, Mathew

    2017-12-01

    MadDM computes dark matter relic abundance and dark matter nucleus scattering rates in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. The direct detection module of MadDM calculates spin independent / spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time. The code provides a simplified simulation of detector effects for a wide range of target materials and volumes.

  19. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    PubMed

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  20. [Existence, Absence and Power of Madness: A Critical Review of Michel Foucault's Writings on the History and Philosophy of Madness].

    PubMed

    Brückner, Burkhart; Iwer, Lukas; Thoma, Samuel

    2017-03-01

    This article discusses Michel Foucault's main writings on "madness and psychiatry" from his early works up to the 1970s. On the one hand, we reconstruct the overall theoretical and methodological development of his positions over the course of the different periods in his oeuvre. On the other hand, we also take a closer look at Foucault's philosophical considerations regarding the subjects of his investigations. After an initial introduction of our conceptual approach, we draw on the most recent research on Foucault to show to what extent the phenomenological description of the topic at hand and the historical-critical perspective that are reflected in his early writings of 1954 (the Introduction to Binswanger's Dream and Existence and Mental Illness and Personality) laid the ground for his later work. Moving on to Foucault's work during the 1960s, we look at the core features and methodological bases of his 1961 classic Folie et déraison (History of Madness). His propositions regarding the "absence of madness" in modernity are conceptualized as an inherently contradictory attempt to liberate the topic under study from the common assumptions at that time. We then situate his 1973/74 lectures on Psychiatric Power in the context of his shift towards analyzing the dynamics of power and highlight the renewed shift of focus in his statements on the "productivity" of madness as an effect of power. Finally, we sum up our critique by taking into account the history of the reception of Foucault's writings and ask about their potential significance for the contemporary philosophy and history of psychiatry.

  1. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.

    PubMed

    Ikeda, Kyoko; Ito, Momoyo; Nagasawa, Nobuhiro; Kyozuka, Junko; Nagato, Yasuo

    2007-09-01

    Inflorescence architecture is one of the most important agronomical traits. Characterization of rice aberrant panicle organization 1 (apo1) mutants revealed that APO1 positively controls spikelet number by suppressing the precocious conversion of inflorescence meristems to spikelet meristems. In addition, APO1 is associated with the regulation of the plastchron, floral organ identity, and floral determinacy. Phenotypic analyses of apo1 and floral homeotic double mutants demonstrate that APO1 positively regulates class-C floral homeotic genes, but not class-B genes. Molecular studies revealed that APO1 encodes an F-box protein, an ortholog of Arabidopsis UNUSUAL FLORAL ORGAN (UFO), which is a positive regulator of class-B genes. Overexpression of APO1 caused an increase in inflorescence branches and spikelets. As the mutant inflorescences and flowers differed considerably between apo1 and ufo, the functions of APO1 and UFO appear to have diverged during evolution.

  2. Titration of DnaA protein by oriC DnaA-boxes increases dnaA gene expression in Escherichia coli.

    PubMed Central

    Hansen, F G; Koefoed, S; Sørensen, L; Atlung, T

    1987-01-01

    Binding of the DnaA protein to its binding sites, the DnaA-boxes (TTATCCACA), was measured by a simple physiological approach. The presence of extra DnaA-boxes in growing cells leads to a derepression of dnaA gene expression, measured as beta-galactosidase activity of a dnaA-lacZ fusion polypeptide. Different DnaA-boxes caused different degrees of derepression indicating that the DnaA protein requires sequences in addition to the DnaA-box for efficient binding. The DnaA-boxes in oriC might act cooperatively in binding of the DnaA protein. The derepressed levels of DnaA protein obtained in a strain carrying an oriC+-pBR322 chimera were very high and sufficient to activate oriC on the chimeric plasmid, which was maintained at a copy number more than three times that of pBR322. PMID:3034578

  3. Functional roles and efficiencies of the thioredoxin boxes of calcium-binding proteins 1 and 2 in protein folding.

    PubMed Central

    Kramer, B; Ferrari, D M; Klappa, P; Pöhlmann, N; Söling, H D

    2001-01-01

    The rat luminal endoplasmic-recticulum calcium-binding proteins 1 and 2 (CaBP1 and CaBP2 respectively) are members of the protein disulphide-isomerase (PDI) family. They contain two and three thioredoxin boxes (Cys-Gly-His-Cys) respectively and, like PDI, may be involved in the folding of nascent proteins. We demonstrate here that CaBP1, similar to PDI and CaBP2, can complement the lethal phenotype of the disrupted Saccharomyces cerevisiae PDI gene, provided that the natural C-terminal Lys-Asp-Glu-Leu sequence is replaced by His-Asp-Glu-Leu. Both the in vitro RNase AIII-re-activation assays and in vivo pro-(carboxypeptidase Y) processing assays using CaBP1 and CaBP2 thioredoxin (trx)-box mutants revealed that, whereas the three trx boxes in CaBP2 seem to be functionally equivalent, the first trx box of CaBP1 is significantly more active than the second trx box. Furthermore, only about 65% re-activation of denatured reduced RNase AIII could be obtained with CaBP1 or CaBP2 compared with PDI, and the yield of PDI-catalysed reactions was significantly reduced in the presence of either CaBP1 or CaBP2. In contrast with PDI, neither CaBP1 nor CaBP2 could catalyse the renaturation of denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is a redox-independent process, and neither protein had any effect on the PDI-catalysed refolding of GAPDH. Furthermore, although PDI can bind peptides via its b' domain, a property it shares with PDIp, the pancreas-specific PDI homologue, and although PDI can bind malfolded proteins such as 'scrambled' ribonuclease, no such interactions could be detected for CaBP2. We conclude that: (1) both CaBP2 and CaBP1 lack peptide-binding activity for GAPDH attributed to the C-terminal region of the a' domain of PDI; (2) CaBP2 lacks the general peptide-binding activity attributed to the b' domain of PDI; (3) interaction of CaBP2 with substrate (RNase AIII) is different from that of PDI and substrate; and (4) both CaBP2 and CaBP1 may

  4. Comparative Analysis of the 15.5kD Box C/D snoRNP Core Protein in the Primitive Eukaryote Giardia lamblia Reveals Unique Structural and Functional Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Shyamasri; Buhrman, Greg; Gagnon, Keith

    2012-07-11

    Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 {angstrom}. The Giardia 15.5kD protein exhibits the typical {alpha}-{beta}-{alpha} sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues ofmore » loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.« less

  5. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function

    PubMed Central

    Pazhouhandeh, Maghsoud; Dieterle, Monika; Marrocco, Katia; Lechner, Esther; Berry, Bassam; Brault, Véronique; Hemmer, Odile; Kretsch, Thomas; Richards, Kenneth E.; Genschik, Pascal; Ziegler-Graff, Véronique

    2006-01-01

    Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0–SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery. PMID:16446454

  6. BASIC PENTACYSTEINE Proteins Mediate MADS Domain Complex Binding to the DNA for Tissue-Specific Expression of Target Genes in Arabidopsis[W

    PubMed Central

    Simonini, Sara; Roig-Villanova, Irma; Gregis, Veronica; Colombo, Bilitis; Colombo, Lucia; Kater, Martin M.

    2012-01-01

    BASIC PENTACYSTEINE (BPC) transcription factors have been identified in a large variety of plant species. In Arabidopsis thaliana there are seven BPC genes, which, except for BPC5, are expressed ubiquitously. BPC genes are functionally redundant in a wide range of developmental processes. Recently, we reported that BPC1 binds to guanine and adenine (GA)–rich consensus sequences in the SEEDSTICK (STK) promoter in vitro and induces conformational changes. Here we show by chromatin immunoprecipitation experiments that in vivo BPCs also bind to the consensus boxes, and when these were mutated, expression from the STK promoter was derepressed, resulting in ectopic expression in the inflorescence. We also reveal that SHORT VEGETATIVE PHASE (SVP) is a direct regulator of STK. SVP is a floral meristem identity gene belonging to the MADS box gene family. The SVP-APETALA1 (AP1) dimer recruits the SEUSS (SEU)-LEUNIG (LUG) transcriptional cosuppressor to repress floral homeotic gene expression in the floral meristem. Interestingly, we found that GA consensus sequences in the STK promoter to which BPCs bind are essential for recruitment of the corepressor complex to this promoter. Our data suggest that we have identified a new regulatory mechanism controlling plant gene expression that is probably generally used, when considering BPCs’ wide expression profile and the frequent presence of consensus binding sites in plant promoters. PMID:23054472

  7. Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes

    PubMed Central

    Jetha, Khushboo; Theißen, Günter; Melzer, Rainer

    2014-01-01

    The SEPALLATA (SEP) genes of Arabidopsis thaliana encode MADS-domain transcription factors that specify the identity of all floral organs. The four Arabidopsis SEP genes function in a largely yet not completely redundant manner. Here, we analysed interactions of the SEP proteins with DNA. All of the proteins were capable of forming tetrameric quartet-like complexes on DNA fragments carrying two sequence elements termed CArG-boxes. Distances between the CArG-boxes for strong cooperative DNA-binding were in the range of 4–6 helical turns. However, SEP1 also bound strongly to CArG-box pairs separated by smaller or larger distances, whereas SEP2 preferred large and SEP4 preferred small inter-site distances for binding. Cooperative binding of SEP3 was comparatively weak for most of the inter-site distances tested. All SEP proteins constituted floral quartet-like complexes together with the floral homeotic proteins APETALA3 (AP3) and PISTILLATA (PI) on the target genes AP3 and SEP3. Our results suggest an important part of an explanation for why the different SEP proteins have largely, but not completely redundant functions in determining floral organ identity: they may bind to largely overlapping, but not identical sets of target genes that differ in the arrangement and spacing of the CArG-boxes in their cis-regulatory regions. PMID:25183521

  8. Expression analysis of genes encoding double B-box zinc finger proteins in maize.

    PubMed

    Li, Wenlan; Wang, Jingchao; Sun, Qi; Li, Wencai; Yu, Yanli; Zhao, Meng; Meng, Zhaodong

    2017-11-01

    The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.

  9. Metric Madness

    ERIC Educational Resources Information Center

    Kroon, Cindy D.

    2007-01-01

    Created for a Metric Day activity, Metric Madness is a board game for two to four players. Students review and practice metric vocabulary, measurement, and calculations by playing the game. Playing time is approximately twenty to thirty minutes.

  10. A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F-box protein Mdm30p.

    PubMed

    Ota, Kazuhisa; Kito, Keiji; Okada, Satoshi; Ito, Takashi

    2008-10-01

    Ubiquitination plays various critical roles in eukaryotic cellular regulation and is mediated by a cascade of enzymes including ubiquitin protein ligase (E3). The Skp1-Cullin-F-box protein complex comprises the largest E3 family, in each member of which a unique F-box protein binds its targets to define substrate specificity. Although genome sequencing uncovers a growing number of F-box proteins, most of them have remained as "orphans" because of the difficulties in identification of their substrates. To address this issue, we tested a quantitative proteomic approach by combining the stable isotope labeling by amino acids in cell culture (SILAC), parallel affinity purification (PAP) that we had developed for efficient enrichment of ubiquitinated proteins, and mass spectrometry (MS). We applied this SILAC-PAP-MS approach to compare ubiquitinated proteins between yeast cells with and without over-expressed Mdm30p, an F-box protein implicated in mitochondrial morphology. Consequently, we identified the mitochondrial outer membrane protein Mdm34p as a target of Mdm30p. Furthermore, we found that mitochondrial defects induced by deletion of MDM30 are not only recapitulated by a mutant Mdm34p defective in interaction with Mdm30p but alleviated by ubiquitination-mimicking forms of Mdm34p. These results indicate that Mdm34p is a physiologically important target of Mdm30p.

  11. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit1

    PubMed Central

    Giménez, Estela; Dominguez, Eva; Pineda, Benito; Heredia, Antonio; Moreno, Vicente; Angosto, Trinidad

    2015-01-01

    Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene ARLEQUIN/TOMATO AGAMOUS-LIKE1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato. PMID:26019301

  12. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning.

    PubMed

    Rijpkema, Anneke S; Zethof, Jan; Gerats, Tom; Vandenbussche, Michiel

    2009-10-01

    SEPALLATA (SEP) MADS-box genes are required for the regulation of floral meristem determinacy and the specification of sepals, petals, stamens, carpels and ovules, specifically in angiosperms. The SEP subfamily is closely related to the AGAMOUS LIKE6 (AGL6) and SQUAMOSA (SQUA) subfamilies. So far, of these three groups only AGL6-like genes have been found in extant gymnosperms. AGL6 genes are more similar to SEP than to SQUA genes, both in sequence and in expression pattern. Despite the ancestry and wide distribution of AGL6-like MADS-box genes, not a single loss-of-function mutant exhibiting a clear phenotype has yet been reported; consequently the function of AGL6-like genes has remained elusive. Here, we characterize the Petunia hybrida AGL6 (PhAGL6, formerly called PETUNIA MADS BOX GENE4/pMADS4) gene, and show that it functions redundantly with the SEP genes FLORAL BINDING PROTEIN2 (FBP2) and FBP5 in petal and anther development. Moreover, expression analysis suggests a function for PhAGL6 in ovary and ovule development. The PhAGL6 and FBP2 proteins interact in in vitro experiments overall with the same partners, indicating that the two proteins are biochemically quite similar. It will be interesting to determine the functions of AGL6-like genes of other species, especially those of gymnosperms.

  13. Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii

    PubMed Central

    Story, Randall M.; Li, Hong; Abelson, John N.

    2001-01-01

    We have determined the structure of a DEAD box putative RNA helicase from the hyperthermophile Methanococcus jannaschii. Like other helicases, the protein contains two α/β domains, each with a recA-like topology. Unlike other helicases, the protein exists as a dimer in the crystal. Through an interaction that resembles the dimer interface of insulin, the amino-terminal domain's 7-strand β-sheet is extended to 14 strands across the two molecules. Motifs conserved in the DEAD box family cluster in the cleft between domains, and many of their functions can be deduced by mutational data and by comparison with other helicase structures. Several lines of evidence suggest that motif III Ser-Ala-Thr may be involved in binding RNA. PMID:11171974

  14. ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals1[W][OA

    PubMed Central

    Greenup, Aaron G.; Sasani, Shahryar; Oliver, Sandra N.; Talbot, Mark J.; Dennis, Elizabeth S.; Hemming, Megan N.; Trevaskis, Ben

    2010-01-01

    In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis. PMID:20431086

  15. The magic triangle goes MAD: experimental phasing with a bromine derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Tobias, E-mail: tbeck@shelx.uni-ac.gwdg.de; Gruene, Tim; Sheldrick, George M.

    2010-04-01

    5-Amino-2, 4, 6-tribromoisophthalic acid is used as a phasing tool for protein structure determination by MAD phasing. It is the second representative of a novel class of compounds for heavy-atom derivatization that combine heavy atoms with amino and carboxyl groups for binding to proteins. Experimental phasing is an essential technique for the solution of macromolecular structures. Since many heavy-atom ion soaks suffer from nonspecific binding, a novel class of compounds has been developed that combines heavy atoms with functional groups for binding to proteins. The phasing tool 5-amino-2, 4, 6-tribromoisophthalic acid (B3C) contains three functional groups (two carboxylate groups andmore » one amino group) that interact with proteins via hydrogen bonds. Three Br atoms suitable for anomalous dispersion phasing are arranged in an equilateral triangle and are thus readily identified in the heavy-atom substructure. B3C was incorporated into proteinase K and a multiwavelength anomalous dispersion (MAD) experiment at the Br K edge was successfully carried out. Radiation damage to the bromine–carbon bond was investigated. A comparison with the phasing tool I3C that contains three I atoms for single-wavelength anomalous dispersion (SAD) phasing was also carried out.« less

  16. A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family1[w

    PubMed Central

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406

  17. X Linkage of AP3A, a Homolog of the Y-Linked MADS-Box Gene AP3Y in Silene latifolia and S. dioica

    PubMed Central

    Penny, Rebecca H.; Montgomery, Benjamin R.; Delph, Lynda F.

    2011-01-01

    Background The duplication of autosomal genes onto the Y chromosome may be an important element in the evolution of sexual dimorphism.A previous cytological study reported on a putative example of such a duplication event in a dioecious tribe of Silene (Caryophyllaceae): it was inferred that the Y-linked MADS-box gene AP3Y originated from a duplication of the reportedly autosomal orthologAP3A. However, a recent study, also using cytological methods, indicated that AP3A is X-linked in Silenelatifolia. Methodology/Principal Findings In this study, we hybridized S. latifolia and S. dioicato investigate whether the pattern of X linkage is consistent among distinct populations, occurs in both species, and is robust to genetic methods. We found inheritance patterns indicative of X linkage of AP3A in widely distributed populations of both species. Conclusions/Significance X linkage ofAP3A and Y linkage of AP3Yin both species indicates that the genes' ancestral progenitor resided on the autosomes that gave rise to the sex chromosomesand that neither gene has moved between chromosomes since species divergence.Consequently, our results do not support the contention that inter-chromosomal gene transfer occurred in the evolution of SlAP3Y from SlAP3A. PMID:21533056

  18. Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata.

    PubMed

    Li, Shu; Sun, Penglin; Williams, Justin Stephen; Kao, Teh-hui

    2014-03-01

    The polymorphic S-locus regulating self-incompatibility (SI) in Petunia contains the S-RNase gene and a number of S-locus F-box (SLF) genes. While penetrating the style through the stigma, a pollen tube takes up all S-RNases, but only self S-RNase inhibits pollen tube growth. Recent evidence suggests that SLFs produced by pollen collectively interact with and detoxify non-self S-RNases, but none can interact with self S-RNase. An SLF may be the F-box protein component of an SCF complex (containing Cullin1, Skp1 and Rbx1), which mediates ubiquitination of protein substrates for degradation by the 26S proteasome. However, the precise nature of the complex is unknown. We used pollen extracts of a transgenic plant over-expressing GFP-fused S2-SLF1 (SLF1 of S 2-haplotype) for co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS). We identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (an Rbx1). To validate the results, we raised transgenic plants over-expressing PiSSK1:FLAG:GFP and used pollen extracts for Co-IP-MS. The results confirmed the presence of PiCUL1-P and PiRBX1 in the complex and identified two different SLFs as the F-box protein component. Thus, all but Rbx1 of the complex may have evolved in SI, and all SLFs may be the F-box component of similar complexes.

  19. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    PubMed

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  20. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants

    PubMed Central

    Bakó, László; Umeda, Masaaki; Tiburcio, Antonio F.; Schell, Jeff; Koncz, Csaba

    2003-01-01

    The bacterial virulence protein VirD2 plays an important role in nuclear import and chromosomal integration of Agrobacterium-transferred DNA in fungal, plant, animal, and human cells. Here we show that in nuclei of alfalfa cells, VirD2 interacts with and is phosphorylated by CAK2Ms, a conserved plant ortholog of cyclin-dependent kinase-activating kinases. CAK2Ms binds to and phosphorylates the C-terminal regulatory domain of RNA polymerase II largest subunit, which can recruit the TATA box-binding protein. VirD2 is found in tight association with the TATA box-binding protein in vivo. These results indicate that recognition of VirD2 is mediated by widely conserved nuclear factors in eukaryotes. PMID:12900506

  1. Molecular and functional characterization of single-box high-mobility group B (HMGB) chromosomal protein from Aedes aegypti.

    PubMed

    de Abreu da Silva, Isabel Caetano; Vicentino, Amanda Roberta Revoredo; Dos Santos, Renata Coutinho; da Fonseca, Rodrigo Nunes; de Mendonça Amarante, Anderson; Carneiro, Vitor Coutinho; de Amorim Pinto, Marcia; Aguilera, Estefania Anahi; Mohana-Borges, Ronaldo; Bisch, Paulo Mascarello; da Silva-Neto, Mario Alberto Cardoso; Fantappié, Marcelo Rosado

    2018-05-30

    High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis. Copyright © 2017. Published by Elsevier B.V.

  2. A Novel F-Box Protein CaF-Box Is Involved in Responses to Plant Hormones and Abiotic Stress in Pepper (Capsicum annuum L.)

    PubMed Central

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-01-01

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants. PMID:24518684

  3. A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of C. albicans.

    PubMed

    Ishii, N; Yamamoto, M; Lahm, H W; Iizumi, S; Yoshihara, F; Nakayama, H; Arisawa, M; Aoki, Y

    1997-02-01

    Electromobility shift assays with a DNA probe containing the Saccharomyces cerevisiae ENO1 RPG box identified a specific DNA-binding protein in total protein extracts of Candida albicans. The protein, named Rbf1p (RPG-box-binding protein 1), bound to other S. cerevisiae RPG boxes, although the nucleotide recognition profile was not completely the same as that of S. cerevisiae Rap 1p (repressor-activator protein 1), an RPG-box-binding protein. The repetitive sequence of the C. albicans chromosomal telomere also competed with RPG-box binding to Rbf1p. For further analysis, we purified Rbf1p 57,600-fold from C. albicans total protein extracts, raised mAbs against the purified protein and immunologically cloned the gene, whose ORF specified a protein of 527 aa. The bacterially expressed protein showed RPG-box-binding activity with the same profile as that of the purified one. The Rbf1p, containing two glutamine-rich regions that are found in many transcription factors, showed transcriptional activation capability in S. cerevisiae and was predominantly observed in nuclei. These results suggest that Rbf1p is a transcription factor with telomere-binding activity in C. albicans.

  4. [Women and madness in the Eneid].

    PubMed

    Totola, Giorgia

    2012-01-01

    The article presents female cases of madness in Latin Vergilian Literature, comparing the Greek Dyonisian divine possession of the Maenads and Bacchae with the madness of Dido and Amata. Transcultural psychiatry is here proposed as a useful tool for reading the descriptions of the Aeneid - to try to understand every kind of world where barriers disappear between visible and invisible.

  5. The DEAD-box Protein Dbp2 Functions with the RNA-binding Protein Yra1 to Promote mRNP Assembly

    PubMed Central

    Ma, Wai Kit; Cloutier, Sara C.; Tran, Elizabeth J.

    2013-01-01

    Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2 and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby mRNP assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus. PMID:23721653

  6. ["I am but mad north-north-west"--Hamlet's portrayed delusion].

    PubMed

    Schulte Herbrüggen, H

    1996-01-01

    the play, I must be idle" (i.e. "mad"), next in answering the king ("I fare of the chamaeleon's dish"), and once again in a particularly explicit distinction for his mother ("I am essentially not in madness, but mad in craft"). The evidence of all other instances of mad/madness represented here corroborates these findings: madness as an adopted role and not as a character trait. - It should also be noted that Shakespeare's main source (Belleforests adaptation of the Amleth-story from Saxo Grammaticus) already knew of the motive of stimulated madness as a cover for revenge. Hamlet assumes the role of a "madman" in order to have full scope for action, first, to test by help of the "play in the play" the truth of his father's apparition as a ghost demanding revenge as well as the actual guilt of Claudius and, when that is established, for preparing and executing his revenge. By acting himself, Hamlet becomes guilty and (Shakespeare having chosen the dramatic genre of tragedy) pays for his success with his life. Considering the constant border-crossings between the spheres of real persons and fictive literary figures in psychological approaches to Hamlet, we stressed the essential difference of a literary work of art from real life. At the same time, the inherent limitations of that difference must be shown as well. Although the world of belles lettres is fictive and non-existent in reality, it does not play in a vacuum. It is fed, in many ways, by the poet's experience of his own days as well as by the work's position within the realm of literary tradition (genre, sources, etc.). It is perhaps easy, to insist on the self-contained nature of literature, making literary criticism an arcane activity of a few elected professionals. The price to pay would be, as Laurence Lerner points out, that great literature will no longer tell us anything about life, and the poet's subtle insights, his wisdom, his understanding of the soul and of the world cease to enrich the general read

  7. The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma

    PubMed Central

    Zhang, Wentao; Duan, Ning; Song, Tao; Li, Zhong; Zhang, Caiguo; Chen, Xun

    2017-01-01

    Osteosarcoma is the most common bone cancer primarily occurring in children and young adults. Over the past few years, the deregulation of a superfamily transcription factors, known as forkhead box (FOX) proteins, has been demonstrated to contribute to the pathogenesis of osteosarcoma. Molecular mechanism studies have demonstrated that FOX family proteins participate in a variety of signaling pathways and that their expression can be regulated by multiple factors. The dysfunction of FOX genes can alter osteosarcoma cell differentiation, metastasis and progression. In this review, we summarized the evidence that FOX genes play direct or indirect roles in the development and progression of osteosarcoma, and evaluated the emerging role of FOX proteins as targets for therapeutic intervention. PMID:28775781

  8. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes

    PubMed Central

    Pan, Zhao-Jun; Chen, You-Yi; Du, Jian-Syun; Chen, Yun-Yu; Chung, Mei-Chu; Tsai, Wen-Chieh; Wang, Chun-Neng; Chen, Hong-Hwa

    2014-01-01

    The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four SEP-like genes were cloned from Phalaenopsis orchid, and the duplicated PeSEPs were grouped into PeSEP1/3 and PeSEP2/4. All PeSEPs were expressed in all floral organs. PeSEP2 expression was detectable in vegetative tissues. The study of protein–protein interactions suggested that PeSEPs may form higher order complexes with the B-, C-, D-class and AGAMOUS LIKE6-related MADS-box proteins to determine floral organ identity. The tepal became a leaf-like organ when PeSEP3 was silenced by virus-induced silencing, with alterations in epidermis identity and contents of anthocyanin and chlorophyll. Silencing of PeSEP2 had minor effects on the floral phenotype. Silencing of the E-class genes PeSEP2 and PeSEP3 resulted in the downregulation of B-class PeMADS2-6 genes, which indicates an association of PeSEP functions and B-class gene expression. These findings reveal the important roles of PeSEP in Phalaenopsis floral organ formation throughout the developmental process by the formation of various multiple protein complexes. PMID:24571782

  9. MAD COW DISEASE: New Recruits for French Prion Research.

    PubMed

    Casassus, B

    2000-12-01

    As panic over "mad cow disease" engulfs France and threatens to spread to other countries in Western Europe, French research minister Roger-Gérard Schwartzenberg last week unveiled detailed plans for spending $27 million the government has earmarked for prion disease research in 2001. Next year's budget for studying prions--infectious, abnormal proteins linked to bovine spongiform encephalopathy and its human form, variant Creutzfeldt-Jakob disease--will triple France's current prion research spending.

  10. Kinetochore localized Mad2 and Cdc20 is itself insufficient for triggering the mitotic checkpoint when Mps1 is low in Drosophila melanogaster neuroblasts.

    PubMed

    Herriott, Ashleigh; Sweeney, Michele; Whitaker, Michael; Taggart, Michael; Huang, Jun-Yong

    2012-12-15

    The relationships between the kinetochore and checkpoint control remain unresolved. Here, we report the characterization of the in vivo behavior of Cdc20 and Mad2 and the relevant spindle assembly checkpoint (SAC) functions in the neuroblasts of a Drosophila Mps1 weak allele (ald (B4-2) ). ald (B4-2) third instar larvae brain samples contain only around 16% endogenous Mps1 protein, and the SAC function is abolished. However, this does not lead to rapid anaphase onset and mitotic exit, in contrast to the loss of Mad2 alone in a mad2 (EY) mutant. The level of GFP-Cdc20 recruitment to the kinetochore is unaffected in ald (B4-2) neuroblasts, while the level of GFP-Mad2 is reduced to just about 20%. Cdc20 and Mad2 display only monophasic exponential kinetics at the kinetochores. The ald (B4-2) heterozygotes expressed approximately 65% of normal Mps1 protein levels, and this is enough to restore the SAC function. The kinetochore recruitment of GFP-Mad2 in response to SAC activation increases by around 80% in heterozygotes, compared with just about 20% in ald (B4-2) mutant. This suggests a correlation between Mps1 levels and Mad2 kinetochore localization and perhaps the existence of a threshold level at which Mps1 is fully functional. The failure to arrest the mitotic progression in ald (B4-2) neuroblasts in response to colchicine treatment suggests that when Mps1 levels are low, approximately 20% of normal GFP-Mad2, alongside normal levels of GFP-Cdc20 kinetochore recruitments, is insufficient for triggering SAC signal propagation.

  11. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein*

    PubMed Central

    Chen, Qing; Lu, Mingjian; Monks, Bobby R.; Birnbaum, Morris J.

    2016-01-01

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression. PMID:26668316

  12. The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses.

    PubMed

    Idnurm, Alexander; Rodríguez-Romero, Julio; Corrochano, Luis M; Sanz, Catalina; Iturriaga, Enrique A; Eslava, Arturo P; Heitman, Joseph

    2006-03-21

    Phycomyces blakesleeanus is a filamentous zygomycete fungus that produces striking elongated single cells that extend up to 10 cm into the air, with each such sporangiophore supporting a sphere containing the spores for dispersal. This organism has served as a model for the detection of environmental signals as diverse as light, chemicals, touch, wind, gravity, and adjacent objects. In particular, sporangiophore growth is regulated by light, and it exhibits phototropism by bending toward near-UV and blue wavelengths and away from far-UV wavelengths in a manner that is physiologically similar to plant phototropic responses. The Phycomyces madA mutants were first isolated more than 40 years ago, and they exhibit reduced sensitivity to light. Here, we identify two (duplicated) homologs in the White Collar 1 family of blue-light photoreceptors in Phycomyces. We describe that the madA mutant strains contain point mutations in one of these genes and that these mutations cosegregate with a defect in phototropism after genetic crosses. Thus, the phototropic responses of fungi through madA and plants through phototropin rely on diverse proteins; however, these proteins share a conserved flavin-binding domain for photon detection.

  13. The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses

    PubMed Central

    Idnurm, Alexander; Rodríguez-Romero, Julio; Corrochano, Luis M.; Sanz, Catalina; Iturriaga, Enrique A.; Eslava, Arturo P.; Heitman, Joseph

    2006-01-01

    Phycomyces blakesleeanus is a filamentous zygomycete fungus that produces striking elongated single cells that extend up to 10 cm into the air, with each such sporangiophore supporting a sphere containing the spores for dispersal. This organism has served as a model for the detection of environmental signals as diverse as light, chemicals, touch, wind, gravity, and adjacent objects. In particular, sporangiophore growth is regulated by light, and it exhibits phototropism by bending toward near-UV and blue wavelengths and away from far-UV wavelengths in a manner that is physiologically similar to plant phototropic responses. The Phycomyces madA mutants were first isolated more than 40 years ago, and they exhibit reduced sensitivity to light. Here, we identify two (duplicated) homologs in the White Collar 1 family of blue-light photoreceptors in Phycomyces. We describe that the madA mutant strains contain point mutations in one of these genes and that these mutations cosegregate with a defect in phototropism after genetic crosses. Thus, the phototropic responses of fungi through madA and plants through phototropin rely on diverse proteins; however, these proteins share a conserved flavin-binding domain for photon detection. PMID:16537433

  14. [Diagnosis of musculoskeletal ambulation disability symptom complex (MADS)].

    PubMed

    Ito, Hiromoto

    2008-11-01

    It was described to diagnosis of Musculoskeletal Ambulation Disability Symptom Complex (MADS). The definition of MADS is an person of advanced years with lower leveled balance and walking ability, high risk for fall, and who is keeping to the house. The diagnosis of MADS was decided to a history of 11 musculoskeletal disorders and evaluation of balanced and walking function. The determination method of time of one leg standing and 3 m timed timed up and go test were described.

  15. Gene transfer of high-mobility group box 1 box-A domain in a rat acute liver failure model.

    PubMed

    Tanaka, Masayuki; Shinoda, Masahiro; Takayanagi, Atsushi; Oshima, Go; Nishiyama, Ryo; Fukuda, Kazumasa; Yagi, Hiroshi; Hayashida, Tetsu; Masugi, Yohei; Suda, Koichi; Yamada, Shingo; Miyasho, Taku; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Obara, Hideaki; Itano, Osamu; Takeuchi, Hiroya; Sakamoto, Michiie; Tanabe, Minoru; Maruyama, Ikuro; Kitagawa, Yuko

    2015-04-01

    High-mobility group box 1 (HMGB1) has recently been identified as an important mediator of various kinds of acute and chronic inflammation. The protein encoded by the box-A domain of the HMGB1 gene is known to act as a competitive inhibitor of HMGB1. In this study, we investigated whether box-A gene transfer results in box-A protein production in rats and assessed therapeutic efficacy in vivo using an acute liver failure (ALF) model. Three types of adenovirus vectors were constructed-a wild type and two mutants-and a mutant vector was then selected based on the secretion from HeLa cells. The secreted protein was subjected to a tumor necrosis factor (TNF) production inhibition test in vitro. The vector was injected via the portal vein in healthy Wistar rats to confirm box-A protein production in the liver. The vector was then injected via the portal vein in rats with ALF. Western blot analysis showed enhanced expression of box-A protein in HeLa cells transfected with one of the mutant vectors. The culture supernatant from HeLa cells transfected with the vector inhibited TNF-α production from macrophages. Expression of box-A protein was confirmed in the transfected liver at 72 h after transfection. Transfected rats showed decreased hepatic enzymes, plasma HMGB1, and hepatic TNF-α messenger RNA levels, and histologic findings and survival were significantly improved. HMGB1 box-A gene transfer results in box-A protein production in the liver and appears to have a beneficial effect on ALF in rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses

    PubMed Central

    Mondragón-Palomino, Mariana; Hiese, Luisa; Härter, Andrea; Koch, Marcus A; Theißen, Günter

    2009-01-01

    Background Positive selection is recognized as the prevalence of nonsynonymous over synonymous substitutions in a gene. Models of the functional evolution of duplicated genes consider neofunctionalization as key to the retention of paralogues. For instance, duplicate transcription factors are specifically retained in plant and animal genomes and both positive selection and transcriptional divergence appear to have played a role in their diversification. However, the relative impact of these two factors has not been systematically evaluated. Class B MADS-box genes, comprising DEF-like and GLO-like genes, encode developmental transcription factors essential for establishment of perianth and male organ identity in the flowers of angiosperms. Here, we contrast the role of positive selection and the known divergence in expression patterns of genes encoding class B-like MADS-box transcription factors from monocots, with emphasis on the family Orchidaceae and the order Poales. Although in the monocots these two groups are highly diverse and have a strongly canalized floral morphology, there is no information on the role of positive selection in the evolution of their distinctive flower morphologies. Published research shows that in Poales, class B-like genes are expressed in stamens and in lodicules, the perianth organs whose identity might also be specified by class B-like genes, like the identity of the inner tepals of their lily-like relatives. In orchids, however, the number and pattern of expression of class B-like genes have greatly diverged. Results The DEF-like genes from Orchidaceae form four well-supported, ancient clades of orthologues. In contrast, orchid GLO-like genes form a single clade of ancient orthologues and recent paralogues. DEF-like genes from orchid clade 2 (OMADS3-like genes) are under less stringent purifying selection than the other orchid DEF-like and GLO-like genes. In comparison with orchids, purifying selection was less stringent in DEF

  17. Evolution of the F-Box Gene Family in Euarchontoglires: Gene Number Variation and Selection Patterns

    PubMed Central

    Wang, Ailan; Fu, Mingchuan; Jiang, Xiaoqian; Mao, Yuanhui; Li, Xiangchen; Tao, Shiheng

    2014-01-01

    F-box proteins are substrate adaptors used by the SKP1–CUL1–F-box protein (SCF) complex, a type of E3 ubiquitin ligase complex in the ubiquitin proteasome system (UPS). SCF-mediated ubiquitylation regulates proteolysis of hundreds of cellular proteins involved in key signaling and disease systems. However, our knowledge of the evolution of the F-box gene family in Euarchontoglires is limited. In the present study, 559 F-box genes and nine related pseudogenes were identified in eight genomes. Lineage-specific gene gain and loss events occurred during the evolution of Euarchontoglires, resulting in varying F-box gene numbers ranging from 66 to 81 among the eight species. Both tandem duplication and retrotransposition were found to have contributed to the increase of F-box gene number, whereas mutation in the F-box domain was the main mechanism responsible for reduction in the number of F-box genes, resulting in a balance of expansion and contraction in the F-box gene family. Thus, the Euarchontoglire F-box gene family evolved under a birth-and-death model. Signatures of positive selection were detected in substrate-recognizing domains of multiple F-box proteins, and adaptive changes played a role in evolution of the Euarchontoglire F-box gene family. In addition, single nucleotide polymorphism (SNP) distributions were found to be highly non-random among different regions of F-box genes in 1092 human individuals, with domain regions having a significantly lower number of non-synonymous SNPs. PMID:24727786

  18. GPS-ARM: Computational Analysis of the APC/C Recognition Motif by Predicting D-Boxes and KEN-Boxes

    PubMed Central

    Ren, Jian; Cao, Jun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase incorporated with Cdh1 and/or Cdc20 recognizes and interacts with specific substrates, and faithfully orchestrates the proper cell cycle events by targeting proteins for proteasomal degradation. Experimental identification of APC/C substrates is largely dependent on the discovery of APC/C recognition motifs, e.g., the D-box and KEN-box. Although a number of either stringent or loosely defined motifs proposed, these motif patterns are only of limited use due to their insufficient powers of prediction. We report the development of a novel GPS-ARM software package which is useful for the prediction of D-boxes and KEN-boxes in proteins. Using experimentally identified D-boxes and KEN-boxes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted. By extensive evaluation and comparison, the GPS-ARM performance was found to be much better than the one using simple motifs. With this powerful tool, we predicted 4,841 potential D-boxes in 3,832 proteins and 1,632 potential KEN-boxes in 1,403 proteins from H. sapiens, while further statistical analysis suggested that both the D-box and KEN-box proteins are involved in a broad spectrum of biological processes beyond the cell cycle. In addition, with the co-localization information, we predicted hundreds of mitosis-specific APC/C substrates with high confidence. As the first computational tool for the prediction of APC/C-mediated degradation, GPS-ARM is a useful tool for information to be used in further experimental investigations. The GPS-ARM is freely accessible for academic researchers at: http://arm.biocuckoo.org. PMID:22479614

  19. Orientia tsutsugamushi Strain Ikeda Ankyrin Repeat-Containing Proteins Recruit SCF1 Ubiquitin Ligase Machinery via Poxvirus-Like F-Box Motifs.

    PubMed

    Beyer, Andrea R; VieBrock, Lauren; Rodino, Kyle G; Miller, Daniel P; Tegels, Brittney K; Marconi, Richard T; Carlyon, Jason A

    2015-10-01

    A rising theme among intracellular microbes is the delivery of ankyrin repeat-containing effectors (Anks) that interact with target proteins to co-opt host cell functions. Orientia tsutsugamushi, an obligate intracellular bacterium and the etiologic agent of scrub typhus, encodes one of the largest Ank repertoires of any sequenced microorganism. They have been previously identified as type 1 secretion system substrates. Here, in silico and manual sequence analyses revealed that a large proportion of O. tsutsugamushi strain Ikeda Anks bear a eukaryotic/poxvirus-like F-box motif, which is known to recruit host cell SCF1 ubiquitin ligase machinery. We assessed the Anks for the ability to serve as F-box proteins. Coimmunoprecipitation assays demonstrated that F-box-containing Anks interact with overexpressed and/or endogenous SCF1 components. When coexpressed with FLAG-Ank4_01 or FLAG-Ank9, a glutathione S-transferase (GST)-tagged version of the SCF1 component SKP1 localized to subcellular sites of FLAG-Ank accumulation. The abilities of recombinant Anks to interact and colocalize with SKP1 were F-box dependent. GST-SKP1 precipitated O. tsutsugamushi-derived Ank9 from infected host cells, verifying both that the pathogen expresses Ank9 during infection and the protein's capability to bind SKP1. Aligning O. tsutsugamushi, poxviral, and eukaryotic F-box sequences delineated three F-box residues that are highly conserved and likely to be functionally important. Substitution of these residues ablated the ability of GFP-Ank9 to interact with GST-SKP1. These results demonstrate that O. tsutsugamushi strain Ikeda Anks can co-opt host cell polyubiquitination machinery, provide the first evidence that an O. tsutsugamushi Ank does so during infection, and advance overall understanding of microbial F-box proteins. Ankyrin repeat-containing proteins (Anks) are important virulence factors of intracellular bacteria that mediate protein-protein interactions with host cell targets

  20. Orientia tsutsugamushi Strain Ikeda Ankyrin Repeat-Containing Proteins Recruit SCF1 Ubiquitin Ligase Machinery via Poxvirus-Like F-Box Motifs

    PubMed Central

    Beyer, Andrea R.; VieBrock, Lauren; Rodino, Kyle G.; Miller, Daniel P.; Tegels, Brittney K.; Marconi, Richard T.

    2015-01-01

    ABSTRACT A rising theme among intracellular microbes is the delivery of ankyrin repeat-containing effectors (Anks) that interact with target proteins to co-opt host cell functions. Orientia tsutsugamushi, an obligate intracellular bacterium and the etiologic agent of scrub typhus, encodes one of the largest Ank repertoires of any sequenced microorganism. They have been previously identified as type 1 secretion system substrates. Here, in silico and manual sequence analyses revealed that a large proportion of O. tsutsugamushi strain Ikeda Anks bear a eukaryotic/poxvirus-like F-box motif, which is known to recruit host cell SCF1 ubiquitin ligase machinery. We assessed the Anks for the ability to serve as F-box proteins. Coimmunoprecipitation assays demonstrated that F-box-containing Anks interact with overexpressed and/or endogenous SCF1 components. When coexpressed with FLAG-Ank4_01 or FLAG-Ank9, a glutathione S-transferase (GST)-tagged version of the SCF1 component SKP1 localized to subcellular sites of FLAG-Ank accumulation. The abilities of recombinant Anks to interact and colocalize with SKP1 were F-box dependent. GST-SKP1 precipitated O. tsutsugamushi-derived Ank9 from infected host cells, verifying both that the pathogen expresses Ank9 during infection and the protein's capability to bind SKP1. Aligning O. tsutsugamushi, poxviral, and eukaryotic F-box sequences delineated three F-box residues that are highly conserved and likely to be functionally important. Substitution of these residues ablated the ability of GFP-Ank9 to interact with GST-SKP1. These results demonstrate that O. tsutsugamushi strain Ikeda Anks can co-opt host cell polyubiquitination machinery, provide the first evidence that an O. tsutsugamushi Ank does so during infection, and advance overall understanding of microbial F-box proteins. IMPORTANCE Ankyrin repeat-containing proteins (Anks) are important virulence factors of intracellular bacteria that mediate protein-protein interactions with

  1. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain andmore » examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.« less

  2. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy

    NASA Technical Reports Server (NTRS)

    Gomes, M. D.; Lecker, S. H.; Jagoe, R. T.; Navon, A.; Goldberg, A. L.

    2001-01-01

    Muscle wasting is a debilitating consequence of fasting, inactivity, cancer, and other systemic diseases that results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. To identify key factors in this process, we have used cDNA microarrays to compare normal and atrophying muscles and found a unique gene fragment that is induced more than ninefold in muscles of fasted mice. We cloned this gene, which is expressed specifically in striated muscles. Because this mRNA also markedly increases in muscles atrophying because of diabetes, cancer, and renal failure, we named it atrogin-1. It contains a functional F-box domain that binds to Skp1 and thereby to Roc1 and Cul1, the other components of SCF-type Ub-protein ligases (E3s), as well as a nuclear localization sequence and PDZ-binding domain. On fasting, atrogin-1 mRNA levels increase specifically in skeletal muscle and before atrophy occurs. Atrogin-1 is one of the few examples of an F-box protein or Ub-protein ligase (E3) expressed in a tissue-specific manner and appears to be a critical component in the enhanced proteolysis leading to muscle atrophy in diverse diseases.

  3. Atrioventricular Block Induced by Mad-Honey Intoxication

    PubMed Central

    Cagli, Kumral Ergun; Tufekcioglu, Omac; Sen, Nihat; Aras, Dursun; Topaloglu, Serkan; Basar, Nur; Pehlivan, Sevil

    2009-01-01

    An unusual type of food poisoning, mad-honey intoxication, can be observed in the Black Sea region of Turkey and various other parts of the world. It can occur after ingestion of grayanotoxin-contaminated honey produced from the nectar of Rhododendron ponticum and other plant species, chiefly of the Ericaceae and Sapindaceae families. Mad-honey intoxication can result in severe cardiac complications, such as complete atrioventricular block. The diagnosis is generally reached on the basis of the patient's history of honey intake. In this report, we describe the case of a patient who had mad-honey–related complete atrioventricular block; in this instance, the diagnosis was confirmed by a pollen analysis of the suspect honey. PMID:19693312

  4. Expressed sequence tags (ESTs) and phylogenetic analysis of floral genes from a paleoherb species, Asarum caudigerum.

    PubMed

    Zhao, Yinhe; Wang, Guoying; Zhang, Jinpeng; Yang, Junbo; Peng, Shang; Gao, Lianming; Li, Chengyun; Hu, Jinyong; Li, Dezhu; Gao, Lizhi

    2006-07-01

    Asarum caudigerum (Aristolochiaceae) is an important species of paleoherb in relation to understanding the origin and evolution of angiosperm flowers, due to its basal position in the angiosperms. The aim of this study was to isolate floral-related genes from A. caudigerum, and to infer evolutionary relationships among florally expression-related genes, to further illustrate the origin and diversification of flowers in angiosperms. A subtracted floral cDNA library was constructed from floral buds using suppression subtractive hybridization (SSH). The cDNA of floral buds and leaves at the seedling stage were used as a tester and a driver, respectively. To further identify the function of putative MADS-box transcription factors, phylogenetic trees were reconstructed in order to infer evolutionary relationships within the MADS-box gene family. In the forward-subtracted floral cDNA library, 1920 clones were randomly sequenced, from which 567 unique expressed sequence tags (ESTs) were obtained. Among them, 127 genes failed to show significant similarity to any published sequences in GenBank and thus are putatively novel genes. Phylogenetic analysis indicated that a total of 29 MADS-box transcription factors were members of the APETALA3(AP3) subfamily, while nine others were putative MADS-box transcription factors that formed a cluster with MADS-box genes isolated from Amborella, the basal-most angiosperm, and those from the gymnosperms. This suggests that the origin of A. caudigerum is intermediate between the angiosperms and gymnosperms.

  5. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    PubMed

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen. Copyright © 2015. Published by Elsevier GmbH.

  6. Linking F-box protein 7 and parkin to neuronal degeneration in Parkinson's disease (PD).

    PubMed

    Zhou, Zhi Dong; Sathiyamoorthy, Sushmitha; Angeles, Dario C; Tan, Eng King

    2016-04-18

    Mutations of F-box protein 7 (FBXO7) and Parkin, two proteins in ubiquitin-proteasome system (UPS), are both implicated in pathogenesis of dopamine (DA) neuron degeneration in Parkinson's disease (PD). Parkin is a HECT/RING hybrid ligase that physically receives ubiquitin on its catalytic centre and passes ubiquitin onto its substrates, whereas FBXO7 is an adaptor protein in Skp-Cullin-F-box (SCF) SCF(FBXO7) ubiquitin E3 ligase complex to recognize substrates and mediate substrates ubiquitination by SCF(FBXO7) E3 ligase. Here, we discuss the overlapping pathophysiologic mechanisms and clinical features linking Parkin and FBXO7 with autosomal recessive PD. Both proteins play an important role in neuroprotective mitophagy to clear away impaired mitochondria. Parkin can be recruited to impaired mitochondria whereas cellular stress can promote FBXO7 mitochondrial translocation. PD-linked FBXO7 can recruit Parkin into damaged mitochondria and facilitate its aggregation. WT FBXO7, but not PD-linked FBXO7 mutants can rescue DA neuron degeneration in Parkin null Drosophila. A better understanding of the common pathophysiologic mechanisms of these two proteins could unravel specific pathways for targeted therapy in PD.

  7. Metformin Protects Neurons against Oxygen-Glucose Deprivation/Reoxygenation -Induced Injury by Down-Regulating MAD2B.

    PubMed

    Meng, Xianfang; Chu, Guangpin; Yang, Zhihua; Qiu, Ping; Hu, Yue; Chen, Xiaohe; Peng, Wenpeng; Ye, Chen; He, Fang-Fang; Zhang, Chun

    2016-01-01

    Metformin, the common medication for type II diabetes, has protective effects on cerebral ischemia. However, the molecular mechanisms are far from clear. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of the anaphase-promoting complex (APC), is widely expressed in hippocampal and cortical neurons and plays an important role in mediating high glucose-induced neurotoxicity. The present study investigated whether metformin modifies the expression of MAD2B and to exert its neuroprotective effects in primary cultured cortical neurons during oxygen-glucose deprivation/reoxygenation (OGD/R), a widely used in vitro model of ischemia/reperfusion. Primary cortical neurons were cultured, deprived of oxygen-glucose for 1 h, and then recovered with oxygen-glucose for 12 h and 24 h. Cell viability was measured by detecting the levels of lactate dehydrogenase (LDH) in culture medium. The levels of MAD2B, cyclin B and p-histone 3 were measured by Western blot. Cell viability of neurons was reduced under oxygen-glucose deprivation/reoxygenation (OGD/R). The expression of MAD2B was increased under OGD/R. The levels of cyclin B1, which is a substrate of APC, were also increased. Moreover, OGD/R up-regulated the phosphorylation levels of histone 3, which is the induction of aberrant re-entry of post-mitotic neurons. However, pretreatment of neurons with metformin alleviated OGD/R-induced injury. Metformin further decreased the expression of MAD2B, cyclin B1 and phosphorylation levels of histone 3. Metformin exerts its neuroprotective effect through regulating the expression of MAD2B in neurons under OGD/R. © 2016 The Author(s) Published by S. Karger AG, Basel.

  8. The stomatin-like protein SLP-1 and Cdk2 interact with the F-Box protein Fbw7-γ.

    PubMed

    Zhang, Wei; MacDonald, Elizabeth M; Koepp, Deanna M

    2012-01-01

    Control of cellular proliferation is critical to cell viability. The F-box protein Fbw7 (hAgo/hCdc4/FBXW7) functions as a specificity factor for the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase complex and targets several proteins required for cellular proliferation for ubiquitin-mediated destruction. Fbw7 exists as three splice variants but the mechanistic role of each is not entirely clear. We examined the regulation of the Fbw7-γ isoform, which has been implicated in the degradation of c-Myc. We show here that Fbw7-γ is an unstable protein and that its turnover is proteasome-dependent in transformed cells. Using a two-hybrid screen, we identified a novel interaction partner, SLP-1, which binds the N-terminal domain of Fbw7-γ. Overexpression of SLP-1 inhibits the degradation of Fbw7-γ, suggesting that this interaction can happen in vivo. When Fbw7-γ is stabilized by overexpression of SLP-1, c-Myc protein abundance decreases, suggesting that the SCF(Fbw7-γ) complex maintains activity. We demonstrate that Cdk2 also binds the N-terminal domain of Fbw7-γ as well as SLP-1. Interestingly, co-expression of Cdk2 and SLP-1 does not inhibit Fbw7-γ degradation, suggesting that Cdk2 and SLP-1 may have opposing functions.

  9. Ectopic expression of the HAM59 gene causes homeotic transformations of reproductive organs in sunflower (Helianthus annuus L.).

    PubMed

    Shulga, O A; Neskorodov, Ya B; Shchennikova, A V; Gaponenko, A K; Skryabin, K G

    2015-01-01

    The function of the HAM59 MADS-box gene in sunflower (Helianthus annuus L.) was studied to clarify homeotic C activity in the Asteraceae plant family. For the first time, transgenic sunflower plants with a modified pattern of HAM59 expression were obtained. It was shown that the HAM59 MADS-box transcription factor did mediate C activity in sunflower. In particular, it participated in termination of the floral meristem, repression of the cadastral function of A-activity, and together with other C-type sunflower protein HAM45-in the specification of the identity of stamens and pistils.

  10. Is anyone really M.A.D.?: the occurrence and course of mixed anxiety-depressive disorder in a sample of primary care patients.

    PubMed

    Weisberg, Risa B; Maki, Kristin M; Culpepper, Larry; Keller, Martin B

    2005-04-01

    We examined the occurrence and 1-year course of mixed anxiety-depressive disorder (MAD) in a sample of primary care patients. Participants are part of the Primary Care Anxiety Project, a naturalistic, longitudinal study of anxiety disorders in primary care. Participants completed a questionnaire screening for anxiety symptoms. Those screening positive were invited for an interview to diagnose MAD and DSM-IV Axis I disorders. Participants were then interviewed at 6 and 12 months postintake. Of 1634 participants completing an intake interview, four participants (0.2%) met complete DSM-IV MAD criteria. The adjusted probability of remitting from MAD in 1 year was 80%. Although this was not a prevalence study, results indicate a very low occurrence of MAD across 15 primary care settings. Further, they indicate that this diagnosis may not be stable across time and raise doubts about its utility.

  11. The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components

    PubMed Central

    García-Cruz, Karla V.; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A.; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R.

    2016-01-01

    Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component

  12. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.

    PubMed

    Deng, Weiwei; Ying, Hua; Helliwell, Chris A; Taylor, Jennifer M; Peacock, W James; Dennis, Elizabeth S

    2011-04-19

    FLOWERING LOCUS C (FLC) has a key role in the timing of the initiation of flowering in Arabidopsis. FLC binds and represses two genes that promote flowering, FT and SOC1. We show that FLC binds to many other genes, indicating that it has regulatory roles other than the repression of flowering. We identified 505 FLC binding sites, mostly located in the promoter regions of genes and containing at least one CArG box, the motif known to be associated with MADS-box proteins such as FLC. We examined 40 of the target genes, and 20 showed increased transcript levels in an flc mutant compared with the wild type. Five genes showed decreased expression in the mutant, indicating that FLC binding can result in either transcriptional repression or activation. The genes we identified as FLC targets are involved in developmental pathways throughout the life history of the plant, many of which are associated with reproductive development. FLC is also involved in vegetative development, as evidenced by its binding to SPL15, delaying the progression from juvenile to adult phase. Some of the FLC target genes are also bound by two other MADS-box proteins, AP1 and SEP3, suggesting that MADS-box genes may operate in a network of control at different stages of the life cycle, many ultimately contributing to the development of the reproductive phase of the plant.

  13. Analysis of CFB, a cytokinin-responsive gene of Arabidopsis thaliana encoding a novel F-box protein regulating sterol biosynthesis.

    PubMed

    Brenner, Wolfram G; Leuendorf, Jan Erik; Cortleven, Anne; Martin, Laetitia B B; Schaller, Hubert; Schmülling, Thomas

    2017-05-17

    Protein degradation by the ubiquitin-26S proteasome pathway is important for the regulation of cellular processes, but the function of most F-box proteins relevant to substrate recognition is unknown. We describe the analysis of the gene Cytokinin-induced F-box encoding (CFB, AT3G44326), identified in a meta-analysis of cytokinin-related transcriptome studies as one of the most robust cytokinin response genes. F-box domain-dependent interaction with the E3 ubiquitin ligase complex component ASK1 classifies CFB as a functional F-box protein. Apart from F-box and transmembrane domains, CFB contains no known functional domains. CFB is expressed in all plant tissues, predominantly in root tissue. A ProCFB:GFP-GUS fusion gene showed strongest expression in the lateral root cap and during lateral root formation. CFB-GFP fusion proteins were mainly localized in the nucleus and the cytosol but also at the plasma membrane. cfb mutants had no discernible phenotype, but CFB overexpressing plants showed several defects, such as a white upper inflorescence stem, similar to the hypomorphic cycloartenol synthase mutant cas1-1. Both CFB overexpressing plants and cas1-1 mutants accumulated the CAS1 substrate 2,3-oxidosqualene in the white stem tissue, the latter even more after cytokinin treatment, indicating impairment of CAS1 function. This suggests that CFB may link cytokinin and the sterol biosynthesis pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. F-box proteins Pof3 and Pof1 regulate Wee1 degradation and mitotic entry in fission yeast.

    PubMed

    Qiu, Cui; Yi, Yuan-Yuan; Lucena, Rafael; Wu, Meng-Juan; Sun, Jia-Hao; Wang, Xi; Jin, Quan-Wen; Wang, Yamei

    2018-02-02

    The key cyclin-dependent kinase Cdk1 (Cdc2) promotes irreversible mitotic entry, mainly by activating the phosphatase Cdc25 while suppressing the tyrosine kinase Wee1. Wee1 needs to be downregulated at the onset of mitosis to ensure rapid activation of Cdk1. In human somatic cells, one mechanism of suppressing Wee1 activity is mediated by ubiquitylation-dependent proteolysis through the Skp1/Cul1/F-box protein (SCF) ubiquitin E3 ligase complex. This mechanism is believed to be conserved from yeasts to humans. So far, the best-characterized human F-box proteins involved in recognition of Wee1 are β-TrCP (BTRCP) and Tome-1 (CDCA3). Although fission yeast Wee1 was the first identified member of its conserved kinase family, the F-box proteins involved in recognition and ubiquitylation of Wee1 have not been identified in this organism. In this study, our screen using Wee1- Renilla luciferase as the reporter revealed that two F-box proteins, Pof1 and Pof3, are required for downregulating Wee1 and are possibly responsible for recruiting Wee1 to SCF. Our genetic analyses supported a functional relevance between Pof1 and Pof3 and the rate of mitotic entry, and Pof3 might play a major role in this process. © 2018. Published by The Company of Biologists Ltd.

  15. Comparative efficacy of CPAP, MADs, exercise-training, and dietary weight loss for sleep apnea: a network meta-analysis.

    PubMed

    Iftikhar, Imran H; Bittencourt, Lia; Youngstedt, Shawn D; Ayas, Najib; Cistulli, Peter; Schwab, Richard; Durkin, Martin W; Magalang, Ulysses J

    2017-02-01

    To synthesize evidence from available studies on the relative efficacies of continuous positive airway pressure (CPAP), mandibular advancement device (MAD), supervised aerobic exercise training, and dietary weight loss in patients with obstructive sleep apnea (OSA). Network meta-analysis of 80 randomized controlled trials (RCTs) short-listed from PubMed, SCOPUS, Web of science, and Cochrane register (inception - September 8, 2015). Individuals with OSA. CPAP, MADs, exercise training, and dietary weight loss. CPAP decreased apnea-hypopnea index (AHI) the most [by 25.27 events/hour (22.03-28.52)] followed by exercise training, MADs, and dietary weight loss. While the difference between exercise training and CPAP was non-significant [-8.04 (-17.00 to 0.92), a significant difference was found between CPAP and MADs on AHI and oxygen desaturation index (ODI) [-10.06 (-14.21 to -5.91) and -7.82 (-13.04 to -2.59), respectively]. Exercise training significantly improved Epworth sleepiness scores (ESS) [by 3.08 (0.68-5.48)], albeit with a non-significant difference compared to MADs and CPAP. CPAP is the most efficacious in complete resolution of sleep apnea and in improving the indices of saturation during sleep. While MADs offer a reasonable alternative to CPAP, exercise training which significantly improved daytime sleepiness (ESS) could be used as adjunctive to the former two. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Neurochemical aftermath of amateur boxing.

    PubMed

    Zetterberg, Henrik; Hietala, M Albert; Jonsson, Michael; Andreasen, Niels; Styrud, Ewa; Karlsson, Ingvar; Edman, Ake; Popa, Cornel; Rasulzada, Abdullah; Wahlund, Lars-Olof; Mehta, Pankaj D; Rosengren, Lars; Blennow, Kaj; Wallin, Anders

    2006-09-01

    Little solid information is available on the possible risks for neuronal injury in amateur boxing. To determine whether amateur boxing and severity of hits are associated with elevated levels of biochemical markers for neuronal injury in cerebrospinal fluid. Longitudinal study. Referral center specializing in evaluation of neurodegenerative disorders. Fourteen amateur boxers (11 men and 3 women) and 10 healthy male nonathletic control subjects. The boxers underwent lumbar puncture 7 to 10 days and 3 months after a bout. The control subjects underwent LP once. Neurofilament light protein, total tau, glial fibrillary acidic protein, phosphorylated tau, and beta-amyloid protein 1-40 (Abeta([1-40])) and 1-42 (Abeta([1-42])) concentrations in cerebrospinal fluid were measured. Increased levels after a bout compared with after 3 months of rest from boxing were found for 2 markers for neuronal and axonal injury, neurofilament light protein (mean +/- SD, 845 +/- 1140 ng/L vs 208 +/- 108 ng/L; P = .008) and total tau (mean +/- SD, 449 +/- 176 ng/L vs 306 +/- 78 ng/L; P = .006), and for the astroglial injury marker glial fibrillary acidic protein (mean +/- SD, 541 +/- 199 ng/L vs 405 +/- 138 ng/L; P = .003). The increase was significantly higher among boxers who had received many hits (>15) or high-impact hits to the head compared with boxers who reported few hits. In the boxers, concentrations of neurofilament light protein and glial fibrillary acidic protein, but not total tau, were significantly elevated after a bout compared with the nonathletic control subjects. With the exception of neurofilament light protein, there were no significant differences between boxers after 3 months of rest from boxing and the nonathletic control subjects. Amateur boxing is associated with acute neuronal and astroglial injury. If verified in longitudinal studies with extensive follow-up regarding the clinical outcome, analyses of cerebrospinal fluid may provide a scientific basis for

  17. Science with ESO's Multi-conjugate Adaptive-optics Demonstrator - MAD

    NASA Astrophysics Data System (ADS)

    Melnick, Jorge; Marchetti, Enrico; Amico, Paola

    2012-07-01

    ESO's Multi-conjugate Adaptive-optics Demonstrator (MAD) was a prototype designed and built to demonstrate wide-field adaptive optics science on large telescopes. The outstanding results obtained during commissioning and guaranteed time observations (GTO) prompted ESO to issue and open call to the community for 23 science demonstration (SD) observing nights distributed in three runs (in order to provide access to the summer an winter skies). Thus, in total MAD was used for science for 33 nights including the 10 nights of GTO time. date, 19 articles in refereed journals (including one in Nature) have been published based fully or partially o MAD data. To the best of our knowledge, these are not only the first, but also the only scientific publication from MCAO instruments world-wide to date (at least in Astronomy). The scientific impact of these publication, as measured by the h-index, is comparable to that of other AO instruments on the VLT, although over the years these instruments have been allocated many more nights than MAD. In this contribution we present an overview of the scientific results from MAD and a more detailed discussion of the most cited papers.

  18. Effects on Polo-like Kinase 1 Polo-box Domain Binding Affinities of Peptides Incurred by Structural Variation at the Phosphoamino Acid Position

    PubMed Central

    Qian, Wenjian; Park, Jung-Eun; Liu, Fa; Lee, Kyung S.; Burke, Terrence R.

    2012-01-01

    Protein-protein interactions (PPIs) mediated by the polo-box domain (PBD) of polo-like kinase 1 (Plk1) serve important roles in cell proliferation. Critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pThr/pSer-residues in the binding ligands. However, there has been little examination of pThr/pSer mimetics within a PBD context. Our current paper compares the abilities of a variety of amino acid residues and derivatives to serve as pThr/pSer replacements by exploring the role of methyl functionality at the pThr β–position and by replacing the phosphoryl group by phosphonic acid, sulfonic acid and carboxylic acids. This work sheds new light on structure activity relationships for PBD recognition of phosphoamino acid mimetics. PMID:22743087

  19. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel.

    PubMed

    Tambe, Mahesh; Pruikkonen, Sofia; Mäki-Jouppila, Jenni; Chen, Ping; Elgaaen, Bente Vilming; Straume, Anne Hege; Huhtinen, Kaisa; Cárpen, Olli; Lønning, Per Eystein; Davidson, Ben; Hautaniemi, Sampsa; Kallio, Marko J

    2016-03-15

    The molecular pathways that contribute to the proliferation and drug response of cancer cells are highly complex and currently insufficiently characterized. We have identified a previously unknown microRNA-based mechanism that provides cancer cells means to stimulate tumorigenesis via increased genomic instability and, at the same time, evade the action of clinically utilized microtubule drugs. We demonstrate miR-493-3p to be a novel negative regulator of mitotic arrest deficient-2 (MAD2), an essential component of the spindle assembly checkpoint that monitors the fidelity of chromosome segregation. The microRNA targets the 3' UTR of Mad2 mRNA thereby preventing translation of the Mad2 protein. In cancer cells, overexpression of miR-493-3p induced a premature mitotic exit that led to increased frequency of aneuploidy and cellular senescence in the progeny cells. Importantly, excess of the miR-493-3p conferred resistance of cancer cells to microtubule drugs. In human neoplasms, miR-493-3p and Mad2 expression alterations correlated with advanced ovarian cancer forms and high miR-493-3p levels were associated with reduced survival of ovarian and breast cancer patients with aggressive tumors, especially in the paclitaxel therapy arm. Our results suggest that intratumoral profiling of miR-493-3p and Mad2 levels can have diagnostic value in predicting the efficacy of taxane chemotherapy.

  20. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species.

    PubMed

    Li, Wentao; Chetelat, Roger T

    2015-04-07

    Unilateral interspecific incompatibility (UI) is a postpollination, prezygotic reproductive barrier that prevents hybridization between related species when the female parent is self-incompatible (SI) and the male parent is self-compatible (SC). In tomato and related Solanum species, two genes, ui1.1 and ui6.1, are required for pollen compatibility on pistils of SI species or hybrids. We previously showed that ui6.1 encodes a Cullin1 (CUL1) protein. Here we report that ui1.1 encodes an S-locus F-box (SLF) protein. The ui1.1 gene was mapped to a 0.43-cM, 43.2-Mbp interval at the S-locus on chromosome 1, but positional cloning was hampered by low recombination frequency. We hypothesized that ui1.1 encodes an SLF protein(s) that interacts with CUL1 and Skp1 proteins to form an SCF-type (Skp1, Cullin1, F-box) ubiquitin E3 ligase complex. We identified 23 SLF genes in the S. pennellii genome, of which 19 were also represented in cultivated tomato (S. lycopersicum). Data from recombination events, expression analysis, and sequence annotation highlighted 11 S. pennellii genes as candidates. Genetic transformations demonstrated that one of these, SpSLF-23, is sufficient for ui1.1 function. A survey of cultivated and wild tomato species identified SLF-23 orthologs in each of the SI species, but not in the SC species S. lycopersicum, S. cheesmaniae, and S. galapagense, pollen of which lacks ui1.1 function. These results demonstrate that pollen compatibility in UI is mediated by protein degradation through the ubiquitin-proteasome pathway, a mechanism related to that which controls pollen recognition in SI.

  1. Roles of F-box proteins in human digestive system tumors (Review).

    PubMed

    Gong, Jian; Lv, Liang; Huo, Jirong

    2014-12-01

    F-box proteins (FBPs), the substrate-recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige-nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.

  2. Structure of the SPRY domain of the human RNA helicase DDX1, a putative interaction platform within a DEAD-box protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellner, Julian N.; Meinhart, Anton, E-mail: anton.meinhart@mpimf-heidelberg.mpg.de

    The structure of the SPRY domain of the human RNA helicase DDX1 was determined at 2.0 Å resolution. The SPRY domain provides a putative protein–protein interaction platform within DDX1 that differs from other SPRY domains in its structure and conserved regions. The human RNA helicase DDX1 in the DEAD-box family plays an important role in RNA processing and has been associated with HIV-1 replication and tumour progression. Whereas previously described DEAD-box proteins have a structurally conserved core, DDX1 shows a unique structural feature: a large SPRY-domain insertion in its RecA-like consensus fold. SPRY domains are known to function as protein–proteinmore » interaction platforms. Here, the crystal structure of the SPRY domain of human DDX1 (hDSPRY) is reported at 2.0 Å resolution. The structure reveals two layers of concave, antiparallel β-sheets that stack onto each other and a third β-sheet beneath the β-sandwich. A comparison with SPRY-domain structures from other eukaryotic proteins showed that the general β-sandwich fold is conserved; however, differences were detected in the loop regions, which were identified in other SPRY domains to be essential for interaction with cognate partners. In contrast, in hDSPRY these loop regions are not strictly conserved across species. Interestingly, though, a conserved patch of positive surface charge is found that may replace the connecting loops as a protein–protein interaction surface. The data presented here comprise the first structural information on DDX1 and provide insights into the unique domain architecture of this DEAD-box protein. By providing the structure of a putative interaction domain of DDX1, this work will serve as a basis for further studies of the interaction network within the hetero-oligomeric complexes of DDX1 and of its recruitment to the HIV-1 Rev protein as a viral replication factor.« less

  3. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    PubMed Central

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  4. [Madness in the German cinema (1913-1933].

    PubMed

    Aulas, J J

    1980-01-01

    During these twenty years, from 1913 to 1933, of the history of the German cinema, the cinematographic representation of madness varies according to the fluctuations of the social and economical background. The political and ideological chaos of the immediate post-war years was symbolized in the allegorical imagery of unreason in the expressionist cinema. The same equivalence, the same symbolization can be found in the cinema of the thirties when the crash of Wall-Street foretells a crisis like the former. On the contrary in the course of the so-called "relative stabilization" (1924-1929) the meaning of the representation of madness is totally different from the representation of the previous period. At this period of economical restoration, madness which could henceforth be cured on the psychoanalyst's couch (acc. G. W. Pabst's film: "Geheimnisse einer Seele") became the symbol of the absolute power rediscovered by Germany.

  5. Effects of Quercetin Supplementation on Lipid and Protein Metabolism after Classic Boxing Training

    ERIC Educational Resources Information Center

    Demirci, Nevzat

    2017-01-01

    The metabolic fitness (MF) is a component of athletes' physical conditioning. This study aims to investigate the effects of quercetin supplementation on Turkish Junior athletes' lipid and protein metabolism relating to MF after one month classic boxing training. Totally 20 voluntary junior male athletes were separated into two equal groups as the…

  6. A New Set of ESTs from Chickpea (Cicer arietinum L.) Embryo Reveals Two Novel F-Box Genes, CarF-box_PP2 and CarF-box_LysM, with Potential Roles in Seed Development

    PubMed Central

    Gupta, Shefali; Garg, Vanika; Bhatia, Sabhyata

    2015-01-01

    Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development. PMID:25803812

  7. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-10-01

    SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.

  8. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis

    PubMed Central

    Deng, Weiwei; Ying, Hua; Helliwell, Chris A.; Taylor, Jennifer M.; Peacock, W. James; Dennis, Elizabeth S.

    2011-01-01

    FLOWERING LOCUS C (FLC) has a key role in the timing of the initiation of flowering in Arabidopsis. FLC binds and represses two genes that promote flowering, FT and SOC1. We show that FLC binds to many other genes, indicating that it has regulatory roles other than the repression of flowering. We identified 505 FLC binding sites, mostly located in the promoter regions of genes and containing at least one CArG box, the motif known to be associated with MADS-box proteins such as FLC. We examined 40 of the target genes, and 20 showed increased transcript levels in an flc mutant compared with the wild type. Five genes showed decreased expression in the mutant, indicating that FLC binding can result in either transcriptional repression or activation. The genes we identified as FLC targets are involved in developmental pathways throughout the life history of the plant, many of which are associated with reproductive development. FLC is also involved in vegetative development, as evidenced by its binding to SPL15, delaying the progression from juvenile to adult phase. Some of the FLC target genes are also bound by two other MADS-box proteins, AP1 and SEP3, suggesting that MADS-box genes may operate in a network of control at different stages of the life cycle, many ultimately contributing to the development of the reproductive phase of the plant. PMID:21464308

  9. Automatic box loader

    DOEpatents

    Eldridge, Harry H.; Jones, Robert A.; Lindner, Gordon M.; Hight, Paul H.

    1976-01-01

    This invention relates to a system for repetitively forming an assembly consisting of a single layer of tubes and a row of ferromagnetic armatures underlying the same, electromagnetically conveying the resulting assembly to a position overlying a storage box, and depositing the assembly in the box. The system includes means for simultaneously depositing a row of the armatures on the inclined surface of a tube retainer. Tubes then are rolled down the surface to form a single tube layer bridging the armatures. A magnet assembly carrying electromagnets respectively aligned with the armatures is advanced close to the tube layer, and in the course of this advance is angularly displaced to bring the pole pieces of the electromagnets into parallelism with the tube layer. The magnets then are energized to pick up the assembly. The loaded magnet assembly is retracted to a position overlying the box, and during this retraction is again displaced to bring the pole pieces of the electromagnets into a horizontal plane. Means are provided for inserting the loaded electromagnets in the box and then de-energizing the electromagnets to deposit the assembly therein. The system accomplishes the boxing of fragile tubes at relatively high rates. Because the tubes are boxed as separated uniform layers, subsequent unloading operations are facilitated.

  10. Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2016-01-01

    MAX2 (MORE AXILLARY GROWTH2) is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild-type, the MdMAX2 -overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.

  11. Overexpression of VpEIFP1, a novel F-box/Kelch-repeat protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to powdery mildew by inducing thioredoxin z proteolysis.

    PubMed

    Wang, Jie; Yao, Wenkong; Wang, Lei; Ma, Fuli; Tong, Weihuo; Wang, Chen; Bao, Rui; Jiang, Changyue; Yang, Yazhou; Zhang, Jianxia; Xu, Yan; Wang, Xiping; Zhang, Chaohong; Wang, Yuejin

    2017-10-01

    An F-box protein (VpEIFP1) induced by Erysiphe necator was isolated from Vitis pseudoreticulata, a wild Chinese grapevine species naturally resistant to powdery mildew (PM). It contains an F-box domain and two Kelch-repeat motifs. Expression profiles indicate the VpEIFP1 is strongly induced at both transcriptional and translational levels by PM infection. A subcellular localisation assay showed that VpEIFP1 is predominantly located in the nucleus and cytoplasm. Overexpression of VpEIFP1 accelerated the accumulation of hydrogen peroxide (H 2 O 2 ) and up-regulated the expressions of ICS2, NPR1 and PR1 involved in defence responses, resulting in suppression of PM germination and growth. As an F-box protein, VpEIFP1 interacts with thioredoxin z (VpTrxz) in the yeast-two-hybrid (Y2H) assay and in the bimolecular fluorescence complementation (BiFC) assay. Decreased amounts of VpTrxz protein in transgenic grapevine leaves overexpressing VpEIFP1 were restored by proteasome inhibitor MG132, implying that VpEIFP1 mediated VpTrxz for degradation through the SCF VpEIFP1 (Skp1-Cullin-F-box) E3 ubiquitin ligase complex. The RNA interference line of VpTrxz showed increased H 2 O 2 accumulation following PM inoculation. We propose VpEIFP1 positively modulates the grapevine defence response to PM by inducing the degradation of VpTrxz via the ubiquitin/26S proteasome system. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components.

    PubMed

    García-Cruz, Karla V; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R

    2016-07-29

    Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. XAL1 seems to be an important component of the networks that modulate cell

  13. Ctf4 Is a Hub in the Eukaryotic Replisome that Links Multiple CIP-Box Proteins to the CMG Helicase.

    PubMed

    Villa, Fabrizio; Simon, Aline C; Ortiz Bazan, Maria Angeles; Kilkenny, Mairi L; Wirthensohn, David; Wightman, Mel; Matak-Vinkovíc, Dijana; Pellegrini, Luca; Labib, Karim

    2016-08-04

    Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a "Ctf4-interacting-peptide" or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets'.

    PubMed

    Wang, Yong-Qiang; Melzer, Rainer; Theissen, Günter

    2010-10-01

    Several lines of evidence suggest that the identity of floral organs in angiosperms is specified by multimeric transcription factor complexes composed of MADS-domain proteins. These bind to specific cis-regulatory elements ('CArG-boxes') of their target genes involving DNA-loop formation, thus constituting 'floral quartets'. Gymnosperms, angiosperms' closest relatives, contain orthologues of floral homeotic genes, but when and how the interactions constituting floral quartets were established during evolution has remained unknown. We have comprehensively studied the dimerization and DNA-binding of several classes of MADS-domain proteins from the gymnosperm Gnetum gnemon. Determination of protein-protein and protein-DNA interactions by yeast two-hybrid, in vitro pull-down and electrophoretic mobility shift assays revealed complex patterns of homo- and heterodimerization among orthologues of floral homeotic class B, class C and class E proteins and B(sister) proteins. Using DNase I footprint assays we demonstrate that both orthologues of class B with C proteins, and orthologues of class C proteins alone, but not orthologues of class B proteins alone can loop DNA in floral quartet-like complexes. This is in contrast to class B and class C proteins from angiosperms, which require other factors such as class E floral homeotic proteins to 'glue' them together in multimeric complexes. Our findings suggest that the evolutionary origin of floral quartet formation is based on the interaction of different DNA-bound homodimers, does not depend on class E proteins, and predates the origin of angiosperms. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  15. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR.

    PubMed

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E; Hornung, Veit; Weber, Friedemann

    2016-07-01

    Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we demonstrate that NSs

  16. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR

    PubMed Central

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E.; Hornung, Veit

    2016-01-01

    ABSTRACT Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we

  17. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody

    PubMed Central

    Maejima, Kensaku; Iwai, Ryo; Himeno, Misako; Komatsu, Ken; Kitazawa, Yugo; Fujita, Naoko; Ishikawa, Kazuya; Fukuoka, Misato; Minato, Nami; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2014-01-01

    Plant pathogens alter the course of plant developmental processes, resulting in abnormal morphology in infected host plants. Phytoplasmas are unique plant-pathogenic bacteria that transform plant floral organs into leaf-like structures and cause the emergence of secondary flowers. These distinctive symptoms have attracted considerable interest for many years. Here, we revealed the molecular mechanisms of the floral symptoms by focusing on a phytoplasma-secreted protein, PHYL1, which induces morphological changes in flowers that are similar to those seen in phytoplasma-infected plants. PHYL1 is a homolog of the phytoplasmal effector SAP54 that also alters floral development. Using yeast two-hybrid and in planta transient co-expression assays, we found that PHYL1 interacts with and degrades the floral homeotic MADS domain proteins SEPALLATA3 (SEP3), APETALA1 (AP1) and CAULIFLOWER (CAL). This degradation of MADS domain proteins was dependent on the ubiquitin–proteasome pathway. The expression of floral development genes downstream of SEP3 and AP1 was disrupted in 35S::PHYL1 transgenic plants. PHYL1 was genetically and functionally conserved among other phytoplasma strains and species. We designate PHYL1, SAP54 and their homologs as members of the phyllody-inducing gene family of ‘phyllogens’. PMID:24597566

  18. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex.

    PubMed

    Chandra Dantu, Sarath; Nathubhai Kachariya, Nitin; Kumar, Ashutosh

    2016-01-01

    Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1-Cul1-F-box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S-phase kinase-associated protein 2 (Skp2), cullin, and RING-finger proteins of this complex, but the roles of the adapter protein Skp1 and F-box domain of Skp2 have not been determined. Using sub-microsecond molecular dynamics simulations of full-length Skp1, unbound Skp2, Skp2-Cks1 (Cks1: Cyclin-dependent kinases regulatory subunit 1), Skp1-Skp2, and Skp1-Skp2-Cks1 complexes, we have elucidated the function of Skp1 and the F-box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X-ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C-terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F-box proteins. Furthermore, we observed that the F-box domain could rotate (5°-129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1-Skp2 and Skp1-Skp2-Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F-box domain of Skp2 and Skp1-Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates. © 2015 Wiley Periodicals, Inc.

  19. Interdisciplinary Critical Inquiry: Teaching about the Social Construction of Madness

    ERIC Educational Resources Information Center

    Connor-Greene, Patricia A.

    2006-01-01

    Theories and treatments of mental illness reflect the social, philosophical, and historical context in which they developed. This article describes ways to invite students to grapple with complex questions about "madness" from an interdisciplinary perspective. Looking at the construct of madness through multiple lenses (e.g., literature,…

  20. Approximation, Mad Men and the Death of JFK.

    PubMed

    Bruzzi, Stella

    2018-01-01

    In this article I take the US television series Mad Men (2007-present) as an exemplary 'approximation', a term I adopt to signal the way in which certain texts construct a changeable, fluid 'truth' resulting from collisions, exchange and dialectical argument. Approximations are layered, their formal layerings mirroring a layered, multifaceted argument. Mad Men integrates and represents real historical events within a fictional setting, and act that suggests that an event or action can never be finished, fixed and not open to reassessment. Specifically, this article examines 'The Grown Ups', Episode 12 of Season 3, which charts the events of 22 November 1963, the day Kennedy was assassinated. Although we might be able to bring to mind the images and conspiracy theories that have been made available since (such Abraham Zapruder's 8 mm home movie footage of the assassination), these images were not available at the time. Mad Men as a series always strives to represent its historical milieu as authentically as possible, so the characters re-enact 22 November 1963 as authentically as possible by watching only what was on television that day (the news bulletin, Walter Kronkite's announcement that Kennedy is dead). The contemporary backdrop to these events, including the resonances of '9/11' through Mad Men , inform and collide with the authenticity on the screen.

  1. Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1.

    PubMed

    Kellner, Julian N; Reinstein, Jochen; Meinhart, Anton

    2015-03-11

    RNA helicases of the DEAD-box protein family form the largest group of helicases. The human DEAD-box protein 1 (DDX1) plays an important role in tRNA and mRNA processing, is involved in tumor progression and is also hijacked by several virus families such as HIV-1 for replication and nuclear export. Although important in many cellular processes, the mechanism of DDX1's enzymatic function is unknown. We have performed equilibrium titrations and transient kinetics to determine affinities for nucleotides and RNA. We find an exceptional tight binding of DDX1 to adenosine diphosphate (ADP), one of the strongest affinities observed for DEAD-box helicases. ADP binds tighter by three orders of magnitude when compared to adenosine triphosphate (ATP), arresting the enzyme in a potential dead-end ADP conformation under physiological conditions. We thus suggest that a nucleotide exchange factor leads to DDX1 recycling. Furthermore, we find a strong cooperativity in binding of RNA and ATP to DDX1 that is also reflected in ATP hydrolysis. We present a model in which either ATP or RNA binding alone can partially shift the equilibrium from an 'open' to a 'closed'-state; this shift appears to be not further pronounced substantially even in the presence of both RNA and ATP as the low rate of ATP hydrolysis does not change. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. High-Throughput Genetic Identification of Functionally Important Regions of the Yeast DEAD-Box Protein Mss116p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, Georg; Del Campo, Mark; Turner, Kathryn G.

    The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionallymore » important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions - one the previously noted post II region in the helicase core and the other in the CTE - that may help displace or sequester the opposite RNA strand during RNA unwinding.« less

  3. Application of Mean of Absolute Deviation Method for the Selection of Best Nonlinear Component Based on Video Encryption

    NASA Astrophysics Data System (ADS)

    Anees, Amir; Khan, Waqar Ahmad; Gondal, Muhammad Asif; Hussain, Iqtadar

    2013-07-01

    The aim of this work is to make use of the mean of absolute deviation (MAD) method for the evaluation process of substitution boxes used in the advanced encryption standard. In this paper, we use the MAD technique to analyze some popular and prevailing substitution boxes used in encryption processes. In particular, MAD is applied to advanced encryption standard (AES), affine power affine (APA), Gray, Lui J., Residue Prime, S8 AES, SKIPJACK, and Xyi substitution boxes.

  4. Spliced X-box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway

    PubMed Central

    Wang, Zhao V.; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L.; Morales, Cyndi R.; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A.; Rothermel, Beverly A.; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P.A.; Ferdous, Anwarul; Gillette, Thomas G.; Scherer, Philipp E.; Hill, Joseph A.

    2014-01-01

    SUMMARY The hexosamine biosynthetic pathway (HBP) generates UDP-GlcNAc (uridine diphosphate N-acetylglucosamine) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis, by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. PMID:24630721

  5. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway.

    PubMed

    Wang, Zhao V; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L; Morales, Cyndi R; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A; Rothermel, Beverly A; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P A; Ferdous, Anwarul; Gillette, Thomas G; Scherer, Philipp E; Hill, Joseph A

    2014-03-13

    The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa).

    PubMed

    Zhang, Ming-Zhe; Ye, Dan; Wang, Li-Lin; Pang, Ji-Liang; Zhang, Yu-Hong; Zheng, Ke; Bian, Hong-Wu; Han, Ning; Pan, Jian-Wei; Wang, Jun-Hui; Zhu, Mu-Yuan

    2008-07-01

    Leafy (LFY) and LFY-like genes control the initiation of floral meristems and regulate MADS-box genes in higher plants. The Cucumber-FLO-LFY (CFL) gene, a LFY homolog in Cucumis sativus L. is expressed in the primordia, floral primordia, and each whirl of floral organs during the early stage of flower development. In this study, functions of CFL in flower development were investigated by overexpressing the CFL gene in gloxinia (Sinningia speciosa). Our results show that constitutive CFL overexpression significantly promote early flowering without gibberellin (GA(3)) supplement, suggesting that CFL can serve functionally as a LFY homolog in gloxinia. Moreover, GA(3) and abscisic acid (ABA) treatments could modulate the expression of MADS-box genes in opposite directions. GA(3) resembles the overexpression of CFL in the expression of MADS-box genes and the regeneration of floral buds, but ABA inhibits the expression of MADS-box genes and flower development. These results suggest that CFL and downstream MADS-box genes involved in flower development are regulated by GA(3) and ABA.

  7. Overexpression of androgen receptor and forkhead-box A1 protein in apocrine breast carcinoma.

    PubMed

    Sasahara, Manami; Matsui, Akira; Ichimura, Yoshiko; Hirakata, Yuuko; Murata, Yuuya; Marui, Eiji

    2014-03-01

    Apocrine breast carcinoma often lacks estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor type-2 (HER2) expression. Accordingly, development of a new treatment strategy is important for this type of cancer. The growth stimulus through the androgen receptor (AR) can be a candidate for targeted treatment. Therefore, we examined the factors related to AR transcription. We immunohistochemically evaluated 54 apocrine cancer lesions for ER, PgR, AR, HER2, Ki-67, forkhead-box protein A1 (FOXA1), and prostate-specific antigen (PSA) expression. ER, PgR, and HER2 were expressed at a low level, thus 44 out of 54 (81.4%) cases were of triple-negative breast cancer. AR, PSA and FOXA1 were expressed in 100% (54/54), 48% (26/54) and 93% (50/54) of cases, respectively. Most of apocrine breast carcinomas were immunohistochemically-positive for AR and FOXA1. Anti-androgenic therapies can potentially serve as a cancer-targeting therapy for apocrine breast carcinoma.

  8. Method and Madness: De/Colonising Scholarship and Theatre Research with Participants Labelled Mad

    ERIC Educational Resources Information Center

    Sutherland, Alexandra

    2017-01-01

    This article discusses a long-term theatre project that I run with mental health care users and staff in a forensic psychiatric hospital in South Africa. I argue that the values underpinning the project align with those of Mad Studies, a field that is located as an emerging academic discipline within disability studies. The article seeks to…

  9. F-box protein interactions with the hallmark pathways in cancer.

    PubMed

    Randle, Suzanne J; Laman, Heike

    2016-02-01

    F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development.

    PubMed

    Li, Li; Li, Yixing; Song, Shufeng; Deng, Huafeng; Li, Na; Fu, Xiqin; Chen, Guanghui; Yuan, Longping

    2015-01-01

    In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation. The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development. Previously we showed that tapetum degeneration retardation (TDR), a basic helix-loop-helix transcription factor, can trigger tapetal PCD and control pollen wall development during anther development. However, the comprehensive regulatory network of TDR remains to be investigated. In this study, we cloned and characterized a panicle-specific expression F-box protein, anther development F-box (OsADF). By qRT-PCR and RNA in situ hybridization, we further confirmed that OsADF expressed specially in tapetal cells from stage 9 to stage 12 during anther development. In consistent with this specific expression pattern, the RNAi transgenic lines of OsADF exhibited abnormal tapetal degeneration and aborted microspores development, which eventually grew pollens with reduced fertility. Furthermore, we demonstrated that the TDR, a key regulator in controlling rice anther development, could regulate directly the expression of OsADF by binding to E-box motifs of its promoter. Therefore, this work highlighted the possible regulatory role of TDR, which regulates tapetal cell development and pollen formation via triggering the possible ADF-mediated proteolysis pathway.

  11. HMGB1 modulation in pancreatic islets using a cell-permeable A-box fragment.

    PubMed

    Hwang, Yong Hwa; Kim, Min Jun; Lee, Yong-Kyu; Lee, Minhyung; Lee, Dong Yun

    2017-01-28

    Although pancreatic islet implantation is an attractive strategy for curing diabetes mellitus, implanted cells are immunologically eliminated due to early islet graft loss. One of main issues in early islet graft loss is the secretion of high-mobility group-box-1 (HMGB1) protein from the damaged islet cells, which is known as a cytokine-like factor. Therefore, regulating the activity of HMGB1 protein offers an alternative strategy for improving outcomes of islet cell therapy. To this end, we first demonstrated that HMGB1 protein could be bound to its A-box fragment (HMGB1 A-box) with higher binding affinity, resembling anti-HMGB1 antibody. To be used as a pharmaceutical protein ex vivo, TAT-labeled HMGB1 A-box-His 6 (TAT-HMGB1A) was structurally modified for cellular membrane penetration. TAT-HMGB1A significantly reduced secretion of endogenous HMGB1 protein through interaction in the cytosol without any damage to the viability or functionality of the islets. When TAT-HMGB1A-treated islets were implanted into diabetic nude mice, they completely cured diabetes, as evidenced by stable blood glucose level. TAT-HMGB1A treatment could also reduce the marginal islet mass needed to cure diabetes. Furthermore, TAT-HMGB1A positively protected xenotransplanted islets from xenogeneic immune reactions. Collectively, cell-penetrable TAT-HMGB1A could be used to modulate HMGB1 activity to increase successful outcomes of ex vivo pancreatic islet cell therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. O2 sensing-associated glycosylation exposes the F-box-combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases.

    PubMed

    Sheikh, M Osman; Thieker, David; Chalmers, Gordon; Schafer, Christopher M; Ishihara, Mayumi; Azadi, Parastoo; Woods, Robert J; Glushka, John N; Bendiak, Brad; Prestegard, James H; West, Christopher M

    2017-11-17

    Skp1 is a conserved protein linking cullin-1 to F-box proteins in SCF ( S kp1/ C ullin-1/ F -box protein) E3 ubiquitin ligases, which modify protein substrates with polyubiquitin chains that typically target them for 26S proteasome-mediated degradation. In Dictyostelium (a social amoeba), Toxoplasma gondii (the agent for human toxoplasmosis), and other protists, Skp1 is regulated by a unique pentasaccharide attached to hydroxylated Pro-143 within its C-terminal F-box-binding domain. Prolyl hydroxylation of Skp1 contributes to O 2 -dependent Dictyostelium development, but full glycosylation at that position is required for optimal O 2 sensing. Previous studies have shown that the glycan promotes organization of the F-box-binding region in Skp1 and aids in Skp1's association with F-box proteins. Here, NMR and MS approaches were used to determine the glycan structure, and then a combination of NMR and molecular dynamics simulations were employed to characterize the impact of the glycan on the conformation and motions of the intrinsically flexible F-box-binding domain of Skp1. Molecular dynamics trajectories of glycosylated Skp1 whose calculated monosaccharide relaxation kinetics and rotational correlation times agreed with the NMR data indicated that the glycan interacts with the loop connecting two α-helices of the F-box-combining site. In these trajectories, the helices separated from one another to create a more accessible and dynamic F-box interface. These results offer an unprecedented view of how a glycan modification influences a disordered region of a full-length protein. The increased sampling of an open Skp1 conformation can explain how glycosylation enhances interactions with F-box proteins in cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis.

    PubMed

    Mathur, Radhika; Yen, James L; Kaiser, Peter

    2015-12-01

    Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest class of CRLs, the SCF ligases. One relevant mechanism that controls abundance of their substrate receptors, the F-box proteins, is autocatalytic ubiquitylation by intact SCF complex followed by proteasome-mediated degradation. Here we describe an additional pathway for regulation of F-box proteins on the example of yeast Met30. This ubiquitylation and degradation pathway acts on Met30 that is dissociated from Skp1. Unexpectedly, this pathway required the cullin component Cdc53/Cul1 but was independent of the other central SCF component Skp1. We demonstrated that this non-canonical degradation pathway is critical for chromosome stability and effective defense against heavy metal stress. More importantly, our results assign important biological functions to a sub-complex of cullin-RING ligases that comprises Cdc53/Rbx1/Cdc34, but is independent of Skp1.

  14. An Inverse Modeling Plugin for HydroDesktop using the Method of Anchored Distributions (MAD)

    NASA Astrophysics Data System (ADS)

    Ames, D. P.; Osorio, C.; Over, M. W.; Rubin, Y.

    2011-12-01

    The CUAHSI Hydrologic Information System (HIS) software stack is based on an open and extensible architecture that facilitates the addition of new functions and capabilities at both the server side (using HydroServer) and the client side (using HydroDesktop). The HydroDesktop client plugin architecture is used here to expose a new scripting based plugin that makes use of the R statistics software as a means for conducting inverse modeling using the Method of Anchored Distributions (MAD). MAD is a Bayesian inversion technique for conditioning computational model parameters on relevant field observations yielding probabilistic distributions of the model parameters, related to the spatial random variable of interest, by assimilating multi-type and multi-scale data. The implementation of a desktop software tool for using the MAD technique is expected to significantly lower the barrier to use of inverse modeling in education, research, and resource management. The HydroDesktop MAD plugin is being developed following a community-based, open-source approach that will help both its adoption and long term sustainability as a user tool. This presentation will briefly introduce MAD, HydroDesktop, and the MAD plugin and software development effort.

  15. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    PubMed

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.

  16. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes

    PubMed Central

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene. PMID:26529408

  17. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    PubMed

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  18. Validate Mitotic Checkpoint and Kinetochore Motor Proteins in Breast Cancer Cells as Targets for the Development of Novel Anti-Mitotic Drugs

    DTIC Science & Technology

    2004-07-01

    checkpoint pathway remains to MAD1 MAD1 xMADI be clarified, it is dear that all of them MAD2 MAD2 xMAD2 are essential for cells to arrest in mitosis MPS1 ...TrK in response to unattached kineto- chores. Given that MPS1 , BUB1 and (G) Structural Proteins/Unknown Functions the Mad3-related BUBR1 are all pro...BUB3, MADI, MAD2, MAD3, and MPS1 have been shown to be essential for establishing the checkpoint response in all eukaryotes examined to date (Abrieu et

  19. Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones.

    PubMed

    de Moura, Stéfanie Menezes; Artico, Sinara; Lima, Cássio; Nardeli, Sarah Muniz; Berbel, Ana; Oliveira-Neto, Osmundo Brilhante; Grossi-de-Sá, Maria Fátima; Ferrándiz, Cristina; Madueño, Francisco; Alves-Ferreira, Márcio

    2017-03-01

    Expression analysis of the AG -subfamily members from G. hirsutum during flower and fruit development. Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several studies have reported the identification and expression of the transcription factor family MADS-box members in cotton ovules and fibers; however, their roles are still elusive during the reproductive development in cotton. In this study, we evaluated the expression profiles of five MADS-box genes (GhMADS3, GhMADS4, GhMADS5, GhMADS6 and GhMADS7) belonging to the AGAMOUS-subfamily in Gossypium hirsutum. Phylogenetic and protein sequence analyses were performed using diploid (G. arboreum, G. raimondii) and tetraploid (G. barbadense, G. hirsutum) cotton genomes, as well as the AG-subfamily members from Arabidopsis thaliana, Petunia hybrida and Antirrhinum majus. qPCR analysis showed that the AG-subfamily genes had high expression during flower and fruit development in G. hirsutum. In situ hybridization analysis also substantiates the involvement of AG-subfamily members on reproductive tissues of G. hirsutum, including ovule and ovary. The effect of plant hormones on AG-subfamily genes expression was verified in cotton fruits treated with gibberellin, auxin and brassinosteroid. All the genes were significantly regulated in response to auxin, whereas only GhMADS3, GhMADS4 and GhMADS7 genes were also regulated by brassinosteroid treatment. In addition, we have investigated the GhMADS3 and GhMADS4 overexpression effects in Arabidopsis plants. Interestingly, the transgenic plants from both cotton AG-like genes in Arabidopsis significantly altered the fruit size compared to the control plants. This alteration suggests that cotton AG-like genes might act regulating fruit formation. Our results demonstrate that members of the AG-subfamily in G. hirsutum

  20. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.

    PubMed

    Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L

    1999-11-01

    Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.

  1. Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins.

    PubMed

    Kitazawa, Yugo; Iwabuchi, Nozomu; Himeno, Misako; Sasano, Momoka; Koinuma, Hiroaki; Nijo, Takamichi; Tomomitsu, Tatsuya; Yoshida, Tetsuya; Okano, Yukari; Yoshikawa, Nobuyuki; Maejima, Kensaku; Oshima, Kenro; Namba, Shigetou

    2017-05-17

    ABCE-class MADS domain transcription factors (MTFs) are key regulators of floral organ development in angiosperms. Aberrant expression of these genes can result in abnormal floral traits such as phyllody. Phyllogen is a virulence factor conserved in phytoplasmas, plant pathogenic bacteria of the class Mollicutes. It triggers phyllody in Arabidopsis thaliana by inducing degradation of A- and E-class MTFs. However, it is still unknown whether phyllogen can induce phyllody in plants other than A. thaliana, although phytoplasma-associated phyllody symptoms are observed in a broad range of angiosperms. In this study, phyllogen was shown to cause phyllody phenotypes in several eudicot species belonging to three different families. Moreover, phyllogen can interact with MTFs of not only angiosperm species including eudicots and monocots but also gymnosperms and a fern, and induce their degradation. These results suggest that phyllogen induces phyllody in angiosperms and inhibits MTF function in diverse plant species. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.

    2016-01-01

    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

  3. The pragmatics of "madness": performance analysis of a Bangladeshi woman's "aberrant" lament.

    PubMed

    Wilce, J M

    1998-03-01

    A fine-grained analysis of the transcript of a Bangladeshi woman's lament is used to argue for an anthropology of "madness" that attends closely to performance and performativity. The emergent, interactive production of wept speech, together with the conflicting use to which it is put by the performer and her relatives, is linked problematically to performance genres and to ethnopsychiatric indexes of madness. Tuneful weeping is taken by relatives to be performative of madness, in a sense something like Austin's. Yet, exploration of the divergent linguistic ideologies which are brought to bear on the lament not only enables more nuanced ethnographic treatment but also has reflexive ramifications for medical and psychological anthropology. This leads to a critique of the referentialism in our own treatment of language. The role played by transparent reference is overshadowed by indexicality and by dialogical processes of proposing and resisting labels for speech genres attributed to the "mad."

  4. Automated MAD and MIR structure solution

    PubMed Central

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    Obtaining an electron-density map from X-ray diffraction data can be difficult and time-consuming even after the data have been collected, largely because MIR and MAD structure determinations currently require many subjective evaluations of the qualities of trial heavy-atom partial structures before a correct heavy-atom solution is obtained. A set of criteria for evaluating the quality of heavy-atom partial solutions in macromolecular crystallography have been developed. These have allowed the conversion of the crystal structure-solution process into an optimization problem and have allowed its automation. The SOLVE software has been used to solve MAD data sets with as many as 52 selenium sites in the asymmetric unit. The automated structure-solution process developed is a major step towards the fully automated structure-determination, model-building and refinement procedure which is needed for genomic scale structure determinations. PMID:10089316

  5. [The representation of madness in William Shakespeare's characters].

    PubMed

    Stompe, Thomas; Ritter, Kristina; Friedmann, Alexander

    2006-08-01

    Shakespeare is one of the great creators of human characters of the 16(th) century. Like for many of his contemporaries madness was a central topic of his work. The first part of this paper discusses the sociocultural environment and the semantic field of madness in the Elizabethan age, which forms the background for Shakespeare's characters. In the second part we try to analyze the clinical pictures of the fictive characters of Othello, Hamlet, Lear and Macbeth. While we find melancholy, delusions and hallucinations, other diseases such as schizophrenia are missing entirely. Schizophrenia only appears in the literature more than two hundred years later, in the beginning of modern age.

  6. John Locke on madness: redressing the intellectualist bias.

    PubMed

    Charland, Louis C

    2014-06-01

    Locke is famous for defining madness as an intellectual disorder in the realm of ideas. Numerous commentators take this to be his main and only contribution to the history of psychiatry. However, a detailed exegetical review of all the relevant textual evidence suggests that this intellectualist interpretation of Locke's account of madness is both misleading and incomplete. Affective states of various sorts play an important role in that account and are in fact primordial in the determination of human conduct generally. Locke's legacy in this domain must therefore be revised and the intellectualist bias that dominates discussions of his views must be redressed. © The Author(s) 2014.

  7. MADS-box out of the black box

    USDA-ARS?s Scientific Manuscript database

    The compelling elegance of using genome-wide scans to detect the signature of selection is difficult to resist, but is countered by the low demonstrated efficacy of pinpointing the actual genes and traits that are the targets of selection in non-model species. While the difficulty of going from a s...

  8. MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    DOE PAGES

    Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; ...

    2016-01-01

    We present MADNESS (multiresolution adaptive numerical environment for scientific simulation) that is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

  9. Functional and Structural Insights of the Zinc-Finger HIT protein family members Involved in Box C/D snoRNP Biogenesis.

    PubMed

    Bragantini, Benoit; Tiotiu, Decebal; Rothé, Benjamin; Saliou, Jean-Michel; Marty, Hélène; Cianférani, Sarah; Charpentier, Bruno; Quinternet, Marc; Manival, Xavier

    2016-06-05

    Zf–HIT family members share the zf–HIT domain (ZHD), which is characterized by a fold in “treble-clef” through interleaved CCCC and CCHC ZnF motifs that both bind a zinc atom. Six proteins containing ZHD are present in human and three in yeast proteome, all belonging to multimodular RNA/protein complexes involved in gene regulation, chromatin remodeling, and snoRNP assembly. An interesting characteristic of the cellular complexes that ensure these functions is the presence of the RuvBL1/2/Rvb1/2 ATPases closely linked with zf–HIT proteins. Human ZNHIT6/BCD1 and its counterpart in yeast Bcd1p were previously characterized as assembly factors of the box C/D snoRNPs. Our data reveal that the ZHD of Bcd1p is necessary but not sufficient for yeast growth and that the motif has no direct RNA-binding capacity but helps Bcd1p maintain the box C/D snoRNAs level in steady state. However, we demonstrated that Bcd1p interacts nonspecifically with RNAs depending on their length. Interestingly, the ZHD of Bcd1p is functionally interchangeable with that of Hit1p, another box C/D snoRNP assembly factor belonging to the zf–HIT family. This prompted us to use NMR to solve the 3D structures of ZHD from yeast Bcd1p and Hit1p to highlight the structural similarity in the zf–HIT family. We identified structural features associated with the requirement of Hit1p and Bcd1p ZHD for cell growth and box C/D snoRNA stability under heat stress. Altogether, our data suggest an important role of ZHD could be to maintain functional folding to the rest of the protein, especially under heat stress conditions.

  10. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    PubMed

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species.

  11. Emotional and deliberative reactions to a public crisis: Mad Cow disease in France.

    PubMed

    Sinaceur, Marwan; Heath, Chip; Cole, Steve

    2005-03-01

    Although most theories of choice are cognitive, recent research has emphasized the role of emotions. We used a novel context--the Mad Cow crisis in France--to investigate how emotions alter choice even when consequences are held constant. A field study showed that individuals reduced beef consumption in months after many newspaper articles featured the emotional label "Mad Cow," but beef consumption was unaffected after articles featured scientific labels for the same disease. The reverse pattern held for the disease-related actions of a government bureaucracy. A lab study showed that the Mad Cow label induces people to make choices based solely on emotional reactions, whereas scientific labels induce people to consider their own probability judgments. Although the Mad Cow label produces less rational behavior than scientific labels, it is two to four times more common in the environment.

  12. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  13. Genome-wide identification and characterisation of F-box family in maize.

    PubMed

    Jia, Fengjuan; Wu, Bingjiang; Li, Hui; Huang, Jinguang; Zheng, Chengchao

    2013-11-01

    F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.

  14. Astrophysics: The MAD world of black holes

    NASA Astrophysics Data System (ADS)

    Gabuzda, Denise

    2014-06-01

    An analysis of optical and radio observations has revealed how powerful jets are launched from the centres of active galaxies, where supermassive black holes accrete matter through magnetically arrested disks, or MADs. See Letter p.126

  15. Medical and Safety Reforms in Boxing

    PubMed Central

    Jordan, Barry D.

    1988-01-01

    The continued existence of boxing as an accepted sport in civilized society has been long debated. The position of the American Medical Association (AMA) has evolved from promoting increased safety and medical reform to recommending total abolition of both amateur and professional boxing. In response to the AMA opposition to boxing, the boxing community has attempted to increase the safeguards in amateur and professional boxing. The United States of America Amateur Boxing Federation, which is the national regulatory agency for all amateur boxing in the United States, has taken several actions to prevent the occurrence of acute brain injury and is currently conducting epidemiologic studies to assess the long-term neuropsychologic consequences of amateur boxing. In professional boxing, state regulatory agencies such as the New York State Athletic Commission have introduced several medical interventions to prevent and reduce neurologic injury. The lack of a national regulatory agency to govern professional boxing has stimulated the formation of the Association of Boxing Commissions and potential legislation for the federal regulation of professional boxing by a federally chartered organization called the United States Boxing Commission. The AMA's opposition to boxing and the medical and safety reforms implemented by the proponents of boxing are discussed. PMID:3385788

  16. Sry HMG Box Protein 9-positive (Sox9+) Epithelial Cell Adhesion Molecule-negative (EpCAM−) Biphenotypic Cells Derived from Hepatocytes Are Involved in Mouse Liver Regeneration*

    PubMed Central

    Tanimizu, Naoki; Nishikawa, Yuji; Ichinohe, Norihisa; Akiyama, Haruhiko; Mitaka, Toshihiro

    2014-01-01

    It has been shown that mature hepatocytes compensate tissue damages not only by proliferation and/or hypertrophy but also by conversion into cholangiocyte-like cells. We found that Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM−) hepatocyte nuclear factor 4α-positive (HNF4α+) biphenotypic cells showing hepatocytic morphology appeared near EpCAM+ ductular structures in the livers of mice fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. When Mx1-Cre:ROSA mice, which were injected with poly(I:C) to label mature hepatocytes, were fed with the DDC diet, we found LacZ+Sox9+ cells near ductular structures. Although Sox9+EpCAM− cells adjacent to expanding ducts likely further converted into ductular cells, the incidence was rare. To know the cellular characteristics of Sox9+EpCAM− cells, we isolated them as GFP+EpCAM− cells from DDC-injured livers of Sox9-EGFP mice. Sox9+EpCAM− cells proliferated and could differentiate to functional hepatocytes in vitro. In addition, Sox9+EpCAM− cells formed cysts with a small central lumen in collagen gels containing Matrigel® without expressing EpCAM. These results suggest that Sox9+EpCAM− cells maintaining biphenotypic status can establish cholangiocyte-type polarity. Interestingly, we found that some of the Sox9+ cells surrounded luminal spaces in DDC-injured liver while they expressed HNF4α. Taken together, we consider that in addition to converting to cholangiocyte-like cells, Sox9+EpCAM− cells provide luminal space near expanded ductular structures to prevent deterioration of the injuries and potentially supply new hepatocytes to repair damaged tissues. PMID:24482234

  17. The role of two F-box proteins, SLEEPY1 and SNEEZY, in arabidopsis GA signaling

    USDA-ARS?s Scientific Manuscript database

    The F-box gene SLY1 is a positive regulator of gibberellin (GA) signaling and loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes can be partially rescued by overexpression of the SLY1 homolog...

  18. RNA polymerase II components and Rrn7 form a preinitiation complex on the HomolD box to promote ribosomal protein gene expression in Schizosaccharomyces pombe.

    PubMed

    Montes, Matías; Moreira-Ramos, Sandra; Rojas, Diego A; Urbina, Fabiola; Käufer, Norbert F; Maldonado, Edio

    2017-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA box analog, the HomolD box, which is bound by the Rrn7 protein. Despite the importance of ribosome biogenesis for cell survival, the mechanisms underlying RPG transcription remain unknown. In this study, we found that components of the RNA polymerase II (RNAPII) system, consisting of the initiation or general transcription factors (GTFs) TFIIA, IIB, IIE, TATA-binding protein (TBP) and the RNAPII holoenzyme, interacted directly with Rrn7 in vitro, and were able to form a preinitiation complex (PIC) on the HomolD box. PIC complex formation follows an ordered pathway on these promoters. The GTFs and RNAPII can also be cross-linked to HomolD-containing promoters in vivo. In an in vitro reconstituted transcription system, RNAPII components and Rrn7 were necessary for HomolD-directed transcription. The Mediator complex was required for basal transcription from those promoters in whole cell extract (WCE). The Med17 subunit of Mediator also can be cross-linked to the promoter region of HomolD-containing promoters in vivo, suggesting the presence of the Mediator complex on HomolD box-containing promoters. Together, these data show that components of the RNAPII machinery and Rrn7 participate in the PIC assembly on the HomolD box, thereby directing RPG transcription. © 2017 Federation of European Biochemical Societies.

  19. Coilin association with Box C/D scaRNA suggests a direct role for the Cajal body marker protein in scaRNP biogenesis

    PubMed Central

    Enwerem, Isioma I.; Velma, Venkatramreddy; Broome, Hanna J.; Kuna, Marija; Begum, Rowshan A.; Hebert, Michael D.

    2014-01-01

    ABSTRACT Spliceosomal small nuclear ribonucleoproteins (snRNPs) are enriched in the Cajal body (CB). Guide RNAs, known as small Cajal body-specific RNAs (scaRNAs), direct modification of the small nuclear RNA (snRNA) component of the snRNP. The protein WRAP53 binds a sequence motif (the CAB box) found in many scaRNAs and the RNA component of telomerase (hTR) and targets these RNAs to the CB. We have previously reported that coilin, the CB marker protein, associates with certain non-coding RNAs. For a more comprehensive examination of the RNAs associated with coilin, we have sequenced the RNA isolated from coilin immunocomplexes. A striking preferential association of coilin with the box C/D scaRNAs 2 and 9, which lack a CAB box, was observed. This association varied by treatment condition and WRAP53 knockdown. In contrast, reduction of WRAP53 did not alter the level of coilin association with hTR. Additional studies showed that coilin degrades/processes scaRNA 2 and 9, associates with active telomerase and can influence telomerase activity. These findings suggest that coilin plays a novel role in the biogenesis of box C/D scaRNPs and telomerase. PMID:24659245

  20. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdur, Rob; Gerlits, Oksana O.; Gan, Jianhua

    2014-02-01

    Selenium-derivatized oligonucleotides may facilitate phase determination and high-resolution structure determination for protein–nucleic acid crystallography. The Se atom-specific mutagenesis (SAM) strategy may also enhance the study of nuclease catalysis. The crystal structures of protein–nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein–nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H–RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissilemore » phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.« less

  1. The Fe-S cluster-containing NEET proteins mitoNEET and NAF-1 as chemotherapeutic targets in breast cancer.

    PubMed

    Bai, Fang; Morcos, Faruck; Sohn, Yang-Sung; Darash-Yahana, Merav; Rezende, Celso O; Lipper, Colin H; Paddock, Mark L; Song, Luhua; Luo, Yuting; Holt, Sarah H; Tamir, Sagi; Theodorakis, Emmanuel A; Jennings, Patricia A; Onuchic, José N; Mittler, Ron; Nechushtai, Rachel

    2015-03-24

    Identification of novel drug targets and chemotherapeutic agents is a high priority in the fight against cancer. Here, we report that MAD-28, a designed cluvenone (CLV) derivative, binds to and destabilizes two members of a unique class of mitochondrial and endoplasmic reticulum (ER) 2Fe-2S proteins, mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1), recently implicated in cancer cell proliferation. Docking analysis of MAD-28 to mNT/NAF-1 revealed that in contrast to CLV, which formed a hydrogen bond network that stabilized the 2Fe-2S clusters of these proteins, MAD-28 broke the coordinative bond between the His ligand and the cluster's Fe of mNT/NAF-1. Analysis of MAD-28 performed with control (Michigan Cancer Foundation; MCF-10A) and malignant (M.D. Anderson-metastatic breast; MDA-MB-231 or MCF-7) human epithelial breast cells revealed that MAD-28 had a high specificity in the selective killing of cancer cells, without any apparent effects on normal breast cells. MAD-28 was found to target the mitochondria of cancer cells and displayed a surprising similarity in its effects to the effects of mNT/NAF-1 shRNA suppression in cancer cells, causing a decrease in respiration and mitochondrial membrane potential, as well as an increase in mitochondrial iron content and glycolysis. As expected, if the NEET proteins are targets of MAD-28, cancer cells with suppressed levels of NAF-1 or mNT were less susceptible to the drug. Taken together, our results suggest that NEET proteins are a novel class of drug targets in the chemotherapeutic treatment of breast cancer, and that MAD-28 can now be used as a template for rational drug design for NEET Fe-S cluster-destabilizing anticancer drugs.

  2. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis.

    PubMed

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-05-11

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.

  3. Music, madness and the body: symptom and cure.

    PubMed

    MacKinnon, Dolly

    2006-03-01

    Building on Sander L. Gilman's exemplary work on images of madness and the body, this article examines images of music, madness and the body by discussing the persistent cultural beliefs stemming from Classical Antiquity that underpin music as medicinal. These images reflect the body engaged in therapeutic musical activities, as well as musical sounds forming part of the evidence of the mental diagnostic state of a patient in case records. The historiography of music as medicinal has been overlooked in the history of psychiatry. This article provides a brief background to the cultural beliefs that underlie examples of music as both symptom and cure in 19th- and 20th-century asylum records in Australia, Britain, Europe and North America.

  4. Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma.

    PubMed

    Neselius, Sanna; Zetterberg, Henrik; Blennow, Kaj; Randall, Jeffrey; Wilson, David; Marcusson, Jan; Brisby, Helena

    2013-01-01

    The aim of this study was to investigate if olympic (amateur) boxing is associated with elevation of brain injury biomarkers in peripheral blood compared to controls. Thirty olympic boxers competing in at least 47 bouts were compared to 25 controls. Blood was collected from the controls at one occasion and from the boxers within 1-6 days after a bout and after a rest period of at least 14 days. Tau concentration in plasma was determined using a novel single molecule ELISA assay and S-100B, glial fibrillary acidic protein, brain-derived neurotrophic factor and amyloid β 1-42 were determined using standard immunoassays. None of the boxers had been knocked-out during the bout. Plasma-tau was significantly increased in the boxers after a bout compared to controls (mean ± SD, 2.46 ± 5.10 vs. 0.79 ± 0.961 ng L(-1), p = 0.038). The other brain injury markers did not differ between the groups. Plasma-tau decreased significantly in the boxers after a resting period compared to after a bout (p = 0.030). Olympic boxing is associated with elevation of tau in plasma. The repetitive minimal head injury in boxing may lead to axonal injuries that can be diagnosed with a blood test.

  5. Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes.

    PubMed

    Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin

    2017-08-01

    Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.

  6. The DEAD-box helicase eIF4A: paradigm or the odd one out?

    PubMed

    Andreou, Alexandra Z; Klostermeier, Dagmar

    2013-01-01

    DEAD-box helicases catalyze the ATP-dependent unwinding of RNA duplexes. They share a helicase core formed by two RecA-like domains that carries a set of conserved motifs contributing to ATP binding and hydrolysis, RNA binding and duplex unwinding. The translation initiation factor eIF4A is the founding member of the DEAD-box protein family, and one of the few examples of DEAD-box proteins that consist of a helicase core only. It is an RNA-stimulated ATPase and a non-processive helicase that unwinds short RNA duplexes. In the catalytic cycle, a series of conformational changes couples the nucleotide cycle to RNA unwinding. eIF4A has been considered a paradigm for DEAD-box proteins, and studies of its function have revealed the governing principles underlying the DEAD-box helicase mechanism. However, as an isolated helicase core, eIF4A is rather the exception, not the rule. Most helicase modules in other DEAD-box proteins are modified, some by insertions into the RecA-like domains, and the majority by N- and C-terminal appendages. While the basic catalytic function resides within the helicase core, its modulation by insertions, additional domains or a network of interaction partners generates the diversity of DEAD-box protein functions in the cell. This review summarizes the current knowledge on eIF4A and its regulation, and discusses to what extent eIF4A serves as a model DEAD-box protein.

  7. Are humans getting 'mad-cow disease' from eating beef, or something else?

    PubMed

    Concepcion, G P; Padlan, E A

    2003-05-01

    Bovine spongiform encephalopathy (BSE) or 'mad-cow disease' is believed to have been caused by the consumption of scrapie-infected sheep matter that had been added to cattle feed. BSE is then believed to have been transmitted to humans by the consumption of infected beef. We have compared the sequences of human and various animal prion proteins with regards to the fragments that could result from gastric digestion. We noted the close similarity of the sequences of human and rodent prion proteins in a peptic fragment that corresponds very closely to one that had been shown by others to be protease resistant and infective. Since rats and mice are known to be susceptible to prion disease, we propose that ingestion of infected rodent parts, possibly droppings, may be a possible mode of transmission of scrapie or BSE to humans.

  8. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress.

    PubMed

    Zhang, Hua; Xu, Heng; Feng, Mengjie; Zhu, Ying

    2018-01-01

    High temperature significantly alters the amylose content of rice, resulting in mature grains with poor eating quality. However, only few genes and/or quantitative trait loci involved in this process have been isolated and the molecular mechanisms of this effect remain unclear. Here, we describe a floral organ identity gene, OsMADS7, involved in stabilizing rice amylose content at high temperature. OsMADS7 is greatly induced by high temperature at the early filling stage. Constitutive suppression of OsMADS7 stabilizes amylose content under high temperature stress but results in low spikelet fertility. However, rice plants with both stable amylose content at high temperature and normal spikelet fertility can be obtained by specifically suppressing OsMADS7 in endosperm. GBSSI is the major enzyme responsible for amylose biosynthesis. A low filling rate and high expression of GBSSI were detected in OsMADS7 RNAi plants at high temperature, which may be correlated with stabilized amylose content in these transgenic seeds under high temperature. Thus, specific suppression of OsMADS7 in endosperm could improve the stability of rice amylose content at high temperature, and such transgenic materials may be a valuable genetic resource for breeding rice with elite thermal resilience. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Genome-wide survey and expression analysis of F-box genes in chickpea.

    PubMed

    Gupta, Shefali; Garg, Vanika; Kant, Chandra; Bhatia, Sabhyata

    2015-02-13

    The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.

  10. The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula.

    PubMed

    Song, Jian Bo; Wang, Yan Xiang; Li, Hai Bo; Li, Bo Wen; Zhou, Zhao Sheng; Gao, Shuai; Yang, Zhi Min

    2015-07-01

    F-box protein is a subunit of Skp1-Rbx1-Cul1-F-box protein (SCF) complex with typically conserved F-box motifs of approximately 40 amino acids and is one of the largest protein families in eukaryotes. F-box proteins play critical roles in selective and specific protein degradation through the 26S proteasome. In this study, we bioinformatically identified 972 putative F-box proteins from Medicago truncatula genome. Our analysis showed that in addition to the conserved motif, the F-box proteins have several other functional domains in their C-terminal regions (e.g., LRRs, Kelch, FBA, and PP2), some of which were found to be M. truncatula species-specific. By phylogenetic analysis of the F-box motifs, these proteins can be classified into three major families, and each family can be further grouped into more subgroups. Analysis of the genomic distribution of F-box genes on M. truncatula chromosomes revealed that the evolutional expansion of F-box genes in M. truncatula was probably due to localized gene duplications. To investigate the possible response of the F-box genes to abiotic stresses, both publicly available and customer-prepared microarrays were analyzed. Most of the F-box protein genes can be responding to salt and heavy metal stresses. Real-time PCR analysis confirmed that some of the F-box protein genes containing heat, drought, salicylic acid, and abscisic acid responsive cis-elements were able to respond to the abiotic stresses.

  11. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.

    PubMed

    Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei

    2015-01-01

    As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.

  12. The Involvement of Wheat F-Box Protein Gene TaFBA1 in the Oxidative Stress Tolerance of Plants

    PubMed Central

    Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei

    2015-01-01

    As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants’ tolerance to multiple stress conditions. PMID:25906259

  13. America's Descent into Madness

    ERIC Educational Resources Information Center

    Giroux, Henry A.

    2014-01-01

    This article describes America's descent into madness under the regime of neoliberalism that has emerged in the United States since the late 1970s. In part, this is due to the emergence of a public pedagogy produced by the corporate-owned media that now saturates Americans with a market-driven value system that undermines those formative…

  14. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis

    PubMed Central

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-01-01

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development. PMID:28492553

  15. Bovine Spongiform Encephalopathy (BSE), or Mad Cow Disease

    MedlinePlus

    ... the CDC Bovine Spongiform Encephalopathy (BSE), or Mad Cow Disease Note: Javascript is disabled or is not ... spongiform encephalopathy) is a progressive neurological disorder of cattle that results from infection by an unusual transmissible ...

  16. Glove box on vehicular instrument panel

    DOEpatents

    Atarashi, Kazuya

    1985-01-01

    A glove box for the upper surface of an automobile dashboard whereby it may be positioned close to the driver. The glove box lid is pivotally supported by arms extending down either side to swing forwardly for opening. A hook is pivotally support adjacent an arm and weighted to swing into engagement with the arm to prevent opening of the lid during abrupt deceleration. A toggle spring assists in maintaining the lid in either the open or closed position.

  17. Redefining C and D in the petunia ABC.

    PubMed

    Heijmans, Klaas; Ament, Kai; Rijpkema, Anneke S; Zethof, Jan; Wolters-Arts, Mieke; Gerats, Tom; Vandenbussche, Michiel

    2012-06-01

    According to the ABC(DE) model for flower development, C-genes are required for stamen and carpel development and floral determinacy, and D-genes were proposed to play a unique role in ovule development. Both C- and D-genes belong to the AGAMOUS (AG) subfamily of MADS box transcription factors. We show that the petunia (Petunia hybrida) C-clade genes PETUNIA MADS BOX GENE3 and FLORAL BINDING PROTEIN6 (FBP6) largely overlap in function, both in floral organ identity specification and floral determinacy, unlike the pronounced subfunctionalization observed in Arabidopsis thaliana and snapdragon (Antirrhinum majus). Some specialization has also evolved, since FBP6 plays a unique role in the development of the style and stigma. Furthermore, we show that the D-genes FBP7 and FBP11 are not essential to confer ovule identity. Instead, this function is redundantly shared among all AG members. In turn, the D-genes also participate in floral determinacy. Gain-of-function analyses suggest the presence of a posttranscriptional C-repression mechanism in petunia, most likely not existing in Arabidopsis. Finally, we show that expression maintenance of the paleoAPETALA3-type B-gene TOMATO MADS BOX GENE6 depends on the activity of C-genes. Taken together, this demonstrates considerable variation in the molecular control of floral development between eudicot species.

  18. Redefining C and D in the Petunia ABC[W

    PubMed Central

    Heijmans, Klaas; Ament, Kai; Rijpkema, Anneke S.; Zethof, Jan; Wolters-Arts, Mieke; Gerats, Tom; Vandenbussche, Michiel

    2012-01-01

    According to the ABC(DE) model for flower development, C-genes are required for stamen and carpel development and floral determinacy, and D-genes were proposed to play a unique role in ovule development. Both C- and D-genes belong to the AGAMOUS (AG) subfamily of MADS box transcription factors. We show that the petunia (Petunia hybrida) C-clade genes PETUNIA MADS BOX GENE3 and FLORAL BINDING PROTEIN6 (FBP6) largely overlap in function, both in floral organ identity specification and floral determinacy, unlike the pronounced subfunctionalization observed in Arabidopsis thaliana and snapdragon (Antirrhinum majus). Some specialization has also evolved, since FBP6 plays a unique role in the development of the style and stigma. Furthermore, we show that the D-genes FBP7 and FBP11 are not essential to confer ovule identity. Instead, this function is redundantly shared among all AG members. In turn, the D-genes also participate in floral determinacy. Gain-of-function analyses suggest the presence of a posttranscriptional C-repression mechanism in petunia, most likely not existing in Arabidopsis. Finally, we show that expression maintenance of the paleoAPETALA3-type B-gene TOMATO MADS BOX GENE6 depends on the activity of C-genes. Taken together, this demonstrates considerable variation in the molecular control of floral development between eudicot species. PMID:22706285

  19. The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes.

    PubMed Central

    Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J

    1989-01-01

    Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of

  20. The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes.

    PubMed

    Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J

    1989-12-11

    Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of

  1. Nucleoplasmic Nup98 controls gene expression by regulating a DExH/D-box protein.

    PubMed

    Capitanio, Juliana S; Montpetit, Ben; Wozniak, Richard W

    2018-01-01

    The nucleoporin Nup98 has been linked to the regulation of transcription and RNA metabolism, 1-3 but the mechanisms by which Nup98 contributes to these processes remains largely undefined. Recently, we uncovered interactions between Nup98 and several DExH/D-box proteins (DBPs), a protein family well-known for modulating gene expression and RNA metabolism. 4-6 Analysis of Nup98 and one of these DBPs, DHX9, showed that they directly interact, their association is facilitated by RNA, and Nup98 binding stimulates DHX9 ATPase activity. 7 Furthermore, these proteins were dependent on one another for their proper association with a subset of gene loci to control transcription and modulate mRNA splicing. 7 On the basis of these observations, we proposed that Nup98 functions to regulate DHX9 activity within the nucleoplasm. 7 Since Nup98 is associated with several DBPs, regulation of DHX9 by Nup98 may represent a paradigm for understanding how Nup98, and possibly other FG-Nup proteins, could direct the diverse cellular activities of multiple DBPs.

  2. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    PubMed

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  3. Proteins interacting with cloning scars: a source of false positive protein-protein interactions

    PubMed Central

    Banks, Charles A. S.; Boanca, Gina; Lee, Zachary T.; Florens, Laurence; Washburn, Michael P.

    2015-01-01

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine “cloning scar” present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected. PMID:25704442

  4. [From the Scrapie syndrome of sheep and goat to the mad cow disease - the history of the discovery of prion].

    PubMed

    Liu, Rui; Weng, Yi

    2009-05-01

    Since the discovery of Scrapie Syndrome in sheep and goats in 1730, there emerged a series of diseases such as Creutzfeldt-Jakob disease, kuru disease and mad cow disease etc. In the research of kuru disease, the American scientist D. Carlteton Gajdusek found a new virus without the characteristic of DNA and RNA, which was awarded the Nobel Prize in physiology in 1976. Since then another American scientist, Stanley B. Prusiner, found a new virus-prion, taking protein as the genetic medium, which was awarded the Nobel prize in physiology and medicine in 1997. The discovery of prion is a great landmark in the research of life science, which laid a theoretical foundation for people to conquer a series of diseases such as Scrapie syndrome in sheep and goats, Creutzfeldt-Jakob disease, kuru disease and mad cow disease etc.

  5. Small, Lightweight, Collapsible Glove Box

    NASA Technical Reports Server (NTRS)

    James, Jerry

    2009-01-01

    A small, lightweight, collapsible glove box enables its user to perform small experiments and other tasks. Originally intended for use aboard a space shuttle or the International Space Station (ISS), this glove box could also be attractive for use on Earth in settings in which work space or storage space is severely limited and, possibly, in which it is desirable to minimize weight. The development of this glove box was prompted by the findings that in the original space-shuttle or ISS setting, (1) it was necessary to perform small experiments in a large general-purpose work station, so that, in effect, they occupied excessive space; and it took excessive amounts of time to set up small experiments. The design of the glove box reflects the need to minimize the space occupied by experiments and the time needed to set up experiments, plus the requirement to limit the launch weight of the box and the space needed to store the box during transport into orbit. To prepare the glove box for use, the astronaut or other user has merely to insert hands through the two fabric glove ports in the side walls of the box and move two hinges to a locking vertical position (see figure). The user could do this while seated with the glove box on the user fs lap. When stowed, the glove box is flat and has approximately the thickness of two pieces of 8-in. (.20 cm) polycarbonate.

  6. MAD2 expression in oral squamous cell carcinoma and its relationship to tumor grade and proliferation.

    PubMed

    Rizzardi, Clara; Torelli, Lucio; Schneider, Manuela; Giudici, Fabiola; Zandona, Lorenzo; Biasotto, Matteo; Di Lenarda, Roberto; Melato, Mauro

    2014-12-01

    Defects in the cell-cycle surveillance mechanism, called the spindle checkpoint, might contribute to the chromosomal instability observed in human cancers, including oral squamous cell carcinoma. MAD2 and BUBR1 are key components of the spindle checkpoint, whose role in oral carcinogenesis and clinical relevance still need to be elucidated. We analyzed the expression of MAD2 in 49 cases of oral squamous cell carcinoma by immunohistochemistry and compared the findings with clinicopathological parameters, proliferative activity, BUBR1 expression and DNA ploidy. MAD2 was over-expressed in 18 (36.7%) cases. Tumors with over-expression of MAD2 were associated with the progression of histological grade from well to poor differentiation (p<0.001), the extent of lymph nodes involvement (PN) (p=0.0339) and Ki-67 labeling index (p<0.001). MAD2 may be involved in oral carcinogenesis and may represent an important prognostic factor associated with a more malignant phenotype of oral squamous cell carcinoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution

    PubMed Central

    Zhang, Guo-Qiang; Xu, Qing; Bian, Chao; Tsai, Wen-Chieh; Yeh, Chuan-Ming; Liu, Ke-Wei; Yoshida, Kouki; Zhang, Liang-Sheng; Chang, Song-Bin; Chen, Fei; Shi, Yu; Su, Yong-Yu; Zhang, Yong-Qiang; Chen, Li-Jun; Yin, Yayi; Lin, Min; Huang, Huixia; Deng, Hua; Wang, Zhi-Wen; Zhu, Shi-Lin; Zhao, Xiang; Deng, Cao; Niu, Shan-Ce; Huang, Jie; Wang, Meina; Liu, Guo-Hui; Yang, Hai-Jun; Xiao, Xin-Ju; Hsiao, Yu-Yun; Wu, Wan-Lin; Chen, You-Yi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Luo, Yi-Bo; Van de Peer, Yves; Liu, Zhong-Jian

    2016-01-01

    Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC*, involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae. PMID:26754549

  8. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution.

    PubMed

    Zhang, Guo-Qiang; Xu, Qing; Bian, Chao; Tsai, Wen-Chieh; Yeh, Chuan-Ming; Liu, Ke-Wei; Yoshida, Kouki; Zhang, Liang-Sheng; Chang, Song-Bin; Chen, Fei; Shi, Yu; Su, Yong-Yu; Zhang, Yong-Qiang; Chen, Li-Jun; Yin, Yayi; Lin, Min; Huang, Huixia; Deng, Hua; Wang, Zhi-Wen; Zhu, Shi-Lin; Zhao, Xiang; Deng, Cao; Niu, Shan-Ce; Huang, Jie; Wang, Meina; Liu, Guo-Hui; Yang, Hai-Jun; Xiao, Xin-Ju; Hsiao, Yu-Yun; Wu, Wan-Lin; Chen, You-Yi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Luo, Yi-Bo; Van de Peer, Yves; Liu, Zhong-Jian

    2016-01-12

    Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.

  9. Disruption of Axonal Transport Perturbs Bone Morphogenetic Protein (BMP) - Signaling and Contributes to Synaptic Abnormalities in Two Neurodegenerative Diseases

    PubMed Central

    Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali

    2014-01-01

    Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478

  10. Two high-mobility group box domains act together to underwind and kink DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J.; Malarkey, C. S.

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A ismore » thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.« less

  11. A novel member of the SAF (scaffold attachment factor)-box protein family inhibits gene expression and induces apoptosis

    PubMed Central

    Chan, Ching Wan; Lee, Youn-Bok; Uney, James; Flynn, Andrea; Tobias, Jonathan H.; Norman, Michael

    2007-01-01

    The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels. PMID:17630952

  12. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis

    PubMed Central

    Pereira, Leonn Mendes Soares; Gomes, Samara Tatielle Monteiro; Ishak, Ricardo; Vallinoto, Antonio Carlos Rosário

    2017-01-01

    The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance. PMID:28603524

  13. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation

    PubMed Central

    Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-01-01

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types—MDM2, Pirh2, and COP1—and the HECT-domain type—ARF-BP1—have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G1 phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation. PMID:19509332

  14. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation.

    PubMed

    Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-06-23

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types--MDM2, Pirh2, and COP1--and the HECT-domain type--ARF-BP1--have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G(1) phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation.

  15. MAD ointment ameliorates Imiquimod-induced psoriasiform dermatitis by inhibiting the IL-23/IL-17 axis in mice.

    PubMed

    OuYang, Qiong; Pan, YaQian; Luo, HanQiong; Xuan, ChunXiao; Liu, JinE; Liu, Jun

    2016-10-01

    Psoriasis is a chronic auto-immune inflammation disease with skin lesions and abnormal keratinocyte proliferation. The IL-23/IL-17 axis plays an important role in the pathogenesis of psoriasis. Madecassoside (MAD) was the most important constituents isolated from Centella asiatica, which has long been used in dermatology, and it is supposed that MAD may have effects on psoriasis. In the present study, the BALB/c mice ear and back skin received IMQ for 6 consecutive days to induce psoriasis-like dermatitis. MAD ointment was applied 6h later after IMQ treatment, and the IL-23/IL-17 pathway was investigated. The HE staining, BrdU and Psoriasis Area and Severity Index (PASI) were used to score the severity of keratinocyte proliferation and inflammation of the skin. Real-time PCR and Western Blot were used to detect the IL-23/IL-17 related cytokines. Flow Cytometry were applied to observe the numbers of Th17 cells. Daily application of IMQ for 6days on mouse ear skin and back skin induced psoriasis-like dermatitis. Real-time PCR showed that mRNA level of IL-23, IL-22, IL-17A were significantly decreased by MAD ointment treatment in ear skin. HE staining and BrdU incorporation implied that MAD ointment reduced keratinocyte proliferation. Flow Cytometry results showed MAD ointment decreased the numbers of Th17 cells. Thus, MAD ointment ameliorates Imiquimod-induced skin inflammation and abnormal keratinocyte through regulate the IL-23/IL-17 axis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A Modular GIS-Based Software Architecture for Model Parameter Estimation using the Method of Anchored Distributions (MAD)

    NASA Astrophysics Data System (ADS)

    Ames, D. P.; Osorio-Murillo, C.; Over, M. W.; Rubin, Y.

    2012-12-01

    The Method of Anchored Distributions (MAD) is an inverse modeling technique that is well-suited for estimation of spatially varying parameter fields using limited observations and Bayesian methods. This presentation will discuss the design, development, and testing of a free software implementation of the MAD technique using the open source DotSpatial geographic information system (GIS) framework, R statistical software, and the MODFLOW groundwater model. This new tool, dubbed MAD-GIS, is built using a modular architecture that supports the integration of external analytical tools and models for key computational processes including a forward model (e.g. MODFLOW, HYDRUS) and geostatistical analysis (e.g. R, GSLIB). The GIS-based graphical user interface provides a relatively simple way for new users of the technique to prepare the spatial domain, to identify observation and anchor points, to perform the MAD analysis using a selected forward model, and to view results. MAD-GIS uses the Managed Extensibility Framework (MEF) provided by the Microsoft .NET programming platform to support integration of different modeling and analytical tools at run-time through a custom "driver." Each driver establishes a connection with external programs through a programming interface, which provides the elements for communicating with core MAD software. This presentation gives an example of adapting the MODFLOW to serve as the external forward model in MAD-GIS for inferring the distribution functions of key MODFLOW parameters. Additional drivers for other models are being developed and it is expected that the open source nature of the project will engender the development of additional model drivers by 3rd party scientists.

  17. Isolation and Functional Characterization of a Floral Repressor, BcMAF1, From Pak-choi (Brassica rapa ssp. Chinensis).

    PubMed

    Huang, Feiyi; Liu, Tongkun; Hou, Xilin

    2018-01-01

    MADS-box genes form a large gene family in plants and are involved in multiple biological processes, such as flowering. However, the regulation mechanism of MADS-box genes in flowering remains unresolved, especially under short-term cold conditions. In the present study, we isolated BcMAF1 , a Pak-choi ( Brassica rapa ssp. Chinensis ) MADS AFFECTING FLOWERING ( MAF ), as a floral repressor and functionally characterized BcMAF1 in Arabidopsis and Pak-choi. Subcellular localization and sequence analysis indicated that BcMAF1 was a nuclear protein and contained a conserved MADS-box domain. Expression analysis revealed that BcMAF1 had higher expression levels in leaves, stems, and petals, and could be induced by short-term cold conditions in Pak-choi. Overexpressing BcMAF1 in Arabidopsis showed that BcMAF1 had a negative function in regulating flowering, which was further confirmed by silencing endogenous BcMAF1 in Pak-choi. In addition, qPCR results showed that AtAP3 expression was reduced and AtMAF2 expression was induced in BcMAF1 -overexpressing Arabidopsis . Meanwhile, BcAP3 transcript was up-regulated and BcMAF2 transcript was down-regulated in BcMAF1 -silencing Pak-choi. Yeast one-hybrid and dual luciferase transient assays showed that BcMAF1 could bind to the promoters of BcAP3 and BcMAF2 . These results indicated that BcAP3 and BcMAF2 might be the targets of BcMAF1. Taken together, our results suggested that BcMAF1 could negatively regulate flowering by directly activating BcMAF2 and repressing BcAP3 .

  18. Comparative structural analysis of human DEAD-box RNA helicases.

    PubMed

    Schütz, Patrick; Karlberg, Tobias; van den Berg, Susanne; Collins, Ruairi; Lehtiö, Lari; Högbom, Martin; Holmberg-Schiavone, Lovisa; Tempel, Wolfram; Park, Hee-Won; Hammarström, Martin; Moche, Martin; Thorsell, Ann-Gerd; Schüler, Herwig

    2010-09-30

    DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.

  19. Comparative Structural Analysis of Human DEAD-Box RNA Helicases

    PubMed Central

    Schütz, Patrick; Karlberg, Tobias; van den Berg, Susanne; Collins, Ruairi; Lehtiö, Lari; Högbom, Martin; Holmberg-Schiavone, Lovisa; Tempel, Wolfram; Park, Hee-Won; Hammarström, Martin; Moche, Martin; Thorsell, Ann-Gerd; Schüler, Herwig

    2010-01-01

    DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members. PMID:20941364

  20. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development.

    PubMed

    Poupin, María Josefina; Federici, Fernán; Medina, Consuelo; Matus, José Tomás; Timmermann, Tania; Arce-Johnson, Patricio

    2007-12-01

    The B class of MADS-box floral homeotic genes specifies petal and stamen identity in angiosperms. While this group is one of the most studied in herbaceous plant species, it has remained largely uncharacterized in woody species such as grapevine. Although the B class PI/GLO and AP3/DEF clades have been extensively characterized in model species, the role of the TM6 subgroup within the AP3 clade is not completely understood, since it is absent in Arabidopsis thaliana. In this study, the coding regions of VvTM6 and VvAP3 and the genomic sequence of VvPI, were cloned. VvPI and AtPI were confirmed to be functional homologues by means of complementation of the pi Arabidopsis mutant. Expression analysis revealed that VvPI and VvAP3 transcripts are restricted almost exclusively to inflorescences, although VvPI was detected at low levels in leaves and roots. VvTM6 expresses throughout the plant, with higher levels in flowers and berries. A detailed chronological study of grape flower progression by light microscopy and temporal expression analysis throughout early and late developmental stages, revealed that VvPI expression increases during pollen maturation and decreases between the events of pollination and fertilization, before the cap fall. On the other hand, VvTM6 is expressed in the last stage of anther development. Specific expression of VvAP3 and VvPI was detected in petals and stamens within the flower, while VvTM6 was also expressed in carpels. Moreover, this work provides the first evidence for expression of a TM6-like gene throughout fruit growth and ripening. Even if these genes belong to the same genetic class they could act in different periods and/or tissues during reproductive organ development.

  1. Self-organization and positioning of bacterial protein clusters

    NASA Astrophysics Data System (ADS)

    Murray, Seán M.; Sourjik, Victor

    2017-10-01

    Many cellular processes require proteins to be precisely positioned within the cell. In some cases this can be attributed to passive mechanisms such as recruitment by other proteins in the cell or by exploiting the curvature of the membrane. However, in bacteria, active self-positioning is likely to play a role in multiple processes, including the positioning of the future site of cell division and cytoplasmic protein clusters. How can such dynamic clusters be formed and positioned? Here, we present a model for the self-organization and positioning of dynamic protein clusters into regularly repeating patterns based on a phase-locked Turing pattern. A single peak in the concentration is always positioned at the midpoint of the model cell, and two peaks are positioned at the midpoint of each half. Furthermore, domain growth results in peak splitting and pattern doubling. We argue that the model may explain the regular positioning of the highly conserved structural maintenance of chromosomes complexes on the bacterial nucleoid and that it provides an attractive mechanism for the self-positioning of dynamic protein clusters in other systems.

  2. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage

    PubMed Central

    Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico

    2014-01-01

    Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence that CRL4Cdt2-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4Cdt2 as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4Cdt2 pathway in the switch of PCNA partners on DNA damage. PMID:24423875

  3. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage.

    PubMed

    Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico

    2014-04-01

    Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4(Cdt2). Here we provide evidence that CRL4(Cdt2)-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4(Cdt2) as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4(Cdt2) pathway in the switch of PCNA partners on DNA damage.

  4. A role for the Rab6A′ GTPase in the inactivation of the Mad2-spindle checkpoint

    PubMed Central

    Miserey-Lenkei, Stéphanie; Couëdel-Courteille, Anne; Del Nery, Elaine; Bardin, Sabine; Piel, Matthieu; Racine, Victor; Sibarita, Jean-Baptiste; Perez, Franck; Bornens, Michel; Goud, Bruno

    2006-01-01

    The two isoforms of the Rab6 GTPase, Rab6A and Rab6A′, regulate a retrograde transport route connecting early endosomes and the endoplasmic reticulum via the Golgi complex in interphasic cells. Here we report that when Rab6A′ function is altered cells are unable to progress normally through mitosis. Such cells are blocked in metaphase, despite displaying a normal Golgi fragmentation and with the Mad2-spindle checkpoint activated. Furthermore, the Rab6 effector p150Glued, a subunit of the dynein/dynactin complex, remains associated with some kinetochores. A similar phenotype was observed when GAPCenA, a GTPase-activating protein of Rab6, was depleted from cells. Our results suggest that Rab6A′ likely regulates the dynamics of the dynein/dynactin complex at the kinetochores and consequently the inactivation of the Mad2-spindle checkpoint. Rab6A′, through its interaction with p150Glued and GAPCenA, may thus participate in a pathway involved in the metaphase/anaphase transition. PMID:16395330

  5. Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development.

    PubMed

    Zhang, Bin; Liu, Xia; Zhao, Guangyao; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2014-06-01

    Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat. © 2014 The Authors. Journal of Integrative Plant Biology Published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  6. 78 FR 38087 - Self-Regulatory Organizations; BOX Options Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... To Amend BOX Rule 3150 (Reports Related to Position Limits) June 19, 2013. Pursuant to Section 19(b... Rule Change The Exchange proposes to amend BOX Rule 3150 (Reports Related to Position Limits). The text... proposes to amend BOX Rule 3150 (Reports Related to Position Limits) to exempt BOX Market Makers \\3\\ from...

  7. FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila.

    PubMed

    Bath, Daniel E; Stowers, John R; Hörmann, Dorothea; Poehlmann, Andreas; Dickson, Barry J; Straw, Andrew D

    2014-07-01

    Rapidly and selectively modulating the activity of defined neurons in unrestrained animals is a powerful approach in investigating the circuit mechanisms that shape behavior. In Drosophila melanogaster, temperature-sensitive silencers and activators are widely used to control the activities of genetically defined neuronal cell types. A limitation of these thermogenetic approaches, however, has been their poor temporal resolution. Here we introduce FlyMAD (the fly mind-altering device), which allows thermogenetic silencing or activation within seconds or even fractions of a second. Using computer vision, FlyMAD targets an infrared laser to freely walking flies. As a proof of principle, we demonstrated the rapid silencing and activation of neurons involved in locomotion, vision and courtship. The spatial resolution of the focused beam enabled preferential targeting of neurons in the brain or ventral nerve cord. Moreover, the high temporal resolution of FlyMAD allowed us to discover distinct timing relationships for two neuronal cell types previously linked to courtship song.

  8. Validation of Cut-Points for Evaluating the Intensity of Physical Activity with Accelerometry-Based Mean Amplitude Deviation (MAD).

    PubMed

    Vähä-Ypyä, Henri; Vasankari, Tommi; Husu, Pauliina; Mänttäri, Ari; Vuorimaa, Timo; Suni, Jaana; Sievänen, Harri

    2015-01-01

    Our recent study of three accelerometer brands in various ambulatory activities showed that the mean amplitude deviation (MAD) of the resultant acceleration signal performed best in separating different intensity levels and provided excellent agreement between the three devices. The objective of this study was to derive a regression model that estimates oxygen consumption (VO2) from MAD values and validate the MAD-based cut-points for light, moderate and vigorous locomotion against VO2 within a wide range of speeds. 29 participants performed a pace-conducted non-stop test on a 200 m long indoor track. The initial speed was 0.6 m/s and it was increased by 0.4 m/s every 2.5 minutes until volitional exhaustion. The participants could freely decide whether they preferred to walk or run. During the test they carried a hip-mounted tri-axial accelerometer and mobile metabolic analyzer. The MAD was calculated from the raw acceleration data and compared to directly measured incident VO2. Cut-point between light and moderate activity was set to 3.0 metabolic equivalent (MET, 1 MET = 3.5 ml · kg-1 · min-1) and between moderate and vigorous activity to 6.0 MET as per standard use. The MAD and VO2 showed a very strong association. Within individuals, the range of r values was from 0.927 to 0.991 providing the mean r = 0.969. The optimal MAD cut-point for 3.0 MET was 91 mg (milligravity) and 414 mg for 6.0 MET. The present study showed that the MAD is a valid method in terms of the VO2 within a wide range of ambulatory activities from slow walking to fast running. Being a device-independent trait, the MAD facilitates directly comparable, accurate results on the intensity of physical activity with all accelerometers providing tri-axial raw data.

  9. Exergaming boxing versus heavy-bag boxing: are these equipotent for individuals with spinal cord injury?

    PubMed

    Mat Rosly, Maziah; Mat Rosly, Hadi; Hasnan, Nazirah; Davis, Glen M; Husain, Ruby

    2017-08-01

    Current strategies for increased physical activity and exercise in individuals with spinal cord injury (SCI) face many challenges with regards to maintaining their continuity of participation. Barriers cited often include problems with accessing facilities, mundane, monotonous or boring exercises and expensive equipment that is often not adapted for wheelchair users. To compare the physiological responses and user preferences between conventional heavy-bag boxing against a novel form of video game boxing, known as exergaming boxing. Cross-sectional study. Exercise laboratory setting in a university medical center. Seventeen participants with SCI were recruited, of which sixteen were male and only one female. Their mean age was 35.6±10.2 years. All of them performed a 15-minute physical exercise session of exergaming and heavy-bag boxing in a sitting position. The study assessed physiological responses in terms of oxygen consumption, metabolic equivalent (MET) and energy expenditure between exergaming and heavy-bag boxing derived from open-circuit spirometry. Participants also rated their perceived exertion using Borg's category-ratio ratings of perceived exertion. Both exergaming (MET: 4.3±1.0) and heavy-bag boxing (MET: 4.4±1.0) achieved moderate exercise intensities in these participants with SCI. Paired t-test revealed no significant differences (P>0.05, Cohen's d: 0.02-0.49) in the physiological or perceived exertional responses between the two modalities of boxing. Post session user survey reported all the participants found exergaming boxing more enjoyable. Exergaming boxing, was able to produce equipotent physiological responses as conventional heavy-bag boxing. The intensity of both exercise modalities achieved recommended intensities for health and fitness benefits. Exergaming boxing have the potential to provide an enjoyable, self-competitive environment for moderate-vigorous exercise even at the comfort of their homes.

  10. A flexible system to capture sample vials in a storage box - the box vial scanner.

    PubMed

    Nowakowski, Steven E; Kressin, Kenneth R; Deick, Steven D

    2009-01-01

    Tracking sample vials in a research environment is a critical task and doing so efficiently can have a large impact on productivity, especially in high volume laboratories. There are several challenges to automating the capture process, including the variety of containers used to store samples. We developed a fast and robust system to capture the location of sample vials being placed in storage that allows the laboratories the flexibility to use sample containers of varying dimensions. With a single scan, this device captures the box identifier, the vial identifier and the location of each vial within a freezer storage box. The sample vials are tracked through a barcode label affixed to the cap while the boxes are tracked by a barcode label on the side of the box. Scanning units are placed at the point of use and forward data to a sever application for processing the scanned data. Scanning units consist of an industrial barcode reader mounted in a fixture positioning the box for scanning and providing lighting during the scan. The server application transforms the scan data into a list of storage locations holding vial identifiers. The list is then transferred to the laboratory database. The box vial scanner captures the IDs and location information for an entire box of sample vials into the laboratory database in a single scan. The system accommodates a wide variety of vials sizes by inserting risers under the sample box and a variety of storage box layouts are supported via the processing algorithm on the server.

  11. F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.

    PubMed

    Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L

    2014-03-07

    The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.

  12. Magical Boxes

    ERIC Educational Resources Information Center

    Costello, Judith

    2005-01-01

    Students get excited when they realize that they can transform a flat sheet of paper into a box. By using different sizes of paper, they can make different sizes of boxes and put a box inside a box, inside a box. These magical boxes within boxes can contain unwanted emotions or special treasures. The project described in this article incorporates…

  13. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat

    PubMed Central

    Xiao, Jun; Xu, Shujuan; Li, Chunhua; Xu, Yunyuan; Xing, Lijing; Niu, Yuda; Huan, Qing; Tang, Yimiao; Zhao, Changping; Wagner, Doris; Gao, Caixia; Chong, Kang

    2014-01-01

    Vernalization, sensing of prolonged cold, is important for seasonal flowering in eudicots and monocots. While vernalization silences a repressor (FLC, MADS-box transcription factor) in eudicots, it induces an activator (TaVRN1, an AP1 clade MADS-box transcription factor) in monocots. The mechanism for TaVRN1 induction during vernalization is not well understood. Here we reveal a novel mechanism for controlling TaVRN1 mRNA accumulation in response to prolonged cold sensing in wheat. The carbohydrate-binding protein VER2, a jacalin lectin, promotes TaVRN1 upregulation by physically interacting with the RNA-binding protein TaGRP2. TaGRP2 binds to TaVRN1 pre-mRNA and inhibits TaVRN1 mRNA accumulation. The physical interaction between VER2 and TaGRP2 is controlled by TaGRP2 O-GlcNAc modification, which gradually increases during vernalization. The interaction between VER2 and O-GlcNAc-TaGRP2 reduces TaGRP2 protein accumulation in the nucleus and/or promotes TaGRP2 dissociation from TaVRN1, leading to TaVRN1 mRNA accumulation. Our data reveal a new mechanism for sensing prolonged cold in temperate cereals. PMID:25091017

  14. The Role of Y-Box Binding Protein 1 in Kidney Injury: Friend or Foe?

    PubMed

    Ke, Ben; Fan, Chuqiao; Tu, Weiping; Fang, Xiangdong

    2018-01-01

    Y-box-binding protein 1 (YB-1) is a multifunctional protein involved in various cellular processes via the transcriptional and translational regulation of target gene expression. YB-1 promotes acute or chronic kidney injury through multiple molecular pathways; however, accumulating evidence suggests that significantly increased YB-1 levels are of great importance in renoprotection. In addition, YB-1 may contribute to obesity-related kidney disease by promoting adipogenesis. Thus, the role of YB-1 in kidney injury is complicated, and no comprehensive review is currently available. In this review, we summarise recent progress in our understanding of the function of YB-1 in kidney injury and provide an overview of the dual role of YB-1 in kidney disease. Moreover, we propose that YB-1 is a potential therapeutic target to restrict kidney disease. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. Role of Forkhead Box Class O proteins in cancer progression and metastasis.

    PubMed

    Kim, Chang Geun; Lee, Hyemin; Gupta, Nehal; Ramachandran, Sharavan; Kaushik, Itishree; Srivastava, Sangeeta; Kim, Sung-Hoon; Srivastava, Sanjay K

    2018-06-01

    It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Did Convergent Protein Evolution Enable Phytoplasmas to Generate 'Zombie Plants'?

    PubMed

    Rümpler, Florian; Gramzow, Lydia; Theißen, Günter; Melzer, Rainer

    2015-12-01

    Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: Cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria

    PubMed Central

    Watanabe, Yoh-ichi; Gray, Michael W.

    2000-01-01

    A reverse transcription–polymerase chain reaction (RT–PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated ‘PsuX’ and ‘PsuY’) distantly related to the Cbf5p/TruB gene family. PMID:10871366

  18. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription.

    PubMed

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien; Pira, Dorcas; Angrand, Pierre-Olivier

    2012-05-01

    Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation.

  19. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140.

    PubMed

    Yang, Y; Isaac, C; Wang, C; Dragon, F; Pogacic, V; Meier, U T

    2000-02-01

    Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2'-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells.

  20. Conserved Composition of Mammalian Box H/ACA and Box C/D Small Nucleolar Ribonucleoprotein Particles and Their Interaction with the Common Factor Nopp140

    PubMed Central

    Yang, Yunfeng; Isaac, Cynthia; Wang, Chen; Dragon, François; Pogac̆ić, Vanda; Meier, U. Thomas

    2000-01-01

    Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2′-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells. PMID:10679015

  1. Downregulation of MicroRNA 29a/b exacerbated diabetic retinopathy by impairing the function of Müller cells via Forkhead box protein O4.

    PubMed

    Zhang, Jiayu; Wu, Liang; Chen, Jiawei; Lin, Sisi; Cai, Daqiu; Chen, Chengwei; Chen, Zhenguo

    2018-05-01

    Diabetic retinopathy is a neurological disease, which can lead to blindness in severe cases. The pathogenesis underlying diabetic retinopathy is unclear. The aim of this study was to explore the role of dysregulated microRNA 29a/b in the onset and progression of diabetic retinopathy. Diabetes mellitus was induced in rats using 60 mg/kg of streptozotocin. Glucose (5.5 and 25 mM) was used to stimulate rat retinal Müller cells. Real-time polymerase chain reaction and Western blot analyses were used to determine gene expression. A luciferase reporter assay was conducted to validate the relationship of microRNA 29a/b with glioma-associated oncogene homolog 1 and Forkhead box protein O4. The expression of microRNA 29a/b and glutamine synthetase decreased in both diabetes mellitus rats and rat retinal Müller cells stimulated with high glucose, whereas the expression of sonic hedgehog, glioma-associated oncogene homolog 1, glial fibrillary acidic protein, and vascular endothelial growth factor, as well as the content of glutamate, increased. Dysregulated microRNA 29a/b was directly regulated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, and microRNA 29a and microRNA 29b targeted Forkhead box protein O4 and regulated its expression. Downregulation of microRNA 29a/b, mediated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, exacerbated diabetic retinopathy by upregulating Forkhead box protein O4.

  2. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. © 2016 The Author. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  3. Bovine spongiform encephalopathy: "mad cow disease".

    PubMed

    1996-07-01

    Bovine spongiform encephalopathy (BSE), also known as "mad cow disease," is a fatal brain disease of cattle first recognized in the United Kingdom. In humans, the most common transmissible spongiform encephalopathy is Creutzfeldt-Jacob Disease (CJD). Although no cases of CJD have been directly linked to beef consumption, an advisory committee has reported that 10 recent cases of a CJD variant may be associated with BSE. This announcement has alarmed consumers well beyond the borders of the United Kingdom.

  4. Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay.

    PubMed

    Kleene, Kenneth C

    2016-03-01

    Many mRNAs encoding proteins needed for the construction of the specialized organelles of spermatozoa are stored as translationally repressed, free messenger ribonucleoproteins in round spermatids, to be actively translated in elongating and elongated spermatids. The factors that repress translation in round spermatids, however, have been elusive. Two lines of evidence implicate the highly abundant and well-known translational repressor, Y-box protein 2 (YBX2), as a critical factor: First, protamine 1 (Prm1) and sperm-mitochondria cysteine-rich protein (Smcp) mRNAs are prematurely recruited onto polysomes in Ybx2-knockout mouse round spermatids. Second, mutations in 3' untranslated region (3'UTR) cis-elements that abrogate YBX2 binding activate translation of Prm1 and Smcp mRNAs in round spermatids of transgenic mice. The abundance of YBX2 and its affinity for variable sequences, however, raise questions of how YBX2 targets specific mRNAs for repression. Mutations to the Prm1 and Smcp mRNAs in transgenic mice reveal that strong repression in round spermatids requires YBX2 binding sites located near the 3' ends of their 3'UTRs as locating the same sites in upstream positions produce negligible repression. This location-dependence implies that the assembly of repressive complexes is nucleated by adjacent cis-elements that enable cooperative interactions of YBX2 with co-factors. The available data suggest that, in vertebrates, YBX2 has the important role of coordinating the storage of translationally repressed mRNAs in round spermatids by inhibiting translational activity and the degradation of transcripts via translation-dependent deadenylation. These insights should facilitiate future experiments designed to unravel how YBX2 targets mRNAs for repression in round spermatids and how mutations in the YBX2 gene cause infertility in humans. Mol. Reprod. Dev. 83: 190-207, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Meta-analysis of randomised controlled trials of oral mandibular advancement devices and continuous positive airway pressure for obstructive sleep apnoea-hypopnoea

    PubMed Central

    Sharples, Linda D.; Clutterbuck-James, Abigail L.; Glover, Matthew J.; Bennett, Maxine S.; Chadwick, Rebecca; Pittman, Marcus A.; Quinnell, Timothy G.

    2017-01-01

    Summary Obstructive sleep apnoea-hypopnoea (OSAH) causes excessive daytime sleepiness, impairs quality-of-life, and increases cardiovascular disease and road traffic accident risks. Continuous positive airway pressure (CPAP) treatment and mandibular advancement devices (MAD) have been shown to be effective in individual trials but their effectiveness particularly relative to disease severity is unclear. A MEDLINE, Embase and Science Citation Index search updating two systematic reviews to August 2013 identified 77 RCTs in adult OSAH patients comparing: MAD with conservative management (CM); MAD with CPAP; or CPAP with CM. Overall MAD and CPAP significantly improved apnoea-hypopnoea index (AHI) (MAD −9.3/hr (p < 0.001), CPAP −25.4 (p < 0.001)). In direct comparisons mean AHI and Epworth sleepiness scale score were lower (7.0/hr (p < 0.001) and 0.67 (p = 0.093) respectively) for CPAP. There were no CPAP vs. MAD trials in mild OSAH but in comparisons with CM, MAD and CPAP reduced ESS similarly (MAD 2.01 (p < 0.001); CPAP 1.23 (p = 0.012). Both MAD and CPAP are clinically effective in the treatment of OSAH. Although CPAP has a greater treatment effect, MAD is an appropriate treatment for patients who are intolerant of CPAP and may be comparable to CPAP in mild disease. PMID:26163056

  6. A Change in SHATTERPROOF Protein Lies at the Origin of a Fruit Morphological Novelty and a New Strategy for Seed Dispersal in Medicago Genus1[C][W

    PubMed Central

    Fourquin, Chloé; del Cerro, Carolina; Victoria, Filipe C.; Vialette-Guiraud, Aurélie; de Oliveira, Antonio C.; Ferrándiz, Cristina

    2013-01-01

    Angiosperms are the most diverse and numerous group of plants, and it is generally accepted that this evolutionary success owes in part to the diversity found in fruits, key for protecting the developing seeds and ensuring seed dispersal. Although studies on the molecular basis of morphological innovations are few, they all illustrate the central role played by transcription factors acting as developmental regulators. Here, we show that a small change in the protein sequence of a MADS-box transcription factor correlates with the origin of a highly modified fruit morphology and the change in seed dispersal strategies that occurred in Medicago, a genus belonging to the large legume family. This protein sequence modification alters the functional properties of the protein, affecting the affinities for other protein partners involved in high-order complexes. Our work illustrates that variation in coding regions can generate evolutionary novelties not based on gene duplication/subfunctionalization but by interactions in complex networks, contributing also to the current debate on the relative importance of changes in regulatory or coding regions of master regulators in generating morphological novelties. PMID:23640757

  7. Full trans-activation mediated by the immediate-early protein of equine herpesvirus 1 requires a consensus TATA box, but not its cognate binding sequence.

    PubMed

    Kim, Seong K; Shakya, Akhalesh K; O'Callaghan, Dennis J

    2016-01-04

    The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt -89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Full trans–activation mediated by the immediate–early protein of equine herpesvirus 1 requires a consensus TATA box, but not its cognate binding sequence

    PubMed Central

    Kim, Seong K.; Shakya, Akhalesh K.; O'Callaghan, Dennis J.

    2015-01-01

    The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt −89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS). PMID:26541315

  9. Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells.

    PubMed

    Chen, L; Smith, L; Johnson, M R; Wang, K; Diasio, R B; Smith, J B

    2000-10-13

    Treatment of human promyelocytic leukemia cells (HL-60) with phorbol 12-myristate 13-acetate (PMA) is known to decrease c-myc mRNA by blocking transcription elongation at sites near the first exon/intron border. Treatment of HL-60 cells with either PMA or bryostatin 1, which acutely activates protein kinase C (PKC), decreased the levels of myc mRNA and Myc protein. The inhibition of Myc synthesis accounted for the drop in Myc protein, because PMA treatment had no effect on Myc turnover. Treatment with PMA or bryostatin 1 increased nuclear protein binding to MIE1, a c-myc intron 1 element that defines an RFX1-binding X box. RFX1 antiserum supershifted MIE1-protein complexes. Increased MIE1 binding was independent of protein synthesis and abolished by a selective PKC inhibitor, which also prevented the effect of PMA on myc mRNA and protein levels and Myc synthesis. PMA treatment increased RFX1 in the nuclear fraction and decreased it in the cytosol without affecting total RFX1. Transfection of HL-60 cells with myc reporter gene constructs showed that the RFX1-binding X box was required for the down-regulation of reporter gene expression by PMA. These findings suggest that nuclear translocation and binding of RFX1 to the X box cause the down-regulation of myc expression, which follows acute PKC activation in undifferentiated HL-60 cells.

  10. Assaying Auxin Receptor Activity Using SPR Assays with F-Box Proteins and Aux/IAA Degrons.

    PubMed

    Quareshy, Mussa; Uzunova, Veselina; Prusinska, Justyna M; Napier, Richard M

    2017-01-01

    The identification of TIR1 as an auxin receptor combined with advanced biophysical instrumentation has led to the development of real-time activity assays for auxins. Traditionally, molecules have been assessed for auxinic activity using bioassays, and agrochemical compound discovery continues to be based on "spray and pray" technologies. Here, we describe the methodology behind an SPR-based assay that uses TIR1 and related F-box proteins with surface plasmon resonance spectrometry for rapid compound screening. In addition, methods for collecting kinetic binding data and data processing are given so that they may support programs for rational design of novel auxin ligands.

  11. Power, Madness and Poverty: [An Article and Responses].

    ERIC Educational Resources Information Center

    Smith, Carl R., Ed.

    1981-01-01

    The lead article by H. Drummond examines the cultural context of psychosis and concludes that madness is deeply rooted in social and sexual inequality. The author, a psychiatrist, supports his argument with case studies, reports on the use of drugs with the psychotic, research on efforts to demonstrate that schizophrenia is a biological illness,…

  12. Elizabethan madness: on London's stage.

    PubMed

    Dalby, J T

    1997-12-01

    During the reign of Elizabeth I (1558-1603) a renaissance of both literary and political history occurred. The stage was transformed from primitive echoes of the morality plays to a vibrant and diverse exploration of human endeavor and man's place in the universe. The titanic literary figure of Shakespeare today veils a group of friends and challengers whose pens strove for the same goal. The depiction of madness was ubiquitous during plays of this time and reflection on the views of this group of men gives us a more reliable insight into mental illness then and today.

  13. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    PubMed

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Ogawa, Takeshi; Shimizu, Masanori; Suzuki, Akane; Kobayashi, Kyoko; Kobayashi, Hirokazu

    2015-01-01

    An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  14. A MAD model for gamma-ray burst variability

    NASA Astrophysics Data System (ADS)

    Lloyd-Ronning, Nicole M.; Dolence, Joshua C.; Fryer, Christopher L.

    2016-09-01

    We present a model for the temporal variability of long gamma-ray bursts (GRBs) during the prompt phase (the highly variable first 100 s or so), in the context of a magnetically arrested disc (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disc. The system transitions in and out of the MAD state, which we relate to the variable luminosity of the GRB during the prompt phase, with a characteristic time-scale defined by the free-fall time in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and time-scales, and compare them to GRB observations. In particular, we show how this model can reproduce the characteristic one second time-scale that emerges from various analyses of the prompt emission light curve. We also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse.

  15. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases.

    PubMed

    Zhou, Weihua; Wei, Wenyi; Sun, Yi

    2013-05-01

    The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.

  16. Intensity Thresholds on Raw Acceleration Data: Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) Approaches

    PubMed Central

    Bakrania, Kishan; Yates, Thomas; Rowlands, Alex V.; Esliger, Dale W.; Bunnewell, Sarah; Sanders, James; Davies, Melanie; Khunti, Kamlesh; Edwardson, Charlotte L.

    2016-01-01

    Objectives (1) To develop and internally-validate Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) thresholds for separating sedentary behaviours from common light-intensity physical activities using raw acceleration data collected from both hip- and wrist-worn tri-axial accelerometers; and (2) to compare and evaluate the performances between the ENMO and MAD metrics. Methods Thirty-three adults [mean age (standard deviation (SD)) = 27.4 (5.9) years; mean BMI (SD) = 23.9 (3.7) kg/m2; 20 females (60.6%)] wore four accelerometers; an ActiGraph GT3X+ and a GENEActiv on the right hip; and an ActiGraph GT3X+ and a GENEActiv on the non-dominant wrist. Under laboratory-conditions, participants performed 16 different activities (11 sedentary behaviours and 5 light-intensity physical activities) for 5 minutes each. ENMO and MAD were computed from the raw acceleration data, and logistic regression and receiver-operating-characteristic (ROC) analyses were implemented to derive thresholds for activity discrimination. Areas under ROC curves (AUROC) were calculated to summarise performances and thresholds were assessed via executing leave-one-out-cross-validations. Results For both hip and wrist monitor placements, in comparison to the ActiGraph GT3X+ monitors, the ENMO and MAD values derived from the GENEActiv devices were observed to be slightly higher, particularly for the lower-intensity activities. Monitor-specific hip and wrist ENMO and MAD thresholds showed excellent ability for separating sedentary behaviours from motion-based light-intensity physical activities (in general, AUROCs >0.95), with validation indicating robustness. However, poor classification was experienced when attempting to isolate standing still from sedentary behaviours (in general, AUROCs <0.65). The ENMO and MAD metrics tended to perform similarly across activities and accelerometer brands. Conclusions Researchers can utilise these robust monitor-specific hip and wrist ENMO and MAD

  17. Intensity Thresholds on Raw Acceleration Data: Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) Approaches.

    PubMed

    Bakrania, Kishan; Yates, Thomas; Rowlands, Alex V; Esliger, Dale W; Bunnewell, Sarah; Sanders, James; Davies, Melanie; Khunti, Kamlesh; Edwardson, Charlotte L

    2016-01-01

    (1) To develop and internally-validate Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) thresholds for separating sedentary behaviours from common light-intensity physical activities using raw acceleration data collected from both hip- and wrist-worn tri-axial accelerometers; and (2) to compare and evaluate the performances between the ENMO and MAD metrics. Thirty-three adults [mean age (standard deviation (SD)) = 27.4 (5.9) years; mean BMI (SD) = 23.9 (3.7) kg/m2; 20 females (60.6%)] wore four accelerometers; an ActiGraph GT3X+ and a GENEActiv on the right hip; and an ActiGraph GT3X+ and a GENEActiv on the non-dominant wrist. Under laboratory-conditions, participants performed 16 different activities (11 sedentary behaviours and 5 light-intensity physical activities) for 5 minutes each. ENMO and MAD were computed from the raw acceleration data, and logistic regression and receiver-operating-characteristic (ROC) analyses were implemented to derive thresholds for activity discrimination. Areas under ROC curves (AUROC) were calculated to summarise performances and thresholds were assessed via executing leave-one-out-cross-validations. For both hip and wrist monitor placements, in comparison to the ActiGraph GT3X+ monitors, the ENMO and MAD values derived from the GENEActiv devices were observed to be slightly higher, particularly for the lower-intensity activities. Monitor-specific hip and wrist ENMO and MAD thresholds showed excellent ability for separating sedentary behaviours from motion-based light-intensity physical activities (in general, AUROCs >0.95), with validation indicating robustness. However, poor classification was experienced when attempting to isolate standing still from sedentary behaviours (in general, AUROCs <0.65). The ENMO and MAD metrics tended to perform similarly across activities and accelerometer brands. Researchers can utilise these robust monitor-specific hip and wrist ENMO and MAD thresholds, in order to accurately

  18. The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis ElementsW⃞

    PubMed Central

    Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.

    2003-01-01

    The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974

  19. Cassandra in the Classroom: Teaching and Moral Madness

    ERIC Educational Resources Information Center

    Santoro, Doris A.

    2017-01-01

    Moral madness is a symptom of the moral violence experienced by teachers who are expected to exercise responsibility for their students and their work, but whose moral voice is misrecognized as self-interest and whose moral agency is suppressed. I conduct a feminist ethical analysis of the figure of Cassandra to examine the ways in which teachers…

  20. 46. DETAIL VIEW OF THE MORTAR BOXES, STAMP BATTERIES AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. DETAIL VIEW OF THE MORTAR BOXES, STAMP BATTERIES AND AMALGAMATION TABLES. NOTE FULTON IRON WORKS, SAM FRANCISCO 1908 STAMPED INTO THE MORTAR BOX. ALSO NOTE THE DIES RESTING ON THE OUTSIDE OF THE MORTAR BOX BY THE SECOND STAMP BATTERY FROM THE CAMERA POSITION. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  1. From Creutzfeldt-Jakob disease to the mad cow epidemic.

    PubMed

    Sternbach, G; Dibble, C L; Varon, J

    1997-01-01

    Hans-Gerhard Creutzfeldt and Alfons Jakob independently authored clinical and pathologic descriptions of a new syndrome in the 1920s. This syndrome, which subsequently came to be named after them, was characterized by dementia, motor and coordination abnormalities, a fatal course, and pathologic findings of diffuse spongiform neuronal degeneration. Although it appeared for many years to be little more than a medical curiosity, Creutzfeldt-Jakob disease attained widespread attention by its pathologic similarity to kuru and bovine spongiform encephalopathy, "mad cow disease." Because there are sporadic, familial, and iatrogenic forms of Creutzfeldt-Jakob disease, it is considered to have both genetic and infectious aspects. Although its causation has for some time been ascribed to "slow viruses," the etiology of Creutzfeldt-Jakob disease is currently thought to be due to prions, small proteinaceous infectious particles that have genetic encoding. The debate regarding whether the appearance of atypical Creutzfeldt-Jakob disease can be linked to the epidemic of "mad cow disease" is currently unresolved.

  2. Boxing-acute complications and late sequelae: from concussion to dementia.

    PubMed

    Förstl, Hans; Haass, Christian; Hemmer, Bernhard; Meyer, Bernhard; Halle, Martin

    2010-11-01

    Boxing has received increased public attention and acceptance in recent years. However, this development has not been accompanied by a critical discussion of the early and late health complications. We selectively review recent studies on the acute, subacute, and chronic neuropsychiatric consequences of boxing. Cerebral concussions ("knock-outs") are the most relevant acute consequence of boxing. The number of reported cases of death in the ring seems to have mildly decreased. Subacute neuropsychological deficits appear to last longer than subjective symptoms. The associated molecular changes demonstrate neuronal and glial injury correlated with the number and severity of blows to the head (altered total tau, beta-amyloid, neurofilament light protein, glial fibrillary acidic protein, and neuron-specific enolase). The risk of a punch-drunk syndrome (boxer's dementia, dementia pugilistica) as a late effect of chronic traumatic brain injury is associated with the duration of a boxer's career and with his earlier stamina. There are similarities (e.g. increased risk with ApoE4-polymorphism, beta-amyloid pathology) and differences (more tau pathology in boxers) compared with Alzheimer's disease. Protective gear has led to a remarkable reduction of risks in amateur boxing. Similar measures can also be used in professional boxing, but may decrease the thrill, which does appeal to many supporters.

  3. S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.

    PubMed

    Kakeda, Katsuyuki

    2009-09-01

    Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.

  4. Complete mitochondrial genome of Cuora trifasciata (Chinese three-striped box turtle), and a comparative analysis with other box turtles.

    PubMed

    Li, Wei; Zhang, Xin-Cheng; Zhao, Jian; Shi, Yan; Zhu, Xin-Ping

    2015-01-25

    Cuora trifasciata has become one of the most critically endangered species in the world. The complete mitochondrial genome of C. trifasciata (Chinese three-striped box turtle) was determined in this study. Its mitochondrial genome is a 16,575-bp-long circular molecule that consists of 37 genes that are typically found in other vertebrates. And the basic characteristics of the C. trifasciata mitochondrial genome were also determined. Moreover, a comparison of C. trifasciata with Cuora cyclornata, Cuora pani and Cuora aurocapitata indicated that the four mitogenomics differed in length, codons, overlaps, 13 protein-coding genes (PCGs), ND3, rRNA genes, control region, and other aspects. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 12 protein-coding genes of the genus Cuora indicated the phylogenetic position of C. trifasciata within Cuora. The phylogenetic analysis also showed that C. trifasciata from Vietnam and China formed separate monophyletic clades with different Cuora species. The results of nucleotide base compositions, protein-coding genes and phylogenetic analysis showed that C. trifasciata from these two countries may represent different Cuora species. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.

  6. The Dengue Vector Aedes aegypti Contains a Functional High Mobility Group Box 1 (HMGB1) Protein with a Unique Regulatory C-Terminus

    PubMed Central

    Ribeiro, Fabio Schneider; de Abreu da Silva, Isabel Caetano; Carneiro, Vitor Coutinho; Belgrano, Fabrício dos Santos; Mohana-Borges, Ronaldo; de Andrade Rosa, Ivone; Benchimol, Marlene; Souza, Nathalia Rocha Quintino; Mesquita, Rafael Dias; Sorgine, Marcos Henrique Ferreira; Gazos-Lopes, Felipe; Vicentino, Amanda Roberta Revoredo; Wu, Wenjie; de Moraes Maciel, Renata; da Silva-Neto, Mario Alberto Cardoso; Fantappié, Marcelo Rosado

    2012-01-01

    The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB) proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1). The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich) C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus. PMID:22802955

  7. Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset

    PubMed Central

    Listovsky, Tamar

    2013-01-01

    The switch from activation of the anaphase-promoting complex/cyclosome (APC/C) by CDC20 to CDH1 during anaphase is crucial for accurate mitosis. APC/CCDC20 ubiquitinates a limited set of substrates for subsequent degradation, including Cyclin B1 and Securin, whereas APC/CCDH1 has a broader specificity. This switch depends on dephosphorylation of CDH1 and the APC/C, and on the degradation of CDC20. Here we show, in human cells, that the APC/C inhibitor MAD2L2 also contributes to ensuring the sequential activation of the APC/C by CDC20 and CDH1. In prometaphase, MAD2L2 sequestered free CDH1 away from the APC/C. At the onset of anaphase, MAD2L2 was rapidly degraded by APC/CCDC20, releasing CDH1 to activate the dephosphorylated APC/C. Loss of MAD2L2 led to premature association of CDH1 with the APC/C, early destruction of APC/CCDH1 substrates, and accelerated mitosis with frequent mitotic aberrations. Thus, MAD2L2 helps to ensure a robustly bistable switch between APC/CCDC20 and APC/CCDH1 during the metaphase-to-anaphase transition, thereby contributing to mitotic fidelity. PMID:24100295

  8. [The madness of Herakles in Euripides and Sophocles].

    PubMed

    Charlier, Philippe

    2003-01-01

    In the ancient Greek world madness was conceived as a punishment sent by the gods to men found guilty of various sins. Heralkes, who kills his wife Megara and their sons, is the best example of Greek literature offers of the tragic consequences of mental disease. The article conducts a medical observation of Sophocles' and Euripides' descriptions of Herakles' insanity.

  9. March Money Madness: The Coaches vs. the Professors

    ERIC Educational Resources Information Center

    Cottle, Thomas

    2009-01-01

    College basketball's March Madness has come at a time when one prominent coach's salary has been held up for inspection. Apparently, the fact that the $1.6-million annual income of the University of Connecticut's Jim Calhoun makes him the highest-paid public employee in his state has rankled some people. Or are they more upset that he was caught…

  10. Loss of Hda activity stimulates replication initiation from I-box, but not R4 mutant origins in Escherichia coli.

    PubMed

    Riber, Leise; Fujimitsu, Kazuyuki; Katayama, Tsutomu; Løbner-Olesen, Anders

    2009-01-01

    Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaA(ATP) specific sites (I-boxes, tau-boxes and 6-mer sites) are found. We analysed chromosome replication of cells carrying mutations in conserved regions of oriC. Cells carrying mutations in DnaA-boxes I2, I3, R2, R3 and R5 as well as FIS and IHF binding sites resembled wild-type cells with respect to origin concentration. Initiation of replication in these mutants occurred in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaA(ATP) containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaA(ATP) specific I-boxes. However, competition between I-box mutant and wild-type origins, revealed a positive role of I-boxes on initiation. On the other hand, mutations affecting DnaA-box R4 were found to be compromised for initiation and could not be augmented by an increase in cellular DnaA(ATP)/DnaA(ADP) ratio. Compared with the sites tested here, R4 therefore seems to contribute to initiation most critically.

  11. Antiapoptotic Effect of Recombinant HMGB1 A-box Protein via Regulation of microRNA-21 in Myocardial Ischemia-Reperfusion Injury Model in Rats.

    PubMed

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Zhang, Bing; Chen, Hua

    2016-04-01

    The ~80 amino acid A box DNA-binding domain of high mobility group box 1 (HMGB1) protein antagonizes proinflammatory responses during myocardial ischemia reperfusion (I/R) injury. The exact role of microRNA-21 (miR-21) is unknown, but its altered levels are evident in I/R injury. This study examined the roles of HMGB1 A-box and miR-21 in rat myocardial I/R injury model. Sixty Sprague-Dawley rats were randomly divided into six equal groups: (1) Sham; (2) I/R; (3) Ischemic postconditioning (IPost); (4) AntagomiR-21 post-treatment; (5) Recombinant HMGB1 A-box pretreatment; and (6) Recombinant HMGB1 A-box + antagomiR-21 post-treatment. Hemodynamic indexes, arrhythmia scores, ischemic area and infarct size, myocardial injury, and related parameters were studied. Expression of miR-21 was detected by real-time quantitative polymerase chain reaction (qRT-PCR) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to quantify apoptosis. Left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), maximal rate of pressure rise (+dp/dtmax), and decline (-dp/dtmax) showed clear reduction upon treatment with recombinant HMGB1 A-box. Arrhythmia was relieved and infarct area decreased in the group pretreated with recombinant HMGB1 A-box, compared with other groups. Circulating lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels increased in response to irreversible cellular injury, while creatine kinase MB isoenzymes (CK-MB) and superoxide dismutase (SOD) activities were reduced in the I/R group, which was reversed following recombinant HMGB1 A-box treatment. Interestingly, pretreatment with recombinant HMGB1 A-box showed the most dramatic reductions in miR-21 levels, compared with other groups. Significantly reduced apoptotic index (AI) was seen in recombinant HMGB1 A-box pretreatment group and recombinant HMGB1 A-box + antagomiR-21 post-treatment group, with the former showing a more

  12. Anabolic Properties of High Mobility Group Box Protein-1 in Human Periodontal Ligament Cells In Vitro

    PubMed Central

    Wolf, Michael; Lossdörfer, Stefan; Römer, Piero; Bastos Craveiro, Rogerio; Deschner, James; Jäger, Andreas

    2014-01-01

    High mobility group box protein-1 (HMGB1) is mainly recognized as a chemoattractant for macrophages in the initial phase of host response to pathogenic stimuli. However, recent findings provide evidence for anabolic properties in terms of enhanced proliferation, migration, and support of wound healing capacity of mesenchymal cells suggesting a dual role of the cytokine in the regulation of immune response and subsequent regenerative processes. Here, we examined potential anabolic effects of HMGB1 on human periodontal ligament (PDL) cells in the regulation of periodontal remodelling, for example, during orthodontic tooth movement. Preconfluent human PDL cells (hPDL) were exposed to HMGB1 protein and the influence on proliferation, migration, osteogenic differentiation, and biomineralization was determined by MTS assay, real time PCR, immunofluorescence cytochemistry, ELISA, and von Kossa staining. HMGB1 protein increased hPDL cell proliferation, migration, osteoblastic marker gene expression, and protein production as well as mineralized nodule formation significantly. The present findings support the dual character of HMGB1 with anabolic therapeutic potential that might support the reestablishment of the structural and functional integrity of the periodontium following periodontal trauma such as orthodontic tooth movement. PMID:25525297

  13. Isolation and Functional Analyses of a Putative Floral Homeotic C-Function Gene in a Basal Eudicot London Plane Tree (Platanus acerifolia)

    PubMed Central

    Liu, Guofeng; Bao, Manzhu

    2013-01-01

    The identification of mutants in model plant species has led to the isolation of the floral homeotic function genes that play crucial roles in flower organ specification. However, floral homeotic C-function genes are rarely studied in basal eudicots. Here, we report the isolation and characterization of the AGAMOUS (AG) orthologous gene (PaAG) from a basal eudicot London plane tree (Platanus acerifolia Willd). Phylogenetic analysis showed that PaAG belongs to the C- clade AG group of genes. PaAG was found to be expressed predominantly in the later developmental stages of male and female inflorescences. Ectopic expression of PaAG-1 in tobacco (Nicotiana tabacum) resulted in morphological alterations of the outer two flower whorls, as well as some defects in vegetative growth. Scanning electron micrographs (SEMs) confirmed homeotic sepal-to-carpel transformation in the transgenic plants. Protein interaction assays in yeast cells indicated that PaAG could interact directly with PaAP3 (a B-class MADS-box protein in P. acerifolia), and also PaSEP1 and PaSEP3 (E-class MADS-box proteins in P. acerifolia). This study performed the functional analysis of AG orthologous genes outside core eudicots and monocots. Our findings demonstrate a conserved functional role of AG homolog in London plane tree, which also represent a contribution towards understanding the molecular mechanisms of flower development in this monoecious tree species. PMID:23691041

  14. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses.

    PubMed

    Song, Jianbo; Mo, Xiaowei; Yang, Haiqi; Yue, Luming; Song, Jun; Mo, Beixin

    2017-01-01

    The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.

  15. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses

    PubMed Central

    Yang, Haiqi; Yue, Luming; Song, Jun

    2017-01-01

    The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula. PMID:28771553

  16. The Arabidopsis COP9 SIGNALOSOME INTERACTING F-BOX KELCH 1 protein forms an SCF ubiquitin ligase and regulates hypocotyl elongation.

    PubMed

    Franciosini, Anna; Lombardi, Benedetta; Iafrate, Silvia; Pecce, Valeria; Mele, Giovanni; Lupacchini, Leonardo; Rinaldi, Gianmarco; Kondou, Youichi; Gusmaroli, Giuliana; Aki, Shiori; Tsuge, Tomohiko; Deng, Xing-Wang; Matsui, Minami; Vittorioso, Paola; Costantino, Paolo; Serino, Giovanna

    2013-09-01

    The regulation of protein turnover by the ubiquitin proteasome system (UPS) is a major posttranslational mechanism in eukaryotes. One of the key components of the UPS, the COP9 signalosome (CSN), regulates 'cullin-ring' E3 ubiquitin ligases. In plants, CSN participates in diverse cellular and developmental processes, ranging from light signaling to cell cycle control. In this work, we isolated a new plant-specific CSN-interacting F-box protein, which we denominated CFK1 (COP9 INTERACTING F-BOX KELCH 1). We show that, in Arabidopsis thaliana, CFK1 is a component of a functional ubiquitin ligase complex. We also show that CFK1 stability is regulated by CSN and by proteasome-dependent proteolysis, and that light induces accumulation of the CFK1 transcript in the hypocotyl. Analysis of CFK1 knockdown, mutant, and overexpressing seedlings indicates that CFK1 promotes hypocotyl elongation by increasing cell size. Reduction of CSN levels enhances the short hypocotyl phenotype of CFK1-depleted seedlings, while complete loss of CSN activity suppresses the long-hypocotyl phenotype of CFK1-overexpressing seedlings. We propose that CFK1 (and its regulation by CSN) is a novel component of the cellular mechanisms controlling hypocotyl elongation.

  17. A MAD Model for Gamma-Ray Burst Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd-Ronning, Nicole Marie; Dolence, Joshua C.; Fryer, Christopher Lee

    Here we present a model for the temporal variability of long gamma-ray bursts during the prompt phase (the highly variable first 100 seconds or so), in the context of a magnet- ically arrested disk (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disk. The system transitions in and out of the MAD state, which we relate to the vari- able luminosity of the GRB during the prompt phase, with a characteristic timescale defined by the free fall timemore » in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and timescales, and com- pare them to gamma-ray burst observations. In particular, we show how this model can reproduce the characteristic one second time scale that emerges from various analyses of the prompt emission light curve. Finally, we also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse (Ramirez-Ruiz & Merloni 2001).« less

  18. A MAD Model for Gamma-Ray Burst Variability

    DOE PAGES

    Lloyd-Ronning, Nicole Marie; Dolence, Joshua C.; Fryer, Christopher Lee

    2016-06-09

    Here we present a model for the temporal variability of long gamma-ray bursts during the prompt phase (the highly variable first 100 seconds or so), in the context of a magnet- ically arrested disk (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disk. The system transitions in and out of the MAD state, which we relate to the vari- able luminosity of the GRB during the prompt phase, with a characteristic timescale defined by the free fall timemore » in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and timescales, and com- pare them to gamma-ray burst observations. In particular, we show how this model can reproduce the characteristic one second time scale that emerges from various analyses of the prompt emission light curve. Finally, we also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse (Ramirez-Ruiz & Merloni 2001).« less

  19. BTA Magnet Field Map Archive and MAD Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn,J.W.

    2008-04-01

    This note publishes some and information that has resided in private files. The attached tables were provided by Joseph Skelly from his archives. They show magnetic field measurements versus excitation current for the Booster to AGS transfer line quadrupoles and dipoles based on field measurements [we believe] were done by the Magnet Division. Also given are Ed Blesser's fifth order fits of field versus current. The results are given in 'Tesla' or T-M/M. These tables are attached to provide an archive of this data. The MAD model of the BTA line does have the same values as shown in themore » attached fits so the transfer was correct. MAD uses as its 'gradient' for quads Tesla per meter normalized to rigidity [B-rho]. The model of the BTA line in use uses the T-M/M given in the tables divided by the length to give T M which is then normalized by Brho. Thus, the input to the model appears to be correct. The original model is also attached as part of a memo by Skelly describing it.« less

  20. Prp43p Is a DEAH-Box Spliceosome Disassembly Factor Essential for Ribosome Biogenesis

    PubMed Central

    Combs, D. Joshua; Nagel, Roland J.; Ares, Manuel; Stevens, Scott W.

    2006-01-01

    The known function of the DEXH/D-box protein Prp43p is the removal of the U2, U5, and U6 snRNPs from the postsplicing lariat-intron ribonucleoprotein complex. We demonstrate that affinity-purified Prp43p-associated material includes the expected spliceosomal components; however, we also identify several preribosomal complexes that are specifically purified with Prp43p. Conditional prp43 mutant alleles confer a 35S pre-rRNA processing defect, with subsequent depletion of 27S and 20S precursors. Upon a shift to a nonpermissive temperature, both large and small-ribosomal-subunit proteins accumulate in the nucleolus of prp43 mutants. Pulse-chase analysis demonstrates delayed kinetics of 35S, 27S, and 20S pre-rRNA processing with turnover of these intermediates. Microarray analysis of pre-mRNA splicing defects in prp43 mutants shows a very mild effect, similar to that of nonessential pre-mRNA splicing factors. Prp43p is the first DEXH/D-box protein shown to function in both RNA polymerase I and polymerase II transcript metabolism. Its essential function is in its newly characterized role in ribosome biogenesis of both ribosomal subunits, positioning Prp43p to regulate both pre-mRNA splicing and ribosome biogenesis. PMID:16382144

  1. Regulation of kinetochore recruitment of two essential mitotic spindle checkpoint proteins by Mps1 phosphorylation.

    PubMed

    Xu, Quanbin; Zhu, Songcheng; Wang, Wei; Zhang, Xiaojuan; Old, William; Ahn, Natalie; Liu, Xuedong

    2009-01-01

    Mps1 is a protein kinase that plays essential roles in spindle checkpoint signaling. Unattached kinetochores or lack of tension triggers recruitment of several key spindle checkpoint proteins to the kinetochore, which delays anaphase onset until proper attachment or tension is reestablished. Mps1 acts upstream in the spindle checkpoint signaling cascade, and kinetochore targeting of Mps1 is required for subsequent recruitment of Mad1 and Mad2 to the kinetochore. The mechanisms that govern recruitment of Mps1 or other checkpoint proteins to the kinetochore upon spindle checkpoint activation are incompletely understood. Here, we demonstrate that phosphorylation of Mps1 at T12 and S15 is required for Mps1 recruitment to the kinetochore. Mps1 kinetochore recruitment requires its kinase activity and autophosphorylation at T12 and S15. Mutation of T12 and S15 severely impairs its kinetochore association and markedly reduces recruitment of Mad2 to the kinetochore. Our studies underscore the importance of Mps1 autophosphorylation in kinetochore targeting and spindle checkpoint signaling.

  2. Sport medicine and the ethics of boxing.

    PubMed

    Leclerc, S; Herrera, C D

    1999-12-01

    In the light of medical evidence of the health risks associated with boxing, a watchful agnostic position among sport physicians is no longer justifiable. The normal activity in a boxing match places the athletes at risk of head injury, some of which may be difficult to detect and impossible to repair. This suggests that sport physicians and others expert in the prevention and diagnosis of such injuries should take a public stand against boxing, as other medical associations have. Although there is a need for continuing research into the health risks, doctors can in the interim take steps to increase public awareness of these risks. Sport physicians in particular can make a strong public statement by also ending their professional involvement with boxing. This need not be interpreted as paternalism; doctors are qualified neither to make laws nor to restrict private behaviour. Sport physicians are, however, well equipped to advise those who do make laws and those who choose to engage in boxing. In the end, because this stance against boxing will probably reduce the number of brain injuries in certain athletes, autonomy will be preserved, rather than restricted.

  3. Sport medicine and the ethics of boxing

    PubMed Central

    Leclerc, S.; Herrera, C. D.

    1999-01-01

    In the light of medical evidence of the health risks associated with boxing, a watchful agnostic position among sport physicians is no longer justifiable. The normal activity in a boxing match places the athletes at risk of head injury, some of which may be difficult to detect and impossible to repair. This suggests that sport physicians and others expert in the prevention and diagnosis of such injuries should take a public stand against boxing, as other medical associations have. Although there is a need for continuing research into the health risks, doctors can in the interim take steps to increase public awareness of these risks. Sport physicians in particular can make a strong public statement by also ending their professional involvement with boxing. This need not be interpreted as paternalism; doctors are qualified neither to make laws nor to restrict private behaviour. Sport physicians are, however, well equipped to advise those who do make laws and those who choose to engage in boxing. In the end, because this stance against boxing will probably reduce the number of brain injuries in certain athletes, autonomy will be preserved, rather than restricted. 


 PMID:10597855

  4. Duplication and Whorl-Specific Down-Regulation of the Obligate AP3-PI Heterodimer Genes Explain the Origin of Paeonia lactiflora Plants with Spontaneous Corolla Mutation.

    PubMed

    Gong, Pichang; Ao, Xiang; Liu, Gaixiu; Cheng, Fangyun; He, Chaoying

    2017-03-01

    Herbaceous peony (Paeonia lactiflora) is a globally important ornamental plant. Spontaneous floral mutations occur frequently during cultivation, and are selected as a way to release new cultivars, but the underlying evolutionary developmental genetics remain largely elusive. Here, we investigated a collection of spontaneous corolla mutational plants (SCMPs) whose other floral organs were virtually unaffected. Unlike the corolla in normal plants (NPs) that withered soon after fertilization, the transformed corolla (petals) in SCMPs was greenish and persistent similar to the calyx (sepals). Epidermal cellular morphology of the SCMP corolla was also similar to that of calyx cells, further suggesting a sepaloid corolla in SCMPs. Ten floral MADS-box genes from these Paeonia plants were comparatively characterized with respect to sequence and expression. Codogenic sequence variation of these MADS-box genes was not linked to corolla changes in SCMPs. However, we found that both APETALA3 (AP3) and PISTILLATA (PI) lineages of B-class MADS-box genes were duplicated, and subsequent selective expression alterations of these genes were closely associated with the origin of SCMPs. AP3-PI obligate heterodimerization, essential for organ identity of corolla and stamens, was robustly detected. However, selective down-regulation of these duplicated genes might result in a reduction of this obligate heterodimer concentration in a corolla-specific manner, leading to the sepaloid corolla in SCMPs, thus representing a new sepaloid corolla model taking advantage of gene duplication. Our work suggests that modifying floral MADS-box genes could facilitate the breeding of novel cultivars with distinct floral morphology in ornamental plants, and also provides new insights into the functional evolution of the MADS-box genes in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please

  5. Phase II evaluation of anti-MAdCAM antibody PF-00547659 in the treatment of Crohn's disease: report of the OPERA study.

    PubMed

    Sandborn, William J; Lee, Scott D; Tarabar, Dino; Louis, Edouard; Klopocka, Maria; Klaus, Jochen; Reinisch, Walter; Hébuterne, Xavier; Park, Dong-Il; Schreiber, Stefan; Nayak, Satyaprakash; Ahmad, Alaa; Banerjee, Anindita; Brown, Lisa S; Cataldi, Fabio; Gorelick, Kenneth J; Cheng, John B; Hassan-Zahraee, Mina; Clare, Robert; D'Haens, Geert R

    2017-10-05

    This phase II, randomised, double-blind, placebo-controlled clinical trial was designed to evaluate the efficacy and safety of PF-00547659, a fully human monoclonal antibody that binds to human mucosal addressin cell adhesion molecule (MAdCAM) to selectively reduce lymphocyte homing to the intestinal tract, in patients with moderate-to-severe Crohn's disease (CD). Eligible adults were aged 18-75 years, with active moderate-to-severe CD (Crohn's Disease Activity Index (CDAI) 220-450), a history of failure or intolerance to antitumour necrosis factor and/or immunosuppressive agents, high-sensitivity C reactive protein >3.0 mg/L and ulcers on colonoscopy. Patients were randomised to PF-00547659 22.5 mg, 75 mg or 225 mg or placebo. The primary endpoint was CDAI 70-point decrease from baseline (CDAI-70) at week 8 or 12. In all, 265 patients were eligible for study entry. Although CDAI-70 response was not significantly different with placebo versus PF-00547659 treatment at weeks 8 or 12, remission rate was greater in patients with higher baseline C reactive protein (>5 mg/L vs >18.8 mg/L, respectively). Soluble MAdCAM decreased significantly from baseline to week 2 in a dose-related manner and remained low during the study in PF-00547659-treated patients. Circulating β 7 + CD4+ central memory T-lymphocytes increased at weeks 8 and 12 with PF-00547659 treatment. No safety signal was seen. Clinical endpoint differences between PF-00547659 and placebo did not reach statistical significance in patients with moderate-to-severe CD. PF-00547659 was pharmacologically active, as shown by a sustained dose-related decrease in soluble MAdCAM and a dose-related increase in circulating β 7 + central memory T cells. NCT01276509; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Protein secretion and surface display in Gram-positive bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique M.

    2012-01-01

    The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983

  7. Increased expression of sex determining region Y-box 11 (SOX11) in cutaneous malignant melanoma.

    PubMed

    Jian, Jiao; Guoying, Wang; Jing, Zhao

    2013-08-01

    To observe sex determining region Y-box 11 (SOX11) gene expression in cutaneous malignant melanoma and its effect on tumour cell proliferation. Clinicopathological data and tissue samples from patients with cutaneous malignant melanoma, together with tissue samples from healthy volunteers (controls), were retrospectively reviewed. Protein levels of SOX11 and the antigen identified by monoclonal antibody Ki-67 (Ki-67) in skin lesions were analysed using immunohistochemistry. The correlation between protein levels and clinipathological parameters was investigated. Out of 40 patient samples, 25 (62.5%) were positive for SOX11 protein in malignant melanoma tissue. This was significantly higher than in 40 control tissue samples, in which no SOX11 protein was detected. Presence of SOX11 protein was positively related to the proliferation index of cutaneous malignant melanoma tumour cells. Presence of SOX11 protein in cutaneous malignant melanoma was related to tumour type, tumour location, lymph node metastasis and 5-year survival rate. Human cutaneous malignant melanoma tissues expressed high levels of SOX11 compared with healthy controls, suggesting that SOX11 may be a new prognostic marker for malignant melanoma.

  8. A new regulatory pathway of mRNA export by an F-box protein, Mdm30.

    PubMed

    Durairaj, Geetha; Lahudkar, Shweta; Bhaumik, Sukesh R

    2014-02-01

    Mdm30, an F-box protein in yeast, has been recently shown to promote mRNA export. However, it remains unknown how Mdm30 facilitates mRNA export. Here, we show that Mdm30 targets the Sub2 component of the TREX (Transcription/Export) complex for ubiquitylation and subsequent proteasomal degradation. Such a targeted degradation of Sub2 enhances the recruitment of the mRNA export adaptor, Yra1, to the active genes to promote mRNA export. Together, these results elucidate that Mdm30 promotes mRNA export by lowering Sub2's stability and consequently enhancing Yra1 recruitment, thus illuminating new regulatory mechanisms of mRNA export by Mdm30.

  9. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    PubMed

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  10. A MAD Explanation for the Correlation between Bulk Lorentz Factor and Minimum Variability Timescale

    NASA Astrophysics Data System (ADS)

    Lloyd-Ronning, Nicole; Lei, Wei-hua; Xie, Wei

    2018-04-01

    We offer an explanation for the anti-correlation between the minimum variability timescale (MTS) in the prompt emission light curve of gamma-ray bursts (GRBs) and the estimated bulk Lorentz factor of these GRBs, in the context of a magnetically arrested disk (MAD) model. In particular, we show that previously derived limits on the maximum available energy per baryon in a Blandford-Znajek jet leads to a relationship between the characteristic MAD timescale in GRBs and the maximum bulk Lorentz factor: tMAD∝Γ-6, somewhat steeper than (although within the error bars of) the fitted relationship found in the GRB data. Similarly, the MAD model also naturally accounts for the observed anti-correlation between MTS and gamma-ray luminosity L in the GRB data, and we estimate the accretion rates of the GRB disk (given these luminosities) in the context of this model. Both of these correlations (MTS - Γ and MTS - L) are also observed in the AGN data, and we discuss the implications of our results in the context of both GRB and blazar systems.

  11. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Qiaozhen; Kim, Dong Hyun; Dereli, Ihsan

    Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed “closure motifs”. The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain–closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet. We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 “poremore » loops”, which then unfold MAD2 in the presence of ATP. N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain–closure motif complexes by TRIP13.« less

  12. Multi Media Madness--Improving Professional Development for Instructional Technology

    ERIC Educational Resources Information Center

    Thibeault, Nancy

    2004-01-01

    Multi Media Madness (3Ms) was a faculty development program where participants were guided by mentors through the development of a multimedia project. Nine faculty participants attended a week long workshop session in June 2003 taught by three mentors. At the end of the workshop series, the participants submitted a project plan that was reviewed,…

  13. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1

    PubMed Central

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    ABSTRACT Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp−/− mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451

  14. The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing.

    PubMed

    Bortolamiol, Diane; Pazhouhandeh, Maghsoud; Marrocco, Katia; Genschik, Pascal; Ziegler-Graff, Véronique

    2007-09-18

    Plants employ post-transcriptional gene silencing (PTGS) as an antiviral defense response. In this mechanism, viral-derived small RNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. ARGONAUTE1 (AGO1) is a key component of RISC: it carries the RNA slicer activity. As a counter-defense, viruses have evolved various proteins that suppress PTGS. Recently, we showed that the Polerovirus P0 protein carries an F box motif required to form an SCF-like complex, which is also essential for P0's silencing suppressor function. Here, we investigate the molecular mechanism by which P0 impairs PTGS. First we show that P0's expression does not affect the biogenesis of primary siRNAs in an inverted repeat-PTGS assay, but it does affect their activity. Moreover, P0's expression in transformed Arabidopsis plants leads to various developmental abnormalities reminiscent of mutants affected in miRNA pathways, which is accompanied by enhanced levels of several miRNA-target transcripts, suggesting that P0 acts at the level of RISC. Interestingly, ectopic expression of P0 triggered AGO1 protein decay in planta. Finally, we provide evidence that P0 physically interacts with AGO1. Based on these results, we propose that P0 hijacks the host SCF machinery to modulate gene silencing by destabilizing AGO1.

  15. Bimolecular fluorescence complementation studies support an in vivo interaction between the F-BOX protein COLD TEMPERATURE GERMINATING10 and PHYTOCHROME INTERACTING FACTOR1

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis thaliana F-BOX protein COLD TEMPERATURE GERMINATING10 (CTG10) was identified from an activation tagged mutant screen as causing seeds to complete germination faster than wild type at 10°C when its expression is increased (Salaita et al. 2005. J. Exp. Bot. 56: 2059). Our unpublished d...

  16. Combining multiple positive training sets to generate confidence scores for protein-protein interactions.

    PubMed

    Yu, Jingkai; Finley, Russell L

    2009-01-01

    High-throughput experimental and computational methods are generating a wealth of protein-protein interaction data for a variety of organisms. However, data produced by current state-of-the-art methods include many false positives, which can hinder the analyses needed to derive biological insights. One way to address this problem is to assign confidence scores that reflect the reliability and biological significance of each interaction. Most previously described scoring methods use a set of likely true positives to train a model to score all interactions in a dataset. A single positive training set, however, may be biased and not representative of true interaction space. We demonstrate a method to score protein interactions by utilizing multiple independent sets of training positives to reduce the potential bias inherent in using a single training set. We used a set of benchmark yeast protein interactions to show that our approach outperforms other scoring methods. Our approach can also score interactions across data types, which makes it more widely applicable than many previously proposed methods. We applied the method to protein interaction data from both Drosophila melanogaster and Homo sapiens. Independent evaluations show that the resulting confidence scores accurately reflect the biological significance of the interactions.

  17. Rapid spatial equilibration of a particle in a box.

    PubMed

    Malabarba, Artur S L; Linden, Noah; Short, Anthony J

    2015-12-01

    We study the equilibration behavior of a quantum particle in a one-dimensional box, with respect to a coarse-grained position measurement (whether it lies in a certain spatial window or not). We show that equilibration in this context indeed takes place and does so very rapidly, in a time comparable to the time for the initial wave packet to reach the edges of the box. We also show that, for this situation, the equilibration behavior is relatively insensitive to the precise choice of position measurements or initial condition.

  18. IL-1β mediating high mobility group box protein-1 expression in condylar chondrocyte during temporomandibular joint inflammation.

    PubMed

    Li, Cheng; Cai, Hengxing; Meng, Qinggong; Feng, Yaping; Guo, Huilin; Fang, Wei; Long, Xing

    2016-08-01

    Temporomandibular joint (TMJ) osteoarthritis(OA)characterized with cartilage degen-eration is associated with inflammation. High mobility group box chromosomal protein-1(HMGB-1)is a potent mediator of inflammation and the trigger of OA. The expression of HMGB-1 in TMJ OA was uncovered, but the role of HMGB-1 in TMJ cartilage degeneration is not fully understood. In this study, the regulation of HMGB-1 in TMJ condylar cartilage was revealed. A complete Freund's adjuvant (CFA)-induced TMJ inflammation animal model was employed and the expression of HMGB-1 was detected at 1st, 2nd, and 6th weeks by immunohistochemistry. TMJ condylar chondrocytes were incubated with IL-1β (10 and 40 ng/ml) at 24, 48, and 72 h, and the translocation and protein level of HMGB-1 were evaluated by immunofluorescence and Western blot. Nuclear HMGB-1 staining was predominantly located in chondrocytes of both the fibrosis and proliferative zones in healthy TMJ. 1st week and 2nd week after CFA injection, immunoreaction could be detected in the cytoplasms of HMGB-1-positive cells and cartilage matrix especially in hypertrophic zone. At 6th week after CFA injection, cartilage matrix expression was disappeared and the cytoplasm expression of HMGB-1 was very weak in hypertrophic zone. HMGB-1 was translocated from the nucleus to the cytoplasm at 48 h after incubated with IL-1β (10 ng/ml and 40 ng/ml). The protein level of HMGB-1 was increased after stimulation and had a peak at 48 h. HMGB-1 might be associated with TMJ inflammation and OA. Insight into the role of HMGB-1 in TMJ inflammation is helpful to add the new knowledge into the pathogenesis of TMJ OA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Prions: Protein Rebels with a Cause!

    ERIC Educational Resources Information Center

    Marshall, Karen E.; Serpell, Louise C.

    2017-01-01

    Traditionally we consider infection to arise from viruses, bacteria and parasites. Prions are infectious proteins without any nucleic acids, and therefore do not represent living things. Despite this, they have the ability to replicate themselves and cause diseases such as mad cow disease (bovine spongiform encepthalopathy) and human…

  20. Role of SKP1-CUL1-F-Box-Protein (SCF) E3 Ubiquitin Ligases in Skin Cancer

    PubMed Central

    Xie, Chuan-Ming; Wei, Wenyi; Sun, Yi

    2013-01-01

    Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin—proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis. PMID:23522382

  1. Highly conserved sequences mediate the dynamic interplay of basic helix-loop-helix proteins regulating retinogenesis.

    PubMed

    Hernandez, Julio; Matter-Sadzinski, Lidia; Skowronska-Krawczyk, Dorota; Chiodini, Florence; Alliod, Christine; Ballivet, Marc; Matter, Jean-Marc

    2007-12-28

    The atonal homolog 5 (ATH5) protein is central to the transcriptional network regulating the specification of retinal ganglion cells, and its expression comes under the spatiotemporal control of several basic helix-loop-helix (bHLH) proteins in the course of retina development. Monitoring the in vivo occupancy of the ATH5 promoter by the ATH5, Ngn2, and NeuroM proteins and analyzing the DNA motifs they bind, we show that three evolutionarily conserved E-boxes are required for the bHLH proteins to control the different phases of ATH5 expression. E-box 4 mediates the activity of Ngn2, ATH5, and NeuroM along the pathway leading to the conversion of progenitors into newborn neurons. E-box 1, by mediating the antagonistic effects of Ngn2 and HES1 in proliferating progenitors, controls the expansion of the ATH5 expression domain in early retina. E-box 2 is required for the positive feedback by ATH5 that underlies the up-regulation of ATH5 expression when progenitors are going through their last cell cycle. The combinatorial nature of the regulation of the ATH5 promoter suggests that the bHLH proteins involved have no assigned E-boxes but use a common set at which they either cooperate or compete to finely tune ATH5 expression as development proceeds.

  2. The social structure of the medical model of madness and the physician's role.

    PubMed

    Fernandez, G

    1981-08-01

    In this paper the origins of the medical model of madness are traced in the sociohistorical context of institutional and professional development. The paper establishes the emergence of the three primary conditions necessary for the medical model to exist: (a) the view that madness is a separate ontological reality which can be differentiated from the insane person; (b) the concept that insane people do not have a completely free will and therefore cannot be held responsible for their actions; and (c) the creation of specific criteria to classify the disease into empirically derived nosologies. These conditions and their acceptance as an explanatory paradigm of insanity result from the political economy of the late Middle Ages and are reflected in the institutional arrangement for insane persons of the 17th and 18th centuries. Finally, the role of the physician-psychiatrist is explained in terms of an ability to (a) serve as a technician for the new political forces, and (b) dislodge the moral entrepreneurs and become the only profession able to offer a proper scientific and secular treatment of madness. The psychiatrist is presented as a by-product of the dominance of the medical model rather than as the agent who created it.

  3. An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature

    NASA Astrophysics Data System (ADS)

    Yilmaz, S.; Kirak, M.

    2018-05-01

    In the present study, we have studied theoretically the influences of donor impurity position on the binding energy of a GaAs cubic quantum box structure. The binding energy is calculated as functions of the position of impurity, electric field, temperature and hydrostatic pressure. The variational method is employed to obtain the energy eigenvalues of the structure in the framework of the effective mass approximation. It has been found that the impurity positions with electric field, pressure and temperature have an important effect on the binding energy of structure considered. The results can be used to manufacture semiconductor device application by manipulating the binding energy with the impurity positions, electric field, pressure and temperature.

  4. Anti-MAdCAM Antibody Increases ß7+ T Cells and CCR9 Gene Expression in the Peripheral Blood of Patients With Crohn's Disease.

    PubMed

    Hassan-Zahraee, Mina; Banerjee, Anindita; Cheng, John B; Zhang, Weidong; Ahmad, Alaa; Page, Karen; von Schack, David; Zhang, Baohong; Martin, Steven W; Nayak, Satyaprakash; Reddy, Padma; Xi, Li; Neubert, Hendrik; Fernandez Ocana, Mireia; Gorelick, Ken; Clare, Robert; Vincent, Michael; Cataldi, Fabio; Hung, Kenneth

    2018-01-05

    To define pharmacodynamic biomarkers in the peripheral blood of patients with Crohn's disease [CD] after treatment with PF-00547659, an anti-human mucosal addressin cell adhesion molecule-1 [MAdCAM-1] monoclonal antibody. In this Phase 2, randomised, double-blind, controlled study [OPERA], blood samples were analysed from patients with moderate to severe active CD who received placebo or 22.5 mg, 75 mg, or 225 mg of PF-00547659 subcutaneously at baseline and at Weeks 4 and 8, with follow-up at Week 12. Soluble MAdCAM [sMAdCAM] was measured by mass spectrometry, β7-expressing T cells by flow cytometry, and gene transcriptome by RNA sequencing. A slight increase in sMAdCAM was measured in the placebo group from baseline to Week 12 [6%], compared with significant decreases in all PF-00547659 groups [-87% to -98%]. A slight increase from baseline to Week 12 was observed in frequency and molecules of equivalent soluble fluorochrome for β7+ central memory T cells in the placebo group [4%], versus statistically significant increases in the active treatment groups [48% to 81%]. Similar trends were seen for β7+ effector memory T cells [placebo, 8%; PF-00547659, 84-138%] and β7+ naïve T cells [8%; 13-50%]. CCR9 gene expression had statistically significant up-regulation [p = 1.09e-06; false discovery rate < 0.1] with PF-00547659 treatment, and was associated with an increase in β7+ T cells. Results of the OPERA study demonstrate positive pharmacology and dose-dependent changes in pharmacodynamic biomarker measurements in blood, including changes in cellular composition of lymphocytes and corresponding CCR9 gene expression changes. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  5. Organization, regulatory sequences, and alternatively spliced transcripts of the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampaio, S.O.; Mei, C.; Butcher, E.C.

    The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less

  6. Venom Proteome of the Box Jellyfish Chironex fleckeri

    PubMed Central

    Brinkman, Diane L.; Aziz, Ammar; Loukas, Alex; Potriquet, Jeremy; Seymour, Jamie; Mulvenna, Jason

    2012-01-01

    The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious health effects caused by C. fleckeri and related species, we used a proteomic approach to profile the protein components of C. fleckeri venom. Collectively, 61 proteins were identified, including toxins and proteins important for nematocyte development and nematocyst formation (nematogenesis). The most abundant toxins identified were isoforms of a taxonomically restricted family of potent cnidarian proteins. These toxins are associated with cytolytic, nociceptive, inflammatory, dermonecrotic and lethal properties and expansion of this important protein family goes some way to explaining the destructive and potentially fatal effects of C. fleckeri venom. Venom proteins and their post-translational modifications (PTMs) were further characterized using toxin-specific antibodies and phosphoprotein/glycoprotein-specific stains. Results indicated that glycosylation is a common PTM of the toxin family while a lack of cross-reactivity by toxin-specific antibodies infers there is significant divergence in structure and possibly function among family members. This study provides insight into the depth and diversity of protein toxins produced by harmful box jellyfish and represents the first description of a cubozoan jellyfish venom proteome. PMID:23236347

  7. From MAD to SAD: The Italian experience for the low-frequency aperture array of SKA1-LOW

    NASA Astrophysics Data System (ADS)

    Bolli, P.; Pupillo, G.; Virone, G.; Farooqui, M. Z.; Lingua, A.; Mattana, A.; Monari, J.; Murgia, M.; Naldi, G.; Paonessa, F.; Perini, F.; Pluchino, S.; Rusticelli, S.; Schiaffino, M.; Schillirò, F.; Tartarini, G.; Tibaldi, A.

    2016-03-01

    This paper describes two small aperture array demonstrators called Medicina and Sardinia Array Demonstrators (MAD and SAD, respectively). The objectives of these instruments are to acquire experience and test new technologies for a possible application to the low-frequency aperture array of the low-frequency telescope of the Square Kilometer Array phase 1 (SKA1-LOW). The MAD experience was concluded in 2014, and it turned out to be an important test bench for implementing calibration techniques based on an artificial source mounted in an aerial vehicle. SAD is based on 128 dual-polarized Vivaldi antennas and is 1 order of magnitude larger than MAD. The architecture and the station size of SAD, which is along the construction phase, are more similar to those under evaluation for SKA1-LOW, and therefore, SAD is expected to provide useful hints for SKA1-LOW.

  8. Reviewing the Link between Creativity and Madness: A Postmodern Perspective

    ERIC Educational Resources Information Center

    Koh, Caroline

    2006-01-01

    Researchers on creativity and psychology have long been fascinated with the high incidence of psychotic behavior amongst geniuses and individuals of exceptional creativity. The aims of this paper are first, to review the existing findings for a better insight into the socio-contextual factors underpinning the mad genius conundrum, and secondly, to…

  9. An Act of Methodology: A Document in Madness--Writing Ophelia

    ERIC Educational Resources Information Center

    Steinnes, Jenny

    2012-01-01

    This paper is an attempt to stage some questions concerning methodology and education, inspired by Ophelia in Shakespeare's "Hamlet" and by Jacques Derrida's poetic philosophical oeuvres. What are at stake are the long traditions of preferences of sanity over madness, friend over enemy, male over female and of clean, unambiguous univocal language…

  10. Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eucarya.

    PubMed

    Russell, Anthony G; Watanabe, Yoh-ichi; Charette, J Michael; Gray, Michael W

    2005-01-01

    Box C/D ribonucleoprotein (RNP) particles mediate O2'-methylation of rRNA and other cellular RNA species. In higher eukaryotic taxa, these RNPs are more complex than their archaeal counterparts, containing four core protein components (Snu13p, Nop56p, Nop58p and fibrillarin) compared with three in Archaea. This increase in complexity raises questions about the evolutionary emergence of the eukaryote-specific proteins and structural conservation in these RNPs throughout the eukaryotic domain. In protists, the primarily unicellular organisms comprising the bulk of eukaryotic diversity, the protein composition of box C/D RNPs has not yet been extensively explored. This study describes the complete gene, cDNA and protein sequences of the fibrillarin homolog from the protozoon Euglena gracilis, the first such information to be obtained for a nucleolus-localized protein in this organism. The E.gracilis fibrillarin gene contains a mixture of intron types exhibiting markedly different sizes. In contrast to most other E.gracilis mRNAs characterized to date, the fibrillarin mRNA lacks a spliced leader (SL) sequence. The predicted fibrillarin protein sequence itself is unusual in that it contains a glycine-lysine (GK)-rich domain at its N-terminus rather than the glycine-arginine-rich (GAR) domain found in most other eukaryotic fibrillarins. In an evolutionarily diverse collection of protists that includes E.gracilis, we have also identified putative homologs of the other core protein components of box C/D RNPs, thereby providing evidence that the protein composition seen in the higher eukaryotic complexes was established very early in eukaryotic cell evolution.

  11. Projection optics box

    DOEpatents

    Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  12. Increased helix and protein stability through the introduction of a new tertiary hydrogen bond.

    PubMed

    Peterson, R W; Nicholson, E M; Thapar, R; Klevit, R E; Scholtz, J M

    1999-03-12

    In an effort to quantify the importance of hydrogen bonding and alpha-helix formation to protein stability, a capping box motif was introduced into the small phosphocarrier protein HPr. Previous studies had confirmed that Ser46, at the N-cap position of the short helix-B in HPr, serves as an N-cap in solution. Thus, only a single-site mutation was required to produce a canonical S-X-X-E capping box: Lys49 at the N3 position was substituted with a glutamic acid residue. Thermal and chemical denaturation studies on the resulting K49E HPr show that the designed variant is approximately 2 kcal mol-1 more stable than the wild-type protein. However, NMR studies indicate that the side-chain of Glu49 does not participate in the expected capping H-bond interaction, but instead forms a new tertiary H-bond that links helix-B to the four-stranded beta-sheet of HPr. Here, we demonstrate that a strategy in which new non-native H-bonds are introduced can generate proteins with increased stability. We discuss why the original capping box design failed, and compare the energetic consequences of the new tertiary side-chain to main-chain H-bond with a local (helix-capping) side-chain to main-chain H-bond on the protein's global stability. Copyright 1999 Academic Press.

  13. Genomic Organization, Phylogenetic Comparison and Differential Expression of the SBP-Box Family Genes in Grape

    PubMed Central

    Hou, Hongmin; Li, Jun; Gao, Min; Singer, Stacy D.; Wang, Hao; Mao, Linyong; Fei, Zhangjun; Wang, Xiping

    2013-01-01

    Background The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. Methodology/Principal Findings Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis ‘Shang-24’ revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. Conclusion The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop. PMID:23527172

  14. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Linking structural biology with genome research: Beamlines for the Berlin ``Protein Structure Factory'' initiative

    NASA Astrophysics Data System (ADS)

    Illing, Gerd; Saenger, Wolfram; Heinemann, Udo

    2000-06-01

    The Protein Structure Factory will be established to characterize proteins encoded by human genes or cDNAs, which will be selected by criteria of potential structural novelty or medical or biotechnological usefulness. It represents an integrative approach to structure analysis combining bioinformatics techniques, automated gene expression and purification of gene products, generation of a biophysical fingerprint of the proteins and the determination of their three-dimensional structures either by NMR spectroscopy or by X-ray diffraction. The use of synchrotron radiation will be crucial to the Protein Structure Factory: high brilliance and tunable wavelengths are prerequisites for fast data collection, the use of small crystals and multiwavelength anomalous diffraction (MAD) phasing. With the opening of BESSY II, direct access to a third-generation XUV storage ring source with excellent conditions is available nearby. An insertion device with two MAD beamlines and one constant energy station will be set up until 2001.

  16. Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation.

    PubMed

    Sun, Penglin; Li, Shu; Lu, Dihong; Williams, Justin S; Kao, Teh-Hui

    2015-07-01

    Many flowering plants show self-incompatibility, an intra-specific reproductive barrier by which pistils reject self-pollen to prevent inbreeding and accept non-self pollen to promote out-crossing. In Petunia, the polymorphic S-locus determines self/non-self recognition. The locus contains a gene encoding an S-RNase, which controls pistil specificity, and multiple S-locus F-box (SLF) genes that collectively control pollen specificity. Each SLF is a component of an SCF (Skp1/Cullin/F-box) complex that is responsible for mediating degradation of non-self S-RNase(s), with which the SLF interacts, via the ubiquitin-26S proteasome pathway. A complete set of SLFs is required to detoxify all non-self S-RNases to allow cross-compatible pollination. Here, we show that SLF1 of Petunia inflata is itself subject to degradation via the ubiquitin-26S proteasome pathway, and identify an 18 amino acid sequence in the C-terminal region of S2 -SLF1 (SLF1 of S2 haplotype) that contains a degradation motif. Seven of the 18 amino acids are conserved among all 17 SLF proteins of S2 haplotype and S3 haplotype involved in pollen specificity, suggesting that all SLF proteins are probably subject to similar degradation. Deleting the 18 amino acid sequence from S2 -SLF1 stabilized the protein but abolished its function in self-incompatibility, suggesting that dynamic cycling of SLF proteins is an integral part of their function in self-incompatibility. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Nuclear weapons in the 1980s: MAD versus NUTS. Mutual hostage relationship of the superpowers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeny, S.M. Jr.; Panofsky, W.K.H.

    Critics of the strategic relationship of Mutual Assured Destruction (MAD) developed during the 1960s claim it immorally holds entire civilian populations hostage. Some advocate the Nuclear Utilization Target Selection (NUTS) concept, while others argue for a defense-oriented military posture. The interrelationships of these concepts are examined against the background of stockpiled nuclear weapons capable of massive devastation, the technical limits to defense, and the uncertainty that a nuclear war could be controlled. The evidence shows that a MAD world prevails despite NUTS proposals, which may have increased the danger by giving nuclear war the illusion of acceptability. (DCK)

  18. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins.

    PubMed

    Nelson, David E; Randle, Suzanne J; Laman, Heike

    2013-10-09

    F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining 'orphans'. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.

  19. Thin Disks Gone MAD: Magnetically Arrested Accretion in the Thin Regime

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan C.; Reynolds, Christopher S.

    2015-01-01

    The collection and concentration of surrounding large scale magnetic fields by black hole accretion disks may be required for production of powerful, spin driven jets. So far, accretion disks have not been shown to grow sufficient poloidal flux via the turbulent dynamo alone to produce such persistent jets. Also, there have been conflicting answers as to how, or even if, an accretion disk can collect enough magnetic flux from the ambient environment. Extending prior numerical studies of magnetically arrested disks (MAD) in the thick (angular height, H/R~1) and intermediate (H/R~.2-.6) accretion regimes, we present our latest results from fully general relativistic MHD simulations of the thinnest BH (H/R~.1) accretion disks to date exhibiting the MAD mode of accretion. We explore the significant deviations of this accretion mode from the standard picture of thin, MRI-driven accretion, and demonstrate the accumulation of large-scale magnetic flux.

  20. The small serine-threonine protein SIP2 interacts with STE12 and is involved in ascospore germination in Sordaria macrospora.

    PubMed

    Elleuche, Skander; Bernhards, Yasmine; Schäfers, Christian; Varghese, Jans Manjali; Nolting, Nicole; Pöggeler, Stefanie

    2010-12-01

    In fungi, the homoeodomain protein STE12 controls diverse developmental processes, and derives its regulatory specificity from different protein interactions. We recently showed that in the homothallic ascomycete Sordaria macrospora, STE12 is essential for ascospore development, and is able to interact with the alpha-domain mating-type protein SMTA-1 and the MADS box protein MCM1. To further evaluate the functional roles of STE12, we used the yeast two-hybrid approach to identify new STE12-interacting partners. Using STE12 as bait, a small, serine-threonine-rich protein (designated STE12-interacting protein 2, SIP2) was identified. SIP2 is conserved among members of the fungal class Sordariomycetes. In vivo localization studies revealed that SIP2 was targeted to the nucleus and cytoplasm. The STE12/SIP2 interaction was further confirmed in vivo by bimolecular fluorescence complementation. Nuclear localization of SIP2 was apparently mediated by STE12. Unlike deletion of ste12, deletion of sip2 in S. macrospora led to only a slight decrease in ascospore germination, and no other obvious morphological phenotype. In comparison to the Δste12 single knockout strain, ascospore germination was significantly increased in a Δsip2/ste12 double knockout strain. Our data provide evidence for a regulatory role of the novel fungal protein SIP2 in ascospore germination. Copyright © 2010 Elsevier GmbH. All rights reserved.

  1. Anti-MAdCAM Antibody Increases ß7+ T Cells and CCR9 Gene Expression in the Peripheral Blood of Patients With Crohn’s Disease

    PubMed Central

    Hassan-Zahraee, Mina; Banerjee, Anindita; Cheng, John B; Zhang, Weidong; Ahmad, Alaa; Page, Karen; von Schack, David; Zhang, Baohong; Martin, Steven W; Nayak, Satyaprakash; Reddy, Padma; Xi, Li; Neubert, Hendrik; Fernandez Ocana, Mireia; Gorelick, Ken; Clare, Robert; Vincent, Michael; Cataldi, Fabio; Hung, Kenneth

    2018-01-01

    Abstract Objective To define pharmacodynamic biomarkers in the peripheral blood of patients with Crohn’s disease [CD] after treatment with PF-00547659, an anti-human mucosal addressin cell adhesion molecule-1 [MAdCAM-1] monoclonal antibody. Methods In this Phase 2, randomised, double-blind, controlled study [OPERA], blood samples were analysed from patients with moderate to severe active CD who received placebo or 22.5 mg, 75 mg, or 225 mg of PF-00547659 subcutaneously at baseline and at Weeks 4 and 8, with follow-up at Week 12. Soluble MAdCAM [sMAdCAM] was measured by mass spectrometry, β7-expressing T cells by flow cytometry, and gene transcriptome by RNA sequencing. Results A slight increase in sMAdCAM was measured in the placebo group from baseline to Week 12 [6%], compared with significant decreases in all PF-00547659 groups [–87% to –98%]. A slight increase from baseline to Week 12 was observed in frequency and molecules of equivalent soluble fluorochrome for β7+ central memory T cells in the placebo group [4%], versus statistically significant increases in the active treatment groups [48% to 81%]. Similar trends were seen for β7+ effector memory T cells [placebo, 8%; PF-00547659, 84–138%] and β7+ naïve T cells [8%; 13–50%]. CCR9 gene expression had statistically significant up-regulation [p = 1.09e-06; false discovery rate < 0.1] with PF-00547659 treatment, and was associated with an increase in β7+ T cells. Conclusions Results of the OPERA study demonstrate positive pharmacology and dose-dependent changes in pharmacodynamic biomarker measurements in blood, including changes in cellular composition of lymphocytes and corresponding CCR9 gene expression changes. PMID:28961803

  2. Human HMG box transcription factor HBP1: a role in hCD2 LCR function.

    PubMed Central

    Zhuma, T; Tyrrell, R; Sekkali, B; Skavdis, G; Saveliev, A; Tolaini, M; Roderick, K; Norton, T; Smerdon, S; Sedgwick, S; Festenstein, R; Kioussis, D

    1999-01-01

    The locus control region (LCR) of the human CD2 gene (hCD2) confers T cell-specific, copy-dependent and position-independent gene expression in transgenic mice. This LCR consists of a strong T cell-specific enhancer and an element without enhancer activity (designated HSS3), which is required for prevention of position effect variegation (PEV) in transgenic mice. Here, we identified the HMG box containing protein-1 (HBP1) as a factor binding to HSS3 of the hCD2 LCR. Within the LCR, HBP1 binds to a novel TTCATTCATTCA sequence that is higher in affinity than other recently reported HBP1-binding sites. Mice transgenic for a hCD2 LCR construct carrying a deletion of the HBP1-binding sequences show a propensity for PEV if the transgene integrates in a heterochromatic region of the chromosome such as the centromere or telomere. We propose that HBP1 plays an important role in chromatin opening and remodelling activities by binding to and bending the DNA, thus allowing DNA-protein and/or protein-protein interactions, which increase the probability of establishing an active locus. PMID:10562551

  3. 46 CFR 111.81-1 - Outlet boxes and junction boxes; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fixture, wiring device, or similar item, including each separately installed connection and junction box... used. (d) As appropriate, each outlet-box or junction-box installation must meet the following...

  4. Emerging diseases. Hunt for mad cow in sheep reassuring.

    PubMed

    Balter, M

    2000-08-11

    Experts on brain-riddling spongiform diseases have grown steadily more uneasy over signs that so-called mad cow disease or bovine spongiform encephalopathy (BSE), which is linked to a lethal human illness, may be lurking in sheep. A study in the 10 August issue of Nature now offers evidence that BSE is not rampant in sheep after all, although scientists are far from ready to let their guard down.

  5. Madness and sanity at the time of Indian independence.

    PubMed

    Jain, Sanjeev; Murthy, Pratima; Sarin, Alok

    2016-01-01

    The backdrop of the Indian Independence offers glimpses of many 'metaphors of madness'. In this article, we explore this through a few instances, starting from 1857, around the time of the First War of Independence, to 1947, when India became an independent nation. Such metaphors have their parallels both in historical as well as in contemporary times, where instances of one man's imagination becoming another's concept of irrationality and insanity continue.

  6. Illumination box and camera system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  7. Duplication and diversification of the LEAFY HULL STERILE1 and Oryza sativa MADS5 SEPALLATA lineages in graminoid Poales

    PubMed Central

    2012-01-01

    Background Gene duplication and the subsequent divergence in function of the resulting paralogs via subfunctionalization and/or neofunctionalization is hypothesized to have played a major role in the evolution of plant form. The LEAFY HULL STERILE1 (LHS1) SEPALLATA (SEP) genes have been linked with the origin and diversification of the grass spikelet, but it is uncertain 1) when the duplication event that produced the LHS1 clade and its paralogous lineage Oryza sativa MADS5 (OSM5) occurred, and 2) how changes in gene structure and/or expression might have contributed to subfunctionalization and/or neofunctionalization in the two lineages. Methods Phylogenetic relationships among 84 SEP genes were estimated using Bayesian methods. RNA expression patterns were inferred using in situ hybridization. The patterns of protein sequence and RNA expression evolution were reconstructed using maximum parsimony (MP) and maximum likelihood (ML) methods, respectively. Results Phylogenetic analyses mapped the LHS1/OSM5 duplication event to the base of the grass family. MP character reconstructions estimated a change from cytosine to thymine in the first codon position of the first amino acid after the Zea mays MADS3 (ZMM3) domain converted a glutamine to a stop codon in the OSM5 ancestor following the LHS1/OSM5 duplication event. RNA expression analyses of OSM5 co-orthologs in Avena sativa, Chasmanthium latifolium, Hordeum vulgare, Pennisetum glaucum, and Sorghum bicolor followed by ML reconstructions of these data and previously published analyses estimated a complex pattern of gain and loss of LHS1 and OSM5 expression in different floral organs and different flowers within the spikelet or inflorescence. Conclusions Previous authors have reported that rice OSM5 and LHS1 proteins have different interaction partners indicating that the truncation of OSM5 following the LHS1/OSM5 duplication event has resulted in both partitioned and potentially novel gene functions. The complex

  8. Select metal and metalloid surveillance of free-ranging Eastern box turtles from Illinois and Tennessee (Terrapene carolina carolina).

    PubMed

    Allender, Matthew C; Dreslik, Michael J; Patel, Bishap; Luber, Elizabeth L; Byrd, John; Phillips, Christopher A; Scott, John W

    2015-08-01

    The Eastern box turtle (Terrapene carolina carolina) is a primarily terrestrial chelonian distributed across the eastern US. It has been proposed as a biomonitor due to its longevity, small home range, and reliance on the environment to meet its metabolic needs. Plasma samples from 273 free-ranging box turtles from populations in Tennessee and Illinois in 2011 and 2012 were evaluated for presence of heavy metals and to characterize hematologic variables. Lead (Pb), arsenic (As), zinc (Zn), chromium (Cr), selenium (Se), and copper (Cu) were detected, while cadmium (Cd) and silver (Ag) were not. There were no differences in any metal detected among age class or sex. However, Cr and Pb were higher in turtles from Tennessee, while As, Zn, Se, and Cu were higher in turtles from Illinois. Seasonal differences in metal concentrations were observed for Cr, Zn, and As. Health of turtles was assessed using hematologic variables. Packed cell volume was positively correlated with Cu, Se, and Pb in Tennessee. Total solids, a measure of plasma proteins, in Tennessee turtles were positively correlated with Cu and Zn. White blood cell count, a measure of inflammation, in Tennessee turtles was negatively correlated with Cu and As, and positively correlated with Pb. Metals are a threat to human health and the health of an ecosystem, and the Eastern Box Turtle can serve as a monitor of these contaminants. Differences established in this study can serve as baseline for future studies of these or related populations.

  9. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.

    PubMed

    Boogerd, Kees-Jan; Wong, L Y Elaine; Christoffels, Vincent M; Klarenbeek, Meinke; Ruijter, Jan M; Moorman, Antoon F M; Barnett, Phil

    2008-06-01

    T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.

  10. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice[OPEN

    PubMed Central

    Wang, Chong; Yu, Junping; Zong, Jie; Lu, Pingli

    2016-01-01

    F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711

  11. Changes in growth conditions alter the male strobilus gene expression pattern in Cryptomeria japonica.

    PubMed

    Fukui, Mitsue

    2003-11-01

    Two-year old saplings grown from cuttings of Cryptomeria japonica D. Don initiate strobilus development following treatment with gibberellic acid under long-day photoperiods. At 25 degrees C with a 14-h photoperiod in a phytotron, male strobili initiated normally; however, they remained green and fell from the saplings prematurely. To examine the change in male strobilus development at the molecular level, three genes expressed specifically in male strobili were analyzed. Two were MADS box genes homologous to the B-function genes in angiosperms, CjMADS1 and CjMADS2, and the third was Cry j I, which encodes an allergen protein, and this gene is expressed mainly in microspores. Under phytotron growing conditions, the homeotic genes were expressed constantly, which reflected the extended early developmental stage of male strobili. On the other hand, Cry j I expression was detected after a long delay just before strobilus development ceased. These results indicate that the expression of the genes related to male reproductive development in C. japonica is regulated by a factor(s) that is sensitive to environmental signals.

  12. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri).

    PubMed

    Wang, Guo-Ming; Yin, Hao; Qiao, Xin; Tan, Xu; Gu, Chao; Wang, Bao-Hua; Cheng, Rui; Wang, Ying-Zhen; Zhang, Shao-Ling

    2016-12-01

    F-box gene family, as one of the largest gene families in plants, plays crucial roles in regulating plant development, reproduction, cellular protein degradation and responses to biotic and abiotic stresses. However, comprehensive analysis of the F-box gene family in pear (Pyrus bretschneideri Rehd.) and other Rosaceae species has not been reported yet. Herein, we identified a total of 226 full-length F-box genes in pear for the first time. And these genes were further divided into various subgroups based on specific domains and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication and dispersed duplication have a major contribution to F-box family expansion. Furthermore, the dynamic evolution for different modes of gene duplication was dissected. Interestingly, we found that dispersed and tandem duplicate have been evolving at a high rate. In addition, we found that F-box genes exhibited functional specificity based on GO analysis, and most of the F-box genes were significantly enriched in the protein binding (GO: 0005515) term, supporting that F-box genes might play a critical role for gene regulation in pear. Transcriptome and digital expression profiles revealed that F-box genes are involved in the development of multiple pear tissues. Overall, these results will set stage for elaborating the biological role of F-box genes in pear and other plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. A Unique HMG-Box Domain of Mouse Maelstrom Binds Structured RNA but Not Double Stranded DNA

    PubMed Central

    Genzor, Pavol; Bortvin, Alex

    2015-01-01

    Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response. PMID:25807393

  14. Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle.

    PubMed

    Xue, Song; Wang, Ruiying; Yang, Fangping; Terns, Rebecca M; Terns, Michael P; Zhang, Xinxin; Maxwell, E Stuart; Li, Hong

    2010-09-24

    Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Genome-wide survey of B-box proteins in potato (Solanum tuberosum)-Identification, characterization and expression patterns during diurnal cycle, etiolation and de-etiolation.

    PubMed

    Talar, Urszula; Kiełbowicz-Matuk, Agnieszka; Czarnecka, Jagoda; Rorat, Tadeusz

    2017-01-01

    Plant B-box domain proteins (BBX) mediate many light-influenced developmental processes including seedling photomorphogenesis, seed germination, shade avoidance and photoperiodic regulation of flowering. Despite the wide range of potential functions, the current knowledge regarding BBX proteins in major crop plants is scarce. In this study, we identify and characterize the StBBX gene family in potato, which is composed of 30 members, with regard to structural properties and expression profiles under diurnal cycle, etiolation and de-etiolations. Based on domain organization and phylogenetic relationships, StBBX genes have been classified into five groups. Using real-time quantitative PCR, we found that expression of most of them oscillates following a 24-h rhythm; however, large differences in expression profiles were observed between the genes regarding amplitude and position of the maximal and minimal expression levels in the day/night cycle. On the basis of the time-of-day/time-of-night, we distinguished three expression groups specifically expressed during the light and two during the dark phase. In addition, we showed that the expression of several StBBX genes is under the control of the circadian clock and that some others are specifically associated with the etiolation and de-etiolation conditions. Thus, we concluded that StBBX proteins are likely key players involved in the complex diurnal and circadian networks regulating plant development as a function of light conditions and day duration.

  16. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter

    PubMed Central

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-01-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713

  17. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter.

    PubMed

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-08-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.

  18. Regulation of Aspergillus nidulans CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47.

    PubMed

    de Assis, Leandro José; Ulas, Mevlut; Ries, Laure Nicolas Annick; El Ramli, Nadia Ali Mohamed; Sarikaya-Bayram, Ozlem; Braus, Gerhard H; Bayram, Ozgur; Goldman, Gustavo Henrique

    2018-06-19

    The attachment of one or more ubiquitin molecules by SCF ( S kp- C ullin- F -box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans , CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δ fbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications. IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally

  19. Molecular Cloning, Characterization, and Expression of MiSOC1: A Homolog of the Flowering Gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from Mango (Mangifera indica L).

    PubMed

    Wei, Junya; Liu, Debing; Liu, Guoyin; Tang, Jie; Chen, Yeyuan

    2016-01-01

    MADS-box transcription factor plays a crucial role in plant development, especially controlling the formation and development of floral organs. Mango ( Mangifera indica L) is an economically important fruit crop, but its molecular control of flowering is largely unknown. To better understand the molecular basis of flowering regulation in mango, we isolated and characterized the MiSOC1, a putative mango orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1/AGAMOUS-LIKE 20 (SOC1/AGL20) with homology-based cloning and RACE. The full-length cDNA (GenBank accession No.: KP404094) is 945 bp in length including a 74 bp long 5' UTR and a 189 bp long 3' UTR and the open reading frame was 733 bps, encoding 223 amino acids with molecular weight 25.6 kD. Both sequence alignment and phylogenetic analysis all indicated that deduced protein contained a conservative MADS-box and semi-conservative K domain and belonged to the SOC1/TM3 subfamily of the MADS-box family. Quantitative real-time PCR was performed to investigate the expression profiles of MiSOC1 gene in different tissues/organs including root, stem, leaves, flower bud, and flower. The result indicated MiSOC1 was widely expressed at different levels in both vegetative and reproductive tissues/organs with the highest expression level in the stems' leaves and inflorescences, low expression in roots and flowers. The expression of MiSOC1 in different flower developmental stages was different while same tissue -specific pattern among different varieties. In addition, MiSOC1 gene expression was affect by ethephon while high concentration ethephon inhibit the expression of MiSOC1. Overexpression of MiSOC1 resulted in early flowering in Arabidopsis . In conclusion, these results suggest that MiSOC1 may act as induce flower function in mango.

  20. Molecular Cloning, Characterization, and Expression of MiSOC1: A Homolog of the Flowering Gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from Mango (Mangifera indica L)

    PubMed Central

    Wei, Junya; Liu, Debing; Liu, Guoyin; Tang, Jie; Chen, Yeyuan

    2016-01-01

    MADS-box transcription factor plays a crucial role in plant development, especially controlling the formation and development of floral organs. Mango (Mangifera indica L) is an economically important fruit crop, but its molecular control of flowering is largely unknown. To better understand the molecular basis of flowering regulation in mango, we isolated and characterized the MiSOC1, a putative mango orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1/AGAMOUS-LIKE 20 (SOC1/AGL20) with homology-based cloning and RACE. The full-length cDNA (GenBank accession No.: KP404094) is 945 bp in length including a 74 bp long 5′ UTR and a 189 bp long 3′ UTR and the open reading frame was 733 bps, encoding 223 amino acids with molecular weight 25.6 kD. Both sequence alignment and phylogenetic analysis all indicated that deduced protein contained a conservative MADS-box and semi-conservative K domain and belonged to the SOC1/TM3 subfamily of the MADS-box family. Quantitative real-time PCR was performed to investigate the expression profiles of MiSOC1 gene in different tissues/organs including root, stem, leaves, flower bud, and flower. The result indicated MiSOC1 was widely expressed at different levels in both vegetative and reproductive tissues/organs with the highest expression level in the stems’ leaves and inflorescences, low expression in roots and flowers. The expression of MiSOC1 in different flower developmental stages was different while same tissue –specific pattern among different varieties. In addition, MiSOC1 gene expression was affect by ethephon while high concentration ethephon inhibit the expression of MiSOC1. Overexpression of MiSOC1 resulted in early flowering in Arabidopsis. In conclusion, these results suggest that MiSOC1 may act as induce flower function in mango. PMID:27965680

  1. The LOTUS domain is a conserved DEAD-box RNA helicase regulator essential for the recruitment of Vasa to the germ plasm and nuage

    PubMed Central

    Jeske, Mandy; Müller, Christoph W.; Ephrussi, Anne

    2017-01-01

    DEAD-box RNA helicases play important roles in a wide range of metabolic processes. Regulatory proteins can stimulate or block the activity of DEAD-box helicases. Here, we show that LOTUS (Limkain, Oskar, and Tudor containing proteins 5 and 7) domains present in the germline proteins Oskar, TDRD5 (Tudor domain-containing 5), and TDRD7 bind and stimulate the germline-specific DEAD-box RNA helicase Vasa. Our crystal structure of the LOTUS domain of Oskar in complex with the C-terminal RecA-like domain of Vasa reveals that the LOTUS domain occupies a surface on a DEAD-box helicase not implicated previously in the regulation of the enzyme's activity. We show that, in vivo, the localization of Drosophila Vasa to the nuage and germ plasm depends on its interaction with LOTUS domain proteins. The binding and stimulation of Vasa DEAD-box helicases by LOTUS domains are widely conserved. PMID:28536148

  2. The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis.

    PubMed

    Gangappa, Sreeramaiah N; Maurya, Jay P; Yadav, Vandana; Chattopadhyay, Sudip

    2013-01-01

    Although many transcription factors and regulatory proteins have been identified and functionally characterized in light signaling pathways, photoperception to transcription remains largely fragmented. The Z-box is one of the LREs (Light responsive elements) that plays important role in the regulation of transcription during light-controlled Arabidopsis seedling development. The involvement of photoreceptors in the modulation of the activity of the Z-box containing promoters has been demonstrated. However, the role of downstream signaling components such as SPA1 and MYC2/ZBF1, which are functionally interrelated, remains unknown. In this study, we have investigated the regulation of the Z-box containing synthetic and native promoters by SPA1 and MYC2 by using stable transgenic lines. Our studies suggest that SPA1 negatively regulates the expression of CAB1 native promoter. MYC2 negatively regulates the activity of Z- and/or G-box containing synthetic as well as native promoters irrespective of light quality. Moreover, MYC2 negatively regulates the expression of Z/G-NOS101-GUS even in the darkness. Furthermore, analyses of tissue specific expression in adult plants suggest that MYC2 strongly regulates the activity of Z- and G-box containing promoters specifically in leaves and stems. In roots, whereas MYC2 positively regulates the activity of the Z-box containing synthetic promoter, it does not seem to control the activity of the G-box containing promoters. Taken together, these results provide insights into SPA1- and MYC2-mediated transcriptional regulation of the Z- and G-box containing promoters in light signaling pathways.

  3. The plant G box promoter sequence activates transcription in Saccharomyces cerevisiae and is bound in vitro by a yeast activity similar to GBF, the plant G box binding factor.

    PubMed Central

    Donald, R G; Schindler, U; Batschauer, A; Cashmore, A R

    1990-01-01

    G box and I box sequences of the Arabidopsis thaliana ribulose-bisphosphate-1,5-carboxylase small subunit (RBCS) promoter are required for expression mediated by the Arabidopsis rbcS-1A promoter in transgenic tobacco plants and are bound in vitro by factors from plant nuclear extracts termed GBF and GA-1, respectively. We show here that a -390 to -60 rbcS-1A promoter fragment containing the G box and two I boxes activates transcription from a truncated iso-1-cytochrome c (CYC1) gene promoter in Saccharomyces cerevisiae. Mutagenesis of either the rbcS-1A G box or both I box sequences eliminated the expression mediated by this fragment. When polymerized, I box oligonucleotides were also capable of enhancing expression from the truncated CYC1 promoter. Single-copy G box sequences from the Arabidopsis rbcS-1A, Arabidopsis Adh and tomato rbcS-3A promoters were more potent activators and were used in mobility shift assays to identify a DNA binding activity in yeast functionally similar to GBF. In methylation interference experiments, the binding specificity of the yeast protein was indistinguishable from that obtained with plant nuclear extracts. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2161333

  4. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis.

    PubMed

    Bai, Songling; Saito, Takanori; Honda, Chikako; Hatsuyama, Yoshimichi; Ito, Akiko; Moriguchi, Takaya

    2014-11-01

    Our studies showed that an apple B-box protein, MdCOL11, the homolog of AtBBX22, is involved in UV-B- and temperature-induced anthocyanin biosynthesis in apple peel. Anthocyanin is responsible for the red pigmentation in apple peel and a R2R3 MYB gene, MdMYBA/1/10, a homolog of MdMYBA, controls its accumulation. Arabidopsis PAP1 is under the control of a series of upstream factors involved in light signal transduction and photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5) and B-box family (BBX) proteins. In this study, we identified and characterized the homolog of Arabidopsis BBX22 in apple, designated as MdCOL11. Overexpression of MdCOL11 in Arabidopsis enhanced the accumulation of anthocyanin. In apples, MdCOL11 was differentially expressed in all tissues, with the highest expression in petals and the lowest expression in the xylem. Transcripts of MdCOL11 noticeably accumulated at the ripening stage, concomitant with increases in the expressions of anthocyanin biosynthesis-related genes. In an in vitro treatment experiment, MdCOL11 was upregulated in an ultra-violet (UV)-B- and temperature-dependent manner, together with the inductions of anthocyanin biosynthesis-related genes and anthocyanin accumulation in apple peel. Furthermore, a dual-luciferase assay indicated that (1) MdCOL11 regulated the expression of MdMYBA and (2) MdCOL11 was a target of MdHY5. Taken together, our results suggest that MdCOL11 is involved in MdHY5-mediated signal transduction and regulates anthocyanin accumulation in apple peel, which sheds new light on anthocyanin accumulation in apples.

  5. Qualitative Assessment of Pregnant Women’s Perceptions of Infant Sleep Boxes

    PubMed Central

    Ahlers-Schmidt, Carolyn R.; Schunn, Christy; Redmond, Michelle L.; Smith, Sharla; Brown, Molly; Kuhlmann, Stephanie N.; Engel, Matthew; Benton, Mary

    2017-01-01

    Although several states have implemented programs providing boxes for infant sleep, safe sleep experts express concern regarding the paucity of safety and efficacy research on boxes. The purpose of this study was to assess pregnant women’s perceptions regarding use of baby sleep boxes. A convenience sample was recruited from a community prenatal education program. Twenty-eight women were administered a brief semistructured interview about their knowledge of baby sleep boxes, opinions about the boxes, and questions they would have. For most (n = 15, 54%), this was their first pregnancy. Participants self-identified as white (43%), black (36%), Hispanic (18%), and “other” (4%). Ten subthemes emerged related to previous knowledge of boxes (useful for families in need, historic precedent in other countries), positive attributes (portable, compact, affordable, decorative), and negative attributes (low to ground, structural integrity/design, stability, stigma). Research on safety and efficacy could reduce concerns, but issues of stigma may persist. PMID:29226192

  6. Mad cows and Englishmen: the aftermath of a BSE scare

    PubMed Central

    Richmond, C

    1997-01-01

    The consumption of prime beef cuts is down, animals have been slaughtered by the thousand and 3 farmers have committed suicide as the mad-cow issue continues to cause concern in the United Kingdom. In this report from London, Caroline Richmond also notes that the royal colleges have published a report stating that chronic fatigue syndrome is a real illness and patients need help. PMID:9099178

  7. Chronic exposure to pollutants in Madín Reservoir (Mexico) alters oxidative stress status and flesh quality in the common carp Cyprinus carpio.

    PubMed

    Morachis-Valdez, Gabriela; Dublán-García, Octavio; López-Martínez, Leticia Xochitl; Galar-Martínez, Marcela; Saucedo-Vence, Karinne; Gómez-Oliván, Leobardo Manuel

    2015-06-01

    Madín Reservoir (MR) is located on the Río Tlalnepantla in Mexico. Previous studies seeking to identify pollutants at this site evidence that MR water contains a considerable metal load as well as nonsteroidal anti-inflammatory drugs (NSAIDs) at concentrations above those determined suitable for aquatic life. This study aimed to evaluate whether chronic exposure to pollutants in MR alters oxidative stress status and flesh quality in muscle of the common carp Cyprinus carpio. The following biomarkers were evaluated in muscle of carp caught in the general area of discharge from the town of Viejo Madín: hydroperoxide content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Physicochemical and textural properties of muscle were also evaluated. Results show that the metals Al and Fe were accumulated in muscle of C. carpio at levels of 21.3 and 29.6 μg L(-1), respectively, and the NSAIDs diclofenac, ibuprofen, and naproxen at levels from 0.08 to 0.21 ng L(-1). Fish exposed to discharge from the town of Viejo Madín showed significant increases in HPC (9.77 %), LPX (69.33 %), and PCC (220 %) with respect to control specimens (p < 0.05). Similarly, enzyme activity increased significantly: SOD (80.82 %), CAT (98.03 %), and GPx (49.76 %). In muscle, physicochemical properties evidenced mainly significant reductions compared to control values while textural properties showed significant increases. Thus, water in this reservoir is contaminated with xenobiotics that alter some biological functions in C. carpio, a fish species consumed by the local human population.

  8. Physical model of protein cluster positioning in growing bacteria

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Wang, Hui; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2017-10-01

    Chemotaxic receptors in bacteria form clusters at cell poles and also laterally, and this clustering plays an important role in signal transduction. These clusters were found to be periodically arranged on the surface of the bacterium Escherichia coli, independent of any known positioning mechanism. In this work we extend a model based on diffusion and aggregation to more realistic geometries and present a means based on ‘bursty’ protein production to distinguish spontaneous positioning from an independently existing positioning mechanism. We also consider the case of isotropic cellular growth and characterize the degree of order arising spontaneously. Our model could also be relevant for other examples of periodically positioned protein clusters in bacteria.

  9. Web life: The Evil Mad Scientist Project

    NASA Astrophysics Data System (ADS)

    2009-04-01

    What is it? Have you ever tried to electrocute a hot dog? Wondered how to make a robot out of a toothbrush, watch battery and phone-pager motor? Seen a cantaloupe melon and thought, "Hmm, I could make this look like the Death Star from the original Star Wars films"? If you have not, but you would like to - preferably as soon as you can find a pager motor - then this is the site for you. The Evil Mad Scientist Project (EMSP) blog is packed full of ideas for unusual, silly and frequently physics-related creations that bring science out of the laboratory and into kitchens, backyards and tool sheds.

  10. The secular and the supernatural: madness and psychiatry in the short stories of Muriel Spark.

    PubMed

    Beveridge, A W

    2015-01-01

    Edinburgh-born Muriel Spark is one of modern Scotland's greatest writers. Examination of her work reveals that the subjects of madness and psychiatry are recurrent themes in her writing. She herself had a mental breakdown when she was a young woman and she took an interest in the world of psychiatry and psychoanalysis. In her short stories, Spark approaches the subject of madness in a variety of ways: she relates it to the supernatural; to writing fiction; and to religion. She frequently juxtaposes secular and supernatural explanations of mental disturbance. Spark adopts a sceptical and, at times, mocking view of psychiatrists and psychiatric treatment. Both psychoanalysis and pills are seen as problematic.

  11. Cable Tester Box

    NASA Technical Reports Server (NTRS)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  12. A Randomized Crossover Trial Evaluating Continuous Positive Airway Pressure Versus Mandibular Advancement Device on Health Outcomes in Veterans With Posttraumatic Stress Disorder

    PubMed Central

    El-Solh, Ali A.; Homish, Gregory G.; Ditursi, Guy; Lazarus, John; Rao, Nithin; Adamo, David; Kufel, Thomas

    2017-01-01

    Study Objectives: Despite the overall improvement in posttraumatic stress disorder (PTSD) symptomatology with continuous positive airway pressure (CPAP) therapy, adherence to CPAP is far worse in veterans with PTSD compared to the general population with obstructive sleep apnea (OSA). The aim of this study was to compare the efficacy, adherence, and preference of CPAP versus mandibular advancement device (MAD) and the effect of these treatments on health outcomes in veterans with PTSD. Methods: Forty-two subjects with PTSD and newly diagnosed OSA by polysomnography were treated in a randomized, crossover trial of 12 weeks with CPAP alternating with MAD separated by a 2-week washout period. The primary outcome was the difference in titration residual apnea-hypopnea index (AHI) between CPAP and MAD. Secondary outcome measures included PTSD Checklist and health-related quality of life (Medical Outcomes Study 36-Item Short Form and Pittsburgh Sleep Quality Index). Results: Analyses were limited to the 35 subjects (mean age 52.7 ± 11.6 years) who completed the trial, regardless of compliance with their assigned treatment. CPAP was more efficacious in reducing AHI and improving nocturnal oxygenation than MAD (P < .001 and P = .04, respectively). Both treatments reduced PTSD severity and ameliorated scores of the Medical Outcomes Study Short Form 36 and Pittsburgh Sleep Quality Index, although no differences were detected between the CPAP and MAD arms. The reported adherence to MAD was significantly higher than CPAP (P < .001), with 58% preferring MAD to CPAP. Conclusions: Although CPAP is more efficacious than MAD at improving sleep apnea, both treatment modalities imparted comparable benefits for veterans with PTSD in relation to PTSD severity and health-related quality of life. MAD offers a viable alternative for veterans with OSA and PTSD who are nonadherent to CPAP. Clinical Trial Registration: Title: A Randomized Cross Over Trial of Two Treatments for Sleep Apnea

  13. Late Pleistocene sediments and fossils near the mouth of Mad River, Humboldt County, California: Facies analysis, sequence development, and possible age correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, E.W.

    Study of late Pleistocene-age sediments near the mouth of the Mad River revealed a sequence of nearshore marine and shallow bay deposits. This sequence, bounded by unconformities, is informally named the Mouth of Mad unit. The Mouth of mad unit can be divided into four distinct depositional facies at the study site. The lowest facies are the Nearshore Sand and Estuarine Mud, which lie unconformably on a paleosol. The sand facies grades upward into a high-energy, interbedded Nearshore Sand and Gravel facies containing storm and rip-channel deposits. Above the sand and gravel is a Strand-Plain Sand facies. This sand ismore » overlain by a laterally variable sequence of shell-rich Bay facies. The bay deposits can be further divided into five subfacies: (1) a Bioturbated Sand; (2) a Lower Tidal Flat Mud; (3) a Mixed Sand and Mud; (4) an oyster-rich Bay Mud; and (5) an Upper Tidal Flat Mud. The bay sequence is overlain unconformably by younger late Pleistocene-age marine terrace deposits. The depositional environments represented by these facies progress from a shoreline estuary to nearshore deposits, above storm wave base, and slowly back to shoreline and finally shallow bay conditions. The Mouth of Mad unit represents a transgressive-regressive sequence, involving the development of a protective spit. The uppermost mud within the Mouth of Mad unit has been dated, using thermoluminescence age estimation, at 176 [+-] 33 ka, placing it in the late Pleistocene. The Mouth of Mad unit appears to be younger than the fossiliferous deposits at Elk Head, Crannell Junction, Trinidad Head, Moonstone Beach, and the Falor Formation near Maple Creek, and possibly time equivalent with gravel deposits exposed at the western end of School Road in McKinleyville.« less

  14. Transculturation of Madness: The Double Origin of Lu Xun's "Diary of a Madman".

    PubMed

    Ma, Xiaolu

    2015-01-01

    Over the years scholars have examined the allegorical features of the depiction of madness in Lu Xun's "Diary of a Madman," yet to date little research has taken into consideration the intercultural angle embedded in the narrative's intersection of three cultures, namely Russian, Japanese and Chinese. This paper traces the European-Japanese-Sino route of modern neologisms of madness to explore the introduction of such neologisms into the modern Chinese language and how it corresponds with changing patterns of knowledge and power. I use my study of transculturation on the macro scale to frame a reexamination of the lexicon in "Diary of a Madman." I focus especially on kuangren and pohaikuang, the two key words employed by Lu Xun, to see how they contribute to the ambiguity in his attitude towards the power struggle between the East and the West, the old and the new.

  15. Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower.

    PubMed

    Silva, Catarina S; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe

    2015-01-01

    Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These "developmental control genes" and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction - LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.

  16. Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower

    PubMed Central

    Silva, Catarina S.; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe

    2016-01-01

    Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These “developmental control genes” and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction – LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower. PMID:26779227

  17. DDX3 DEAD-box RNA helicase plays a central role in mitochondrial protein quality control in Leishmania

    PubMed Central

    Padmanabhan, Prasad Kottayil; Zghidi-Abouzid, Ouafa; Samant, Mukesh; Dumas, Carole; Aguiar, Bruno Guedes; Estaquier, Jerome; Papadopoulou, Barbara

    2016-01-01

    DDX3 is a highly conserved member of ATP-dependent DEAD-box RNA helicases with multiple functions in RNA metabolism and cellular signaling. Here, we describe a novel function for DDX3 in regulating the mitochondrial stress response in the parasitic protozoan Leishmania. We show that genetic inactivation of DDX3 leads to the accumulation of mitochondrial reactive oxygen species (ROS) associated with a defect in hydrogen peroxide detoxification. Upon stress, ROS production is greatly enhanced, causing mitochondrial membrane potential loss, mitochondrial fragmentation, and cell death. Importantly, this phenotype is exacerbated upon oxidative stress in parasites forced to use the mitochondrial oxidative respiratory machinery. Furthermore, we show that in the absence of DDX3, levels of major components of the unfolded protein response as well as of polyubiquitinated proteins increase in the parasite, particularly in the mitochondrion, as an indicator of mitochondrial protein damage. Consistent with these findings, immunoprecipitation and mass-spectrometry studies revealed potential interactions of DDX3 with key components of the cellular stress response, particularly the antioxidant response, the unfolded protein response, and the AAA-ATPase p97/VCP/Cdc48, which is essential in mitochondrial protein quality control by driving proteosomal degradation of polyubiquitinated proteins. Complementation studies using DDX3 deletion mutants lacking conserved motifs within the helicase core support that binding of DDX3 to ATP is essential for DDX3's function in mitochondrial proteostasis. As a result of the inability of DDX3-depleted Leishmania to recover from ROS damage and to survive various stresses in the host macrophage, parasite intracellular development was impaired. Collectively, these observations support a central role for the Leishmania DDX3 homolog in preventing ROS-mediated damage and in maintaining mitochondrial protein quality control. PMID:27735940

  18. Structure and mechanism of the T-box riboswitches

    PubMed Central

    Zhang, Jinwei

    2015-01-01

    In most Gram-positive bacteria, including many clinically devastating pathogens from genera such as Bacillus, Clostridium, Listeria and Staphylococcus, T-box riboswitches sense and regulate intracellular availability of amino acids through a multipartite mRNA-tRNA interaction. The T-box mRNA leaders respond to nutrient starvation by specifically binding cognate tRNAs and sensing whether the bound tRNA is aminoacylated, as a proxy for amino acid availability. Based on this readout, T-boxes direct a transcriptional or translational switch to control the expression of downstream genes involved in various aspects of amino acid metabolism: biosynthesis, transport, aminoacylation, transamidation, etc. Two decades after its discovery, the structural and mechanistic underpinnings of the T-box riboswitch were recently elucidated, producing a wealth of insights into how two structured RNAs can recognize each other with robust affinity and exquisite selectivity. The T-box paradigm exemplifies how natural non-coding RNAs can interact not just through sequence complementarity, but can add molecular specificity by precisely juxtaposing RNA structural motifs, exploiting inherently flexible elements and the biophysical properties of post-transcriptional modifications, ultimately achieving a high degree of shape complementarity through mutually induced fit. The T-box also provides a proof-of-principle that compact RNA domains can recognize minute chemical changes (such as tRNA aminoacylation) on another RNA. The unveiling of the structure and mechanism of the T-box system thus expands our appreciation of the range of capabilities and modes of action of structured non-coding RNAs, and hints at the existence of networks of non-coding RNAs that communicate through both, structural and sequence specificity. PMID:25959893

  19. Experimental Determination of Unknown Masses and Their Positions in a Mechanical Black Box

    ERIC Educational Resources Information Center

    Chakrabarti, Bhupati; Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura

    2013-01-01

    An experiment with a mechanical black box containing unknown masses is presented. The experiment involves the determination of these masses and their locations by performing some nondestructive tests. The set-ups are inexpensive and easy to fabricate. They are very useful to gain an understanding of some well-known principles of mechanics.

  20. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    PubMed

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.