Science.gov

Sample records for mads-box protein positively

  1. Multiple interactions amongst floral homeotic MADS box proteins.

    PubMed Central

    Davies, B; Egea-Cortines, M; de Andrade Silva, E; Saedler, H; Sommer, H

    1996-01-01

    Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity. Images PMID:8861961

  2. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne.

    PubMed

    Ciannamea, Stefano; Kaufmann, Kerstin; Frau, Marta; Tonaco, Isabella A Nougalli; Petersen, Klaus; Nielsen, Klaus K; Angenent, Gerco C; Immink, Richard G H

    2006-01-01

    Regulation of flowering time is best understood in the dicot model species Arabidopsis thaliana. Molecular analyses revealed that genes belonging to the MADS box transcription factor family play pivotal regulatory roles in both the vernalization- and photoperiod-regulated flowering pathways. Here the analysis of three APETALA1 (AP1)-like MADS box proteins (LpMADS1-3) and a SHORT VEGETATIVE PHASE (SVP)-like MADS box protein (LpMADS10) from the monocot perennial grass species Lolium perenne is reported. Features of these MADS box proteins were studied by yeast two-hybrid assays. Protein-protein interactions among the Lolium proteins and with members of the Arabidopsis MADS box family have been studied. The expression pattern for LpMADS1 and the protein properties suggest that not the Arabidopsis AP1 gene, but the SUPPRESSOR OF CONSTANS1 (SOC1) gene, is the functional equivalent of LpMADS1. To obtain insight into the molecular mechanism underlying the regulation of LpMADS1 gene expression in vernalization-sensitive and -insensitive Lolium accessions, the upstream sequences of this gene from a winter and spring growth habit variety were compared with respect to MADS box protein binding. In both promoter elements, a putative MADS box transcription factor-binding site (CArG-box) is present; however, the putative spring promoter has a short deletion adjacent to this DNA motif. Experiments using yeast one-hybrid and gel retardation assays demonstrated that the promoter element is bound by an LpMADS1-LpMADS10 higher order protein complex and, furthermore, that this complex binds efficiently to the promoter element from the winter variety only. This strongly supports the model that LpMADS1 together with LpMADS10 controls the vernalization-dependent regulation of the LpMADS1 gene, which is part of the vernalization-induced flowering process in Lolium. PMID:17005923

  3. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins.

    PubMed

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening.

  4. The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development.

    PubMed

    Prasad, Kalika; Zhang, Xiuwen; Tobón, Emilio; Ambrose, Barbara A

    2010-04-01

    The MADS-box family of transcription factors have diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. The B-sister MADS-box proteins are most similar to the B-class floral homeotic proteins, and are expressed in female reproductive organs. The Arabidopsis B-sister MADS-box protein, TT16, is necessary for inner integument differentiation. We have functionally characterized the only other B-sister MADS-box gene in Arabidopsis, AGL63, renamed here as GORDITA (GOA). A loss-of-function mutation in goa or reduction of endogenous GOA expression results in larger fruits, illustrating its novel function in regulating fruit growth. Consistent with its function, GOA expression is detected in the walls of the valves and throughout the replum of the fruit. Our phenotypic and molecular analyses of 35S::GOA and goa plants show that GOA controls organ size via cell expansion. Further, functional studies of goa tt16 double mutants have shown their additive role in controlling seed coat development, and have revealed the importance of GOA expression in the outer integument. Together, our studies provide evidence of a new regulatory role for a B-sister MADS-box gene in the control of organ growth. PMID:20088901

  5. MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis

    PubMed Central

    Favaro, Rebecca; Pinyopich, Anusak; Battaglia, Raffaella; Kooiker, Maarten; Borghi, Lorenzo; Ditta, Gary; Yanofsky, Martin F.; Kater, Martin M.; Colombo, Lucia

    2003-01-01

    The AGAMOUS (AG) gene is necessary for stamen and carpel development and is part of a monophyletic clade of MADS-box genes that also includes SHATTERPROOF1 (SHP1), SHP2, and SEEDSTICK (STK). Here, we show that ectopic expression of either the STK or SHP gene is sufficient to induce the transformation of sepals into carpeloid organs bearing ovules. Moreover, the fact that these organ transformations occur when the STK gene is expressed ectopically in ag mutants shows that STK can promote carpel development in the absence of AG activity. We also show that STK, AG, SHP1, and SHP2 can form multimeric complexes and that these interactions require the SEPALLATA (SEP) MADS-box proteins. We provide genetic evidence for this role of the SEP proteins by showing that a reduction in SEP activity leads to the loss of normal ovule development, similar to what occurs in stk shp1 shp2 triple mutants. Together, these results indicate that the SEP proteins, which are known to form multimeric complexes in the control of flower organ identity, also form complexes to control normal ovule development. PMID:14555696

  6. Characterization of an AGAMOUS-like MADS Box Protein, a Probable Constituent of Flowering and Fruit Ripening Regulatory System in Banana

    PubMed Central

    Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N.

    2012-01-01

    The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ∼95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development. PMID:22984496

  7. Characterization of an AGAMOUS-like MADS box protein, a probable constituent of flowering and fruit ripening regulatory system in banana.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2012-01-01

    The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ~95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development. PMID:22984496

  8. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus.

    PubMed

    Egea-Cortines, M; Saedler, H; Sommer, H

    1999-10-01

    In Antirrhinum, floral meristems are established by meristem identity genes. Floral meristems give rise to floral organs in whorls, with their identity established by combinatorial activities of organ identity genes. Double mutants of the floral meristem identity gene SQUAMOSA and organ identity genes DEFICIENS or GLOBOSA produce flowers in which whorled patterning is partially lost. In yeast, SQUA, DEF and GLO proteins form ternary complexes via their C-termini, which in gel-shift assays show increased DNA binding to CArG motifs compared with DEF/GLO heterodimers or SQUA/SQUA homodimers. Formation of ternary complexes by plant MADS-box factors increases the complexity of their regulatory functions and might be the molecular basis for establishment of whorled phyllotaxis and combinatorial interactions of floral organ identity genes.

  9. Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening.

    PubMed

    Liu, Juhua; Zhang, Jing; Hu, Wei; Miao, Hongxia; Zhang, Jianbin; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening. PMID:25886169

  10. Banana Ovate Family Protein MaOFP1 and MADS-Box Protein MuMADS1 Antagonistically Regulated Banana Fruit Ripening

    PubMed Central

    Hu, Wei; Miao, Hongxia; Zhang, Jianbin; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening. PMID:25886169

  11. Molecular and Phylogenetic Analyses of the Complete MADS-Box Transcription Factor Family in Arabidopsis

    PubMed Central

    Par̆enicová, Lucie; de Folter, Stefan; Kieffer, Martin; Horner, David S.; Favalli, Cristina; Busscher, Jacqueline; Cook, Holly E.; Ingram, Richard M.; Kater, Martin M.; Davies, Brendan; Angenent, Gerco C.; Colombo, Lucia

    2003-01-01

    MADS-box transcription factors are key regulators of several plant development processes. Analysis of the complete Arabidopsis genome sequence revealed 107 genes encoding MADS-box proteins, of which 84% are of unknown function. Here, we provide a complete overview of this family, describing the gene structure, gene expression, genome localization, protein motif organization, and phylogenetic relationship of each member. We have divided this transcription factor family into five groups (named MIKC, Mα, Mβ, Mγ, and Mδ) based on the phylogenetic relationships of the conserved MADS-box domain. This study provides a solid base for functional genomics studies into this important family of plant regulatory genes, including the poorly characterized group of M-type MADS-box proteins. MADS-box genes also constitute an excellent system with which to study the evolution of complex gene families in higher plants. PMID:12837945

  12. Bck2 Acts through the MADS Box Protein Mcm1 to Activate Cell-Cycle-Regulated Genes in Budding Yeast

    PubMed Central

    Bastajian, Nazareth; Friesen, Helena; Andrews, Brenda J.

    2013-01-01

    The Bck2 protein is a potent genetic regulator of cell-cycle-dependent gene expression in budding yeast. To date, most experiments have focused on assessing a potential role for Bck2 in activation of the G1/S-specific transcription factors SBF (Swi4, Swi6) and MBF (Mbp1, Swi6), yet the mechanism of gene activation by Bck2 has remained obscure. We performed a yeast two-hybrid screen using a truncated version of Bck2 and discovered six novel Bck2-binding partners including Mcm1, an essential protein that binds to and activates M/G1 promoters through Early Cell cycle Box (ECB) elements as well as to G2/M promoters. At M/G1 promoters Mcm1 is inhibited by association with two repressors, Yox1 or Yhp1, and gene activation ensues once repression is relieved by an unknown activating signal. Here, we show that Bck2 interacts physically with Mcm1 to activate genes during G1 phase. We used chromatin immunoprecipitation (ChIP) experiments to show that Bck2 localizes to the promoters of M/G1-specific genes, in a manner dependent on functional ECB elements, as well as to the promoters of G1/S and G2/M genes. The Bck2-Mcm1 interaction requires valine 69 on Mcm1, a residue known to be required for interaction with Yox1. Overexpression of BCK2 decreases Yox1 localization to the early G1-specific CLN3 promoter and rescues the lethality caused by overexpression of YOX1. Our data suggest that Yox1 and Bck2 may compete for access to the Mcm1-ECB scaffold to ensure appropriate activation of the initial suite of genes required for cell cycle commitment. PMID:23675312

  13. The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit.

    PubMed

    Liu, Ju-Hua; Zhang, Jing; Jia, Cai-Hong; Zhang, Jian-Bin; Wang, Jia-Shui; Yang, Zi-Xian; Xu, Bi-Yu; Jin, Zhi-Qiang

    2013-01-01

    KEY MESSAGE : The interaction of MuMADS1 and MuUBA in banana was reported, which will help us to understand the mechanism of the MADS-box gene in regulating banana fruit development and ripening. The ubiquitin-activating enzyme E1 gene fragment MuUBA was obtained from banana (Musa acuminata L.AAA) fruit by the yeast two-hybrid method using the banana MADS-box gene MuMADS1 as bait and 2-day post-harvest banana fruit cDNA library as prey. MuMADS1 interacted with MuUBA. The interaction of MuMADS1 and MuUBA in vivo was further proved by bimolecular fluorescence complementation assay. Real-time quantitative PCR evaluation of MuMADS1 and MuUBA expression patterns in banana showed that they are highly expressed in the ovule 4 stage, but present in low levels in the stem, which suggests a simultaneously differential expression action exists for both MuMADS1 and MuUBA in different tissues and developmental fruits. MuMADS1 and MuUBA expression was highly stimulated by exogenous ethylene and suppressed by 1-methylcyclopropene. These results indicated that MuMADS1 and MuUBA were co-regulated by ethylene and might play an important role in post-harvest banana fruit ripening. PMID:23007689

  14. Computational identification and analysis of MADS box genes in Camellia sinensis.

    PubMed

    Gogoi, Madhurjya; Borchetia, Sangeeta; Bandyopadhyay, Tanoy

    2015-01-01

    MADS (Minichromosome Maintenance1 Agamous Deficiens Serum response factor) box genes encode transcription factors and they play a key role in growth and development of flowering plants. There are two types of MADS box genes- Type I (serum response factor (SRF)-like) and Type II (myocyte enhancer factor 2 (MEF2)-like). Type II MADS box genes have a conserved MIKC domain (MADS DNA-binding domain, intervening domain, keratin-like domain, and c-terminal domain) and these were extensively studied in plants. Compared to other plants very little is known about MADS box genes in Camellia sinensis. The present study aims at identifying and analyzing the MADS-box genes present in Camellia sinensis. A comparative bioinformatics and phylogenetic analysis of the Camellia sinensis sequences along with Arabidopsis thaliana MADS box sequences available in the public domain databases led to the identification of 16 genes which were orthologous to Type II MADS box gene family members. The protein sequences were classified into distinct clades which are associated with the conserved function of flower and seed development. The identified genes may be used for gene expression and gene manipulation studies to elucidate their role in the development and flowering of tea which may pave the way to improve the crop productivity.

  15. Computational identification and analysis of MADS box genes in Camellia sinensis

    PubMed Central

    Gogoi, Madhurjya; Borchetia, Sangeeta; Bandyopadhyay, Tanoy

    2015-01-01

    MADS (Minichromosome Maintenance1 Agamous Deficiens Serum response factor) box genes encode transcription factors and they play a key role in growth and development of flowering plants. There are two types of MADS box genes- Type I (serum response factor (SRF)-like) and Type II (myocyte enhancer factor 2 (MEF2)-like). Type II MADS box genes have a conserved MIKC domain (MADS DNA-binding domain, intervening domain, keratin-like domain, and c-terminal domain) and these were extensively studied in plants. Compared to other plants very little is known about MADS box genes in Camellia sinensis. The present study aims at identifying and analyzing the MADS-box genes present in Camellia sinensis. A comparative bioinformatics and phylogenetic analysis of the Camellia sinensis sequences along with Arabidopsis thaliana MADS box sequences available in the public domain databases led to the identification of 16 genes which were orthologous to Type II MADS box gene family members. The protein sequences were classified into distinct clades which are associated with the conserved function of flower and seed development. The identified genes may be used for gene expression and gene manipulation studies to elucidate their role in the development and flowering of tea which may pave the way to improve the crop productivity. PMID:25914445

  16. MADS1, a novel MADS-box protein, is involved in the response of Nicotiana benthamiana to bacterial harpin(Xoo).

    PubMed

    Zhang, Huajian; Teng, Wenjun; Liang, Jingang; Liu, Xinyu; Zhang, Haifeng; Zhang, Zhengguang; Zheng, Xiaobo

    2016-01-01

    MADS-box transcription factor genes are well known for their role in floral organ and seed development. In this study, a novel MADS-box-containing gene, designated NbMADS1, was isolated from leaves of Nicotiana benthamiana. The full-length cDNA was 666 bp and encoded a putative polypeptide of 221 aa with a mass of 24.3 kDa. To assess the role of NbMADS1 in the defence response to bacterial harpin(Xoo), an elicitor of the hypersensitive response, a loss-of-function experiment was performed in N. benthamiana plants using virus-induced gene silencing. Analyses of electrolyte leakage revealed more extensive cell death in the control plants than in NbMADS1-silenced plants. The NbMADS1-silenced plants showed impaired harpin(Xoo)-induced stomatal closure, decreased harpin(Xoo)-induced production of hydrogen peroxide (H2O2) and nitric oxide (NO) in guard cells, and reduced harpin(Xoo)-induced resistance to Phytophthora nicotianae. The compromised stomatal closure observed in the NbMADS1-silenced plants was inhibited by the application of H2O2 and sodium nitroprusside (an NO donor). Taken together, these results demonstrate that the NbMADS1-H2O2-NO pathway mediates multiple harpin(Xoo)-triggered responses, including stomatal closure, hypersensitive cell death, and defence-related gene expression, suggesting that NbMADS1 plays an important role in regulating the response to harpin(Xoo) in N. benthamiana plants. PMID:26466663

  17. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (Mα, Mβ, Mγ) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage.

  18. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (Mα, Mβ, Mγ) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage. PMID:25216934

  19. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world.

    PubMed

    Parenicová, Lucie; de Folter, Stefan; Kieffer, Martin; Horner, David S; Favalli, Cristina; Busscher, Jacqueline; Cook, Holly E; Ingram, Richard M; Kater, Martin M; Davies, Brendan; Angenent, Gerco C; Colombo, Lucia

    2003-07-01

    MADS-box transcription factors are key regulators of several plant development processes. Analysis of the complete Arabidopsis genome sequence revealed 107 genes encoding MADS-box proteins, of which 84% are of unknown function. Here, we provide a complete overview of this family, describing the gene structure, gene expression, genome localization, protein motif organization, and phylogenetic relationship of each member. We have divided this transcription factor family into five groups (named MIKC, Malpha, Mbeta, Mgamma, and Mdelta) based on the phylogenetic relationships of the conserved MADS-box domain. This study provides a solid base for functional genomics studies into this important family of plant regulatory genes, including the poorly characterized group of M-type MADS-box proteins. MADS-box genes also constitute an excellent system with which to study the evolution of complex gene families in higher plants. PMID:12837945

  20. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress

    PubMed Central

    Arora, Rita; Agarwal, Pinky; Ray, Swatismita; Singh, Ashok Kumar; Singh, Vijay Pal; Tyagi, Akhilesh K; Kapoor, Sanjay

    2007-01-01

    Background MADS-box transcription factors, besides being involved in floral organ specification, have also been implicated in several aspects of plant growth and development. In recent years, there have been reports on genomic localization, protein motif structure, phylogenetic relationships, gene structure and expression of the entire MADS-box family in the model plant system, Arabidopsis. Though there have been some studies in rice as well, an analysis of the complete MADS-box family along with a comprehensive expression profiling was still awaited after the completion of rice genome sequencing. Furthermore, owing to the role of MADS-box family in flower development, an analysis involving structure, expression and functional aspects of MADS-box genes in rice and Arabidopsis was required to understand the role of this gene family in reproductive development. Results A genome-wide molecular characterization and microarray-based expression profiling of the genes encoding MADS-box transcription factor family in rice is presented. Using a thorough annotation exercise, 75 MADS-box genes have been identified in rice and categorized into MIKCc, MIKC*, Mα, Mβ and Mγ groups based on phylogeny. Chromosomal localization of these genes reveals that 16 MADS-box genes, mostly MIKCc-type, are located within the duplicated segments of the rice genome, whereas most of the M-type genes, 20 in all, seem to have resulted from tandem duplications. Nine members belonging to the Mβ group, which was considered absent in monocots, have also been identified. The expression profiles of all the MADS-box genes have been analyzed under 11 temporal stages of panicle and seed development, three abiotic stress conditions, along with three stages of vegetative development. Transcripts for 31 genes accumulate preferentially in the reproductive phase, of which, 12 genes are specifically expressed in seeds, and six genes show expression specific to panicle development. Differential expression of

  1. Bearded-Ear Encodes a MADS-box Transcription Factor Critical for Maize Floral Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We cloned bde by positional cloning and found that it encodes zag3, a MADS-box transcription factor in the conserved AGL6 clade. Mutants in the maize homolog of AGAMOUS, zag1, have a subset of bde floral defects. bde; zag1 double mutants have a severe ear phenotype, not observed in either single m...

  2. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  3. Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla.

    PubMed

    Lin, Choun-Sea; Hsu, Chen-Tran; Liao, De-Chih; Chang, Wan-Jung; Chou, Ming-Lun; Huang, Yao-Ting; Chen, Jeremy J W; Ko, Swee-Suak; Chan, Ming-Tsair; Shih, Ming-Che

    2016-01-01

    Orchids exhibit a range of unique flower shapes and are a valuable ornamental crop. MADS-box transcription factors are key regulatory components in flower initiation and development. Changing the flower shape and flowering time can increase the value of the orchid in the ornamental horticulture industry. In this study, 28 MADS-box genes were identified from the transcriptome database of the model orchid Erycina pusilla. The full-length genomic sequences of these MADS-box genes were obtained from BAC clones. Of these, 27 were MIKC-type EpMADS (two truncated forms) and one was a type I EpMADS. Eleven EpMADS genes contained introns longer than 10 kb. Phylogenetic analysis classified the 24 MIKC(c) genes into nine subfamilies. Three specific protein motifs, AG, FUL and SVP, were identified and used to classify three subfamilies. The expression profile of each EpMADS gene correlated with its putative function. The phylogenetic analysis was highly correlated with the protein domain identification and gene expression results. Spatial expression of EpMADS6, EpMADS12 and EpMADS15 was strongly detected in the inflorescence meristem, floral bud and seed via in situ hybridization. The subcellular localization of the 28 EpMADS proteins was also investigated. Although EpMADS27 lacks a complete MADS-box domain, EpMADS27-YFP was localized in the nucleus. This characterization of the orchid MADS-box family genes provides useful information for both orchid breeding and studies of flowering and evolution.

  4. Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS-box Proteins and Promotes Insect Colonization in a RAD23-Dependent Manner

    PubMed Central

    MacLean, Allyson M.; Orlovskis, Zigmunds; Kowitwanich, Krissana; Zdziarska, Anna M.; Angenent, Gerco C.; Immink, Richard G. H.; Hogenhout, Saskia A.

    2014-01-01

    Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants). PMID:24714165

  5. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner.

    PubMed

    MacLean, Allyson M; Orlovskis, Zigmunds; Kowitwanich, Krissana; Zdziarska, Anna M; Angenent, Gerco C; Immink, Richard G H; Hogenhout, Saskia A

    2014-04-01

    Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants). PMID:24714165

  6. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.

    PubMed

    de Folter, Stefan; Immink, Richard G H; Kieffer, Martin; Parenicová, Lucie; Henz, Stefan R; Weigel, Detlef; Busscher, Marco; Kooiker, Maarten; Colombo, Lucia; Kater, Martin M; Davies, Brendan; Angenent, Gerco C

    2005-05-01

    Interactions between proteins are essential for their functioning and the biological processes they control. The elucidation of interaction maps based on yeast studies is a first step toward the understanding of molecular networks and provides a framework of proteins that possess the capacity and specificity to interact. Here, we present a comprehensive plant protein-protein interactome map of nearly all members of the Arabidopsis thaliana MADS box transcription factor family. A matrix-based yeast two-hybrid screen of >100 members of this family revealed a collection of specific heterodimers and a few homodimers. Clustering of proteins with similar interaction patterns pinpoints proteins involved in the same developmental program and provides valuable information about the participation of uncharacterized proteins in these programs. Furthermore, a model is proposed that integrates the floral induction and floral organ formation networks based on the interactions between the proteins involved. Heterodimers between flower induction and floral organ identity proteins were observed, which point to (auto)regulatory mechanisms that prevent the activity of flower induction proteins in the flower. PMID:15805477

  7. The MADS Box Gene FBP2 Is Required for SEPALLATA Function in Petunia

    PubMed Central

    Ferrario, Silvia; Immink, Richard G. H.; Shchennikova, Anna; Busscher-Lange, Jacqueline; Angenent, Gerco C.

    2003-01-01

    The ABC model, which was accepted for almost a decade as a paradigm for flower development in angiosperms, has been subjected recently to a significant modification with the introduction of the new class of E-function genes. This function is required for the proper action of the B- and C-class homeotic proteins and is provided in Arabidopsis by the SEPALLATA1/2/3 MADS box transcription factors. A triple mutant in these partially redundant genes displays homeotic conversion of petals, stamens, and carpels into sepaloid organs and loss of determinacy in the center of the flower. A similar phenotype was obtained by cosuppression of the MADS box gene FBP2 in petunia. Here, we provide evidence that this phenotype is caused by the downregulation of both FBP2 and the paralog FBP5. Functional complementation of the sepallata mutant by FBP2 and our finding that the FBP2 protein forms multimeric complexes with other floral homeotic MADS box proteins indicate that FBP2 represents the same E function as SEP3 in Arabidopsis. PMID:12671087

  8. Characterization and expression analysis of six MADS-box genes in maize (Zea mays L.).

    PubMed

    Zhang, Zhongbao; Li, Huiyong; Zhang, Dengfeng; Liu, Yinghui; Fu, Jing; Shi, Yunsu; Song, Yanchun; Wang, Tianyu; Li, Yu

    2012-05-15

    MADS-box genes encode a family of transcription factors, which control diverse developmental processes in flowering plants, with organs ranging from roots, flowers and fruits. In this study, six maize cDNAs encoding MADS-box proteins were isolated. BLASTX searches and phylogenetic analysis indicated that the six MADS-box genes belonging to the AGL2-like clade. qRT-PCR analysis revealed that these genes had differential expression patterns in different organs in maize. The results of yeast one-hybrid system indicated that the protein ZMM3-1, ZMM3-2, ZMM6, ZMM7-L, ZMM8-L and ZMM14-L had transcriptional activation activity. Subcellular localization of ZMM7-L demonstrated that the fluorescence of ZMM7-L-GFP was mainly detected in the nuclei of onion epidermal cells. qRT-PCR analysis for expression pattern of ZMM7-L showed that the gene was up-regulated by abiotic stresses and down-regulated by exogenous ABA. The germination rates of over-expression transgenic lines were lower than that of the wild type on medium with 150 mM NaCl, 350 mM mannitol. These results indicated that ZMM7-L might be a negative transcription factor responsive to abiotic stresses.

  9. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica)

    PubMed Central

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-01-01

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple. PMID:26856238

  10. Eucalypt MADS-Box Genes Expressed in Developing Flowers

    PubMed Central

    Southerton, Simon G.; Marshall, Heidi; Mouradov, Aidyn; Teasdale, Robert D.

    1998-01-01

    Three MADS-box genes were identified from a cDNA library derived from young flowers of Eucalyptus grandis W. Hill ex Maiden. The three egm genes are single-copy genes and are expressed almost exclusively in flowers. The egm1 and egm3 genes shared strongest homology with other plant MADS-box genes, which mediate between the floral meristem and the organ-identity genes. The egm3 gene was also expressed strongly in the receptacle or floral tube, which surrounds the carpels in the eucalypt flower and bears the sepals, petals, and numerous stamens. There appeared to be a group of genes in eucalypts with strong homology with the 3′ region of the egm1 gene. The egm2 gene was expressed in eucalypt petals and stamens and was most homologous to MADS-box genes, which belong to the globosa group of genes, which regulate organogenesis of the second and third floral whorls. The possible role of these three genes in eucalypt floral development is discussed. PMID:9765522

  11. Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica).

    PubMed

    Zhang, Lin; Xu, Yong; Ma, Rongcai

    2008-06-01

    MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADS10, were cloned using degenerate primers and 5'- and 3'-RACE based on the sequence database of P. persica and P. dulcis. The full length of PpMADS1 cDNA is 1,071 bp containing an open reading frame (ORF) of 717 bp and coding for a polypeptide of 238 amino acid residues. The full length of PpMADS10 cDNA is 937 bp containing an ORF of 633 bp and coding for a polypeptide of 210 amino acid residues. Sequence comparison revealed that PpMADS1 and PpMADS10 were highly homologous to genes AP1 and PI in Arabidopsis, respectively. Phylogenetic analysis indicated that PpMADS1 belongs to the euAP1 clade of class A, and PpMADS10 is a member of GLO/PI clade of class B. RT-PCR analysis showed that PpMADS1 was expressed in sepal, petal, carpel, and fruit, which was slightly different from the expression pattern of AP1; PpMADS10 was expressed in petal and stamen, which shared the same expression pattern as PI. Using selective mapping strategy, PpMADS1 was assigned onto the Bin1:50 on the G1 linkage group between the markers MCO44 and TSA2, and PpMADS10 onto the Bin1:73 on the same linkage group between the markers Lap-1 and FGA8. Our results provided the basis for further dissection of the two MADS box gene function.

  12. Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae)

    PubMed Central

    Laitinen, Roosa AE; Broholm, Suvi; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula

    2006-01-01

    Background The inflorescence of the cut-flower crop Gerbera hybrida (Asteraceae) consists of two principal flower types, ray and disc, which form a tightly packed head, or capitulum. Despite great interest in plant morphological evolution and the tractability of the gerbera system, very little is known regarding genetic mechanisms involved in flower type specification. Here, we provide comparative staging of ray and disc flower development and microarray screening for differentially expressed genes, accomplished via microdissection of hundreds of coordinately developing flower primordia. Results Using a 9K gerbera cDNA microarray we identified a number of genes with putative specificity to individual flower types. Intrestingly, several of these encode homologs of MADS-box transcription factors otherwise known to regulate flower organ development. From these and previously obtained data, we hypothesize the functions and protein-protein interactions of several gerbera MADS-box factors. Conclusion Our RNA expression results suggest that flower-type specific MADS protein complexes may play a central role in differential development of ray and disc flowers across the gerbera capitulum, and that some commonality is shared with known protein functions in floral organ determination. These findings support the intriguing conjecture that the gerbera flowering head is more than a mere floral analog at the level of gene regulation. PMID:16762082

  13. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN.

    PubMed

    Shima, Yoko; Kitagawa, Mamiko; Fujisawa, Masaki; Nakano, Toshitsugu; Kato, Hiroki; Kimbara, Junji; Kasumi, Takafumi; Ito, Yasuhiro

    2013-07-01

    The tomato MADS-box transcription factor RIN acts as a master regulator of fruit ripening. Here, we identified MADS-box proteins that interact with RIN; we also provide evidence that these proteins act in the regulation of fruit ripening. We conducted a yeast two-hybrid screen of a cDNA library from ripening fruit, for genes encoding proteins that bind to RIN. The screen identified two MADS-box genes, FUL1 and FUL2 (previously called TDR4 and SlMBP7), both of which have high sequence similarity to Arabidopsis FRUITFULL. Expression analyses revealed that the FUL1 mRNA and FUL1 protein accumulate in a ripening-specific manner in tomato fruits and FUL2 mRNA and protein accumulate at the pre-ripening stage and throughout ripening. Biochemical analyses confirmed that FUL1 and FUL2 form heterodimers with RIN; this interaction required the FUL1 and FUL2 C-terminal domains. Also, the heterodimers bind to a typical target DNA motif for MADS-box proteins. Chromatin immunoprecipitation assays revealed that FUL1 and FUL2 bind to genomic sites that were previously identified as RIN-target sites, such as the promoter regions of ACS2, ACS4 and RIN. These findings suggest that RIN forms complexes with FUL1 and FUL2 and these complexes regulate expression of ripening-related genes. In addition to the functional redundancy between FUL1 and FUL2, we also found they have potentially divergent roles in transcriptional regulation, including a difference in genomic target sites.

  14. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis.

    PubMed

    de Folter, Stefan; Shchennikova, Anna V; Franken, John; Busscher, Marco; Baskar, Ramamurthy; Grossniklaus, Ueli; Angenent, Gerco C; Immink, Richard G H

    2006-09-01

    MADS-domain transcription factors are essential for proper flower and seed development in angiosperms and their role in determination of floral organ identity can be described by the 'ABC model' of flower development. Recently, close relatives of the B-type genes were identified by phylogenetic studies, which are referred to as B(sister) (B(s)) genes. Here, we report the isolation and characterization of a MADS-box B(s) member from petunia, designated FBP24. An fbp24 knock-down line appeared to closely resemble the Arabidopsis B(s) mutant abs and a detailed and comparative analysis led to the conclusion that both FBP24 and ABS are necessary to determine the identity of the endothelial layer within the ovule. Protein interaction studies revealed the formation of higher-order complexes between B(s)-C-E and B(s)-D-E type MADS-box proteins, suggesting involvement of these specific complexes in determination of endothelium identity. However, although there are many similarities between the two genes and their products and functions, interestingly FBP24 cannot replace ABS in Arabidopsis. The results presented here demonstrate the importance of the comparative analysis of key regulatory genes in various model systems to fully understand all aspects of plant development. PMID:16925602

  15. The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea

    PubMed Central

    Zhang, Zhanquan; Li, Hua; Qin, Guozheng; He, Chang; Li, Boqiang; Tian, Shiping

    2016-01-01

    MADS-box transcription factors are highly conserved in eukaryotic species and involved in a variety of biological processes. Little is known, however, regarding the function of MADS-box genes in Botrytis cinerea, a fungal pathogen with a wide host range. Here, the functional role of the B. cinerea MADS-box gene, Bcmads1, was characterized in relation to the development, pathogenicity and production of sclerotia. The latter are formed upon incubation in darkness and serve as survival structures during winter and as the female parent in sexual reproduction. Bcmads1 is indispensable for sclerotia production. RT-qPCR analysis suggested that Bcmads1 modulated sclerotia formation by regulating the expression of light-responsive genes. Bcmads1 is required for the full virulence potential of B. cinerea on apple fruit. A comparative proteomic analysis identified 63 proteins, representing 55 individual genes that are potential targets of Bcmads1. Among them, Bcsec14 and Bcsec31 are associated with vesicle transport. Deletion of Bcsec14 and Bcsec31 resulted in a reduction in the virulence and protein secretion of B. cinerea. These results suggest that Bcmads1 may influence sclerotia formation by modulating light responsive gene expression and regulate pathogenicity by its effect on the protein secretion process. PMID:27658442

  16. New MADS-box gene in fern: cloning and expression analysis of DfMADS1 from Dryopteris fragrans.

    PubMed

    Huang, Qingyang; Li, Wenhua; Fan, Ruifeng; Chang, Ying

    2014-01-01

    MADS genes encode a family of transcription factors, some of which control the identities of floral organs in flowering plants. Most of the MADS-box genes in fern have been cloned and analyzed in model plants, such as Ceratopteris richardii and Ceratopteris pteridoides. In this study, a new MADS-box gene, DfMADS1(GU385475), was cloned from Dryopteris fragrans (L.) Schott to better understand the role of MADS genes in the evolution of floral organs. The full-length DfMADS1 cDNA was 973 bp in length with a 75 bp 5'-UTR and a 169 bp 3'-UTR. The DfMADS1 protein was predicted to contain a typical MIKC-type domain structure consisting of a MADS domain, a short I region, a K domain, and a C-terminal region. The DfMADS1 protein showed high homology with MADS box proteins from other ferns. Phylogenetic analysis revealed that DfMADS1 belongs to the CRM1-like subfamily. RT-PCR analysis indicated that DfMADS1 is expressed in both the gametophytes and the sporophytes of D. fragrans.

  17. New MADS-Box Gene in Fern: Cloning and Expression Analysis of DfMADS1 from Dryopteris fragrans

    PubMed Central

    Huang, Qingyang; Li, Wenhua; Fan, Ruifeng; Chang, Ying

    2014-01-01

    MADS genes encode a family of transcription factors, some of which control the identities of floral organs in flowering plants. Most of the MADS-box genes in fern have been cloned and analyzed in model plants, such as Ceratopteris richardii and Ceratopteris pteridoides. In this study, a new MADS-box gene, DfMADS1(GU385475), was cloned from Dryopteris fragrans (L.) Schott to better understand the role of MADS genes in the evolution of floral organs. The full-length DfMADS1 cDNA was 973 bp in length with a 75bp 5′-UTR and a 169bp 3′-UTR. The DfMADS1 protein was predicted to contain a typical MIKC-type domain structure consisting of a MADS domain, a short I region, a K domain, and a C-terminal region. The DfMADS1 protein showed high homology with MADS box proteins from other ferns. Phylogenetic analysis revealed that DfMADS1 belongs to the CRM1-like subfamily. RT-PCR analysis indicated that DfMADS1 is expressed in both the gametophytes and the sporophytes of D. fragrans. PMID:24466046

  18. New MADS-box gene in fern: cloning and expression analysis of DfMADS1 from Dryopteris fragrans.

    PubMed

    Huang, Qingyang; Li, Wenhua; Fan, Ruifeng; Chang, Ying

    2014-01-01

    MADS genes encode a family of transcription factors, some of which control the identities of floral organs in flowering plants. Most of the MADS-box genes in fern have been cloned and analyzed in model plants, such as Ceratopteris richardii and Ceratopteris pteridoides. In this study, a new MADS-box gene, DfMADS1(GU385475), was cloned from Dryopteris fragrans (L.) Schott to better understand the role of MADS genes in the evolution of floral organs. The full-length DfMADS1 cDNA was 973 bp in length with a 75 bp 5'-UTR and a 169 bp 3'-UTR. The DfMADS1 protein was predicted to contain a typical MIKC-type domain structure consisting of a MADS domain, a short I region, a K domain, and a C-terminal region. The DfMADS1 protein showed high homology with MADS box proteins from other ferns. Phylogenetic analysis revealed that DfMADS1 belongs to the CRM1-like subfamily. RT-PCR analysis indicated that DfMADS1 is expressed in both the gametophytes and the sporophytes of D. fragrans. PMID:24466046

  19. Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers.

    PubMed

    Acri-Nunes-Miranda, Roberta; Mondragón-Palomino, Mariana

    2014-01-01

    The diverse flowers of Orchidaceae are the result of several major morphological transitions, among them the most studied is the differentiation of the inner median tepal into the labellum, a perianth organ key in pollinator attraction. Type A peloria lacking stamens and with ectopic labella in place of inner lateral tepals are useful for testing models on the genes specifying these organs by comparing their patterns of expression between wild-type and peloric flowers. Previous studies focused on DEFICIENS- and GLOBOSA-like MADS-box genes because of their conserved role in perianth and stamen development. The "orchid code" model summarizes this work and shows in Orchidaceae there are four paralogous lineages of DEFICIENS/AP3-like genes differentially expressed in each floral whorl. Experimental tests of this model showed the conserved, higher expression of genes from two specific DEF-like gene lineages is associated with labellum development. The present study tests whether eight MADS-box candidate SEP-, FUL-, AG-, and STK-like genes have been specifically duplicated in the Orchidaceae and are also differentially expressed in association with the distinct flower organs of Phalaenopsis hyb. "Athens." The gene trees indicate orchid-specific duplications. In a way analogous to what is observed in labellum-specific DEF-like genes, a two-fold increase in the expression of SEP3-like gene PhaMADS7 was measured in the labellum-like inner lateral tepals of peloric flowers. The overlap between SEP3-like and DEF-like genes suggests both are associated with labellum specification and similar positional cues determine their domains of expression. In contrast, the uniform messenger levels of FUL-like genes suggest they are involved in the development of all organs and their expression in the ovary suggests cell differentiation starts before pollination. As previously reported AG-like and STK-like genes are exclusively expressed in gynostemium and ovary, however no evidence for

  20. Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers

    PubMed Central

    Acri-Nunes-Miranda, Roberta; Mondragón-Palomino, Mariana

    2014-01-01

    The diverse flowers of Orchidaceae are the result of several major morphological transitions, among them the most studied is the differentiation of the inner median tepal into the labellum, a perianth organ key in pollinator attraction. Type A peloria lacking stamens and with ectopic labella in place of inner lateral tepals are useful for testing models on the genes specifying these organs by comparing their patterns of expression between wild-type and peloric flowers. Previous studies focused on DEFICIENS- and GLOBOSA-like MADS-box genes because of their conserved role in perianth and stamen development. The “orchid code” model summarizes this work and shows in Orchidaceae there are four paralogous lineages of DEFICIENS/AP3-like genes differentially expressed in each floral whorl. Experimental tests of this model showed the conserved, higher expression of genes from two specific DEF-like gene lineages is associated with labellum development. The present study tests whether eight MADS-box candidate SEP-, FUL-, AG-, and STK-like genes have been specifically duplicated in the Orchidaceae and are also differentially expressed in association with the distinct flower organs of Phalaenopsis hyb. “Athens.” The gene trees indicate orchid-specific duplications. In a way analogous to what is observed in labellum-specific DEF-like genes, a two-fold increase in the expression of SEP3-like gene PhaMADS7 was measured in the labellum-like inner lateral tepals of peloric flowers. The overlap between SEP3-like and DEF-like genes suggests both are associated with labellum specification and similar positional cues determine their domains of expression. In contrast, the uniform messenger levels of FUL-like genes suggest they are involved in the development of all organs and their expression in the ovary suggests cell differentiation starts before pollination. As previously reported AG-like and STK-like genes are exclusively expressed in gynostemium and ovary, however no

  1. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice.

    PubMed

    Yu, Chunyan; Liu, Yihua; Zhang, Aidong; Su, Sha; Yan, An; Huang, Linli; Ali, Imran; Liu, Yu; Forde, Brian G; Gan, Yinbo

    2015-01-01

    MADS-box transcription factors are vital regulators participating in plant growth and development process and the functions of most of them are still unknown. ANR1 was reported to play a key role in controlling lateral root development through nitrate signal in Arabidopsis. OsMADS25 is one of five ANR1-like genes in Oryza Sativa and belongs to the ANR1 clade. Here we have investigated the role of OsMADS25 in the plant's responses to external nitrate in Oryza Sativa. Our results showed that OsMADS25 protein was found in the nucleus as well as in the cytoplasm. Over-expression of OsMADS25 significantly promoted lateral and primary root growth as well as shoot growth in a nitrate-dependent manner in Arabidopsis. OsMADS25 overexpression in transgenic rice resulted in significantly increased primary root length, lateral root number, lateral root length and shoot fresh weight in the presence of nitrate. Down-regulation of OsMADS25 in transgenic rice exhibited significantly reduced shoot and root growth in the presence of nitrate. Furthermore, over-expression of OsMADS25 in transgenic rice promoted nitrate accumulation and significantly increased the expressions of nitrate transporter genes at high rates of nitrate supply while down-regulation of OsMADS25 produced the opposite effect. Taken together, our findings suggest that OsMADS25 is a positive regulator control lateral and primary root development in rice.

  2. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants

    PubMed Central

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-01-01

    Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11–14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes. Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box

  3. Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes.

    PubMed

    Tanabe, Yoichi; Hasebe, Mitsuyasu; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Kitani, Masakazu; Henschel, Katrin; Münster, Thomas; Theissen, Günter; Nozaki, Hisayoshi; Ito, Motomi

    2005-02-15

    The MADS-box genes of land plants are extensively diverged to form a superfamily and are important in various aspects of development including the specification of floral organs as homeotic selector genes. The closest relatives of land plants are the freshwater green algae charophyceans. To study the origin and evolution of land plant MADS-box genes, we characterized these genes in three charophycean green algae: the stonewort Chara globularis, the coleochaete Coleochaete scutata, and the desmid Closterium peracerosum-strigosum-littorale complex. Phylogenetic analyses suggested that MADS-box genes diverged extensively in the land plant lineage after the separation of charophyceans from land plants. The stonewort C. globularis mRNA was specifically detected in the oogonium and antheridium together with the egg and spermatozoid during their differentiation. The expression of the C. peracerosum-strigosum-littorale-complex gene increased when vegetative cells began to differentiate into gametangial cells and decreased after fertilization. These expression patterns suggest that the precursors of land plant MADS-box genes originally functioned in haploid reproductive cell differentiation and that the haploid MADS-box genes were recruited into a diploid generation during the evolution of land plants.

  4. MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited.

    PubMed

    Theissen, G; Saedler, H

    1995-10-01

    Data currently accumulating with impressive speed indicate that the molecular evolution of MADS-box genes was a decisive aspect of the morphological evolution of plants. Studies on MADS-box genes in diverse plant species thus help us to understand the emergence of morphological novelties, such as the flower, in evolution. This furthers our understanding of the relationship between ontogeny and phylogeny, which has been a controversial issue since Ernst Haeckel published his 'biogenetic law' more than a century ago. PMID:8664551

  5. Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription FactorsW⃞

    PubMed Central

    de Folter, Stefan; Immink, Richard G.H.; Kieffer, Martin; Pařenicová, Lucie; Henz, Stefan R.; Weigel, Detlef; Busscher, Marco; Kooiker, Maarten; Colombo, Lucia; Kater, Martin M.; Davies, Brendan; Angenent, Gerco C.

    2005-01-01

    Interactions between proteins are essential for their functioning and the biological processes they control. The elucidation of interaction maps based on yeast studies is a first step toward the understanding of molecular networks and provides a framework of proteins that possess the capacity and specificity to interact. Here, we present a comprehensive plant protein–protein interactome map of nearly all members of the Arabidopsis thaliana MADS box transcription factor family. A matrix-based yeast two-hybrid screen of >100 members of this family revealed a collection of specific heterodimers and a few homodimers. Clustering of proteins with similar interaction patterns pinpoints proteins involved in the same developmental program and provides valuable information about the participation of uncharacterized proteins in these programs. Furthermore, a model is proposed that integrates the floral induction and floral organ formation networks based on the interactions between the proteins involved. Heterodimers between flower induction and floral organ identity proteins were observed, which point to (auto)regulatory mechanisms that prevent the activity of flower induction proteins in the flower. PMID:15805477

  6. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    PubMed Central

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-01-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins. PMID:24621662

  7. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato.

    PubMed

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-03-13

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.

  8. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-03-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.

  9. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening

    PubMed Central

    Wang, Shufen; Lu, Gang; Hou, Zheng; Luo, Zhidan; Wang, Taotao; Li, Hanxia; Zhang, Junhong; Ye, Zhibiao

    2014-01-01

    The tomato (Solanum lycopersicum) protein MADS-RIN plays important roles in fruit ripening. In this study, the functions of two homologous tomato proteins, FUL1 and FUL2, which contain conserved MIKC domains that typify plant MADS-box proteins, and which interact with MADS-RIN, were analysed. Transgenic functional analysis showed that FUL1 and FUL2 function redundantly in fruit ripening regulation, but exhibit distinct roles in the regulation of cellular differentiation and expansion. Over-expression of FUL2 in tomato resulted in a pointed tip at the blossom end of the fruit, together with a thinner pericarp, reduced stem diameter, and smaller leaves, but no obvious phenotypes resulted from FUL1 over-expression. Dual suppression of FUL1 and FUL2 substantially inhibited fruit ripening by blocking ethylene biosynthesis and decreasing carotenoid accumulation. In addition, the levels of transcript corresponding to ACC SYNTHASE2 (ACS2), which plays a key role in ethylene biosynthesis, were significantly decreased in the FUL1/FUL2 knock-down tomato fruits. Overall, our results suggest that FUL proteins can regulate tomato fruit ripening through fine-tuning ethylene biosynthesis and the expression of ripening-related genes. PMID:24723399

  10. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening.

    PubMed

    Wang, Shufen; Lu, Gang; Hou, Zheng; Luo, Zhidan; Wang, Taotao; Li, Hanxia; Zhang, Junhong; Ye, Zhibiao

    2014-07-01

    The tomato (Solanum lycopersicum) protein MADS-RIN plays important roles in fruit ripening. In this study, the functions of two homologous tomato proteins, FUL1 and FUL2, which contain conserved MIKC domains that typify plant MADS-box proteins, and which interact with MADS-RIN, were analysed. Transgenic functional analysis showed that FUL1 and FUL2 function redundantly in fruit ripening regulation, but exhibit distinct roles in the regulation of cellular differentiation and expansion. Over-expression of FUL2 in tomato resulted in a pointed tip at the blossom end of the fruit, together with a thinner pericarp, reduced stem diameter, and smaller leaves, but no obvious phenotypes resulted from FUL1 over-expression. Dual suppression of FUL1 and FUL2 substantially inhibited fruit ripening by blocking ethylene biosynthesis and decreasing carotenoid accumulation. In addition, the levels of transcript corresponding to ACC SYNTHASE2 (ACS2), which plays a key role in ethylene biosynthesis, were significantly decreased in the FUL1/FUL2 knock-down tomato fruits. Overall, our results suggest that FUL proteins can regulate tomato fruit ripening through fine-tuning ethylene biosynthesis and the expression of ripening-related genes.

  11. Ectopic Expression of the Petunia MADS Box Gene UNSHAVEN Accelerates Flowering and Confers Leaf-Like Characteristics to Floral Organs in a Dominant-Negative MannerW⃞

    PubMed Central

    Ferrario, Silvia; Busscher, Jacqueline; Franken, John; Gerats, Tom; Vandenbussche, Michiel; Angenent, Gerco C.; Immink, Richard G.H.

    2004-01-01

    Several genes belonging to the MADS box transcription factor family have been shown to be involved in the transition from vegetative to reproductive growth. The Petunia hybrida MADS box gene UNSHAVEN (UNS) shares sequence similarity with the Arabidopsis thaliana flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1, is expressed in vegetative tissues, and is downregulated upon floral initiation and the formation of floral meristems. To understand the role of UNS in the flowering process, knockout mutants were identified and UNS was expressed ectopically in petunia and Arabidopsis. No phenotype was observed in petunia plants in which UNS was disrupted by transposon insertion, indicating that its function is redundant. Constitutive expression of UNS leads to an acceleration of flowering and to the unshaven floral phenotype, which is characterized by ectopic trichome formation on floral organs and conversion of petals into organs with leaf-like features. The same floral phenotype, accompanied by a delay in flowering, was obtained when a truncated version of UNS, lacking the MADS box domain, was introduced. We demonstrated that the truncated protein is not translocated to the nucleus. Using the overexpression approach with both the full-length and the nonfunctional truncated UNS protein, we could distinguish between phenotypic alterations because of a dominant-negative action of the protein and because of its native function in promoting floral transition. PMID:15155884

  12. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals.

    PubMed

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-11-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth.

  13. An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis.

    PubMed

    Bemer, Marian; Heijmans, Klaas; Airoldi, Chiara; Davies, Brendan; Angenent, Gerco C

    2010-09-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and beta-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis.

  14. An Atlas of Type I MADS Box Gene Expression during Female Gametophyte and Seed Development in Arabidopsis[W

    PubMed Central

    Bemer, Marian; Heijmans, Klaas; Airoldi, Chiara; Davies, Brendan; Angenent, Gerco C.

    2010-01-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and β-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis. PMID:20631316

  15. An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis.

    PubMed

    Bemer, Marian; Heijmans, Klaas; Airoldi, Chiara; Davies, Brendan; Angenent, Gerco C

    2010-09-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and beta-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis. PMID:20631316

  16. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines.

    PubMed

    Wang, Li; Yin, Xiangjing; Cheng, Chenxia; Wang, Hao; Guo, Rongrong; Xu, Xiaozhao; Zhao, Jiao; Zheng, Yi; Wang, Xiping

    2015-06-01

    MADS-box transcription factors are involved in many aspects of plant growth and development, such as floral organ determination, fruit ripening, and embryonic development. Yet not much is known about grape (Vitis vinifera) MADS-box genes in a relatively comprehensive genomic and functional way during ovule development. Accordingly, we identified 54 grape MADS-box genes, aiming to enhance our understanding of grape MADS-box genes from both evolutionary and functional perspectives. Synteny analysis indicated that both segmental and tandem duplication events contributed to the expansion of the grape MADS-box family. Furthermore, synteny analysis between the grape and Arabidopsis genomes suggested that several grape MADS-box genes arose before divergence of the two species. Phylogenetic analysis and comparisons of exon-intron structures provided further insight into the evolutionary relationships between the genes, as well as their putative functions. Based on phylogenetic tree analysis, grape MADS-box genes were divided into type I and type II subgroups. Tissue-specific expression analysis suggested roles in both vegetative and reproductive tissue development. Expression analysis of the MADS-box genes following gibberellic acid (GA3) treatment revealed their response to GA3 treatment and that seedlessness caused by GA3 treatment underwent a different mechanism from that of normal ovule abortion. Expression profiling of MADS-box genes from six cultivars suggests their function in ovule development and may represent potential ovule identity genes involved in parthenocarpy. The results presented provide a few candidate genes involved in ovule development for future study, which may be useful in seedlessness-related molecular breeding programs. PMID:25429734

  17. Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize.

    PubMed

    Danilevskaya, Olga N; Meng, Xin; Selinger, David A; Deschamps, Stéphane; Hermon, Pedro; Vansant, Gordon; Gupta, Rajeev; Ananiev, Evgueni V; Muszynski, Michael G

    2008-08-01

    The switch from vegetative to reproductive growth is marked by the termination of vegetative development and the adoption of floral identity by the shoot apical meristem (SAM). This process is called the floral transition. To elucidate the molecular determinants involved in this process, we performed genome-wide RNA expression profiling on maize (Zea mays) shoot apices at vegetative and early reproductive stages using massively parallel signature sequencing technology. Profiling revealed significant up-regulation of two maize MADS-box (ZMM) genes, ZMM4 and ZMM15, after the floral transition. ZMM4 and ZMM15 map to duplicated regions on chromosomes 1 and 5 and are linked to neighboring MADS-box genes ZMM24 and ZMM31, respectively. This gene order is syntenic with the vernalization1 locus responsible for floral induction in winter wheat (Triticum monococcum) and similar loci in other cereals. Analyses of temporal and spatial expression patterns indicated that the duplicated pairs ZMM4-ZMM24 and ZMM15-ZMM31 are coordinately activated after the floral transition in early developing inflorescences. More detailed analyses revealed ZMM4 expression initiates in leaf primordia of vegetative shoot apices and later increases within elongating meristems acquiring inflorescence identity. Expression analysis in late flowering mutants positioned all four genes downstream of the floral activators indeterminate1 (id1) and delayed flowering1 (dlf1). Overexpression of ZMM4 leads to early flowering in transgenic maize and suppresses the late flowering phenotype of both the id1 and dlf1 mutations. Our results suggest ZMM4 may play roles in both floral induction and inflorescence development.

  18. Molecular cloning and spatiotemporal expression of an APETALA1/FRUITFULL-like MADS-box gene from the orchid (Cymbidium faberi).

    PubMed

    Tian, Yunfang; Yuan, Xiuyun; Jiang, Suhua; Cui, Bo; Su, Jinle

    2013-02-01

    In order to identify genes involved in floral transition and development of the orchid species, a full-length APETALA1/FRUITFULL-like (AP1/FUL-like) MADS box cDNA was cloned from Cymbidium faberi (C. faberi) sepals and designated as C. faberi APETALA1-like (CfAP11], JQ031272.1). The deduced amino acid sequence of CfAP11 shared 84% homology with a member of the AP1/FUL-like group of MADS box genes (AY927238.1, Dendrobium thyrsiflorum FUL-like MADS box protein 3 mRNA). Phylogenetic analysis shows that CfAP11 belonged to the AP1/FUL transcription factor subfamily. Bioinformatics analysis shows that the deduced protein had a MADS domain and a relatively conservative K region. The secondary structure of CfAP11 mainly consisted of alpha helices (58.97%), and the three-dimensional structure of the protein was similar to that of homologues in Roza hybrida, Oryza sativa and Narcissus tazetta. Real-time quantitative PCR (qRT-PCR) results reveal low levels of its mRNA in roots, lower levels in leaves during reproductive period than vegetative period, and higher levels in pedicels at full-blossom stage than at bud stage. These results suggest that CfAP11 is involved in floral induction and floral development. Additionally, we observed higher levels of CfAP11 expression in pedicels and ovaries than in other tissues during full-blossom stage, which suggests that CfAP11 may also be involved in fruit formation in certain mechanism.

  19. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening.

    PubMed

    Liu, Juhua; Xu, Biyu; Hu, Lifang; Li, Meiying; Su, Wei; Wu, Jing; Yang, Jinghao; Jin, Zhiqiang

    2009-01-01

    To investigate the regulation of MADS-box genes in banana (Musa acuminata L. AAA group cv. Brazilian) fruit development and postharvest ripening, we isolated from banana fruit a MADS-box gene designated MuMADS1. Amino acid alignment indicated MuMADS1 belongs to the AGAMOUS subfamily, and phylogenetic analysis indicates that this gene is most similar to class D MADS-box genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that MuMADS1 is expressed in the stamen and pistil of male and female flowers and in the rhizome, the vegetative reproductive organ of the banana plant. In preharvest banana fruit, MuMADS1 is likely expressed throughout banana fruit development. In postharvest banana ripening, MuMADS1 is associated with ethylene biosynthesis. Expression patterns of MuMADS1 during postharvest ripening as determined by real-time RT-PCR suggest that differential expression of MuMADS1 may not only be induced by ethylene biosynthesis associated with postharvest banana ripening, but also may be induced by exogenous ethylene. PMID:18820933

  20. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.).

    PubMed

    Liu, Wei; Han, Xiangdong; Zhan, Ge; Zhao, Zhenfang; Feng, Yongjun; Wu, Cunxiang

    2015-08-31

    The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  1. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.)

    PubMed Central

    Liu, Wei; Han, Xiangdong; Zhan, Ge; Zhao, Zhenfang; Feng, Yongjun; Wu, Cunxiang

    2015-01-01

    The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building. PMID:26404246

  2. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.).

    PubMed

    Liu, Wei; Han, Xiangdong; Zhan, Ge; Zhao, Zhenfang; Feng, Yongjun; Wu, Cunxiang

    2015-01-01

    The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building. PMID:26404246

  3. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development.

    PubMed

    Chen, You-Yi; Lee, Pei-Fang; Hsiao, Yu-Yun; Wu, Wan-Lin; Pan, Zhao-Jun; Lee, Yung-I; Liu, Ke-Wei; Chen, Li-Jun; Liu, Zhong-Jian; Tsai, Wen-Chieh

    2012-06-01

    Gynostemium and ovule development in orchid are unique developmental processes in the plant kingdom. Characterization of C- and D-class MADS-box genes could help reveal the molecular mechanisms underlying gynostemium and ovule development in orchids. In this study, we isolated and characterized a C- and a D-class gene, PeMADS1 and PeMADS7, respectively, from Phalaenopsis equestris. These two genes showed parallel spatial and temporal expression profiles, which suggests their cooperation in gynostemium and ovule development. Furthermore, only PeMADS1 was ectopically expressed in the petals of the gylp (gynostemium-like petal) mutant, whose petals were transformed into gynostemium-like structures. Protein-protein interaction analyses revealed that neither PeMADS1 and PeMADS7 could form a homodimer or a heterodimer. An E-class protein was needed to bridge the interaction between these two proteins. A complementation test revealed that PeMADS1 could rescue the phenotype of the AG mutant. Overexpression of PeMADS7 in Arabidopsis caused typical phenotypes of the D-class gene family. Together, these results indicated that both C-class PeMADS1 and D-class PeMADS7 play important roles in orchid gynostemium and ovule development.

  4. Divergence of recently duplicated M{gamma}-type MADS-box genes in Petunia.

    PubMed

    Bemer, Marian; Gordon, Jonathan; Weterings, Koen; Angenent, Gerco C

    2010-02-01

    The MADS-box transcription factor family has expanded considerably in plants via gene and genome duplications and can be subdivided into type I and MIKC-type genes. The two gene classes show a different evolutionary history. Whereas the MIKC-type genes originated during ancient genome duplications, as well as during more recent events, the type I loci appear to experience high turnover with many recent duplications. This different mode of origin also suggests a different fate for the type I duplicates, which are thought to have a higher chance to become silenced or lost from the genome. To get more insight into the evolution of the type I MADS-box genes, we isolated nine type I genes from Petunia, which belong to the Mgamma subclass, and investigated the divergence of their coding and regulatory regions. The isolated genes could be subdivided into two categories: two genes were highly similar to Arabidopsis Mgamma-type genes, whereas the other seven genes showed less similarity to Arabidopsis genes and originated more recently. Two of the recently duplicated genes were found to contain deleterious mutations in their coding regions, and expression analysis revealed that a third paralog was silenced by mutations in its regulatory region. However, in addition to the three genes that were subjected to nonfunctionalization, we also found evidence for neofunctionalization of one of the Petunia Mgamma-type genes. Our study shows a rapid divergence of recently duplicated Mgamma-type MADS-box genes and suggests that redundancy among type I paralogs may be less common than expected.

  5. Divergence of recently duplicated M{gamma}-type MADS-box genes in Petunia.

    PubMed

    Bemer, Marian; Gordon, Jonathan; Weterings, Koen; Angenent, Gerco C

    2010-02-01

    The MADS-box transcription factor family has expanded considerably in plants via gene and genome duplications and can be subdivided into type I and MIKC-type genes. The two gene classes show a different evolutionary history. Whereas the MIKC-type genes originated during ancient genome duplications, as well as during more recent events, the type I loci appear to experience high turnover with many recent duplications. This different mode of origin also suggests a different fate for the type I duplicates, which are thought to have a higher chance to become silenced or lost from the genome. To get more insight into the evolution of the type I MADS-box genes, we isolated nine type I genes from Petunia, which belong to the Mgamma subclass, and investigated the divergence of their coding and regulatory regions. The isolated genes could be subdivided into two categories: two genes were highly similar to Arabidopsis Mgamma-type genes, whereas the other seven genes showed less similarity to Arabidopsis genes and originated more recently. Two of the recently duplicated genes were found to contain deleterious mutations in their coding regions, and expression analysis revealed that a third paralog was silenced by mutations in its regulatory region. However, in addition to the three genes that were subjected to nonfunctionalization, we also found evidence for neofunctionalization of one of the Petunia Mgamma-type genes. Our study shows a rapid divergence of recently duplicated Mgamma-type MADS-box genes and suggests that redundancy among type I paralogs may be less common than expected. PMID:19933156

  6. Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy.

    PubMed

    Saito, Takanori; Bai, Songling; Imai, Tsuyoshi; Ito, Akiko; Nakajima, Ikuko; Moriguchi, Takaya

    2015-06-01

    Dormancy-associated MADS-box (DAM) genes play an important role in endodormancy phase transition. We investigated histone modification in the DAM homolog (PpMADS13-1) from Japanese pear, via chromatin immunoprecipitation-quantitative PCR, to understand the mechanism behind the reduced expression of the PpMADS13-1 gene towards endodormancy release. Our results indicated that the reduction in the active histone mark by trimethylation of the histone H3 tail at lysine 4 contributed to the reduction of PpMADS13-1 expression towards endodormancy release. In contrast, the inactive histone mark by trimethylation of the histone H3 tail at lysine 27 in PpMADS13-1 locus was quite low, and these levels were more similar to a negative control [normal mouse immunoglobulin G (IgG)] than to a positive control (AGAMOUS) in endodormancy phase transition. The loss of histone variant H2A.Z also coincided with the down-regulation of PpMADS13-1. Subsequently, we investigated the PpMADS13-1 signalling cascade and found that PpCBF2, a pear C-repeated binding factor, regulated PpMADS13-1 expression via interaction of PpCBF2 with the 5'-upstream region of PpMADS13-1 by transient reporter assay. Furthermore, transient reporter assay confirmed no interaction between the PpMADS13-1 protein and the pear FLOWERING LOCUS T genes. Taken together, our results enhance understanding of the molecular mechanisms underlying endodormancy phase transition in Japanese pear.

  7. Functional Conservation of MIKC*-Type MADS Box Genes in Arabidopsis and Rice Pollen Maturation[C][W

    PubMed Central

    Liu, Yuan; Cui, Shaojie; Wu, Feng; Yan, Shuo; Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Schilling, Susanne; Theißen, Günter; Meng, Zheng

    2013-01-01

    There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKCC type and MIKC* type. In seed plants, the MIKCC type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago. PMID:23613199

  8. Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression.

    PubMed Central

    Ainsworth, C; Crossley, S; Buchanan-Wollaston, V; Thangavelu, M; Parker, J

    1995-01-01

    Male and female flowers of the dioecious plant sorrel (Rumex acetosa) each produce three whorls of developed floral organs: two similar whorls of three perianth segments and either six stamens (in the male) or a gynoecium consisting of a fertile carpel and two sterile carpels (in the female). In the developing male flower, there is no significant proliferation of cells in the center of the flower, in the position normally occupied by the carpels of a hermaphrodite plant. In the female flower, small stamen primordia are formed. To determine whether the organ differences are associated with differences in the expression of organ identity genes, cDNA clones representing the putative homologs of B and C function MADS box genes were isolated and used in an in situ hybridization analysis. The expression of RAD1 and RAD2 (two different DEFICIENS homologs) in males and females was confined to the stamen whorl; the lack of expression in the second, inner perianth whorl correlated with the sepaloid nature of the inner whorl of perianth segments. Expression of RAP1 (a PLENA homolog) occurred in the carpel and stamen whorls in very young flower primordia from both males and females. However, as soon as the inappropriate set of organs ceased to develop, RAP1 expression became undetectable in those organs. The absence of expression of RAP1 may be the cause of the arrest in organ development or may be a consequence. PMID:7580253

  9. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene.

    PubMed

    Kobayashi, Kaoru; Yasuno, Naoko; Sato, Yutaka; Yoda, Masahiro; Yamazaki, Ryo; Kimizu, Mayumi; Yoshida, Hitoshi; Nagamura, Yoshiaki; Kyozuka, Junko

    2012-05-01

    In plants, the transition to reproductive growth is of particular importance for successful seed production. Transformation of the shoot apical meristem (SAM) to the inflorescence meristem (IM) is the crucial first step in this transition. Using laser microdissection and microarrays, we found that expression of PANICLE PHYTOMER2 (PAP2) and three APETALA1 (AP1)/FRUITFULL (FUL)-like genes (MADS14, MADS15, and MADS18) is induced in the SAM during meristem phase transition in rice (Oryza sativa). PAP2 is a MADS box gene belonging to a grass-specific subclade of the SEPALLATA subfamily. Suppression of these three AP1/FUL-like genes by RNA interference caused a slight delay in reproductive transition. Further depletion of PAP2 function from these triple knockdown plants inhibited the transition of the meristem to the IM. In the quadruple knockdown lines, the meristem continued to generate leaves, rather than becoming an IM. Consequently, multiple shoots were formed instead of an inflorescence. PAP2 physically interacts with MAD14 and MADS15 in vivo. Furthermore, the precocious flowering phenotype caused by the overexpression of Hd3a, a rice florigen gene, was weakened in pap2-1 mutants. Based on these results, we propose that PAP2 and the three AP1/FUL-like genes coordinately act in the meristem to specify the identity of the IM downstream of the florigen signal.

  10. Phylogenomics of MADS-Box Genes in Plants — Two Opposing Life Styles in One Gene Family

    PubMed Central

    Gramzow, Lydia; Theißen, Günter

    2013-01-01

    The development of multicellular eukaryotes, according to their body plan, is often directed by members of multigene families that encode transcription factors. MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR)-box genes form one of those families controlling nearly all major aspects of plant development. Knowing the complete complement of MADS-box genes in sequenced plant genomes will allow a better understanding of the evolutionary patterns of these genes and the association of their evolution with the evolution of plant morphologies. Here, we have applied a combination of automatic and manual annotations to identify the complete set of MADS-box genes in 17 plant genomes. Furthermore, three plant genomes were reanalyzed and published datasets were used for four genomes such that more than 2,600 genes from 24 species were classified into the two types of MADS-box genes, Type I and Type II. Our results extend previous studies, highlighting the remarkably different evolutionary patterns of Type I and Type II genes and provide a basis for further studies on the evolution and function of MADS-box genes. PMID:24833059

  11. Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop.

    PubMed

    Hubert, O; Piral, G; Galas, C; Baurens, F-C; Mbéguié-A-Mbéguié, D

    2014-06-01

    Banana finger drop was examined in ripening banana harvested at immature (iMG), early (eMG) and late mature green (lMG) stages, with contrasting ripening rates and ethylene sensitivities. Concomitantly, 11 ethylene signal transduction components (ESTC) and 6 MADS box gene expressions were comparatively studied in median (control zone, CZ) and pedicel rupture (drop zone DZ) areas in peel tissue. iMG fruit did not ripen or develop finger drop while eMG and lMG fruits displayed a similar finger drop pattern. Several ESTC and MADS box gene mRNAs were differentially induced in DZ and CZ and sequentially in eMG and lMG fruits. MaESR2, 3 and MaEIL1, MaMADS2 and MaMADS5 had a higher mRNA level in eMG and acted earlier, whereas MaERS1, MaCTR1, MaEIL3/AB266319, MaEIL4/AB266320 and MaEIL5/AB266321, MaMADS4 and to a lesser extent MaMADS2 and 5 acted later in lMG. In this fruit, MaERS1 and 3, MaCTR1, MaEIL3, 4 and MaEIL5/AB266321, and MaMADS4 were enhanced by finger drop, suggesting their specific involvement in this process. MaEIL1, MaMADS1 and 3, induced at comparable levels in DZ and CZ, are probably related to the overall fruit ripening process. These findings led us to consider that developmental cues are the predominant finger drop regulation factor. PMID:24767119

  12. A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells.

    PubMed

    Mughal, W; Nguyen, L; Pustylnik, S; da Silva Rosa, S C; Piotrowski, S; Chapman, D; Du, M; Alli, N S; Grigull, J; Halayko, A J; Aliani, M; Topham, M K; Epand, R M; Hatch, G M; Pereira, T J; Kereliuk, S; McDermott, J C; Rampitsch, C; Dolinsky, V W; Gordon, J W

    2015-01-01

    Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology. PMID:26512955

  13. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication.

    PubMed

    Kim, Sangtae; Yoo, Mi-Jeong; Albert, Victor A; Farris, James S; Soltis, Pamela S; Soltis, Douglas E

    2004-12-01

    B-function MADS-box genes play crucial roles in floral development in model angiosperms. We reconstructed the structural and functional implications of B-function gene phylogeny in the earliest extant flowering plants based on analyses that include 25 new AP3 and PI sequences representing critical lineages of the basalmost angiosperms: Amborella, Nuphar (Nymphaeaceae), and Illicium (Austrobaileyales). The ancestral size of exon 5 in PI-homologues is 42 bp, typical of exon 5 in other plant MADS-box genes. This 42-bp length is found in PI-homologues from Amborella and Nymphaeaceae, successive sisters to all other angiosperms. Following these basalmost branches, a deletion occurred in exon 5, yielding a length of 30 bp, a condition that unites all other angiosperms. Several shared amino acid strings, including a prominent "DEAER" motif, are present in the AP3- and PI-homologues of Amborella. These may be ancestral motifs that were present before the duplication that yielded the AP3 and PI lineages and subsequently were modified after the divergence of Amborella. Other structural features were identified, including a motif that unites the previously described TM6 clade and a deletion in AP3-homologues that unites all Magnoliales. Phylogenetic analyses of AP3- and PI-homologues yielded gene trees that generally track organismal phylogeny as inferred by multigene data sets. With both AP3 and PI amino acid sequences, Amborella and Nymphaeaceae are sister to all other angiosperms. Using nonparametric rate smoothing (NPRS), we estimated that the duplication that produced the AP3 and PI lineages occurred approximately 260 mya (231-290). This places the duplication after the split between extant gymnosperms and angiosperms, but well before the oldest angiosperm fossils. A striking similarity in the multimer-signalling C domains of the Amborella proteins suggests the potential for the formation of unique transcription-factor complexes. The earliest angiosperms may have been

  14. Fruit Ripening Regulation of α-Mannosidase Expression by the MADS Box Transcription Factor RIPENING INHIBITOR and Ethylene.

    PubMed

    Irfan, Mohammad; Ghosh, Sumit; Meli, Vijaykumar S; Kumar, Anil; Kumar, Vinay; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-01-01

    α-Mannosidase (α-Man), a fruit ripening-specific N-glycan processing enzyme, is involved in ripening-associated fruit softening process. However, the regulation of fruit-ripening specific expression of α-Man is not well understood. We have identified and functionally characterized the promoter of tomato (Solanum lycopersicum) α-Man to provide molecular insights into its transcriptional regulation during fruit ripening. Fruit ripening-specific activation of the α-Man promoter was revealed by analysing promoter driven expression of beta-glucuronidase (GUS) reporter in transgenic tomato. We found that RIPENING INHIBITOR (RIN), a MADS box family transcription factor acts as positive transcriptional regulator of α-Man during fruit ripening. RIN directly bound to the α-Man promoter sequence and promoter activation/α-Man expression was compromised in rin mutant fruit. Deletion analysis revealed that a promoter fragment (567 bp upstream of translational start site) that contained three CArG boxes (binding sites for RIN) was sufficient to drive GUS expression in fruits. In addition, α-Man expression was down-regulated in fruits of Nr mutant which is impaired in ethylene perception and promoter activation/α-Man expression was induced in wild type following treatment with a precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC). Although, α-Man expression was induced in rin mutant after ACC treatment, the transcript level was less as compared to ACC-treated wild type. Taken together, these results suggest RIN-mediated direct transcriptional regulation of α-Man during fruit ripening and ethylene may acts in RIN-dependent and -independent ways to regulate α-Man expression. PMID:26834776

  15. Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification.

    PubMed

    Vekemans, Dries; Proost, Sebastian; Vanneste, Kevin; Coenen, Heleen; Viaene, Tom; Ruelens, Philip; Maere, Steven; Van de Peer, Yves; Geuten, Koen

    2012-12-01

    Comparative genome biology has unveiled the polyploid origin of all angiosperms and the role of recurrent polyploidization in the amplification of gene families and the structuring of genomes. Which species share certain ancient polyploidy events, and which do not, is ill defined because of the limited number of sequenced genomes and transcriptomes and their uneven phylogenetic distribution. Previously, it has been suggested that most, but probably not all, of the eudicots have shared an ancient hexaploidy event, referred to as the gamma triplication. In this study, detailed phylogenies of subfamilies of MADS-box genes suggest that the gamma triplication has occurred before the divergence of Gunnerales but after the divergence of Buxales and Trochodendrales. Large-scale phylogenetic and K(S)-based approaches on the inflorescence transcriptomes of Gunnera manicata (Gunnerales) and Pachysandra terminalis (Buxales) provide further support for this placement, enabling us to position the gamma triplication in the stem lineage of the core eudicots. This triplication likely initiated the functional diversification of key regulators of reproductive development in the core eudicots, comprising 75% of flowering plants. Although it is possible that the gamma event triggered early core eudicot diversification, our dating estimates suggest that the event occurred early in the stem lineage, well before the rapid speciation of the earliest core eudicot lineages. The evolutionary significance of this paleopolyploidy event may thus rather lie in establishing a species lineage that was resilient to extinction, but with the genomic potential for later diversification. We consider that the traits generated from this potential characterize extant core eudicots both chemically and morphologically. PMID:22821009

  16. Fruit Ripening Regulation of α-Mannosidase Expression by the MADS Box Transcription Factor RIPENING INHIBITOR and Ethylene

    PubMed Central

    Irfan, Mohammad; Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Kumar, Vinay; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-01-01

    α-Mannosidase (α-Man), a fruit ripening-specific N-glycan processing enzyme, is involved in ripening-associated fruit softening process. However, the regulation of fruit-ripening specific expression of α-Man is not well understood. We have identified and functionally characterized the promoter of tomato (Solanum lycopersicum) α-Man to provide molecular insights into its transcriptional regulation during fruit ripening. Fruit ripening-specific activation of the α-Man promoter was revealed by analysing promoter driven expression of beta-glucuronidase (GUS) reporter in transgenic tomato. We found that RIPENING INHIBITOR (RIN), a MADS box family transcription factor acts as positive transcriptional regulator of α-Man during fruit ripening. RIN directly bound to the α-Man promoter sequence and promoter activation/α-Man expression was compromised in rin mutant fruit. Deletion analysis revealed that a promoter fragment (567 bp upstream of translational start site) that contained three CArG boxes (binding sites for RIN) was sufficient to drive GUS expression in fruits. In addition, α-Man expression was down-regulated in fruits of Nr mutant which is impaired in ethylene perception and promoter activation/α-Man expression was induced in wild type following treatment with a precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC). Although, α-Man expression was induced in rin mutant after ACC treatment, the transcript level was less as compared to ACC-treated wild type. Taken together, these results suggest RIN-mediated direct transcriptional regulation of α-Man during fruit ripening and ethylene may acts in RIN-dependent and -independent ways to regulate α-Man expression. PMID:26834776

  17. Perspectives on MADS-box expression during orchid flower evolution and development.

    PubMed

    Mondragón-Palomino, Mariana

    2013-01-01

    The diverse morphology of orchid flowers and their complex, often deceptive strategies to become pollinated have fascinated researchers for a long time. However, it was not until the 20th century that the ontogeny of orchid flowers, the genetic basis of their morphology and the complex phylogeny of Orchidaceae were investigated. In parallel, the improvement of techniques for in vitro seed germination and tissue culture, together with studies on biochemistry, physiology, and cytology supported the progress of what is now a highly productive industry of orchid breeding and propagation. In the present century both basic research in orchid flower evo-devo and the interest for generating novel horticultural varieties have driven the characterization of many members of the MADS-box family encoding key regulators of flower development. This perspective summarizes the picture emerging from these studies and discusses the advantages and limitations of the comparative strategy employed so far. I address the growing role of natural and horticultural mutants in these studies and the emergence of several model species in orchid evo-devo and genomics. In this context, I make a plea for an increasingly integrative approach.

  18. Characterization and Expression Analysis of PtAGL24, a SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 (SVP/AGL24)-Type MADS-Box Gene from Trifoliate Orange (Poncirus trifoliata L. Raf.)

    PubMed Central

    Sun, Lei-Ming; Zhang, Jin-Zhi; Hu, Chun-Gen

    2016-01-01

    The transition from vegetative to reproductive growth in perennial woody plants does not occur until after several years of repeated seasonal changes and alternative growth. To better understand the molecular basis of flowering regulation in citrus, a MADS-box gene was isolated from trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf.). Sequence alignment and phylogenetic analysis showed that the MADS-box gene is more closely related to the homologs of the AGAMOUS-LIKE 24 (AGL24) lineage than to any of the other MADS-box lineages known from Arabidopsis; it is named PtAGL24. Expression analysis indicated that PtAGL24 was widely expressed in the most organs of trifoliate orange, with the higher expression in mature flowers discovered by real-time PCR. Ectopic expression of PtAGL24 in wild-type Arabidopsis promoted early flowering and caused morphological changes in class I transgenic Arabidopsis. Yeast two-hybrid assay revealed that PtAGL24 interacted with Arabidopsis AtAGL24 and other partners of AtAGL24, suggesting that the abnormal morphology of PtAGL24 overexpression in transgenic Arabidopsis was likely due to the inappropriate interactions between exogenous and endogenous proteins. Also, PtAGL24 interacted with SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (PtSOC1) and APETALA1 (PtAP1) of citrus. These results suggest that PtAGL24 may play an important role in the process of floral transition but may have diverse functions in citrus development. PMID:27375669

  19. Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis

    PubMed Central

    Li, Chao; Wang, Yan; Xu, Liang; Nie, Shanshan; Chen, Yinglong; Liang, Dongyi; Sun, Xiaochuan; Karanja, Benard K.; Luo, Xiaobo; Liu, Liwang

    2016-01-01

    The MADS-box gene family is an important transcription factor (TF) family that is involved in various aspects of plant growth and development, especially flowering time and floral organogenesis. Although it has been reported in many plant species, the systematic identification and characterization of MADS-box TF family is still limited in radish (Raphanus sativus L.). In the present study, a comprehensive analysis of MADS-box genes was performed, and a total of 144 MADS-box family members were identified from the whole radish genome. Meanwhile, a detailed list of MADS-box genes from other 28 plant species was also investigated. Through the phylogenetic analysis between radish and Arabidopsis thaliana, all the RsMADS genes were classified into two groups including 68 type I (31 Mα, 12 Mβ and 25Mγ) and 76 type II (70 MIKCC and 6 MIKC∗). Among them, 41 (28.47%) RsMADS genes were located in nine linkage groups of radish from R1 to R9. Moreover, the homologous MADS-box gene pairs were identified among radish, A. thaliana, Chinese cabbage and rice. Additionally, the expression profiles of RsMADS genes were systematically investigated in different tissues and growth stages. Furthermore, quantitative real-time PCR analysis was employed to validate expression patterns of some crucial RsMADS genes. These results could provide a valuable resource to explore the potential functions of RsMADS genes in radish, and facilitate dissecting MADS-box gene-mediated molecular mechanisms underlying flowering and floral organogenesis in root vegetable crops. PMID:27703461

  20. A MADS-box gene is specifically expressed in fibers of cotton (Gossypium hirsutum) and influences plant growth of transgenic Arabidopsis in a GA-dependent manner.

    PubMed

    Zhou, Ying; Li, Bing-Ying; Li, Mo; Li, Xiao-Jie; Zhang, Ze-Ting; Li, Yang; Li, Xue-Bao

    2014-02-01

    In this study, a cDNA, GhMADS14, encoding a typical MADS-box protein with 223 amino acids was isolated from a cotton cDNA library. Fluorescent microscopy indicated that the GhMADS14 protein was localized in the cell nucleus. GhMADS14 was specifically expressed in the elongating fibers, and its expression was gradually enhanced at early stages of fiber elongation and reached its peak in 9-10 DPA fibers. Overexpression of GhMADS14 in Arabidopsis hindered plant growth. Measurement and statistical analysis revealed that hypocotyl length of GhMADS14 transgenic seedlings was significantly reduced, and the height of the mature transgenic plants was remarkably less than that of the wild type. Furthermore, expression of GA 20-oxidase (AtGA20ox1 and AtGA20ox2) and GA 3-oxidase (AtGA3ox1 and AtGA3ox2) genes was remarkably reduced, whereas AtGA2ox1 and AtGA2ox8 were dramatically up-regulated in the transgenic plants, compared with the wild type. These results suggested that overexpression of GhMADS14 in Arabidopsis may alter expression levels of the genes related to GA biosynthetic and metabolic pathways, resulting in the reduction of endogenous GA amounts in cells. As a result, the transgenic plants grew slowly and display a GA-deficient phenotype.

  1. A Large-Scale Identification of Direct Targets of the Tomato MADS Box Transcription Factor RIPENING INHIBITOR Reveals the Regulation of Fruit Ripening[W

    PubMed Central

    Fujisawa, Masaki; Nakano, Toshitsugu; Shima, Yoko; Ito, Yasuhiro

    2013-01-01

    The fruit ripening developmental program is specific to plants bearing fleshy fruits and dramatically changes fruit characteristics, including color, aroma, and texture. The tomato (Solanum lycopersicum) MADS box transcription factor RIPENING INHIBITOR (RIN), one of the earliest acting ripening regulators, is required for both ethylene-dependent and -independent ripening regulatory pathways. Recent studies have identified two dozen direct RIN targets, but many more RIN targets remain to be identified. Here, we report the large-scale identification of direct RIN targets by chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) targeting the predicted promoters of tomato genes. Our combined ChIP-chip and transcriptome analysis identified 241 direct RIN target genes that contain a RIN binding site and exhibit RIN-dependent positive or negative regulation during fruit ripening, suggesting that RIN has both activator and repressor roles. Examination of the predicted functions of RIN targets revealed that RIN participates in the regulation of lycopene accumulation, ethylene production, chlorophyll degradation, and many other physiological processes. Analysis of the effect of ethylene using 1-methylcyclopropene revealed that the positively regulated subset of RIN targets includes ethylene-sensitive and -insensitive transcription factors. Intriguingly, ethylene is involved in the upregulation of RIN expression during ripening. These results suggest that tomato fruit ripening is regulated by the interaction between RIN and ethylene signaling. PMID:23386264

  2. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening.

    PubMed

    Fujisawa, Masaki; Nakano, Toshitsugu; Shima, Yoko; Ito, Yasuhiro

    2013-02-01

    The fruit ripening developmental program is specific to plants bearing fleshy fruits and dramatically changes fruit characteristics, including color, aroma, and texture. The tomato (Solanum lycopersicum) MADS box transcription factor RIPENING INHIBITOR (RIN), one of the earliest acting ripening regulators, is required for both ethylene-dependent and -independent ripening regulatory pathways. Recent studies have identified two dozen direct RIN targets, but many more RIN targets remain to be identified. Here, we report the large-scale identification of direct RIN targets by chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) targeting the predicted promoters of tomato genes. Our combined ChIP-chip and transcriptome analysis identified 241 direct RIN target genes that contain a RIN binding site and exhibit RIN-dependent positive or negative regulation during fruit ripening, suggesting that RIN has both activator and repressor roles. Examination of the predicted functions of RIN targets revealed that RIN participates in the regulation of lycopene accumulation, ethylene production, chlorophyll degradation, and many other physiological processes. Analysis of the effect of ethylene using 1-methylcyclopropene revealed that the positively regulated subset of RIN targets includes ethylene-sensitive and -insensitive transcription factors. Intriguingly, ethylene is involved in the upregulation of RIN expression during ripening. These results suggest that tomato fruit ripening is regulated by the interaction between RIN and ethylene signaling.

  3. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes.

    PubMed

    Aoki, Seishiro; Uehara, Koichi; Imafuku, Masao; Hasebe, Mitsuyasu; Ito, Motomi

    2004-06-01

    The B-class MADS-box genes composed of APETALA3 ( AP3) and PISTILLATA ( PI) lineages play an important role in petal and stamen identity in previously studied flowering plants. We investigated the diversification of the AP3-like and PI-like MADS-box genes of eight species in five basal angiosperm families: Amborella trichopoda (Amborellaceae); Brasenia schreberi and Cabomba caroliniana (Cabombaceae); Euryale ferox, Nuphar japonicum, and Nymphaea tetragona (Nymphaeaceae); Illicium anisatum (Illiciaceae); and Kadsura japonica (Schisandraceae). Sequence analysis showed that a four amino acid deletion in the K domain, which was found in all previously reported angiosperm PI genes, exists in a PI homologue of Schisandraceae, but not in six PI homologues of the Amborellaceae, Cabombaceae, and Nymphaeaceae, suggesting that the Amborellaceae, Cabombaceae, and Nymphaeaceae are basalmost lineages in angiosperms. The results of molecular phylogenetic analyses were not inconsistent with this hypothesis. The AP3 and PI homologues from Amborella share a sequence of five amino acids in the 5' region of exon 7. Using the linearized tree and likelihood methods, the divergence time between the AP3 and PI lineages was estimated as somewhere between immediately after to several tens of millions of years after the split between angiosperms and extant gymnosperms. Estimates of the age of the most recent common ancestor of all extant angiosperms range from approximately 140-210 Ma, depending on the trees used and assumptions made.

  4. Identification of a sugar beet BvM14-MADS box gene through differential gene expression analysis of monosomic addition line M14.

    PubMed

    Ma, Chunquan; Wang, Yuguang; Wang, Yuting; Wang, Lifa; Chen, Sixue; Li, Haiying

    2011-11-01

    Monosomic addition line M14 carrying an additional chromosome 9 from Beta corolliflora Zosimovic ex Buttler was obtained through hybridization between the wild species B. corolliflora and a cultivated species Beta vulgaris L. var Saccharifera Alef. The M14 line showed diplosporic reproduction and stress tolerance. To identify differentially expressed genes in M14, a subtractive cDNA library was prepared by suppression subtractive hybridization (SSH) between M14 (2n=18+1) and B. vulgaris (2n=18). A total of 190 unique sequences were identified in the library and their putative functions were analyzed using Gene Ontology (GO). One of the genes, designated as BvM14-MADS box, encodes a MADS box transcription factor. It was cloned from M14 and over-expressed in transgenic tobacco plants. Interestingly, this gene was located on chromosome 2 of B. vulgaris, not on the additional chromosome 9. Overexpression of BvM14-MADS box led to significant phenotypic changes in tobacco. The differential expression of BvM14-MADS box gene in M14 may be caused by the interaction between the additional chromosome 9 from B. corolliflora and the B. vulgaris chromosomes in M14.

  5. Identification of a sugar beet BvM14-MADS box gene through differential gene expression analysis of monosomic addition line M14.

    PubMed

    Ma, Chunquan; Wang, Yuguang; Wang, Yuting; Wang, Lifa; Chen, Sixue; Li, Haiying

    2011-11-01

    Monosomic addition line M14 carrying an additional chromosome 9 from Beta corolliflora Zosimovic ex Buttler was obtained through hybridization between the wild species B. corolliflora and a cultivated species Beta vulgaris L. var Saccharifera Alef. The M14 line showed diplosporic reproduction and stress tolerance. To identify differentially expressed genes in M14, a subtractive cDNA library was prepared by suppression subtractive hybridization (SSH) between M14 (2n=18+1) and B. vulgaris (2n=18). A total of 190 unique sequences were identified in the library and their putative functions were analyzed using Gene Ontology (GO). One of the genes, designated as BvM14-MADS box, encodes a MADS box transcription factor. It was cloned from M14 and over-expressed in transgenic tobacco plants. Interestingly, this gene was located on chromosome 2 of B. vulgaris, not on the additional chromosome 9. Overexpression of BvM14-MADS box led to significant phenotypic changes in tobacco. The differential expression of BvM14-MADS box gene in M14 may be caused by the interaction between the additional chromosome 9 from B. corolliflora and the B. vulgaris chromosomes in M14. PMID:21807438

  6. Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit.

    PubMed

    Tani, Eleni; Polidoros, Alexios N; Flemetakis, Emmanouil; Stedel, Catalina; Kalloniati, Chrissanthi; Demetriou, Kyproula; Katinakis, Panagiotis; Tsaftaris, Athanasios S

    2009-08-01

    MADS-box genes encode transcriptional regulators that are critical for flowering, flower organogenesis and plant development. Although there are extensive reports on genes involved in flower organogenesis in model and economically important plant species, there are few reports on MADS-box genes in woody plants. In this study, we have cloned and characterized AGAMOUS (AG), SEEDSTICK (STK) and SEPALLATA (SEP) homologs from peach tree (Prunus persica L. Batsch) and studied their expression patterns in different tissues as well as in fruit pericarp during pit hardening. AG- STK- and SEP-like homologs, representative of the C-, D-, E-like MADS-box gene lineages, respectively, play key roles in stamen, carpel, ovule and fruit development in Arabidopsis thaliana. Sequence similarities, phylogenetic analysis and structural characteristics were used to provide classification of the isolated genes in type C (PPERAG), type D (PPERSTK) and type E (PPERSEP1, PPERSEP3, PPERFB9) organ identity genes. Expression patterns were determined and in combination with phylogenetic data provided useful indications on the function of these genes. These data suggest the involvement of MADS-box genes in peach flower and fruit development and provide further evidence for the role of these genes in woody perennial trees that is compatible with their function in model plant species.

  7. MADS-Box Transcription Factor VdMcm1 Regulates Conidiation, Microsclerotia Formation, Pathogenicity, and Secondary Metabolism of Verticillium dahliae.

    PubMed

    Xiong, Dianguang; Wang, Yonglin; Tian, Longyan; Tian, Chengming

    2016-01-01

    Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species resulting in devastating yield losses worldwide. Due to its ability to colonize plant xylem and form microsclerotia, V. dahliae is highly persistent and difficult to control. In this study, we show that the MADS-box transcription factor VdMcm1 is a key regulator of conidiation, microsclerotia formation, virulence, and secondary metabolism of V. dahliae. In addition, our findings suggest that VdMcm1 is involved in cell wall integrity. Finally, comparative RNA-Seq analysis reveals 823 significantly downregulated genes in the VdMcm1 deletion mutant, with diverse biological functions in transcriptional regulation, plant infection, cell adhesion, secondary metabolism, transmembrane transport activity, and cell secretion. When taken together, these data suggest that VdMcm1 performs pleiotropic functions in V. dahliae. PMID:27536281

  8. MADS-Box Transcription Factor VdMcm1 Regulates Conidiation, Microsclerotia Formation, Pathogenicity, and Secondary Metabolism of Verticillium dahliae

    PubMed Central

    Xiong, Dianguang; Wang, Yonglin; Tian, Longyan; Tian, Chengming

    2016-01-01

    Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species resulting in devastating yield losses worldwide. Due to its ability to colonize plant xylem and form microsclerotia, V. dahliae is highly persistent and difficult to control. In this study, we show that the MADS-box transcription factor VdMcm1 is a key regulator of conidiation, microsclerotia formation, virulence, and secondary metabolism of V. dahliae. In addition, our findings suggest that VdMcm1 is involved in cell wall integrity. Finally, comparative RNA-Seq analysis reveals 823 significantly downregulated genes in the VdMcm1 deletion mutant, with diverse biological functions in transcriptional regulation, plant infection, cell adhesion, secondary metabolism, transmembrane transport activity, and cell secretion. When taken together, these data suggest that VdMcm1 performs pleiotropic functions in V. dahliae. PMID:27536281

  9. Molecular cloning and function analysis of two SQUAMOSA-Like MADS-box genes from Gossypium hirsutum L.

    PubMed

    Zhang, Wenxiang; Fan, Shuli; Pang, Chaoyou; Wei, Hengling; Ma, Jianhui; Song, Meizhen; Yu, Shuxun

    2013-07-01

    The MADS-box genes encode a large family of transcription factors having diverse roles in plant development. The SQUAMOSA (SQUA)/APETALA1 (AP1)/FRUITFULL (FUL) subfamily genes are essential regulators of floral transition and floral organ identity. Here we cloned two MADS-box genes, GhMADS22 and GhMADS23, belonging to the SQUA/AP1/FUL subgroup from Gossypium hirsutum L. Phylogenetic analysis and sequence alignment showed that GhMADS22 and GhMADS23 belonged to the euFUL and euAP1 subclades, respectively. The two genes both had eight exons and seven introns from the start codon to the stop codon according to the alignment between the obtained cDNA sequence and the Gossypium raimondii L. genome sequence. Expression profile analysis showed that GhMADS22 and GhMADS23 were highly expressed in developing shoot apices, bracts, and sepals. Gibberellic acid promoted GhMADS22 and GhMADS23 expression in the shoot apex. Transgenic Arabidopsis lines overexpressing 35S::GhMADS22 had abnormal flowers and bolted earlier than wild type under long-day conditions (16 h light/8 h dark). Moreover, GhMADS22 overexpression delayed floral organ senescence and abscission and it could also respond to abscisic acid. In summary, GhMADS22 may have functions in promoting flowering, improving resistance and delaying senescence for cotton and thus it may be a candidate target for promoting early-maturation in cotton breeding.

  10. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening.

    PubMed

    Dong, Tingting; Hu, Zongli; Deng, Lei; Wang, Yi; Zhu, Mingku; Zhang, Jianling; Chen, Guoping

    2013-10-01

    MADS-box genes encode a highly conserved gene family of transcriptional factors that regulate numerous developmental processes in plants. In this study, a tomato (Solanum lycopersicum) MADS-box gene, SlMADS1, was cloned and its tissue-specific expression profile was analyzed. The real-time polymerase chain reaction results showed that SlMADS1 was highly expressed in sepals and fruits; its expression level was increased with the development of sepals, while the transcript of SlMADS1 decreased significantly in accordance with fruit ripening. To further explore the function of SlMADS1, an RNA interference (RNAi) expression vector targeting SlMADS1 was constructed and transformed into tomato plants. Shorter ripening time of fruit was observed in SlMADS1-silenced tomatoes. The accumulation of carotenoid and the expression of PHYTOENE SYNTHETASE1 were enhanced in RNAi fruits. Besides, ethylene biosynthetic genes, including 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE1A, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE6, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE1, and 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE3, and the ethylene-responsive genes E4 and E8, which were involved in fruit ripening, were also up-regulated in silenced plants. SlMADS1 RNAi fruits showed approximately 2- to 4-fold increases in ethylene production compared with the wild type. Furthermore, SlMADS1-silenced seedlings displayed shorter hypocotyls and were more sensitive to 1-aminocyclopropane-1-carboxylate than the wild type. Additionally, a yeast two-hybrid assay revealed a clear interaction between SlMADS1 and SlMADS-RIN. These results suggest that SlMADS1 plays an important role in fruit ripening as a repressive modulator.

  11. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud

    PubMed Central

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKCC-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in ‘Suli’ pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy. PMID:26466664

  12. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways

    PubMed Central

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia. PMID:26157452

  13. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud.

    PubMed

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKC(C)-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in 'Suli' pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy.

  14. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene.

    PubMed

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya

    2010-03-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  15. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms.

    PubMed Central

    Kramer, Elena M; Jaramillo, M Alejandra; Di Stilio, Verónica S

    2004-01-01

    Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG-like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity. PMID:15020484

  16. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity1[OPEN

    PubMed Central

    Begcy, Kevin; Liu, Kan; Wang, Zhen; Zhang, Chi

    2016-01-01

    Early seed development events are highly sensitive to increased temperature. This high sensitivity to a short-duration temperature spike reduces seed viability and seed size at maturity. The molecular basis of heat stress sensitivity during early seed development is not known. We selected rice (Oryza sativa), a highly heat-sensitive species, to explore this phenomenon. Here, we elucidate the molecular pathways that contribute to the heat sensitivity of a critical developmental window during which the endosperm transitions from syncytium to the cellularization stage in young seeds. A transcriptomic comparison of seeds exposed to moderate (35°C) and severe (39°C) heat stress with control (28°C) seeds identified a set of putative imprinted genes, which were down-regulated under severe heat stress. Several type I MADS box genes specifically expressed during the syncytial stage were differentially regulated under moderate and severe heat stress. The suppression and overaccumulation of these genes are associated with precocious and delayed cellularization under moderate and severe stress, respectively. We show that modulating the expression of OsMADS87, one of the heat-sensitive, imprinted genes associated with syncytial stage endosperm, regulates rice seed size. Transgenic seeds deficient in OsMADS87 exhibit accelerated endosperm cellularization. These seeds also have lower sensitivity to a moderate heat stress in terms of seed size reduction compared with seeds from wild-type plants and plants overexpressing OsMADS87. Our findings suggest that OsMADS87 and several other genes identified in this study could be potential targets for improving the thermal resilience of rice during reproductive development. PMID:26936896

  17. Characterization of 10 MADS-box genes from Pyrus pyrifolia and their differential expression during fruit development and ripening.

    PubMed

    Ubi, Benjamin Ewa; Saito, Takanori; Bai, Songling; Nishitani, Chikako; Ban, Yusuke; Ikeda, Kazuo; Ito, Akiko; Moriguchi, Takaya

    2013-10-10

    We cloned 10 Japanese pear (Pyrus pyrifolia) MIKC-type II MADS-box genes, and analyzed their expression during fruit development and ripening. PpMADS2-1 was APETALA (AP)1-like; PpMADS3-1 was FRUITFULL (FUL)/SQUAMOSA (SQUA)-like; PpMADS4-1 was AGAMOUS-like (AGL)6; PpMADS5-1 and PpMADS8-1 were SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC)-like; PpMADS9-1, PpMADS12-1, PpMADS14-1 and PpMADS16-1 were SEPALLATA (SEP)-like; while PpMADS15-1 was AGL/SHATTERPROOF (SHP)-like. Phylogenetic analysis showed their grouping into five major clades (and 10 sub-clades) that was consistent with their diverse functional types. Expression analysis in flower tissue revealed their distinct putative homeotic functional classes: A-class (PpMADS2-1, PpMADS3-1, PpMADS4-1, and PpMADS14-1), C-class (PpMADS15-1), E-class (PpMADS9-1, PpMADS12-1, and PpMADS16-1) and E (F)-class (PpMADS5-1 and PpMADS8-1). Differential gene expression was observed in different fruit tissues (skin, cortex and core) as well as in the cortex during the course of fruit development and ripening. Collectively, our results suggest their involvement in the diverse aspects of plant development including flower development and the course of fruit development and ripening.

  18. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants.

    PubMed

    Münster, T; Pahnke, J; Di Rosa, A; Kim, J T; Martin, W; Saedler, H; Theissen, G

    1997-03-18

    Flowers sensu lato are short, specialized axes bearing closely aggregated sporophylls. They are typical for seed plants (spermatophytes) and are prominent in flowering plants sensu stricto (angiosperms), where they often comprise an attractive perianth. There is evidence that spermatophytes evolved from gymnosperm-like plants with a fern-like mode of reproduction called progymnosperms. It seems plausible, therefore, that the stamens/carpels and pollen sacs/nucelli of spermatophytes are homologous to fern sporophylls and sporangia, respectively. However, the exact mode and molecular basis of early seed and flower evolution is not yet known. Comparing flower developmental control genes to their homologs from lower plants that do not flower may help to clarify the issue. We have isolated and characterized MADS-box genes expressed in gametophytes and sporophytes of the fern Ceratopteris. The data indicate that at least two different MADS-box genes homologous to floral homeotic genes existed in the last common ancestor of contemporary vascular plants, some descendants of which underwent multiple duplications and diversifications and were recruited into novel developmental networks during the evolution of floral organs.

  19. Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum.

    PubMed

    Thiruvengadam, Muthu; Yang, Chang-Hsien

    2009-10-01

    Lisianthus [Eustoma grandiflorum (Raf.) Shinn] is a popular cut flower crop throughout the world, and the demand for this plant for cut flowers and potted plants has been increasing worldwide. Recent advances in genetic engineering have enabled the transformation and regeneration of plants to become a powerful tool for improvement of lisianthus. We have established a highly efficient plant regeneration system and Agrobacterium-mediated genetic transformation of E. grandiflorum. The greatest shoot regeneration frequency and number of shoot buds per explant are observed on media supplemented with 6-Benzylaminopurine (BAP) and alpha-Naphthalene acetic acid (NAA). We report an efficient plant regeneration system using leaf explants via organogenesis with high efficiency of transgenic plants (15%) in culture of 11 weeks' duration. Further ectopic expression of two MADS box genes, LMADS1-M from lily (Lilium longiflorum) and OMADS1 from orchid (Oncidium Gower Ramsey), was performed in E. grandiflorum. Conversion of second whorl petals into sepal-like structures and alteration of third whorl stamen formation were observed in the transgenic E. grandiflorum plants ectopically expressing 35S::LMADS1-M. 35S::OMADS1 transgenic E. grandiflorum plants flowered significantly earlier than non-transgenic plants. This is the first report on the ectopic expression of two MADS box genes in E. grandiflorum using a simple and highly efficient gene transfer protocol. Our results reveal the potential for floral modification in E. grandiflorum through genetic transformation. PMID:19639326

  20. Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum.

    PubMed

    Thiruvengadam, Muthu; Yang, Chang-Hsien

    2009-10-01

    Lisianthus [Eustoma grandiflorum (Raf.) Shinn] is a popular cut flower crop throughout the world, and the demand for this plant for cut flowers and potted plants has been increasing worldwide. Recent advances in genetic engineering have enabled the transformation and regeneration of plants to become a powerful tool for improvement of lisianthus. We have established a highly efficient plant regeneration system and Agrobacterium-mediated genetic transformation of E. grandiflorum. The greatest shoot regeneration frequency and number of shoot buds per explant are observed on media supplemented with 6-Benzylaminopurine (BAP) and alpha-Naphthalene acetic acid (NAA). We report an efficient plant regeneration system using leaf explants via organogenesis with high efficiency of transgenic plants (15%) in culture of 11 weeks' duration. Further ectopic expression of two MADS box genes, LMADS1-M from lily (Lilium longiflorum) and OMADS1 from orchid (Oncidium Gower Ramsey), was performed in E. grandiflorum. Conversion of second whorl petals into sepal-like structures and alteration of third whorl stamen formation were observed in the transgenic E. grandiflorum plants ectopically expressing 35S::LMADS1-M. 35S::OMADS1 transgenic E. grandiflorum plants flowered significantly earlier than non-transgenic plants. This is the first report on the ectopic expression of two MADS box genes in E. grandiflorum using a simple and highly efficient gene transfer protocol. Our results reveal the potential for floral modification in E. grandiflorum through genetic transformation.

  1. A MADS-box gene NtSVP regulates pedicel elongation by directly suppressing a KNAT1-like KNOX gene NtBPL in tobacco (Nicotiana tabacum L.).

    PubMed

    Wang, Di; Chen, Xiaobo; Zhang, Zenglin; Liu, Danmei; Song, Gaoyuan; Kong, Xingchen; Geng, Shuaifeng; Yang, Jiayue; Wang, Bingnan; Wu, Liang; Li, Aili; Mao, Long

    2015-10-01

    Optimal inflorescence architecture is important for plant reproductive success by affecting the ultimate number of flowers that set fruits and for plant competitiveness when interacting with biotic or abiotic conditions. The pedicel is one of the key contributors to inflorescence architecture diversity. To date, knowledge about the molecular mechanisms of pedicel development is derived from Arabidopsis. Not much is known regarding other plants. Here, an SVP family MADS-box gene, NtSVP, in tobacco (Nicotiana tabacum) that is required for pedicel elongation was identified. It is shown that knockdown of NtSVP by RNA interference (RNAi) caused elongated pedicels, while overexpression resulted in compact inflorescences with much shortened pedicels. Moreover, an Arabidopsis BREVIPEDECELLUS/KNAT1 homologue NtBP-Like (NtBPL) was significantly up-regulated in NtSVP-RNAi plants. Disruption of NtBPL decreased pedicel lengths and shortened cortex cells. Consistent with the presence of a CArG-box at the NtBPL promoter, the direct binding of NtSVP to the NtBPL promoter was demonstrated by yeast one-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay, in which NtSVP may act as a repressor of NtBPL. Microarray analysis showed that down-regulation of NtBPL resulted in differential expression of genes associated with a number of hormone biogenesis and signalling genes such as those for auxin and gibberellin. These findings together suggest the function of a MADS-box transcription factor in plant pedicel development, probably via negative regulation of a BP-like class I KNOX gene. The present work thus postulates the conservation and divergence of the molecular regulatory pathways underlying the development of plant inflorescence architecture. PMID:26175352

  2. TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development.

    PubMed

    Gimenez, Estela; Castañeda, Laura; Pineda, Benito; Pan, Irvin L; Moreno, Vicente; Angosto, Trinidad; Lozano, Rafael

    2016-07-01

    Within the tomato MADS-box gene family, TOMATO AGAMOUS1 (TAG1) and ARLEQUIN/TOMATO AGAMOUS LIKE1 (hereafter referred to as TAGL1) are, respectively, members of the euAG and PLE lineages of the AGAMOUS clade. They perform crucial functions specifying stamen and carpel development in the flower and controlling late fruit development. To gain insight into the roles of TAG1 and TAGL1 genes and to better understand their functional redundancy and diversification, we characterized single and double RNAi silencing lines of these genes and analyzed expression profiles of regulatory genes involved in reproductive development. Double RNAi lines did show cell abnormalities in stamens and carpels and produced extremely small fruit-like organs displaying some sepaloid features. Expression analyses indicated that TAG1 and TAGL1 act together to repress fourth whorl sepal development, most likely through the MACROCALYX gene. Results also proved that TAG1 and TAGL1 have diversified their functions in fruit development: while TAG1 controls placenta and seed formation, TAGL1 participates in cuticle development and lignin biosynthesis inhibition. It is noteworthy that both TAG1 and double RNAi plants lacked seed development due to abnormalities in pollen formation. This seedless phenotype was not associated with changes in the expression of B-class stamen identity genes Tomato MADS-box 6 and Tomato PISTILLATA observed in silencing lines, suggesting that other regulatory factors should participate in pollen formation. Taken together, results here reported support the idea that both redundant and divergent functions of TAG1 and TAGL1 genes are needed to control tomato reproductive development.

  3. Analysis of the formation of flower shapes in wild species and cultivars of tree peony using the MADS-box subfamily gene.

    PubMed

    Shu, Qingyan; Wang, Liangsheng; Wu, Jie; Du, Hui; Liu, Zheng'an; Ren, Hongxu; Zhang, Jingjing

    2012-02-01

    Tree peony (Paeonia suffricotisa) cultivars have a unique character compared with wild species; the stamen petalody results in increased whorls of petals and generates different flower forms, which are one of the most important traits for cultivar classification. In order to investigate how petaloid stamens are formed, we obtained the coding sequence (666 bp) and genomic DNA sequence of the PsTM6 genes (belongs to B subfamily of MADS-box gene family) from 23 tree peony samples, Five introns and six exons consisted of the genomic DNA sequence. The analysis of cis-acting regulatory elements in the third and fourth intron indicated that they were highly conserved in all samples. Partial putative amino acids were analyzed and the results suggested that functional differentiation of PsTM6 paralogs apparently affected stamen petalody and flower shape formation due to due to amino acid substitution caused by differences in polarity and electronic charge. Sliding window analysis indicated that the different regions of PsTM6 were subjected to different selection forces, especially in the K domain. This is the first attempt to investigate genetic control of the stamen petalody based on the PsTM6 sequence. This will provide a basis for understanding the evolution of PsTM6 and its the function of in determining stamen morphology of tree peony.

  4. CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper.

    PubMed

    Cohen, Oded; Borovsky, Yelena; David-Schwartz, Rakefet; Paran, Ilan

    2012-08-01

    In aiming to decipher the genetic control of shoot architecture in pepper (Capsicum spp.), the allelic late-flowering mutants E-252 and E-2537 were identified. These mutants exhibit multiple pleiotropic effects on the organization of the sympodial shoot. Genetic mapping and sequence analysis indicated that the mutants are disrupted at CaJOINTLESS, the orthologue of the MADS-box genes JOINTLESS and SVP in tomato and Arabidopsis, respectively. Late flowering of the primary and sympodial shoots of Cajointless indicates that the gene functions as a suppressor of vegetative growth in all shoot meristems. While CaJOINTLESS and JOINTLESS have partially conserved functions, the effect on flowering time and on sympodial development in pepper, as well as the epistasis over FASCICULATE, the homologue of the major determinant of sympodial development SELF-PRUNING, is stronger than in tomato. Furthermore, the solitary terminal flower of pepper is converted into a structure composed of flowers and leaves in the mutant lines. This conversion supports the hypothesis that the solitary flowers of pepper have a cryptic inflorescence identity that is suppressed by CaJOINTLESS. Formation of solitary flowers in wild-type pepper is suggested to result from precocious maturation of the inflorescence meristem.

  5. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit1

    PubMed Central

    Giménez, Estela; Dominguez, Eva; Pineda, Benito; Heredia, Antonio; Moreno, Vicente; Angosto, Trinidad

    2015-01-01

    Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene ARLEQUIN/TOMATO AGAMOUS-LIKE1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato. PMID:26019301

  6. X Linkage of AP3A, a Homolog of the Y-Linked MADS-Box Gene AP3Y in Silene latifolia and S. dioica

    PubMed Central

    Penny, Rebecca H.; Montgomery, Benjamin R.; Delph, Lynda F.

    2011-01-01

    Background The duplication of autosomal genes onto the Y chromosome may be an important element in the evolution of sexual dimorphism.A previous cytological study reported on a putative example of such a duplication event in a dioecious tribe of Silene (Caryophyllaceae): it was inferred that the Y-linked MADS-box gene AP3Y originated from a duplication of the reportedly autosomal orthologAP3A. However, a recent study, also using cytological methods, indicated that AP3A is X-linked in Silenelatifolia. Methodology/Principal Findings In this study, we hybridized S. latifolia and S. dioicato investigate whether the pattern of X linkage is consistent among distinct populations, occurs in both species, and is robust to genetic methods. We found inheritance patterns indicative of X linkage of AP3A in widely distributed populations of both species. Conclusions/Significance X linkage ofAP3A and Y linkage of AP3Yin both species indicates that the genes' ancestral progenitor resided on the autosomes that gave rise to the sex chromosomesand that neither gene has moved between chromosomes since species divergence.Consequently, our results do not support the contention that inter-chromosomal gene transfer occurred in the evolution of SlAP3Y from SlAP3A. PMID:21533056

  7. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR.

    PubMed

    Fujisawa, Masaki; Ito, Yasuhiro

    2013-06-01

    The developmental process of ripening is unique to fleshy fruits and a key factor in fruit quality. The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN), one of the earliest-acting ripening regulators, is required for broad aspects of ripening, including ethylene-dependent and -independent pathways. However, our knowledge of direct RIN target genes has been limited, considering the broad effects of RIN on ripening. In a recent work published in The Plant Cell, we identified 241 direct RIN target genes by chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) and transcriptome analysis. Functional classification of the targets revealed that RIN participates in the regulation of many biological processes including well-known ripening processes such as climacteric ethylene production and lycopene accumulation. In addition, we found that ethylene is required for the full expression of RIN and several RIN-targeting transcription factor genes at the ripening stage. Here, based on our recently published findings and additional data, we discuss the ripening processes regulated by RIN and the interplay between RIN and ethylene.

  8. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit.

    PubMed

    Giménez, Estela; Dominguez, Eva; Pineda, Benito; Heredia, Antonio; Moreno, Vicente; Lozano, Rafael; Angosto, Trinidad

    2015-07-01

    Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene Arlequin/tomato Agamous-like1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato.

  9. The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors.

    PubMed

    Tsaftaris, Athanasios; Pasentsis, Konstantinos; Makris, Antonios; Darzentas, Nikos; Polidoros, Alexios; Kalivas, Apostolos; Argiriou, Anagnostis

    2011-09-15

    To further understand flowering and flower organ formation in the monocot crop saffron crocus (Crocus sativus L.), we cloned four MIKC(c) type II MADS-box cDNA sequences of the E-class SEPALLATA3 (SEP3) subfamily designated CsatSEP3a/b/c/c_as as well as the three respective genomic sequences. Sequence analysis showed that cDNA sequences of CsatSEP3 c and c_as are the products of alternative splicing of the CsatSEP3c gene. Bioinformatics analysis with putative orthologous sequences from various plant species suggested that all four cDNA sequences encode for SEP3-like proteins with characteristic motifs and amino acids, and highlighted intriguing sequence features. Phylogenetically, the isolated sequences were closest to the SEP3-like genes from monocots such as Asparagus virgatus, Oryza sativa, Zea mays, and the dicot Arabidopsis SEP3 gene. All four isolated C. sativus sequences were strongly expressed in flowers and in all flower organs: whorl1 tepals, whorl2 tepals, stamens and carpels, but not in leaves. Expression of CsatSEP3a/b/c/c_as cDNAs was compared in wild-type and mutant flowers. Expression of the isolatedCsatSEP3-like genes in whorl1 tepals together with E-class CsatAP1/FUL subfamily and B-class CsatAP3 and CsatPI subfamilies of genes, fits the ABCE "quartet model," an extended form of the original ABC model proposed to explain the homeotic transformation of whorl1 sepals into whorl1 tepals in Liliales and Asparagales plants such as C. sativus. This conclusion was also supported by the interaction of the CsatSEP3b protein with CsatAP1/FUL and CsatAP3 proteins. In contrast, expression of both B-class CsatAP3 and CsatPI genes and the C-class CsatAGAMOUS genes together with E-class CsatSEP3-like genes in carpels, without any phenotypic effects on carpels, raises questions about the role of these gene classes in carpel formation in this non-grass monocot and requires further experimentation. Finally, taking advantage of the size and sequence differences in

  10. The double-corolla phenotype in the Hawaiian lobelioid genus Clermontia involves ectopic expression of PISTILLATA B-function MADS box gene homologs

    PubMed Central

    2012-01-01

    Abstract Background The Hawaiian endemic genus Clermontia (Campanulaceae) includes 22 species, 15 of which, the double-corolla species, are characterized by an extra whorl of organs that appear to be true petals occupying what is normally the sepal whorl. Previous research has shown that the presence of homeotic petaloid organs in some other plant groups correlates with ectopic expression of B-function MADS box genes, but similar core eudicot examples of apparent groundplan divergence remain unstudied. B-function genes, which are not normally expressed in the sepal whorl, are required for determination and maintenance of petal identity. Here, we investigate the potential role of altered B-function gene expression contributing to the morphological diversity of this island genus. Results We examined the morphology and developmental genetics of two different species of Clermontia, one of which, C. arborescens, has normal sepals while the other, C. parviflora, has two whorls of petal-like organs. Scanning electron microscopy of cell surface morphologies of first and second whorl organs in the double-corolla species C. parviflora revealed conical epidermal cells on the adaxial surfaces of both first and second whorl petaloid organs, strongly suggesting a homeotic conversion in the former. Phylogenetic analysis of Clermontia species based on 5S ribosomal DNA non-transcribed spacer sequences indicated a probable single and geologically recent origin of the double-corolla trait within the genus, with numerous potential reversals to the standard sepal-petal format. Quantitative polymerase chain reaction analysis of homologs of the B-function genes PISTILLATA (PI), APETALA3 and TOMATO MADS 6 indicated ectopic expression of two PI paralogs in the first whorl of C. parviflora; no such homeotic expression was observed for the other two genes, nor for several other MADS box genes involved in various floral and non-floral functions. In the standard sepal-petal species C

  11. An AGAMOUS-Related MADS-Box Gene, XAL1 (AGL12), Regulates Root Meristem Cell Proliferation and Flowering Transition in Arabidopsis1[W][OA

    PubMed Central

    Tapia-López, Rosalinda; García-Ponce, Berenice; Dubrovsky, Joseph G.; Garay-Arroyo, Adriana; Pérez-Ruíz, Rigoberto V.; Kim, Sun-Hyung; Acevedo, Francisca; Pelaz, Soraya; Alvarez-Buylla, Elena R.

    2008-01-01

    MADS-box genes are key components of the networks that control the transition to flowering and flower development, but their role in vegetative development is poorly understood. This article shows that the sister gene of the AGAMOUS (AG) clade, AGL12, has an important role in root development as well as in flowering transition. We isolated three mutant alleles for AGL12, which is renamed here as XAANTAL1 (XAL1): Two alleles, xal1-1 and xal1-2, are in Columbia ecotype and xal1-3 is in Landsberg erecta ecotype. All alleles have a short-root phenotype with a smaller meristem, lower rate of cell production, and abnormal root apical meristem organization. Interestingly, we also encountered a significantly longer cell cycle in the strongest xal1 alleles with respect to wild-type plants. Expression analyses confirmed the presence of XAL1 transcripts in roots, particularly in the phloem. Moreover, XAL1∷β-glucuronidase expression was specifically up-regulated by auxins in this tissue. In addition, mRNA in situ hybridization showed that XAL1 transcripts were also found in leaves and floral meristems of wild-type plants. This expression correlates with the late-flowering phenotypes of the xal1 mutants grown under long days. Transcript expression analysis suggests that XAL1 is an upstream regulator of SOC, FLOWERING LOCUS T, and LFY. We propose that XAL1 may have similar roles in both root and aerial meristems that could explain the xal1 late-flowering phenotype. PMID:18203871

  12. Histone acetylation accompanied with promoter sequences displaying differential expression profiles of B-class MADS-box genes for phalaenopsis floral morphogenesis.

    PubMed

    Hsu, Chia-Chi; Wu, Pei-Shan; Chen, Tien-Chih; Yu, Chun-Wei; Tsai, Wen-Chieh; Wu, Keqiang; Wu, Wen-Luan; Chen, Wen-Huei; Chen, Hong-Hwa

    2014-01-01

    Five B-class MADS-box genes, including four APETALA3 (AP3)-like PeMADS2∼5 and one PISTILLATA (PI)-like PeMADS6, specify the spectacular flower morphology in orchids. The PI-like PeMADS6 ubiquitously expresses in all floral organs. The four AP3-like genes, resulted from two duplication events, express ubiquitously at floral primordia and early floral organ stages, but show distinct expression profiles at late floral organ primordia and floral bud stages. Here, we isolated the upstream sequences of PeMADS2∼6 and studied the regulatory mechanism for their distinct gene expression. Phylogenetic footprinting analysis of the 1.3-kb upstream sequences of AP3-like PeMADS2∼5 showed that their promoter regions have sufficiently diverged and contributed to their subfunctionalization. The amplified promoter sequences of PeMADS2∼6 could drive beta-glucuronidase (GUS) gene expression in all floral organs, similar to their expression at the floral primordia stage. The promoter sequence of PeMADS4, exclusively expressed in lip and column, showed a 1.6∼3-fold higher expression in lip/column than in sepal/petal. Furthermore, we noted a 4.9-fold increase in histone acetylation (H3K9K14ac) in the translation start region of PeMADS4 in lip as compared in petal. All these results suggest that the regulation via the upstream sequences and increased H3K9K14ac level may act synergistically to display distinct expression profiles of the AP3-like genes at late floral organ primordia stage for Phalaenopsis floral morphogenesis. PMID:25501842

  13. ZmSOC1, an MADS-Box Transcription Factor from Zea mays, Promotes Flowering in Arabidopsis

    PubMed Central

    Zhao, Suzhou; Luo, Yanzhong; Zhang, Zhanlu; Xu, Miaoyun; Wang, Weibu; Zhao, Yangmin; Zhang, Lan; Fan, Yunliu; Wang, Lei

    2014-01-01

    Zea mays is an economically important crop, but its molecular mechanism of flowering remains largely uncharacterized. The gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), integrates multiple flowering signals to regulate floral transition in Arabidopsis. In this study, ZmSOC1 was isolated from Zea mays. Sequence alignment and phylogenetic analysis demonstrated that the ZmSOC1 protein contained a highly conserved MADS domain and a typical SOC1 motif. ZmSOC1 protein was localized in the nucleus in protoplasts and showed no transcriptional activation activity in yeast cells. ZmSOC1 was highly expressed in maize reproductive organs, including filaments, ear and endosperm, but expression was very low in embryos; on the other hand, the abiotic stresses could repress ZmSOC1 expression. Overexpression of ZmSOC1 resulted in early flowering in Arabidopsis through increasing the expression of AtLFY and AtAP1. Overall, these results suggest that ZmSOC1 is a flowering promoter in Arabidopsis. PMID:25372944

  14. Reciprocal Loss of CArG-Boxes and Auxin Response Elements Drives Expression Divergence of MPF2-Like MADS-Box Genes Controlling Calyx Inflation

    PubMed Central

    Khan, Muhammad Ramzan; Hu, Jinyong; Ali, Ghulam Muhammad

    2012-01-01

    Expression divergence is thought to be a hallmark of functional diversification between homologs post duplication. Modification in regulatory elements has been invoked to explain expression divergence after duplication for several MADS-box genes, however, verification of reciprocal loss of cis-regulatory elements is lacking in plants. Here, we report that the evolution of MPF2-like genes has entailed degenerative mutations in a core promoter CArG-box and an auxin response factor (ARF) binding element in the large 1st intron in the coding region. Previously, MPF2-like genes were duplicated into MPF2-like-A and -B through genome duplication in Withania and Tubocapsicum (Withaninae). The calyx of Withania grows exorbitantly after pollination unlike Tubocapsicum, where it degenerates. Besides inflated calyx syndrome formation, MPF2-like transcription factors are implicated in functions both during the vegetative and reproductive development as well as in phase transition. MPF2-like-A of Withania (WSA206) is strongly expressed in sepals, while MPF2-like-B (WSB206) is not. Interestingly, their combined expression patterns seem to replicate the pattern of their closely related hypothetical progenitors from Vassobia and Physalis. Using phylogenetic shadowing, site-directed mutagenesis and motif swapping, we could show that the loss of a conserved CArG-box in MPF2-like-B of Withania is responsible for impeding its expression in sepals. Conversely, loss of an ARE in MPF2-like-A relaxed the constraint on expression in sepals. Thus, the ARE is an active suppressor of MPF2-like gene expression in sepals, which in contrast is activated via the CArG-box. The observed expression divergence in MPF2-like genes due to reciprocal loss of cis-regulatory elements has added to genetic and phenotypic variations in the Withaninae and enhanced the potential of natural selection for the adaptive evolution of ICS. Moreover, these results provide insight into the interplay of floral

  15. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein-Protein Interactions.

    PubMed

    Bartlett, Madelaine; Thompson, Beth; Brabazon, Holly; Del Gizzi, Robert; Zhang, Thompson; Whipple, Clinton

    2016-06-01

    Protein-protein interactions (PPIs) have widely acknowledged roles in the regulation of development, but few studies have addressed the timing and mechanism of shifting PPIs over evolutionary history. The B-class MADS-box transcription factors, PISTILLATA (PI) and APETALA3 (AP3) are key regulators of floral development. PI-like (PI(L)) and AP3-like (AP3(L)) proteins from a number of plants, including Arabidopsis thaliana (Arabidopsis) and the grass Zea mays (maize), bind DNA as obligate heterodimers. However, a PI(L) protein from the grass relative Joinvillea can bind DNA as a homodimer. To ascertain whether Joinvillea PI(L) homodimerization is an anomaly or indicative of broader trends, we characterized PI(L) dimerization across the Poales and uncovered unexpected evolutionary lability. Both obligate B-class heterodimerization and PI(L) homodimerization have evolved multiple times in the order, by distinct molecular mechanisms. For example, obligate B-class heterodimerization in maize evolved very recently from PI(L) homodimerization. A single amino acid change, fixed during domestication, is sufficient to toggle one maize PI(L) protein between homodimerization and obligate heterodimerization. We detected a signature of positive selection acting on residues preferentially clustered in predicted sites of contact between MADS-box monomers and dimers, and in motifs that mediate MADS PPI specificity in Arabidopsis. Changing one positively selected residue can alter PI(L) dimerization activity. Furthermore, ectopic expression of a Joinvillea PI(L) homodimer in Arabidopsis can homeotically transform sepals into petals. Our results provide a window into the evolutionary remodeling of PPIs, and show that novel interactions have the potential to alter plant form in a context-dependent manner. PMID:26908583

  16. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana

    PubMed Central

    Tekleyohans, Dawit G.; Wittkop, Benjamin; Snowdon, Rod J.

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner. PMID:27776173

  17. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein–Protein Interactions

    PubMed Central

    Bartlett, Madelaine; Thompson, Beth; Brabazon, Holly; Del Gizzi, Robert; Zhang, Thompson; Whipple, Clinton

    2016-01-01

    Protein–protein interactions (PPIs) have widely acknowledged roles in the regulation of development, but few studies have addressed the timing and mechanism of shifting PPIs over evolutionary history. The B-class MADS-box transcription factors, PISTILLATA (PI) and APETALA3 (AP3) are key regulators of floral development. PI-like (PIL) and AP3-like (AP3L) proteins from a number of plants, including Arabidopsis thaliana (Arabidopsis) and the grass Zea mays (maize), bind DNA as obligate heterodimers. However, a PIL protein from the grass relative Joinvillea can bind DNA as a homodimer. To ascertain whether Joinvillea PIL homodimerization is an anomaly or indicative of broader trends, we characterized PIL dimerization across the Poales and uncovered unexpected evolutionary lability. Both obligate B-class heterodimerization and PIL homodimerization have evolved multiple times in the order, by distinct molecular mechanisms. For example, obligate B-class heterodimerization in maize evolved very recently from PIL homodimerization. A single amino acid change, fixed during domestication, is sufficient to toggle one maize PIL protein between homodimerization and obligate heterodimerization. We detected a signature of positive selection acting on residues preferentially clustered in predicted sites of contact between MADS-box monomers and dimers, and in motifs that mediate MADS PPI specificity in Arabidopsis. Changing one positively selected residue can alter PIL dimerization activity. Furthermore, ectopic expression of a Joinvillea PIL homodimer in Arabidopsis can homeotically transform sepals into petals. Our results provide a window into the evolutionary remodeling of PPIs, and show that novel interactions have the potential to alter plant form in a context-dependent manner. PMID:26908583

  18. Aspergillus fumigatus MADS-Box Transcription Factor rlmA Is Required for Regulation of the Cell Wall Integrity and Virulence

    PubMed Central

    Rocha, Marina Campos; Fabri, João Henrique Tadini Marilhano; Franco de Godoy, Krissia; Alves de Castro, Patrícia; Hori, Juliana Issa; Ferreira da Cunha, Anderson; Arentshorst, Mark; Ram, Arthur F. J.; van den Hondel, Cees A. M. J. J.; Goldman, Gustavo Henrique; Malavazi, Iran

    2016-01-01

    The Cell Wall Integrity (CWI) pathway is the primary signaling cascade that controls the de novo synthesis of the fungal cell wall, and in Saccharomyces cerevisiae this event is highly dependent on the RLM1 transcription factor. Here, we investigated the function of RlmA in the fungal pathogen Aspergillus fumigatus. We show that the ΔrlmA strain exhibits an altered cell wall organization in addition to defects related to vegetative growth and tolerance to cell wall-perturbing agents. A genetic analysis indicated that rlmA is positioned downstream of the pkcA and mpkA genes in the CWI pathway. As a consequence, rlmA loss-of-function leads to the altered expression of genes encoding cell wall-related proteins. RlmA positively regulates the phosphorylation of MpkA and is induced at both protein and transcriptional levels during cell wall stress. The rlmA was also involved in tolerance to oxidative damage and transcriptional regulation of genes related to oxidative stress adaptation. Moreover, the ΔrlmA strain had attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Our results suggest that RlmA functions as a transcription factor in the A. fumigatus CWI pathway, acting downstream of PkcA-MpkA signaling and contributing to the virulence of this fungus. PMID:27473315

  19. Aspergillus fumigatus MADS-Box Transcription Factor rlmA Is Required for Regulation of the Cell Wall Integrity and Virulence.

    PubMed

    Rocha, Marina Campos; Fabri, João Henrique Tadini Marilhano; Franco de Godoy, Krissia; Alves de Castro, Patrícia; Hori, Juliana Issa; Ferreira da Cunha, Anderson; Arentshorst, Mark; Ram, Arthur F J; van den Hondel, Cees A M J J; Goldman, Gustavo Henrique; Malavazi, Iran

    2016-01-01

    The Cell Wall Integrity (CWI) pathway is the primary signaling cascade that controls the de novo synthesis of the fungal cell wall, and in Saccharomyces cerevisiae this event is highly dependent on the RLM1 transcription factor. Here, we investigated the function of RlmA in the fungal pathogen Aspergillus fumigatus We show that the ΔrlmA strain exhibits an altered cell wall organization in addition to defects related to vegetative growth and tolerance to cell wall-perturbing agents. A genetic analysis indicated that rlmA is positioned downstream of the pkcA and mpkA genes in the CWI pathway. As a consequence, rlmA loss-of-function leads to the altered expression of genes encoding cell wall-related proteins. RlmA positively regulates the phosphorylation of MpkA and is induced at both protein and transcriptional levels during cell wall stress. The rlmA was also involved in tolerance to oxidative damage and transcriptional regulation of genes related to oxidative stress adaptation. Moreover, the ΔrlmA strain had attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Our results suggest that RlmA functions as a transcription factor in the A. fumigatus CWI pathway, acting downstream of PkcA-MpkA signaling and contributing to the virulence of this fungus.

  20. MPF2-like-a MADS-box genes control the inflated Calyx syndrome in Withania (Solanaceae): roles of Darwinian selection.

    PubMed

    Khan, Muhammad R; Hu, Jin-Yong; Riss, Simone; He, Chaoying; Saedler, Heinz

    2009-11-01

    The Chinese lantern, which is the inflated calyx syndrome (ICS) of Physalis, is formed by MPF2 in the presence of the plant hormones, cytokinin and gibberellin. MPF2 knockdown mutants of Physalis have small leaves, no ICS, and are male sterile, thus, revealing three MPF2-related functions. Of the close relatives of Physalis, Tubocapsicum has only a rudimentary calyx, whereas others, like the Withania species, have ICS. From all Withania samples tested, two classes of MPF2-like orthologs, MPF2-like-A and MPF2-like-B, were isolated, whereas only the latter class was obtained from tetraploid Tubocapsicum. Though distinct differences can be observed between MPF2-like-A and MPF2-like-B proteins, that is MPF2-like-A proteins have an aberrant structure in that they have a three amino acid deletion in their C-domain and an eight amino acid extension at the C-terminal end, MPF2-like-A genes are phylogenetically closer to the Physalis MPF2-like genes. Unlike MPF2-like-B, the overexpression of MPF2-like-A in Arabidopsis revealed extra large sepals thus suggesting that MPF2-like-A genes are very likely responsible for the ICS formation in Withania. This correlated with the expression pattern of MPF2-like-A in vegetative and flower tissues, whereas MPF2-like-B is expressed only in vegetative tissues of Withania. In Tubocapsicum, however, MPF2-like-B RNA is detectable in all tissues tested. Finally, positive Darwinian selection was observed in the branch leading to Physalis MPF2-like and Withania MPF2-like-A proteins, followed by purifying selection once the trait had evolved. By contrast, purifying selection was detected for all other MPF2-like proteins tested. The contribution of the MPF2-like gene duplication to subfunctionalization is discussed.

  1. Isolation and characterization of the papaya MADS-box E-class genes, CpMADS1 and CpMADS3, and a TM6 lineage gene CpMADS2.

    PubMed

    Lee, M-J; Yang, W-J; Chiu, C-T; Chen, J-J; Chen, F-C; Chang, L-S

    2014-01-01

    Papaya (Carica papaya L.) plants are polygamous, with female, male, and hermaphroditic flowers. To understand the roles of MADS-box genes in flower development and sex determination, we cloned cDNAs of E-class genes CpMADS1 and CpMADS3 and a TM6 lineage of the B-class gene CpMADS2 from young flower buds of papaya. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR analyses revealed that CpMADS1 and CpMADS3 were preferentially expressed in the carpel and also in petals and stamens. CpMADS2 was expressed in both petals and stamens early during floral development. Comparison of 10 papaya genotypes of 5 different sex phenotypes - hermaphrodite, male, female, progeny-all-hermaphrodite, and progeny-all-male - by Southern blot analysis of genomic DNAs with probes of the 3 genes revealed similar restriction patterns and copy number, suggesting a low relationship of the 3 CpMADS genes with sex expression of papaya plants at the genomic level.

  2. Live and Let Die - The Bsister MADS-Box Gene OsMADS29 Controls the Degeneration of Cells in Maternal Tissues during Seed Development of Rice (Oryza sativa)

    PubMed Central

    Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Gramzow, Lydia; Schilling, Susanne; Becker, Annette; Theißen, Günter; Meng, Zheng

    2012-01-01

    Bsister genes have been identified as the closest relatives of class B floral homeotic genes. Previous studies have shown that Bsister genes from eudicots are involved in cell differentiation during ovule and seed development. However, the complete function of Bsister genes in eudicots is masked by redundancy with other genes and little is known about the function of Bsister genes in monocots, and about the evolution of Bsister gene functions. Here we characterize OsMADS29, one of three MADS-box Bsister genes in rice. Our analyses show that OsMADS29 is expressed in female reproductive organs including the ovule, ovule vasculature, and the whole seed except for the outer layer cells of the pericarp. Knock-down of OsMADS29 by double-stranded RNA-mediated interference (RNAi) results in shriveled and/or aborted seeds. Histological analyses of the abnormal seeds at 7 days after pollination (DAP) indicate that the symplastic continuity, including the ovular vascular trace and the nucellar projection, which is the nutrient source for the filial tissue at early development stages, is affected. Moreover, degeneration of all the maternal tissues in the transgenic seeds, including the pericarp, ovular vascular trace, integuments, nucellar epidermis and nucellar projection, is blocked as compared to control plants. Our results suggest that OsMADS29 has important functions in seed development of rice by regulating cell degeneration of maternal tissues. Our findings provide important insights into the ancestral function of Bsister genes. PMID:23251532

  3. The analysis of the inflorescence miRNome of the orchid Orchis italica reveals a DEF-like MADS-box gene as a new miRNA target.

    PubMed

    Aceto, Serena; Sica, Maria; De Paolo, Sofia; D'Argenio, Valeria; Cantiello, Piergiuseppe; Salvatore, Francesco; Gaudio, Luciano

    2014-01-01

    Plant microRNAs (miRNAs) are small, regulatory non-coding RNAs involved in a wide range of biological processes, from organ development to response to stimuli. In recent years, an increasing number of studies on model plant species have highlighted the evolutionary conservation of a high number of miRNA families and the existence of taxon-specific ones. However, few studies have examined miRNAs in non-model species such as orchids, which are characterized by highly diversified floral structures and pollination strategies. Therefore, we analysed a small RNA library of inflorescence tissue of the Mediterranean orchid Orchis italica to increase the knowledge on miRNAs in a non-model plant species. The high-throughput sequencing and analysis of a small RNA library of inflorescence of O. italica revealed 23 conserved and 161 putative novel miRNA families. Among the putative miRNA targets, experimental validation demonstrated that a DEF-like MADS-box transcript is cleaved by the homolog of miR5179 of O. italica. The presence of conserved miRNA families in the inflorescence of O. italica indicates that the basic developmental flower regulatory mechanisms mediated by miRNAs are maintained through evolution. Because, according to the "orchid code" theory, DEF-like genes exert a key function in the diversification of tepals and lip, the cleavage-mediated inhibitory activity of miR5179 on a OitaDEF-like transcript suggests that, in orchids, miRNAs play an important role in the diversification of the perianth organs.

  4. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment.

    PubMed

    Yamane, Hisayo; Ooka, Tomomi; Jotatsu, Hiroaki; Hosaka, Yukari; Sasaki, Ryuta; Tao, Ryutaro

    2011-06-01

    The present study investigated the expressional regulation of PpDAM5 and PpDAM6, two of the six peach (Prunus persica) dormancy-associated MADS-box genes, in relation to lateral bud endodormancy. PpDAM5 and PpDAM6 were originally identified as homologues of Arabidopsis SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 identified in the EVERGROWING locus of peach. Furthermore, PpDAM5 and PpDAM6 have recently been suggested to be involved in terminal bud dormancy. In this study, seasonal expression analyses using leaves, stems, and lateral buds of high-chill and low-chill peaches in field conditions indicated that both genes were up-regulated during the endodormancy period and down-regulated with endodormancy release. Controlled environment experiments showed that the expression of both PpDAM5 and PpDAM6 were up-regulated by ambient cool temperatures in autumn, while they were down-regulated by the prolonged period of cold temperatures in winter. A negative correlation between expression levels of PpDAM5 and PpDAM6 and bud burst percentage was found in the prolonged cold temperature treatment. Application of the dormancy-breaking reagent cyanamide to endo/ecodormant lateral buds induced early bud break and down-regulation of PpDAM5 and PpDAM6 expression at the same time. These results collectively suggest that PpDAM5 and PpDAM6 may function in the chilling requirement of peach lateral buds through growth-inhibiting functions for bud break.

  5. Leaf-Like Sepals Induced by Ectopic Expression of a SHORT VEGETATIVE PHASE (SVP)-Like MADS-Box Gene from the Basal Eudicot Epimedium sagittatum

    PubMed Central

    Li, Zhineng; Zeng, Shaohua; Li, Yanbang; Li, Mingyang; Souer, Erik

    2016-01-01

    Epimedium L. (Berberidaceae, Ranales), a perennial traditional Chinese medicinal herb, has become a new popular landscape plant for ground cover and pot culture in many countries based on its excellent ornamental characteristics and, distinctive and diverse floral morphology. However, little is known about the molecular genetics of flower development in Epimedium sagittatum. Here, we describe the characterization of EsSVP that encodes a protein sharing 68, 54, and 35% similarity with SVP, AGAMOUS-like 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in Arabidopsis, respectively. Quantitative RT-PCR (qRT-PCR) indicated that EsSVP transcripts were principally found in petiole and leaf tissues, with little expression in roots and flowers and no in fruits. The highest EsSVP expression was observed in leaves. The flowering time of 35S::EsSVP in most Arabidopsis thaliana and in all petunia plants was not affected in both photoperiod conditions, but 35S::EsSVP 5# and 35S::EsSVP 1# Arabidopsis lines induced late and early flowering under long day (LD, 14 h light/10 h dark) and short day (SD, 10 h light/14 h dark) conditions, respectively. The 35S::EsSVP Arabidopsis produced extra secondary inflorescence or floral meristems in the axils of the leaf-like sepals with excrescent trichomes, and leaf-like sepals not able to enclose the inner three whorls completely. Moreover, almost all transgenic Arabidopsis plants showed persistent sepals around the completely matured fruits. Upon ectopic expression of 35S::EsSVP in Petunia W115, sepals were enlarged, sometimes to the size of leaves; corollas were greenish and did not fully open. These results suggest that EsSVP is involved in inflorescence meristem identity and flowering time regulation in some conditions. Although, the SVP homologs might have suffered functional diversification among diverse species between core and basal eudicots, the protein functions are conserved between Arabidopsis/Petunia and Epimedium

  6. Protein expression and characterization of SEP3 from Arabidopsis thaliana.

    PubMed

    Shi, Q; Zhou, J; Wang, P; Lin, X; Xu, Y

    2015-01-01

    SEPALLATA (SEP) MADS-box genes play crucial roles in the regulation of floral growth and development. They are required for the specification of sepals, petals, stamens, and carpels as well as for floral determinacy. SEPs perform their functions through the formation of homo- or hetero-polymers, which are the molecular basis of floral quartets. In vitro assays indicated that SEP3 forms a tetramer after binding to DNA, but it is unclear whether DNA binding induces the tetramer, because SEP3 is often reported to form a dimer. Here, we analyzed the oligomeric status of SEP3 domains in the absence of the DNA-binding MADS-box domain. The truncated SEP3 was constructed as a fusion protein and expressed in prokaryotic cells. The purified protein fragment displayed as a tetramer in the size exclusion chromatographic column, and a glutaraldehyde cross-linking assay demonstrated that the protein contained a dimer unit. Yeast two-hybrid tests further verified that the fragments form homologous polymers in vivo, and that the K domain is involved in tetramer formation. Current results imply that the SEP3 protein regulates the formation of flower meristems using the tetramer as a unit, and that the DNA-binding MADS-box is dispensable for polymer formation. The C-terminal region does not contribute to homo-tetramer formation, but it may be reserved to glue other proteins. PMID:26505403

  7. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses

    PubMed Central

    Mondragón-Palomino, Mariana; Hiese, Luisa; Härter, Andrea; Koch, Marcus A; Theißen, Günter

    2009-01-01

    Background Positive selection is recognized as the prevalence of nonsynonymous over synonymous substitutions in a gene. Models of the functional evolution of duplicated genes consider neofunctionalization as key to the retention of paralogues. For instance, duplicate transcription factors are specifically retained in plant and animal genomes and both positive selection and transcriptional divergence appear to have played a role in their diversification. However, the relative impact of these two factors has not been systematically evaluated. Class B MADS-box genes, comprising DEF-like and GLO-like genes, encode developmental transcription factors essential for establishment of perianth and male organ identity in the flowers of angiosperms. Here, we contrast the role of positive selection and the known divergence in expression patterns of genes encoding class B-like MADS-box transcription factors from monocots, with emphasis on the family Orchidaceae and the order Poales. Although in the monocots these two groups are highly diverse and have a strongly canalized floral morphology, there is no information on the role of positive selection in the evolution of their distinctive flower morphologies. Published research shows that in Poales, class B-like genes are expressed in stamens and in lodicules, the perianth organs whose identity might also be specified by class B-like genes, like the identity of the inner tepals of their lily-like relatives. In orchids, however, the number and pattern of expression of class B-like genes have greatly diverged. Results The DEF-like genes from Orchidaceae form four well-supported, ancient clades of orthologues. In contrast, orchid GLO-like genes form a single clade of ancient orthologues and recent paralogues. DEF-like genes from orchid clade 2 (OMADS3-like genes) are under less stringent purifying selection than the other orchid DEF-like and GLO-like genes. In comparison with orchids, purifying selection was less stringent in DEF

  8. Evolutionary Conserved Positions Define Protein Conformational Diversity.

    PubMed

    Saldaño, Tadeo E; Monzon, Alexander M; Parisi, Gustavo; Fernandez-Alberti, Sebastian

    2016-03-01

    Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like β-sheets and α-helix. PMID:27008419

  9. Evolutionary Conserved Positions Define Protein Conformational Diversity

    PubMed Central

    Saldaño, Tadeo E.; Monzon, Alexander M.; Parisi, Gustavo; Fernandez-Alberti, Sebastian

    2016-01-01

    Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like β-sheets and α-helix. PMID:27008419

  10. Tagging of MADS domain proteins for chromatin immunoprecipitation

    PubMed Central

    de Folter, Stefan; Urbanus, Susan L; van Zuijlen, Lisette GC; Kaufmann, Kerstin; Angenent, Gerco C

    2007-01-01

    Background Most transcription factors fulfill their role in complexes and regulate their target genes upon binding to DNA motifs located in upstream regions or introns. To date, knowledge about transcription factor target genes and their corresponding transcription factor binding sites are still very limited. Two related methods that allow in vivo identification of transcription factor binding sites are chromatin immunoprecipitation (ChIP) and chromatin affinity purification (ChAP). For ChAP, the protein of interest is tagged with a peptide or protein, which can be used for affinity purification of the protein-DNA complex and hence, the identification of the target gene. Results Here, we present the results of experiments aiming at the development of a generic tagging approach for the Arabidopsis MADS domain proteins AGAMOUS, SEPALLATA3, and FRUITFULL. For this, Arabidopsis wild type plants were transformed with constructs containing a MADS-box gene fused to either a double Strep-tag® II-FLAG-tag, a triple HA-tag, or an eGFP-tag, all under the control of the constitutive double 35S Cauliflower Mosaic Virus (CaMV) promoter. Strikingly, in all cases, the number of transformants with loss-of-function phenotypes was much larger than those with an overexpression phenotype. Using endogenous promoters in stead of the 35S CaMV resulted in a dramatic reduction in the frequency of loss-of-function phenotypes. Furthermore, pleiotropic defects occasionally caused by an overexpression strategy can be overcome by using the native promoter of the gene. Finally, a ChAP result is presented using GFP antibody on plants carrying a genomic fragment of a MADS-box gene fused to GFP. Conclusion This study revealed that MADS-box proteins are very sensitive to fusions with small peptide tags and GFP tags. Furthermore, for the expression of chimeric versions of MADS-box genes it is favorable to use the entire genomic region in frame to the tag of choice. Interestingly, though unexpected

  11. Post-translational regulation of rice MADS29 function: homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus.

    PubMed

    Nayar, Saraswati; Kapoor, Meenu; Kapoor, Sanjay

    2014-10-01

    OsMADS29 is a seed-specific MADS-box transcription factor that affects embryo development and grain filling by maintaining hormone homeostasis and degradation of cells in the nucellus and nucellar projection. Although it has a bipartite nuclear localization signal (NLS) sequence, the transiently expressed OsMADS29 monomer does not localize specifically in the nucleus. Dimerization of the monomers alters the intracellular localization fate of the resulting OsMADS29 homodimer, which then translocates into the nucleus. By generating domain-specific deletions/mutations, we show that two conserved amino acids (lysine(23) and arginine(24)) in the NLS are important for nuclear localization of the OsMADS29 homodimer. Furthermore, the analyses involving interaction of OsMADS29 with 30 seed-expressed rice MADS proteins revealed 19 more MADS-box proteins, including five E-class proteins, which interacted with OsMADS29. Eleven of these complexes were observed to be localized in the nucleus. Deletion analysis revealed that the KC region (K-box and C-terminal domain) plays a pivotal role in homodimerization. These data suggest that the biological function of OsMADS29 may not only be regulated at the level of transcription and translation as reported earlier, but also at the post-translational level by way of the interaction between OsMADS29 monomers, and between OsMADS29 and other MADS-box proteins.

  12. Post-translational regulation of rice MADS29 function: homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus

    PubMed Central

    Nayar, Saraswati; Kapoor, Meenu; Kapoor, Sanjay

    2014-01-01

    OsMADS29 is a seed-specific MADS-box transcription factor that affects embryo development and grain filling by maintaining hormone homeostasis and degradation of cells in the nucellus and nucellar projection. Although it has a bipartite nuclear localization signal (NLS) sequence, the transiently expressed OsMADS29 monomer does not localize specifically in the nucleus. Dimerization of the monomers alters the intracellular localization fate of the resulting OsMADS29 homodimer, which then translocates into the nucleus. By generating domain-specific deletions/mutations, we show that two conserved amino acids (lysine23 and arginine24) in the NLS are important for nuclear localization of the OsMADS29 homodimer. Furthermore, the analyses involving interaction of OsMADS29 with 30 seed-expressed rice MADS proteins revealed 19 more MADS-box proteins, including five E-class proteins, which interacted with OsMADS29. Eleven of these complexes were observed to be localized in the nucleus. Deletion analysis revealed that the KC region (K-box and C-terminal domain) plays a pivotal role in homodimerization. These data suggest that the biological function of OsMADS29 may not only be regulated at the level of transcription and translation as reported earlier, but also at the post-translational level by way of the interaction between OsMADS29 monomers, and between OsMADS29 and other MADS-box proteins. PMID:25096923

  13. The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules.

    PubMed

    Bemer, Marian; Wolters-Arts, Mieke; Grossniklaus, Ueli; Angenent, Gerco C

    2008-08-01

    MADS box genes in plants consist of MIKC-type and type I genes. While MIKC-type genes have been studied extensively, the functions of type I genes are still poorly understood. Evidence suggests that type I MADS box genes are involved in embryo sac and seed development. We investigated two independent T-DNA insertion alleles of the Arabidopsis thaliana type I MADS box gene AGAMOUS-LIKE61 (AGL61) and showed that in agl61 mutant ovules, the polar nuclei do not fuse and central cell morphology is aberrant. Furthermore, the central cell begins to degenerate before fertilization takes place. Although pollen tubes are attracted and perceived by the mutant ovules, neither endosperm development nor zygote formation occurs. AGL61 is expressed in the central cell during the final stages of embryo sac development. An AGL61:green fluorescent protein-beta-glucoronidase fusion protein localizes exclusively to the polar nuclei and the secondary nucleus of the central cell. Yeast two-hybrid analysis showed that AGL61 can form a heterodimer with AGL80 and that the nuclear localization of AGL61 is lost in the agl80 mutant. Thus, AGL61 and AGL80 appear to function together to differentiate the central cell in Arabidopsis. We renamed AGL61 DIANA, after the virginal Roman goddess of the hunt.

  14. The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules.

    PubMed

    Bemer, Marian; Wolters-Arts, Mieke; Grossniklaus, Ueli; Angenent, Gerco C

    2008-08-01

    MADS box genes in plants consist of MIKC-type and type I genes. While MIKC-type genes have been studied extensively, the functions of type I genes are still poorly understood. Evidence suggests that type I MADS box genes are involved in embryo sac and seed development. We investigated two independent T-DNA insertion alleles of the Arabidopsis thaliana type I MADS box gene AGAMOUS-LIKE61 (AGL61) and showed that in agl61 mutant ovules, the polar nuclei do not fuse and central cell morphology is aberrant. Furthermore, the central cell begins to degenerate before fertilization takes place. Although pollen tubes are attracted and perceived by the mutant ovules, neither endosperm development nor zygote formation occurs. AGL61 is expressed in the central cell during the final stages of embryo sac development. An AGL61:green fluorescent protein-beta-glucoronidase fusion protein localizes exclusively to the polar nuclei and the secondary nucleus of the central cell. Yeast two-hybrid analysis showed that AGL61 can form a heterodimer with AGL80 and that the nuclear localization of AGL61 is lost in the agl80 mutant. Thus, AGL61 and AGL80 appear to function together to differentiate the central cell in Arabidopsis. We renamed AGL61 DIANA, after the virginal Roman goddess of the hunt. PMID:18713950

  15. The MADS Domain Protein DIANA Acts Together with AGAMOUS-LIKE80 to Specify the Central Cell in Arabidopsis Ovules[W

    PubMed Central

    Bemer, Marian; Wolters-Arts, Mieke; Grossniklaus, Ueli; Angenent, Gerco C.

    2008-01-01

    MADS box genes in plants consist of MIKC-type and type I genes. While MIKC-type genes have been studied extensively, the functions of type I genes are still poorly understood. Evidence suggests that type I MADS box genes are involved in embryo sac and seed development. We investigated two independent T-DNA insertion alleles of the Arabidopsis thaliana type I MADS box gene AGAMOUS-LIKE61 (AGL61) and showed that in agl61 mutant ovules, the polar nuclei do not fuse and central cell morphology is aberrant. Furthermore, the central cell begins to degenerate before fertilization takes place. Although pollen tubes are attracted and perceived by the mutant ovules, neither endosperm development nor zygote formation occurs. AGL61 is expressed in the central cell during the final stages of embryo sac development. An AGL61:green fluorescent protein–β-glucoronidase fusion protein localizes exclusively to the polar nuclei and the secondary nucleus of the central cell. Yeast two-hybrid analysis showed that AGL61 can form a heterodimer with AGL80 and that the nuclear localization of AGL61 is lost in the agl80 mutant. Thus, AGL61 and AGL80 appear to function together to differentiate the central cell in Arabidopsis. We renamed AGL61 DIANA, after the virginal Roman goddess of the hunt. PMID:18713950

  16. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    PubMed

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  17. Positive modulator of bone morphogenic protein-2

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  18. Intron positions correlate with module boundaries in ancient proteins

    PubMed Central

    de Souza, Sandro Jose; Long, Manyuan; Schoenbach, Lloyd; Roy, Scott William; Gilbert, Walter

    1996-01-01

    We analyze the three-dimensional structure of proteins by a computer program that finds regions of sequence that contain module boundaries, defining a module as a segment of polypeptide chain bounded in space by a specific given distance. The program defines a set of “linker regions” that have the property that if an intron were to be placed into each linker region, the protein would be dissected into a set of modules all less than the specified diameter. We test a set of 32 proteins, all of ancient origin, and a corresponding set of 570 intron positions, to ask if there is a statistically significant excess of intron positions within the linker regions. For 28-Å modules, a standard size used historically, we find such an excess, with P < 0.003. This correlation is neither due to a compositional or sequence bias in the linker regions nor to a surface bias in intron positions. Furthermore, a subset of 20 introns, which can be putatively identified as old, lies even more explicitly within the linker regions, with P < 0.0003. Thus, there is a strong correlation between intron positions and three-dimensional structural elements of ancient proteins as expected by the introns-early approach. We then study a range of module diameters and show that, as the diameter varies, significant peaks of correlation appear for module diameters centered at 21.7, 27.6, and 32.9 Å. These preferred module diameters roughly correspond to predicted exon sizes of 15, 22, and 30 residues. Thus, there are significant correlations between introns, modules, and a quantized pattern of the lengths of polypeptide chains, which is the prediction of the “Exon Theory of Genes.” PMID:8962105

  19. Intron positions correlate with module boundaries in ancient proteins.

    PubMed

    de Souza, S J; Long, M; Schoenbach, L; Roy, S W; Gilbert, W

    1996-12-10

    We analyze the three-dimensional structure of proteins by a computer program that finds regions of sequence that contain module boundaries, defining a module as a segment of polypeptide chain bounded in space by a specific given distance. The program defines a set of "linker regions" that have the property that if an intron were to be placed into each linker region, the protein would be dissected into a set of modules all less than the specified diameter. We test a set of 32 proteins, all of ancient origin, and a corresponding set of 570 intron positions, to ask if there is a statistically significant excess of intron positions within the linker regions. For 28-A modules, a standard size used historically, we find such an excess, with P < 0.003. This correlation is neither due to a compositional or sequence bias in the linker regions nor to a surface bias in intron positions. Furthermore, a subset of 20 introns, which can be putatively identified as old, lies even more explicitly within the linker regions, with P < 0.0003. Thus, there is a strong correlation between intron positions and three-dimensional structural elements of ancient proteins as expected by the introns-early approach. We then study a range of module diameters and show that, as the diameter varies, significant peaks of correlation appear for module diameters centered at 21.7, 27.6, and 32.9 A. These preferred module diameters roughly correspond to predicted exon sizes of 15, 22, and 30 residues. Thus, there are significant correlations between introns, modules, and a quantized pattern of the lengths of polypeptide chains, which is the prediction of the "Exon Theory of Genes."

  20. Position-dependent Effects of Polylysine on Sec Protein Transport*

    PubMed Central

    Liang, Fu-Cheng; Bageshwar, Umesh K.; Musser, Siegfried M.

    2012-01-01

    The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or “pause sites,” were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport. PMID:22367204

  1. Merlin/ERM proteins establish cortical asymmetry and centrosome position

    PubMed Central

    Hebert, Alan M.; DuBoff, Brian; Casaletto, Jessica B.; Gladden, Andrew B.; McClatchey, Andrea I.

    2012-01-01

    The ability to generate asymmetry at the cell cortex underlies cell polarization and asymmetric cell division. Here we demonstrate a novel role for the tumor suppressor Merlin and closely related ERM proteins (Ezrin, Radixin, and Moesin) in generating cortical asymmetry in the absence of external cues. Our data reveal that Merlin functions to restrict the cortical distribution of the actin regulator Ezrin, which in turn positions the interphase centrosome in single epithelial cells and three-dimensional organotypic cultures. In the absence of Merlin, ectopic cortical Ezrin yields mispositioned centrosomes, misoriented spindles, and aberrant epithelial architecture. Furthermore, in tumor cells with centrosome amplification, the failure to restrict cortical Ezrin abolishes centrosome clustering, yielding multipolar mitoses. These data uncover fundamental roles for Merlin/ERM proteins in spatiotemporally organizing the cell cortex and suggest that Merlin's role in restricting cortical Ezrin may contribute to tumorigenesis by disrupting cell polarity, spindle orientation, and, potentially, genome stability. PMID:23249734

  2. Positively Selected Sites in Cetacean Myoglobins Contribute to Protein Stability

    PubMed Central

    Dasmeh, Pouria; Serohijos, Adrian W. R.; Kepp, Kasper P.; Shakhnovich, Eugene I.

    2013-01-01

    Since divergence ∼50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ∼10–20 fold increase in myoglobin (Mb) concentration in skeletal muscle, critical for increasing oxygen storage capacity and prolonging dive time. Whereas the O2-binding affinity of Mbs is not significantly different among mammals (with typical oxygenation constants of ∼0.8–1.2 µM−1), folding stabilities of cetacean Mbs are ∼2–4 kcal/mol higher than for terrestrial Mbs. Using ancestral sequence reconstruction, maximum likelihood and Bayesian tests to describe the evolution of cetacean Mbs, and experimentally calibrated computation of stability effects of mutations, we observe accelerated evolution in cetaceans and identify seven positively selected sites in Mb. Overall, these sites contribute to Mb stabilization with a conditional probability of 0.8. We observe a correlation between Mb folding stability and protein abundance, suggesting that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected sites that occur later act against other destabilizing mutations to maintain stability across the clade, except for the shallow divers, where late stability relaxation occurs, probably due to the shorter aerobic dive limits of these species. The three main positively selected sites 66, 5, and 35 undergo changes that favor hydrophobic folding, structural integrity, and intra-helical hydrogen bonds. PMID:23505347

  3. The tomato floral homeotic protein FBP1-like gene, SlGLO1, plays key roles in petal and stamen development

    PubMed Central

    Guo, Xuhu; Hu, Zongli; Yin, Wencheng; Yu, Xiaohui; Zhu, Zhiguo; Zhang, Jianling; Chen, Guoping

    2016-01-01

    MADS-box transcription factors play important role in plant growth and development, especially floral organ identities. In our study, a MADS-box gene SlGLO1- tomato floral homeotic protein FBP1-like gene was isolated. Its tissue-specific expression profile analysis showed that SlGLO1 was highly expressed in petals and stamens. RNAi (RNA interference) repression of SlGLO1 resulted in floral organ abnormal phenotypes, including green petals with shorter size, and aberrant carpelloid stamens. SlGLO1-silenced lines are male sterile. Total chlorophyll content was increased and chlorophyll biosynthetic genes were significantly up-regulated in SlGLO1-silenced petals and stamens. Furthermore, B-class genes expression analysis indicated that the repressed function of SlGLO1 led to the enhanced expression of TAP3 and the down-regulation of TPI in the petals and stamens, while the expression of TM6 was reduced in petals and increased in stamens and carpels of SlGLO1-RNAi plants. Additionally, pollen grains of transgenic lines were aberrant and failed to germinate and tomato pollen-specific genes were down-regulated by more than 90% in SlGLO1-silenced lines. These results suggest that SlGLO1 plays important role in regulating plant floral organ and pollen development in tomato. PMID:26842499

  4. Getting into position: the catalytic mechanisms of protein ubiquitylation.

    PubMed Central

    Passmore, Lori A; Barford, David

    2004-01-01

    The role of protein ubiquitylation in the control of diverse cellular pathways has recently gained widespread attention. Ubiquitylation not only directs the targeted destruction of tagged proteins by the 26 S proteasome, but it also modulates protein activities, protein-protein interactions and subcellular localization. An understanding of the components involved in protein ubiquitylation (E1s, E2s and E3s) is essential to understand how specificity and regulation are conferred upon these pathways. Much of what we know about the catalytic mechanisms of protein ubiquitylation comes from structural studies of the proteins involved in this process. Indeed, structures of ubiquitin-activating enzymes (E1s) and ubiquitin-conjugating enzymes (E2s) have provided insight into their mechanistic details. E3s (ubiquitin ligases) contain most of the substrate specificity and regulatory elements required for protein ubiquitylation. Although several E3 structures are available, the specific mechanistic role of E3s is still unclear. This review will discuss the different types of ubiquitin signals and how they are generated. Recent advances in the field of protein ubiquitylation will be examined, including the mechanisms of E1, E2 and E3. In particular, we discuss the complexity of molecular recognition required to impose selectivity on substrate selection and topology of poly-ubiquitin chains. PMID:14998368

  5. NMR spectroscopy of proteins encapsulated in a positively charged surfactant.

    PubMed

    Lefebvre, Brian G; Liu, Weixia; Peterson, Ronald W; Valentine, Kathleen G; Wand, A Joshua

    2005-07-01

    Traditionally, large proteins, aggregation-prone proteins, and membrane proteins have been difficult to examine by modern multinuclear and multidimensional solution NMR spectroscopy. A major limitation presented by these protein systems is that their slow molecular reorientation compromises many aspects of the more powerful solution NMR methods. Several approaches have emerged to deal with the various spectroscopic difficulties arising from slow molecular reorientation. One of these takes the approach of actively seeking to increase the effective rate of molecular reorientation by encapsulating the protein of interest within the protective shell of a reverse micelle and dissolving the resulting particle in a low viscosity fluid. Since the encapsulation is largely driven by electrostatic interactions, the preparation of samples of acidic proteins suitable for NMR spectroscopy has been problematic owing to the paucity of suitable cationic surfactants. Here, it is shown that the cationic surfactant CTAB may be used to prepare samples of encapsulated anionic proteins dissolved in low viscosity solvents. In a more subtle application, it is further shown that this surfactant can be employed to encapsulate a highly basic protein, which is completely denatured upon encapsulation using an anionic surfactant. PMID:15949753

  6. The Problem of False Positives in Protein Marking Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein marking is a valuable technique in the study of insect movement in agriculture. It can be implemented on a large scale and is relatively inexpensive to use. Unlike other marking techniques, protein marking is a quantitative method. Whether an individual is considered marked or not is dependa...

  7. Positive effects of duckweed polycultures on starch and protein accumulation.

    PubMed

    Li, Yang; Zhang, Fantao; Daroch, Maurycy; Tang, Jie

    2016-10-01

    The effect of duckweed species composition (Lemna aequinoctialis 5505, Landoltia punctata 5506 and Spirodela polyrhiza 5507) in polyculture and monoculture on biomass and starch/protein content were investigated at different levels of temperature, light intensity, nitrogen and phosphorus concentrations. The three growth parameters significantly affect duckweed biomass accumulation. Different combinations of duckweed species greatly varied in starch/protein content. Although all the polycultures showed a median relative growth rate and the majority of the polycultures showed a median and starch/protein content as compared with their respective monocultures, some of the polycultures were found to promote the accumulation of starch/protein at different growth conditions. These findings indicated that proper combination of duckweed species could facilitate desirable biomass accumulation and improve biomass quality. The present study provides useful references for future large-scale duckweed cultivation. PMID:27515418

  8. Positive effects of duckweed polycultures on starch and protein accumulation.

    PubMed

    Li, Yang; Zhang, Fantao; Daroch, Maurycy; Tang, Jie

    2016-10-01

    The effect of duckweed species composition (Lemna aequinoctialis 5505, Landoltia punctata 5506 and Spirodela polyrhiza 5507) in polyculture and monoculture on biomass and starch/protein content were investigated at different levels of temperature, light intensity, nitrogen and phosphorus concentrations. The three growth parameters significantly affect duckweed biomass accumulation. Different combinations of duckweed species greatly varied in starch/protein content. Although all the polycultures showed a median relative growth rate and the majority of the polycultures showed a median and starch/protein content as compared with their respective monocultures, some of the polycultures were found to promote the accumulation of starch/protein at different growth conditions. These findings indicated that proper combination of duckweed species could facilitate desirable biomass accumulation and improve biomass quality. The present study provides useful references for future large-scale duckweed cultivation.

  9. Positive effects of duckweed polycultures on starch and protein accumulation

    PubMed Central

    Li, Yang; Zhang, Fantao; Daroch, Maurycy; Tang, Jie

    2016-01-01

    The effect of duckweed species composition (Lemna aequinoctialis 5505, Landoltia punctata 5506 and Spirodela polyrhiza 5507) in polyculture and monoculture on biomass and starch/protein content were investigated at different levels of temperature, light intensity, nitrogen and phosphorus concentrations. The three growth parameters significantly affect duckweed biomass accumulation. Different combinations of duckweed species greatly varied in starch/protein content. Although all the polycultures showed a median relative growth rate and the majority of the polycultures showed a median and starch/protein content as compared with their respective monocultures, some of the polycultures were found to promote the accumulation of starch/protein at different growth conditions. These findings indicated that proper combination of duckweed species could facilitate desirable biomass accumulation and improve biomass quality. The present study provides useful references for future large-scale duckweed cultivation. PMID:27515418

  10. Hsp70 protein positively regulates rabies virus infection.

    PubMed

    Lahaye, Xavier; Vidy, Aurore; Fouquet, Baptiste; Blondel, Danielle

    2012-05-01

    The Hsp70 chaperone plays a central role in multiple processes within cells, including protein translation, folding, intracellular trafficking, and degradation. This protein is implicated in the replication of numerous viruses. We have shown that rabies virus infection induced the cellular expression of Hsp70, which accumulated in Negri body-like structures, where viral transcription and replication take place. In addition, Hsp70 is present in both nucleocapsids purified from infected cells and in purified virions. Hsp70 has been shown to interact with the nucleoprotein N. The downregulation of Hsp70, using specific chaperone inhibitors, such as quercetin or RNA interference, resulted in a significant decrease of the amount of viral mRNAs, viral proteins, and virus particles. These results indicate that Hsp70 has a proviral function during rabies virus infection and suggest that Hsp70 is involved in at least one stage(s) of the viral life cycle, such as viral transcription, translation, and/or production. The mechanism by which Hsp70 controls viral infection will be discussed.

  11. Continuum electrostatic approach for evaluating positions and interactions of proteins in a bilayer membrane.

    PubMed

    Supunyabut, Chirayut; Fuklang, Sunit; Sompornpisut, Pornthep

    2015-06-01

    Orientations of proteins in the membranes are crucial to their function and stability. Unfortunately the exact positions of these proteins in the lipid bilayer are mostly undetermined. Here, the spatial orientation of membrane proteins within the lipid membrane was evaluated using a Poisson-Boltzmann solvent continuum approach to calculate the electrostatic free energy of the protein solvation at various orientations in an implicit bilayer. The solvation energy was obtained by computing the difference in electrostatic energies of the protein in water and in lipid/water environments, treating each as an implicit solvent model. The optimal position of transmembrane proteins (TMP) in a lipid bilayer is identified by the minimum in the "downhill" pathway of the solvation energy landscape. The energy landscape pattern was considerably conserved in various TMP classes. Evaluation of the position of 1060 membrane proteins from the orientations of proteins in membranes (OPM) database revealed that most of the polytopic and β-barrel proteins were in good agreement with those of the OPM database. The study provides a useful scheme for estimating the membrane solvation energy made by lipid-exposed amino acids in membrane proteins. In addition, our results tested with the bacterial potassium channel model demonstrated the potential usefulness of the approach in assessing the quality of membrane protein models. The present approach should be applicable for constructing transmembrane proteins-lipid configuration suitable for membrane protein simulations and will have utility for the structural modeling of membrane proteins. PMID:25912455

  12. Positive modulation of RNA polymerase III transcription by ribosomal proteins

    SciTech Connect

    Dieci, Giorgio; Carpentieri, Andrea; Amoresano, Angela; Ottonello, Simone

    2009-02-06

    A yeast nuclear fraction of unknown composition, named TFIIIE, was reported previously to enhance transcription of tRNA and 5S rRNA genes in vitro. We show that TFIIIE activity co-purifies with a specific subset of ribosomal proteins (RPs) which, as revealed by chromatin immunoprecipitation analysis, generally interact with tRNA and 5S rRNA genes, but not with a Pol II-specific promoter. Only Rpl6Ap and Rpl6Bp, among the tested RPs, were found associated to a TATA-containing tRNA{sup Ile}(TAT) gene. The RPL6A gene also emerged as a strong multicopy suppressor of a conditional mutation in the basal transcription factor TFIIIC, while RPL26A and RPL14A behaved as weak suppressors. The data delineate a novel extra-ribosomal role for one or a few RPs which, by influencing 5S rRNA and tRNA synthesis, could play a key role in the coordinate regulation of the different sub-pathways required for ribosome biogenesis and functionality.

  13. Positive feedback of protein kinase C proteolytic activation during apoptosis.

    PubMed Central

    Leverrier, Sabrina; Vallentin, Alice; Joubert, Dominique

    2002-01-01

    In contrast with protein kinase Calpha (PKCalpha) and PKCepsilon, which are better known for promoting cell survival, PKCdelta is known for its pro-apoptotic function, which is exerted mainly through a caspase-3-dependent proteolytic activation pathway. In the present study, we used the rat GH3B6 pituitary adenoma cell line to show that PKCalpha and PKCepsilon are activated and relocalized together with PKCdelta when apoptosis is induced by a genotoxic stress. Proteolytic activation is a crucial step used by the three isoforms since: (1) the catalytic domains of the PKCalpha, PKCepsilon or PKCdelta isoforms (CDalpha, CDepsilon and CDdelta respectively) accumulated, and this accumulation was dependent on the activity of both calpain and caspase; and (2) transient expression of CDalpha, CDepsilon or CDdelta sufficed to induce apoptosis. However, following this initial step of proteolytic activation, the pathways diverge; cytochrome c release and caspase-3 activation are induced by CDepsilon and CDdelta, but not by CDalpha. Another interesting finding of the present study is the proteolysis of PKCdelta induced by CDepsilon expression that revealed the existence of a cross-talk between PKC isoforms during apoptosis. Hence the PKC family may participate in the apoptotic process of pituitary adenoma cells at two levels: downstream of caspase and calpain, and via retro-activation of caspase-3, resulting in the amplification of its own proteolytic activation. PMID:12238950

  14. Dynamical view of the positions of key side chains in protein-protein recognition.

    PubMed Central

    Kimura, S R; Brower, R C; Vajda, S; Camacho, C J

    2001-01-01

    When a complex is constructed from the separately determined rigid structures of a receptor and its ligand, some key side chains are usually in wrong positions. These distortions of the interface yield an apparent loss in affinity and would unfavorably affect the kinetics of association. It is generally assumed that the interacting proteins should drive the appropriate conformational changes, leading to their complementarity, but this hypothesis does not explain their fast association rates. However, nanosecond explicit solvent molecular dynamics simulations of misfolded surface side chains from the independently solved structures of barstar, bovine pancreatic trypsin inhibitor, and lysozyme show that even before any receptor-ligand interaction, key side chains frequently visit the rotamer conformations seen in the complex. We show that these simple structural motifs can reconcile most of the binding affinity required for a rapid and highly specific association process. Side chains amenable to induced fit are also identified. These results corroborate that solvent-side chain interactions play a critical role in the recognition process. Our findings are also supported by crystallographic data. PMID:11159432

  15. The role of hydrophobic interactions in positioning of peripheral proteins in membranes

    PubMed Central

    Lomize, Andrei L; Pogozheva, Irina D; Lomize, Mikhail A; Mosberg, Henry I

    2007-01-01

    Background Three-dimensional (3D) structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. Results We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM) database. Conclusion Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our results demonstrate that

  16. OPM database and PPM web server: resources for positioning of proteins in membranes

    PubMed Central

    Lomize, Mikhail A.; Pogozheva, Irina D.; Joo, Hyeon; Mosberg, Henry I.; Lomize, Andrei L.

    2012-01-01

    The Orientations of Proteins in Membranes (OPM) database is a curated web resource that provides spatial positions of membrane-bound peptides and proteins of known three-dimensional structure in the lipid bilayer, together with their structural classification, topology and intracellular localization. OPM currently contains more than 1200 transmembrane and peripheral proteins and peptides from approximately 350 organisms that represent approximately 3800 Protein Data Bank entries. Proteins are classified into classes, superfamilies and families and assigned to 21 distinct membrane types. Spatial positions of proteins with respect to the lipid bilayer are optimized by the PPM 2.0 method that accounts for the hydrophobic, hydrogen bonding and electrostatic interactions of the proteins with the anisotropic water-lipid environment described by the dielectric constant and hydrogen-bonding profiles. The OPM database is freely accessible at http://opm.phar.umich.edu. Data can be sorted, searched or retrieved using the hierarchical classification, source organism, localization in different types of membranes. The database offers downloadable coordinates of proteins and peptides with membrane boundaries. A gallery of protein images and several visualization tools are provided. The database is supplemented by the PPM server (http://opm.phar.umich.edu/server.php) which can be used for calculating spatial positions in membranes of newly determined proteins structures or theoretical models. PMID:21890895

  17. Effects of positively charged redox molecules on disulfide-coupled protein folding.

    PubMed

    Okumura, Masaki; Shimamoto, Shigeru; Nakanishi, Takeyoshi; Yoshida, Yu-ichiro; Konogami, Tadafumi; Maeda, Shogo; Hidaka, Yuji

    2012-11-01

    In vitro folding of disulfide-containing proteins is generally regulated by redox molecules, such as glutathione. However, the role of the cross-disulfide-linked species formed between the redox molecule and the protein as a folding intermediate in the folding mechanism is poorly understood. In the present study, we investigated the effect of the charge on a redox molecule on disulfide-coupled protein folding. Several types of aliphatic thiol compounds including glutathione were examined for the folding of disulfide-containing-proteins, such as lysozyme and prouroguanylin. The results indicate that the positive charge and its dispersion play a critical role in accelerating disulfide-coupled protein folding.

  18. Endogenous biotin-binding proteins: an overlooked factor causing false positives in streptavidin-based protein detection

    PubMed Central

    Tytgat, Hanne L P; Schoofs, Geert; Driesen, Michèle; Proost, Paul; Van Damme, Els J M; Vanderleyden, Jos; Lebeer, Sarah

    2015-01-01

    Biotinylation is widely used in DNA, RNA and protein probing assays as this molecule has generally no impact on the biological activity of its substrate. During the streptavidin-based detection of glycoproteins in Lactobacillus rhamnosus GG with biotinylated lectin probes, a strong positive band of approximately 125 kDa was observed, present in different cellular fractions. This potential glycoprotein reacted heavily with concanavalin A (ConA), a lectin that specifically binds glucose and mannose residues. Surprisingly, this protein of 125 kDa could not be purified using a ConA affinity column. Edman degradation of the protein, isolated via cation and anion exchange chromatography, lead to the identification of the band as pyruvate carboxylase, an enzyme of 125 kDa that binds biotin as a cofactor. Detection using only the streptavidin conjugate resulted in more false positive signals of proteins, also in extracellular fractions, indicating biotin-associated proteins. Indeed, biotin is a known cofactor of numerous carboxylases. The potential occurence of false positive bands with biotinylated protein probes should thus be considered when using streptavidin-based detection, e.g. by developing a blot using only the streptavidin conjugate. To circumvent these false positives, alternative approaches like detection based on digoxigenin labelling can also be used. PMID:25211245

  19. [The genetic polymorphism of the blood proteins in RID-positive reacting cows].

    PubMed

    Kivan, M

    1991-01-01

    Cattle herd of Black-and-White, Red and Simmental breeds having positive or negative RID-reaction to leucosis was studied as to the polymorphism of serum blood proteins in three loci: Tf, Am and Cp. One system of polymorphic proteins has been determined as having a higher concentration of homozygotes (Tf) and another one as having a higher concentration of heterozygotes (Am) within one and the same herd among animals with the positive RID-reaction. PMID:1796504

  20. Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology.

    PubMed

    Elazar, Assaf; Weinstein, Jonathan Jacob; Prilusky, Jaime; Fleishman, Sarel Jacob

    2016-09-13

    The energetics of membrane-protein interactions determine protein topology and structure: hydrophobicity drives the insertion of helical segments into the membrane, and positive charges orient the protein with respect to the membrane plane according to the positive-inside rule. Until recently, however, quantifying these contributions met with difficulty, precluding systematic analysis of the energetic basis for membrane-protein topology. We recently developed the dsTβL method, which uses deep sequencing and in vitro selection of segments inserted into the bacterial plasma membrane to infer insertion-energy profiles for each amino acid residue across the membrane, and quantified the insertion contribution from hydrophobicity and the positive-inside rule. Here, we present a topology-prediction algorithm called TopGraph, which is based on a sequence search for minimum dsTβL insertion energy. Whereas the average insertion energy assigned by previous experimental scales was positive (unfavorable), the average assigned by TopGraph in a nonredundant set is -6.9 kcal/mol. By quantifying contributions from both hydrophobicity and the positive-inside rule we further find that in about half of large membrane proteins polar segments are inserted into the membrane to position more positive charges in the cytoplasm, suggesting an interplay between these two energy contributions. Because membrane-embedded polar residues are crucial for substrate binding and conformational change, the results implicate the positive-inside rule in determining the architectures of membrane-protein functional sites. This insight may aid structure prediction, engineering, and design of membrane proteins. TopGraph is available online (topgraph.weizmann.ac.il). PMID:27562165

  1. Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology.

    PubMed

    Elazar, Assaf; Weinstein, Jonathan Jacob; Prilusky, Jaime; Fleishman, Sarel Jacob

    2016-09-13

    The energetics of membrane-protein interactions determine protein topology and structure: hydrophobicity drives the insertion of helical segments into the membrane, and positive charges orient the protein with respect to the membrane plane according to the positive-inside rule. Until recently, however, quantifying these contributions met with difficulty, precluding systematic analysis of the energetic basis for membrane-protein topology. We recently developed the dsTβL method, which uses deep sequencing and in vitro selection of segments inserted into the bacterial plasma membrane to infer insertion-energy profiles for each amino acid residue across the membrane, and quantified the insertion contribution from hydrophobicity and the positive-inside rule. Here, we present a topology-prediction algorithm called TopGraph, which is based on a sequence search for minimum dsTβL insertion energy. Whereas the average insertion energy assigned by previous experimental scales was positive (unfavorable), the average assigned by TopGraph in a nonredundant set is -6.9 kcal/mol. By quantifying contributions from both hydrophobicity and the positive-inside rule we further find that in about half of large membrane proteins polar segments are inserted into the membrane to position more positive charges in the cytoplasm, suggesting an interplay between these two energy contributions. Because membrane-embedded polar residues are crucial for substrate binding and conformational change, the results implicate the positive-inside rule in determining the architectures of membrane-protein functional sites. This insight may aid structure prediction, engineering, and design of membrane proteins. TopGraph is available online (topgraph.weizmann.ac.il).

  2. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans.

    PubMed

    Anné, Jozef; Vrancken, Kristof; Van Mellaert, Lieve; Van Impe, Jan; Bernaerts, Kristel

    2014-08-01

    Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  3. Membrane positioning for high- and low-resolution protein structures through a binary classification approach.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Guiraud, Vincent; Gelly, Jean-Christophe

    2016-03-01

    The critical importance of algorithms for orienting proteins in the lipid bilayer stems from the extreme difficulty in obtaining experimental data about the membrane boundaries. Here, we present a computational method for positioning protein structures in the membrane, based on the sole alpha carbon coordinates and, therefore, compatible with both high and low structural resolutions. Our algorithm follows a new and simple approach, by treating the membrane assignment problem as a binary classification. Compared with the state-of-the-art algorithms, our method achieves similar accuracy, while being faster. Finally, our open-source software is also capable of processing coarse-grained models of protein structures. PMID:26685702

  4. Interaction with the Yes-associated protein (YAP) allows TEAD1 to positively regulate NAIP expression.

    PubMed

    Landin Malt, André; Georges, Adrien; Silber, Joël; Zider, Alain; Flagiello, Domenico

    2013-10-01

    Although the expression of the neuronal apoptosis inhibitory protein (NAIP) gene is considered involved in apoptosis suppression as well as in inflammatory response, the molecular basis of the NAIP gene expression is poorly understood. Here we show that the TEA domain protein 1 (TEAD1) is able to positively activate the transcription of NAIP. We further demonstrate that this regulation is mediated by the presence of the endogenous Yes associated protein (YAP) cofactor, and requires the interaction with YAP. We finally identified an intronic region of the NAIP gene responding to TEAD1/YAP activity, suggesting that regulation of NAIP by TEAD1/YAP is at the transcriptional level. PMID:23994529

  5. Interaction with the Yes-associated protein (YAP) allows TEAD1 to positively regulate NAIP expression.

    PubMed

    Landin Malt, André; Georges, Adrien; Silber, Joël; Zider, Alain; Flagiello, Domenico

    2013-10-01

    Although the expression of the neuronal apoptosis inhibitory protein (NAIP) gene is considered involved in apoptosis suppression as well as in inflammatory response, the molecular basis of the NAIP gene expression is poorly understood. Here we show that the TEA domain protein 1 (TEAD1) is able to positively activate the transcription of NAIP. We further demonstrate that this regulation is mediated by the presence of the endogenous Yes associated protein (YAP) cofactor, and requires the interaction with YAP. We finally identified an intronic region of the NAIP gene responding to TEAD1/YAP activity, suggesting that regulation of NAIP by TEAD1/YAP is at the transcriptional level.

  6. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup.

    PubMed

    Beck, Emily A; Llopart, Ana

    2015-11-25

    Rapid evolution of centromeric satellite repeats is thought to cause compensatory amino acid evolution in interacting centromere-associated kinetochore proteins. Cid, a protein that mediates kinetochore/centromere interactions, displays particularly high amino acid turnover. Rapid evolution of both Cid and centromeric satellite repeats led us to hypothesize that the apparent compensatory evolution may extend to interacting partners in the Condensin I complex (i.e., SMC2, SMC4, Cap-H, Cap-D2, and Cap-G) and HP1s. Missense mutations in these proteins often result in improper centromere formation and aberrant chromosome segregation, thus selection for maintained function and coevolution among proteins of the complex is likely strong. Here, we report evidence of rapid evolution and recurrent positive selection in seven centromere-associated proteins in species of the Drosophila melanogaster subgroup, and further postulate that positive selection on these proteins could be a result of centromere drive and compensatory changes, with kinetochore proteins competing for optimal spindle attachment.

  7. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus.

    PubMed Central

    Laín, S; Riechmann, J L; García, J A

    1990-01-01

    Most positive strand RNA viruses infecting plants and animals encode proteins containing the so-called nucleotide binding motif (NTBM) (1) in their amino acid sequences (2). As suggested from the high level of sequence similarity of these viral proteins with the recently described superfamilies of helicase-like proteins (3-5), the NTBM-containing cylindrical inclusion (CI) protein from plum pox virus (PPV), which belongs to the potyvirus group of positive strand RNA viruses, is shown to be able to unwind RNA duplexes. This activity was found to be dependent on the hydrolysis of NTP to NDP and Pi, and thus it can be considered as an RNA helicase activity. In the in vitro assay used, the PPV CI protein was only able to unwind double strand RNA substrates with 3' single strand overhangs. This result indicates that the helicase activity of the PPV CI protein functions in the 3' to 5' direction (6). To our knowledge, this is the first report on a helicase activity associated with a protein encoded by an RNA virus. Images PMID:2263459

  8. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation

    PubMed Central

    Zhang, Hua; Song, Lei; Cong, Haolong

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5′ untranslated region (5′UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. IMPORTANCE The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection

  9. Positive Selection within a Diatom Species Acts on Putative Protein Interactions and Transcriptional Regulation

    PubMed Central

    Koester, Julie A.; Swanson, Willie J.; Armbrust, E. Virginia

    2013-01-01

    Diatoms are the most species-rich group of microalgae, and their contribution to marine primary production is important on a global scale. Diatoms can form dense blooms through rapid asexual reproduction; mutations acquired and propagated during blooms likely provide the genetic, and thus phenotypic, variability upon which natural selection may act. Positive selection was tested using genome and transcriptome-wide pair-wise comparisons of homologs in three genera of diatoms (Pseudo-nitzschia, Ditylum, and Thalassiosira) that represent decreasing phylogenetic distances. The signal of positive selection was greatest between two strains of Thalassiosira pseudonana. Further testing among seven strains of T. pseudonana yielded 809 candidate genes of positive selection, which are 7% of the protein-coding genes. Orphan genes and genes encoding protein-binding domains and transcriptional regulators were enriched within the set of positively selected genes relative to the genome as a whole. Positively selected genes were linked to the potential selective pressures of nutrient limitation and sea surface temperature based on analysis of gene expression profiles and identification of positively selected genes in subsets of strains from locations with similar environmental conditions. The identification of positively selected genes presents an opportunity to test new hypotheses in natural populations and the laboratory that integrate selected genotypes in T. pseudonana with their associated phenotypes and selective forces. PMID:23097498

  10. Positive selection within a diatom species acts on putative protein interactions and transcriptional regulation.

    PubMed

    Koester, Julie A; Swanson, Willie J; Armbrust, E Virginia

    2013-02-01

    Diatoms are the most species-rich group of microalgae, and their contribution to marine primary production is important on a global scale. Diatoms can form dense blooms through rapid asexual reproduction; mutations acquired and propagated during blooms likely provide the genetic, and thus phenotypic, variability upon which natural selection may act. Positive selection was tested using genome and transcriptome-wide pair-wise comparisons of homologs in three genera of diatoms (Pseudo-nitzschia, Ditylum, and Thalassiosira) that represent decreasing phylogenetic distances. The signal of positive selection was greatest between two strains of Thalassiosira pseudonana. Further testing among seven strains of T. pseudonana yielded 809 candidate genes of positive selection, which are 7% of the protein-coding genes. Orphan genes and genes encoding protein-binding domains and transcriptional regulators were enriched within the set of positively selected genes relative to the genome as a whole. Positively selected genes were linked to the potential selective pressures of nutrient limitation and sea surface temperature based on analysis of gene expression profiles and identification of positively selected genes in subsets of strains from locations with similar environmental conditions. The identification of positively selected genes presents an opportunity to test new hypotheses in natural populations and the laboratory that integrate selected genotypes in T. pseudonana with their associated phenotypes and selective forces. PMID:23097498

  11. Role of Positive Selection in Functional Divergence of Mammalian Neuronal Apoptosis Inhibitor Proteins during Evolution

    PubMed Central

    Kong, Fanzhi; Su, Zhaoliang; Zhou, Chenglin; Sun, Caixia; Liu, Yanfang; Zheng, Dong; Yuan, Hongyan; Yin, Jingping; Fang, Jie; Wang, Shengjun; Xu, Huaxi

    2011-01-01

    Neuronal apoptosis inhibitor proteins (NAIPs) are members of Nod-like receptor (NLR) protein family. Recent research demostrated that some NAIP genes were strongly associated with both innate immunity and many inflammatory diseases in humans. However, no similar phenomena have been reported in other mammals. Furthermore, some NAIP genes have undergone pseudogenization or have been lost during the evolution of some higher mammals. We therefore aimed to determine if functional divergence had occurred, and if natural selection had played an important role in the evolution of these genes. The results showed that NAIP genes have undergone pseudogenization and functional divergence, driven by positive selection. Positive selection has also influenced NAIP protein structure, resulting in further functional divergence. PMID:22131819

  12. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses.

    PubMed

    Sironi, Manuela; Forni, Diego; Clerici, Mario; Cagliani, Rachele

    2016-09-01

    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian

  13. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses

    PubMed Central

    Sironi, Manuela; Forni, Diego; Clerici, Mario; Cagliani, Rachele

    2016-01-01

    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian

  14. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses.

    PubMed

    Sironi, Manuela; Forni, Diego; Clerici, Mario; Cagliani, Rachele

    2016-09-01

    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian

  15. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1

    PubMed Central

    Ishikawa, Eri; Kosako, Hidetaka; Yasuda, Tomoharu; Ohmuraya, Masaki; Araki, Kimi; Kurosaki, Tomohiro; Saito, Takashi; Yamasaki, Sho

    2016-01-01

    Thymic selection shapes an appropriate T cell antigen receptor (TCR) repertoire during T cell development. Here, we show that a serine/threonine kinase, protein kinase D (PKD), is crucial for thymocyte positive selection. In T cell-specific PKD-deficient (PKD2/PKD3 double-deficient) mice, the generation of CD4 single positive thymocytes is abrogated. This defect is likely caused by attenuated TCR signalling during positive selection and incomplete CD4 lineage specification in PKD-deficient thymocytes; however, TCR-proximal tyrosine phosphorylation is not affected. PKD is activated in CD4+CD8+ double positive (DP) thymocytes on stimulation with positively selecting peptides. By phosphoproteomic analysis, we identify SH2-containing protein tyrosine phosphatase-1 (SHP-1) as a direct substrate of PKD. Substitution of wild-type SHP-1 by phosphorylation-defective mutant (SHP-1S557A) impairs generation of CD4+ thymocytes. These results suggest that the PKD–SHP-1 axis positively regulates TCR signalling to promote CD4+ T cell development. PMID:27670070

  16. Improving genome-wide scans of positive selection by using protein isoforms of similar length.

    PubMed

    Villanueva-Cañas, José Luis; Laurie, Steve; Albà, M Mar

    2013-01-01

    Large-scale evolutionary studies often require the automated construction of alignments of a large number of homologous gene families. The majority of eukaryotic genes can produce different transcripts due to alternative splicing or transcription initiation, and many such transcripts encode different protein isoforms. As analyses tend to be gene centered, one single-protein isoform per gene is selected for the alignment, with the de facto approach being to use the longest protein isoform per gene (Longest), presumably to avoid including partial sequences and to maximize sequence information. Here, we show that this approach is problematic because it increases the number of indels in the alignments due to the inclusion of nonhomologous regions, such as those derived from species-specific exons, increasing the number of misaligned positions. With the aim of ameliorating this problem, we have developed a novel heuristic, Protein ALignment Optimizer (PALO), which, for each gene family, selects the combination of protein isoforms that are most similar in length. We examine several evolutionary parameters inferred from alignments in which the only difference is the method used to select the protein isoform combination: Longest, PALO, the combination that results in the highest sequence conservation, and a randomly selected combination. We observe that Longest tends to overestimate both nonsynonymous and synonymous substitution rates when compared with PALO, which is most likely due to an excess of misaligned positions. The estimation of the fraction of genes that have experienced positive selection by maximum likelihood is very sensitive to the method of isoform selection employed, both when alignments are constructed with MAFFT and with Prank(+F). Longest performs better than a random combination but still estimates up to 3 times more positively selected genes than the combination showing the highest conservation, indicating the presence of many false positives. We show

  17. Changing preferences: deformation of single position amino acid fitness landscapes and evolution of proteins.

    PubMed

    Bazykin, Georgii A

    2015-10-01

    The fitness landscape-the function that relates genotypes to fitness-and its role in directing evolution are a central object of evolutionary biology. However, its huge dimensionality precludes understanding of even the basic aspects of its shape. One way to approach it is to ask a simpler question: what are the properties of a function that assigns fitness to each possible variant at just one particular site-a single position fitness landscape-and how does it change in the course of evolution? Analyses of genomic data from multiple species and multiple individuals within a species have proved beyond reasonable doubt that fitness functions of positions throughout the genome do themselves change with time, thus shaping protein evolution. Here, I will briefly review the literature that addresses these dynamics, focusing on recent genome-scale analyses of fitness functions of amino acid sites, i.e. vectors of fitnesses of 20 individual amino acid variants at a given position of a protein. The set of amino acids that confer high fitness at a particular position changes with time, and the rate of this change is comparable with the rate at which a position evolves, implying that this process plays a major role in evolutionary dynamics. However, the causes of these changes remain largely unclear.

  18. Changing preferences: deformation of single position amino acid fitness landscapes and evolution of proteins.

    PubMed

    Bazykin, Georgii A

    2015-10-01

    The fitness landscape-the function that relates genotypes to fitness-and its role in directing evolution are a central object of evolutionary biology. However, its huge dimensionality precludes understanding of even the basic aspects of its shape. One way to approach it is to ask a simpler question: what are the properties of a function that assigns fitness to each possible variant at just one particular site-a single position fitness landscape-and how does it change in the course of evolution? Analyses of genomic data from multiple species and multiple individuals within a species have proved beyond reasonable doubt that fitness functions of positions throughout the genome do themselves change with time, thus shaping protein evolution. Here, I will briefly review the literature that addresses these dynamics, focusing on recent genome-scale analyses of fitness functions of amino acid sites, i.e. vectors of fitnesses of 20 individual amino acid variants at a given position of a protein. The set of amino acids that confer high fitness at a particular position changes with time, and the rate of this change is comparable with the rate at which a position evolves, implying that this process plays a major role in evolutionary dynamics. However, the causes of these changes remain largely unclear. PMID:26445980

  19. Monolith disk chromatography separates PEGylated protein positional isoforms within minutes at low pressure.

    PubMed

    Isakari, Yu; Podgornik, Ales; Yoshimoto, Noriko; Yamamoto, Shuichi

    2016-01-01

    Although PEGylation makes proteins drugs more effective, the PEGylation reaction must be controlled carefully in order to obtain a desired PEGylated protein form since various different PEGylated forms may be produced during the reaction. For monitoring the PEGylation reaction, a method with monolith disk ion exchange chromatography, which can separate positional isomers as well as PEGmers, has been developed as a process analytical tool (PAT). The method was optimized for separation of randomly PEGylated protein (lysozyme) isoforms based on the number of resolved peaks, peak resolution, analysis time and pressure drop. In order to increase the retention of mono- and di-PEGylated protein isomers the mobile phase was decreased to pH 4.5, where a large number of mono- and di-PEGylated isomers were resolved within a few minutes. Based on the linear gradient elution optimization model, the following values were determined: gradient slope 0.016 M/mL, disk thickness 3 mm (single disk) and flow rate 10 mL/min. Under these optimal conditions, the analysis was completed within ca. 4 min while the pressure drop was below 1 MPa. As the method was successfully applied to monitoring mono and di-PEGylated positional isoforms in the reaction mixture of random PEGylation of lysozyme, it is expected to be an efficient PAT tool.

  20. A New Distributed Algorithm for Side-Chain Positioning in the Process of Protein Docking*

    PubMed Central

    Moghadasi, Mohammad; Kozakov, Dima; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.

    2014-01-01

    Side-chain positioning (SCP) is an important component of computational protein docking methods. Existing SCP methods and available software have been designed for protein folding applications where side-chain positioning is also important. As a result they do not take into account significant special structure that SCP for docking exhibits. We propose a new algorithm which poses SCP as a Maximum Weighted Independent Set (MWIS) problem on an appropriately constructed graph. We develop an approximate algorithm which solves a relaxation of the MWIS and then rounds the solution to obtain a high-quality feasible solution to the problem. The algorithm is fully distributed and can be executed on a large network of processing nodes requiring only local information and message-passing between neighboring nodes. Motivated by the special structure in docking, we establish optimality guarantees for a certain class of graphs. Our results on a benchmark set of enzyme-inhibitor protein complexes show that our predictions are close to the native structure and are comparable to the ones obtained by a state-of-the-art method. The results are substantially improved if rotamers from unbound protein structures are included in the search. We also establish that the use of our SCP algorithm substantially improves docking results. PMID:24844567

  1. Proteomic Analysis of Saliva in HIV-positive Heroin Addicts Reveals Proteins Correlated with Cognition

    SciTech Connect

    Dominy, Stephen; Brown, Joseph N.; Ryder, Mark I.; Gritsenko, Marina A.; Jacobs, Jon M.; Smith, Richard D.

    2014-04-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high despite effective antiretroviral therapies. Multiple etiologies have been proposed over the last few years to account for this phenomenon, including the neurotoxic effects of antiretrovirals and co-morbid substance abuse. However, no underlying molecular mechanism has been identified. Emerging evidence in several fields has linked the gut to brain diseases, but the effect of the gut on the brain during HIV infection has not been explored. Saliva is the most accessible gut biofluid, and is therefore of great scientific interest for diagnostic and prognostic purposes. This study presents a longitudinal, liquid chromatography-mass spectrometry-based quantitative proteomics study investigating saliva samples taken from 8 HIV-positive (HIV+) and 11 -negative (HIV-) heroin addicts. In the HIV+ group, 58 proteins were identified that show significant correlations with cognitive scores and that implicate disruption of protein quality control pathways by HIV. Notably, no proteins from the HIV- heroin addict cohort showed significant correlations with cognitive scores. In addition, the majority of correlated proteins have been shown to be associated with exosomes, allowing us to propose that the salivary glands and/or oral epithelium may modulate brain function during HIV infection through the release of discrete packets of proteins in the form of exosomes.

  2. Positive Lysosomal Modulation As a Unique Strategy to Treat Age-Related Protein Accumulation Diseases

    PubMed Central

    Wisniewski, Meagan L.; Butler, David

    2012-01-01

    Abstract Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ1–38 peptide corresponded with decreased levels of Aβ1–42, supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders

  3. Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations.

    PubMed

    Ul Ain, Qurrat; Lee, Jong Hwan; Woo, Young Sun; Kim, Yong-Hee

    2016-09-01

    Protein drugs have attracted considerable attention as therapeutic agents due to their diversity and biocompatibility. However, hydrophilic proteins possess difficulty in penetrating lipophilic cell membrane. Although protein transduction domains (PTDs) have shown effectiveness in protein delivery, the importance of selection and position of PTDs in recombinant protein vector constructs has not been investigated. This study intends to investigate the significance of PTD selection and position for therapeutic protein delivery. Heat shock protein 27 (Hsp27) would be a therapeutic protein for the treatment of ischemic heart diseases, but itself is insufficient to prevent systemic degradation and overcoming biochemical barriers during cellular transport. Among all PTD-Hsp27 fusion proteins we cloned, Tat-Hsp27 fusion protein showed the highest efficacy. Nona-arginine (9R) conjugation to the N-terminal of Hsp27 (Hsp27-T) showed higher efficacy than C-terminal. To test the synergistic effect of two PTDs, Tat was inserted to the N-terminal of Hsp27-9R. Tat-Hsp27-9R exhibited enhanced transduction efficiency and significant improvement against oxidative stress and apoptosis. PTD-Hsp27 fusion proteins have strong potential to be developed as therapeutic proteins for the treatment of ischemic heart diseases and selection and position of PTDs for improved efficacy of PTD-fusion proteins need to be optimized considering protein's nature, transduction efficiency and stability.

  4. Trace adsorption of positively charged proteins onto Sepharose FF and Sepharose FF-based anion exchangers.

    PubMed

    Yu, Lin-Ling; Sun, Yan

    2012-08-31

    Agarose-based matrices have been widely used in ion exchange chromatography (IEC). We have herein observed that positively charged proteins (lysozyme and cytochrome c) are adsorbed on the agarose-based anion-exchangers (Q and DEAE Sepharose FF gels) in a capacity of 10-40 μg/mL. In contrast, negatively charged protein (bovine serum albumin) is not adsorbed to Sepharose FF and SP Sepharose FF gels. Elemental analysis of the gel indicated that the residual anionic sulfate groups in agarose would have worked as the cation exchange groups for the positively charged proteins. The trace adsorption behavior of lysozyme onto Sepharose FF and Sepharose FF-based anion exchangers was studied and the effects of NaCl concentration and cation group density on the adsorption were examined for better understanding of the trace adsorption in chromatographic processes. At NaCl concentrations less than 0.05 mol/L, which is the normal adsorption condition in IEC, the trace adsorption kept at a high level, so this trace adsorption cannot be avoided in the ionic strength range of routine IEC operations. Grafting poly(ethylenimine) (PEI) chain of 60 kDa to a cation group density of 700 mmol/L could reduce the adsorption capacity to about 20 μg/mL, but further reduction was not possible by increasing the cation group density to 1200 mmol/L. Therefore, attentions need to be paid to the phenomenon in protein purification practice using agarose-based matrices. The research is expected to call attentions to the trace adsorption on agarose-based matrices and to the importance in the selection of the suitable solid matrices in the production of high-purity protein products in large-scale bioprocesses.

  5. The value of position-specific scoring matrices for assessment of protein allegenicity

    PubMed Central

    Lim, Shen Jean; Tong, Joo Chuan; Chew, Fook Tim; Tammi, Martti T

    2008-01-01

    Background Bioinformatics tools are commonly used for assessing potential protein allergenicity. While these methods have achieved good accuracies for highly conserved sequences, they are less effective when the overall similarity is low. In this study, we assessed the feasibility of using position-specific scoring matrices as a basis for predicting potential allergenicity in proteins. Results Two simple methods for predicting potential allergenicity in proteins, based on general and group-specific allergen profiles, are presented. Testing results indicate that the performances of both methods are comparable to the best results of other methods. The group-specific profile approach, with a sensitivity of 84.04% and specificity of 96.52%, gives similar results as those obtained using the general profile approach (sensitivity = 82.45%, specificity = 96.92%). Conclusion We show that position-specific scoring matrices are highly promising for constructing computational models suitable for allergenicity assessment. These data suggest it may be possible to apply a targeted approach for allergenicity assessment based on the profiles of allergens of interest. PMID:19091021

  6. Ex vivo complement protein adsorption on positively and negatively charged cellulose dialyser membranes.

    PubMed

    Mahiout, A; Matata, B M; Vienken, J; Courtney, J M

    1997-05-01

    An ex vivo test system was used to measure complement protein C3 and factor B adsorption onto small dialyser modules made from regenerated and modified cellulosic hollow fibre membranes in which positive diethylaminoethyl (DEAE) or negative carboxymethyl (CM) groups were introduced into the cellulose matrix. The extracorporeal system, which included test-dialysers and the dialysis environment, allowed the use of labelled proteins without contaminating the blood donors which were connected in an open-loop fashion to the extracorporeal test system. The modules were removed at selected time points from the extracorporeal system for radioactivity counting. The results were used to evaluate the mechanisms involved in complement reactions to foreign surfaces. The system therefore allowed the analysis of complement protein adsorption occurring in the dialyser modules and its relationship to the complement generation rate in the extracorporeal system to be evaluated. It was possible to demonstrate that significant complement C3 and factor B adsorption occurred in the test modules made of cellulosic membranes. Complement adsorption as a function of the pH and the release reaction of the adsorbed C3 and factor B after membrane blood perfusion were therefore found to be variable according to the cellulosic membrane type and the presence of positive or negative charged groups within the cellulose matrix. The data obtained from the ex vivo model therefore provided additional evidence on the discussion of the mechanisms involved in the increased complement activation by regenerated cellulose and in its attenuation by DEAE- or CM-modified cellulose.

  7. Computationally predicting protein-RNA interactions using only positive and unlabeled examples.

    PubMed

    Cheng, Zhanzhan; Zhou, Shuigeng; Guan, Jihong

    2015-06-01

    Protein-RNA interactions (PRIs) are considerably important in a wide variety of cellular processes, ranging from transcriptional and post-transcriptional regulations of gene expression to the active defense of host against virus. With the development of high throughput technology, large amounts of PRI information is available for computationally predicting unknown PRIs. In recent years, a number of computational methods for predicting PRIs have been developed in the literature, which usually artificially construct negative samples based on verified nonredundant datasets of PRIs to train classifiers. However, such negative samples are not real negative samples, some even may be unknown positive samples. Consequently, the classifiers trained with such training datasets cannot achieve satisfactory prediction performance. In this paper, we propose a novel method PRIPU that employs biased-support vector machine (SVM) for predicting Protein-RNA Interactions using only Positive and Unlabeled examples. To the best of our knowledge, this is the first work that predicts PRIs using only positive and unlabeled samples. We first collect known PRIs as our benchmark datasets and extract sequence-based features to represent each PRI. To reduce the dimension of feature vectors for lowering computational cost, we select a subset of features by a filter-based feature selection method. Then, biased-SVM is employed to train prediction models with different PRI datasets. To evaluate the new method, we also propose a new performance measure called explicit positive recall (EPR), which is specifically suitable for the task of learning positive and unlabeled data. Experimental results over three datasets show that our method not only outperforms four existing methods, but also is able to predict unknown PRIs. Source code, datasets and related documents of PRIPU are available at: http://admis.fudan.edu.cn/projects/pripu.htm . PMID:25790785

  8. Nano-Positioning System for Structural Analysis of Functional Homomeric Proteins in Multiple Conformations

    PubMed Central

    Hyde, H. Clark; Sandtner, Walter; Vargas, Ernesto; Dagcan, Alper; Robertson, Janice L.; Roux, Benoit; Correa, Ana M.; Bezanilla, Francisco

    2012-01-01

    SUMMARY Proteins may undergo multiple conformational changes required for their function. One strategy used to estimate target site positions in unknown structural conformations involves single-pair resonance energy transfer (RET) distance measurements. However, interpretation of inter-residue distances is difficult when applied to three-dimensional structural rearrangements, especially in homomeric systems. We developed a novel method using inverse trilateration/triangulation to map target sites within a homomeric protein in all defined states with simultaneous functional recordings. The procedure accounts for probe diffusion to accurately determine the three-dimensional position and confidence region of lanthanide LRET donors attached to a target site (one/subunit), relative to a single fluorescent acceptor placed in a static site. As a first application, the method is used to determine the position of a functional voltage-gated potassium channel’s voltage sensor. Our results verify the crystal structure relaxed conformation and report on the resting and active conformations for which crystal structures are not available. PMID:23063010

  9. A heparin-mimicking reverse thermal gel for controlled delivery of positively charged proteins

    PubMed Central

    Peña, Brisa; Shandas, Robin; Park, Daewon

    2014-01-01

    Positively charged therapeutic proteins have been used extensively for biomedical applications. However, the safety and efficacy of proteins are mostly limited by their physical and chemical instability and short half-lives in physiological conditions. To this end, we created a heparin-mimicking sulfonated reverse thermal gel as a novel protein delivery system by sulfonation of a graft copolymer, poly(serinol hexamethylene urea)-co-poly(N-isopropylacylamide), or PSHU-NIPAAm. The net charge of the sulfonated PSHU-NIPAAm was negative due to the presence of sulfonate groups. The sulfonated PSHU-NIPAAm showed a typical temperature-dependent sol-gel phase transition, where polymer solutions turned to a physical gel at around 32°C and maintained gel status at body temperature. Both in vitro cytotoxicity tests using C2C12 myoblast cells and in vivo cytotoxicity tests by subcutaneous injections demonstrated excellent biocompatibility. In vitro release tests using bovine serum albumin (BSA) revealed that the release from the sulfonated PSHU-NIPAAm was more sustained than that from the plain PSHU-NIPAAm. Furthermore, this sulfonated PSHU-NIPAAm system did not affect protein structure after 70-day observation periods. PMID:25294242

  10. A fast- and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy.

    PubMed

    Tiwari, Dhermendra K; Arai, Yoshiyuki; Yamanaka, Masahito; Matsuda, Tomoki; Agetsuma, Masakazu; Nakano, Masahiro; Fujita, Katsumasa; Nagai, Takeharu

    2015-06-01

    Fluorescence nanoscopy has revolutionized our ability to visualize biological structures not resolvable by conventional microscopy. However, photodamage induced by intense light exposure has limited its use in live specimens. Here we describe Kohinoor, a fast-switching, positively photoswitchable fluorescent protein, and show that it has high photostability over many switching repeats. With Kohinoor, we achieved super-resolution imaging of live HeLa cells using biocompatible, ultralow laser intensity (0.004 J/cm(2)) in reversible saturable optical fluorescence transition (RESOLFT) nanoscopy.

  11. Robust, tunable genetic memory from protein sequestration combined with positive feedback

    PubMed Central

    Shopera, Tatenda; Henson, William R.; Ng, Andrew; Lee, Young Je; Ng, Kenneth; Moon, Tae Seok

    2015-01-01

    Natural regulatory networks contain many interacting components that allow for fine-tuning of switching and memory properties. Building simple bistable switches, synthetic biologists have learned the design principles of complex natural regulatory networks. However, most switches constructed so far are so simple (e.g. comprising two regulators) that they are functional only within a limited parameter range. Here, we report the construction of robust, tunable bistable switches in Escherichia coli using three heterologous protein regulators (ExsADC) that are sequestered into an inactive complex through a partner swapping mechanism. On the basis of mathematical modeling, we accurately predict and experimentally verify that the hysteretic region can be fine-tuned by controlling the interactions of the ExsADC regulatory cascade using the third member ExsC as a tuning knob. Additionally, we confirm that a dual-positive feedback switch can markedly increase the hysteretic region, compared to its single-positive feedback counterpart. The dual-positive feedback switch displays bistability over a 106-fold range of inducer concentrations, to our knowledge, the largest range reported so far. This work demonstrates the successful interlocking of sequestration-based ultrasensitivity and positive feedback, a design principle that can be applied to the construction of robust, tunable, and predictable genetic programs to achieve increasingly sophisticated biological behaviors. PMID:26384562

  12. Positive Selection Pressure Drives Variation on the Surface-Exposed Variable Proteins of the Pathogenic Neisseria

    PubMed Central

    Hill, Stuart

    2016-01-01

    Pathogenic species of Neisseria utilize variable outer membrane proteins to facilitate infection and proliferation within the human host. However, the mechanisms behind the evolution of these variable alleles remain largely unknown due to analysis of previously limited datasets. In this study, we have expanded upon the previous analyses to substantially increase the number of analyzed sequences by including multiple diverse strains, from various geographic locations, to determine whether positive selective pressure is exerted on the evolution of these variable genes. Although Neisseria are naturally competent, this analysis indicates that only intrastrain horizontal gene transfer among the pathogenic Neisseria principally account for these genes exhibiting linkage equilibrium which drives the polymorphisms evidenced within these alleles. As the majority of polymorphisms occur across species, the divergence of these variable genes is dependent upon the species and is independent of geographical location, disease severity, or serogroup. Tests of neutrality were able to detect strong selection pressures acting upon both the opa and pil gene families, and were able to locate the majority of these sites within the exposed variable regions of the encoded proteins. Evidence of positive selection acting upon the hypervariable domains of Opa contradicts previous beliefs and provides evidence for selection of receptor binding. As the pathogenic Neisseria reside exclusively within the human host, the strong selection pressures acting upon both the opa and pil gene families provide support for host immune system pressure driving sequence polymorphisms within these variable genes. PMID:27532335

  13. The first evidence of positive selection in peptidoglycan recognition protein (PGRP) genes of Crassostrea gigas.

    PubMed

    Zhang, Yang; Yu, Ziniu

    2013-05-01

    The oyster Crassostrea gigas is thought to have developed effective immunity to potentially harmful pathogens while under continuous exposure to marine microorganisms; however, the evolutionary mechanisms by which such immunity developed has not been understood. To understand the evolution of immunity, we characterized the family of peptidoglycan recognition proteins in the oyster (CgPGRPs). These proteins are crucial pattern recognition receptors for peptidoglycans (PGNs) and thereby, for activating the innate immune response of host. Herein, we identify seven new CgPGRP genes. Phylogenetic analysis of the seven new and five previously reported CgPRGP genes reveals that the CgPRGP gene family can be clustered into two groups, CgPRGPS and CgPRGPL. Moreover, the CgPRGPS group can be further divided into five subgroups. A codon-substitution model and three likelihood ratio tests (LRTs) suggest that seven sites in the CgPGRP family of genes have been subjected to strong positive selection (ω = 3.035-4.143), Three dimensional modeling revealed that these sites are found primarily at the periphery of coils and α-helices rather than in β-strands, perhaps allowing PGRP to adapt to, and recognize, variability of PGN structure. In conclusion, our studies provide the first evidence of positive Darwinian selection in the CgPGRP family, contributing to a better understanding of the adaptive mechanism of host-pathogens interaction in marine mollusks.

  14. The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase.

    PubMed Central

    Luke, M M; Della Seta, F; Di Como, C J; Sugimoto, H; Kobayashi, R; Arndt, K T

    1996-01-01

    SIT4 is the catalytic subunit of a type 2A-related protein phosphatase in Saccharomyces cerevisiae that is required for G1 cyclin transcription and for bud formation. SIT4 associates with several high-molecular-mass proteins in a cell cycle-dependent fashion. We purified two SIT4-associated proteins, SAP155 and SAP190, and cloned the corresponding genes. By sequence homology, we isolated two additional SAP genes, SAP185 and SAP4. Through such an association is not yet proven for SAP4, each of SAP155, SAP185, and SAP190 physically associates with SIT4 in separate complexes. The SAPs function positively with SIT4, and by several criteria, the loss of all four SAPs is equivalent to the loss of SIT4. The data suggest that the SAPs are not functional in the absence of SIT4 and likewise that SIT4 is not functional in the absence of the SAPs. The SAPs are hyperphoshorylated in cells lacking SIT4, raising the possibility that the SAPs are substrates of SIT4. By sequence similarity, the SAPs fall into two groups, the SAP4/SAP155 group and the SAP185/SAP190 group. Overexpression of a SAP from one group does not suppress the defects due to the loss of the other group. These findings and others indicate that the SAPs have distinct functions. PMID:8649382

  15. Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling.

    PubMed Central

    Yamauchi, K; Milarski, K L; Saltiel, A R; Pessin, J E

    1995-01-01

    SHPTP2 is a ubiquitously expressed tyrosine-specific protein phosphatase that contains two amino-terminal Src homology 2 (SH2) domains responsible for its association with tyrosine-phosphorylated proteins. In this study, expression of dominant interfering mutants of SHPTP2 was found to inhibit insulin stimulation of c-fos reporter gene expression and activation of the 42-kDa (Erk2) and 44-kDa (Erk1) mitogen-activated protein kinases. Cotransfection of dominant interfering SHPTP2 mutants with v-Ras or Grb2 indicated that SHPTP2 regulated insulin signaling either upstream of or in parallel to Ras function. Furthermore, phosphotyrosine blotting and immunoprecipitation identified the 125-kDa focal adhesion kinase (pp125FAK) as a substrate for insulin-dependent tyrosine dephosphorylation. These data demonstrate that SHPTP2 functions as a positive regulator of insulin action and that insulin signaling results in the dephosphorylation of tyrosine-phosphorylated pp125FAK. Images Fig. 2 Fig. 4 Fig. 5 PMID:7531337

  16. Positive and negative regulation of adenovirus infection by CAR-like soluble protein, CLSP.

    PubMed

    Kawabata, K; Tashiro, K; Sakurai, F; Osada, N; Kusuda, J; Hayakawa, T; Yamanishi, K; Mizuguchi, H

    2007-08-01

    Coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin (Ig) superfamily and a component of epithelial tight junction. CAR also functions as a primary receptor for coxsackievirus B and adenovirus (Ad) infection. In this study, we report the identification of a novel protein, CAR-like soluble protein (CLSP), which is closely related to CAR. Mouse CLSP (mCLSP) was composed of 390 amino acids, including three Ig domains, and showed strong homology to the IgV domain of CAR. Interestingly, mCLSP lacks a transmembrane domain, indicating that this is a soluble protein. mCLSP mRNA was detected primarily in the brain and ovary. When mCLSP cDNA was introduced into SK HEP-1 cells, which were known to be CAR positive and easily infected with Ad vector, the infection with Ad vector was severely inhibited. On the other hand, mCLSP promoted the infection with Ad vector in CAR-negative NIH3T3 cells. Furthermore, recombinant CLSP directly bound to Ad and inhibited the Ad vector-mediated transduction in SK HEP-1 cells. Computational analysis for a genome database showed that the CLSP gene is rodent-specific, and that human and bovine lack this gene. These results suggest that CLSP may play a role in the antiviral defense of the host in rodent animals.

  17. G protein-coupled receptor kinase 2 positively regulates epithelial cell migration

    PubMed Central

    Penela, Petronila; Ribas, Catalina; Aymerich, Ivette; Eijkelkamp, Niels; Barreiro, Olga; Heijnen, Cobi J; Kavelaars, Annemieke; Sánchez-Madrid, Francisco; Mayor, Federico

    2008-01-01

    Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration. PMID:18369319

  18. Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties.

    PubMed

    Neuwald, Andrew F; Altschul, Stephen F

    2016-05-01

    We describe a Bayesian Markov chain Monte Carlo (MCMC) sampler for protein multiple sequence alignment (MSA) that, as implemented in the program GISMO and applied to large numbers of diverse sequences, is more accurate than the popular MSA programs MUSCLE, MAFFT, Clustal-Ω and Kalign. Features of GISMO central to its performance are: (i) It employs a "top-down" strategy with a favorable asymptotic time complexity that first identifies regions generally shared by all the input sequences, and then realigns closely related subgroups in tandem. (ii) It infers position-specific gap penalties that favor insertions or deletions (indels) within each sequence at alignment positions in which indels are invoked in other sequences. This favors the placement of insertions between conserved blocks, which can be understood as making up the proteins' structural core. (iii) It uses a Bayesian statistical measure of alignment quality based on the minimum description length principle and on Dirichlet mixture priors. Consequently, GISMO aligns sequence regions only when statistically justified. This is unlike methods based on the ad hoc, but widely used, sum-of-the-pairs scoring system, which will align random sequences. (iv) It defines a system for exploring alignment space that provides natural avenues for further experimentation through the development of new sampling strategies for more efficiently escaping from suboptimal traps. GISMO's superior performance is illustrated using 408 protein sets containing, on average, 235 sequences. These sets correspond to NCBI Conserved Domain Database alignments, which have been manually curated in the light of available crystal structures, and thus provide a means to assess alignment accuracy. GISMO fills a different niche than other MSA programs, namely identifying and aligning a conserved domain present within a large, diverse set of full length sequences. The GISMO program is available at http://gismo.igs.umaryland.edu/. PMID:27192614

  19. The polarity protein Pard3 is required for centrosome positioning during neurulation.

    PubMed

    Hong, Elim; Jayachandran, Pradeepa; Brewster, Rachel

    2010-05-15

    Microtubules are essential regulators of cell polarity, architecture and motility. The organization of the microtubule network is context-specific. In non-polarized cells, microtubules are anchored to the centrosome and form radial arrays. In most epithelial cells, microtubules are noncentrosomal, align along the apico-basal axis and the centrosome templates a cilium. It follows that cells undergoing mesenchyme-to-epithelium transitions must reorganize their microtubule network extensively, yet little is understood about how this process is orchestrated. In particular, the pathways regulating the apical positioning of the centrosome are unknown, a central question given the role of cilia in fluid propulsion, sensation and signaling. In zebrafish, neural progenitors undergo progressive epithelialization during neurulation, and thus provide a convenient in vivo cellular context in which to address this question. We demonstrate here that the microtubule cytoskeleton gradually transitions from a radial to linear organization during neurulation and that microtubules function in conjunction with the polarity protein Pard3 to mediate centrosome positioning. Pard3 depletion results in hydrocephalus, a defect often associated with abnormal cerebrospinal fluid flow that has been linked to cilia defects. These findings thus bring to focus cellular events occurring during neurulation and reveal novel molecular mechanisms implicated in centrosome positioning.

  20. Identification of efflux proteins using efficient radial basis function networks with position-specific scoring matrices and biochemical properties.

    PubMed

    Ou, Yu-Yen; Chen, Shu-An; Chang, Yun-Min; Velmurugan, Devadasan; Fukui, Kazuhiko; Michael Gromiha, M

    2013-09-01

    Efflux proteins are membrane proteins, which are involved in the transportation of multidrugs. The annotation of efflux proteins in genomic sequences would aid to understand the function. Although the percentage of membrane proteins in genomes is estimated to be 25-30%, there is no information about the content of efflux proteins. For annotating such class of proteins it is necessary to develop a reliable method to identify efflux proteins from amino acid sequence information. In this work, we have developed a method based on radial basis function networks using position specific scoring matrices (PSSM) and amino acid properties. We noticed that the C-terminal domain of efflux proteins contain vital information for discrimination. Our method showed an accuracy of 78 and 92% in discriminating efflux proteins from transporters and membrane proteins, respectively using fivefold cross-validation. We utilized our method for annotating the genomes E. coli and P. aeruginosa and it predicted 8.7 and 9.2% of proteins as efflux proteins in these genomes, respectively. The predicted efflux proteins have been compared with available experimental data and we observed a very good agreement between them. Further, we developed a web server for classifying efflux proteins and it is freely available at http://rbf.bioinfo.tw/∼sachen/EFFLUXpredict/Efflux-RBF.php. We suggest that our method could be an effective tool for annotating efflux proteins in genomic sequences.

  1. Extensive Positive Selection Drives the Evolution of Nonstructural Proteins in Lineage C Betacoronaviruses

    PubMed Central

    Cagliani, Rachele; Mozzi, Alessandra; Pozzoli, Uberto; Al-Daghri, Nasser; Clerici, Mario; Sironi, Manuela

    2016-01-01

    ABSTRACT Middle East respiratory syndrome-related coronavirus (MERS-CoV) spreads to humans via zoonotic transmission from camels. MERS-CoV belongs to lineage C of betacoronaviruses (betaCoVs), which also includes viruses isolated from bats and hedgehogs. A large portion of the betaCoV genome consists of two open reading frames (ORF1a and ORF1b) that are translated into polyproteins. These are cleaved by viral proteases to generate 16 nonstructural proteins (nsp1 to nsp16) which compose the viral replication-transcription complex. We investigated the evolution of ORF1a and ORF1b in lineage C betaCoVs. Results indicated widespread positive selection, acting mostly on ORF1a. The proportion of positively selected sites in ORF1a was much higher than that previously reported for the surface-exposed spike protein. Selected sites were unevenly distributed, with nsp3 representing the preferential target. Several pairs of coevolving sites were also detected, possibly indicating epistatic interactions; most of these were located in nsp3. Adaptive evolution at nsp3 is ongoing in MERS-CoV strains, and two selected sites (G720 and R911) were detected in the protease domain. While position 720 is variable in camel-derived viruses, suggesting that the selective event does not represent a specific adaptation to humans, the R911C substitution was observed only in human-derived MERS-CoV isolates, including the viral strain responsible for the recent South Korean outbreak. It will be extremely important to assess whether these changes affect host range or other viral phenotypes. More generally, data herein indicate that CoV nsp3 represents a major selection target and that nsp3 sequencing should be envisaged in monitoring programs and field surveys. IMPORTANCE Both severe acute respiratory syndrome coronavirus (SARS-CoV) and MERS-CoV originated in bats and spread to humans via an intermediate host. This clearly highlights the potential for coronavirus host shifting and the relevance

  2. Polymorphism in the M sub r 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes

    SciTech Connect

    Saboori, A.M.; Smith, B.L.; Agre, P. )

    1988-06-01

    A M{sub r} 32,000 integral membrane protein has previously been identified on erythrocytes bearing the Rh(D) antigen and is thought to contain the antigenic variations responsible for the different Rh phenotypes. To study it on a biochemical level, a simple large-scale method was developed to purify the M{sub r} 32,000 Rh protein from multiple units of Rh(D)-positive and -negative blood. Erythrocyte membrane vesicles were solubilized in NaDodSO{sub 4}, and a tracer of immunoprecipitated {sup 125}I surface-labeled Rh protein was added. The Rh protein was purified to homogeneity by hydroxylapatite chromatography followed by preparative NaDodSO{sub 4}/PAGE. Approximately 25 nmol of pure Rh protein was recovered from each unit of Rh(D)-positive and -negative blood. Rh protein purified from both Rh phenotypes appeared similar by one-dimensional NaDodSO{sub 4}/PAGE, and the N-terminal amino acid sequences for the first 20 residues were identical. Rh proteins purified from Rh(D)-positive and -negative blood were compared by two-dimensional iodopeptide mapping after {sup 125}I-labeling and {alpha}-chymotrypsin digestion. The peptide maps were very similar. These data indicate that a similar core Rh protein exists in both Rh(D)-positive and -negative erythrocytes, and the Rh proteins from erythrocytes with different Rh phenotypes contain distinct structural polymorphisms.

  3. OsMADS32 interacts with PI-like proteins and regulates rice flower development.

    PubMed

    Wang, Huanhuan; Zhang, Liang; Cai, Qiang; Hu, Yun; Jin, Zhenming; Zhao, Xiangxiang; Fan, Wei; Huang, Qianming; Luo, Zhijing; Chen, Mingjiao; Zhang, Dabing; Yuan, Zheng

    2015-05-01

    OsMADS32 is a monocot specific MIKC(c) type MADS-box gene that plays an important role in regulating rice floral meristem and organs identity, a crucial process for reproductive success and rice yield. However, its underlying mechanism of action remains to be clarified. Here, we characterized a hypomorphic mutant allele of OsMADS32/CFO1, cfo1-3 and identified its function in controlling rice flower development by bioinformatics and protein-protein interaction analysis. The cfo1-3 mutant produces defective flowers, including loss of lodicule identity, formation of ectopic lodicule or hull-like organs and decreased stamen number, mimicking phenotypes related to the mutation of B class genes. Molecular characterization indicated that mis-splicing of OsMADS32 transcripts in the cfo1-3 mutant resulted in an extra eight amino acids in the K-domain of OsMADS32 protein. By yeast two hybrid and bimolecular fluorescence complementation assays, we revealed that the insertion of eight amino acids or deletion of the internal region in the K1 subdomain of OsMADS32 affects the interaction between OsMADS32 with PISTILLATA (PI)-like proteins OsMADS2 and OsMADS4. This work provides new insight into the mechanism by which OsMADS32 regulates rice lodicule and stamen identity, by interaction with two PI-like proteins via its K domain. PMID:25081486

  4. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.

    PubMed

    Kandori, Kazuhiko; Oda, Shohei; Fukusumi, Masao; Morisada, Yoshiaki

    2009-10-01

    Positively charged Hap nano-crystals were prepared by using beta-alanine and clarified the adsorption affinity of these surface amide functionalized Hap nano-crystals to proteins. Colloidal surface amide functionalized Hap nano-crystals were prepared by wet method in the presence of various amounts of beta-alanine by changing molar ratio of beta-alanine/Ca (beta/Ca ratio) in the solution. The rod-like nano-crystals were lengthened with addition of beta-alanine though their width did not vary; carboxyl groups of beta-alanine are strongly coordinated to Ca2+ ions exposed on ac and/or bc faces to inhibit particle growth to a- and/or b-axis directions and enhance the particle growth along to the c-axis. No difference can be recognized on the crystal structure among the synthesized Hap nano-crystals by XRD measurements. However, the large difference was recognized by TG-DTA and FTIR measurements. Those measurements revealed that beta-alanine is incorporated on the Hap nano-crystal surface up to the beta/Ca ratio of 1.0, though they are absent in the nano-crystals synthesized at beta/Ca ratio > or = 2.0. The zeta potential (zp) of beta-alanine-Hap nano-crystals prepared at beta/Ca = 0.4 and 1.0 of those incorporating beta-alanine exhibited positive charge at pH < or = 5.9. The saturated amounts of adsorbed BSA for the positively charged beta-alanine-Hap nano-crystals were increased 2.3-2.4-fold by their electrostatic attraction force between positively charged beta-alanine-Hap nano-crystals and negatively charged BSA molecules. We were able to control the adsorption affinity of Hap nano-crystal by changing their surface charge.

  5. False-positive rate determination of protein target discovery using a covalent modification- and mass spectrometry-based proteomics platform.

    PubMed

    Strickland, Erin C; Geer, M Ariel; Hong, Jiyong; Fitzgerald, Michael C

    2014-01-01

    Detection and quantitation of protein-ligand binding interactions is important in many areas of biological research. Stability of proteins from rates of oxidation (SPROX) is an energetics-based technique for identifying the proteins targets of ligands in complex biological mixtures. Knowing the false-positive rate of protein target discovery in proteome-wide SPROX experiments is important for the correct interpretation of results. Reported here are the results of a control SPROX experiment in which chemical denaturation data is obtained on the proteins in two samples that originated from the same yeast lysate, as would be done in a typical SPROX experiment except that one sample would be spiked with the test ligand. False-positive rates of 1.2-2.2% and <0.8% are calculated for SPROX experiments using Q-TOF and Orbitrap mass spectrometer systems, respectively. Our results indicate that the false-positive rate is largely determined by random errors associated with the mass spectral analysis of the isobaric mass tag (e.g., iTRAQ®) reporter ions used for peptide quantitation. Our results also suggest that technical replicates can be used to effectively eliminate such false positives that result from this random error, as is demonstrated in a SPROX experiment to identify yeast protein targets of the drug, manassantin A. The impact of ion purity in the tandem mass spectral analyses and of background oxidation on the false-positive rate of protein target discovery using SPROX is also discussed.

  6. False-Positive Rate Determination of Protein Target Discovery using a Covalent Modification- and Mass Spectrometry-Based Proteomics Platform

    NASA Astrophysics Data System (ADS)

    Strickland, Erin C.; Geer, M. Ariel; Hong, Jiyong; Fitzgerald, Michael C.

    2014-01-01

    Detection and quantitation of protein-ligand binding interactions is important in many areas of biological research. Stability of proteins from rates of oxidation (SPROX) is an energetics-based technique for identifying the proteins targets of ligands in complex biological mixtures. Knowing the false-positive rate of protein target discovery in proteome-wide SPROX experiments is important for the correct interpretation of results. Reported here are the results of a control SPROX experiment in which chemical denaturation data is obtained on the proteins in two samples that originated from the same yeast lysate, as would be done in a typical SPROX experiment except that one sample would be spiked with the test ligand. False-positive rates of 1.2-2.2 % and <0.8 % are calculated for SPROX experiments using Q-TOF and Orbitrap mass spectrometer systems, respectively. Our results indicate that the false-positive rate is largely determined by random errors associated with the mass spectral analysis of the isobaric mass tag (e.g., iTRAQ®) reporter ions used for peptide quantitation. Our results also suggest that technical replicates can be used to effectively eliminate such false positives that result from this random error, as is demonstrated in a SPROX experiment to identify yeast protein targets of the drug, manassantin A. The impact of ion purity in the tandem mass spectral analyses and of background oxidation on the false-positive rate of protein target discovery using SPROX is also discussed.

  7. Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties

    PubMed Central

    Neuwald, Andrew F.; Altschul, Stephen F.

    2016-01-01

    We describe a Bayesian Markov chain Monte Carlo (MCMC) sampler for protein multiple sequence alignment (MSA) that, as implemented in the program GISMO and applied to large numbers of diverse sequences, is more accurate than the popular MSA programs MUSCLE, MAFFT, Clustal-Ω and Kalign. Features of GISMO central to its performance are: (i) It employs a “top-down” strategy with a favorable asymptotic time complexity that first identifies regions generally shared by all the input sequences, and then realigns closely related subgroups in tandem. (ii) It infers position-specific gap penalties that favor insertions or deletions (indels) within each sequence at alignment positions in which indels are invoked in other sequences. This favors the placement of insertions between conserved blocks, which can be understood as making up the proteins’ structural core. (iii) It uses a Bayesian statistical measure of alignment quality based on the minimum description length principle and on Dirichlet mixture priors. Consequently, GISMO aligns sequence regions only when statistically justified. This is unlike methods based on the ad hoc, but widely used, sum-of-the-pairs scoring system, which will align random sequences. (iv) It defines a system for exploring alignment space that provides natural avenues for further experimentation through the development of new sampling strategies for more efficiently escaping from suboptimal traps. GISMO’s superior performance is illustrated using 408 protein sets containing, on average, 235 sequences. These sets correspond to NCBI Conserved Domain Database alignments, which have been manually curated in the light of available crystal structures, and thus provide a means to assess alignment accuracy. GISMO fills a different niche than other MSA programs, namely identifying and aligning a conserved domain present within a large, diverse set of full length sequences. The GISMO program is available at http://gismo.igs.umaryland.edu/. PMID

  8. Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine.

    PubMed

    Aleshcheva, Ganna; Sahana, Jayashree; Ma, Xiao; Hauslage, Jens; Hemmersbach, Ruth; Egli, Marcel; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2013-01-01

    Tissue engineering of chondrocytes on a Random Positioning Machine (RPM) is a new strategy for cartilage regeneration. Using a three-dimensional RPM, a device designed to simulate microgravity on Earth, we investigated the early effects of RPM exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of RPM exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis (TGF-β1, osteopontin); and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours of RPM exposure disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours on the RPM, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced during RPM culture for 24 h. Taking these results together, we suggest that chondrocytes exposed to the RPM seem to change their extracellular matrix production behaviour while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  9. LAPTM5 Protein Is a Positive Regulator of Proinflammatory Signaling Pathways in Macrophages*

    PubMed Central

    Glowacka, Wioletta K.; Alberts, Philipp; Ouchida, Rika; Wang, Ji-Yang; Rotin, Daniela

    2012-01-01

    LAPTM5 (lysosomal-associated protein transmembrane 5) is a protein that is preferentially expressed in immune cells, and it interacts with the Nedd4 family of ubiquitin ligases. Recent studies in T and B cells identified LAPTM5 as a negative regulator of T and B cell receptor levels at the plasma membrane. Here we investigated the function of LAPTM5 in macrophages. We demonstrate that expression of LAPTM5 is required for the secretion of proinflammatory cytokines in response to Toll-like receptor ligands. We also show that RAW264.7 cells knocked down for LAPTM5 or macrophages from LAPTM5−/− mice exhibit reduced activation of NF-κB and MAPK signaling pathways mediated by the TNF receptor, as well as multiple pattern recognition receptors in various cellular compartments. TNF stimulation of LAPTM5-deficient macrophages leads to reduced ubiquitination of RIP1 (receptor-interacting protein 1), suggesting a role for LAPTM5 at the receptor-proximate level. Interestingly, we find that macrophages from LAPTM5−/− mice display up-regulated levels of A20, a ubiquitin-editing enzyme responsible for deubiquitination of RIP1 and subsequent termination of NF-κB activation. Our studies thus indicate that, in contrast to its negative role in T and B cell activation, LAPTM5 acts as a positive modulator of inflammatory signaling pathways and hence cytokine secretion in macrophages. They also highlight a role for the endosomal/lysosomal system in regulating signaling via cytokine and pattern recognition receptors. PMID:22733818

  10. The identification of novel PMADS3 interacting proteins indicates a role in post-transcriptional control.

    PubMed

    Li, Xin; Ning, Guogui; Han, Xueping; Liu, Caixian; Bao, Manzhu

    2015-06-10

    PMADS3, a known MADS-box transcriptional factor and a C-class gene for floral development, plays dual roles in controlling the identity of inner floral organs and the termination of flower meristems in petunia. In this study, it was confirmed by bimolecular fluorescence complementation (BiFC) assays that the PMADS3 protein can interact individually with E-class proteins FBP2, FBP5, FBP9 and PMADS12. A yeast two-hybrid cDNA library was screened using the entire PMADS3 as bait, and this identified further potential interaction candidates. Two novel genes, PheIF3f and PhAGO10, were isolated, and suggested to regulate mRNA and translational processes according to the analysis of protein functional domains and subcellular localization predictions. Notably, the PhAGO10 protein belongs to the Argonaute family, members of which are major players in small-RNA-guided gene silencing processes via mRNA cleavage or translational inhibition. The results of yeast two-hybrid and BiFC assays indicated that PheIF3f and PhAGO10 could interact with PMADS3. Our findings indicate that the C-class gene PMADS3 potentially participates in post-transcriptional control, as well as transcriptional regulation.

  11. The identification of novel PMADS3 interacting proteins indicates a role in post-transcriptional control.

    PubMed

    Li, Xin; Ning, Guogui; Han, Xueping; Liu, Caixian; Bao, Manzhu

    2015-06-10

    PMADS3, a known MADS-box transcriptional factor and a C-class gene for floral development, plays dual roles in controlling the identity of inner floral organs and the termination of flower meristems in petunia. In this study, it was confirmed by bimolecular fluorescence complementation (BiFC) assays that the PMADS3 protein can interact individually with E-class proteins FBP2, FBP5, FBP9 and PMADS12. A yeast two-hybrid cDNA library was screened using the entire PMADS3 as bait, and this identified further potential interaction candidates. Two novel genes, PheIF3f and PhAGO10, were isolated, and suggested to regulate mRNA and translational processes according to the analysis of protein functional domains and subcellular localization predictions. Notably, the PhAGO10 protein belongs to the Argonaute family, members of which are major players in small-RNA-guided gene silencing processes via mRNA cleavage or translational inhibition. The results of yeast two-hybrid and BiFC assays indicated that PheIF3f and PhAGO10 could interact with PMADS3. Our findings indicate that the C-class gene PMADS3 potentially participates in post-transcriptional control, as well as transcriptional regulation. PMID:25827715

  12. Expected distributions of root-mean-square positional deviations in proteins.

    PubMed

    Pitera, Jed W

    2014-06-19

    The atom positional root-mean-square deviation (RMSD) is a standard tool for comparing the similarity of two molecular structures. It is used to characterize the quality of biomolecular simulations, to cluster conformations, and as a reaction coordinate for conformational changes. This work presents an approximate analytic form for the expected distribution of RMSD values for a protein or polymer fluctuating about a stable native structure. The mean and maximum of the expected distribution are independent of chain length for long chains and linearly proportional to the average atom positional root-mean-square fluctuations (RMSF). To approximate the RMSD distribution for random-coil or unfolded ensembles, numerical distributions of RMSD were generated for ensembles of self-avoiding and non-self-avoiding random walks. In both cases, for all reference structures tested for chains more than three monomers long, the distributions have a maximum distant from the origin with a power-law dependence on chain length. The purely entropic nature of this result implies that care must be taken when interpreting stable high-RMSD regions of the free-energy landscape as "intermediates" or well-defined stable states.

  13. Interaction between the transcription factor SPBP and the positive cofactor RNF4. An interplay between protein binding zinc fingers.

    PubMed

    Lyngsø, C; Bouteiller, G; Damgaard, C K; Ryom, D; Sanchez-Muñoz, S; Nørby, P L; Bonven, B J; Jørgensen, P

    2000-08-25

    The activator of stromelysin 1 gene transcription, SPBP, interacts with the RING finger protein RNF4. Both proteins are ubiquitously expressed and localized in the nucleus. RNF4 facilitates accumulation of specific SPBP-DNA complexes in vitro and acts as a positive cofactor in SPBP-mediated transactivation. SPBP harbors an internal zinc finger of the PHD/LAP type. This domain can form intra-chain protein-protein contacts in SPBP resulting in negative modulation of SPBP-RNF4 interaction. PMID:10849425

  14. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins

    PubMed Central

    Janmaat, C. J.; de Rooij, K. E; Locher, H; de Groot, S. C.; de Groot, J. C. M. J.; Frijns, J. H. M.; Huisman, M. A.

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  15. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins.

    PubMed

    Janmaat, C J; de Rooij, K E; Locher, H; de Groot, S C; de Groot, J C M J; Frijns, J H M; Huisman, M A

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  16. Alternative application of Tau protein in Creutzfeldt-Jakob disease diagnosis: Improvement for weakly positive 14-3-3 protein in the laboratory.

    PubMed

    Hyeon, Jae Wook; Kim, Su Yeon; Lee, Jeongmin; Park, Jun Sun; Hwang, Kyu Jam; Lee, Sol Moe; An, SeongSoo A; Lee, Myung Koo; Ju, Young Ran

    2015-01-01

    The 14-3-3 protein has been used as a biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). However, weakly positive 14-3-3 leads to false positive results and an incorrect diagnosis. We attempted to use quantitative data for tau protein to provide an accurate diagnosis based on weak 14-3-3 protein. Sixty-two patients with sCJD, including pathologically confirmed, clinically definite, and probable cases, and 89 non-CJD patients were investigated based on a Korean population. Among them, 20 sCJD and 14 non-CJD showed weakly positive 14-3-3. The total tau (t-tau) and phosphorylated tau (p-tau) protein levels were measured by ELISA, and the p-tau to t-tau ratio (p/t ratio) was calculated. The combined use of the 14-3-3 protein assay, t-tau levels, and p/t ratio improved the specificity of diagnosis compared with the use of the 14-3-3 protein assay alone (47% for 14-3-3 alone; 85.94% for 14-3-3 combined with t-tau; 90.62% for 14-3-3 combined with the p/t ratio). In addition, 18 of 20 sCJD and 12 of 14 non-CJD who were weakly positive for 14-3-3 were positive for the p/t ratio and negative for the p/t ratio, respectively. When used in combination with the 14-3-3 protein, the tau protein is useful as a biomarker for the precise diagnosis of sCJD. PMID:26507666

  17. Alternative application of Tau protein in Creutzfeldt-Jakob disease diagnosis: Improvement for weakly positive 14-3-3 protein in the laboratory.

    PubMed

    Hyeon, Jae Wook; Kim, Su Yeon; Lee, Jeongmin; Park, Jun Sun; Hwang, Kyu Jam; Lee, Sol Moe; An, SeongSoo A; Lee, Myung Koo; Ju, Young Ran

    2015-10-28

    The 14-3-3 protein has been used as a biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). However, weakly positive 14-3-3 leads to false positive results and an incorrect diagnosis. We attempted to use quantitative data for tau protein to provide an accurate diagnosis based on weak 14-3-3 protein. Sixty-two patients with sCJD, including pathologically confirmed, clinically definite, and probable cases, and 89 non-CJD patients were investigated based on a Korean population. Among them, 20 sCJD and 14 non-CJD showed weakly positive 14-3-3. The total tau (t-tau) and phosphorylated tau (p-tau) protein levels were measured by ELISA, and the p-tau to t-tau ratio (p/t ratio) was calculated. The combined use of the 14-3-3 protein assay, t-tau levels, and p/t ratio improved the specificity of diagnosis compared with the use of the 14-3-3 protein assay alone (47% for 14-3-3 alone; 85.94% for 14-3-3 combined with t-tau; 90.62% for 14-3-3 combined with the p/t ratio). In addition, 18 of 20 sCJD and 12 of 14 non-CJD who were weakly positive for 14-3-3 were positive for the p/t ratio and negative for the p/t ratio, respectively. When used in combination with the 14-3-3 protein, the tau protein is useful as a biomarker for the precise diagnosis of sCJD.

  18. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  19. Quantitative evaluation of positive ϕ angle propensity in flexible regions of proteins from three-bond J couplings†

    PubMed Central

    Lee, Jung Ho; Ying, Jinfa

    2015-01-01

    3JHNHα and 3JC′C′ couplings can be readily measured in isotopically enriched proteins and were shown to contain precise information on the backbone torsion angles, ϕ, sampled in disordered regions of proteins. However, quantitative interpretation of these couplings required the population of conformers with positive ϕ angles to be very small. Here, we demonstrate that this restriction can be removed by measurement of 3JC′Hα values. Even though the functional forms of the 3JC′Hα and 3JHNHα Karplus equations are the same, large differences in their coefficients enable accurate determination of the fraction of time that positive ϕ angles are sampled. A four-dimensional triple resonance HACANH[C′] E.COSY experiment is introduced to simultaneously measure 3JC′Hα and 3JHNC′ in the typically very congested spectra of disordered proteins. High resolution in these spectra is obtained by non-uniform sampling (in the 0.1-0.5% range). Application to the intrinsically disordered protein α-synuclein shows that while most residues have close-to-zero positive ϕ angle populations, up to 16% positive ϕ population is observed for Asn residues. Positive ϕ angle populations determined with the new approach agree closely with consensus values from protein coil libraries and prior analysis of a large set of other NMR parameters. The combination of 3JHNC′ and 3JC′C′ provides information about the amplitude of ϕ angle dynamics. PMID:26415896

  20. Planes formed with four intron-positions in tertiary structures of retinol binding protein and calpain domain VI.

    PubMed

    Nosaka, Michiko; Hirata, Katsuki; Tsuji, Ryotarou; Sunaba, Syunya

    2014-01-01

    Eukaryotic genes have intervening sequences, introns, in their coding regions. Since introns are spliced out from m-RNA before translation, they are considered to have no effect on the protein structure. Here, we report a novel relationship between introns and the tertiary structures of retinol binding protein and calpain domain VI. We identified "intron-positions" as amino acid residues on which or just after which introns are found in their corresponding nucleotide sequences, and then found that four intron-positions form a plane. We also found that the four intron-positions of retinol-binding protein encloses its ligand retinol. The tertiary structure of calpain domain VI changes after Ca(2+) binding, and the four intron-positions form a plane that includes its ligand calpastatin. To evaluate the statistical significance of the planarity, we calculated the mean distance of each intron-position from the plane defined by the other three intron-positions, and showed that it is significantly smaller than the one calculated for randomly generated locations based on exon size distribution. On the basis of this finding, we discuss the evolution of retinol binding protein and the origin of introns.

  1. Socioeconomic position, health behaviors, and C-reactive protein: A moderated-mediation analysis

    PubMed Central

    Kershaw, Kiarri N.; Mezuk, Briana; Abdou, Cleopatra M.; Rafferty, Jane A.; Jackson, James S.

    2010-01-01

    Objective We sought to understand the link between low SEP and cardiovascular disease (CVD) by examining the association between SEP, health-related coping behaviors, and C-reactive protein (CRP), an inflammatory marker and independent risk factor for CVD in a US sample of adults. Design We used a multiple mediation model to evaluate how these behaviors work in concert to influence CRP levels and whether these relationships were moderated by gender and race/ethnicity. Main outcome measures CRP levels were divided into two categories: elevated CRP (3.1–10.0 mg/L) and normal CRP (≤ 3.0 mg/L). Results Both poverty and low educational attainment were associated with elevated CRP, and these associations were primarily explained through higher levels of smoking and lower levels of exercise. In the education model, poor diet also emerged as a significant mediator. These behaviors accounted for 87.9% of the total effect of education on CRP and 55.8% the total effect of poverty on CRP. We also found significant moderation of these mediated effects by gender and race/ethnicity. Conclusion These findings demonstrate the influence of socioeconomically-patterned environmental constraints on individual-level health behaviors. Specifically, reducing socioeconomic inequalities may have positive effects on CVD disparities through reducing cigarette smoking and increasing vigorous exercise. PMID:20496985

  2. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    SciTech Connect

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil Lee, Zang Hee

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  3. FK506 binding protein 51 positively regulates melanoma stemness and metastatic potential

    PubMed Central

    Romano, S; Staibano, S; Greco, A; Brunetti, A; Nappo, G; Ilardi, G; Martinelli, R; Sorrentino, A; Di Pace, A; Mascolo, M; Bisogni, R; Scalvenzi, M; Alfano, B; Romano, M F

    2013-01-01

    Melanoma is the most aggressive skin cancer; there is no cure in advanced stages. Identifying molecular participants in melanoma progression may provide useful diagnostic and therapeutic tools. FK506 binding protein 51 (FKBP51), an immunophilin with a relevant role in developmental stages, is highly expressed in melanoma and correlates with aggressiveness and therapy resistance. We hypothesized a role for FKBP51 in melanoma invasive behaviour. FKBP51 promoted activation of epithelial-to-mesenchymal transition (EMT) genes and improved melanoma cell migration and invasion. In addition, FKBP51 induced some melanoma stem cell (MCSC) genes. Purified MCSCs expressed high EMT genes levels, suggesting that genetic programs of EMT and MCSCs overlap. Immunohistochemistry of samples from patients showed intense FKBP51 nuclear signal and cytoplasmic positivity for the stem cell marker nestin in extravasating melanoma cells and metastatic brains. In addition, FKBP51 targeting by small interfering RNA (siRNA) prevented the massive metastatic substitution of liver and lung in a mouse model of experimental metastasis. The present study provides evidence that the genetic programs of cancer stemness and invasiveness overlap in melanoma, and that FKBP51 plays a pivotal role in sustaining such a program. PMID:23559012

  4. A case of anti-nuclear matrix protein 2 antibody positive myopathy associated with lung cancer.

    PubMed

    Ohta, Shin; Unoda, Ki-Ichi; Nakajima, Hideto; Ikeda, Soichiro; Hamaguchi, Yasuhito; Kimura, Fumiharu

    2016-08-31

    Myositis-specific autoantibodies (MSAs) are associated with myositis. Anti-nuclear matrix protein 2 (NXP-2) antibody was recently identified as a major MSA and was observed mostly in juvenile dermatomyositis. We report the case of a 44-year-old man who presented with myopathy with anti-NXP-2 antibody and large cell carcinoma of the lung. He was hospitalized because of myalgia and edema of limbs. Neurological examination revealed mild proximal-dominant weakness in all four extremities, and laboratory studies showed elevated creatine kinase level (6,432 IU/l). Needle electromyography showed myogenic patterns. MRI of the lower limbs demonstrated inflammatory lesions in the thighs. Biopsied specimen from the left quadriceps femoris muscle showed mild mononuclear inflammatory infiltrate surrounding muscle fibres but no fiber necrosis. He was diagnosed with myopathy based on neurological examinations and clinical symptoms. His chest X-ray and CT showed tumor shadow on the right upper lung field, but CT didn't indicate the findings of interstitial lung disease. This was surgically removed, and a histological diagnosis of non-small cell lung cancer was suspected. He was also treated with definitive chemoradiotherapy before and after operation. His symptoms of myopathy promptly remitted with the preoperative chemotherapy. His serum analysis was positive for the anti-NXP-2. Further investigation and experience of MSAs are necessary to evaluate the therapeutic strategy against cancer-associated myopathy/myositis. PMID:27477574

  5. Stuck in the Middle: Fibronectin-Binding Proteins in Gram-Positive Bacteria

    PubMed Central

    Hymes, Jeffrey P.; Klaenhammer, Todd R.

    2016-01-01

    Fibronectin is a multidomain glycoprotein found ubiquitously in human body fluids and extracellular matrices of a variety of cell types from all human tissues and organs, including intestinal epithelial cells. Fibronectin plays a major role in the regulation of cell migration, tissue repair, and cell adhesion. Importantly, fibronectin also serves as a common target for bacterial adhesins in the gastrointestinal tract. Fibronectin-binding proteins (FnBPs) have been identified and characterized in a wide variety of host-associated bacteria. Single bacterial species can contain multiple, diverse FnBPs. In pathogens, some FnBPs contribute to virulence via host cell attachment, invasion, and interference with signaling pathways. Although FnBPs in commensal and probiotic strains are not sufficient to confer virulence, they are essential for attachment to their ecological niches. Here we describe the interaction between human fibronectin and bacterial adhesins by highlighting the FnBPs of Gram-positive pathogens and commensals. We provide an overview of the occurrence and diversity of FnBPs with a focus on the model pathogenic organisms in which FnBPs are most characterized. Continued investigation of FnBPs is needed to fully understand their divergence and specificity in both pathogens and commensals. PMID:27713740

  6. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass

    PubMed Central

    Chen, Justin L.; Qian, Hongwei; Liu, Yingying; Bernardo, Bianca C.; Beyer, Claudia; Watt, Kevin I.; Thomson, Rachel E.; Connor, Timothy; Turner, Bradley J.; McMullen, Julie R.; Larsson, Lars; McGee, Sean L.; Harrison, Craig A.

    2013-01-01

    Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders. PMID:24145169

  7. Salivary Protein Profiles among HER2/neu-Receptor-Positive and -Negative Breast Cancer Patients: Support for Using Salivary Protein Profiles for Modeling Breast Cancer Progression

    PubMed Central

    Streckfus, Charles F.; Arreola, Daniel; Edwards, Cynthia; Bigler, Lenora

    2012-01-01

    Purpose. The objective of this study was to compare the salivary protein profiles from individuals diagnosed with breast cancer that were either HER2/neu receptor positive or negative. Methods. Two pooled saliva specimens underwent proteomic analysis. One pooled specimen was from women diagnosed with stage IIa HER2/neu-receptor-positive breast cancer patients (n = 10) and the other was from women diagnosed with stage IIa HER2/neu-receptor-negative cancer patients (n = 10). The pooled samples were trypsinized and the peptides labeled with iTRAQ reagent. Specimens were analyzed using an LC-MS/MS mass spectrometer. Results. The results yielded approximately 71 differentially expressed proteins in the saliva specimens. There were 34 upregulated proteins and 37 downregulated proteins. PMID:22570650

  8. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons

    SciTech Connect

    Helmann, J.D.; Walsh, C.T. ); Wang, Ying; Mahler, I. )

    1989-01-01

    The authors report the overexpression, purification, and properties of the regulatory protein, MerR, for a chromosomally encoded mercury resistance determinant from Bacillus strain RC607. This protein is similar in sequence to the metalloregulatory proteins encoded by gram-negative resistance determinants found on transposons Tn21 and Tn501 and to a predicted gene product of a Staphylococcus aureus resistance determinant. In vitro DNA-binding and transcription experiments were used to demonstrate those purified Bacillus MerR protein controls transcription from a promoter-operator site similar in sequence to that found in the transposon resistance determinants. The Bacillus MerR protein bound in vitro to its promoter-operator region in both the presence and absence of mercuric ion and functioned as a negative and positive regulator of transcription. The MerR protein bound less tightly to its operator region (ca. 50- to 100-fold) in the presence of mercuric ion; this reduced affinity was largely accounted for by an increased rate of dissociation of the MerR protein from the DNA. Despite this reduced DNA-binding affinity, genetic and biochemical evidence support a model in which the MerR protein-mercuric ion complex is a positive regulator of operon transcription. Although the Bacillus MerR protein bound only weakly to the heterologous Tn501 operator region, the Tn501 and Tn21 MerR proteins bound with high affinity to the Bacillus promoter-operator region and exhibited negative, but not positive, transcriptional control.

  9. Right Place, Right Time: Focalization of Membrane Proteins in Gram-Positive Bacteria.

    PubMed

    Mitra, Sumitra D; Afonina, Irina; Kline, Kimberly A

    2016-08-01

    Membrane proteins represent a significant proportion of total bacterial proteins and perform vital cellular functions ranging from exchanging metabolites and genetic material, secretion and sorting, sensing signal molecules, and cell division. Many of these functions are carried out at distinct foci on the bacterial membrane, and this subcellular localization can be coordinated by a number of factors, including lipid microdomains, protein-protein interactions, and membrane curvature. Elucidating the mechanisms behind focal protein localization in bacteria informs not only protein structure-function correlation, but also how to disrupt the protein function to limit virulence. Here we review recent advances describing a functional role for subcellular localization of membrane proteins involved in genetic transfer, secretion and sorting, cell division and growth, and signaling. PMID:27117048

  10. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues.

    PubMed

    Wu, Cheng-Hsun; Chen, Yi-Ping; Liu, Shing-Lung; Chien, Fan-Ching; Mou, Chung-Yuan; Cheng, Richard P

    2015-12-01

    RNA is a drug target involved in diverse cellular functions and viral processes. Molecules that inhibit the HIV TAR RNA-Tat protein interaction may attenuate Tat/TAR-dependent protein expression and potentially serve as anti-HIV therapeutics. By incorporating positively charged residues with mixed side chain lengths, we designed peptides that bind TAR RNA with enhanced intracellular activity. Tat-derived peptides that were individually substituted with positively charged residues with varying side chain lengths were evaluated for TAR RNA binding. Positively charged residues with different side chain lengths were incorporated at each Arg and Lys position in the Tat-derived peptide to enhance TAR RNA binding. The resulting peptides showed enhanced TAR RNA binding affinity, cellular uptake, nuclear localization, proteolytic resistance, and inhibition of intracellular Tat/TAR-dependent protein expression compared to the parent Tat-derived peptide with no cytotoxicity. Apparently, the enhanced inhibition of protein expression by these peptides was not determined by RNA binding affinity, but by proteolytic resistance. Despite the high TAR binding affinity, a higher binding specificity would be necessary for practical purposes. Importantly, altering the positively charged residue side chain length should be a viable strategy to generate potentially useful RNA-targeting bioactive molecules.

  11. Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence.

    PubMed

    Xu, Xinjia; Jiang, Cai-Zhong; Donnelly, Linda; Reid, Michael S

    2007-01-01

    A gene encoding a RING zinc finger ankyrin repeat protein (MjXB3), a putative E3 ubiquitin ligase, is highly expressed in petals of senescing four o'clock (Mirabilis jalapa) flowers, increasing >40,000-fold during the onset of visible senescence. The gene has homologues in many other species, and the Petunia homologue is strongly up-regulated in senescing Petunia corollas. Silencing the expression of this gene in Petunia, using virus-induced gene silencing, resulted in a 2 d extension in flower life. In Mirabilis, a 2 kb promoter region, 5' upstream of the MjXB3 gene, was isolated. The promoter sequence included putative binding sites for many DNA-binding proteins, including the bZIP, Myb, homeodomain-leucine zipper (HD-Zip), MADS-box, and WRKY transcription factors. The construct containing a 1 kb promoter region immediately upstream of the MjXB3 gene drove the strongest expression of the beta-glucuronidase (GUS) reporter gene in a transient expression assay. In Petunia, GUS expression under the control of this heterologous promoter fragment was specific to senescing flowers. The Mirabilis promoter GUS construct was tested in other flower species; while GUS activity in carnation petals was high during senescence, no expression was detected in three monocotyledonous flowers--daylily (Hemerocallis 'Stella d'Oro'), daffodil (Narcissus pseudonarcissus 'King Alfred'), and orchid (Dendrobium 'Emma White'). PMID:18057040

  12. Proteomic analyses and identification of arginine methylated proteins differentially recognized by autosera from anti-Sm positive SLE patients

    PubMed Central

    2013-01-01

    Background Antibodies against spliceosome Sm proteins (anti-Sm autoantibodies) are specific to the autoimmune disease systemic lupus erythematosus (SLE). Anti-Sm autosera have been reported to specifically recognize Sm D1 and D3 with symmetric di-methylarginines (sDMA). We investigated if anti-Sm sera from local SLE patients can differentially recognize Sm proteins or any other proteins due to their methylation states. Results We prepared HeLa cell proteins at normal or hypomethylation states (treated with an indirect methyltransferase inhibitor adenosine dialdehyde, AdOx). A few signals detected by the anti-Sm positive sera from typical SLE patients decreased consistently in the immunoblots of hypomethylated cell extracts. The differentially detected signals by one serum (Sm1) were pinpointed by two-dimensional electrophoresis and identified by mass spectrometry. Three identified proteins: splicing factor, proline- and glutamine-rich (SFPQ), heterogeneous nuclear ribonucleoprotein D-like (hnRNP DL) and cellular nucleic acid binding protein (CNBP) are known to contain methylarginines in their glycine and arginine rich (GAR) sequences. We showed that recombinant hnRNP DL and CNBP expressed in Escherichia coli can be detected by all anti-Sm positive sera we tested. As CNBP appeared to be differentially detected by the SLE sera in the pilot study, differential recognition of arginine methylated CNBP protein by the anti-Sm positive sera were further examined. Hypomethylated FLAG-CNBP protein immunopurified from AdOx-treated HeLa cells was less recognized by Sm1 compared to the CNBP protein expressed in untreated cells. Two of 20 other anti-Sm positive sera specifically differentiated the FLAG-CNBP protein expressed in HeLa cells due to the methylation. We also observed deferential recognition of methylated recombinant CNBP proteins expressed from E. coli by some of the autosera. Conclusion Our study showed that hnRNP DL and CNBP are novel antigens for SLE patients and

  13. Protein kinase inhibitor SU6668 attenuates positive regulation of Gli proteins in cancer and multipotent progenitor cells.

    PubMed

    Piirsoo, Alla; Kasak, Lagle; Kauts, Mari-Liis; Loog, Mart; Tints, Kairit; Uusen, Piia; Neuman, Toomas; Piirsoo, Marko

    2014-04-01

    Observations that Glioma-associated transcription factors Gli1 and Gli2 (Gli1/2), executers of the Sonic Hedgehog (Shh) signaling pathway and targets of the Transforming Growth Factor β (TGF-β) signaling axis, are involved in numerous developmental and pathological processes unveil them as attractive pharmaceutical targets. Unc-51-like serine/threonine kinase Ulk3 has been suggested to play kinase activity dependent and independent roles in the control of Gli proteins in the context of the Shh signaling pathway. This study aimed at investigating whether the mechanism of generation of Gli1/2 transcriptional activators has similarities regardless of the signaling cascade evoking their activation. We also elucidate further the role of Ulk3 kinase in regulation of Gli1/2 proteins and examine SU6668 as an inhibitor of Ulk3 catalytic activity and a compound targeting Gli1/2 proteins in different cell-based experimental models. Here we demonstrate that Ulk3 is required not only for maintenance of basal levels of Gli1/2 proteins but also for TGF-β or Shh dependent activation of endogenous Gli1/2 proteins in human adipose tissue derived multipotent stromal cells (ASCs) and mouse immortalized progenitor cells, respectively. We show that cultured ASCs possess the functional Shh signaling axis and differentiate towards osteoblasts in response to Shh. Also, we demonstrate that similarly to Ulk3 RNAi, SU6668 prevents de novo expression of Gli1/2 proteins and antagonizes the Gli-dependent activation of the gene expression programs induced by either Shh or TGF-β. Our data suggest SU6668 as an efficient inhibitor of Ulk3 kinase allowing manipulation of the Gli-dependent transcriptional outcome.

  14. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    PubMed

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen.

  15. Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli.

    PubMed

    Ramakrishnan, V; Capel, M; Kjeldgaard, M; Engelman, D M; Moore, P B

    1984-04-01

    A map of the 30 S ribosomal subunit is presented giving the positions of 15 of its 21 proteins. The components located in the map are S1, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S14, S15, S18 and S20.

  16. Intron positions in actin genes seem unrelated to the secondary structure of the protein.

    PubMed Central

    Weber, K; Kabsch, W

    1994-01-01

    A catalogue of intron positions along the coding sequence was assembled from the large number of actin genes known for different eukaryotes. 36 positions in the amino acid sequence were compared with the known three-dimensional structure of actin. At least 20 but not more than 23 intron positions are at the start or end of a secondary structural element (beta-strand, alpha-helix or 3/10 helix) while eight positions interrupt such an element. Statistical analysis shows that due to the large number of end positions the boundaries of secondary structural elements are not correlated with the intron positions. In addition, the observed intron pattern seems compatible with the null hypothesis, i.e. intron positions are randomly distributed along the actin sequence. Images PMID:8137812

  17. Positioning and guidance of neurons on Au by directed assembly of proteins using Atomic Force Microscopy.

    NASA Astrophysics Data System (ADS)

    Staii, Cristian; Viesselmann, Chris; Ballweg, Jason; Williams, Justin; Dent, Erik; Coppersmith, Susan; Eriksson, Mark

    2009-03-01

    The specific interactions between neurons and guidance factors as well as the mechanism of axonal navigation toward a target in the developing brain are not well understood. To address this problem we present a new approach for controlling the adhesion, growth and interconnectivity of cortical neurons on Au surfaces. Specifically, we use AFM nanolithography to immobilize extracellular matrix proteins at well-defined locations on Au surfaces, and show that these protein patterns can confine neuronal cells and control their growth and interconnectivity. We will compare this method with other nanofabrication techniques and discuss its main advantages: 1) the procedure is carried out in aqueous solutions, so that the proteins retain their bioactivity, 2) a high degree of control over location and shape of the protein patterns can be achieved, and 3) the minimum protein feature size can be as small as 50nm.

  18. Positioning Multiple Proteins at the Nanoscale with Electron Beam Cross-Linked Functional Polymers

    PubMed Central

    Christman, Karen L.; Schopf, Eric; Broyer, Rebecca M.; Li, Ronald C.; Chen, Yong; Maynard, Heather D.

    2009-01-01

    Constructing multicomponent protein structures that match the complexity of those found in Nature is essential for the next generation of medical materials. In this report, a versatile method to precisely arrange multicomponent protein nanopatterns in two-dimensional single-layer or three-dimensional multilayer formats using electron beam lithography is described. Eight arm poly(ethylene glycol)s were modified at the chain ends with either biotin, maleimide, aminooxy, or nitrilotriacetic acid. Analysis by 1H NMR spectroscopy revealed that the reactions were efficient and that end group conversions were 91-100%. The polymers were then cross-linked onto Si surfaces using electron beams to form micron sized patterns of the functional groups. Proteins with biotin binding sites, a free cysteine, an N-terminal α-oxoamide, and a histidine tag, respectively, were then incubated with the substrate in aqueous solutions without the addition of any other reagents. By fluorescence microscopy experiments it was determined that proteins reacted site-specifically with the exposed functional groups to form protein micropatterns. Multicomponent nanoscale protein patterns were then fabricated. Different PEGs with orthogonal reactivity were sequentially patterned on the same chip. Simultaneous assembly of two different proteins from a mixture of the biomolecules formed the multicomponent two dimensional patterns. Atomic force microscopy demonstrated that nanometer sized patterns of polymer were formed and fluorescence microscopy demonstrated that side-by-side patterns of the different proteins were obtained. Moreover, multilayer PEG fabrication produced micron and nanometer sized patterns of one functional group on top of the other. Precise three-dimensional arrangements of different proteins were then realized. PMID:19160460

  19. A Change in SHATTERPROOF Protein Lies at the Origin of a Fruit Morphological Novelty and a New Strategy for Seed Dispersal in Medicago Genus1[C][W

    PubMed Central

    Fourquin, Chloé; del Cerro, Carolina; Victoria, Filipe C.; Vialette-Guiraud, Aurélie; de Oliveira, Antonio C.; Ferrándiz, Cristina

    2013-01-01

    Angiosperms are the most diverse and numerous group of plants, and it is generally accepted that this evolutionary success owes in part to the diversity found in fruits, key for protecting the developing seeds and ensuring seed dispersal. Although studies on the molecular basis of morphological innovations are few, they all illustrate the central role played by transcription factors acting as developmental regulators. Here, we show that a small change in the protein sequence of a MADS-box transcription factor correlates with the origin of a highly modified fruit morphology and the change in seed dispersal strategies that occurred in Medicago, a genus belonging to the large legume family. This protein sequence modification alters the functional properties of the protein, affecting the affinities for other protein partners involved in high-order complexes. Our work illustrates that variation in coding regions can generate evolutionary novelties not based on gene duplication/subfunctionalization but by interactions in complex networks, contributing also to the current debate on the relative importance of changes in regulatory or coding regions of master regulators in generating morphological novelties. PMID:23640757

  20. The seirena B Class Floral Homeotic Mutant of California Poppy (Eschscholzia californica) Reveals a Function of the Enigmatic PI Motif in the Formation of Specific Multimeric MADS Domain Protein Complexes[C][W][OA

    PubMed Central

    Lange, Matthias; Orashakova, Svetlana; Lange, Sabrina; Melzer, Rainer; Theißen, Günter; Smyth, David R.; Becker, Annette

    2013-01-01

    The products of B class floral homeotic genes specify petal and stamen identity, and loss of B function results in homeotic conversions of petals into sepals and stamens into carpels. Here, we describe the molecular characterization of seirena-1 (sei-1), a mutant from the basal eudicot California poppy (Eschscholzia californica) that shows homeotic changes characteristic of floral homeotic B class mutants. SEI has been previously described as EScaGLO, one of four B class–related MADS box genes in California poppy. The C terminus of SEI, including the highly conserved PI motif, is truncated in sei-1 proteins. Nevertheless, like the wild-type SEI protein, the sei-1 mutant protein is able to bind CArG-boxes and can form homodimers, heterodimers, and several higher order complexes with other MADS domain proteins. However, unlike the wild type, the mutant protein is not able to mediate higher order complexes consisting of specific B, C, and putative E class related proteins likely involved in specifying stamen identity. Within the PI motif, five highly conserved N-terminal amino acids are specifically required for this interaction. Several families lack this short conserved sequence, including the Brassicaceae, and we propose an evolutionary scenario to explain these functional differences. PMID:23444328

  1. Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria.

    PubMed

    Barinov, Aleksandr; Loux, Valentin; Hammani, Amal; Nicolas, Pierre; Langella, Philippe; Ehrlich, Dusko; Maguin, Emmanuelle; van de Guchte, Maarten

    2009-01-01

    The in silico prediction of bacterial surface exposed proteins is of growing interest for the rational development of vaccines and in the study of bacteria-host relationships, whether pathogenic or host beneficial. This interest is driven by the increase in the use of DNA sequencing as a major tool in the early characterization of pathogenic bacteria and, more recently, even of complex ecosystems at the host-environment interface in metagenomics approaches. Current protein localization protocols are not suited to this prediction task as they ignore the potential surface exposition of many membrane-associated proteins. Therefore, we developed a new flow scheme, SurfG+, for the processing of protein sequence data with the particular aim of identification of potentially surface exposed (PSE) proteins from Gram-positive bacteria, which was validated for Streptococcus pyogenes. The results of an exploratory case study on closely related lactobacilli of the acidophilus group suggest that the yogurt bacterium Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) dedicates a relatively important fraction of its coding capacity to secreted proteins, while the probiotic gastrointestinal (GI) tract bacteria L. johnsonii and L. gasseri appear to encode a larger variety of PSE proteins, that may play a role in the interaction with the host.

  2. Lysosome-associated membrane proteins (LAMPs) regulate intracellular positioning of mitochondria in MC3T3-E1 cells.

    PubMed

    Rajapakshe, Anupama R; Podyma-Inoue, Katarzyna A; Terasawa, Kazue; Hasegawa, Katsuya; Namba, Toshimitsu; Kumei, Yasuhiro; Yanagishita, Masaki; Hara-Yokoyama, Miki

    2015-02-01

    The intracellular positioning of both lysosomes and mitochondria meets the requirements of degradation and energy supply, which are respectively the two major functions for cellular maintenance. The positioning of both lysosomes and mitochondria is apparently affected by the nutrient status of the cells. However, the mechanism coordinating the positioning of the organelles has not been sufficiently elucidated. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) are highly glycosylated proteins that are abundant in lysosomal membranes. In the present study, we demonstrated that the siRNA-mediated downregulation of LAMP-1, LAMP-2 or their combination enhanced the perinuclear localization of mitochondria, in the pre-osteoblastic cell line MC3T3-E1. On the other hand, in the osteocytic cell line MLO-Y4, in which both the lysosomes and mitochondria originally accumulate in the perinuclear region and mitochondria also fill dendrites, the effect of siRNA of LAMP-1 or LAMP-2 was barely observed. LAMPs are not directly associated with mitochondria, and there do not seem to be any accessory molecules commonly required to recruit the motor proteins to lysosomes and mitochondria. Our results suggest that LAMPs may regulate the positioning of lysosomes and mitochondria. A possible mechanism involving the indirect and context-dependent action of LAMPs is discussed.

  3. Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Siti Nor Akmar, A; Rafii, Mohd Y; Azizi, Parisa; Idris, A S

    2015-02-10

    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics.

  4. Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Siti Nor Akmar, A; Rafii, Mohd Y; Azizi, Parisa; Idris, A S

    2015-02-10

    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics. PMID:25479011

  5. Variations in Protein Concentration and Nitrogen Sources in Different Positions of Grain in Wheat

    PubMed Central

    Li, Xiangnan; Zhou, Longjing; Liu, Fulai; Zhou, Qin; Cai, Jian; Wang, Xiao; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    The distribution patterns of total protein and protein components in different layers of wheat grain were investigated using the pearling technique, and the sources of different protein components and pearling fractions were identified using 15N isotope tracing methods. It was found that N absorbed from jointing to anthesis (JA) and remobilized to the grain after anthesis was the principal source of grain N, especially in the outer layer. For albumin and globulin, the amount of N absorbed during different stages all showed a decreasing trend from the surface layer to the center part. Whereas, for globulin and glutenin, the N absorbed after anthesis accounted for the main part indicating that for storage protein, the utilization of N assimilated after anthesis is greater than that of the stored N assimilated before anthesis. It is concluded that manipulation of the N application rate during different growth stages could be an effective approach to modulate the distribution of protein fractions in pearled grains for specific end-uses. PMID:27446169

  6. First Demonstration of Positive Allosteric-like Modulation at the Human Wild Type Translocator Protein (TSPO).

    PubMed

    Narlawar, Rajeshwar; Werry, Eryn L; Scarf, Alana M; Hanani, Raphy; Chua, Sook Wern; King, Victoria A; Barron, Melissa L; Martins, Ralph N; Ittner, Lars M; Rendina, Louis M; Kassiou, Michael

    2015-11-12

    We show that changing the number and position of nitrogen atoms in the heteroatomic core of a pyrazolopyrimidine acetamide is sufficient to induce complex binding to wild type human TSPO. Only compounds with this complex binding profile lacked intrinsic effect on glioblastoma proliferation but positively modulated the antiproliferative effects of a synthetic TSPO ligand. To the best of our knowledge this is the first demonstration of allosteric-like interaction at the wild type human TSPO.

  7. Another turn of the screw in shaving Gram-positive bacteria: Optimization of proteomics surface protein identification in Streptococcus pneumoniae.

    PubMed

    Olaya-Abril, Alfonso; Gómez-Gascón, Lidia; Jiménez-Munguía, Irene; Obando, Ignacio; Rodríguez-Ortega, Manuel J

    2012-06-27

    Bacterial surface proteins are of outmost importance as they play critical roles in the interaction between cells and their environment. In addition, they can be targets of either vaccines or antibodies. Proteomic analysis through "shaving" live cells with proteases has become a successful approach for a fast and reliable identification of surface proteins. However, this protocol has not been able to reach the goal of excluding cytoplasmic contamination, as cell lysis is an inherent process during culture and experimental manipulation. In this work, we carried out the optimization of the "shaving" strategy for the Gram-positive human pathogen Streptococcus pneumoniae, a bacterium highly susceptible to autolysis, and set up the conditions for maximizing the identification of surface proteins containing sorting or exporting signals, and for minimizing cytoplasmic contamination. We also demonstrate that cell lysis is an inherent process during culture and experimental manipulation, and that a low level of lysis is enough to contaminate a "surfome" preparation with peptides derived from cytoplasmic proteins. When the optimized conditions were applied to several clinical isolates, we found the majority of the proteins described to induce protection against pneumococcal infection. In addition, we found other proteins whose protection capacity has not been yet tested. In addition, we show the utility of this approach for providing antigens that can be used in serological tests for the diagnosis of pneumococcal disease.

  8. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms

    PubMed Central

    Erkelenz, Steffen; Mueller, William F.; Evans, Melanie S.; Busch, Anke; Schöneweis, Katrin; Hertel, Klemens J.; Schaal, Heiner

    2013-01-01

    Alternative splicing is regulated by splicing factors that modulate splice site selection. In some cases, however, splicing factors show antagonistic activities by either activating or repressing splicing. Here, we show that these opposing outcomes are based on their binding location relative to regulated 5′ splice sites. SR proteins enhance splicing only when they are recruited to the exon. However, they interfere with splicing by simply relocating them to the opposite intronic side of the splice site. hnRNP splicing factors display analogous opposing activities, but in a reversed position dependence. Activation by SR or hnRNP proteins increases splice site recognition at the earliest steps of exon definition, whereas splicing repression promotes the assembly of nonproductive complexes that arrest spliceosome assembly prior to splice site pairing. Thus, SR and hnRNP splicing factors exploit similar mechanisms to positively or negatively influence splice site selection. PMID:23175589

  9. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning.

    PubMed

    Lee, M M; Schiefelbein, J

    1999-11-24

    The formation of the root epidermis of Arabidopsis provides a simple and elegant model for the analysis of cell patterning. A novel gene, WEREWOLF (WER), is described here that is required for position-dependent patterning of the epidermal cell types. The WER gene encodes a MYB-type protein and is preferentially expressed within cells destined to adopt the non-hair fate. Furthermore, WER is shown to regulate the position-dependent expression of the GLABRA2 homeobox gene, to interact with a bHLH protein, and to act in opposition to the CAPRICE MYB. These results suggest a simple model to explain the specification of the two root epidermal cell types, and they provide insight into the molecular mechanisms used to control cell patterning.

  10. Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain.

    PubMed Central

    Funato, H.; Yoshimura, M.; Yamazaki, T.; Saido, T. C.; Ito, Y.; Yokofujita, J.; Okeda, R.; Ihara, Y.

    1998-01-01

    Amyloid beta-protein (Abeta) is the major component of senile plaques that emerge in the cortex during aging and appear most abundantly in Alzheimer's disease. In the course of our immunocytochemical study on a large number of autopsy cases, we noticed, in many aged nondemented cases, the presence of unique diffuse plaques in the cortex distinct from ordinary diffuse plaques by immunocytochemistry. The former were amorphous, very faintly Abeta-immunoreactive plaques resembling diffuse plaques, but they stained for Abeta40 and were associated with small cells containing Abeta-positive granules. A panel of amino- and carboxyl-terminal-specific Abeta antibodies showed that such Abeta40-positive diffuse plaques and cell-associated granules were composed exclusively of amino-terminally deleted Abeta terminating at Abeta40, -42, and -43. Double immunostaining also showed that those Abeta-immunoreactive granules are located in astrocytes and not in microglia or neurons. Immunoelectron microscopy revealed that nonfibrillar Abeta immunoreactivity was located within lipofuscin-like granules in somewhat swollen astrocytes. These findings raise the possibility that astrocytes take up Abeta and attempt to degrade it in lysosomes in the aged brain. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:9546359

  11. Myelin basic protein-positive nerve fibres in human Meissner corpuscles.

    PubMed

    García-Suárez, O; Montaño, J A; Esteban, I; González-Martínez, T; Alvarez-Abad, C; López-Arranz, E; Cobo, J; Vega, J A

    2009-06-01

    Myelinated nerve fibres forming sensory corpuscles become amyelinic before entering the corpuscle. Interestingly, in Meissner corpuscles from monkey myelin basic protein (MBP), a specific component of myelin sheath co-localized with neuronal markers. To investigate whether or not this also occurs in human digital Meissner corpuscles, we used single and double immunohistochemistry to detect MBP associated with axonic (protein gene product (PGP) 9.5) or Schwann and Schwann-related cell (S100 protein) markers. We also studied these markers in Pacinian corpuscles. Nerve fibres immunoreactive for MBP were detected in about 25% of the Meissner corpuscles examined; however, MBP never co-localized with PGP 9.5 and MBP occasionally co-localized with S100 protein. MBP-immunoreactive fibres associated with Meissner corpuscles were observed at the periphery of the lamellar cells or within the corpuscle between the lamellar cells. These results describe the distribution of myelinated nerve fibres expressing MBP in human Meissner corpuscles, which is important when studying Meissner corpuscles in cutaneous biopsies used for the diagnosis of peripheral and degenerative neuropathies.

  12. Myelin basic protein-positive nerve fibres in human Meissner corpuscles

    PubMed Central

    García-Suárez, O; Montaño, J A; Esteban, I; González-Martínez, T; Alvarez-Abad, C; López-Arranz, E; Cobo, J; Vega, J A

    2009-01-01

    Myelinated nerve fibres forming sensory corpuscles become amyelinic before entering the corpuscle. Interestingly, in Meissner corpuscles from monkey myelin basic protein (MBP), a specific component of myelin sheath co-localized with neuronal markers. To investigate whether or not this also occurs in human digital Meissner corpuscles, we used single and double immunohistochemistry to detect MBP associated with axonic (protein gene product (PGP) 9.5) or Schwann and Schwann-related cell (S100 protein) markers. We also studied these markers in Pacinian corpuscles. Nerve fibres immunoreactive for MBP were detected in about 25% of the Meissner corpuscles examined; however, MBP never co-localized with PGP 9.5 and MBP occasionally co-localized with S100 protein. MBP-immunoreactive fibres associated with Meissner corpuscles were observed at the periphery of the lamellar cells or within the corpuscle between the lamellar cells. These results describe the distribution of myelinated nerve fibres expressing MBP in human Meissner corpuscles, which is important when studying Meissner corpuscles in cutaneous biopsies used for the diagnosis of peripheral and degenerative neuropathies. PMID:19538632

  13. Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch.

    PubMed

    Grondek, Joel F; Culver, Gloria M

    2004-12-01

    Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.

  14. Evolution of the Telomere-Associated Protein POT1a in Arabidopsis thaliana Is Characterized by Positive Selection to Reinforce Protein–Protein Interaction

    PubMed Central

    Beilstein, Mark A.; Renfrew, Kyle B.; Shakirov, Eugene V.; Zanis, Michael J.; Shippen, Dorothy E.

    2015-01-01

    Gene duplication is a major driving force in genome evolution. Here, we explore the nature and origin of the POT1 gene duplication in Arabidopsis thaliana. Protection of Telomeres (POT1) is a conserved multifunctional protein that modulates telomerase activity and its engagement with telomeres. Arabidopsis thaliana encodes two divergent POT1 paralogs termed AtPOT1a and AtPOT1b. AtPOT1a positively regulates telomerase activity, whereas AtPOT1b is proposed to negatively regulate telomerase and promote chromosome end protection. Phylogenetic analysis uncovered two independent POT1 duplication events in the plant kingdom, including one at the base of Brassicaceae. Tests for positive selection implemented in PAML revealed that the Brassicaceae POT1a lineage experienced positive selection postduplication and identified three amino acid residues with signatures of positive selection. A sensitive and quantitative genetic complementation assay was developed to assess POT1a function in A. thaliana. The assay showed that AtPOT1a is functionally distinct from single-copy POT1 genes in other plants. Moreover, for two of the sites with a strong signature of positive selection, substitutions that swap the amino acids in AtPOT1a for residues found in AtPOT1b dramatically compromised AtPOT1a function in vivo. In vitro-binding studies demonstrated that all three sites under positive selection specifically enhance the AtPOT1a interaction with CTC1, a core component of the highly conserved CST (CTC1/STN1/TEN1) telomere protein complex. Our results reveal a molecular mechanism for the role of these positively selected sites in AtPOT1a. The data also provide an important empirical example to refine theories of duplicate gene retention, as the outcome of positive selection here appears to be reinforcement of an ancestral function, rather than neofunctionalization. We propose that this outcome may not be unusual when the duplicated protein is a component of a multisubunit complex whose

  15. Argonaute2 Protein in Rat Spermatogenic Cells Is Localized to Nuage Structures and LAMP2-Positive Vesicles Surrounding Chromatoid Bodies.

    PubMed

    Fujii, Yuki; Onohara, Yuko; Fujita, Hideaki; Yokota, Sadaki

    2016-04-01

    Localization of Argonaute2 (AGO2) protein--an essential component for the processing of small interfering RNA (siRNA)-directed RNA interference (RNAi) in RNA-induced silencing complex (RISC) in nuage of rat spermatogenic cells--was evaluated by immunofluorescence microscopy (IFM) and immunoelectron microscopy (IEM). AGO2 was shown, for the first time, to be localized to four previously classified types of nuage: irregularly shaped perinuclear granules (ISPGs), intermitochondrial cement (IMC), satellite bodies (SBs), and chromatoid bodies (CBs). Dual IEM staining for AGO2/Maelstrom (MAEL) protein or AGO2/MIWI protein demonstrated that AGO2 is colocalized with MAEL or MIWI proteins in these types of nuage. Dual IFM and IEM staining of AGO2/lysosomal-associated membrane protein 2 (LAMP2) showed that CB in round spermatids are in contact with and surrounded by LAMP2-positive vesicles, whereas nuage in pachytene spermatocytes are not. Taken together, our findings indicate that: (i) AGO2 in pachytene spermatocytes functions in ISPGs, IMC, and SBs; (ii) AGO2 in round spermatids functions in CBs, and that CBs are associated with lysosomal compartments. PMID:27029769

  16. Expression of ribosome-binding protein 1 correlates with shorter survival in Her-2 positive breast cancer

    PubMed Central

    Liang, Xiaoshuan; Sun, Shanshan; Zhang, Xianyu; Wu, Hao; Tao, Weiyang; Liu, Tong; Wei, Wei; Geng, Jingshu; Pang, Da

    2015-01-01

    The aim of this study is to investigate the expression of ribosome-binding protein 1 (RRBP1) in invasive breast cancer and to analyze its relationship to clinical features and prognosis. RRBP1 expression was studied using real-time quantitative PCR and western blotting using pair-matched breast samples and immunohistochemical staining using a tissue microarray. Then the correlation between RRBP1 expression and clinicopathologic features was analyzed. RRBP1 mRNA and protein expression were significantly increased in breast cancer tissues compared with normal tissues. The protein level of RRBP1 is proved to be positively related to histological grade (P = 0.02), molecular subtype (P = 0.048) and status of Her-2 (P = 0.026) and P53 (P = 0.015). We performed a grade-stratified analysis of all patients according to the level of RRBP1 expression and found that RRBP1 overexpression highly affected overall survival in patients with early-stage (I and II) tumors (P = 0.042). Furthermore, Her-2 positive patients with negative RRBP1 expression had longer overall survival rates than those with positive RRBP1 expression (P = 0.031). Using multivariate analysis, it was determined that lymph node metastasis (LNM, P = 0.002) and RRBP1 expression (P = 0.005) were independent prognosis factors for overall survival. RRBP1 is a valuable prognostic factor in Her-2-positive breast cancer patients, indicating that RRBP1 is a potentially important target for the prediction of prognosis. PMID:25845758

  17. Oral lichen sclerosus expressing extracellular matrix proteins and IgG4-positive plasma cells.

    PubMed

    De Aquino Xavier, Flavia Calo; Prates, Alisio Alves; Gurgel, Clarissa Araujo; De Souza, Tulio Geraldo; Andrade, Rodrigo Guimaraes; Goncalves Ramos, Eduardo Antonio; Pedreira Ramalho, Luciana Maria; Dos Santos, Jean Nunes

    2014-09-16

    Lichen sclerosus (LS) is a mucocutaneous disease with uncommon oral involvement. The etiology is not yet well understood, but LS has been associated with autoimmune, genetic, and immunological factors. We report a 47-year-old man with LS that exhibited an asymptomatic white plaque with red patches on the maxillary alveolar mucosa extending to the labial mucosa. He had no other skin disease. Positive immunostaining for tenascin and scarcity of fibronectin suggested extracellular matrix reorganization. Elastin immunostaining indicated a reduction of elastic fibers. Immunoexpression of collagen IV in blood vessels and its absence in the epithelial basement membrane, together with diffuse MMP-9 immunoexpression, suggested altered proteolytic activity. Mast cell staining bordering areas of sclerosis indicated a possible role in the synthesis of collagen. IgG4 positivity in plasma cells suggested a role in the fibrogenesis. This is an unusual presentation of oral LS and we discuss immunohistochemical findings regarding cellular and extracellular matrix components.

  18. Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering.

    PubMed

    Torti, Stefano; Fornara, Fabio; Vincent, Coral; Andrés, Fernando; Nordström, Karl; Göbel, Ulrike; Knoll, Daniela; Schoof, Heiko; Coupland, George

    2012-02-01

    Flowering of Arabidopsis thaliana is induced by exposure to long days (LDs). During this process, the shoot apical meristem is converted to an inflorescence meristem that forms flowers, and this transition is maintained even if plants are returned to short days (SDs). We show that exposure to five LDs is sufficient to commit the meristem of SD-grown plants to flower as if they were exposed to continuous LDs. The MADS box proteins SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and FRUITFULL (FUL) play essential roles in this commitment process and in the induction of flowering downstream of the transmissible FLOWERING LOCUS T (FT) signal. We exploited laser microdissection and Solexa sequencing to identify 202 genes whose transcripts increase in the meristem during floral commitment. Expression of six of these transcripts was tested in different mutants, allowing them to be assigned to FT-dependent or FT-independent pathways. Most, but not all, of those dependent on FT and its paralog TWIN SISTER OF FT (TSF) also relied on SOC1 and FUL. However, this dependency on FT and TSF or SOC1 and FUL was often bypassed in the presence of the short vegetative phase mutation. FLOR1, which encodes a leucine-rich repeat protein, was induced in the early inflorescence meristem, and flor1 mutations delayed flowering. Our data contribute to the definition of LD-dependent pathways downstream and in parallel to FT.

  19. Identification of Positively Charged Residues in Enterovirus 71 Capsid Protein VP1 Essential for Production of Infectious Particles

    PubMed Central

    Yuan, Shilin; Li, Guiming; Wang, Ying; Gao, Qianqian; Wang, Yizhuo; Cui, Rui

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71), a positive-stranded RNA virus, is the major cause of hand, foot, and mouth disease (HFMD) in children, which can cause severe central nervous system disease and death. The capsids of EV71 consist of 60 copies of each of four viral structural proteins (VP1 to VP4), with VP1, VP2, and VP3 exposed on the surface and VP4 arranged internally. VP1 plays a central role in particle assembly and cell entry. To gain insight into the role of positively charged residues in VP1 function in these processes, a charged-to-alanine scanning analysis was performed using an infectious cDNA clone of EV71. Twenty-seven mutants containing single charged-to-alanine changes were tested. Sixteen of them were not viable, seven mutants were replication defective, and the remaining four mutants were replication competent. By selecting revertants, second-site mutations which could at least partially restore viral infectivity were identified within VP1 for four defective mutations and two lethal mutations. The resulting residue pairs represent a network of intra- and intermolecular interactions of the VP1 protein which could serve as a potential novel drug target. Interestingly, mutation K215A in the VP1 GH loop led to a significant increase in thermal stability, demonstrating that conditional thermostable mutants can be generated by altering the charge characteristics of VP1. Moreover, all mutants were sensitive to the EV71 entry inhibitor suramin, which binds to the virus particle via the negatively charged naphthalenetrisulfonic acid group, suggesting that single charged-to-alanine mutation is not sufficient for suramin resistance. Taken together, these data highlight the importance of positively charged residues in VP1 for production of infectious particles. IMPORTANCE Infection with EV71 is more often associated with neurological complications in children and is responsible for the majority of fatalities. No licensed vaccines or antiviral therapies are

  20. STAP-2 Protein Expression in B16F10 Melanoma Cells Positively Regulates Protein Levels of Tyrosinase, Which Determines Organs to Infiltrate in the Body*

    PubMed Central

    Sekine, Yuichi; Togi, Sumihito; Muromoto, Ryuta; Kon, Shigeyuki; Kitai, Yuichi; Yoshimura, Akihiko; Oritani, Kenji; Matsuda, Tadashi

    2015-01-01

    Melanoma is the most serious type of skin cancer, with a highly metastatic phenotype. In this report, we show that signal transducing adaptor protein 2 (STAP-2) is involved in cell migration, proliferation, and melanogenesis as well as chemokine receptor expression and tumorigenesis in B16F10 melanoma cells. This was evident in mice injected with STAP-2 shRNA (shSTAP-2)-expressing B16F10 cells, which infiltrated organs in a completely different pattern from the original cells, showing massive colonization in the liver, kidney, and neck but not in the lung. The most important finding was that STAP-2 expression determined tyrosinase protein content. STAP-2 colocalized with tyrosinase in lysosomes and protected tyrosinase from protein degradation. It is noteworthy that B16F10 cells with knocked down tyrosinase showed similar cell characteristics as shSTAP-2 cells. These results indicated that tyrosinase contributed to some cellular events beyond melanogenesis. Taken together, one possibility is that STAP-2 positively regulates the protein levels of tyrosinase, which determines tumor invasion via controlling chemokine receptor expression. PMID:26023234

  1. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    NASA Astrophysics Data System (ADS)

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; Vannieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-06-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.

  2. Structure–function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    PubMed Central

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; VanNieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-01-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure–function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division. PMID:27346279

  3. Estimation of Position Specific Energy as a Feature of Protein Residues from Sequence Alone for Structural Classification.

    PubMed

    Iqbal, Sumaiya; Hoque, Md Tamjidul

    2016-01-01

    A set of features computed from the primary amino acid sequence of proteins, is crucial in the process of inducing a machine learning model that is capable of accurately predicting three-dimensional protein structures. Solutions for existing protein structure prediction problems are in need of features that can capture the complexity of molecular level interactions. With a view to this, we propose a novel approach to estimate position specific estimated energy (PSEE) of a residue using contact energy and predicted relative solvent accessibility (RSA). Furthermore, we demonstrate PSEE can be reasonably estimated based on sequence information alone. PSEE is useful in identifying the structured as well as unstructured or, intrinsically disordered region of a protein by computing favorable and unfavorable energy respectively, characterized by appropriate threshold. The most intriguing finding, verified empirically, is the indication that the PSEE feature can effectively classify disorder versus ordered residues and can segregate different secondary structure type residues by computing the constituent energies. PSEE values for each amino acid strongly correlate with the hydrophobicity value of the corresponding amino acid. Further, PSEE can be used to detect the existence of critical binding regions that essentially undergo disorder-to-order transitions to perform crucial biological functions. Towards an application of disorder prediction using the PSEE feature, we have rigorously tested and found that a support vector machine model informed by a set of features including PSEE consistently outperforms a model with an identical set of features with PSEE removed. In addition, the new disorder predictor, DisPredict2, shows competitive performance in predicting protein disorder when compared with six existing disordered protein predictors. PMID:27588752

  4. Estimation of Position Specific Energy as a Feature of Protein Residues from Sequence Alone for Structural Classification

    PubMed Central

    Iqbal, Sumaiya; Hoque, Md Tamjidul

    2016-01-01

    A set of features computed from the primary amino acid sequence of proteins, is crucial in the process of inducing a machine learning model that is capable of accurately predicting three-dimensional protein structures. Solutions for existing protein structure prediction problems are in need of features that can capture the complexity of molecular level interactions. With a view to this, we propose a novel approach to estimate position specific estimated energy (PSEE) of a residue using contact energy and predicted relative solvent accessibility (RSA). Furthermore, we demonstrate PSEE can be reasonably estimated based on sequence information alone. PSEE is useful in identifying the structured as well as unstructured or, intrinsically disordered region of a protein by computing favorable and unfavorable energy respectively, characterized by appropriate threshold. The most intriguing finding, verified empirically, is the indication that the PSEE feature can effectively classify disorder versus ordered residues and can segregate different secondary structure type residues by computing the constituent energies. PSEE values for each amino acid strongly correlate with the hydrophobicity value of the corresponding amino acid. Further, PSEE can be used to detect the existence of critical binding regions that essentially undergo disorder-to-order transitions to perform crucial biological functions. Towards an application of disorder prediction using the PSEE feature, we have rigorously tested and found that a support vector machine model informed by a set of features including PSEE consistently outperforms a model with an identical set of features with PSEE removed. In addition, the new disorder predictor, DisPredict2, shows competitive performance in predicting protein disorder when compared with six existing disordered protein predictors. PMID:27588752

  5. Subgroup-Elimination Transcriptomics Identifies Signaling Proteins that Define Subclasses of TRPV1-Positive Neurons and a Novel Paracrine Circuit

    PubMed Central

    Isensee, Jörg; Wenzel, Carsten; Buschow, Rene; Weissmann, Robert; Kuss, Andreas W.; Hucho, Tim

    2014-01-01

    Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p<0.05, fold-change>1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based

  6. Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind

    PubMed Central

    Sasaki, Katsutomo; Aida, Ryutaro; Yamaguchi, Hiroyasu; Shikata, Masahito; Niki, Tomoya; Nishijima, Takaaki

    2010-01-01

    Homeotic class B genes GLOBOSA (GLO)/PISTILLATA (PI) and DEFICIENS (DEF)/APETALA3 (AP3) are involved in the development of petals and stamens in Arabidopsis. However, functions of these genes in the development of floral organs in torenia are less well known. Here, we demonstrate the unique floral phenotypes of transgenic torenia formed due to the modification of class B genes, TfGLO and TfDEF. TfGLO-overexpressing plants showed purple-stained sepals that accumulated anthocyanins in a manner similar to that of petals. TfGLO-suppressed plants showed serrated petals and TfDEF-suppressed plants showed partially decolorized petals. In TfGLO-overexpressing plants, cell shapes on the surfaces of sepals were altered to petal-like cell shapes. Furthermore, TfGLO- and TfDEF-suppressed plants partially had sepal-like cells on the surfaces of their petals. We isolated putative class B gene-regulated genes and examined their expression in transgenic plants. Three xyloglucan endo-1,4-beta-d-glucanase genes were up-regulated in TfGLO- and TfDEF-overexpressing plants and down-regulated in TfGLO- and TfDEF-suppressed plants. In addition, 10 anthocyanin biosynthesis-related genes, including anthocyanin synthase and chalcone isomerase, were up-regulated in TfGLO-overexpressing plants and down-regulated in TfGLO-suppressed plants. The expression patterns of these 10 genes in TfDEF transgenic plants were diverse and classified into several groups. HPLC analysis indicated that sepals of TfGLO-overexpressing plants accumulate the same type of anthocyanins and flavones as wild-type plants. The difference in phenotypes and expression patterns of the 10 anthocyanin biosynthesis-related genes between TfGLO and TfDEF transgenic plants indicated that TfGLO and TfDEF have partial functional divergence, while they basically work synergistically in torenia. Electronic supplementary material The online version of this article (doi:10.1007/s00438-010-0574-z) contains supplementary material, which is available to authorized users. PMID:20872230

  7. Positive Selection in Bone Morphogenetic Protein 15 Targets a Natural Mutation Associated with Primary Ovarian Insufficiency in Human

    PubMed Central

    Meslin, Camille; Monestier, Olivier; Di Pasquale, Elisa; Pascal, Géraldine; Persani, Luca; Fabre, Stéphane

    2013-01-01

    Bone Morphogenetic Protein 15 (BMP15) is a TGFβ-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated with primary ovarian insufficiency (POI) in women. To investigate the evolving role of BMP15, a phylogenetic analysis of this particular TGFβ family member was performed. A maximum likelihood phylogenetic tree of several TGFβ/BMP family members expressed by the ovary showed that BMP15 has a very strong divergence and a rapid evolution compared to others. Moreover, among 24 mammalian species, we detected signals of positive selection in the hominidae clade corresponding to F146, L189 and Y235 residues in human BMP15. The biological importance of these residues was tested functionally after site directed-mutagenesis in a COV434 cells luciferase assay. By replacing the positively selected amino acid either by alanine or the most represented residue in other studied species, only L189A, Y235A and Y235C mutants showed a significant increase of BMP15 signaling when compared to wild type. Additionally, the Y235C mutant was more potent than wild type in inhibiting progesterone secretion of ovine granulosa cells in primary culture. Interestingly, the Y235C mutation was previously identified in association with POI in women. In conclusion, this study evidences that the BMP15 gene has evolved faster than other members of the TGFß family and was submitted to a positive selection pressure in the hominidae clade. Some residues under positive selection are of great importance for the normal function of the protein and thus for female fertility. Y235 represents a critical residue in the determination of BMP15 biological activity, thus indirectly confirming its role in the onset of POI in

  8. Positive selection in bone morphogenetic protein 15 targets a natural mutation associated with primary ovarian insufficiency in human.

    PubMed

    Auclair, Sylvain; Rossetti, Raffaella; Meslin, Camille; Monestier, Olivier; Di Pasquale, Elisa; Pascal, Géraldine; Persani, Luca; Fabre, Stéphane

    2013-01-01

    Bone Morphogenetic Protein 15 (BMP15) is a TGFβ-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated with primary ovarian insufficiency (POI) in women. To investigate the evolving role of BMP15, a phylogenetic analysis of this particular TGFβ family member was performed. A maximum likelihood phylogenetic tree of several TGFβ/BMP family members expressed by the ovary showed that BMP15 has a very strong divergence and a rapid evolution compared to others. Moreover, among 24 mammalian species, we detected signals of positive selection in the hominidae clade corresponding to F146, L189 and Y235 residues in human BMP15. The biological importance of these residues was tested functionally after site directed-mutagenesis in a COV434 cells luciferase assay. By replacing the positively selected amino acid either by alanine or the most represented residue in other studied species, only L189A, Y235A and Y235C mutants showed a significant increase of BMP15 signaling when compared to wild type. Additionally, the Y235C mutant was more potent than wild type in inhibiting progesterone secretion of ovine granulosa cells in primary culture. Interestingly, the Y235C mutation was previously identified in association with POI in women. In conclusion, this study evidences that the BMP15 gene has evolved faster than other members of the TGFß family and was submitted to a positive selection pressure in the hominidae clade. Some residues under positive selection are of great importance for the normal function of the protein and thus for female fertility. Y235 represents a critical residue in the determination of BMP15 biological activity, thus indirectly confirming its role in the onset of POI in

  9. The dead-end elimination theorem and its use in protein side-chain positioning

    NASA Astrophysics Data System (ADS)

    Desmet, Johan; Maeyer, Marc De; Hazes, Bart; Lasters, Ignace

    1992-04-01

    THE prediction of a protein's tertiary structure is still a considerable problem because the huge amount of possible conformational space1 makes it computationally difficult. With regard to side-chain modelling, a solution has been attempted by the grouping of side-chain conformations into representative sets of rotamers2-5. Nonetheless, an exhaustive combinatorial search is still limited to carefully identified packing units5,6containing a limited number of residues. For larger systems other strategies had to be develop-ped, such as the Monte Carlo Procedure6,7 and the genetic algorithm and clustering approach8. Here we present a theorem, referred to as the 'dead-end elimination' theorem, which imposes a suitable condition to identify rotamers that cannot be members of the global minimum energy conformation. Application of this theorem effectively controls the computational explosion of the rotamer combinatorial problem, thereby allowing the determination of the global minimum energy conformation of a large collection of side chains.

  10. A Novel Erythrocyte Binding Protein of Plasmodium vivax Suggests an Alternate Invasion Pathway into Duffy-Positive Reticulocytes

    PubMed Central

    Thomson-Luque, Richard; Torres, Letícia de Menezes; Gunalan, Karthigayan; Carvalho, Luzia H.

    2016-01-01

    ABSTRACT Erythrocyte invasion by malaria parasites is essential for blood-stage development and an important determinant of host range. In Plasmodium vivax, the interaction between the Duffy binding protein (DBP) and its cognate receptor, the Duffy antigen receptor for chemokines (DARC), on human erythrocytes is central to blood-stage infection. Contrary to this established pathway of invasion, there is growing evidence of P. vivax infections occurring in Duffy blood group-negative individuals, suggesting that the parasite might have gained an alternative pathway to infect this group of individuals. Supporting this concept, a second distinct erythrocyte binding protein (EBP2), representing a new member of the DBP family, was discovered in P. vivax and may be the ligand in an alternate invasion pathway. Our study characterizes this novel ligand and determines its potential role in reticulocyte invasion by P. vivax merozoites. EBP2 binds preferentially to young (CD71high) Duffy-positive (Fy+) reticulocytes and has minimal binding capacity for Duffy-negative reticulocytes. Importantly, EBP2 is antigenically distinct from DBP and cannot be functionally inhibited by anti-DBP antibodies. Consequently, our results do not support EBP2 as a ligand for invasion of Duffy-negative blood cells, but instead, EBP2 may represent a novel ligand for an alternate invasion pathway of Duffy-positive reticulocytes. PMID:27555313

  11. SCAFFOLDING PROTEIN GAB1 SUSTAINS EPIDERMAL GROWTH FACTOR-INDUCED MITOGENIC AND SURVIVAL SIGNALING BY MULTIPLE POSITIVE FEEDBACK LOOPS

    PubMed Central

    Kiyatkin, Anatoly; Aksamitiene, Edita; Markevich, Nick I.; Borisov, Nikolay M.; Hoek, Jan B.; Kholodenko, Boris N.

    2008-01-01

    Grb2-associated binder 1 (GAB1) is a scaffold protein involved in numerous interactions that propagate signaling by growth factor and cytokine receptors. Here we explore in silico and validate in vivo the role of GAB1 in the control of mitogenic (Ras/MAPK) and survival (PI3K/Akt) signaling stimulated by epidermal growth factor (EGF). We built a comprehensive mechanistic model that allows for reliable predictions of temporal patterns of cellular responses to EGF under diverse perturbations, including different EGF doses, GAB1 suppression, expression of mutant proteins and pharmacological inhibitors. We show that the temporal dynamics of GAB1 tyrosine phosphorylation is significantly controlled by positive GAB1-PI3K feedback and negative MAPK-GAB1 feedback. Our experimental and computational results demonstrate that the essential function of GAB1 is to enhance PI3K/Akt activation and extend the duration of Ras/MAPK signaling. By amplifying positive interactions between survival and mitogenic pathways, GAB1 plays the critical role in cell proliferation and tumorigenesis. PMID:16687399

  12. Transmembrane Adaptor Protein PAG/CBP Is Involved in both Positive and Negative Regulation of Mast Cell Signaling

    PubMed Central

    Draberova, Lubica; Bugajev, Viktor; Potuckova, Lucie; Halova, Ivana; Bambouskova, Monika; Polakovicova, Iva; Xavier, Ramnik J.; Seed, Brian

    2014-01-01

    The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined. Here, we examined the activation of bone marrow-derived mast cells (BMMCs) with PAG knockout and PAG knockdown and the corresponding controls. Our data show that PAG-deficient BMMCs exhibit impaired antigen-induced degranulation, extracellular calcium uptake, tyrosine phosphorylation of several key signaling proteins (including the high-affinity IgE receptor subunits, spleen tyrosine kinase, and phospholipase C), production of several cytokines and chemokines, and chemotaxis. The enzymatic activities of the LYN and FYN kinases were increased in nonactivated cells, suggesting the involvement of a LYN- and/or a FYN-dependent negative regulatory loop. When BMMCs from PAG-knockout mice were activated via the KIT receptor, enhanced degranulation and tyrosine phosphorylation of the receptor were observed. In vivo experiments showed that PAG is a positive regulator of passive systemic anaphylaxis. The combined data indicate that PAG can function as both a positive and a negative regulator of mast cell signaling, depending upon the signaling pathway involved. PMID:25246632

  13. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes

    PubMed Central

    Gryaznova, Yuliya; Caydasi, Ayse Koca; Malengo, Gabriele; Sourjik, Victor; Pereira, Gislene

    2016-01-01

    The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control. DOI: http://dx.doi.org/10.7554/eLife.14029.001 PMID:27159239

  14. Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements

    PubMed Central

    Liu, Jian; Zhang, Lei; He, Chongsheng; Shen, Wen-Hui; Jin, Hong; Xu, Lin; Zhang, Yijing

    2016-01-01

    Polycomb repressive complexes (PRCs) play crucial roles in transcriptional repression and developmental regulation in both plants and animals. In plants, depletion of different members of PRCs causes both overlapping and unique phenotypic defects. However, the underlying molecular mechanism determining the target specificity and functional diversity is not sufficiently characterized. Here, we quantitatively compared changes of tri-methylation at H3K27 in Arabidopsis mutants deprived of various key PRC components. We show that CURLY LEAF (CLF), a major catalytic subunit of PRC2, coordinates with different members of PRC1 in suppression of distinct plant developmental programs. We found that expression of flower development genes is repressed in seedlings preferentially via non-redundant role of CLF, which specifically associated with LIKE HETEROCHROMATIN PROTEIN1 (LHP1). In contrast, expression of embryo development genes is repressed by PRC1-catalytic core subunits AtBMI1 and AtRING1 in common with PRC2-catalytic enzymes CLF or SWINGER (SWN). This context-dependent role of CLF corresponds well with the change in H3K27me3 profiles, and is remarkably associated with differential co-occupancy of binding motifs of transcription factors (TFs), including MADS box and ABA-related factors. We propose that different combinations of PRC members distinctively regulate different developmental programs, and their target specificity is modulated by specific TFs. PMID:26760036

  15. The asymmetric protein expression hypothesis - Explaining the unilaterality of HLA-B27-positive acute anterior uveitides.

    PubMed

    Clarke, Margo S; Plouznikoff, Alexandre; Deschênes, Jean

    2016-03-01

    For reasons still unclear, most HLA-B27-positive acute anterior uveitides occur unilaterally. Building upon the growing literature showing that left-right asymmetry exist at the biomolecular and at the cellular levels, we propose a new hypothesis to explain why HLA-B27-positive acute anterior uveitides tend to affect one eye selectively. We postulate that left and right uveal tissue may present quantitatively and qualitatively different proteins to the immune system, capable to trigger an autoimmune response, and that other variables, including anatomical, cellular and molecular barriers, as well as our own eye-derived immunological tolerance and immune suppressive intraocular microenvironment may also be unequally distributed, and impact differently the immune privileges of the left and right eye. These same quantitative and qualitative differences might also explain why HLA-B27-positive acute anterior uveitides can flip-flop between the left and the right eye, after the first attack. By trying to figure out why one eye is targeted by an autoimmune reaction while the other is clinically unaffected, we might be able to better understand how and why an autoimmune reaction starts. Hopefully, this will help us devise better treatments for ocular autoimmune diseases, and contribute to the management of autoinflammatory conditions with a marked asymmetric clinical presentation in other fields. PMID:26880626

  16. Phenotypic Consequences Resulting from a Methionine-to-Valine Substitution at Position 48 in the HPr Protein of Streptococcus salivarius

    PubMed Central

    Plamondon, Pascale; Brochu, Denis; Thomas, Suzanne; Fradette, Julie; Gauthier, Lucie; Vaillancourt, Katy; Buckley, Nicole; Frenette, Michel; Vadeboncoeur, Christian

    1999-01-01

    In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His15) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser46) by an ATP-dependent protein kinase (His∼P and Ser-P, respectively). We have isolated from Streptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His15 by EI nor the phosphorylation at Ser46 by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His∼P) than the wild-type strain, while the levels of free HPr and HPr(His∼P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of α-galactosidase, β-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule. PMID:10559156

  17. Quinoxaline-substituted chalcones as new inhibitors of breast cancer resistance protein ABCG2: polyspecificity at B-ring position.

    PubMed

    Winter, Evelyn; Gozzi, Gustavo Jabor; Chiaradia-Delatorre, Louise Domeneghini; Daflon-Yunes, Nathalia; Terreux, Raphael; Gauthier, Charlotte; Mascarello, Alessandra; Leal, Paulo César; Cadena, Silvia M; Yunes, Rosendo Augusto; Nunes, Ricardo José; Creczynski-Pasa, Tania Beatriz; Di Pietro, Attilio

    2014-01-01

    A series of chalcones substituted by a quinoxaline unit at the B-ring were synthesized and tested as inhibitors of breast cancer resistance protein-mediated mitoxantrone efflux. These compounds appeared more efficient than analogs containing other B-ring substituents such as 2-naphthyl or 3,4-methylenedioxyphenyl while an intermediate inhibitory activity was obtained with a 1-naphthyl group. In all cases, two or three methoxy groups had to be present on the phenyl A-ring to produce a maximal inhibition. Molecular modeling indicated both electrostatic and steric positive contributions. A higher potency was observed when the 2-naphthyl or 3,4-methylenedioxyphenyl group was shifted to the A-ring and methoxy substituents were shifted to the phenyl B-ring, indicating preferences among polyspecificity of inhibition.

  18. Quinoxaline-substituted chalcones as new inhibitors of breast cancer resistance protein ABCG2: polyspecificity at B-ring position

    PubMed Central

    Winter, Evelyn; Gozzi, Gustavo Jabor; Chiaradia-Delatorre, Louise Domeneghini; Daflon-Yunes, Nathalia; Terreux, Raphael; Gauthier, Charlotte; Mascarello, Alessandra; Leal, Paulo César; Cadena, Silvia M; Yunes, Rosendo Augusto; Nunes, Ricardo José; Creczynski-Pasa, Tania Beatriz; Di Pietro, Attilio

    2014-01-01

    A series of chalcones substituted by a quinoxaline unit at the B-ring were synthesized and tested as inhibitors of breast cancer resistance protein-mediated mitoxantrone efflux. These compounds appeared more efficient than analogs containing other B-ring substituents such as 2-naphthyl or 3,4-methylenedioxyphenyl while an intermediate inhibitory activity was obtained with a 1-naphthyl group. In all cases, two or three methoxy groups had to be present on the phenyl A-ring to produce a maximal inhibition. Molecular modeling indicated both electrostatic and steric positive contributions. A higher potency was observed when the 2-naphthyl or 3,4-methylenedioxyphenyl group was shifted to the A-ring and methoxy substituents were shifted to the phenyl B-ring, indicating preferences among polyspecificity of inhibition. PMID:24920885

  19. Mcp4, a Meiotic Coiled-Coil Protein, Plays a Role in F-Actin Positioning during Schizosaccharomyces pombe Meiosis▿

    PubMed Central

    Ohtaka, Ayami; Okuzaki, Daisuke; Saito, Takamune T.; Nojima, Hiroshi

    2007-01-01

    Some meiosis-specific proteins of Schizosaccharomyces pombe harbor coiled-coil motifs and play essential roles in meiotic progression. Here we describe Mcp4, a novel meiosis-specific protein whose expression is abruptly induced at the horsetail phase and which remains expressed until sporulation is finished. Fluorescence microscopic analysis revealed that Mcp4 alters its subcellular localization during meiosis in a manner that partially resembles the movement of F-actin during meiosis. Mcp4 and F-actin never colocalize; rather, they are located in a side-by-side manner. When forespore membrane formation begins at metaphase II, the Mcp4 signals assemble at the lagging face of the dividing nuclei. At this stage, they are sandwiched between F-actin and the nucleus. Mcp4, in turn, appears to sandwich F-actin with Meu14. In mcp4Δ cells at anaphase II, the F-actin, which is normally dumbbell-shaped, adopts an abnormal balloon shape. Spores of mcp4Δ cells were sensitive to NaCl, although their shape and viability were normal. Taken together, we conclude that Mcp4 plays a role in the accurate positioning of F-actin during S. pombe meiosis. PMID:17435009

  20. The Immunologic Properties of Bone Morphogenic Protein Receptor IB Positive Subpopulation before and after Osteogenic Differentiation in Mouse Dermis

    PubMed Central

    Wang, Tao; Xu, Hua; Zhang, Yi; Dong, Jia-Sheng

    2016-01-01

    We have previously reported that human dermal bone morphogenic protein receptor (BMPR) IB positive subpopulation had a high osteogenic differentiation potential and may be a promising cell source for allogeneic bone tissue engineering. In this study, the immunologic properties of dermal BMPR-IB+ subpopulation before and after osteogenic differentiation were reported. The results confirmed that dermal BMPR-IB+ cells possessed a similar osteogenic differentiation potential with bone marrow mesenchymal stromal cells in a mouse model. Furthermore, the expression of immune rejection-related surface antigens such as major histocompatibility class II and co-stimulatory proteins (CD40, CD80, and CD86) were absent on dermal BMPRIB+ cells. Dermal BMPRIB+ cells elicited no proliferation of allogeneic splenocytes and suppressed the proliferation of stimulated immune cells. Interestingly, osteogenic differentiation in vitro had no adverse effect on the immunological features of these cells. Most importantly, inducible NO synthase (iNOS) was involved in immunoregulatory effects by undifferentiated BMPRIB+ fibroblasts, whereas indoleamine 2,3-dioxygenase (IDO) activity was related to mediating immunomodulatory function by osteogenic differentiated BMPRIB+ fibroblasts. In conclusion, dermal BMPRIB+ cells have a low immunogenicity and possess immunosuppressive capacity before and after osteogenic differentiation in vitro, which would facilitate the allotransplantation in the future. However, mechanisms mediating immunoregulatory property between undifferentiated and osteogenic differentiated BMPRIB+ fibroblasts may be different and need further investigation. PMID:27552226

  1. Piezometric biosensors for anti-apoptotic protein survivin based on buried positive-potential barrier and immobilized monoclonal antibodies.

    PubMed

    Stobiecka, Magdalena; Chalupa, Agata; Dworakowska, Beata

    2016-10-15

    The anti-apoptotic protein survivin (Sur) plays an important role in the regulation of cell division and inducing the chemotherapeutic drug resistance. The Sur protein and its mRNA have recently been studied as cancer biomarkers and potential targets for cancer therapy. In this work, we have focused on the design of immunosensors for the detection of Sur based on buried positive-potential barrier layer structure and anti-survivin antibody. The modification of solid AuQC piezoelectrodes was monitored by recording the resonance frequency shift and electrochemical measurements during each step of the sensor preparation. Our results indicate that the immunosensor with covalently bound monoclonal anti-survivin antibody can detect Sur with the limit of detection, LOD=1.7nM (S/N=3σ). The immunosensor applicability for the analysis of real samples was assessed by testing samples of cell lysate solutions obtained from human astrocytoma (glioblastoma) U-87MG cell line, with the experiments performed using the standard addition method. The good linearity of the calibration curves for PBS and lysate solutions at low Sur concentrations confirm the high specificity of the proposed biosensor and good discrimination against nonspecific interactions with lysate components. The calculations indicate that there is still room to increase the Sur capture capacity for Sur while miniaturizing the sensor. The important advantage of the sensor is that it can be reused by a simple regeneration procedure.

  2. Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL.

    PubMed

    Zhu, Minghua; Liu, Yan; Koonpaew, Surapong; Granillo, Olivia; Zhang, Weiguo

    2004-10-18

    Linker for activation of B cells (LAB, also called NTAL; a product of wbscr5 gene) is a newly identified transmembrane adaptor protein that is expressed in B cells, NK cells, and mast cells. Upon BCR activation, LAB is phosphorylated and interacts with Grb2. LAB is capable of rescuing thymocyte development in LAT-deficient mice. To study the in vivo function of LAB, LAB-deficient mice were generated. Although disruption of the Lab gene did not affect lymphocyte development, it caused mast cells to be hyperresponsive to stimulation via the FcepsilonRI, evidenced by enhanced Erk activation, calcium mobilization, degranulation, and cytokine production. These data suggested that LAB negatively regulates mast cell function. However, mast cells that lacked both linker for activation of T cells (LAT) and LAB proteins had a more severe block in FcepsilonRI-mediated signaling than LAT(-/-) mast cells, demonstrating that LAB also shares a redundant function with LAT to play a positive role in FcepsilonRI-mediated signaling.

  3. High Expression of PTGR1 Promotes NSCLC Cell Growth via Positive Regulation of Cyclin-Dependent Protein Kinase Complex

    PubMed Central

    Zhou, Weihe; Zhang, Yuefeng; Liu, Yong

    2016-01-01

    Lung cancer has been the most common cancer and the main cause of cancer-related deaths worldwide for several decades. PTGR1 (prostaglandin reductase 1), as a bifunctional enzyme, has been involved in the occurrence and progression of cancer. However, its impact on human lung cancer is rarely reported. In this study, we found that PTGR1 was overexpressed in lung cancer based on the analyses of Oncomine. Moreover, lentivirus-mediated shRNA knockdown of PTGR1 reduced cell viability in human lung carcinoma cells 95D and A549 by MTT and colony formation assay. PTGR1 depletion led to G2/M phase cell cycle arrest and increased the proportion of apoptotic cells in 95D cells by flow cytometry. Furthermore, silencing PTGR1 in 95D cells resulted in decreased levels of cyclin-dependent protein kinase complex (CDK1, CDK2, cyclin A2, and cyclin B1) by western blotting and then PTGR1 is positively correlated with cyclin-dependent protein by using the data mining of the Oncomine database. Therefore, our findings suggest that PTGR1 may play a role in lung carcinogenesis through regulating cell proliferation and is a potential new therapeutic strategy for lung cancer. PMID:27429979

  4. The Immunologic Properties of Bone Morphogenic Protein Receptor IB Positive Subpopulation before and after Osteogenic Differentiation in Mouse Dermis.

    PubMed

    He, Jin-Guang; Wang, Ting-Liang; Wang, Tao; Xu, Hua; Zhang, Yi; Dong, Jia-Sheng

    2016-01-01

    We have previously reported that human dermal bone morphogenic protein receptor (BMPR) IB positive subpopulation had a high osteogenic differentiation potential and may be a promising cell source for allogeneic bone tissue engineering. In this study, the immunologic properties of dermal BMPR-IB+ subpopulation before and after osteogenic differentiation were reported. The results confirmed that dermal BMPR-IB+ cells possessed a similar osteogenic differentiation potential with bone marrow mesenchymal stromal cells in a mouse model. Furthermore, the expression of immune rejection-related surface antigens such as major histocompatibility class II and co-stimulatory proteins (CD40, CD80, and CD86) were absent on dermal BMPRIB+ cells. Dermal BMPRIB+ cells elicited no proliferation of allogeneic splenocytes and suppressed the proliferation of stimulated immune cells. Interestingly, osteogenic differentiation in vitro had no adverse effect on the immunological features of these cells. Most importantly, inducible NO synthase (iNOS) was involved in immunoregulatory effects by undifferentiated BMPRIB+ fibroblasts, whereas indoleamine 2,3-dioxygenase (IDO) activity was related to mediating immunomodulatory function by osteogenic differentiated BMPRIB+ fibroblasts. In conclusion, dermal BMPRIB+ cells have a low immunogenicity and possess immunosuppressive capacity before and after osteogenic differentiation in vitro, which would facilitate the allotransplantation in the future. However, mechanisms mediating immunoregulatory property between undifferentiated and osteogenic differentiated BMPRIB+ fibroblasts may be different and need further investigation. PMID:27552226

  5. Positive Role of Promyelocytic Leukemia Protein in Type I Interferon Response and Its Regulation by Human Cytomegalovirus

    PubMed Central

    Kim, Young-Eui; Ahn, Jin-Hyun

    2015-01-01

    Promyelocytic leukemia protein (PML), a major component of PML nuclear bodies (also known as nuclear domain 10), is involved in diverse cellular processes such as cell proliferation, apoptosis, gene regulation, and DNA damage response. PML also acts as a restriction factor that suppresses incoming viral genomes, therefore playing an important role in intrinsic defense. Here, we show that PML positively regulates type I interferon response by promoting transcription of interferon-stimulated genes (ISGs) and that this regulation by PML is counteracted by human cytomegalovirus (HCMV) IE1 protein. Small hairpin RNA-mediated PML knockdown in human fibroblasts reduced ISG induction by treatment of interferon-β or infection with UV-inactivated HCMV. PML was required for accumulation of activated STAT1 and STAT2, interacted with them and HDAC1 and HDAC2, and was associated with ISG promoters after HCMV infection. During HCMV infection, viral IE1 protein interacted with PML, STAT1, STAT2, and HDACs. Analysis of IE1 mutant viruses revealed that, in addition to the STAT2-binding domain, the PML-binding domain of IE1 was necessary for suppression of interferon-β-mediated ISG transcription, and that IE1 inhibited ISG transcription by sequestering interferon-stimulated gene factor 3 (ISGF3) in a manner requiring its binding of PML and STAT2, but not of HDACs. In conclusion, our results demonstrate that PML participates in type I interferon-induced ISG expression by regulating ISGF3, and that this regulation by PML is counteracted by HCMV IE1, highlighting a widely shared viral strategy targeting PML to evade intrinsic and innate defense mechanisms. PMID:25812002

  6. High-content positional biosensor screening assay for compounds to prevent or disrupt androgen receptor and transcriptional intermediary factor 2 protein-protein interactions.

    PubMed

    Hua, Yun; Shun, Tong Ying; Strock, Christopher J; Johnston, Paul A

    2014-09-01

    The androgen receptor-transcriptional intermediary factor 2 (AR-TIF2) positional protein-protein interaction (PPI) biosensor assay described herein combines physiologically relevant cell-based assays with the specificity of binding assays by incorporating structural information of AR and TIF2 functional domains along with intracellular targeting sequences and fluorescent reporters. Expression of the AR-red fluorescent protein (RFP) "prey" and TIF2-green fluorescent protein (GFP) "bait" components of the biosensor was directed by recombinant adenovirus constructs that expressed the ligand binding and activation function 2 surface domains of AR fused to RFP with nuclear localization and nuclear export sequences, and three α-helical LXXLL motifs from TIF2 fused to GFP and an HIV Rev nucleolar targeting sequence. In unstimulated cells, AR-RFP was localized predominantly to the cytoplasm and TIF2-GFP was localized to nucleoli. Dihydrotestosterone (DHT) treatment induced AR-RFP translocation into the nucleus where the PPIs between AR and TIF2 resulted in the colocalization of both biosensors within the nucleolus. We adapted the translocation enhanced image analysis module to quantify the colocalization of the AR-RFP and TIF2-GFP biosensors in images acquired on the ImageXpress platform. DHT induced a concentration-dependent AR-TIF2 colocalization and produced a characteristic condensed punctate AR-RFP PPI nucleolar distribution pattern. The heat-shock protein 90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) and antiandrogens flutamide and bicalutamide inhibited DHT-induced AR-TIF2 PPI formation with 50% inhibition concentrations (IC50s) of 88.5±12.5 nM, 7.6±2.4 μM, and 1.6±0.4 μM, respectively. Images of the AR-RFP distribution phenotype allowed us to distinguish between 17-AAG and flutamide, which prevented AR translocation, and bicalutamide, which blocked AR-TIF2 PPIs. We screened the Library of Pharmacologically Active Compounds (LOPAC) set

  7. The sperm proteins from amphioxus mirror its basal position among chordates and redefine the origin of vertebrate protamines.

    PubMed

    Eirín-López, José María; Frehlick, Lindsay J; Chiva, Manel; Saperas, Núria; Ausió, Juan

    2008-08-01

    The sperm nuclear basic proteins (SNBPs) that participate in chromatin condensation in spermatozoa belong to 3 groups: histone (H), protamine-like (PL), and protamine (P) type. They share a common origin with histone H1 resulting from the segregation of PL components, corresponding to different regions of an H1 precursor molecule (N-terminal, winged-helix, C-terminal domains), becoming independent and following a subsequent process of parallel vertical evolution (H <--> PL <--> P). In the present work, we describe the sequence and primary structure of the main SNBP component in the sperm of the cephalochordate Branchiostoma floridae (amphioxus), revealing that it represents the deuterostome counterpart of the PL-III SNBP component from molluscs corresponding to the H1 N-terminal region. Until now, this has been a missing piece needed to complete the evolutionary history of SNBPs in metazoan genomes. The discovery of this PL lineage in deuterostomes definitively validates the parallel vertical evolution of SNBPs across metazoans, giving further support to the "basal" position of amphioxus among chordates, with respect to tunicates. Sequence analyses suggest that later on in evolution, the appearance of positively selected arginine-rich protamines, derived from the H1 C-terminal region, led to the extinction of this PL lineage in the genomes of early protostomes and deuterostomes. Given that tunicates are now viewed as a sister group of vertebrates, the lysine to arginine transition responsible for the origin of vertebrate protamines must be set a step back from tunicates.

  8. Short communication: Proteins in heat-processed skim milk powder have no positive effects on bone loss of ovariectomized rats.

    PubMed

    Du, M; Kong, Y; Wang, C; Gao, H; Han, X; Yi, H; Zhang, L

    2011-06-01

    Milk has positive effects on bone growth. However, the effect of skim milk powder (SMP) on bone properties has not been reported. This study investigated the effect of SMP on bone loss in ovariectomized (OVX) rats. Forty female Sprague-Dawley rats were ovariectomized and another 10 rats received a sham operation. The OVX rats were randomly separated into 4 groups: OVX control, OVX SMP1 (SMP at 0.04 g/d), OVX SMP2 (SMP at 0.20 g/d), and OVX SMP3 (SMP at 0.40 g/d). Skim milk powder was supplied in the rat diet for 12 wk, and the rats were gavaged once per day. The effects of SMP on calcium content and bone mineral density of femur were determined by atomic absorption spectrophotometry and dual-energy x-ray absorptiometry, respectively. Compared with the control, SMP at all dose levels tested had no particular effect on weight:length, calcium content, or bone mineral density of femurs. It was demonstrated that SMP (0.04 to 0.40 g/d) had no positive effect on bone loss in OVX rats, probably because the heat treatment used during SMP processing caused a loss of biological activity in the protein.

  9. Host Acyl Coenzyme A Binding Protein Regulates Replication Complex Assembly and Activity of a Positive-Strand RNA Virus

    PubMed Central

    Zhang, Jiantao; Diaz, Arturo; Mao, Lan; Ahlquist, Paul

    2012-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ∼50% smaller but ∼4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly. PMID:22345450

  10. G-Protein-Coupled Estrogen Receptor 1 Is Anatomically Positioned to Modulate Synaptic Plasticity in the Mouse Hippocampus

    PubMed Central

    Thompson, Louisa I.; Patel, Parth; Gonzales, Andreina D.; Ye, Hector (Zhiyu); Filardo, Edward J.; Clegg, Deborah J.; Gorecka, Jolanta; Akama, Keith T.; McEwen, Bruce S.; Milner, Teresa A.

    2015-01-01

    Both estrous cycle and sex affect the numbers and types of neuronal and glial profiles containing the classical estrogen receptors α and β, and synaptic levels in the rodent dorsal hippocampus. Here, we examined whether the membrane estrogen receptor, G-protein-coupled estrogen receptor 1 (GPER1), is anatomically positioned in the dorsal hippocampus of mice to regulate synaptic plasticity. By light microscopy, GPER1-immunoreactivity (IR) was most noticeable in the pyramidal cell layer and interspersed interneurons, especially those in the hilus of the dentate gyrus. Diffuse GPER1-IR was found in all lamina but was most dense in stratum lucidum of CA3. Ultrastructural analysis revealed discrete extranuclear GPER1-IR affiliated with the plasma membrane and endoplasmic reticulum of neuronal perikarya and dendritic shafts, synaptic specializations in dendritic spines, and clusters of vesicles in axon terminals. Moreover, GPER1-IR was found in unmyelinated axons and glial profiles. Overall, the types and amounts of GPER1-labeled profiles were similar between males and females; however, in females elevated estrogen levels generally increased axonal labeling. Some estradiol-induced changes observed in previous studies were replicated by the GPER agonist G1: G1 increased PSD95-IR in strata oriens, lucidum, and radiatum of CA3 in ovariectomized mice 6 h after administration. In contrast, estradiol but not G1 increased Akt phosphorylation levels. Instead, GPER1 actions in the synapse may be due to interactions with synaptic scaffolding proteins, such as SAP97. These results suggest that although estrogen's actions via GPER1 may converge on the same synaptic elements, different pathways are used to achieve these actions. PMID:25673833

  11. Host acyl coenzyme A binding protein regulates replication complex assembly and activity of a positive-strand RNA virus.

    PubMed

    Zhang, Jiantao; Diaz, Arturo; Mao, Lan; Ahlquist, Paul; Wang, Xiaofeng

    2012-05-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ∼50% smaller but ∼4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly.

  12. Activated RhoA is a positive feedback regulator of the Lbc family of Rho guanine nucleotide exchange factor proteins.

    PubMed

    Medina, Frank; Carter, Angela M; Dada, Olugbenga; Gutowski, Stephen; Hadas, Jana; Chen, Zhe; Sternweis, Paul C

    2013-04-19

    The monomeric Rho GTPases are essential for cellular regulation including cell architecture and movement. A direct mechanism for hormonal regulation of the RhoA-type GTPases is their modulation by the G12 and G13 proteins via RH (RGS homology) containing RhoGEFs. In addition to the interaction of the G protein α subunits with the RH domain, activated RhoA also binds to the pleckstrin homology (PH) domain of PDZRhoGEF. The latter interaction is now extended to all seven members of the homologous Lbc family of RhoGEFs which includes the RH-RhoGEFs. This is evinced by direct measurements of binding or through effects on selected signaling pathways in cells. Overexpression of these PH domains alone can block RhoA-dependent signaling in cells to various extents. Whereas activated RhoA does not modulate the intrinsic activity of the RhoGEFs, activated RhoA associated with phospholipid vesicles can facilitate increased activity of soluble RhoGEFs on vesicle-delimited substrate (RhoA-GDP). This demonstrates feasibility of the hypothesis that binding of activated RhoA to the PH domains acts as a positive feedback mechanism. This is supported by cellular studies in which mutation of this binding site on PH strongly attenuates the stimulation of RhoA observed by overexpression of five of the RhoGEF DH-PH domains. This mutation is even more dramatic in the context of full-length p115RhoGEF. The utilization of this mechanism by multiple RhoGEFs suggests that this regulatory paradigm may be a common feature in the broader family of RhoGEFs.

  13. Biochemical markers and protein pattern analysis for canine coagulase-positive staphylococci and their distribution on dog skin.

    PubMed

    Chanchaithong, Pattrarat; Prapasarakul, Nuvee

    2011-08-01

    Coagulase-positive staphylococci (CoPS) including S. pseudintermedius, S. schleiferi subsp. coagulans and S. aureus are etiological agents of dermatitis in companion animals and can be zoonotic pathogens. To date no consensual biochemical marker for routine microbiological identification of these species has been identified. The aim of this study was to evaluate biochemical markers and compare the results with the approved molecular method, multiplex-PCR (M-PCR), and confirm their species-specific phenotypic characteristic by using SDS-PAGE. The distribution and frequency of CoPS species were also determined. Three hundred and thirty-seven canine CoPS isolates were obtained from the nasal mucosa, perineum and groins of 66 healthy dogs and were identified by the M-PCR as S. aureus (n=5), S. pseudintermedius (n=263) and S. schleiferi subsp. coagulans (n=69). Selected biochemical tests including the Voges-Proskauer test, mannitol broth fermentation, the assimilation of maltose, galactose, trahalose and lactose using broth medium, were successfully used to distinguish the three species of canine CoPS from other CoPS species. Additionally, species-specific protein patterns were also found to be useful for phenotypic differentiation, with good agreement with the results of M-PCR and the use of biochemical markers. S. aureus occured infrequently on dog skin while co-colonization with S. pseudintermedius and S. schleiferi subsp. coagulans was observed. We propose the use of consensual biochemical markers of canine CoPS with the presence of the unique protein patterns as an alternative tool for conventional laboratory use.

  14. OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice

    PubMed Central

    He, Yong; Tian, Zhihong; Li, Jianxiong

    2016-01-01

    OVATE gene was first identified as a key regulator of fruit shape in tomato. OVATE family proteins (OFPs) are characterized as plant-specific transcription factors and conserved in Arabidopsis, tomato, and rice. Roles of OFPs involved in plant development and growth are largely unknown. Brassinosteroids (BRs) are a class of steroid hormones involved in diverse biological functions. OsGKS2 plays a critical role in BR signaling by phosphorylating downstream components such as OsBZR1 and DLT. Here we report in rice that OsOFP8 plays a positive role in BR signaling pathway. BL treatment induced the expression of OsOFP8 and led to enhanced accumulation of OsOFP8 protein. The gain-of-function mutant Osofp8 and OsOFP8 overexpression lines showed enhanced lamina joint inclination, whereas OsOFP8 RNAi transgenic lines showed more upright leaf phenotype, which suggest that OsOFP8 is involved in BR responses. Further analyses indicated that OsGSK2 interacts with and phosphorylates OsOFP8. BRZ treatment resulted in the cytoplasmic distribution of OsOFP8, and bikinin treatment reduced the cytoplasmic accumulation of OsOFP8. Phosphorylation of OsOFP8 by OsGSK2 is needed for its nuclear export. The phospphorylated OsOFP8 shuttles to the cytoplasm and is targeted for proteasomal degradation. These results indicate that OsOFP8 is a substrate of OsGSK2 and the function of OsOFP8 in plant growth and development is at least partly through the BR signaling pathway. PMID:27332964

  15. Divergences of MPF2-like MADS-domain proteins have an association with the evolution of the inflated calyx syndrome within Solanaceae.

    PubMed

    Zhang, Jisi; Khan, Muhammad Ramzan; Tian, Ying; Li, Zhichao; Riss, Simone; He, Chaoying

    2012-10-01

    The inflated calyx syndrome (ICS) is a post-floral novelty within Solanaceae. Previous work has shown that MPF2-like MADS-box genes have been recruited for the development and evolution of ICS through heterotopic expression from vegetative to floral organs. ICS seems to be a plesiomorphic trait in Physaleae, but it has been secondarily lost in some lineages during evolution. We hypothesized that molecular and functional divergences of MPF2-like proteins might play a role in the loss of ICS. In this study we analyzed the phylogeny, selection and various functions of MPF2-like proteins with respect to the evolution of ICS. Directional selection of MPF2-like orthologs toward evolution of ICS was detected. While auto-activation capacity between proteins varies in yeast, MPF2-like interaction with floral MADS-domain proteins is robustly detected, hence substantiating their integration into the floral developmental programs. Dimerization with A- (MPF3) and E-function (PFSEP1/3) proteins seems to be essential for ICS development within Solanaceae. Moreover, the occurrence of the enlarged sepals, reminiscent of ICS, and MPF2-like interactions with these specific partners were observed in transgenic Arabidopsis. The interaction spectrum relevant to ICS seems to be plesiomorphic, reinforcing the plesiomorphy of this trait. The inability of some MPF2-like to interact with either the A-function or any of the E-function partners characterized is correlated with the loss of ICS in the lineages that showed a MPF2-like expression in the calyx. Our findings suggest that, after recruitment of MPF2-like genes for floral development, diversification in their coding region due to directional selection leads to a modification of the MADS-domain protein interacting spectrum, which might serve as a constraint for the evolution of ICS within Solanaceae.

  16. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates.

    PubMed

    Kulmuni, J; Wurm, Y; Pamilo, P

    2013-06-01

    Gene duplications can have a major role in adaptation, and gene families underlying chemosensation are particularly interesting due to their essential role in chemical recognition of mates, predators and food resources. Social insects add yet another dimension to the study of chemosensory genomics, as the key components of their social life rely on chemical communication. Still, chemosensory gene families are little studied in social insects. Here we annotated chemosensory protein (CSP) genes from seven ant genomes and studied their evolution. The number of functional CSP genes ranges from 11 to 21 depending on species, and the estimated rates of gene birth and death indicate high turnover of genes. Ant CSP genes include seven conservative orthologous groups present in all the ants, and a group of genes that has expanded independently in different ant lineages. Interestingly, the expanded group of genes has a differing mode of evolution from the orthologous groups. The expanded group shows rapid evolution as indicated by a high dN/dS (nonsynonymous to synonymous changes) ratio, several sites under positive selection and many pseudogenes, whereas the genes in the seven orthologous groups evolve slowly under purifying selection and include only one pseudogene. These results show that adaptive changes have played a role in ant CSP evolution. The expanded group of ant-specific genes is phylogenetically close to a conservative orthologous group CSP7, which includes genes known to be involved in ant nestmate recognition, raising an interesting possibility that the expanded CSPs function in ant chemical communication.

  17. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates.

    PubMed

    Kulmuni, J; Wurm, Y; Pamilo, P

    2013-06-01

    Gene duplications can have a major role in adaptation, and gene families underlying chemosensation are particularly interesting due to their essential role in chemical recognition of mates, predators and food resources. Social insects add yet another dimension to the study of chemosensory genomics, as the key components of their social life rely on chemical communication. Still, chemosensory gene families are little studied in social insects. Here we annotated chemosensory protein (CSP) genes from seven ant genomes and studied their evolution. The number of functional CSP genes ranges from 11 to 21 depending on species, and the estimated rates of gene birth and death indicate high turnover of genes. Ant CSP genes include seven conservative orthologous groups present in all the ants, and a group of genes that has expanded independently in different ant lineages. Interestingly, the expanded group of genes has a differing mode of evolution from the orthologous groups. The expanded group shows rapid evolution as indicated by a high dN/dS (nonsynonymous to synonymous changes) ratio, several sites under positive selection and many pseudogenes, whereas the genes in the seven orthologous groups evolve slowly under purifying selection and include only one pseudogene. These results show that adaptive changes have played a role in ant CSP evolution. The expanded group of ant-specific genes is phylogenetically close to a conservative orthologous group CSP7, which includes genes known to be involved in ant nestmate recognition, raising an interesting possibility that the expanded CSPs function in ant chemical communication. PMID:23403962

  18. Prediction of outer membrane proteins by combining the position- and composition-based features of sequence profiles.

    PubMed

    Yan, Renxiang; Lin, Jun; Chen, Zhen; Wang, Xiaofeng; Huang, Lanqing; Cai, Weiwen; Zhang, Ziding

    2014-05-01

    Locating the transmembrane regions of outer membrane proteins (OMPs) is highly important for deciphering their biological functions at both molecular and cellular levels. Here, we propose a novel method to predict the transmembrane regions of OMPs by employing the position- and composition-based features of sequence profiles. Furthermore, a simple probability-based prediction model, which is estimated by the secondary structures of structurally known OMPs, is also developed. Considering that these two methods are both effective and well complementary, we integrate them into a method called TransOMP, which is also capable of identifying OMPs. Furthermore, we develop an OMP identification measure I_CScore by considering transmembrane regions by TransOMP and secondary structural topology by SSEA-OMP. Our methods were benchmarked against state-of-the-art methods and assessed in the genome of Escherichia coli. Benchmark results confirmed that our methods were reliable and useful. Meanwhile, we constructed an OMP prediction web server, which can be used for OMP identification, transmembrane region location, and 3D model building.

  19. Efficient targeting of adenoviral vectors to integrin positive vascular cells utilizing a CAR-cyclic RGD linker protein.

    PubMed

    Krom, Y D; Gras, J C E; Frants, R R; Havekes, L M; van Berkel, T J; Biessen, E A L; van Dijk, K Willems

    2005-12-16

    Vascular smooth muscle (VSMC) and endothelial cells (EC) are particularly resistant to infection by type 5 adenovirus (Ad) vectors. To overcome this limitation and target Ad vectors to ubiquitously expressed alpha(V)beta(3/5) integrins, we have generated a linker protein consisting of the extracellular domain of the coxsackie adenovirus receptor (CAR) connected via avidin to a biotinylated cyclic (c) RGD peptide. After optimization of CAR to cRGD and to Ad coupling, infection of mouse heart endothelial cells (H5V) could be augmented significantly, as demonstrated by 600-fold increased transgene expression levels. In EOMAs, a hemangioendothelioma-derived cell line, the fraction of infected cells was enhanced 4- to 6-fold. Furthermore, the fraction of infected primary mouse VSMC was increased from virtually 0% to 25%. Finally, in human umbilical vein endothelial cells, the number of GFP positive cells was enhanced from 2% to 75%. In conclusion, CAR-cRGD is a versatile and highly efficient construct to target Ad vectors to both transformed and primary VSMC and EC.

  20. Protein Phosphatase 2A Holoenzyme Is Targeted to Peroxisomes by Piggybacking and Positively Affects Peroxisomal β-Oxidation1[OPEN

    PubMed Central

    Kataya, Amr R.A.; Heidari, Behzad; Hagen, Lars; Kommedal, Roald; Slupphaug, Geir; Lillo, Cathrine

    2015-01-01

    The eukaryotic, highly conserved serine (Ser)/threonine-specific protein phosphatase 2A (PP2A) functions as a heterotrimeric complex composed of a catalytic (C), scaffolding (A), and regulatory (B) subunit. In Arabidopsis (Arabidopsis thaliana), five, three, and 17 genes encode different C, A, and B subunits, respectively. We previously found that a B subunit, B′θ, localized to peroxisomes due to its C-terminal targeting signal Ser-Ser-leucine. This work shows that PP2A C2, C5, andA2 subunits interact and colocalize with B′θ in peroxisomes. C and A subunits lack peroxisomal targeting signals, and their peroxisomal import depends on B′θ and appears to occur by piggybacking transport. B′θ knockout mutants were impaired in peroxisomal β-oxidation as shown by developmental arrest of seedlings germinated without sucrose, accumulation of eicosenoic acid, and resistance to protoauxins indole-butyric acid and 2,4-dichlorophenoxybutyric acid. All of these observations strongly substantiate that a full PP2A complex is present in peroxisomes and positively affects β-oxidation of fatty acids and protoauxins. PMID:25489022

  1. A noncanonical bromodomain in the AAA ATPase protein Yta7 directs chromosomal positioning and barrier chromatin activity.

    PubMed

    Gradolatto, Angeline; Smart, Sherri K; Byrum, Stephanie; Blair, Lauren P; Rogers, Richard S; Kolar, Elizabeth A; Lavender, Heather; Larson, Signe K; Aitchison, John D; Taverna, Sean D; Tackett, Alan J

    2009-09-01

    Saccharomyces cerevisiae Yta7 is a barrier active protein that modulates transcriptional states at the silent mating locus, HMR. Additionally, Yta7 regulates histone gene transcription and has overlapping functions with known histone chaperones. This study focused on deciphering the functional role of the noncanonical Yta7 bromodomain. By use of genetic and epistasis analyses, the Yta7 bromodomain was shown to be necessary for barrier activity at HMR and to have overlapping functions with histone regulators (Asf1 and Spt16). Canonical bromodomains can bind to acetylated lysines on histones; however, the Yta7 bromodomain showed an association with histones that was independent of posttranslational modification. Further investigation showed that regions of Yta7 other than the bromodomain conferred histone association. Chromatin immunoprecipitation-chip analyses revealed that the Yta7 bromodomain was not solely responsible for histone association but was also necessary for proper chromosomal positioning of Yta7. This work demonstrates that the Yta7 bromodomain engages histones for certain cellular functions like barrier chromatin maintenance and particular Spt16/Asf1 cellular pathways of chromatin regulation.

  2. Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294

    PubMed Central

    Yun, Bingling; Guan, Xiaolu; Liu, Yongzhen; Gao, Yanni; Wang, Yongqiang; Qi, Xiaole; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Gao, Li; Li, Kai; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-01-01

    Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV. PMID:26498473

  3. Body Position Modulates Gastric Emptying and Affects the Post-Prandial Rise in Plasma Amino Acid Concentrations Following Protein Ingestion in Humans

    PubMed Central

    Holwerda, Andrew M.; Lenaerts, Kaatje; Bierau, Jörgen; van Loon, Luc J. C.

    2016-01-01

    Dietary protein digestion and amino acid absorption kinetics determine the post-prandial muscle protein synthetic response. Body position may affect gastrointestinal function and modulate the post-prandial rise in plasma amino acid availability. We aimed to assess the impact of body position on gastric emptying rate and the post-prandial rise in plasma amino acid concentrations following ingestion of a single, meal-like amount of protein. In a randomized, cross-over design, eight healthy males (25 ± 2 years, 23.9 ± 0.8 kg·m−2) ingested 22 g protein and 1.5 g paracetamol (acetaminophen) in an upright seated position (control) and in a −20° head-down tilted position (inversion). Blood samples were collected during a 240-min post-prandial period and analyzed for paracetamol and plasma amino acid concentrations to assess gastric emptying rate and post-prandial amino acid availability, respectively. Peak plasma leucine concentrations were lower in the inversion compared with the control treatment (177 ± 15 vs. 236 ± 15 mmol·L−1, p < 0.05), which was accompanied by a lower plasma essential amino acid (EAA) response over 240 min (31,956 ± 6441 vs. 50,351 ± 4015 AU; p < 0.05). Peak plasma paracetamol concentrations were lower in the inversion vs. control treatment (5.8 ± 1.1 vs. 10.0 ± 0.6 mg·L−1, p < 0.05). Gastric emptying rate and post-prandial plasma amino acid availability are significantly decreased after protein ingestion in a head-down tilted position. Therefore, upright body positioning should be considered when aiming to augment post-prandial muscle protein accretion in both health and disease. PMID:27089362

  4. The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease.

    PubMed

    Wei, Xuening; Shen, Fangdi; Hong, Yantao; Rong, Wei; Du, Lipu; Liu, Xin; Xu, Huijun; Ma, Lingjian; Zhang, Zengyan

    2016-10-01

    Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, limits wheat production worldwide. Here, TaCPK7-D, encoding a subgroup III member of the calcium-dependent protein kinase (CPK) family, was identified from the sharp eyespot-resistant wheat line CI12633 through comparative transcriptomic analysis. Subsequently, the defence role of TaCPK7-D against R. cerealis infection was studied by the generation and characterization of TaCPK7-D-silenced and TaCPK7-D-overexpressing wheat plants. Rhizoctonia cerealis inoculation induced a higher transcriptional level of TaCPK7-D in the resistant wheat line CI12633 than in the susceptible cultivar Wenmai 6. The expression of TaCPK7-D was significantly induced after exogenous application of 1-aminocyclopropane-1-carboxylic acid (an ethylene biosynthesis precursor). The green fluorescent protein signal distribution assays indicated that TaCPK7-D localizes to the plasma membrane in both onion epidermal cells and wheat protoplasts. Following R. cerealis inoculation, TaCPK7-D-silenced wheat CI12633 plants displayed more severe sharp eyespot symptoms than control CI12633 plants. Four defence-associated genes (β-1,3-glucanase, chitinase 1, defensin and TaPIE1) and an ethylene biosynthesis key gene, ACO2, were significantly suppressed in the TaCPK7-D-silenced wheat plants compared with control plants. Conversely, TaCPK7-D-overexpressing wheat lines showed increased resistance to sharp eyespot compared with untransformed recipient wheat Yangmai 16. Furthermore, the transcriptional levels of these four defence-related genes and ACO2 gene were significantly elevated in TaCPK7-D-overexpressing plants compared with untransformed recipient wheat plants. These results suggest that TaCPK7-D positively regulates the wheat resistance response to R. cerealis infection through the modulation of the expression of these defence-associated genes, and that TaCPK7-D is a candidate to improve sharp eyespot resistance in wheat.

  5. Small-animal PET imaging of human epidermal growth factor receptor positive tumor with a 64Cu labeled affibody protein.

    PubMed

    Miao, Zheng; Ren, Gang; Liu, Hongguang; Jiang, Lei; Cheng, Zhen

    2010-05-19

    Epidermal growth factor receptor (EGFR) has become an attractive target for cancer molecular imaging and therapy. Affibody proteins against EGFR have been reported, and thus, we were interested in evaluating their potential for positron emission tomography (PET) imaging of EGFR positive cancer. An Affibody analogue (Ac-Cys-Z(EGFR:1907)) binding to EGFR was made through conventional solid phase peptide synthesis. The purified protein was site-specifically coupled with the 1,4,7,10-tetraazacyclododecane-1,4,7-tris-aceticacid-10-maleimidethylacetamide (maleimido-mono-amide-DOTA) to produce the bioconjugate, DOTA-Z(EGFR:1907). (64)Cu labeled probe (64)Cu-DOTA-Z(EGFR:1907) displayed a moderate specific activity (5-8 MBq/nmol, 22-35 microCi/microg). Cell uptake assays by pre-incubating without or with 300 times excess unlabeled Ac-Cys-Z(EGFR:1907) showed high EGFR-specific uptake (20% applied activity at 0.5 h) in A431 epidermoid carcinoma cancer cells. The affinity (K(D)) of (64)Cu-DOTA-Z(EGFR:1907) as tested by cell saturation analysis was 20 nM. The serum stability test showed excellent stability of the probe with >95% intact after 4 h of incubation in mouse serum. In vivo small-animal PET imaging showed fast tumor targeting, high tumor accumulation (approximately 10% ID/g at 1 h p.i.), and good tumor-to-normal tissue contrast of (64)Cu-DOTA-Z(EGFR:1907) spiked with a wide dose range of Ac-Cys-Z(EGFR:1907). Bio-distribution studies further demonstrated that the probe had high tumor, blood, liver, and kidney uptakes, while blood radioactivity concentration dropped dramatically at increased spiking doses. Co-injection of the probe with 500 microg of Ac-Cys-Z(EGFR:1907) for blocking significantly reduced the tumor uptake. Thus, (64)Cu-DOTA-Z(EGFR:1907) showed potential as a high tumor contrast EGFR PET imaging reagent. The probe spiked with 50 microg of Ac-Cys-Z(EGFR:1907) improved tumor imaging contrast which may have important clinical applications. PMID:20402512

  6. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana

    PubMed Central

    Wang, Yanping; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2016-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 mutant was sensitive to drought stress while the MLP43-overexpressed transgenic plants were drought tolerant. The tissue-specific expression pattern analysis showed that MLP43 was predominantly expressed in cotyledons, primary roots and apical meristems, and a subcellular localization study indicated that MLP43 was localized in the nucleus and cytoplasm. Physiological and biochemical analyses indicated that MLP43 functioned as a positive regulator in ABA- and drought-stress responses in Arabidopsis through regulating water loss efficiency, electrolyte leakage, ROS levels, and as well as ABA-responsive gene expression. Moreover, metabolite profiling analysis indicated that MLP43 could modulate the production of primary metabolites under drought stress conditions. Reconstitution of ABA signalling components in Arabidopsis protoplasts indicated that MLP43 was involved in ABA signalling transduction and acted upstream of SnRK2s by directly interacting with SnRK2.6 and ABF1 in a yeast two-hybrid assay. Moreover, ABA and drought stress down-regulated MLP43 expression as a negative feedback loop regulation to the performance of MLP43 in ABA and drought stress responses. Therefore, this study provided new insights for interpretation of physiological and molecular mechanisms of Arabidopsis MLP43 mediating ABA signalling transduction and drought stress responses. PMID:26512059

  7. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana.

    PubMed

    Wang, Yanping; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2016-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 mutant was sensitive to drought stress while the MLP43-overexpressed transgenic plants were drought tolerant. The tissue-specific expression pattern analysis showed that MLP43 was predominantly expressed in cotyledons, primary roots and apical meristems, and a subcellular localization study indicated that MLP43 was localized in the nucleus and cytoplasm. Physiological and biochemical analyses indicated that MLP43 functioned as a positive regulator in ABA- and drought-stress responses in Arabidopsis through regulating water loss efficiency, electrolyte leakage, ROS levels, and as well as ABA-responsive gene expression. Moreover, metabolite profiling analysis indicated that MLP43 could modulate the production of primary metabolites under drought stress conditions. Reconstitution of ABA signalling components in Arabidopsis protoplasts indicated that MLP43 was involved in ABA signalling transduction and acted upstream of SnRK2s by directly interacting with SnRK2.6 and ABF1 in a yeast two-hybrid assay. Moreover, ABA and drought stress down-regulated MLP43 expression as a negative feedback loop regulation to the performance of MLP43 in ABA and drought stress responses. Therefore, this study provided new insights for interpretation of physiological and molecular mechanisms of Arabidopsis MLP43 mediating ABA signalling transduction and drought stress responses.

  8. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala

    PubMed Central

    Santos, Fabio N.; Pereira, Celia W.; Sánchez-Pérez, Ana M.; Otero-García, Marcos; Ma, Sherie; Gundlach, Andrew L.; Olucha-Bordonau, Francisco E.

    2016-01-01

    The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or “hubs”) within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus

  9. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala.

    PubMed

    Santos, Fabio N; Pereira, Celia W; Sánchez-Pérez, Ana M; Otero-García, Marcos; Ma, Sherie; Gundlach, Andrew L; Olucha-Bordonau, Francisco E

    2016-01-01

    The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In

  10. Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between Gram-positive and Gram-negative bacteria.

    PubMed

    Arends, Karsten; Schiwon, Katarzyna; Sakinc, Türkan; Hübner, Johannes; Grohmann, Elisabeth

    2012-02-01

    On the basis of pIP501, a green fluorescent protein (GFP)-tagged monitoring tool was constructed for quantifying plasmid mobilization among Gram-positive bacteria and between Gram-positive Enterococcus faecalis and Gram-negative Escherichia coli. Furthermore, retromobilization of the GFP-tagged monitoring tool was shown from E. faecalis OG1X into the clinical isolate E. faecalis T9.

  11. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling

    PubMed Central

    Lin, Fan; Ding, Haidong; Wang, Jinxiang; Zhang, Hong; Zhang, Aying; Zhang, Yun; Tan, Mingpu; Dong, Wen; Jiang, Mingyi

    2009-01-01

    In maize (Zea mays), abscisic acid (ABA)-induced H2O2 production activates a 46 kDa mitogen-activated protein kinase (p46MAPK), and the activation of p46MAPK also regulates the production of H2O2. However, the mechanism for the regulation of H2O2 production by MAPK in ABA signalling remains to be elucidated. In this study, four reactive oxygen species (ROS)-producing NADPH oxidase (rboh) genes (ZmrbohA–D) were isolated and characterized in maize leaves. ABA treatment induced a biphasic response (phase I and phase II) in the expression of ZmrbohA–D and the activity of NADPH oxidase. Phase II induced by ABA was blocked by pretreatments with two MAPK kinase (MPKKK) inhibitors and two H2O2 scavengers, but phase I was not affected by these inhibitors or scavengers. Treatment with H2O2 alone also only induced phase II, and the induction was arrested by the MAPKK inhibitors. Furthermore, the ABA-activated p46MAPK was partially purified. Using primers corresponding to the sequences of internal tryptic peptides, the p46MAPK gene was cloned. Analysis of the tryptic peptides and the p46MAPK sequence indicate it is the known ZmMPK5. Treatments with ABA and H2O2 led to a significant increase in the activity of ZmMPK5, although ABA treatment only induced a slight increase in the expression of ZmMPK5. The data indicate that H2O2-activated ZmMPK5 is involved in the activation of phase II in ABA signalling, but not in phase I. The results suggest that there is a positive feedback loop involving NADPH oxidase, H2O2, and ZmMPK5 in ABA signalling. PMID:19592501

  12. Distinctive Binding of Avibactam to Penicillin-Binding Proteins of Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Asli, Abdelhamid; Brouillette, Eric; Krause, Kevin M.; Nichols, Wright W.

    2015-01-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that covalently acylates a variety of β-lactamases, causing inhibition. Although avibactam presents limited antibacterial activity, its acylation ability toward bacterial penicillin-binding proteins (PBPs) was investigated. Staphylococcus aureus was of particular interest due to the reported β-lactamase activity of PBP4. The binding of avibactam to PBPs was measured by adding increasing concentrations to membrane preparations of a variety of Gram-positive and Gram-negative bacteria prior to addition of the fluorescent reagent Bocillin FL. Relative binding (measured here as the 50% inhibitory concentration [IC50]) to PBPs was estimated by quantification of fluorescence after gel electrophoresis. Avibactam was found to selectively bind to some PBPs. In Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, and S. aureus, avibactam primarily bound to PBP2, with IC50s of 0.92, 1.1, 3.0, and 51 μg/ml, respectively, whereas binding to PBP3 was observed in Streptococcus pneumoniae (IC50, 8.1 μg/ml). Interestingly, avibactam was able to significantly enhance labeling of S. aureus PBP4 by Bocillin FL. In PBP competition assays with S. aureus, where avibactam was used at a fixed concentration in combination with varied amounts of ceftazidime, the apparent IC50 of ceftazidime was found to be very similar to that determined for ceftazidime when used alone. In conclusion, avibactam is able to covalently bind to some bacterial PBPs. Identification of those PBP targets may allow the development of new diazabicyclooctane derivatives with improved affinity for PBPs or new combination therapies that act on multiple PBP targets. PMID:26574008

  13. Magnesium ions mediate contacts between phosphoryl oxygens at positions 2122 and 2176 of the 23S rRNA and ribosomal protein L1.

    PubMed Central

    Drygin, D; Zimmermann, R A

    2000-01-01

    The complex of ribosomal protein L1 with 23S rRNA from Escherichia coli is of great interest because of the unique structural and functional aspects of this ribonucleoprotein domain. We have minimized the binding site for protein L1 on the 23S rRNA to nt 2120-2129, 2159-2162, and 2167-2178. This RNA fragment consists of two helices as well as an interconnecting loop of unknown structure. RNA molecules corresponding to the minimized L1 binding site, in which G, A, U, or C were individually replaced by their deoxyribo- (dN) or alpha-thio- (rNaS) analogs have been synthesized by T7 transcription in vitro and analyzed for their ability to bind protein L1. It has been demonstrated that the substitution of rNaS at position 2122 or 2176 decreases the affinity of the RNA for the protein in the presence of magnesium five- to tenfold, whereas the same changes have little effect on binding in the presence of manganese. This suggests that Rp oxygens in the phosphates preceding positions 2122 and 2176 are coordinated with Mg2+ and may participate in L1-23S rRNA interaction via magnesium bridges. We have also shown that this interaction is impaired by the presence of dC at position 2122 coupled with the presence of deoxyribonucleotide(s) at other positions in the RNA. This study demonstrates that the ribose-phosphate backbone of the helix encompassing nt 2120-2124/2174-2178 is intimately involved in the interaction of protein L1 with the 23S rRNA. In particular, we suggest that this helix is positioned in the cleft between the two domains of protein L1. PMID:11142372

  14. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics.

    PubMed

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-06

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics.

  15. Template recognition mechanisms by replicase proteins differ between bipartite positive-strand genomic RNAs of a plant virus.

    PubMed

    Iwakawa, Hiro-Oki; Mine, Akira; Hyodo, Kiwamu; An, Mengnan; Kaido, Masanori; Mise, Kazuyuki; Okuno, Tetsuro

    2011-01-01

    Recognition of RNA templates by viral replicase proteins is one of the key steps in the replication process of all RNA viruses. However, the mechanisms underlying this phenomenon, including primary RNA elements that are recognized by the viral replicase proteins, are not well understood. Here, we used aptamer pulldown assays with membrane fractionation and protein-RNA coimmunoprecipitation in a cell-free viral translation/replication system to investigate how viral replicase proteins recognize the bipartite genomic RNAs of the Red clover necrotic mosaic virus (RCNMV). RCNMV replicase proteins bound specifically to a Y-shaped RNA element (YRE) located in the 3' untranslated region (UTR) of RNA2, which also interacted with the 480-kDa replicase complexes that contain viral and host proteins. The replicase-YRE interaction recruited RNA2 to the membrane fraction. Conversely, RNA1 fragments failed to interact with the replicase proteins supplied in trans. The results of protein-RNA coimmunoprecipitation assays suggest that RNA1 interacts with the replicase proteins coupled with their translation. Thus, the initial template recognition mechanisms employed by the replicase differ between RCNMV bipartite genomic RNAs and RNA elements are primary determinants of the differential replication mechanism.

  16. Acute guttate psoriasis patients have positive streptococcus hemolyticus throat cultures and elevated antistreptococcal M6 protein titers.

    PubMed

    Zhao, Guang; Feng, Xiaoling; Na, Aihua; Yongqiang, Jiang; Cai, Qing; Kong, Jian; Ma, Huijun

    2005-02-01

    To further study the role of Streptococci hemolyticus infection and streptococcal M6 protein in the pathogenesis of acute guttate psoriasis, streptococcal cultures were taken from the throats of 68 patients with acute guttate psoriasis. PCR technique was applied to detect M6 protein encoding DNA from those cultured streptococci. Pure M6 protein was obtained by Sephacry/S-200HR and Mono-Q chromatography from proliferated Streptococcus hemolyticus. Antistreptococcal M6 protein titers were measured in the serum of patients with acute guttate psoriasis, plaque psoriasis and healthy controls by ELISA. A high incidence of Streptococcus hemolyticus culture was observed in the guttate psoriatic group compared with the plaque psoriasis and control groups. Fourteen strains of Streptococcus hemolyticus were cultured from the throats of 68 acute guttate psoriasis patients. Of these, 5 strains contain DNA encoding the M6 protein gene as confirmed by PCR technique. More than 85% purification of M6 protein was obtained from Streptococcus pyogenes. Applying our pure M6 protein with the ELISA methods, we found that the titer of antistreptococcal M6 protein was significantly higher in the serum of guttate psoriasis patients than in the control or plaque psoriasis groups (P < 0.01). We verified that patients of acute guttate psoriasis have a high incidence of Streptococcus hemolyticus in their throats and raised titers of antistreptococcal M6 protein in their sera.

  17. Localization of the adenovirus E1Aa protein, a positive-acting transcriptional factor, in infected cells infected cells.

    PubMed Central

    Feldman, L T; Nevins, J R

    1983-01-01

    The function of the adenovirus E1Aa protein (the product of the 13S E1A mRNA) during a productive viral infection is to activate transcription of the six early viral transcription units. To study the mechanism of action of this protein, a peptide which was 13 amino acids long and had a sequence unique to the protein product of the adenovirus 13S E1A mRNA (pE1Aa) was coupled to keyhole limpet hemocyanin and used to raise an antibody in rabbits. The resulting antiserum was specific to this protein and did not react with the protein product of the 12S E1A mRNA, which shares considerable sequence with the E1Aa protein. This antiserum was used to probe for the E1Aa protein in situ by indirect immunofluorescence and in extracts of infected HeLa cells. We found that the protein was associated with large cellular structures both in the nucleus and in the cytoplasm. The nuclear form of the protein was analyzed further and was found to purify with the nuclear matrix. Images PMID:6346057

  18. Properties of a Streptococcus salivarius spontaneous mutant in which the methionine at position 48 in the protein HPr has been replaced by a valine.

    PubMed Central

    Vadeboncoeur, C; Gauthier, L; Gagnon, G; Leduc, A; Brochu, D; Lapointe, R; Desjardins, B; Frenette, M

    1994-01-01

    HPr is a protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) that participates in the concomitant transport and phosphorylation of sugars in bacteria. In gram-positive bacteria, HPr is also reversibly phosphorylated at a seryl residue at position 46 (Ser-46) by a metabolite-activated ATP-dependent kinase and a Pi-dependent HPr(Ser-P) phosphatase. We report in this article the isolation of a spontaneous mutant (mutant A66) from a streptococcus (Streptococcus salivarius) in which the methionine at position 48 (Met-48) in the protein HPr has been replaced by a valine (Val). The mutation inhibited the phosphorylation of HPr on Ser-46 by the ATP-dependent kinase but did not prevent phosphorylation of HPr by enzyme I or the phosphorylation of enzyme II complexes by HPr(His-P). The results, however, suggested that replacement of Met-48 by Val decreased the affinity of enzyme I for HPr or the affinity of enzyme II proteins for HPr(His-P) or both. Characterization of mutant A66 demonstrated that it has pleiotropic properties, including the lack of IIILman, a specific protein of the mannose PTS; decreased levels of HPr; derepression of some cytoplasmic proteins; reduced growth on PTS as well as on non-PTS sugars; and aberrant growth in medium containing a mixture of sugars. Images PMID:8288549

  19. Tomato 14-3-3 protein 7 (TFT7) positively regulates immunity-associated programmed cell death by enhancing accumulation and signaling ability of MAPKKKalpha

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Programmed cell death (PCD) is triggered when Pto, a serine-threonine protein kinase recognizes either the AvrPto or AvrPtoB effector from Pseudomonas syringae pv. tomato. This PCD requires MAPKKKalpha as a positive regulator in tomato and Nicotiana benthamiana. To examine how PCD-eliciting activi...

  20. Floral ontogeny and gene protein localization rules out euanthial interpretation of reproductive units in Lepironia (Cyperaceae, Mapanioideae, Chrysitricheae)

    PubMed Central

    Prychid, C. J.; Bruhl, J. J.

    2013-01-01

    Background and Aims In the sedge subfamily Mapanioideae there are considerable discrepancies between the standard trimerous monocot floral architecture expected and the complex floral and inflorescence morphologies seen. Decades of debate about whether the basic reproductive units are single flowers or pseudanthia have not resolved the question. This paper evaluates current knowledge about Mapaniid reproductive structures and presents an ontogenetic study of the Mapaniid genus Lepironia with the first floral protein expression maps for the family, localizing the products of the APETALA1/FRUITFULL-like (AP1/FUL) MADS-box genes with the aim of shedding light on this conundrum. Methods A range of reproductive developmental stages, from spikelet primordia through to infructescence material, were processed for anatomical and immunohistochemical analyses. Key Results The basic reproductive unit is subtended by a bract and possesses two prophyll-like structures, the first organs to be initiated on the primordium, which grow rapidly, enclosing two whorls of initiating leaf-like structures with intervening stamens and a central gynoecium, formed from an annular primordium. The subtending bract and prophyll-like structures possess very different morphologies from that of the internal leaf-like structures and do not show AP1/FUL-like protein localization, which is otherwise strongly localized in the internal leaf-like structures, stamens and gynoecia. Conclusions Results support the synanthial hypothesis as the evolutionary origin of the reproductive unit. Thus, the basic reproductive unit in Lepironia is an extremely condensed pseudanthium, of staminate flowers surrounding a central terminal pistillate female flower. Early in development the reproductive unit becomes enclosed by a split-prophyll, with the whole structure subtended by a bract. PMID:23723258

  1. Purification of TAT-CC-HA protein under native condition, and its transduction analysis and biological effects on BCR-ABL positive cells.

    PubMed

    Huang, Zhenglan; Ji, Maosheng; Peng, Zhi; Huang, Shifeng; Xiao, Qing; Li, Chunli; Zeng, Jianming; Gao, Miao; Feng, Wenli

    2011-06-01

    BCR-ABL oncoprotein is the cause of chronic myeloid leukemia. The homologous oligomerization of BCR-ABL protein mediated by BCR coiled-coil (CC) domain plays an important role in ABL kinase activation. The HIV-1 TAT peptide has been used extensively for the introduction of proteins into cells. We recombinated a TAT-CC-HA protein to interrupt the homologous oligomerization of BCR-ABL. The expression conditions for TAT-CC-HA were optimized. The TAT-CC-HA fusion protein was purified with Ni+-NTA resin. TAT-CC-HA fusion protein was added into the cultures of Ba/F3-p210, 32D-p210, K562, KU812, Ba/F3, 32D, and HL-60 cells. It was found that TAT-CC-HA could transduce into these cells. It was confirmed that TAT-CC-HA fusion protein was internalized by Ba/F3-p210, K562, and Ba/F3 cells and located in the cytoplasm observed by confocal laser scanning fluorescence microscope. The transduction of TAT-CC-HA fusion protein into K562 cells was in a dose-dependent and time-dependent manner. The result of coimmunoprecipitation assay indicated that TAT-CC-HA could interact with BCR-ABL in K562 cells. The effects of TAT-CC-HA fusion protein on cell growth and apoptosis were detected by MTT test and flow cytometry. Our findings suggested that TAT-CC-HA fusion protein could specifically inhibit the growth of BCR-ABL positive cells, and specifically induce apoptosis of BCR-ABL positive cells, while not affect the growth and apoptosis of BCR-ABL negative cells.

  2. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    SciTech Connect

    Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng; Nelson, Ornella D.; Li, Zhi; Lin, Hening; Callister, Stephen J.; Richardson, Ruth E.

    2015-01-01

    Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.

  3. MACROCALYX and JOINTLESS Interact in the Transcriptional Regulation of Tomato Fruit Abscission Zone Development1[C][W

    PubMed Central

    Nakano, Toshitsugu; Kimbara, Junji; Fujisawa, Masaki; Kitagawa, Mamiko; Ihashi, Nao; Maeda, Hideo; Kasumi, Takafumi; Ito, Yasuhiro

    2012-01-01

    Abscission in plants is a crucial process used to shed organs such as leaves, flowers, and fruits when they are senescent, damaged, or mature. Abscission occurs at predetermined positions called abscission zones (AZs). Although the regulation of fruit abscission is essential for agriculture, the developmental mechanisms remain unclear. Here, we describe a novel transcription factor regulating the development of tomato (Solanum lycopersicum) pedicel AZs. We found that the development of tomato pedicel AZs requires the gene MACROCALYX (MC), which was previously identified as a sepal size regulator and encodes a MADS-box transcription factor. MC has significant sequence similarity to Arabidopsis (Arabidopsis thaliana) FRUITFULL, which is involved in the regulation of fruit dehiscent zone development. The MC protein interacted physically with another MADS-box protein, JOINTLESS, which is known as a regulator of fruit abscission; the resulting heterodimer acquired a specific DNA-binding activity. Transcriptome analyses of pedicels at the preabscission stage revealed that the expression of the genes involved in phytohormone-related functions, cell wall modifications, fatty acid metabolism, and transcription factors is regulated by MC and JOINTLESS. The regulated genes include homologs of Arabidopsis WUSCHEL, REGULATOR OF AXILLARY MERISTEMS, CUP-SHAPED COTYLEDON, and LATERAL SUPPRESSOR. These Arabidopsis genes encode well-characterized transcription factors regulating meristem maintenance, axillary meristem development, and boundary formation in plant tissues. The tomato homologs were specifically expressed in AZs but not in other pedicel tissues, suggesting that these transcription factors may play key roles in pedicel AZ development. PMID:22106095

  4. The function of the PduJ microcompartment shell protein is determined by the genomic position of its encoding gene.

    PubMed

    Chowdhury, Chiranjit; Chun, Sunny; Sawaya, Michael R; Yeates, Todd O; Bobik, Thomas A

    2016-09-01

    Bacterial microcompartments (MCPs) are complex organelles that consist of metabolic enzymes encapsulated within a protein shell. In this study, we investigate the function of the PduJ MCP shell protein. PduJ is 80% identical in amino acid sequence to PduA and both are major shell proteins of the 1,2-propanediol (1,2-PD) utilization (Pdu) MCP of Salmonella. Prior studies showed that PduA mediates the transport of 1,2-PD (the substrate) into the Pdu MCP. Surprisingly, however, results presented here establish that PduJ has no role 1,2-PD transport. The crystal structure revealed that PduJ was nearly identical to that of PduA and, hence, offered no explanation for their differential functions. Interestingly, however, when a pduJ gene was placed at the pduA chromosomal locus, the PduJ protein acquired a new function, the ability to mediate 1,2-PD transport into the Pdu MCP. To our knowledge, these are the first studies to show that that gene location can determine the function of a MCP shell protein. We propose that gene location dictates protein-protein interactions essential to the function of the MCP shell. PMID:27561553

  5. Arsenic Mediated Disruption of Promyelocytic Leukemia Protein Nuclear Bodies Induces Ganciclovir Susceptibility in Epstein-Barr Positive Epithelial Cells

    PubMed Central

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-01-01

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  6. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells.

    PubMed

    Sides, Mark D; Block, Gregory J; Shan, Bin; Esteves, Kyle C; Lin, Zhen; Flemington, Erik K; Lasky, Joseph A

    2011-07-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  7. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    SciTech Connect

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-06-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  8. Specific cis-acting sequence for PHO8 expression interacts with PHO4 protein, a positive regulatory factor, in Saccharomyces cerevisiae.

    PubMed Central

    Hayashi, N; Oshima, Y

    1991-01-01

    The PHO8 gene of Saccharomyces cerevisiae encodes repressible alkaline phosphatase (rALPase; EC 3.1.3.1). The rALPase activity of the cells is two to three times higher in medium containing a low concentration of Pi than in high-Pi medium due to transcription of PHO8. The Pi signals are conveyed to PHO8 by binding of PHO4 protein, a positive regulatory factor, to a promoter region of PHO8 (PHO8p) under the influence of the PHO regulatory circuit. Deletion analysis of PHO8p DNA revealed two separate regulatory regions required for derepression of rALPase located at nucleotide positions -704 to -661 (distal region) and -548 to -502 (proximal region) and an inhibitory region located at -421 to -289 relative to the translation initiation codon. Gel retardation experiments showed that a beta-galactosidase-PHO4 fusion protein binds to a 132-bp PHO8p fragment bearing the proximal region but not to a 226-bp PHO8 DNA bearing the distal region. The fusion protein also binds to a synthetic oligonucleotide having the same 12-bp nucleotide sequence as the PHO8p DNA from positions -536 to -525. The 132-bp PHO8p fragment, connected at position -281 of the 5' upstream region of a HIS5'-'lacZ fused gene, could sense Pi signals in vivo, but a 20-bp synthetic oligonucleotide having the same sequence from -544 to -525 of the PHO8p DNA could not. Linker insertions in the PHO8p DNA indicated that the 5-bp sequence 5'-CACGT-3' from positions -535 to -531 is essential for binding the beta-galactosidase-PHO4 fusion protein and for derepression of rALPase. Images PMID:1990283

  9. [Position statement. Protein/creatinine in a randomly obtained urine sample in the diagnosis of proteinuria in pregnant patients with arterial hypertension].

    PubMed

    2012-01-01

    Leaños Miranda and collaborators published that the measurement of protein/creatinine ratio in a single random urine sample is a reliable indicator of significant proteinuria and may be reasonably used as alternative to the 24-hours urine collection method as a diagnostic criteria for urinary protein, and it is also a criterion for identifying the disease severity. This leads us to present this successful result of the investigation as a position statement in the care of pregnant women with hypertension.

  10. Localization of the outer membrane protein OmpA2 in Caulobacter crescentus depends on the position of the gene in the chromosome.

    PubMed

    Ginez, Luis David; Osorio, Aurora; Poggio, Sebastian

    2014-08-01

    The outer membrane of Gram-negative bacteria is an essential structure involved in nutrient uptake, protection against harmful substances, and cell growth. Different proteins keep the outer membrane from blebbing out by simultaneously interacting with it and with the cell wall. These proteins have been mainly studied in enterobacteria, where OmpA and the Braun and Pal lipoproteins stabilize the outer membrane. Some degree of functional redundancy exists between these proteins, since none of them is essential but the absence of two of them results in a severe phenotype. Caulobacter crescentus has a different strategy to maintain its outer membrane, since it lacks the Braun lipoprotein and Pal is essential. In this work, we characterized OmpA2, an OmpA-like protein, in this bacterium. Our results showed that this protein is required for normal stalk growth and that it plays a minor role in the stability of the outer membrane. An OmpA2 fluorescent fusion protein showed that the concentration of this protein decreases from the stalk to the new pole. This localization pattern is important for its function, and it depends on the position of the gene locus in the chromosome and, as a consequence, in the cell. This result suggests that little diffusion occurs from the moment that the gene is transcribed until the mature protein attaches to the cell wall in the periplasm. This mechanism reveals the integration of different levels of information from protein function down to genome arrangement that allows the cell to self-organize.

  11. The AT-hook protein D1 is essential for Drosophila melanogaster development and is implicated in position-effect variegation.

    PubMed

    Aulner, Nathalie; Monod, Caroline; Mandicourt, Guillaume; Jullien, Denis; Cuvier, Olivier; Sall, Alhousseynou; Janssen, Sam; Laemmli, Ulrich K; Käs, Emmanuel

    2002-02-01

    We have analyzed the expression pattern of the D1 gene and the localization of its product, the AT hook-bearing nonhistone chromosomal protein D1, during Drosophila melanogaster development. D1 mRNAs and protein are maternally contributed, and the protein localizes to discrete foci on the chromosomes of early embryos. These foci correspond to 1.672- and 1.688-g/cm(3) AT-rich satellite repeats found in the centromeric heterochromatin of the X and Y chromosomes and on chromosomes 3 and 4. D1 mRNA levels subsequently decrease throughout later development, followed by the accumulation of the D1 protein in adult gonads, where two distributions of D1 can be correlated to different states of gene activity. We show that the EP473 mutation, a P-element insertion upstream of D1 coding sequences, affects the expression of the D1 gene and results in an embryonic homozygous lethal phenotype correlated with the depletion of D1 protein during embryogenesis. Remarkably, decreased levels of D1 mRNA and protein in heterozygous flies lead to the suppression of position-effect variegation (PEV) of the white gene in the white-mottled (w(m4h)) X-chromosome inversion. Our results identify D1 as a DNA-binding protein of known sequence specificity implicated in PEV. D1 is the primary factor that binds the centromeric 1.688-g/cm(3) satellite repeats which are likely involved in white-mottled variegation. We propose that the AT-hook D1 protein nucleates heterochromatin assembly by recruiting specialized transcriptional repressors and/or proteins involved in chromosome condensation. PMID:11809812

  12. Changes in Immunohistochemical Protein Levels in Anaplastic Lymphoma Kinase-positive Lung Adenocarcinoma Possibly due to Chemo-radiotherapy.

    PubMed

    Taniguchi, Hirokazu; Ikeda, Takaya; Soda, Hiroshi; Fukuda, Yuichi; Kitazaki, Takeshi; Nakamura, Yoichi; Kohno, Shigeru

    2016-01-01

    To detect the anaplastic lymphoma kinase (ALK) fusion gene in non-small cell lung cancer, immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are the standard methods. However, there are discrepancies between them. We herein report a 40-year-old woman with ALK fusion-positive adenocarcinoma that changed from positive to negative in IHC due to chemo-radiotherapy. Recurrence of the disease restored the IHC expression, whereas FISH was positive throughout the entire clinical course. Our experience suggests that we should therefore carefully evaluate samples after chemotherapy and radiotherapy. PMID:27374682

  13. Selective and nonselective cleavages in positive and negative CID of the fragments generated from in-source decay of intact proteins in MALDI-MS.

    PubMed

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  14. Selective and Nonselective Cleavages in Positive and Negative CID of the Fragments Generated from In-Source Decay of Intact Proteins in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  15. SHP2 positively regulates TGFβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein Hook1.

    PubMed

    Li, Shuomin; Wang, Linrun; Zhao, Qingwei; Liu, Yu; He, Lingjuan; Xu, Qinqin; Sun, Xu; Teng, Li; Cheng, Hongqiang; Ke, Yuehai

    2014-12-01

    The epithelial-mesenchymal transition (EMT) is an essential process for embryogenesis. It also plays a critical role in the initiation of tumor metastasis. Src homology 2 (SH2)-domain containing protein-tyrosine phosphatase-2 (SHP2) is a ubiquitously expressed protein-tyrosine phosphatase and is mutated in many tumors. However, its functional role in tumor metastasis remains largely unknown. We found that TGFβ1-induced EMT in lung epithelial A549 cells was partially blocked when SHP2 was decreased by transfected siRNA. The constitutively active form (E76V) promoted EMT while the phosphatase-dead mutation (C459S) and the SHP2 inhibitor PHPS1 blocked EMT, which further demonstrated that the phosphatase activity of SHP2 was required for promoting TGFβ1-induced EMT. Using the protein-tyrosine phosphatase domain of SHP2 as bait, we identified a novel SHP2-interacting protein Hook1. Hook1 was down-regulated during EMT in A549 cells. Overexpression of Hook1 inhibited EMT while knockdown of Hook1 promoted EMT. Moreover, both the protein-tyrosine phosphatase domain and N-terminal SH2 domain of SHP2 directly interacted with Hook1. Down-regulation of Hook1 increased SHP2 activity. These results suggested that Hook1 was an endogenous negative regulator of SHP2 phosphatase activity. Our data showed that the protein-tyrosine phosphatase SHP2 was involved in the process of EMT and Hook1 repressed EMT by regulating the activation of SHP2. SHP2-Hook1 complex may play important roles in tumor metastases by regulating EMT in cancer cells.

  16. Recent positive selection has acted on genes encoding proteins with more interactions within the whole human interactome.

    PubMed

    Luisi, Pierre; Alvarez-Ponce, David; Pybus, Marc; Fares, Mario A; Bertranpetit, Jaume; Laayouni, Hafid

    2015-04-02

    Genes vary in their likelihood to undergo adaptive evolution. The genomic factors that determine adaptability, however, remain poorly understood. Genes function in the context of molecular networks, with some occupying more important positions than others and thus being likely to be under stronger selective pressures. However, how positive selection distributes across the different parts of molecular networks is still not fully understood. Here, we inferred positive selection using comparative genomics and population genetics approaches through the comparison of 10 mammalian and 270 human genomes, respectively. In agreement with previous results, we found that genes with lower network centralities are more likely to evolve under positive selection (as inferred from divergence data). Surprisingly, polymorphism data yield results in the opposite direction than divergence data: Genes with higher centralities are more likely to have been targeted by recent positive selection during recent human evolution. Our results indicate that the relationship between centrality and the impact of adaptive evolution highly depends on the mode of positive selection and/or the evolutionary time-scale.

  17. Ligand-Induced Changes of the Apparent Transition-State Position in Mechanical Protein Unfolding

    PubMed Central

    Stigler, Johannes; Rief, Matthias

    2015-01-01

    Force-spectroscopic measurements of ligand-receptor systems and the unfolding/folding of nucleic acids or proteins reveal information on the underlying energy landscape along the pulling coordinate. The slope Δx‡ of the force-dependent unfolding/unbinding rates is interpreted as the distance from the folded/bound state to the transition state for unfolding/unbinding and, hence, often related to the mechanical compliance of the sample molecule. Here we show that in ligand-binding proteins, the experimentally inferred Δx‡ can depend on the ligand concentration, unrelated to changes in mechanical compliance. We describe the effect in single-molecule, force-spectroscopy experiments of the calcium-binding protein calmodulin and explain it in a simple model where mechanical unfolding and ligand binding occur on orthogonal reaction coordinates. This model predicts changes in the experimentally inferred Δx‡, depending on ligand concentration and the associated shift of the dominant barrier between the two reaction coordinates. We demonstrate quantitative agreement between experiments and simulations using a realistic six-state kinetic scheme using literature values for calcium-binding kinetics and affinities. Our results have important consequences for the interpretation of force-spectroscopic data of ligand-binding proteins. PMID:26200872

  18. The euAP1 protein MPF3 represses MPF2 to specify floral calyx identity and displays crucial roles in Chinese lantern development in Physalis.

    PubMed

    Zhao, Jing; Tian, Ying; Zhang, Ji-Si; Zhao, Man; Gong, Pichang; Riss, Simone; Saedler, Rainer; He, Chaoying

    2013-06-01

    The Chinese lantern phenotype or inflated calyx syndrome (ICS) is a postfloral morphological novelty in Physalis. Its origin is associated with the heterotopic expression of the MADS box gene 2 from Physalis floridana (MPF2) in floral organs, yet the process underlying its identity remains elusive. Here, we show that MPF3, which is expressed specifically in floral tissues, encodes a core eudicot APETALA1-like (euAP1) MADS-domain protein. MPF3 was primarily localized to the nucleus, and it interacted with MPF2 and some floral MADS-domain proteins to selectively bind the CC-A-rich-GG (CArG) boxes in the MPF2 promoter. Downregulating MPF3 resulted in a dramatic elevation in MPF2 in the calyces and androecium, leading to enlarged and leaf-like floral calyces; however, the postfloral lantern was smaller and deformed. Starch accumulation in pollen was blocked. MPF3 MPF2 double knockdowns showed normal floral calyces and more mature pollen than those found in plants in which either MPF3 or MPF2 was downregulated. Therefore, MPF3 specifies calyx identity and regulates ICS formation and male fertility through interactions with MPF2/MPF2. Furthermore, both genes were found to activate Physalis floridana invertase gene 4 homolog, which encodes an invertase cleaving Suc, a putative key gene in sugar partitioning. The novel role of the MPF3-MPF2 regulatory circuit in male fertility is integral to the origin of ICS. Our results shed light on the evolution and development of ICS in Physalis and on the functional evolution of euAP1s in angiosperms.

  19. Evidence against the Bm1P1 protein as a positive transcription factor for barbiturate-mediated induction of cytochrome P450BM-1 in bacillus megaterium.

    PubMed

    Shaw, G C; Sung, C C; Liu, C H; Lin, C H

    1998-04-01

    The Bm1P1 protein was previously proposed to act as a positive transcription factor involved in barbiturate-mediated induction of cytochrome P450BM-1 in Bacillus megaterium. We now report that the bm1P1 gene encodes a protein of 217 amino acids, rather than the 98 amino acids as reported previously. In vitro gel shift assays indicate that the Bm1P1 protein did not interact with probes comprising the regulatory regions of the P450BM-1 gene. Moreover, disruption of the bm1P1 gene did not markedly affect barbiturate induction of P450BM-1 expression. A multicopy plasmid harboring only the P450BM-1 promoter region could increase expression of the chromosome-encoded P450BM-1. The level of expression is comparable with that shown by a multicopy plasmid harboring the P450BM-1 promoter region along with the bm1P1 gene. These results strongly suggest that the Bm1P1 protein is unlikely to act as a positive regulator for barbiturate induction of P450BM-1 expression. Finally, deletion of the Barbie box did not markedly diminish the effect of pentobarbital on expression of a reporter gene transcriptionally fused to the P450BM-1 promoter. This suggests that the Barbie box is unlikely to be a key element in barbiturate-mediated induction of P450BM-1. PMID:9525898

  20. Serological diagnosis of pneumococcal infection in children with pneumonia using protein antigens: A study of cut-offs with positive and negative controls.

    PubMed

    Andrade, Dafne Carvalho; Borges, Igor Carmo; Ivaska, Lauri; Peltola, Ville; Meinke, Andreas; Barral, Aldina; Käyhty, Helena; Ruuskanen, Olli; Nascimento-Carvalho, Cristiana Maria

    2016-06-01

    The etiological diagnosis of infection by Streptococcus pneumoniae in children is difficult, and the use of indirect techniques is frequently warranted. We aimed to study the use of pneumococcal proteins for the serological diagnosis of pneumococcal infection in children with pneumonia. We analyzed paired serum samples from 13 Brazilian children with invasive pneumococcal pneumonia (positive control group) and 23 Finnish children with viral pharyngitis (negative control group), all aged <5years-old. Children with pharyngitis were evaluated for oropharyngeal colonization, and none of them carried S. pneumoniae. We used a multiplex bead-based assay with eight proteins: Ply, CbpA, PspA1 and 2, PcpA, PhtD, StkP and PcsB. The optimal cut-off for increase in antibody level for the diagnosis of pneumococcal infection was determined for each antigen by ROC curve analysis. The positive control group had a significantly higher rate of ≥2-fold rise in antibody levels against all pneumococcal proteins, except Ply, compared to the negative controls. The cut-off of ≥2-fold increase in antibody levels was accurate for pneumococcal infection diagnosis for all investigated antigens. However, there was a substantial increase in the accuracy of the test with a cut-off of ≥1.52-fold rise in antibody levels for PcpA. When using the investigated protein antigens for the diagnosis of pneumococcal infection, the detection of response against at least one antigen was highly sensitive (92.31%) and specific (91.30%). The use of serology with pneumococcal proteins is a promising method for the diagnosis of pneumococcal infection in children with pneumonia. The use of a ≥2-fold increase cut-off is adequate for most pneumococcal proteins. PMID:26928648

  1. The heme-binding protein SOUL3 of Chlamydomonas reinhardtii influences size and position of the eyespot.

    PubMed

    Schulze, Thomas; Schreiber, Sandra; Iliev, Dobromir; Boesger, Jens; Trippens, Jessica; Kreimer, Georg; Mittag, Maria

    2013-05-01

    The flagellated green alga Chlamydomonas reinhardtii has a primitive visual system, the eyespot. It is situated at the cells equator and allows the cell to phototax. In a previous proteomic analysis of the eyespot, the SOUL3 protein was identified among 202 proteins. Here, we investigate the properties and functions of SOUL3. Heterologously expressed SOUL3 is able to bind specifically to hemin. In C. reinhardtii, SOUL3 is expressed at a constant level over the diurnal cycle, but forms protein complexes that differ in size during day and night phases. SOUL3 is primarily localized in the eyespot and it is situated in the pigment globule layer thereof. This is in contrast to the channelrhodopsin photoreceptors, which are localized in the plasma membrane region of the eyespot. Knockdown lines with a significantly reduced SOUL3 level are characterized by mislocalized eyespots, a decreased eyespot size, and alterations in phototactic behavior. Mislocalizations were either anterior or posterior and did not affect association with acetylated microtubules of the daughter four-membered rootlet. Our data suggest that SOUL3 is involved in the organization and placement of the eyespot within the cell. PMID:23180671

  2. Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein-mediated zone of inhibition.

    PubMed

    Tong, Zongtian; Gao, Xiang-Dong; Howell, Audrey S; Bose, Indrani; Lew, Daniel J; Bi, Erfei

    2007-12-31

    Cells of the budding yeast Saccharomyces cerevisiae are born carrying localized transmembrane landmark proteins that guide the subsequent establishment of a polarity axis and hence polarized growth to form a bud in the next cell cycle. In haploid cells, the relevant landmark proteins are concentrated at the site of the preceding cell division, to which they recruit Cdc24, the guanine nucleotide exchange factor for the conserved polarity regulator Cdc42. However, instead of polarizing at the division site, the new polarity axis is directed next to but not overlapping that site. Here, we show that the Cdc42 guanosine triphosphatase-activating protein (GAP) Rga1 establishes an exclusion zone at the division site that blocks subsequent polarization within that site. In the absence of localized Rga1 GAP activity, new buds do in fact form within the old division site. Thus, Cdc42 activators and GAPs establish concentric zones of action such that polarization is directed to occur adjacent to but not within the previous cell division site.

  3. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination

    PubMed Central

    2011-01-01

    Background The entomological inoculation rate (EIR) is an important indicator in estimating malaria transmission and the impact of vector control. To assess the EIR, the enzyme-linked immunosorbent assay (ELISA) to detect the circumsporozoite protein (CSP) is increasingly used. However, several studies have reported false positive results in this ELISA. The false positive results could lead to an overestimation of the EIR. The aim of present study was to estimate the level of false positivity among different anopheline species in Cambodia and Vietnam and to check for the presence of other parasites that might interact with the anti-CSP monoclonal antibodies. Methods Mosquitoes collected in Cambodia and Vietnam were identified and tested for the presence of sporozoites in head and thorax by using CSP-ELISA. ELISA positive samples were confirmed by a Plasmodium specific PCR. False positive mosquitoes were checked by PCR for the presence of parasites belonging to the Haemosporidia, Trypanosomatidae, Piroplasmida, and Haemogregarines. The heat-stability and the presence of the cross-reacting antigen in the abdomen of the mosquitoes were also checked. Results Specimens (N = 16,160) of seven anopheline species were tested by CSP-ELISA for Plasmodium falciparum and Plasmodium vivax (Pv210 and Pv247). Two new vector species were identified for the region: Anopheles pampanai (P. vivax) and Anopheles barbirostris (Plasmodium malariae). In 88% (155/176) of the mosquitoes found positive with the P. falciparum CSP-ELISA, the presence of Plasmodium sporozoites could not be confirmed by PCR. This percentage was much lower (28% or 5/18) for P. vivax CSP-ELISAs. False positive CSP-ELISA results were associated with zoophilic mosquito species. None of the targeted parasites could be detected in these CSP-ELISA false positive mosquitoes. The ELISA reacting antigen of P. falciparum was heat-stable in CSP-ELISA true positive specimens, but not in the false positives. The heat

  4. High-Resolution Identification of Specificity Determining Positions in the LacI Protein Family Using Ensembles of Sub-Sampled Alignments

    PubMed Central

    Sloutsky, Roman

    2016-01-01

    Since the advent of large-scale genomic sequencing, and the consequent availability of large numbers of homologous protein sequences, there has been burgeoning development of methods for extracting functional information from multiple sequence alignments (MSAs). One type of analysis seeks to identify specificity determining positions (SDPs) based on the assumption that such positions are highly conserved within groups of sequences sharing functional specificity, but conserved to different amino acids in different specificity groups. This unsupervised approach to utilizing evolutionary information may elucidate mechanisms of specificity in protein-protein interactions, catalytic activity of enzymes, sensitivity to allosteric regulation, and other types of protein functionality. We present an analysis of SDPs in the LacI family of transcriptional regulators in which we 1) relax the constraint that all specificity groups must contribute to SDP signal, and 2) use a novel approach to robust treatment of sequence alignment uncertainty based on sub-sampling. We find that the vast majority of SDP signal occurs at positions with a conservation pattern that significantly complicates detection by previously described methods. This pattern, which we term “partial SDP”, consists of the commonly accepted SDP conservation pattern among a subset of specificity groups and strong degeneracy among the rest. An upshot of this fact is that the SDP complement of every specificity group appears to be unique. Additionally, sub-sampling gives us the ability to assign a confidence interval to the SDP score, as well as increase fidelity, as compared to analysis of a single, comprehensive alignment—the current standard in multiple sequence alignment methodologies. PMID:27681038

  5. Transforming a Blue Copper into a Red Copper Protein: Engineering Cysteine and Homocysteine into the Axial Position of Azurin using Site-Directed Mutagenesis and Expressed Protein Ligation

    PubMed Central

    Clark, Kevin M.; Yu, Yang; Marshall, Nicholas M.; Sieracki, Nathan A.; Nilges, Mark J.; Blackburn, Ninian J.; van der Donk, Wilfred; Lu, Yi

    2010-01-01

    The interactions of the axial ligands with copper are known to be important in tuning spectroscopic and redox properties of cupredoxins. While conversion of blue copper sites with a weak axial ligand to green copper sites containing a medium strength axial ligand has been demonstrated in cupredoxins, converting blue copper sites to a red copper site with a strong axial ligand has not been reported. Here we show that replacing Met121 in azurin from Pseudomonas aeruginosa with Cys caused an increased ratio (RL) of absorption at 447 nm over that at 621 nm. While no axial Cu-S(Cys121) interaction in Met121Cys was detectable by the extended x-ray absorption fine structure (EXAFS) at pH 5, similar to what was observed in WT azurin with Met121 as the axial ligand, the Cu-S(Cys121) interaction at 2.74 Å is clearly visible at higher pH. Despite the higher RL and stronger axial Cys121 interaction with Cu(II) ion, the Met121Cys variant remains largely a type 1 copper protein at low pH (with hyperfine coupling constant A|| = 54 × 10−4 cm−1 at pH 4 and 5), or distorted type 1 or green copper protein at high pH (A|| = 87 × 10−4 cm−1 at pH 8 and 9), attributable to the relatively long distance between the axial ligand and copper and the constraint placed by the protein scaffold. To shorten the distance between axial ligand and copper, we replaced Met121 with the nonproteinogenic amino acid homocysteine that contains an extra methylene group, resulting in a variant whose spectra (RL= 1.5, and A|| = 180 × 10−4 cm−1) and Cu-S(Cys) distance (2.22 Å) are very similar to those of the red copper protein nitrosocyanin. Replacing Met121 with Cys resulted in lowering of the reduction potential from 222 mV in the native azurin to 95 ± 3 mV for Met121Cys azurin and 113 ± 6 mV for Met121Hcy at pH 7. The results strongly support the “coupled distortion” model that helps explain axial ligand tuning of spectroscopic properties in cupredoxins, and demonstrate the power of

  6. Protein kinase C-α downregulates estrogen receptor-α by suppressing c-Jun phosphorylation in estrogen receptor-positive breast cancer cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; Lee, Se Kyung; Bae, Soo Youn; Kim, Jiyoung; Kim, Minkuk; Kil, Won Ho; Kim, Seok Won; Lee, Jeong Eon; Nam, Seok Jin

    2014-03-01

    Protein kinase C (PKC) activity is elevated in malignant compared with that in normal human breast tissue. In the present study, we investigated the regulatory mechanism and the co-relationship between PKC-α and estrogen receptor-α (ER-α) in ER-α-positive and tamoxifen-resistant (TAMR) breast cancer cells. Our results showed that the level of ER-α expression was significantly decreased in TAMR when compared with that in tamoxifen-sensitive (TAMS) breast cancer cells. However, PKC-α phosphorylation was increased in TAMR breast cancer cells when compared to that in TAMS breast cancer cells. Additionally, ER-α expression was significantly decreased due to the overexpression of constitutively active PKC-α (CA-PKC-α). Next, we investigated the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), a reversible activator of PKC, on ER-α expression in ER-α-positive breast cancer cells. TPA decreased the levels of ER-α expression in a time- and dose-dependent manner. In contrast, the TPA-induced downregulation of ER-α was prevented by Go6983, a specific PKC inhibitor. Notably, we found that CA-PKC-α suppressed c-JUN phosphorylation, which is a major activating protein-1 factor, and TPA-induced downregulation of ER-α was prevented by SR11302, a specific activator protein-1 inhibitor. Taken together, we demonstrated that PKC-α activity suppressed the level of ER-α expression by inhibiting c-JUN phosphorylation in ER-α-positive breast cancer cells. Therefore, we suggest that PKC-α may be a potential therapeutic target for treating ER-positive and TAMR breast cancer.

  7. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus.

    PubMed

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner.

  8. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus.

    PubMed

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner. PMID:27446108

  9. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus

    PubMed Central

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner. PMID:27446108

  10. Genetic Diversity and Positive Selection Analysis of Classical Swine Fever Virus Envelope Protein Gene E2 in East China under C-Strain Vaccination.

    PubMed

    Hu, Dongfang; Lv, Lin; Gu, Jinyuan; Chen, Tongyu; Xiao, Yihong; Liu, Sidang

    2016-01-01

    Classical swine fever virus (CSFV) causes an economically important and highly contagious disease of pigs worldwide. C-strain vaccination is one of the most effective ways to contain this disease. Since 2014, sporadic CSF outbreaks have been occurring in some C-strain vaccinated provinces of China. To decipher the disease etiology, 25 CSFV E2 genes from 169 clinical samples were cloned and sequenced. Phylogenetic analyses revealed that all 25 isolates belonged to subgenotype 2.1. Twenty-three of the 25 isolates were clustered in a newly defined subgenotype, 2.1d, and shared some consistent molecular characteristics. To determine whether the complete E2 gene was under positive selection pressure, we used a site-by-site analysis to identify specific codons that underwent evolutionary selection, and seven positively selected codons were found. Three positively selected sites (amino acids 17, 34, and 72) were identified in antigenicity-relevant domains B/C of the amino-terminal half of the E2 protein. In addition, another positively selected site (amino acid 200) exhibited a polarity change from hydrophilic to hydrophobic, which may change the antigenicity and virulence of CSFV. The results indicate that the circulating CSFV strains in Shandong province were mostly clustered in subgenotype 2.1d. Moreover, the identification of these positively selected sites could help to reveal molecular determinants of virulence or pathogenesis, and to clarify the driving force of CSFV evolution in East China. PMID:26903966

  11. Genetic Diversity and Positive Selection Analysis of Classical Swine Fever Virus Envelope Protein Gene E2 in East China under C-Strain Vaccination

    PubMed Central

    Hu, Dongfang; Lv, Lin; Gu, Jinyuan; Chen, Tongyu; Xiao, Yihong; Liu, Sidang

    2016-01-01

    Classical swine fever virus (CSFV) causes an economically important and highly contagious disease of pigs worldwide. C-strain vaccination is one of the most effective ways to contain this disease. Since 2014, sporadic CSF outbreaks have been occurring in some C-strain vaccinated provinces of China. To decipher the disease etiology, 25 CSFV E2 genes from 169 clinical samples were cloned and sequenced. Phylogenetic analyses revealed that all 25 isolates belonged to subgenotype 2.1. Twenty-three of the 25 isolates were clustered in a newly defined subgenotype, 2.1d, and shared some consistent molecular characteristics. To determine whether the complete E2 gene was under positive selection pressure, we used a site-by-site analysis to identify specific codons that underwent evolutionary selection, and seven positively selected codons were found. Three positively selected sites (amino acids 17, 34, and 72) were identified in antigenicity-relevant domains B/C of the amino-terminal half of the E2 protein. In addition, another positively selected site (amino acid 200) exhibited a polarity change from hydrophilic to hydrophobic, which may change the antigenicity and virulence of CSFV. The results indicate that the circulating CSFV strains in Shandong province were mostly clustered in subgenotype 2.1d. Moreover, the identification of these positively selected sites could help to reveal molecular determinants of virulence or pathogenesis, and to clarify the driving force of CSFV evolution in East China. PMID:26903966

  12. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    SciTech Connect

    Zhou, Heng; Guo, Wei; Long, Cong; Wang, Huan; Wang, Jingchao; Sun, Xiaoping

    2015-01-16

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.

  13. Most mutant OccR proteins that are defective in positive control hold operator DNA in a locked high-angle bend.

    PubMed

    Tsai, Ching-Sung; Chen, Chia-Sui; Winans, Stephen C

    2011-10-01

    OccR is a LysR-type transcriptional regulator of Agrobacterium tumefaciens that positively regulates the octopine catabolism operon of the Ti plasmid. Positive control of the occ genes occurs in response to octopine, a nutrient released from crown gall tumors. OccR also functions as an autorepressor in the presence or absence of octopine. OccR binds to a site between occQ and occR in the presence or absence of octopine, although octopine triggers a conformational change that shortens the DNA footprint and relaxes a DNA bend. In order to determine the roles of this conformational change in transcriptional activation, we isolated 11 OccR mutants that were defective in activation of the occQ promoter but were still capable of autorepression. The mutations in these mutants spanned most of the length of the protein. Two additional positive-control mutants were isolated using site-directed mutagenesis. Twelve mutant proteins displayed a high-angle DNA bend in the presence or absence of octopine. One mutant, the L26A mutant, showed ligand-responsive DNA binding similar to that of wild-type OccR and therefore must be impaired in a subsequent step in activation. PMID:21804007

  14. The Trypanosoma brucei AIR9-like protein is cytoskeleton-associated and is required for nucleus positioning and accurate cleavage furrow placement.

    PubMed

    May, Sophie F; Peacock, Lori; Almeida Costa, Cristina I C; Gibson, Wendy C; Tetley, Laurence; Robinson, Derrick R; Hammarton, Tansy C

    2012-04-01

    AIR9 is a cytoskeleton-associated protein in Arabidopsis thaliana with roles in cytokinesis and cross wall maturation, and reported homologues in land plants and excavate protists, including trypanosomatids. We show that the Trypanosoma brucei AIR9-like protein, TbAIR9, is also cytoskeleton-associated and colocalizes with the subpellicular microtubules. We find it to be expressed in all life cycle stages and show that it is essential for normal proliferation of trypanosomes in vitro. Depletion of TbAIR9 from procyclic trypanosomes resulted in increased cell length due to increased microtubule extension at the cell posterior. Additionally, the nucleus was re-positioned to a location posterior to the kinetoplast, leading to defects in cytokinesis and the generation of aberrant progeny. In contrast, in bloodstream trypanosomes, depletion of TbAIR9 had little effect on nucleus positioning, but resulted in aberrant cleavage furrow placement and the generation of non-equivalent daughter cells following cytokinesis. Our data provide insight into the control of nucleus positioning in this important pathogen and emphasize differences in the cytoskeleton and cell cycle control between two life cycle stages of the T. brucei parasite.

  15. ERBB2 in Cat Mammary Neoplasias Disclosed a Positive Correlation between RNA and Protein Low Expression Levels: A Model for erbB-2 Negative Human Breast Cancer

    PubMed Central

    Abreu, Rui M. V.; Bastos, Estela; Amorim, Irina; Gut, Ivo G.; Gärtner, Fátima; Chaves, Raquel

    2013-01-01

    Human ERBB2 is a proto-oncogene that codes for the erbB-2 epithelial growth factor receptor. In human breast cancer (HBC), erbB-2 protein overexpression has been repeatedly correlated with poor prognosis. In more recent works, underexpression of this gene has been described in HBC. Moreover, it is also recognised that oncogenes that are commonly amplified or deleted encompass point mutations, and some of these are associated with HBC. In cat mammary lesions (CMLs), the overexpression of ERBB2 (27%–59.6%) has also been described, mostly at the protein level and although cat mammary neoplasias are considered to be a natural model of HBC, molecular information is still scarce. In the present work, a cat ERBB2 fragment, comprising exons 10 to 15 (ERBB2_10–15) was achieved for the first time. Allelic variants and genomic haplotype analyses were also performed, and differences between normal and CML populations were observed. Three amino acid changes, corresponding to 3 non-synonymous genomic sequence variants that were only detected in CMLs, were proposed to damage the 3D structure of the protein. We analysed the cat ERBB2 gene at the DNA (copy number determination), mRNA (expression levels assessment) and protein levels (in extra- and intra protein domains) in CML samples and correlated the last two evaluations with clinicopathological features. We found a positive correlation between the expression levels of the ERBB2 RNA and erbB-2 protein, corresponding to the intracellular region. Additionally, we detected a positive correlation between higher mRNA expression and better clinical outcome. Our results suggest that the ERBB2 gene is post-transcriptionally regulated and that proteins with truncations and single point mutations are present in cat mammary neoplastic lesions. We would like to emphasise that the recurrent occurrence of low erbB-2 expression levels in cat mammary tumours, suggests the cat mammary neoplasias as a valuable model for erbB-2 negative HBC

  16. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription.

    PubMed

    Son, Ora; Kim, Sunghan; Shin, Yun-Jeong; Kim, Woo-Young; Koh, Hee-Jong; Cheon, Choong-Ill

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. PMID:26241676

  17. The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5.

    PubMed

    Haas, Thomas J; Sliwinski, Marek K; Martínez, Dana E; Preuss, Mary; Ebine, Kazuo; Ueda, Takashi; Nielsen, Erik; Odorizzi, Greg; Otegui, Marisa S

    2007-04-01

    In yeast and mammals, the AAA ATPase Vps4p/SKD1 (for Vacuolar protein sorting 4/SUPPRESSOR OF K(+) TRANSPORT GROWTH DEFECT1) is required for the endosomal sorting of secretory and endocytic cargo. We identified a VPS4/SKD1 homolog in Arabidopsis thaliana, which localizes to the cytoplasm and to multivesicular endosomes. In addition, green fluorescent protein-SKD1 colocalizes on multivesicular bodies with fluorescent fusion protein endosomal Rab GTPases, such as ARA6/RabF1, RHA1/RabF2a, and ARA7/RabF2b, and with the endocytic marker FM4-64. The expression of SKD1(E232Q), an ATPase-deficient version of SKD1, induces alterations in the endosomal system of tobacco (Nicotiana tabacum) Bright Yellow 2 cells and ultimately leads to cell death. The inducible expression of SKD1(E232Q) in Arabidopsis resulted in enlarged endosomes with a reduced number of internal vesicles. In a yeast two-hybrid screen using Arabidopsis SKD1 as bait, we isolated a putative homolog of mammalian LYST-INTERACTING PROTEIN5 (LIP5)/SKD1 BINDING PROTEIN1 and yeast Vta1p (for Vps twenty associated 1 protein). Arabidopsis LIP5 acts as a positive regulator of SKD1 by increasing fourfold to fivefold its in vitro ATPase activity. We isolated a knockout homozygous Arabidopsis mutant line with a T-DNA insertion in LIP5. lip5 plants are viable and show no phenotypic alterations under normal growth conditions, suggesting that basal SKD1 ATPase activity is sufficient for plant development and growth.

  18. Arabidopsis Small Rubber Particle Protein Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in Drought Stress Responses1[OPEN

    PubMed Central

    Kim, Eun Yu; Park, Ki Youl; Seo, Young Sam; Kim, Woo Taek

    2016-01-01

    Lipid droplets (LDs) act as repositories for fatty acids and sterols, which are used for various cellular processes such as energy production and membrane and hormone synthesis. LD-associated proteins play important roles in seed development and germination, but their functions in postgermination growth are not well understood. Arabidopsis (Arabidopsis thaliana) contains three SRP homologs (SRP1, SRP2, and SRP3) that share sequence identities with small rubber particle proteins of the rubber tree (Hevea brasiliensis). In this report, the possible cellular roles of SRPs in postgermination growth and the drought tolerance response were investigated. Arabidopsis SRPs appeared to be LD-associated proteins and displayed polymerization properties in vivo and in vitro. SRP-overexpressing transgenic Arabidopsis plants (35S:SRP1, 35S:SRP2, and 35S:SRP3) exhibited higher vegetative and reproductive growth and markedly better tolerance to drought stress than wild-type Arabidopsis. In addition, constitutive over-expression of SRPs resulted in increased numbers of large LDs in postgermination seedlings. In contrast, single (srp1, 35S:SRP2-RNAi, and srp3) and triple (35S:SRP2-RNAi/srp1srp3) loss-of-function mutant lines exhibited the opposite phenotypes. Our results suggest that Arabidopsis SRPs play dual roles as positive factors in postgermination growth and the drought stress tolerance response. The possible relationships between LD-associated proteins and the drought stress response are discussed. PMID:26903535

  19. Arabidopsis Small Rubber Particle Protein Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in Drought Stress Responses.

    PubMed

    Kim, Eun Yu; Park, Ki Youl; Seo, Young Sam; Kim, Woo Taek

    2016-04-01

    Lipid droplets (LDs) act as repositories for fatty acids and sterols, which are used for various cellular processes such as energy production and membrane and hormone synthesis. LD-associated proteins play important roles in seed development and germination, but their functions in postgermination growth are not well understood. Arabidopsis (Arabidopsis thaliana) contains three SRP homologs (SRP1, SRP2, and SRP3) that share sequence identities with small rubber particle proteins of the rubber tree (Hevea brasiliensis). In this report, the possible cellular roles of SRPs in postgermination growth and the drought tolerance response were investigated. Arabidopsis SRPs appeared to be LD-associated proteins and displayed polymerization properties in vivo and in vitro. SRP-overexpressing transgenic Arabidopsis plants (35S:SRP1, 35S:SRP2, and 35S:SRP3) exhibited higher vegetative and reproductive growth and markedly better tolerance to drought stress than wild-type Arabidopsis. In addition, constitutive over-expression of SRPs resulted in increased numbers of large LDs in postgermination seedlings. In contrast, single (srp1, 35S:SRP2-RNAi, and srp3) and triple (35S:SRP2-RNAi/srp1srp3) loss-of-function mutant lines exhibited the opposite phenotypes. Our results suggest that Arabidopsis SRPs play dual roles as positive factors in postgermination growth and the drought stress tolerance response. The possible relationships between LD-associated proteins and the drought stress response are discussed. PMID:26903535

  20. A pericentrin-related protein homolog in Aspergillus nidulans plays important roles in nucleus positioning and cell polarity by affecting microtubule organization.

    PubMed

    Chen, Peiying; Gao, Rongsui; Chen, Shaochun; Pu, Li; Li, Pin; Huang, Ying; Lu, Ling

    2012-12-01

    Pericentrin is a large coiled-coil protein in mammalian centrosomes that serves as a multifunctional scaffold for anchoring numerous proteins. Recent studies have linked numerous human disorders with mutated or elevated levels of pericentrin, suggesting unrecognized contributions of pericentrin-related proteins to the development of these disorders. In this study, we characterized AnPcpA, a putative homolog of pericentrin-related protein in the model filamentous fungus Aspergillus nidulans, and found that it is essential for conidial germination and hyphal development. Compared to the hyphal apex localization pattern of calmodulin (CaM), which has been identified as an interactive partner of the pericentrin homolog, GFP-AnPcpA fluorescence dots are associated mainly with nuclei, while the accumulation of CaM at the hyphal apex depends on the function of AnPcpA. In addition, the depletion of AnPcpA by an inducible alcA promoter repression results in severe growth defects and abnormal nuclear segregation. Most interestingly, in mature hyphal cells, knockdown of pericentrin was able to significantly induce changes in cell shape and cytoskeletal remodeling; it resulted in some enlarged compartments with condensed nuclei and anucleate small compartments as well. Moreover, defects in AnPcpA significantly disrupted the microtubule organization and nucleation, suggesting that AnPcpA may affect nucleus positioning by influencing microtubule organization.

  1. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat.

    PubMed

    Ruiqi, Zhang; Mingyi, Zhang; Xiue, Wang; Peidu, Chen

    2014-03-01

    Development of wheat- D. villosum 1V#4 translocation lines; physically mapping the Glu - V1 and Gli - V1 / Glu - V3 loci; and assess the effects of the introduced Glu - V1 and Gli - V1 / Glu - V3 on wheat bread-making quality. Glu-V1 and Gli-V1/Glu-V3 loci, located in the chromosome 1V of Dasypyrum villosum, were proved to have positive effects on grain quality. However, there are very few reports about the transfer of the D. villosum-derived seed storage protein genes into wheat background by chromosome manipulation. In the present study, a total of six CS-1V#4 introgression lines with different alien-fragment sizes were developed through ionizing radiation of the mature female gametes of CS--D. villosum 1V#4 disomic addition line and confirmed by cytogenetic analysis. Genomic in situ hybridization (GISH), chromosome C-banding, twelve 1V#4-specific EST-STS markers and seed storage protein analysis enabled the cytological physical mapping of Glu-V1 and Gli-V1/Glu-V3 loci to the region of FL 0.50-1.00 of 1V#4S of D. villosum. The Glu-V1 allele of D. villosum was Glu-V1a and its coded protein was V71 subunit. Quality analysis indicated that Glu-V1a together with Gli-V1/Glu-V3 loci showed a positive effect on protein content, Zeleny sedimentation value and the rheological characteristics of wheat flour dough. In addition, the positive effect could be maintained when specific Glu-V1 and Gli-V1/Glu-V3 loci were transferred to the wheat genetic background as in the case of T1V#4S-6BS · 6BL, T1V#4S · 1BL and T1V#4S · 1DS translocation lines. These results showed that the chromosome segment carrying the Glu-V1 and Gli-V1/Glu-V3 loci in 1V#4S of D. villosum had positive effect on bread-making quality, and the T1V#4S-6BS · 6BL and T1V#4S · 1BL translocation lines could be useful germplasms for bread wheat improvement. The developed 1V#4S-specific molecular markers could be used to rapidly identify and trace the alien chromatin of 1V#4S in wheat background.

  2. The onset of the progression of acute phase response mechanisms induced by extreme impacts can be followed by the decrease in blood levels of positive acute phase proteins.

    NASA Astrophysics Data System (ADS)

    Larina, Olga; Bekker, Anna

    Studies performed at space flights and earth-based simulation models detected the plasma indices of acute phase reaction (APR), i.e. the increase of APR cytokine mediators and alterations in the production of blood acute phase proteins (APP) at the initial stages of adaptation to altered gravity conditions. Acute phase response is the principal constituent of the functional activity of innate immunity system. Changes in plasma APPs contents are considered to serve the restoration of homeostasis state. According to trends of their concentration shifts at the evolving of acute phase reaction APPs are denoted as positive, neutral, or negative. Plasma concentrations of positive acute phase proteins α1-acid glycoprotein (α1-AGP), α1-antitrypsin (α1-AT), and neutral α2-macroglobulin (α2-M) were measured in human study at 12-hour antiorthostatic position (AOP) with 15° head down tilt and hypoxia experiments at 14% oxygen in pressure chamber. Both of these impacts were shown to produce alterations in the APP levels indicative for acute phase response. Nevertheless, in AOP experiment noticeable decrease in α1-AGP concentration occurred by hour 12, and even more pronounced decline of α1-AGP and α1-AT were found on hypoxia hours 12 and 36. Acute phase proteins α1-AGP and α2-M possess the features of proteinase inhibitors. This function is implemented by the formation of complexes with the molecules of proteolytic enzymes which subsequently are removed from the blood flow. Transient decrease in plasma concentrations of protease inhibitors on early phases of APR development was reported to result from the growth of plasma protease activity due to cathepsin release from activated leukocytes, which had not yet been compensated by enhanced APP synthesis. Being a carrier protein for positively charged and neutral substances, α1-AGP shows pronounced elevation in its blood content during APR development. As assumed, it is required for the transportation of the increased

  3. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat.

    PubMed

    Ruiqi, Zhang; Mingyi, Zhang; Xiue, Wang; Peidu, Chen

    2014-03-01

    Development of wheat- D. villosum 1V#4 translocation lines; physically mapping the Glu - V1 and Gli - V1 / Glu - V3 loci; and assess the effects of the introduced Glu - V1 and Gli - V1 / Glu - V3 on wheat bread-making quality. Glu-V1 and Gli-V1/Glu-V3 loci, located in the chromosome 1V of Dasypyrum villosum, were proved to have positive effects on grain quality. However, there are very few reports about the transfer of the D. villosum-derived seed storage protein genes into wheat background by chromosome manipulation. In the present study, a total of six CS-1V#4 introgression lines with different alien-fragment sizes were developed through ionizing radiation of the mature female gametes of CS--D. villosum 1V#4 disomic addition line and confirmed by cytogenetic analysis. Genomic in situ hybridization (GISH), chromosome C-banding, twelve 1V#4-specific EST-STS markers and seed storage protein analysis enabled the cytological physical mapping of Glu-V1 and Gli-V1/Glu-V3 loci to the region of FL 0.50-1.00 of 1V#4S of D. villosum. The Glu-V1 allele of D. villosum was Glu-V1a and its coded protein was V71 subunit. Quality analysis indicated that Glu-V1a together with Gli-V1/Glu-V3 loci showed a positive effect on protein content, Zeleny sedimentation value and the rheological characteristics of wheat flour dough. In addition, the positive effect could be maintained when specific Glu-V1 and Gli-V1/Glu-V3 loci were transferred to the wheat genetic background as in the case of T1V#4S-6BS · 6BL, T1V#4S · 1BL and T1V#4S · 1DS translocation lines. These results showed that the chromosome segment carrying the Glu-V1 and Gli-V1/Glu-V3 loci in 1V#4S of D. villosum had positive effect on bread-making quality, and the T1V#4S-6BS · 6BL and T1V#4S · 1BL translocation lines could be useful germplasms for bread wheat improvement. The developed 1V#4S-specific molecular markers could be used to rapidly identify and trace the alien chromatin of 1V#4S in wheat background. PMID:24408374

  4. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  5. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  6. Glycogen Synthase Kinase 3β Is Positively Regulated by Protein Kinase Cζ-Mediated Phosphorylation Induced by Wnt Agonists

    PubMed Central

    Tejeda-Muñoz, Nydia; González-Aguilar, Héctor; Santoyo-Ramos, Paula; Castañeda-Patlán, M. Cristina

    2015-01-01

    The molecular events that drive Wnt-induced regulation of glycogen synthase kinase 3β (GSK-3β) activity are poorly defined. In this study, we found that protein kinase Cζ (PKCζ) and GSK-3β interact mainly in colon cancer cells. Wnt stimulation induced a rapid GSK-3β redistribution from the cytoplasm to the nuclei in malignant cells and a transient PKC-mediated phosphorylation of GSK-3β at a different site from serine 9. In addition, while Wnt treatment induced a decrease in PKC-mediated phosphorylation of GSK-3β in nonmalignant cells, in malignant cells, this phosphorylation was increased. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of PKCζ abolished all of these effects, but unexpectedly, it also abolished the constitutive basal activity of GSK-3β. In vitro activity assays demonstrated that GSK-3β phosphorylation mediated by PKCζ enhanced GSK-3β activity. We mapped Ser147 of GSK-3β as the site phosphorylated by PKCζ, i.e., its mutation into alanine abolished GSK-3β activity, resulting in β-catenin stabilization and increased transcriptional activity, whereas phosphomimetic replacement of Ser147 by glutamic acid maintained GSK-3β basal activity. Thus, we found that PKCζ phosphorylates GSK-3β at Ser147 to maintain its constitutive activity in resting cells and that Wnt stimulation modifies the phosphorylation of Ser147 to regulate GSK-3β activity in opposite manners in normal and malignant colon cells. PMID:26711256

  7. Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis.

    PubMed

    Scholz, Sandra S; Reichelt, Michael; Vadassery, Jyothilakshmi; Mithöfer, Axel

    2015-01-01

    Plants need to adapt to various stress factors originating from the environment. Signal transduction pathways connecting the recognition of environmental cues and the initiation of appropriate downstream responses in plants often involve intracellular Ca(2+) concentration changes. These changes must be deciphered into specific cellular signals. Calmodulin-like proteins, CMLs, act as Ca(2+) sensors in plants and are known to be involved in various stress reactions. Here, we show that in Arabidopsis 2 different CMLs, AtCML37 and AtCML42 are antagonistically involved in drought stress response. Whereas a CML37 knock-out line, cml37, was highly susceptible to drought stress, CML42 knockout line, cml42, showed no obvious effect compared to wild type (WT) plants. Accordingly, the analysis of the phytohormone abscisic acid (ABA) revealed a significant reduction of ABA upon drought stress in cml37 plants, while in cml42 plants an increase of ABA was detected. Summarizing, our results show that both CML37 and CML42 are involved in drought stress response but show antagonistic effects.

  8. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  9. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    SciTech Connect

    Son, Ora; Kim, Sunghan; Shin, Yun-jeong; Kim, Woo-Young; Koh, Hee-Jong; Cheon, Choong-Ill

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  10. Ectopic expression of the HAM59 gene causes homeotic transformations of reproductive organs in sunflower (Helianthus annuus L.).

    PubMed

    Shulga, O A; Neskorodov, Ya B; Shchennikova, A V; Gaponenko, A K; Skryabin, K G

    2015-01-01

    The function of the HAM59 MADS-box gene in sunflower (Helianthus annuus L.) was studied to clarify homeotic C activity in the Asteraceae plant family. For the first time, transgenic sunflower plants with a modified pattern of HAM59 expression were obtained. It was shown that the HAM59 MADS-box transcription factor did mediate C activity in sunflower. In particular, it participated in termination of the floral meristem, repression of the cadastral function of A-activity, and together with other C-type sunflower protein HAM45-in the specification of the identity of stamens and pistils.

  11. Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: targeting positions 72 and 82 of the cyclic nucleotide binding pocket.

    PubMed Central

    Belduz, A O; Lee, E J; Harman, J G

    1993-01-01

    The 3', 5' cyclic adenosine monophosphate (cAMP) binding pocket of the cAMP receptor protein (CRP) of Escherichia coli was mutagenized to substitute leucine, glutamine, or aspartate for glutamate 72; and lysine, histidine, leucine, isoleucine, or glutamine for arginine 82. Substitutions were made in wild-type CRP and in a CRP*, or cAMP-independent, form of the protein to assess the effects of the amino acid substitutions on CRP structure. Cells containing the binding pocket residue-substituted forms of CRP were characterized through beta-galactosidase activity and by measurement of cAMP binding activity. This study confirms a role for both glutamate 72 and arginine 82 in cAMP binding and activation of CRP. Glutamine or leucine substitution of glutamate 72 produced forms of CRP having low affinity for the cAMP and unresponsive to the nucleotide. Aspartate substituted for glutamate 72 produced a low affinity cAMP-responsive form of CRP. CRP has a stringent requirement for the positioning of the position 72 glutamate carboxyl group within the cyclic nucleotide binding pocket. Results of this study also indicate that there are differences in the binding requirements of cAMP and cGMP, a competitive inhibitor of cAMP binding to CRP. PMID:8388097

  12. Mycobacterium tuberculosis SigM positively regulates Esx secreted protein and nonribosomal peptide synthetase genes and down regulates virulence-associated surface lipid synthesis.

    PubMed

    Raman, Sahadevan; Puyang, Xiaoling; Cheng, Tan-Yun; Young, David C; Moody, D Branch; Husson, Robert N

    2006-12-01

    The Mycobacterium tuberculosis genome encodes 12 alternative sigma factors, several of which regulate stress responses and are required for virulence in animal models of acute infection. In this work we investigated M. tuberculosis SigM, a member of the extracytoplasmic function subfamily of alternative sigma factors. This sigma factor is expressed at low levels in vitro and does not appear to function in stress response regulation. Instead, SigM positively regulates genes required for the synthesis of surface or secreted molecules. Among these are genes encoding two pairs of Esx secreted proteins, a multisubunit nonribosomal peptide synthetase operon, and genes encoding two members of the proline-proline-glutamate (PPE) family of proteins. Genes up regulated in a sigM mutant strain include a different PPE gene, as well as several genes involved in surface lipid synthesis. Among these are genes involved in synthesis of phthiocerol dimycocerosate (PDIM), a surface lipid critical for virulence during acute infection, and the kasA-kasB operon, which is required for mycolic acid synthesis. Analysis of surface lipids showed that PDIM synthesis is increased in a sigM-disrupted strain and is undetectable in a sigM overexpression strain. These findings demonstrate that SigM positively and negatively regulates cell surface and secreted molecules that are likely to function in host-pathogen interactions. PMID:17028284

  13. A Set of miRNAs, Their Gene and Protein Targets and Stromal Genes Distinguish Early from Late Onset ER Positive Breast Cancer

    PubMed Central

    Bastos, E. P.; Brentani, H.; Pereira, C. A. B.; Polpo, A.; Lima, L.; Puga, R. D.; Pasini, F. S.; Osorio, C. A. B. T.; Roela, R. A.; Achatz, M. I.; Trapé, A. P.; Gonzalez-Angulo, A. M.; Brentani, M. M.

    2016-01-01

    Breast cancer (BC) in young adult patients (YA) has a more aggressive biological behavior and is associated with a worse prognosis than BC arising in middle aged patients (MA). We proposed that differentially expressed miRNAs could regulate genes and proteins underlying aggressive phenotypes of breast tumors in YA patients when compared to those arising in MA patients. Objective: Using integrated expression analyses of miRs, their mRNA and protein targets and stromal gene expression, we aimed to identify differentially expressed profiles between tumors from YA-BC and MA-BC. Methodology and Results: Samples of ER+ invasive ductal breast carcinomas, divided into two groups: YA-BC (35 years or less) or MA-BC (50–65 years) were evaluated. Screening for BRCA1/2 status according to the BOADICEA program indicated low risk of patients being carriers of these mutations. Aggressive characteristics were more evident in YA-BC versus MA-BC. Performing qPCR, we identified eight miRs differentially expressed (miR-9, 18b, 33b, 106a, 106b, 210, 518a-3p and miR-372) between YA-BC and MA-BC tumors with high confidence statement, which were associated with aggressive clinicopathological characteristics. The expression profiles by microarray identified 602 predicted target genes associated to proliferation, cell cycle and development biological functions. Performing RPPA, 24 target proteins differed between both groups and 21 were interconnected within a network protein-protein interactions associated with proliferation, development and metabolism pathways over represented in YA-BC. Combination of eight mRNA targets or the combination of eight target proteins defined indicators able to classify individual samples into YA-BC or MA-BC groups. Fibroblast-enriched stroma expression profile analysis resulted in 308 stromal genes differentially expressed between YA-BC and MA-BC. Conclusion: We defined a set of differentially expressed miRNAs, their mRNAs and protein targets and stromal

  14. The role of mRNA and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells

    PubMed Central

    Moss Bendtsen, Kristian; Jensen, Mogens H.; Krishna, Sandeep; Semsey, Szabolcs

    2015-01-01

    Oscillators and switches are important elements of regulation in biological systems. These are composed of coupling negative feedback loops, which cause oscillations when delayed, and positive feedback loops, which lead to memory formation. Here, we examine the behavior of a coupled feedback system, the Negative Autoregulated Frustrated bistability motif (NAF). This motif is a combination of two previously explored motifs, the frustrated bistability motif (FBM) and the negative auto regulation motif (NAR), which both can produce oscillations. The NAF motif was previously suggested to govern long term memory formation in animals, and was used as a synthetic oscillator in bacteria. We build a mathematical model to analyze the dynamics of the NAF motif. We show analytically that the NAF motif requires an asymmetry in the strengths of activation and repression links in order to produce oscillations. We show that the effect of time delays in eukaryotic cells, originating from mRNA export and protein import, are negligible in this system. Based on the reported protein and mRNA half-lives in eukaryotic cells, we find that even though the NAF motif possesses the ability for oscillations, it mostly promotes constant protein expression at the biologically relevant parameter regimes. PMID:26365394

  15. The role of mRNA and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells.

    PubMed

    Moss Bendtsen, Kristian; Jensen, Mogens H; Krishna, Sandeep; Semsey, Szabolcs

    2015-01-01

    Oscillators and switches are important elements of regulation in biological systems. These are composed of coupling negative feedback loops, which cause oscillations when delayed, and positive feedback loops, which lead to memory formation. Here, we examine the behavior of a coupled feedback system, the Negative Autoregulated Frustrated bistability motif (NAF). This motif is a combination of two previously explored motifs, the frustrated bistability motif (FBM) and the negative auto regulation motif (NAR), which both can produce oscillations. The NAF motif was previously suggested to govern long term memory formation in animals, and was used as a synthetic oscillator in bacteria. We build a mathematical model to analyze the dynamics of the NAF motif. We show analytically that the NAF motif requires an asymmetry in the strengths of activation and repression links in order to produce oscillations. We show that the effect of time delays in eukaryotic cells, originating from mRNA export and protein import, are negligible in this system. Based on the reported protein and mRNA half-lives in eukaryotic cells, we find that even though the NAF motif possesses the ability for oscillations, it mostly promotes constant protein expression at the biologically relevant parameter regimes.

  16. Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae.

    PubMed

    Yang, Chun-Lin; Liang, Shan; Wang, Hai-Yun; Han, Li-Bo; Wang, Fu-Xin; Cheng, Huan-Qing; Wu, Xiao-Min; Qu, Zhan-Liang; Wu, Jia-He; Xia, Gui-Xian

    2015-03-01

    In this study, we identified a defense-related major latex protein (MLP) from upland cotton (designated GhMLP28) and investigated its functional mechanism. GhMLP28 transcripts were ubiquitously present in cotton plants, with higher accumulation in the root. Expression of the GhMLP28 gene was induced by Verticillium dahliae inoculation and was responsive to defense signaling molecules, including ethylene, jasmonic acid, and salicylic acid. Knockdown of GhMLP28 expression by virus-induced gene silencing resulted in increased susceptibility of cotton plants to V. dahliae infection, while ectopic overexpression of GhMLP28 in tobacco improved the disease tolerance of the transgenic plants. Further analysis revealed that GhMLP28 interacted with cotton ethylene response factor 6 (GhERF6) and facilitated the binding of GhERF6 to GCC-box element. Transient expression assay demonstrated that GhMLP28 enhanced the transcription factor activity of GhERF6, which led to the augmented expression of some GCC-box genes. GhMLP28 proteins were located in both the nucleus and cytoplasm and their nuclear distribution was dependent on the presence of GhERF6. Collectively, these results demonstrate that GhMLP28 acts as a positive regulator of GhERF6, and synergetic actions of the two proteins may contribute substantially to protection against V. dahliae infection in cotton plants.

  17. Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of Gram-positive bacterial proteins.

    PubMed

    Shen, Hong-Bin; Chou, Kuo-Chen

    2009-01-01

    In this paper, a new predictor called "Gpos-mPLoc", is developed for identifying the subcellular localization of Gram positive bacterial proteins by fusing the information of gene ontology, as well as the functional domain information and sequential evolution information. Compared with the old Gpos-PLoc, the new predictor is much more powerful and flexible. Particularly, it also has the capacity to deal with multiple-location proteins as indicated by the character "m" in front of "PLoc" of its name. For a newly-constructed stringent benchmark dataset in which none of included proteins has > 25% pairwise sequence identity to any other in a same subset (location), the overall jackknife success rate achieved by Gpos-mPLoc was 82.2%, which was about 10% higher than the corresponding rate by the Gpos-PLoc. As a user friendly web-server, Gpos-mPLoc is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi/.

  18. Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli

    PubMed Central

    Helgesen, Emily; Fossum-Raunehaug, Solveig

    2016-01-01

    ABSTRACT The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a “slow-growth” type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such

  19. A Critical Role of Lyst-Interacting Protein5, a Positive Regulator of Multivesicular Body Biogenesis, in Plant Responses to Heat and Salt Stresses1

    PubMed Central

    Wang, Fei; Yang, Yan; Wang, Zhe; Zhou, Jie; Fan, Baofang; Chen, Zhixiang

    2015-01-01

    Multivesicular bodies (MVBs) are unique endosomes containing vesicles in the lumen and play critical roles in many cellular processes. We have recently shown that Arabidopsis (Arabidopsis thaliana) Lyst-Interacting Protein5 (LIP5), a positive regulator of the Suppressor of K+ Transport Growth Defect1 (SKD1) AAA ATPase in MVB biogenesis, is a critical target of the mitogen-activated protein kinases MPK3 and MPK6 and plays an important role in the plant immune system. In this study, we report that the LIP5-regulated MVB pathway also plays a critical role in plant responses to abiotic stresses. Disruption of LIP5 causes compromised tolerance to both heat and salt stresses. The critical role of LIP5 in plant tolerance to abiotic stresses is dependent on its ability to interact with Suppressor of K+ Transport Growth Defect1. When compared with wild-type plants, lip5 mutants accumulate increased levels of ubiquitinated protein aggregates and NaCl under heat and salt stresses, respectively. Further analysis using fluorescent dye and MVB markers reveals that abiotic stress increases the formation of endocytic vesicles and MVBs in a largely LIP5-dependent manner. LIP5 is also required for the salt-induced increase of intracellular reactive oxygen species, which have been implicated in signaling of salt stress responses. Basal levels of LIP5 phosphorylation by MPKs and the stability of LIP5 are elevated by salt stress, and mutation of MPK phosphorylation sites in LIP5 reduces the stability and compromises the ability to complement the lip5 salt-sensitive mutant phenotype. These results collectively indicate that the MVB pathway is positively regulated by pathogen/stress-responsive MPK3/6 through LIP5 phosphorylation and plays a critical role in broad plant responses to biotic and abiotic stresses. PMID:26229051

  20. A Critical Role of Lyst-Interacting Protein5, a Positive Regulator of Multivesicular Body Biogenesis, in Plant Responses to Heat and Salt Stresses.

    PubMed

    Wang, Fei; Yang, Yan; Wang, Zhe; Zhou, Jie; Fan, Baofang; Chen, Zhixiang

    2015-09-01

    Multivesicular bodies (MVBs) are unique endosomes containing vesicles in the lumen and play critical roles in many cellular processes. We have recently shown that Arabidopsis (Arabidopsis thaliana) Lyst-Interacting Protein5 (LIP5), a positive regulator of the Suppressor of K(+) Transport Growth Defect1 (SKD1) AAA ATPase in MVB biogenesis, is a critical target of the mitogen-activated protein kinases MPK3 and MPK6 and plays an important role in the plant immune system. In this study, we report that the LIP5-regulated MVB pathway also plays a critical role in plant responses to abiotic stresses. Disruption of LIP5 causes compromised tolerance to both heat and salt stresses. The critical role of LIP5 in plant tolerance to abiotic stresses is dependent on its ability to interact with Suppressor of K(+) Transport Growth Defect1. When compared with wild-type plants, lip5 mutants accumulate increased levels of ubiquitinated protein aggregates and NaCl under heat and salt stresses, respectively. Further analysis using fluorescent dye and MVB markers reveals that abiotic stress increases the formation of endocytic vesicles and MVBs in a largely LIP5-dependent manner. LIP5 is also required for the salt-induced increase of intracellular reactive oxygen species, which have been implicated in signaling of salt stress responses. Basal levels of LIP5 phosphorylation by MPKs and the stability of LIP5 are elevated by salt stress, and mutation of MPK phosphorylation sites in LIP5 reduces the stability and compromises the ability to complement the lip5 salt-sensitive mutant phenotype. These results collectively indicate that the MVB pathway is positively regulated by pathogen/stress-responsive MPK3/6 through LIP5 phosphorylation and plays a critical role in broad plant responses to biotic and abiotic stresses.

  1. iLoc-Gpos: a multi-layer classifier for predicting the subcellular localization of singleplex and multiplex Gram-positive bacterial proteins.

    PubMed

    Wu, Zhi-Cheng; Xiao, Xuan; Chou, Kuo-Chen

    2012-01-01

    By introducing the "multi-layer scale", as well as hybridizing the information of gene ontology and the sequential evolution information, a novel predictor, called iLoc-Gpos, has been developed for predicting the subcellular localization of Gram positive bacterial proteins with both single-location and multiple-location sites. For facilitating comparison, the same stringent benchmark dataset used to estimate the accuracy of Gpos-mPLoc was adopted to demonstrate the power of iLoc-Gpos. The dataset contains 519 Gram-positive bacterial proteins classified into the following four subcellular locations: (1) cell membrane, (2) cell wall, (3) cytoplasm, and (4) extracell; none of proteins included has ≥25% pairwise sequence identity to any other in a same subset (subcellular location). The overall success rate by jackknife test on such a stringent benchmark dataset by iLoc-Gpos was over 93%, which is about 11% higher than that by GposmPLoc. As a user-friendly web-server, iLoc-Gpos is freely accessible to the public at http://icpr.jci.edu.cn/bioinfo/iLoc- Gpos or http://www.jci-bioinfo.cn/iLoc-Gpos. Meanwhile, a step-by-step guide is provided on how to use the web-server to get the desired results. Furthermore, for the user � s convenience, the iLoc-Gpos web-server also has the function to accept the batch job submission, which is not available in the existing version of Gpos-mPLoc web-server.

  2. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice.

    PubMed

    Jing, Pei; Zou, Juanzi; Kong, Lin; Hu, Shiqi; Wang, Biying; Yang, Jun; Xie, Guosheng

    2016-06-01

    Calcium-binding proteins play key roles in the signal transduction in the growth and stress response in eukaryotes. However, a subfamily of proteins with one EF-hand motif has not been fully studied in higher plants. Here, a novel small calcium-binding protein with a C-terminal centrin-like domain (CCD1) in rice, OsCCD1, was characterized to show high similarity with a TaCCD1 in wheat. As a result, OsCCD1 can bind Ca(2+) in the in vitro EMSA and the fluorescence staining calcium-binding assays. Transient expression of green fluorescent protein (GFP)-tagged OsCCD1 in rice protoplasts showed that OsCCD1 was localized in the nucleus and cytosol of rice cells. OsCCD1 transcript levels were transiently induced by osmotic stress and salt stress through the calcium-mediated ABA signal. The rice seedlings of T-DNA mutant lines showed significantly less tolerance to osmotic and salt stresses than wild type plants (p<0.01). Conversely, its overexpressors can significantly enhance the tolerance to osmotic and salt stresses than wild type plants (p<0.05). Semi-quantitative RT-PCR analysis revealed that, OsDREB2B, OsAPX1 and OsP5CS genes are involved in the rice tolerance to osmotic and salt stresses. In sum, OsCCD1 gene probably affects the DREB2B and its downstream genes to positively regulate osmotic and salt tolerance in rice seedlings. PMID:27095404

  3. Shared Epitope Alleles Remain A Risk Factor for Anti-Citrullinated Proteins Antibody (ACPA) – Positive Rheumatoid Arthritis in Three Asian Ethnic Groups

    PubMed Central

    Chun-Lai, Too; Padyukov, Leonid; Dhaliwal, Jasbir Singh; Lundström, Emeli; Yahya, Abqariyah; Muhamad, Nor Asiah; Klareskog, Lars; Alfredsson, Lars; Larsson, Per Tobias; Murad, Shahnaz

    2011-01-01

    Background To investigate the associations between HLA-DRB1 shared epitope (SE) alleles and rheumatoid arthritis in subsets of rheumatoid arthritis defined by autoantibodies in three Asian populations from Malaysia. Methods 1,079 rheumatoid arthritis patients and 1,470 healthy controls were included in the study. Levels of antibodies to citrullinated proteins (ACPA) and rheumatoid factors were assessed and the PCR-SSO method was used for HLA-DRB1 genotyping. Results The proportion of ACPA positivity among Malay, Chinese and Indian rheumatoid arthritis patients were 62.9%, 65.2% and 68.6%, respectively. An increased frequency of SE alleles was observed in ACPA-positive rheumatoid arthritis among the three Asian ethnic groups. HLA-DRB1*10 was highly associated with rheumatoid arthritis susceptibility in these Asian populations. HLA-DRB1*0405 was significantly associated with susceptibility to rheumatoid arthritis in Malays and Chinese, but not in Indians. HLA-DRB1*01 did not show any independent effect as a risk factor for rheumatoid arthritis in this study and HLA-DRB1*1202 was protective in Malays and Chinese. There was no association between SE alleles and ACPA- negative rheumatoid arthritis in any of the three Asian ethnic groups. Conclusion The HLA-DRB1 SE alleles increase the risk of ACPA-positive rheumatoid arthritis in all three Asian populations from Malaysia. PMID:21698259

  4. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening. PMID:25980771

  5. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening.

  6. Proteins

    NASA Astrophysics Data System (ADS)

    Regnier, Fred E.; Gooding, Karen M.

    Because of the complexity of cellular material and body fluids, it is seldom possible to analyze a natural product directly. Qualitative and quantitative analyses must often be preceded by some purification step that separates the molecular species being examined from interfering materials. In the case of proteins, column liquid chromatography has been used extensively for these fractionations. With the advent of gel permeation, cation exchange, anion exchange, hydrophobic, and affinity chromatography, it became possible to resolve proteins through their fundamental properties of size, charge, hydrophobicity, and biological affinity. The chromatographic separations used in the early isolation and characterization of many proteins later became analytical tools in their routine analysis. Unfortunately, these inherently simple and versatile column chromatographic techniques introduced in the 50s and 60s have a severe limitation in routine analysis-separation time. It is common to encounter 1-24 h separation times with the classical gel-type supports.

  7. Protein kinase D1 regulates ERα-positive breast cancer cell growth response to 17β-estradiol and contributes to poor prognosis in patients

    PubMed Central

    Karam, Manale; Bièche, Ivan; Legay, Christine; Vacher, Sophie; Auclair, Christian; Ricort, Jean-Marc

    2014-01-01

    About 70% of human breast cancers express and are dependent for growth on estrogen receptor α (ERα), and therefore are sensitive to antiestrogen therapies. However, progression to an advanced, more aggressive phenotype is associated with acquisition of resistance to antiestrogens and/or invasive potential. In this study, we highlight the role of the serine/threonine-protein kinase D1 (PKD1) in ERα-positive breast cancers. Growth of ERα-positive MCF-7 and MDA-MB-415 human breast cancer cells was assayed in adherent or anchorage-independent conditions in cells overexpressing or depleted for PKD1. PKD1 induces cell growth through both an ERα-dependent manner, by increasing ERα expression and cell sensitivity to 17β-estradiol, and an ERα-independent manner, by reducing cell dependence to estrogens and conferring partial resistance to antiestrogen ICI 182,780. PKD1 knockdown in MDA-MB-415 cells strongly reduced estrogen-dependent and independent invasion. Quantification of PKD1 mRNA levels in 38 cancerous and non-cancerous breast cell lines and in 152 ERα-positive breast tumours from patients treated with adjuvant tamoxifen showed an association between PKD1 and ERα expression in 76.3% (29/38) of the breast cell lines tested and a strong correlation between PKD1 expression and invasiveness (P < 0.0001). In tamoxifen-treated patients, tumours with high PKD1 mRNA levels (n = 77, 50.66%) were significantly associated with less metastasis-free survival than tumours with low PKD1 mRNA expression (n = 75, 49.34%; P = 0.031). Moreover, PKD1 mRNA levels are strongly positively associated with EGFR and vimentin levels (P < 0.0000001). Thus, our study defines PKD1 as a novel attractive prognostic factor and a potential therapeutic target in breast cancer. PMID:25287328

  8. MADS Box Transcription Factor Mbx2/Pvg4 Regulates Invasive Growth and Flocculation by Inducing gsf2+ Expression in Fission Yeast

    PubMed Central

    Matsuzawa, Tomohiko; Yoritsune, Ken-ichi

    2012-01-01

    The fission yeast Schizosaccharomyces pombe exhibits invasive growth and nonsexual flocculation in response to nitrogen limitation. Gsf2, a flocculin of fission yeast, is required not only for nonsexual flocculation but also for invasive growth through the recognition of galactose residues on cell surface glycoconjugates. We found that pyruvylation negatively regulates nonsexual flocculation by capping the galactose residues of N-linked galactomannan. We investigated whether pyruvylation also regulates invasive growth. The pvg4+ gene originally was isolated as a multicopy suppressor of a pvg4 mutant defective in the pyruvylation of N-linked oligosaccharides. However, we did not detect a defect in cell surface pyruvylation in the pvg4/mbx2 deletion mutant, as assessed by alcian blue staining and a Q-Sepharose binding assay. Instead, the deletion prevented invasive growth under conditions of low nitrogen and high glucose, and it reduced the adhesion and flocculation of otherwise flocculent mutants by reducing gsf2+ expression. mbx2+-overexpressing strains exhibited nonsexual and calcium-dependent aggregation, which was inhibited in the presence of galactose but mediated by the induction of gsf2+. These findings indicate that Mbx2 mediates invasive growth and flocculation via the transcriptional activation of gsf2+ in fission yeast. In addition, we found that fission yeast Mbx2 induces the nonsexual flocculation of budding yeast by the activation of FLO1. PMID:22180499

  9. Crystallization and first data collection of the putative transfer protein TraN from the Gram-positive conjugative plasmid pIP501.

    PubMed

    Goessweiner-Mohr, Nikolaus; Fercher, Christian; Abajy, Mohammad Yaser; Grohmann, Elisabeth; Keller, Walter

    2012-11-01

    Conjugative plasmid transfer is the most important route for the spread of resistance and virulence genes among bacteria. Consequently, bacteria carrying conjugative plasmids are a substantial threat to human health, especially hospitalized patients. Whilst detailed information about the process has been obtained for Gram-negative type-4 secretion systems, little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. The successful purification and crystallization of the putative transfer protein TraN from the G+ conjugative model plasmid pIP501 of Enterococcus faecalis are presented. Native crystals diffracted to 1.8 Å resolution on a synchrotron beamline. The crystals belonged to space group P2(1), with unit-cell parameters a=32.88, b=54.94, c=57.71 Å, β=91.89° and two molecules per asymmetric unit.

  10. Regulation of glycoprotein D synthesis: does alpha 4, the major regulatory protein of herpes simplex virus 1, regulate late genes both positively and negatively?

    PubMed Central

    Arsenakis, M; Campadelli-Fiume, G; Roizman, B

    1988-01-01

    Earlier studies have described the alpha 4/c113 baby hamster kidney cell line which constitutively expresses the alpha 4 protein, the major regulatory protein of herpes simplex virus 1 (HSV-1). Introduction of the HSV-1 glycoprotein B (gB) gene, regulated as a gamma 1 gene, into these cells yielded a cell line which constitutively expressed both the alpha 4 and gamma 1 gB genes. The expression of the gB gene was dependent on the presence of functional alpha 4 protein. In this article we report that we introduced into the alpha 4/c113 and into the parental BHK cells, the HSV-1 BamHI J fragment, which encodes the domains of four genes, including those of glycoproteins D, G, and I (gD, gG, and gI), and most of the coding sequences of the glycoprotein E (gE) gene. In contrast to the earlier studies, we obtained significant constitutive expression of gD (also a gamma 1 gene) in a cell line (BJ) derived from parental BHK cells, but not in a cell line (alpha 4/BJ) which expresses functional alpha 4 protein. RNA homologous to the gD gene was present in significant amounts in the BJ cell line; smaller amounts of this RNA were detected in the alpha 4/BJ cell line. RNA homologous to gE, presumed to be polyadenylated from signals in the vector sequences, was present in the BJ cells but not in the alpha 4/BJ cells. The expression of the HSV-1 gD and gE genes was readily induced in the alpha 4/BJ cells by superinfection with HSV-2. The BJ cell line was, in contrast, resistant to expression of HSV-1 and HSV-2 genes. The BamHI J DNA fragment copy number was approximately 1 per BJ cell genome equivalent and 30 to 50 per alpha 4/BJ cell genome equivalent. We conclude that (i) the genes specifying gD and gB belong to different viral regulatory gene subsets, (ii) the gD gene is subject to both positive and negative regulation, (iii) both gD and gE mRNAs are subject to translational controls although they may be different, and (iv) the absence of expression of gD in the alpha 4/BJ

  11. CO2-Responsive CONSTANS, CONSTANS-Like, and Time of Chlorophyll a/b Binding Protein Expression1 Protein Is a Positive Regulator of Starch Synthesis in Vegetative Organs of Rice1[OPEN

    PubMed Central

    Sugino, Miho; Hatanaka, Tomoko; Misoo, Shuji

    2015-01-01

    A unique CO2-Responsive CONSTANS, CONSTANS-like, and Time of Chlorophyll a/b Binding Protein1 (CCT) Protein (CRCT) containing a CCT domain but not a zinc finger motif is described, which is up-regulated under elevated CO2 in rice (Oryza sativa). The expression of CRCT showed diurnal oscillation peaked at the end of the light period and was also increased by sugars such as glucose and sucrose. Promoter β-glucuronidase analysis showed that CRCT was highly expressed in the phloem of various tissues such as leaf blade and leaf sheath. Overexpression or RNA interference knockdown of CRCT had no appreciable effect on plant growth and photosynthesis except that tiller angle was significantly increased by the overexpression. More importantly, starch content in leaf sheath, which serves as a temporary storage organ for photoassimilates, was markedly increased in overexpression lines and decreased in knockdown lines. The expressions of several genes related to starch synthesis, such as ADP-glucose pyrophospholylase and α-glucan phospholylase, were significantly changed in transgenic lines and positively correlated with the expression levels of CRCT. Given these observations, we suggest that CRCT is a positive regulator of starch accumulation in vegetative tissues, regulating coordinated expression of starch synthesis genes in response to the levels of photoassimilates. PMID:25717036

  12. A peptidoglycan recognition protein from Sciaenops ocellatus is a zinc amidase and a bactericide with a substrate range limited to Gram-positive bacteria.

    PubMed

    Li, Mo-Fei; Zhang, Min; Wang, Chun-Lin; Sun, Li

    2012-02-01

    Peptidoglycan recognition proteins (PGRPs) are a family of innate immune molecules that recognize bacterial peptidoglycan. PGRPs are highly conserved in invertebrates and vertebrates including fish. However, the biological function of teleost PGRP remains largely uninvestigated. In this study, we identified a PGRP homologue, SoPGLYRP-2, from red drum (Sciaenops ocellatus) and analyzed its activity and potential function. The deduced amino acid sequence of SoPGLYRP-2 is composed of 482 residues and shares 46-94% overall identities with known fish PGRPs. SoPGLYRP-2 contains at the C-terminus a single zinc amidase domain with conserved residues that form the catalytic site. Quantitative RT-PCR analysis detected SoPGLYRP-2 expression in multiple tissues, with the highest expression occurring in liver and the lowest expression occurring in brain. Experimental bacterial infection upregulated SoPGLYRP-2 expression in kidney, spleen, and liver in time-dependent manners. To examine the biological activity of SoPGLYRP-2, purified recombinant proteins representing the intact SoPGLYRP-2 (rSoPGLYRP-2) and the amidase domain (rSoPGLYRP-AD) were prepared from Escherichia coli. Subsequent analysis showed that rSoPGLYRP-2 and rSoPGLYRP-AD (i) exhibited comparable Zn(2+)-dependent peptidoglycan-lytic activity and were able to recognize and bind to live bacterial cells, (ii) possessed bactericidal effect against Gram-positive bacteria and slight bacteriostatic effect against Gram-negative bacteria, (iii) were able to block bacterial infection into host cells. These results indicate that SoPGLYRP-2 is a zinc-dependent amidase and a bactericide that targets preferentially at Gram-positive bacteria, and that SoPGLYRP-2 is likely to play a role in host innate immune defense during bacterial infection. PMID:22146700

  13. Extensive protein hydrolysate formula effectively reduces regurgitation in infants with positive and negative challenge tests for cow’s milk allergy

    PubMed Central

    Vandenplas, Y; De Greef, E

    2014-01-01

    Aim Cow’s milk protein allergy (CMPA) is treated using an elimination diet with an extensive protein hydrolysate. We explored whether a thickened or nonthickened version was best for infants with suspected CMPA, which commonly causes regurgitation/vomiting. Methods Diagnosis of CMPA was based on a positive challenge test. We compared the efficacy of two casein extensive hydrolysates (eCH), a nonthickened version (NT-eCH) and a thickened version (T-eCH), using a symptom-based score covering regurgitation, crying, stool consistency, eczema, urticarial and respiratory symptoms. Results A challenge was performed in 52/72 infants with suspected CMPA and was positive in 65.4%. All confirmed CMPA cases tolerated eCH. The symptom-based score decreased significantly in all infants within a month, and the highest reduction was in those with confirmed CMPA. Regurgitation was reduced in all infants (6.4 ± 3.2–2.8 ± 2.9, p < 0.001), but fell more with the T-eCH (−4.2 ± 3.2 regurgitations/day vs. −3.0 ± 4.5, ns), especially in infants with a negative challenge (−3.9 ± 4.0 vs. −1.9 ± 3.4, ns). Conclusion eCH fulfilled the criteria for a hypoallergenic formula, and the NT-eCH and T-eCH formulas both reduced CMPA symptoms. The symptom-based score is useful for evaluating how effective dietary treatments are for CMPA. PMID:24575806

  14. NHE-RF, a Merlin-Interacting Protein, Is Primarily Expressed in Luminal Epithelia, Proliferative Endometrium, and Estrogen Receptor-Positive Breast Carcinomas

    PubMed Central

    Stemmer-Rachamimov, Anat O.; Wiederhold, Thorsten; Nielsen, G. Petur; James, Marianne; Pinney-Michalowski, Denise; Roy, Jennifer E.; Cohen, Wendy A.; Ramesh, Vijaya; Louis, David N.

    2001-01-01

    NHE-RF, a regulatory cofactor for NHE (Na+-H+ exchanger) type 3, interacts with ion transporters and receptors through its PDZ domains and with the MERM proteins (merlin, ezrin, radixin and moesin) via its carboxyl terminus. Thus, NHE-RF may act as a multifunctional adaptor protein and play a role in the assembly of signal transduction complexes, linking ion channels and receptors to the actin cytoskeleton. NHE-RF expression is up-regulated in response to estrogen in estrogen receptor-positive breast carcinoma cell lines, suggesting that it may be involved in estrogen signaling. To further understand NHE-RF function and its possible role in estrogen signaling, we analyzed NHE-RF expression in normal human tissues, including cycling endometrium, and in breast carcinomas, tissues in which estrogen plays an important role in regulating cell growth and proliferation. NHE-RF is expressed in many epithelia, especially in cells specialized in ion transport or absorption, and is often localized to apical (luminal) membranes. NHE-RF expression varies markedly in proliferative versus secretory endometrium, with high expression in proliferative (estrogen-stimulated) endometrium. Furthermore, estrogen receptor status and NHE-RF expression correlate closely in breast carcinoma specimens. These findings support a role for NHE-RF in estrogen signaling. PMID:11141479

  15. Protein Tyrosine Phosphatase N2 Is a Positive Regulator of Lipopolysaccharide Signaling in Raw264.7 Cell through Derepression of Src Tyrosine Kinase.

    PubMed

    Ha Thi, Huyen Trang; Choi, Seo-Won; Kim, Young-Mi; Kim, Hye-Youn; Hong, Suntaek

    2016-01-01

    T cell protein tyrosine phosphatase N2 (PTPN2) is a phosphotyrosine-specific nonreceptor phosphatase and is ubiquitously expressed in tissues. Although PTPN2 functions as an important regulator in different signaling pathways, it is still unclear what is specific target protein of PTPN2 and how is regulated in lipopolysaccharide (LPS)-induced inflammatory signaling pathway. Here, we found that PTPN2 deficiency downregulated the expression of LPS-mediated pro-inflammtory cytokine genes. Conversely, overexpression of PTPN2 in Raw264.7 cells enhanced the expression and secretion of those cytokines. The activation of MAPK and NF-κB signaling pathways by LPS was reduced in PTPN2-knockdowned cells and ectopic expression of PTPN2 reversed these effects. Furthermore, we found that PTNP2 directly interacted with Src and removed the inhibitory Tyr527 phosphorylation of Src to enhance the activatory phosphorylation of Tyr416 residue. These results suggested that PTPN2 is a positive regulator of LPS-induced inflammatory response by enhancing the activity of Src through targeting the inhibitory phosphor-tyrosine527 of Src. PMID:27611995

  16. Crystallization and preliminary structure determination of the transfer protein TraM from the Gram-positive conjugative plasmid pIP501.

    PubMed

    Goessweiner-Mohr, Nikolaus; Grumet, Lukas; Pavkov-Keller, Tea; Birner-Gruenberger, Ruth; Grohmann, Elisabeth; Keller, Walter

    2013-02-01

    The major means of horizontal gene spread (e.g. of antibiotic resistance) is conjugative plasmid transfer. It presents a serious threat especially for hospitalized and immuno-suppressed patients, as it can lead to the accelerated spread of bacteria with multiple antibiotic resistances. Detailed information about the process is available only for bacteria of Gram-negative (G-) origin and little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. Here we present the purification, biophysical characterization, crystallization and preliminary structure determination of the TraM C-terminal domain (TraMΔ, comprising residues 190-322 of the full-length protein), a putative transfer protein from the G+ conjugative model plasmid pIP501. The crystals diffracted to 2.5 Å resolution and belonged to space group P1, with unit-cell parameters a = 39.21, b = 54.98, c = 93.47 Å, α = 89.91, β = 86.44, γ = 78.63° and six molecules per asymmetric unit. The preliminary structure was solved by selenomethionine single-wavelength anomalous diffraction.

  17. A calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter

    PubMed Central

    Kamthan, Ayushi; Kamthan, Mohan; Kumar, Avinash; Sharma, Pratima; Ansari, Sekhu; Thakur, Sarjeet Singh; Chaudhuri, Abira; Datta, Asis

    2015-01-01

    Oxalate decarboxylase (OXDC) enzyme has immense biotechnological applications due to its ability to decompose anti-nutrient oxalic acid. Flammulina velutipes, an edible wood rotting fungus responds to oxalic acid by induction of OXDC to maintain steady levels of pH and oxalate anions outside the fungal hyphae. Here, we report that upon oxalic acid induction, a calmodulin (CaM) like protein-FvCaMLP, interacts with the OXDC promoter to regulate its expression. Electrophoretic mobility shift assay showed that FvCamlp specifically binds to two non-canonical E-box elements (AACGTG) in the OXDC promoter. Moreover, substitutions of amino acids in the EF hand motifs resulted in loss of DNA binding ability of FvCamlp. F. velutipes mycelia treated with synthetic siRNAs designed against FvCaMLP showed significant reduction in FvCaMLP as well as OXDC transcript pointing towards positive nature of the regulation. FvCaMLP is different from other known EF hand proteins. It shows sequence similarity to both CaMs and myosin regulatory light chain (Cdc4), but has properties typical of a calmodulin, like binding of 45Ca2+, heat stability and Ca2+ dependent electrophoretic shift. Hence, FvCaMLP can be considered a new addition to the category of unconventional Ca2+ binding transcriptional regulators. PMID:26455820

  18. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis.

    PubMed

    Cai, Guohua; Wang, Guodong; Wang, Li; Liu, Yang; Pan, Jiaowen; Li, Dequan

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules in animals, plants and yeast. MAPK cascades are complicated networks and play vital roles in signal transduction pathways involved in biotic and abiotic stresses. In this study, a maize MAPKK gene, ZmMKK1, was characterized. Quantitative real time PCR (qRT-PCR) analysis demonstrated that ZmMKK1 transcripts were induced by diverse stresses and ABA signal molecule in maize root. Further study showed that the ZmMKK1-overexpressing Arabidopsis enhanced the tolerance to salt and drought stresses. However, seed germination, post-germination growth and stomatal aperture analysis demonstrated that ZmMKK1 overexpression was sensitive to ABA in transgenic Arabidopsis. Molecular genetic analysis revealed that the overexpression of ZmMKK1 in Arabidopsis enhanced the expression of ROS scavenging enzyme- and ABA-related genes, such as POD, CAT, RAB18 and RD29A under salt and drought conditions. In addition, heterologous overexpression of ZmMKK1 in yeast (Saccharomyces cerevisiae) improved the tolerance to salt and drought stresses. These results suggested that ZmMKK1 might act as an ABA- and ROS-dependent protein kinase in positive modulation of salt and drought tolerance. Most importantly, ZmMKK1 interacted with ZmMEKK1 as evidenced by yeast two-hybrid assay, redeeming a deficiency of MAPK interaction partners in maize. PMID:24974327

  19. Protein Tyrosine Phosphatase N2 Is a Positive Regulator of Lipopolysaccharide Signaling in Raw264.7 Cell through Derepression of Src Tyrosine Kinase

    PubMed Central

    Kim, Young-Mi; Kim, Hye-Youn; Hong, Suntaek

    2016-01-01

    T cell protein tyrosine phosphatase N2 (PTPN2) is a phosphotyrosine-specific nonreceptor phosphatase and is ubiquitously expressed in tissues. Although PTPN2 functions as an important regulator in different signaling pathways, it is still unclear what is specific target protein of PTPN2 and how is regulated in lipopolysaccharide (LPS)-induced inflammatory signaling pathway. Here, we found that PTPN2 deficiency downregulated the expression of LPS-mediated pro-inflammtory cytokine genes. Conversely, overexpression of PTPN2 in Raw264.7 cells enhanced the expression and secretion of those cytokines. The activation of MAPK and NF-κB signaling pathways by LPS was reduced in PTPN2-knockdowned cells and ectopic expression of PTPN2 reversed these effects. Furthermore, we found that PTNP2 directly interacted with Src and removed the inhibitory Tyr527 phosphorylation of Src to enhance the activatory phosphorylation of Tyr416 residue. These results suggested that PTPN2 is a positive regulator of LPS-induced inflammatory response by enhancing the activity of Src through targeting the inhibitory phosphor-tyrosine527 of Src. PMID:27611995

  20. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  1. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells.

    PubMed

    Vivacqua, Adele; Lappano, Rosamaria; De Marco, Paola; Sisci, Diego; Aquila, Saveria; De Amicis, Francesca; Fuqua, Suzanne A W; Andò, Sebastiano; Maggiolini, Marcello

    2009-11-01

    In the present study, we evaluated the regulation of G protein-coupled receptor (GPR)30 expression in estrogen receptor (ER)-positive endometrial, ovarian, and estrogen-sensitive, as well as tamoxifen-resistant breast cancer cells. We demonstrate that epidermal growth factor (EGF) and TGF alpha transactivate the GPR30 promoter and accordingly up-regulate GPR30 mRNA and protein levels only in endometrial and tamoxifen-resistant breast cancer cells. These effects exerted by EGF and TGF alpha were dependent on EGF receptor (EGFR) expression and activation and involved phosphorylation of the Tyr(1045) and Tyr(1173) EGFR sites. Using gene-silencing experiments and specific pharmacological inhibitors, we have ascertained that EGF and TGF alpha induce GPR30 expression through the EGFR/ERK transduction pathway, and the recruitment of c-fos to the activator protein-1 site located within GPR30 promoter sequence. Interestingly, we show that functional cross talk of GPR30 with both activated EGFR and ER alpha relies on a physical interaction among these receptors, further extending the potential of estrogen to trigger a complex stimulatory signaling network in hormone-sensitive tumors. Given that EGFR/HER2 overexpression is associated with tamoxifen resistance, our data may suggest that ligand-activated EGFR could contribute to the failure of tamoxifen therapy also by up-regulating GPR30, which in turn could facilitates the action of estrogen. In addition, important for resistance is the ability of tamoxifen to bind to and activate GPR30, the expression of which is up-regulated by EGFR activation. Our results emphasize the need for new endocrine agents able to block widespread actions of estrogen without exerting any stimulatory activity on transduction pathways shared by the steroid and growth factor-signaling networks.

  2. Usage of tautomycetin, a novel inhibitor of protein phosphatase 1 (PP1), reveals that PP1 is a positive regulator of Raf-1 in vivo.

    PubMed

    Mitsuhashi, Shinya; Shima, Hiroshi; Tanuma, Nobuhiro; Matsuura, Nobuyasu; Takekawa, Mutsuhiro; Urano, Takeshi; Kataoka, Tohru; Ubukata, Makoto; Kikuchi, Kunimi

    2003-01-01

    Protein phosphatase type 1 (PP1), together with protein phosphatase 2A (PP2A), is a major eukaryotic serine/threonine protein phosphatase involved in regulation of numerous cell functions. Although the roles of PP2A have been studied extensively using okadaic acid, a well known inhibitor of PP2A, biological analysis of PP1 has remained restricted because of lack of a specific inhibitor. Recently we reported that tautomycetin (TC) is a highly specific inhibitor of PP1. To elucidate the biological effects of TC, we demonstrated in preliminary experiments that treatment of COS-7 cells with 5 microm TC for 5 h inhibits endogenous PP1 by more than 90% without affecting PP2A activity. Therefore, using TC as a specific PP1 inhibitor, the biological effect of PP1 on MAPK signaling was examined. First, we found that inhibition of PP1 in COS-7 cells by TC specifically suppresses activation of ERK, among three MAPK kinases (ERK, JNK, and p38). TC-mediated inhibition of PP1 also suppressed activation of Raf-1, resulting in the inactivation of the MEK-ERK pathway. To examine the role of PP1 in regulation of Raf-1, we overexpressed the PP1 catalytic subunit (PP1C) in COS-7 cells and found that PP1C enhanced activation of Raf-1 activity, whereas phosphatase-dead PP1C blocked Raf-1 activation. Furthermore, a physical interaction between PP1C and Raf-1 was also observed. These data strongly suggest that PP1 positively regulates Raf-1 in vivo.

  3. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells

    PubMed Central

    Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP’s activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP’s apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production. PMID:26771380

  4. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells.

    PubMed

    Yang, Yang; Yang, Yifu; Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.

  5. Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation

    PubMed Central

    Chang, Jae Won; Jung, Seung-Nam; Kim, Ju-Hee; Shim, Geun-Ae; Park, Hee Sung; Liu, Lihua; Kim, Jin Man; Park, Jongsun; Koo, Bon Seok

    2016-01-01

    The exact regulatory mechanisms of carboxyl-terminal modulator protein (CTMP) and its downstream pathways in cancer have been controversial and are not completely understood. Here, we report a new mechanism of regulation of Akt serine/threonine kinase, one of the most important dysregulated signals in head and neck squamous cell carcinoma (HNSCC) by the CTMP pathway and its clinical implications. We find that HNSCC tumor tissues and cell lines had relatively high levels of CTMP expression. Clinical data indicate that CTMP expression was significantly associated with positive lymph node metastasis (OR = 3.8, P = 0.033) and correlated with poor prognosis in patients with HNSCC. CTMP was also positively correlated with Akt/GSK-3β phosphorylation, Snail up-regulation and E-cadherin down-regulation, which lead to increased proliferation and epithelial-to-mesenchymal transition, suggesting that CTMP expression results in enhanced tumorigenic and metastatic properties of HNSCC cells. Moreover, CTMP suppression restores sensitivity to cisplatin chemotherapy. Intriguingly, all the molecular responses to CTMP regulation are identical regardless of p53 status in HNSCC cells. We conclude that CTMP promotes Akt phosphorylation and functions as an oncogenic driver and prognostic marker in HNSCC irrespective of p53. PMID:27328758

  6. The Phragmoplast-Orienting Kinesin-12 Class Proteins Translate the Positional Information of the Preprophase Band to Establish the Cortical Division Zone in Arabidopsis thaliana.

    PubMed

    Lipka, Elisabeth; Gadeyne, Astrid; Stöckle, Dorothee; Zimmermann, Steffi; De Jaeger, Geert; Ehrhardt, David W; Kirik, Viktor; Van Damme, Daniel; Müller, Sabine

    2014-06-27

    The preprophase band (PPB) is a faithful but transient predictor of the division plane in somatic cell divisions. Throughout mitosis the PPBs positional information is preserved by factors that continuously mark the division plane at the cell cortex, the cortical division zone, by their distinct spatio-temporal localization patterns. However, the mechanism maintaining these identity factors at the plasma membrane after PPB disassembly remains obscure. The pair of kinesin-12 class proteins PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2 are key players in division plane maintenance. Here, we show that POK1 is continuously present at the cell cortex, providing a spatial reference for the site formerly occupied by the PPB. Fluorescence recovery after photobleaching analysis combined with microtubule destabilization revealed dynamic microtubule-dependent recruitment of POK1 to the PPB during prophase, while POK1 retention at the cortical division zone in the absence of cortical microtubules appeared static. POK function is strictly required to maintain the division plane identity factor TANGLED (TAN) after PPB disassembly, although POK1 and TAN recruitment to the PPB occur independently during prophase. Together, our data suggest that POKs represent fundamental early anchoring components of the cortical division zone, translating and preserving the positional information of the PPB by maintaining downstream identity markers. PMID:24972597

  7. The Phragmoplast-Orienting Kinesin-12 Class Proteins Translate the Positional Information of the Preprophase Band to Establish the Cortical Division Zone in Arabidopsis thaliana[C][W

    PubMed Central

    Lipka, Elisabeth; Gadeyne, Astrid; Stöckle, Dorothee; Zimmermann, Steffi; De Jaeger, Geert; Ehrhardt, David W.; Kirik, Viktor; Van Damme, Daniel; Müller, Sabine

    2014-01-01

    The preprophase band (PPB) is a faithful but transient predictor of the division plane in somatic cell divisions. Throughout mitosis the PPBs positional information is preserved by factors that continuously mark the division plane at the cell cortex, the cortical division zone, by their distinct spatio-temporal localization patterns. However, the mechanism maintaining these identity factors at the plasma membrane after PPB disassembly remains obscure. The pair of kinesin-12 class proteins PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2 are key players in division plane maintenance. Here, we show that POK1 is continuously present at the cell cortex, providing a spatial reference for the site formerly occupied by the PPB. Fluorescence recovery after photobleaching analysis combined with microtubule destabilization revealed dynamic microtubule-dependent recruitment of POK1 to the PPB during prophase, while POK1 retention at the cortical division zone in the absence of cortical microtubules appeared static. POK function is strictly required to maintain the division plane identity factor TANGLED (TAN) after PPB disassembly, although POK1 and TAN recruitment to the PPB occur independently during prophase. Together, our data suggest that POKs represent fundamental early anchoring components of the cortical division zone, translating and preserving the positional information of the PPB by maintaining downstream identity markers. PMID:24972597

  8. White matter changes in preclinical Alzheimer's disease: a magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid β protein 42 levels.

    PubMed

    Molinuevo, José Luis; Ripolles, Pablo; Simó, Marta; Lladó, Albert; Olives, Jaume; Balasa, Mircea; Antonell, Anna; Rodriguez-Fornells, Antoni; Rami, Lorena

    2014-12-01

    The aim of this study was to use diffusion tensor imaging measures to determine the existence of white matter microstructural differences in the preclinical phases of Alzheimer's disease, assessing cognitively normal older individuals with positive amyloid β protein (Aβ42) levels (CN_Aβ42+) on the basis of normal cognition and cerebrospinal fluid Aβ42 levels below 500 pg/mL. Nineteen CN_Aβ42+ and 19 subjects with Aβ42 levels above 500 pg/mL (CN_Aβ42-) were included. We encountered increases in axial diffusivity (AxD) in CN_Aβ42+ relative to CN_Aβ42- in the corpus callosum, corona radiata, internal capsule, and superior longitudinal fasciculus bilaterally, and also in the left fornix, left uncinate fasciculus, and left inferior fronto-occipital fasciculus. However, no differences were found in other diffusion tensor imaging indexes. Cognitive reserve scores were positively associated with AxD exclusively in the CN_Aβ42+ group. The finding of AxD alteration together with preserved fractional anisotropy, mean diffusivity, and radial diffusivity indexes in the CN_Aβ42+ group may indicate that, subtle axonal changes may be happening in the preclinical phases of Alzheimer's disease, whereas white matter integrity is still widely preserved.

  9. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    SciTech Connect

    Liu, Xin; Zhu, Yanming; Zhai, Hong; Cai, Hua; Ji, Wei; Luo, Xiao; Li, Jing; Bai, Xi

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  10. The pineapple AcMADS1 promoter confers high level expression in tomato and arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of e...

  11. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein.

    PubMed

    Amoury, Manal; Mladenov, Radoslav; Nachreiner, Thomas; Pham, Anh-Tuan; Hristodorov, Dmitrij; Di Fiore, Stefano; Helfrich, Wijnand; Pardo, Alessa; Fey, Georg; Schwenkert, Michael; Thepen, Theophilus; Kiessling, Fabian; Hussain, Ahmad F; Fischer, Rainer; Kolberg, Katharina; Barth, Stefan

    2016-08-15

    Chondroitin sulfate proteoglycan 4 (CSPG4) has been identified as a highly promising target antigen for immunotherapy of triple-negative breast cancer (TNBC). TNBC represents a highly aggressive heterogeneous group of tumors lacking expression of estrogen, progesterone and human epidermal growth factor receptor 2. TNBC is particularly prevalent among young premenopausal women. No suitable targeted therapies are currently available and therefore, novel agents for the targeted elimination of TNBC are urgently needed. Here, we present a novel cytolytic fusion protein (CFP), designated αCSPG4(scFv)-MAP, that consists of a high affinity CSPG4-specific single-chain antibody fragment (scFv) genetically fused to a functionally enhanced form of the human microtubule-associated protein (MAP) tau. Our data indicate that αCSPG4(scFv)-MAP efficiently targets CSPG4(+) TNBC-derived cell lines MDA-MB-231 and Hs 578T and potently inhibits their growth with IC50 values of ∼200 nM. Treatment with αCSPG(scFv)-MAP resulted in induction of the mitochondrial stress pathway by activation of caspase-9 as well as endonuclease G translocation to the nucleus, while induction of the caspase-3 apoptosis pathway was not detectable. Importantly, in vivo studies in mice bearing human breast cancer xenografts revealed efficient targeting to and accumulation of αCSPG4(scFv)-MAP at tumor sites resulting in prominent tumor regression. Taken together, this preclinical proof of concept study confirms the potential clinical value of αCSPG4(scFv)-MAP as a novel targeted approach for the elimination of CSPG4-positive TNBC.

  12. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein.

    PubMed

    Amoury, Manal; Mladenov, Radoslav; Nachreiner, Thomas; Pham, Anh-Tuan; Hristodorov, Dmitrij; Di Fiore, Stefano; Helfrich, Wijnand; Pardo, Alessa; Fey, Georg; Schwenkert, Michael; Thepen, Theophilus; Kiessling, Fabian; Hussain, Ahmad F; Fischer, Rainer; Kolberg, Katharina; Barth, Stefan

    2016-08-15

    Chondroitin sulfate proteoglycan 4 (CSPG4) has been identified as a highly promising target antigen for immunotherapy of triple-negative breast cancer (TNBC). TNBC represents a highly aggressive heterogeneous group of tumors lacking expression of estrogen, progesterone and human epidermal growth factor receptor 2. TNBC is particularly prevalent among young premenopausal women. No suitable targeted therapies are currently available and therefore, novel agents for the targeted elimination of TNBC are urgently needed. Here, we present a novel cytolytic fusion protein (CFP), designated αCSPG4(scFv)-MAP, that consists of a high affinity CSPG4-specific single-chain antibody fragment (scFv) genetically fused to a functionally enhanced form of the human microtubule-associated protein (MAP) tau. Our data indicate that αCSPG4(scFv)-MAP efficiently targets CSPG4(+) TNBC-derived cell lines MDA-MB-231 and Hs 578T and potently inhibits their growth with IC50 values of ∼200 nM. Treatment with αCSPG(scFv)-MAP resulted in induction of the mitochondrial stress pathway by activation of caspase-9 as well as endonuclease G translocation to the nucleus, while induction of the caspase-3 apoptosis pathway was not detectable. Importantly, in vivo studies in mice bearing human breast cancer xenografts revealed efficient targeting to and accumulation of αCSPG4(scFv)-MAP at tumor sites resulting in prominent tumor regression. Taken together, this preclinical proof of concept study confirms the potential clinical value of αCSPG4(scFv)-MAP as a novel targeted approach for the elimination of CSPG4-positive TNBC. PMID:27037627

  13. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties.

    PubMed

    Lin, Meng-yi; Chai, Kuo-hsing; Ko, Swee-suak; Kuang, Lin-yun; Lur, Huu-sheng; Charng, Yee-yung

    2014-04-01

    Heat stress is an important factor that has a negative impact on rice (Oryza sativa) production. To alleviate this problem, it is necessary to extensively understand the genetic basis of heat tolerance and adaptability to heat stress in rice. Here, we report the molecular mechanism underlying heat acclimation memory that confers long-term acquired thermotolerance (LAT) in this monocot plant. Our results showed that a positive feedback loop formed by two heat-inducible genes, HEAT SHOCK PROTEIN101 (HSP101) and HEAT STRESS-ASSOCIATED 32-KD PROTEIN (HSA32), at the posttranscriptional level prolongs the effect of heat acclimation in rice seedlings. The interplay between HSP101 and HSA32 also affects basal thermotolerance of rice seeds. These findings are similar to those reported for the dicot plant Arabidopsis (Arabidopsis thaliana), suggesting a conserved function in plant heat stress response. Comparison between two rice cultivars, japonica Nipponbare and indica N22 showed opposite performance in basal thermotolerance and LAT assays. 'N22' seedlings have a higher basal thermotolerance level than cv Nipponbare and vice versa at the LAT level, indicating that these two types of thermotolerance can be decoupled. The HSP101 and HSA32 protein levels were substantially higher in cv Nipponbare than in cv N22 after a long recovery following heat acclimation treatment, at least partly explaining the difference in the LAT phenotype. Our results point out the complexity of thermotolerance diversity in rice cultivars, which may need to be taken into consideration when breeding for heat tolerance for different climate scenarios.

  14. High-Throughput System for the Presentation of Secreted and Surface-Exposed Proteins from Gram-Positive Bacteria in Functional Metagenomics Studies

    PubMed Central

    Dobrijevic, Dragana; Di Liberto, Gaetana; Tanaka, Kosei; de Wouters, Tomas; Dervyn, Rozenn; Boudebbouze, Samira; Binesse, Johan; Blottière, Hervé M.; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2013-01-01

    Complex microbial ecosystems are increasingly studied through the use of metagenomics approaches. Overwhelming amounts of DNA sequence data are generated to describe the ecosystems, and allow to search for correlations between gene occurrence and clinical (e.g. in studies of the gut microbiota), physico-chemical (e.g. in studies of soil or water environments), or other parameters. Observed correlations can then be used to formulate hypotheses concerning microbial gene functions in relation to the ecosystem studied. In this context, functional metagenomics studies aim to validate these hypotheses and to explore the mechanisms involved. One possible approach is to PCR amplify or chemically synthesize genes of interest and to express them in a suitable host in order to study their function. For bacterial genes, Escherichia coli is often used as the expression host but, depending on the origin and nature of the genes of interest and the test system used to evaluate their putative function, other expression systems may be preferable. In this study, we developed a system to evaluate the role of secreted and surface-exposed proteins from Gram-positive bacteria in the human gut microbiota in immune modulation. We chose to use a Gram-positive host bacterium, Bacillus subtilis, and modified it to provide an expression background that behaves neutral in a cell-based immune modulation assay, in vitro. We also adapted an E. coli – B. subtilis shuttle expression vector for use with the Gateway high-throughput cloning system. Finally, we demonstrate the functionality of this host-vector system through the cloning and expression of a flagellin-coding sequence, and show that the expression-clone elicits an inflammatory response in a human intestinal epithelial cell line. The expression host can easily be adapted to assure neutrality in other assay systems, allowing the use of the presented presentation system in functional metagenomics of the gut and other ecosystems. PMID

  15. Heterogeneity in histone 2B-green fluorescent protein-retaining putative small intestinal stem cells at cell position 4 and their absence in the colon.

    PubMed

    Hughes, Kevin R; Gândara, Ricardo M C; Javkar, Tanvi; Sablitzky, Fred; Hock, Hanno; Potten, Christopher S; Mahida, Yashwant R

    2012-12-01

    Stem cells have been identified in two locations in small intestinal crypts; those intercalated between Paneth cells and another population (which retains DNA label) are located above the Paneth cell zone, at cell position 4. Because of disadvantages associated with the use of DNA label, doxycycline-induced transient transgenic expression of histone 2B (H2B)-green fluorescent protein (GFP) was investigated. H2B-GFP-retaining putative stem cells were consistently seen, with a peak at cell position 4, over chase periods of up to 112 days. After a 28-day chase, a subpopulation of the H2B-GFP-retaining cells was cycling, but the slow cycling status of the majority was illustrated by lack of expression of pHistone H3 and Ki67. Although some H2B-GFP-retaining cells were sensitive to low-dose radiation, the majority was resistant to low- and high-dose radiation-induced cell death, and a proportion of the surviving cells proliferated during subsequent epithelial regeneration. Long-term retention of H2B-GFP in a subpopulation of small intestinal Paneth cells was also seen, implying that they are long lived. In contrast to the small intestine, H2B-GFP-retaining epithelial cells were not seen in the colon from 28-day chase onward. This implies important differences in stem cell function between these two regions of the gastrointestinal tract, which may have implications for region-specific susceptibility to diseases (such as cancer and ulcerative colitis), in which epithelial stem cells and their progeny are involved.

  16. The Bel1 protein of human foamy virus contains one positive and two negative control regions which regulate a distinct activation domain of 30 amino acids.

    PubMed Central

    Lee, C W; Chang, J; Lee, K J; Sung, Y C

    1994-01-01

    The Bel1 transactivator is essential for the replication of human foamy virus (HFV). To define the functional domains of HFV Bel1, we generated random missense mutations throughout the entire coding sequence of Bel1. Functional analyses of 24 missense mutations have revealed the presence of at least two functional domains in Bel1. One domain corresponds to a basic amino acid-rich motif which acts as a bipartite nuclear targeting sequence. A second, central domain corresponds to a presumed effector region which, when mutated, leads to dominant-negative mutants and/or lacks transactivating ability. In addition, deletion analyses and domain-swapping experiments further showed that Bel1 protein contains a strong carboxy-terminal activation domain. The activating region is also capable of functioning as a transcription-activating domain in yeast cells, although it does not bear any significant sequence homology to the well-characterized acidic activation domain which is known to function only in yeast and mammalian cells. We also demonstrated that the regions of Bel1 from residues 1 to 76 and from residues 153 to 225 repressed transcriptional activation exerted by the Bel1 activation domain. In contrast, the region from residues 82 to 150 appears to overcome an inhibitory effect. These results indicate that Bel1 contains one positive and two negative regulatory domains that modulate a distinct activation domain of Bel1. These regulatory domains of Bel1 cannot affect the function of the VP16 activation domain, suggesting that these domains specifically regulate the activation domain of Bel1. Furthermore, in vivo competition experiments showed that the positive regulatory domain acts in trans. Thus, our results demonstrate that Bel1-mediated transactivation appears to undergo a complex regulatory pathway which provides a novel mode of regulation for a transcriptional activation domain. Images PMID:8139046

  17. Elevated levels of oxidized low-density lipoprotein correlate positively with C-reactive protein in patients with acute coronary syndrome.

    PubMed

    Zhang, Ya-chen; Wei, Jing-jing; Wang, Fei; Chen, Man-tian; Zhang, Mao-zhen

    2012-03-01

    The relationship between oxidized low-density lipoprotein (Ox-LDL) and C-reactive protein (CRP) in patients with acute coronary syndrome (ACS) is unknown. We, therefore, measured serum levels of Ox-LDL and high-sensitivity (hs)-CRP in 90 ACS patients, 45 stable angina pectoris (SAP) patients, and 66 healthy controls using sandwich ELISA. ACS patients were subdivided into: (1) acute myocardial infarction (AMI; n = 45); (2) unstable angina pectoris (UAP; n = 45) groups. In AMI patients, Ox-LDL (177.5 mmol/l) and hs-CRP (25.40 mg/l) levels were significantly higher (P < 0.01) than in UAP (Ox-LDL:107.5 mmol/l, hs-CRP:10.7 mg/l) and SAP (Ox-LDL:82.3 mmol/l, hs-CRP:2.10 mg/l) patients as well as controls (Ox-LDL:41.4 mmol/l, hs-CRP:1.76 mg/l). Ox-LDL/hs-CRP levels in UAP patients were significantly higher (P < 0.01) than in SAP patients and controls. Importantly, a positive correlation was found between Ox-LDL and CRP (r = 0.622; P < 0.01) levels. Serum levels of total, HDL, and LDL cholesterol did not differ among these patient groups. In conclusion, our data show that Ox-LDL and hs-CRP levels correlate positively in ACS patients, supporting the hypothesis that Ox-LDL and CRP may play a direct role in promoting the inflammatory component of atherosclerosis in these individuals. We suggest that Ox-LDL/CRP elevated levels may serve as markers of the severity of the disease in evaluation and management of ACS patients.

  18. alpha-Synucleinopathy in the human olfactory system in Parkinson's disease: involvement of calcium-binding protein- and substance P-positive cells.

    PubMed

    Ubeda-Bañon, Isabel; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Argandoña-Palacios, Lucia; Garcia-Muñozguren, Susana; Martinez-Marcos, Alino

    2010-06-01

    Hyposmia is an early symptom of idiopathic Parkinson's disease but the pathological bases of such dysfunction are largely unknown. The distribution of alpha-synuclein, which forms Lewy bodies and Lewy neurites, and the types of neurons (based on their neurotransmitters) affected by alpha-synucleinopathy were investigated in the olfactory system in Parkinson's disease. Immunohistochemical distribution of alpha-synuclein and its co-localization with tyrosine hydroxylase, somatostatin, calbindin, calretinin, parvalbumin and substance P in the olfactory bulb, anterior olfactory nucleus, olfactory tubercle and piriform, periamygdaloid and rostral entorhinal cortices of idiopathic Parkinson's disease cases (n = 11) and age-matched controls (n = 11) were investigated. Lewy bodies and Lewy neurites were present in the olfactory bulb, particularly in mitral cells and in the inner plexiform layer. alpha-synuclein was particularly abundant in the different divisions of the anterior olfactory nucleus (bulbar, intrapeduncular, retrobulbar and cortical). In contrast, Lewy bodies and Lewy neurites were less abundant in the olfactory tubercle and olfactory cortices. In the olfactory bulb, anterior olfactory nucleus and olfactory cortices, cells affected by alpha-synucleinopathy rarely co-localized tyrosine hydroxylase or somatostatin, but they frequently co-localized calbindin, calretinin, parvalbumin and substance P. The present data provide evidence that alpha-synucleinopathy affects neurons along the olfactory pathway. Dopamine- and somatostatin-positive cells are rarely affected; whereas the cell types most vulnerable to neurodegeneration include glutamate- (mitral cells), calcium-binding protein- and substance P-positive cells. These results provide data on the distribution and cell types involved by alpha-synucleinopathy in the human olfactory system during Parkinson disease that may be useful for future clinical investigation.

  19. High-Content Positional Biosensor Screening Assay for Compounds to Prevent or Disrupt Androgen Receptor and Transcriptional Intermediary Factor 2 Protein–Protein Interactions

    PubMed Central

    Hua, Yun; Shun, Tong Ying; Strock, Christopher J.

    2014-01-01

    Abstract The androgen receptor–transcriptional intermediary factor 2 (AR-TIF2) positional protein–protein interaction (PPI) biosensor assay described herein combines physiologically relevant cell-based assays with the specificity of binding assays by incorporating structural information of AR and TIF2 functional domains along with intracellular targeting sequences and fluorescent reporters. Expression of the AR-red fluorescent protein (RFP) “prey” and TIF2-green fluorescent protein (GFP) “bait” components of the biosensor was directed by recombinant adenovirus constructs that expressed the ligand binding and activation function 2 surface domains of AR fused to RFP with nuclear localization and nuclear export sequences, and three α-helical LXXLL motifs from TIF2 fused to GFP and an HIV Rev nucleolar targeting sequence. In unstimulated cells, AR-RFP was localized predominantly to the cytoplasm and TIF2-GFP was localized to nucleoli. Dihydrotestosterone (DHT) treatment induced AR-RFP translocation into the nucleus where the PPIs between AR and TIF2 resulted in the colocalization of both biosensors within the nucleolus. We adapted the translocation enhanced image analysis module to quantify the colocalization of the AR-RFP and TIF2-GFP biosensors in images acquired on the ImageXpress platform. DHT induced a concentration-dependent AR-TIF2 colocalization and produced a characteristic condensed punctate AR-RFP PPI nucleolar distribution pattern. The heat-shock protein 90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) and antiandrogens flutamide and bicalutamide inhibited DHT-induced AR-TIF2 PPI formation with 50% inhibition concentrations (IC50s) of 88.5±12.5 nM, 7.6±2.4 μM, and 1.6±0.4 μM, respectively. Images of the AR-RFP distribution phenotype allowed us to distinguish between 17-AAG and flutamide, which prevented AR translocation, and bicalutamide, which blocked AR-TIF2 PPIs. We screened the Library of Pharmacologically Active

  20. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications

    NASA Astrophysics Data System (ADS)

    Imaduwage, Kasun P.; Go, Eden P.; Zhu, Zhikai; Desaire, Heather

    2016-09-01

    A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have Ki values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods.

  1. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications

    NASA Astrophysics Data System (ADS)

    Imaduwage, Kasun P.; Go, Eden P.; Zhu, Zhikai; Desaire, Heather

    2016-11-01

    A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have Ki values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods.

  2. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions.

    PubMed

    Geuten, Koen; Irish, Vivian

    2010-08-01

    B-class MADS box genes specify petal and stamen identities in several core eudicot species. Members of the Solanaceae possess duplicate copies of these genes, allowing for diversification of function. To examine the changing roles of such duplicate orthologs, we assessed the functions of B-class genes in Nicotiana benthamiana and tomato (Solanum lycopersicum) using virus-induced gene silencing and RNA interference approaches. Loss of function of individual duplicates can have distinct phenotypes, yet complete loss of B-class gene function results in extreme homeotic transformations of petal and stamen identities. We also show that these duplicate gene products have qualitatively different protein-protein interaction capabilities and different regulatory roles. Thus, compensatory changes in B-class MADS box gene duplicate function have occurred in the Solanaceae, in that individual gene roles are distinct, but their combined functions are equivalent. Furthermore, we show that species-specific differences in the stamen regulatory network are associated with differences in the expression of the microRNA miR169. Whereas there is considerable plasticity in individual B-class MADS box transcription factor function, there is overall conservation in the roles of the multimeric MADS box B-class protein complexes, providing robustness in the specification of petal and stamen identities. Such hidden variability in gene function as we observe for individual B-class genes can provide a molecular basis for the evolution of regulatory functions that result in novel morphologies.

  3. Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: targeting positions 83, 127 and 128 of the cyclic nucleotide binding pocket.

    PubMed Central

    Lee, E J; Glasgow, J; Leu, S F; Belduz, A O; Harman, J G

    1994-01-01

    The cyclic 3', 5' adenosine monophosphate (cAMP) binding pocket of the cAMP receptor protein (CRP) of Escherichia coli was mutagenized to substitute cysteine or glycine for serine 83; cysteine, glycine, isoleucine, or serine for threonine 127; and threonine or alanine for serine 128. Cells that expressed the binding pocket residue-substituted forms of CRP were characterized by measurements of beta-galactosidase activity. Purified wild-type and mutant CRP preparations were characterized by measurement of cAMP binding activity and by their capacity to support lacP activation in vitro. CRP structure was assessed by measurement of sensitivity to protease and DTNB-mediated subunit crosslinking. The results of this study show that cAMP interactions with serine 83, threonine 127 and serine 128 contribute to CRP activation and have little effect on cAMP binding. Amino acid substitutions that introduce hydrophobic amino acid side chain constituents at either position 127 or 128 decrease CRP discrimination of cAMP and cGMP. Finally, cAMP-induced CRP structural change(s) that occur in or near the CRP hinge region result from cAMP interaction with threonine 127; substitution of threonine 127 by cysteine, glycine, isoleucine, or serine produced forms of CRP that contained, independently of cAMP binding, structural changes similar to those of the wild-type CRP:cAMP complex. Images PMID:8065899

  4. Different protein-lipid interaction in human red blood cell membrane of Rh positive and Rh negative blood compared with Rhnull.

    PubMed

    Dorn-Zachertz, D; Zimmer, G

    1981-01-01

    1-anilino-naphthalene-8-sulfonate (ANS) fluorescence measurements have revealed that red blood cell membrane of the Rhnull type undergoes a transition at about 16 degrees C. In contrast, viscosity measurements of the extracted membrane lipids showed the usually observed transition at about 18 degrees C. Lower values of titratable sulfhydryl (SH) groups were observed in Rhnull membrane using 5,5'-dithiobis-(2-nitro-benzoic-acid) (Nbs2). In contrast, disulfide bonds in Rhnull membrane were estimated to be about 3 times the value of the controls. Spin labeling experiments using 2-(3-carboxypropyl)-4, 4 dimethyl-2-tridecyl 3-oxazolidinyloxyl were carried out with phospholipase A2 modified membranes. The mobile part of the spectra was significantly increased on the Rhnull membrane. In the presence of D-glucose, infrared spectrometry showed a larger reduction of the intensity of the POO-band in Rhnull membrane. In contrast to controls, binding of the reagent diethylpyrocarbonate resulted in no significant changes of the Rhnull membrane as determined by electron spin resonance (ESR) measurements. D-glucose transport activity was found to be at the upper level of a group of Rh positive and Rh negative persons. It is suggested that the intensity of the polar protein-lipid interaction is reduced in Rhnull membrane.

  5. Iron-Regulated Protein HupB of Mycobacterium tuberculosis Positively Regulates Siderophore Biosynthesis and Is Essential for Growth in Macrophages

    PubMed Central

    Pandey, Satya Deo; Choudhury, Mitali; Yousuf, Suhail; Wheeler, Paul R.; Gordon, Stephen V.; Ranjan, Akash

    2014-01-01

    Mycobacterium tuberculosis expresses the 28-kDa protein HupB (Rv2986c) and the Fe3+-specific high-affinity siderophores mycobactin and carboxymycobactin upon iron limitation. The objective of this study was to understand the functional role of HupB in iron acquisition. A hupB mutant strain of M. tuberculosis, subjected to growth in low-iron medium (0.02 μg Fe ml−1), showed a marked reduction of both siderophores with low transcript levels of the mbt genes encoding the MB biosynthetic machinery. Complementation of the mutant strain with hupB restored siderophore production to levels comparable to that of the wild type. We demonstrated the binding of HupB to the mbtB promoter by both electrophoretic mobility shift assays and DNA footprinting. The latter revealed the HupB binding site to be a 10-bp AT-rich region. While negative regulation of the mbt machinery by IdeR is known, this is the first report of positive regulation of the mbt operon by HupB. Interestingly, the mutant strain failed to survive inside macrophages, suggesting that HupB plays an important role in vivo. PMID:24610707

  6. Human epididymis protein 4 expression positively correlated with miR-21 and served as a prognostic indicator in ovarian cancer.

    PubMed

    Chen, Yong; Chen, Qingquan; Liu, Qicai; Gao, Feng

    2016-06-01

    Ovarian cancer is the most common cause of gynecological malignancy-related mortality. Human epididymis protein 4 (HE4) is a useful biomarker for ovarian cancer when either used alone or in combination with carbohydrate antigen 125 (CA125). What is more, aberrant expression of microRNA-21 (miR-21) has been shown to be involved in oncogenesis, but the relationship between miR-21 and HE4 in ovarian cancer is not clear. Tumor and adjacent tumor tissues from 43 patients with ovarian cancer were examined. Real-time polymerase chain reaction (RT-PCR) was used to detect the expression of HE4 in the carcinoma and adjacent tissues. The associations between HE4 and tumor biological characters were discussed. TaqMan(®) MicroRNA (miRNA) assays were employed to detect the expression of miR-21 in the ovarian carcinoma. In ovarian cancer, the expression of HE4 messenger RNA (mRNA) in cancer tissues was higher than adjacent tumor tissues (P < 0.0001), which was 1.299-fold of adjacent tumor tissues. And, the expression of miR-21 was also up-regulated which was significantly different in the ovarian cancer (the positive rate was 76.74 %). There was a significantly positive correlation between miR-21 and HE4 expression (r = 0.283 and P = 0.066 for HE4 mRNA, r = 0.663 and P < 0.0001 for serum HE4). There was also a significant correlation between miR-21 and tumor grade (r = 0.608, P < 0.0001). Significantly, patients with recent recurrence (less than 6 months, n = 17) have a higher miR-21 expression than those with no recent recurrence. Therefore, HE4 and miR-21 may play an important role in the development and progression of ovarian cancer and they may serve as prognostic indicators in ovarian cancer.

  7. Two cases of false-positive dengue non-structural protein 1 (NS1) antigen in patients with hematological malignancies and a review of the literature on the use of NS1 for the detection of Dengue infection.

    PubMed

    Chung, Shimin J; Krishnan, Prabha U; Leo, Yee Sin

    2015-02-01

    Early diagnosis of dengue has been made easier in recent years owing to the advancement in diagnostic technologies. The rapid non-structural protein 1 (NS1) test strip is widely used in many developed and developing regions at risk of dengue. Despite the relatively high specificity of this test, we recently encountered two cases of false-positive dengue NS1 antigen in patients with underlying hematological malignancies. We reviewed the literature for causes of false-positive dengue NS1.

  8. Acyl Carrier Protein Synthases from Gram-Negative, Gram-Positive, and Atypical Bacterial Species: Biochemical and Structural Properties and Physiological Implications

    PubMed Central

    McAllister, Kelly A.; Peery, Robert B.; Zhao, Genshi

    2006-01-01

    Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4′-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology. PMID:16788183

  9. Positive Selection for Bone Morphogenetic Protein Receptor Type-IB Promotes Differentiation and Specification of Human Adipose-Derived Stromal Cells Toward an Osteogenic Lineage

    PubMed Central

    McArdle, Adrian; Chung, Michael T.; Paik, Kevin J.; Duldulao, Chris; Chan, Charles; Rennert, Robert; Walmsley, Graham G.; Senarath-Yapa, Kshemendra; Hu, Michael; Seo, Elly; Lee, Min

    2014-01-01

    Background: Adipose tissue represents an abundant and easily accessible source of multipotent cells that may serve as an excellent building block for tissue engineering. However, adipose-derived stromal cells (ASCs) are a heterogeneous group and subpopulations may be identified with enhanced osteogenic potential. Methods: Human ASC subpopulations were prospectively isolated based on expression of bone morphogenetic protein receptor type-IB (BMPR-IB). Unsorted, BMPR-IB(+), and BMPR-IB(−) cells were analyzed for their osteogenic capacity through histological staining and gene expression. To evaluate their in vivo osteogenic potential, critical-sized calvarial defects were created in immunocompromised mice and treated with unsorted, BMPR-IB(+), or BMPR-IB(−) cells. Healing was assessed using microcomputed tomography and pentachrome staining of specimens at 8 weeks. Results: Increased osteogenic differentiation was noted in the BMPR-IB(+) subpopulation, as demonstrated by alkaline phosphatase staining at day 7 and extracellular matrix mineralization with Alizarin red staining at day 14. This was also associated with increased expression for osteocalcin, a late marker of osteogenesis. Radiographic analysis demonstrated significantly enhanced healing of critical-sized calvarial defects treated with BMPR-IB(+) ASCs compared with unsorted or BMPR-IB(−) cells. This was confirmed through pentachrome staining, which revealed more robust bone regeneration in the BMPR-IB(+) group. Conclusion: BMPR-IB(+) human ASCs have an enhanced ability to form bone both in vitro and in vivo. These data suggest that positive selection for BMPR-IB(+) and manipulation of the BMP pathway in these cells may yield a highly osteogenic subpopulation of cells for bone tissue engineering. PMID:24854876

  10. Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens.

    PubMed

    Varga, John J; Therit, Blair; Melville, Stephen B

    2008-11-01

    The predominant organizational state of bacteria in nature is biofilms. Biofilms have been shown to increase bacterial resistance to a variety of stresses. We demonstrate for the first time that the anaerobic gram-positive pathogen Clostridium perfringens forms biofilms. At the same concentration of glucose in the medium, optimal biofilm formation depended on a functional CcpA protein. While the ratio of biofilm to planktonic growth was higher in the wild type than in a ccpA mutant strain in middle to late stages of biofilm development, the bacteria shifted from a predominantly biofilm state to planktonic growth as the concentration of glucose in the medium increased in a CcpA-independent manner. As is the case in some gram-negative bacteria, type IV pilus (TFP)-dependent gliding motility was necessary for efficient biofilm formation, as demonstrated by laser confocal and electron microscopy. However, TFP were not associated with the bacteria in the biofilm but with the extracellular matrix. Biofilms afforded C. perfringens protection from environmental stress, including exposure to atmospheric oxygen for 6 h and 24 h and to 10 mM H(2)O(2) for 5 min. Biofilm cells also showed 5- to 15-fold-increased survival over planktonic cells after exposure to 20 microg/ml (27 times the MIC) of penicillin G for 6 h and 24 h, respectively. These results indicate C. perfringens biofilms play an important role in the persistence of the bacteria in response to environmental stress and that they may be a factor in diseases, such as antibiotic-associated diarrhea and gas gangrene, that are caused by C. perfringens.

  11. The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein.

    PubMed

    Utzeri, V J; Bertolini, F; Ribani, A; Schiavo, G; Dall'Olio, S; Fontanesi, L

    2016-02-01

    A feral donkey population (Equus asinus), living in the Asinara National Park (an island north-west of Sardinia, Italy), includes a unique white albino donkey subpopulation or colour morph that is a major attraction of this park. Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans (oculocutaneous albinism Type 1; OCA1) and other species. In this study, we analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism of these donkeys. The TYR gene was sequenced from 13 donkeys (seven Asinara white albino and six coloured animals). Seven single nucleotide polymorphisms were identified. A missense mutation (c.604C>G; p.His202Asp) in a highly conserved amino acid position (even across kingdoms), which disrupts the first copper-binding site (CuA) of functional protein, was identified in the homozygous condition (G/G or D/D) in all Asinara white albino donkeys and in the albino son of a trio (the grey parents had genotype C/G or H/D), supporting the recessive mode of inheritance of this mutation. Genotyping 82 donkeys confirmed that Asinara albino donkeys had genotype G/G whereas all other coloured donkeys had genotype C/C or C/G. Across-population association between the c.604C>G genotypes and the albino coat colour was highly significant (P = 6.17E-18). The identification of the causative mutation of the albinism in the Asinara white donkeys might open new perspectives to study the dynamics of this putative deleterious allele in a feral population and to manage this interesting animal genetic resource. PMID:26763160

  12. Impact of Wisteria floribunda Agglutinin-Positive Mac-2-Binding Protein in Patients with Hepatitis C Virus-Related Compensated Liver Cirrhosis

    PubMed Central

    Hasegawa, Kunihiro; Takata, Ryo; Nishikawa, Hiroki; Enomoto, Hirayuki; Ishii, Akio; Iwata, Yoshinori; Miyamoto, Yuho; Ishii, Noriko; Yuri, Yukihisa; Nakano, Chikage; Nishimura, Takashi; Yoh, Kazunori; Aizawa, Nobuhiro; Sakai, Yoshiyuki; Ikeda, Naoto; Takashima, Tomoyuki; Iijima, Hiroko; Nishiguchi, Shuhei

    2016-01-01

    We aimed to examine the effect of Wisteria floribunda agglutinin-positive Mac-2-binding protein (WFA+-M2BP) level on survival comparing with other laboratory liver fibrosis markers in hepatitis C virus (HCV)-related compensated liver cirrhosis (LC) (n = 165). For assessing prognostic performance of continuous fibrosis markers, we adapted time-dependent receiver operating characteristics (ROC) curves for clinical outcome. In time-dependent ROC analysis, annual area under the ROCs (AUROCs) were plotted. We also calculated the total sum of AUROCs in all time-points (TAAT score) in each fibrosis marker. WFA+-M2BP value ranged from 0.66 cutoff index (COI) to 19.95 COI (median value, 5.29 COI). Using ROC analysis for survival, the optimal cutoff point for WFA+-M2BP was 6.15 COI (AUROC = 0.79348, sensitivity = 80.0%, specificity = 74.78%). The cumulative five-year survival rate in patients with WFA+-M2BP ≥ 6.15 COI (n = 69) was 43.99%, while that in patients with WFA+-M2BP < 6.15 COI (n = 96) was 88.40% (p < 0.0001). In the multivariate analysis, absence of hepatocellular carcinoma (p = 0.0008), WFA+-M2BP < 6.15 COI (p = 0.0132), achievement of sustained virological response (p < 0.0001) and des-γ-carboxy prothrombin < 41 mAU/mL (p = 0.0018) were significant favorable predictors linked to survival. In time-dependent ROC analysis in all cases, WFA+-M2BP had the highest TAAT score among liver fibrosis markers. In conclusion, WFA+-M2BP can be a useful predictor in HCV-related compensated LC. PMID:27626413

  13. Four sequence positions of the movement protein of Cucumber mosaic virus determine the virulence against cmv1-mediated resistance in melon.

    PubMed

    Guiu-Aragonés, Cèlia; Díaz-Pendón, Juan Antonio; Martín-Hernández, Ana Montserrat

    2015-09-01

    The resistance to a set of strains of Cucumber mosaic virus (CMV) in the melon accession PI 161375, cultivar 'Songwhan Charmi', is dependent on one recessive gene, cmv1, which confers total resistance, whereas a second set of strains is able to overcome it. We tested 11 strains of CMV subgroups I and II in the melon line SC12-1-99, which carries the gene cmv1, and showed that this gene confers resistance to strains of subgroup II only and that restriction is not related to either viral replication or cell-to-cell movement. This is the first time that a resistant trait has been correlated with CMV subgroups. Using infectious clones of the CMV strains LS (subgroup II) and FNY (subgroup I), we generated rearrangements and viral chimaeras between both strains and established that the determinant of virulence against the gene cmv1 resides in the first 209 amino acids of the movement protein, as this region from FNY is sufficient to confer virulence to the LS clone in the line SC12-1-99. A comparison of the sequences of the strains of both subgroups in this region shows that there are five main positions shared by all strains of subgroup II, which are different from those of subgroup I. Site-directed mutagenesis of the CMV-LS clone to substitute these residues for those of CMV-FNY revealed that a combination of four of these changes [the group 64-68 (SNNLL to HGRIA), and the point mutations R81C, G171T and A195I] was required for a complete gain of function of the LS MP in the resistant melon plant.

  14. The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein.

    PubMed

    Utzeri, V J; Bertolini, F; Ribani, A; Schiavo, G; Dall'Olio, S; Fontanesi, L

    2016-02-01

    A feral donkey population (Equus asinus), living in the Asinara National Park (an island north-west of Sardinia, Italy), includes a unique white albino donkey subpopulation or colour morph that is a major attraction of this park. Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans (oculocutaneous albinism Type 1; OCA1) and other species. In this study, we analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism of these donkeys. The TYR gene was sequenced from 13 donkeys (seven Asinara white albino and six coloured animals). Seven single nucleotide polymorphisms were identified. A missense mutation (c.604C>G; p.His202Asp) in a highly conserved amino acid position (even across kingdoms), which disrupts the first copper-binding site (CuA) of functional protein, was identified in the homozygous condition (G/G or D/D) in all Asinara white albino donkeys and in the albino son of a trio (the grey parents had genotype C/G or H/D), supporting the recessive mode of inheritance of this mutation. Genotyping 82 donkeys confirmed that Asinara albino donkeys had genotype G/G whereas all other coloured donkeys had genotype C/C or C/G. Across-population association between the c.604C>G genotypes and the albino coat colour was highly significant (P = 6.17E-18). The identification of the causative mutation of the albinism in the Asinara white donkeys might open new perspectives to study the dynamics of this putative deleterious allele in a feral population and to manage this interesting animal genetic resource.

  15. Chloroplast Division Protein ARC3 Regulates Chloroplast FtsZ-Ring Assembly and Positioning in Arabidopsis through Interaction with FtsZ2[C][W

    PubMed Central

    Zhang, Min; Schmitz, Aaron J.; Kadirjan-Kalbach, Deena K.; TerBush, Allan D.; Osteryoung, Katherine W.

    2013-01-01

    Chloroplast division is initiated by assembly of a mid-chloroplast FtsZ (Z) ring comprising two cytoskeletal proteins, FtsZ1 and FtsZ2. The division-site regulators ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3), MinD1, and MinE1 restrict division to the mid-plastid, but their roles are poorly understood. Using genetic analyses in Arabidopsis thaliana, we show that ARC3 mediates division-site placement by inhibiting Z-ring assembly, and MinD1 and MinE1 function through ARC3. ftsZ1 null mutants exhibited some mid-plastid FtsZ2 rings and constrictions, whereas neither constrictions nor FtsZ1 rings were observed in mutants lacking FtsZ2, suggesting FtsZ2 is the primary determinant of Z-ring assembly in vivo. arc3 ftsZ1 double mutants exhibited multiple parallel but no mid-plastid FtsZ2 rings, resembling the Z-ring phenotype in arc3 single mutants and showing that ARC3 affects positioning of FtsZ2 rings as well as Z rings. ARC3 overexpression in the wild type and ftsZ1 inhibited Z-ring and FtsZ2-ring assembly, respectively. Consistent with its effects in vivo, ARC3 interacted with FtsZ2 in two-hybrid assays and inhibited FtsZ2 assembly in a heterologous system. Our studies are consistent with a model wherein ARC3 directly inhibits Z-ring assembly in vivo primarily through interaction with FtsZ2 in heteropolymers and suggest that ARC3 activity is spatially regulated by MinD1 and MinE1 to permit Z-ring assembly at the mid-plastid. PMID:23715471

  16. Tamm-Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function.

    PubMed

    Jaggi, Markus; Nakagawa, Yasushi; Zipperle, Ljerka; Hess, Bernhard

    2007-04-01

    Tamm-Horsfall protein (THP) powerfully inhibits calcium oxalate crystal aggregation, but structurally abnormal THPs from recurrent calcium stone formers may promote crystal aggregation. Therefore, increased urinary excretion of abnormal THP might be of relevance in nephrolithiasis. We studied 44 recurrent idiopathic calcium stone formers with a positive family history of stone disease (RCSF(fam)) and 34 age- and sex-matched healthy controls (C). Twenty-four-hour urinary THP excretion was measured by enzyme linked immunosorbent assay. Structural properties of individually purified THPs were obtained from analysis of elution patterns from a Sepharose 4B column. Sialic acid (SA) contents of native whole 24-h urines, crude salt precipitates of native urines and individually purified THPs were measured. THP function was studied by measuring inhibition of CaOx crystal aggregation in vitro (pH 5.7, 200 mM sodium chloride). Twenty-four-hour urine excretion of THP was higher in RCSF(fam) (44.0 +/- 4.0 mg/day) than in C (30.9 +/- 2.2 mg/day, P = 0.015). Upon salt precipitation and lyophilization, elution from a Sepharose 4B column revealed one major peak (peak A, cross-reacting with polyclonal anti-THP antibody) and a second minor peak (peak B, not cross-reacting). THPs from RCSF(fam) eluted later than those from C (P = 0.021), and maximum width of THP peaks was higher in RCSF(fam )than in C (P = 0.024). SA content was higher in specimens from RCSF(fam) than from C, in native 24-h urines (207.5 +/- 20.4 mg vs. 135.2 +/- 16.1 mg, P = 0.013) as well as in crude salt precipitates of 24-h urines (10.4 +/- 0.5 mg vs. 7.4 +/- 0.9 mg, P = 0.002) and in purified THPs (75.3 +/- 9.3 microg/mg vs. 48.8 +/- 9.8 microg/mg THP, P = 0.043). Finally, inhibition of calcium oxalate monohydrate crystal aggregation by 40 mg/L of THP was lower in RCSF(fam) (6.1 +/- 5.5%, range -62.0 to +84.2%) than in C (24.9 +/- 6.0%, range -39.8 to +82.7%), P = 0.022, and only 25 out of 44 (57%) THPs from RCSF

  17. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance.

    PubMed

    Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian

    2014-02-01

    Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers.

  18. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group.

    PubMed

    Bauer, Jürgen; Biolo, Gianni; Cederholm, Tommy; Cesari, Matteo; Cruz-Jentoft, Alfonso J; Morley, John E; Phillips, Stuart; Sieber, Cornel; Stehle, Peter; Teta, Daniel; Visvanathan, Renuka; Volpi, Elena; Boirie, Yves

    2013-08-01

    New evidence shows that older adults need more dietary protein than do younger adults to support good health, promote recovery from illness, and maintain functionality. Older people need to make up for age-related changes in protein metabolism, such as high splanchnic extraction and declining anabolic responses to ingested protein. They also need more protein to offset inflammatory and catabolic conditions associated with chronic and acute diseases that occur commonly with aging. With the goal of developing updated, evidence-based recommendations for optimal protein intake by older people, the European Union Geriatric Medicine Society (EUGMS), in cooperation with other scientific organizations, appointed an international study group to review dietary protein needs with aging (PROT-AGE Study Group). To help older people (>65 years) maintain and regain lean body mass and function, the PROT-AGE study group recommends average daily intake at least in the range of 1.0 to 1.2 g protein per kilogram of body weight per day. Both endurance- and resistance-type exercises are recommended at individualized levels that are safe and tolerated, and higher protein intake (ie, ≥ 1.2 g/kg body weight/d) is advised for those who are exercising and otherwise active. Most older adults who have acute or chronic diseases need even more dietary protein (ie, 1.2-1.5 g/kg body weight/d). Older people with severe kidney disease (ie, estimated GFR <30 mL/min/1.73 m(2)), but who are not on dialysis, are an exception to this rule; these individuals may need to limit protein intake. Protein quality, timing of ingestion, and intake of other nutritional supplements may be relevant, but evidence is not yet sufficient to support specific recommendations. Older people are vulnerable to losses in physical function capacity, and such losses predict loss of independence, falls, and even mortality. Thus, future studies aimed at pinpointing optimal protein intake in specific populations of older people

  19. Nursing Positions

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Nursing Positions KidsHealth > For Parents > Nursing Positions Print A ... and actually needs to feed. Getting Comfortable With Breastfeeding Nursing can be one of the most challenging ...

  20. Positive Psychology

    ERIC Educational Resources Information Center

    Peterson, Christopher

    2009-01-01

    Positive psychology is a deliberate correction to the focus of psychology on problems. Positive psychology does not deny the difficulties that people may experience but does suggest that sole attention to disorder leads to an incomplete view of the human condition. Positive psychologists concern themselves with four major topics: (1) positive…

  1. Selaginella Genome Analysis – Entering the “Homoplasy Heaven” of the MADS World

    PubMed Central

    Gramzow, Lydia; Barker, Elizabeth; Schulz, Christian; Ambrose, Barbara; Ashton, Neil; Theißen, Günter; Litt, Amy

    2012-01-01

    In flowering plants, arguably the most significant transcription factors regulating development are MADS-domain proteins, encoded by Type I and Type II MADS-box genes. Type II genes are divided into the MIKCC and MIKC* groups. In angiosperms, these types and groups play distinct roles in the development of female gametophytes, embryos, and seeds (Type I); vegetative and floral tissues in sporophytes (MIKCC); and male gametophytes (MIKC*), but their functions in other plants are largely unknown. The complete set of MADS-box genes has been described for several angiosperms and a moss, Physcomitrella patens. Our examination of the complete genome sequence of a lycophyte, Selaginella moellendorffii, revealed 19 putative MADS-box genes (13 Type I, 3 MIKCC, and 3 MIKC*). Our results suggest that the most recent common ancestor of vascular plants possessed at least two Type I and two Type II genes. None of the S. moellendorffii MIKCC genes were identified as orthologs of any floral organ identity genes. This strongly corroborates the view that the clades of floral organ identity genes originated in a common ancestor of seed plants after the lineage that led to lycophytes had branched off, and that expansion of MIKCC genes in the lineage leading to seed plants facilitated the evolution of their unique reproductive organs. The number of MIKC* genes and the ratio of MIKC* to MIKCC genes is lower in S. moellendorffii and angiosperms than in P. patens, correlated with reduction of the gametophyte in vascular plants. Our data indicate that Type I genes duplicated and diversified independently within lycophytes and seed plants. Our observations on MADS-box gene evolution echo morphological evolution since the two lineages of vascular plants appear to have arrived independently at similar body plans. Our annotation of MADS-box genes in S. moellendorffii provides the basis for functional studies to reveal the roles of this crucial gene family in basal vascular plants. PMID

  2. Positional plagiocephaly

    PubMed Central

    Cummings, Carl

    2011-01-01

    Cranial asymmetry occurring as a result of forces that deform skull shape in the supine position is known as deformational plagiocephaly. The risk of plagiocephaly may be modified by positioning the baby on alternate days with the head to the right or the left side, and by increasing time spent in the prone position during awake periods. When deformational plagiocephaly is already present, physiotherapy (including positioning equivalent to the preventive positioning, and exercises as needed for torticollis and positional preference) has been shown to be superior to counselling about preventive positioning only. Helmet therapy (moulding therapy) to reduce skull asymmetry has some drawbacks: it is expensive, significantly inconvenient due to the long hours of use per day and associated with skin complications. There is evidence that helmet therapy may increase the initial rate of improvement of asymmetry, but there is no evidence that it improves the final outcome for patients with moderate or severe plagiocephaly. PMID:23024590

  3. Removing a Cystein Group On Interferon Alpha 2b at Position 2 and 99 does Not Diminish Antitumor Activity of the Protein, Even Better

    PubMed Central

    Rachmawati, Heni; Jessica, Adhitya; Sumirtaputra, Yeyet Cahyati; Retnoningrum, Debbie Sofie; Adlia, Amirah; Ningrum, Ratih Asmana

    2016-01-01

    Interferon alpha 2b is the only standard therapeutic protein for hepatitis virus infections. Further study demonstrated that this protein also posseses antitumor activity in several cancerous organs. One main pathway of this antitumor activity is mediated through antiproliferation as well as proapoptotic effects. Previously, we have successfully developed recombinant human interferon alpha 2b (rhIFNα2b) by using a synthetic gene. In addition, two mutein forms of rhIFNα2b were generated to improve the characteristics of this protein. Two point mutations showed better pharmacokinetic profiles than one point mutation as well as the native form. In the present study, this mutein form was studied for ist antitumor effect in vitro using HepG2 cells. As a comparison, the native form as well as a commercial rIFNα2b were used. Several parameters were investigated including the MTT assay, cell viability test, cell cycle using flow cytometric analysis, and the genes and protein expressions involved in cell growth. The latest was observed to study the mechanism of rhIFNα2b. There was no significant difference in the MTT assay and cell viability after cells were treated with both forms of rhIFNα2b. However, the mutein rhIFNα2b tended to show better proapoptotic activity reflected by flow cytometric data, protein expression of pSTAT1, and DNA expression of caspase 3. PMID:27110503

  4. A cytomegalovirus protein with properties of herpes simplex virus ICP8: partial purification of the polypeptide and map position of the gene.

    PubMed Central

    Kemble, G W; McCormick, A L; Pereira, L; Mocarski, E S

    1987-01-01

    We demonstrated the presence of a single-stranded DNA-binding protein in human cytomegalovirus (CMV)-infected cells with properties analogous to those of herpes simplex virus (HSV) ICP8. Using monoclonal antibody specific for the CMV protein, we analyzed its fluorescence pattern and time of synthesis, mapped the gene encoding it by using a lambda gt11 library of CMV DNA fragments, and monitored its purification by phosphocellulose and DNA-Sepharose chromatography. In all characteristics we examined, the CMV protein behaved analogously to HSV ICP8. Our results are consistent with a functional role of CMV ICP8 in viral replication that is similar to that of HSV ICP8 and with the evolutionary conservation of the gene of interest in two divergent herpesviruses. Images PMID:3041036

  5. Satellite positioning

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.; Watkins, Michael M.

    1991-01-01

    Developments in satellite positioning techniques and their applications are reviewed on the basis of the theoretical and practical work published by U.S. researchers in 1987-1990. Current techniques are classified into two main categories: satellite laser tracking and radio tracking. Particular attention is given to the Geoscience Laser Ranging System, the Lunar Laser Ranging concept; GPS ephemerides determination, fiducial networks, and reference frame; static GPS positioning; and kinematic GPS positioning.

  6. Positive Psychotherapy

    ERIC Educational Resources Information Center

    Seligman, Martin E. P.; Rashid, Tayyab; Parks, Acacia C.

    2006-01-01

    Positive psychotherapy (PPT) contrasts with standard interventions for depression by increasing positive emotion, engagement, and meaning rather than directly targeting depressive symptoms. The authors have tested the effects of these interventions in a variety of settings. In informal student and clinical settings, people not uncommonly reported…

  7. Neutralizing positive charges at the surface of a protein lowers its rate of amide hydrogen exchange without altering its structure or increasing its thermostability.

    PubMed

    Shaw, Bryan F; Arthanari, Haribabu; Narovlyansky, Max; Durazo, Armando; Frueh, Dominique P; Pollastri, Michael P; Lee, Andrew; Bilgicer, Basar; Gygi, Steven P; Wagner, Gerhard; Whitesides, George M

    2010-12-15

    This paper combines two techniques--mass spectrometry and protein charge ladders--to examine the relationship between the surface charge and hydrophobicity of a representative globular protein (bovine carbonic anhydrase II; BCA II) and its rate of amide hydrogen-deuterium (H/D) exchange. Mass spectrometric analysis indicated that the sequential acetylation of surface lysine-ε-NH3(+) groups--a type of modification that increases the net negative charge and hydrophobicity of the surface of BCA II without affecting its secondary or tertiary structure--resulted in a linear decrease in the aggregate rate of amide H/D exchange at pD 7.4, 15 °C. According to analysis with MS, the acetylation of each additional lysine generated between 1.4 and 0.9 additional hydrogens that are protected from H/D exchange during the 2 h exchange experiment at 15 °C, pD 7.4. NMR spectroscopy demonstrated that none of the hydrogen atoms which became protected upon acetylation were located on the side chain of the acetylated lysine residues (i.e., lys-ε-NHCOCH3) but were instead located on amide NHCO moieties in the backbone. The decrease in rate of exchange associated with acetylation paralleled a decrease in thermostability: the most slowly exchanging rungs of the charge ladder were the least thermostable (as measured by differential scanning calorimetry). This observation--that faster rates of exchange are associated with slower rates of denaturation--is contrary to the usual assumptions in protein chemistry. The fact that the rates of H/D exchange were similar for perbutyrated BCA II (e.g., [lys-ε-NHCO(CH2)2CH3]18) and peracetylated BCA II (e.g., [lys-ε-NHCOCH3]18) suggests that the electrostatic charge is more important than the hydrophobicity of surface groups in determining the rate of H/D exchange. These electrostatic effects on the kinetics of H/D exchange could complicate (or aid) the interpretation of experiments in which H/D exchange methods are used to probe the structural

  8. Positioning Agility

    NASA Astrophysics Data System (ADS)

    Oza, Nilay; Abrahamsson, Pekka; Conboy, Kieran

    Agile methods are increasingly adopted by European companies. Academics too are conducting numerous studies on different tenets of agile methods. Companies often feel proud in marketing themselves as ‘agile’. However, the true notion of ‘being agile’ seems to have been overlooked due to lack of positioning of oneself for agility. This raises a call for more research and interactions between academia and the industry. The proposed workshop refers to this call. It will be highly relevant to participants, interested in positioning their company’s agility from organizational, group or project perspectives. The