Science.gov

Sample records for magat methacrylic acid

  1. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  2. SU-F-BRE-15: Verification of Energy Dependence of MAGAT Polymer Gel at Orthovoltage Energies

    SciTech Connect

    Roed, Y; Tailor, R; Ibbott, G; Pinsky, L

    2014-06-15

    Purpose: Investigation of dose response curves of methacrylic acid-based “MAGAT” gel at different effective energies to verify an energy dependence of polymer-gel dosimeters for orthovoltage energy x-rays. Methods: Six small cylindrical MAGAT gel phantoms were exposed to different dose levels; one phantom was unirradiated for background subtraction. This experiment was repeated for three different effective beam energies.24 h post irradiation the spin-spin relaxation times (T2) were measured with a 4.7 T Bruker MR scanner at 2 cm depth inside the gel. The T2 values were converted to relaxation rates (R2) and plotted against the respective dose levels corresponding to the different effective energies. The resulting dose response curves were compared for a 250 kVp beam, the 250 kVp beam filtered by 6 cm of water, and a 125 kVp beam. Results: The passage of the 250 kVp beam through water resulted in a half-value-layer (HVL) change from 1.05 mm Cu to 1.32 mm Cu at 6 cm depth with a change in effective energy from 81.3 keV to 89.5 keV, respectively. The dose response curves showed a shift to higher relaxation rates for the harder beam. The dose response measurements for the 125 kVp beam (HVL: 3.13 mm Al, effective energy: 33.9 keV) demonstrated even higher relaxation rates than for either of the other beams. Conclusion: The MAGAT dose response curves for three different effective energies demonstrate a complex energy dependence, with an apparent decrease in sensitivity at 89.5 keV effective energy. This energy dependence is consistent with observed discrepancies of depth dose data compared with ion-chamber data. For future investigations of larger volumes, an energy-dependent sensitivity function is needed to properly assess 3-dimensional dose distributions.

  3. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  4. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  5. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  6. Zwitterionic Poly(amino acid methacrylate) Brushes

    PubMed Central

    2014-01-01

    A new cysteine-based methacrylic monomer (CysMA) was conveniently synthesized via selective thia-Michael addition of a commercially available methacrylate-acrylate precursor in aqueous solution without recourse to protecting group chemistry. Poly(cysteine methacrylate) (PCysMA) brushes were grown from the surface of silicon wafers by atom-transfer radical polymerization. Brush thicknesses of ca. 27 nm were achieved within 270 min at 20 °C. Each CysMA residue comprises a primary amine and a carboxylic acid. Surface zeta potential and atomic force microscopy (AFM) studies of the pH-responsive PCysMA brushes confirm that they are highly extended either below pH 2 or above pH 9.5, since they possess either cationic or anionic character, respectively. At intermediate pH, PCysMA brushes are zwitterionic. At physiological pH, they exhibit excellent resistance to biofouling and negligible cytotoxicity. PCysMA brushes undergo photodegradation: AFM topographical imaging indicates significant mass loss from the brush layer, while XPS studies confirm that exposure to UV radiation produces surface aldehyde sites that can be subsequently derivatized with amines. UV exposure using a photomask yielded sharp, well-defined micropatterned PCysMA brushes functionalized with aldehyde groups that enable conjugation to green fluorescent protein (GFP). Nanopatterned PCysMA brushes were obtained using interference lithography, and confocal microscopy again confirmed the selective conjugation of GFP. Finally, PCysMA undergoes complex base-catalyzed degradation in alkaline solution, leading to the elimination of several small molecules. However, good long-term chemical stability was observed when PCysMA brushes were immersed in aqueous solution at physiological pH. PMID:24884533

  7. Final report of the safety assessment of methacrylic acid.

    PubMed

    2005-01-01

    Methacrylic Acid is an organic acid used at concentrations between 50 and 88 percent to pretreat the nail and maximize the adhesion between the nail and artificial nail extender. Methacrylic Acid is readily absorbed through mucous membranes of the lungs, the gastrointestinal tract, and the skin; and is distributed to all major tissues. Oral LD50 values for rats ranged from 277 to 2260 mg/kg; acute toxicity symptoms included severe gastric irritation, gasping, labored respiration, prostration and hematuria. In a short-term inhalation study, rats exposed to Methacrylic Acid at 1300 ppm showed nose and eye irritation and weight loss, while necropsy results and blood and urine tests were normal. Methacrylic Acid is an ocular toxicant in animals. Undiluted Methacrylic Acid is corrosive to the skin of rabbits and guinea pigs. Exposure as limited as 3 minutes can cause severe erythema and slight to moderate edema. Exposure from 15 minutes to 24 hours under occlusive patches can cause marked to severe discoloration, slight to severe subcutaneous hemorrhages, necrosis, ulcerations, severe erythema, edema and concave eschar. Methacrylic Acid was irritating and caused strong rubefaction and scab formation in a guinea pig maximization test at challenge concentrations from 10 to 100 percent. It was difficult to determine if the results were type IV hypersensitivity reactions or simple irritation. In three other studies, guinea pigs were not sensitized. Methacrylic Acid was not a reproductive/developmental toxicant in rats or mice. Methacrylic Acid was negative in Salmonella typhimurium mutagenicity tests using strains TA98, TA100, TA1535 and TA1537 both with and without metabolic activation, but was positive in a DNA-cell-binding assay. Case reports involving Methacrylic Acid often involve children. Effects from ingestion include drooling, gagging, and vomiting. Children exposed to Methacrylic Acid as a result of accidental spills caused first and second degree burns to the

  8. Preparation of ultrafine poly(methyl methacrylate-co-methacrylic acid) biodegradable nanoparticles loaded with ibuprofen.

    PubMed

    Saade, Hened; Diaz de León-Gómez, Ramón; Enríquez-Medrano, Francisco Javier; López, Raúl Guillermo

    2016-08-01

    Ibuprofen-loaded polymeric particles with around 9.2 nm in mean diameter, as determined by electron microscopy, dispersed in an aqueous media containing up to 12.8% solids were prepared by semicontinuous heterophase polymerization. The polymeric material is a (2/1 mol/mol) methyl methacrylate-co-methacrylic acid copolymer similar to Eudragit S100, deemed safe for human consumption and used in the manufacturing of drug-loaded pills as well as micro- and nanoparticles. The loading efficiency was 100%, attaining around 10-12% in drug content. Release studies showed that the drug is released from the nanoparticles at a slower rate than that in the case of free IB. Given their size as well as the pH values required for their dissolution, it is believed that this type of particles could be used as a basis for preparing nanosystems loaded with a variety of drugs.

  9. Preparation of ultrafine poly(methyl methacrylate-co-methacrylic acid) biodegradable nanoparticles loaded with ibuprofen.

    PubMed

    Saade, Hened; Diaz de León-Gómez, Ramón; Enríquez-Medrano, Francisco Javier; López, Raúl Guillermo

    2016-08-01

    Ibuprofen-loaded polymeric particles with around 9.2 nm in mean diameter, as determined by electron microscopy, dispersed in an aqueous media containing up to 12.8% solids were prepared by semicontinuous heterophase polymerization. The polymeric material is a (2/1 mol/mol) methyl methacrylate-co-methacrylic acid copolymer similar to Eudragit S100, deemed safe for human consumption and used in the manufacturing of drug-loaded pills as well as micro- and nanoparticles. The loading efficiency was 100%, attaining around 10-12% in drug content. Release studies showed that the drug is released from the nanoparticles at a slower rate than that in the case of free IB. Given their size as well as the pH values required for their dissolution, it is believed that this type of particles could be used as a basis for preparing nanosystems loaded with a variety of drugs. PMID:27126476

  10. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775 Section 172.775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD...

  11. Improvement of holographic thermal stability in phenanthrenequinone-doped poly(methyl methacrylate-co-methacrylic acid) photopolymer

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Hongpeng; Wang, Heng; Wang, Jian; Jiang, Yongyuan; Sun, Xiudong

    2011-08-01

    Experimental studies of holographic thermal stability in phenanthrenequinone (PQ)-doped poly(methyl methacrylate-co-methacrylic acid) [P(MMA-co-MAA)] photopolymers are presented. A possibility to improve the thermal stability of holograms is demonstrated by doping methacrylic acid (MAA) into the poly(methyl methacrylate) (PMMA) polymer matrix. MAA as a copolymerization monomer can form a more stable polymer matrix with methyl methacrylate (MMA) monomer and increase average molecular weight of photoproducts, which finally depress the diffusion of photoproduct. The optimized MAA concentration copolymerized into P(MMA-co-MAA) polymer matrix can bring nearly a month's lifetime of gratings, which is obviously an improvement over the usual PQ-PMMA material under thermal treatment.

  12. Preparation and recovery of methacrylic acid and its esters

    SciTech Connect

    Frank, P.J.; Hite, J.R.

    1986-07-15

    This patent describes a process for the vapor phase catalytic oxydehydrogenation of isobutyric acid or its esters to form methacrylic acid or its esters wherein the gaseous product is condensed and purified. The improvement described here consists of adding to the gaseous product at or about the point of its condensation from 1 to 6000 ppm of a surfactant material selected from the group consisting of an anionic a cationic and non-ionic surfactant.

  13. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction.

    PubMed

    Marshall, William G; Urquhart, Andrew J; Oswald, Iain D H

    2015-09-10

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low pressures. The first is observed at 0.39 GPa, where both phases were observed simultaneously and confirm our previous observations. This transition is followed by a second transition at 1.2 GPa to a new polymorph that is characterized for the first time. On increasing pressure, the diffraction pattern of phase III deteriorates significantly. On decompression phase III persists to 0.54 GPa before transformation to the ambient pressure phase. There is significant loss of signal after decompression, signifying that there has been a loss of material through polymerization. The orientation of the molecules in phase III provides insight into the possible polymerization reaction. PMID:26289930

  14. Catalytic esterification of methacrylic acid with methyl alcohol

    SciTech Connect

    Lunin, A.F.; Zheleznaya, L.L.; Karakhanov, R.A.; Meshcheryakov, S.V.; Magadov, R.S.; Mkrtychan, V.R.; Fomin, V.A.

    1987-08-10

    The authors contend that virtually all methods for the production of methacrylic acid esters suffer from the drawbacks of low conversion, dependence on costly catalysts, low feed rates, and the need to use inhibitors in the process. To eliminate these drawbacks, they propose and test a new catalyst, sulfopolyphenyl ketone, which contains an extensive conjugated bond system together with ionic hydroxide groups. The catalytic esterification rate and yield is given for this catalyst and chromatography is performed for the resulting esters.

  15. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  16. Radiation synthesis of nanosilver nanohydrogels of poly(methacrylic acid)

    NASA Astrophysics Data System (ADS)

    Gupta, Bhuvanesh; Gautam, Deepti; Anjum, Sadiya; Saxena, Shalini; Kapil, Arti

    2013-11-01

    Nanosilver nanohydrogels (nSnH) of poly(methacrylic acid) were synthesized and stabilized using gamma irradiation. The main objective of this study was to develop silver nanoparticles and to evaluate the antimicrobial activity. Radiation helps in the polymerization, crosslinking and reduction of silver nitrate as well. Highly stable and uniformly distributed silver nanoparticles have been obtained within hydrogel network by water in oil nanoemulsion polymerization and were evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) respectively. TEM showed almost spherical and uniform distribution of silver nanoparticles through the hydrogel network. The mean size of silver nanoparticles ranging is 10-50 nm. The nanohydrogels showed good swelling in water. Antibacterial studies of nSnH suggest that it can be a good candidate as coating material in biomedical applications.

  17. LC50 values for rats acutely exposed to vapors of acrylic and methacrylic acid esters

    SciTech Connect

    Oberly, R.; Tansy, M.F.

    1985-01-01

    Acute exposure studies were conducted using adult male Sprague-Dawley rats to obtain LC50/24 concentrations for the common esters of acrylic and methacrylic acids. The order of acute toxicity was determined to be methyl acrylate > ethyl acrylate > butyl acrylate > butyl methacrylate > methyl methacrylate > ethyl methacrylate. Four-hour daily exposures (excluding weekends) of young adult male rats to 110 ppm methyl acrylate in air over a period of 32 d failed to produce significant differences in body or tissue weights, blood chemistries, gross metabolic performance, and spontaneous small-intestinal motor activities when compared with a sham-exposed group.

  18. Salient electrical design features of the Magat Hydroelectric Project

    SciTech Connect

    Verma, R.; Samorio, R.

    1986-01-01

    The Magat River Multipurpose project on the Luzon grid of the National Power Corporation of the Philippines consists of a four unit 450 MVA power-plant placed in service towards end of year 1983 and early 1984, providing an additional installed capacity of 360 MW to the existing generation peak capacity of 2478 MW of the Luzon grid, which is the country's Largest grid with an installed capacity of 3906 MW, the other two being those of Visayas and Mindanao with a total installed capacity of 1095 MW.

  19. The immobilization of enzymes onto poly(ethylene)—g.co—methacrylic acid, [poly(ethylene)—g.co—hydroxyethyl methacrylate]—g.co—methacrylic acid and [poly(ethylene)—g.co—methacrylic acid]—g.co—hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Da Silva, M. Alves; Gil, M. H.; Guiomar, J.; Lapa, E.; Machado, E.; Moreira, M.; Guthrie, J. T.; Kotov, S.

    A series of graft copolymers has been prepared based on the poly(ethylene) backbone. These carry functional groups which are effective in coupling and provide a level of hydrophilicity which is thought to be consistent with generating a suitable micro-environment for enzyme immobilization and subsequent enhanced biocatalyst stability. Four enzymes have been immobilized. These are papain, trypsin, glucose oxidase and α-chymotrypsin. The parent copolymers were assembled via radiation-induced grafting. Secondary grafting was achieved in two ways. The first involved grafting methacrylic acid onto poly(ethylene)—g.co—hydroxyethyl methacrylate, while the second involved grafting hydroxyethyl methacrylate onto poly(ethylene)—g.co—methacrylic acid. The results suggest that a high degree of specificity arises in the systems examined with regard to the enzymes, the type of copolymers and the coupling procedures. Generally, relatively large amounts of enzyme become covalently attached to the copolymers, though the overall level of activity is low. In this work it has been observed that the most satisfactory results were obtained when the partly hydrolyzed poly(ethylene)—g.co—hydroxyethyl methacrylate was used in the immobilization of the biocatalysts.

  20. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    SciTech Connect

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.; Galushko, A.S.; Akimenko, V.K.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizing propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.

  1. Monitoring of acid-base status of workers at a methyl methacrylate and polymethyl methacrylate production plant in Bulgaria.

    PubMed

    Prakova, Gospodinka R

    2003-01-01

    This study was carried out on 104 workers at three work operations and a control (nonproduction) area, within a methyl methacrylate (MMA)/polymethyl methacrylate (PMMA) production facility in Bulgaria. Airborne monitoring was conducted over a 10-year period for MMA and the reactant chemicals methanol and acetone cyanhydrine at the MMA operation, and MMA was monitored at the PMMA operation. Acid-base status of the workers was evaluated using traditional criteria (pH, pCO(2), pO(2), and HCO(3) in plasma). Data from retrospective monitoring of air levels of the chemicals were compared with the acid-base status of workers at the plant. In some cases air concentrations exceeded the threshold limit value, with the highest percentage of overexposure occurring with airborne MMA in the PMMA production operation. Acid-base disruption indicated by reductions in plasma pH and HCO(3) was found for all groups except the control population. The highest percentage reduction was associated with PMMA production workers. Additionally, respiratory acidosis, indicated by increased pCO(2), was noted in the MMA production and maintenance groups, implying that the response to MMA exposure may involve both the metabolic and respiratory acidosis component. This study was unique in that the combined exposure to MMA and the precursor chemical (methanol) were shown to produce the same effects in workers. It is suggested that when combined exposure occurs, disruption of acid-base status may occur. Enforcement of PPM requirements for coveralls and gloves should prevent skin contamination. Additionally, improvement of equipment in MMA and PMMA production areas is recommended: (1) automation of some manual operations; (2) use of respiratory protection during equipment cleaning; and (3) installation of local ventilation when applicable.

  2. Enthalpy of mixing of methacrylic acid with organic solvents at 293 K

    NASA Astrophysics Data System (ADS)

    Sergeev, V. V.

    2016-03-01

    The enthalpies of mixing of binary systems of methacrylic acid with acetonitrile, benzene, hexane, 1,2-dichloroethane, and acetic acid are measured calorimetrically at 293 K and atmospheric pressure. The enthalpy of mixing of all the studied binary systems is positive over the range of concentrations.

  3. Copolymer of methacrylic acid with its diethylammonium salt: Effective waterproofing agent for oil wells

    SciTech Connect

    Kuznetsova, O.N.; Avvakumova, N.I.

    1992-08-10

    In the development of technology for the copolymerization of methacrylic acid with its diethylammonium salt (MAA-MAA{center_dot}DEA), the polymer-like reaction of polymethacrylic acid (PMAA) with diethylamine (DEA) and the polymerization of MAA in the presence of DEA have been studied. 13 refs., 3 figs., 4 tabs.

  4. Salient electrical design features of the Magat hydroelectric project

    SciTech Connect

    Verma, R.; Samorio, R.

    1987-06-01

    The Magat River Multipurpose project on the Luzon grid of the National Power Corporation of the Philippines consists of a four unit 450 MVA powerplant placed in service towards end of year 1983 and early 1984, providing an additional installed capacity of 360 MW to the existing generation peak capacity of 2478 MW (1) of the Luzon grid, which is the country's largest grid with an installed capacity of 3906 MW, the other two being those of Visayas and Mindanao with a total installed capacity of 1095 MW. This paper describes the salient features of the electrical design including the main generation and station service single line schemes, the principal equipment parameters and layout, control and protection schemes and grounding system of the power plant.

  5. Polymer-induced fractal patterns of [60]fullerene containing poly(methacrylic acid) in salt solutions.

    PubMed

    Tan, Chung How; Ravi, Palaniswamy; Dai, Sheng; Tam, Kam Chiu

    2004-11-01

    Well-defined water-soluble pH-responsive [60]fullerene (C60) containing poly(methacrylic acid) (PMAA-b-C60) was synthesized using the atom transfer radical polymerization technique. By varying pH and salt concentration, different types of fractal patterns at nano- to microscopic dimensions were observed for negatively charged PMAA-b-C60, while such structure was not observed for positively charged poly(2-dimethylaminoethyl methacrylate)-b-C60. We demonstrated that negatively charged fullerene containing polymeric systems can serve as excellent nanotemplates for the controlled growth of inorganic crystals at the nano- to micrometer length scale, and the possible mechanism was proposed.

  6. Radiation grafting of acrylic and methacrylic acid to cellulose fibers to impart high water sorbency

    SciTech Connect

    Zahran, A.H.; Williams, J.L.; Stannett, V.T.

    1980-04-01

    Acrylic and methacrylic acids have been directly grafted to rayon and cotton using the preirradiation technique with /sup 60/ Co gamma rays. The rate of grafting increased with increasing temperature and monomer concentration, as did the final degree of grafting. The amount and rate of grafting also increased with the total irradiation dose but tended to level off at higher doses, in agreement with the leveling off of the radical content reported previously. Methacrylic acid grafted more and faster than acrylic acid to both rayon and cotton. Methacrylic acid grafted more with rayon than cotton, but acrylic acid gave somewhat similar yields with both fibers. The water abosrbency of the grafted fibers depended strongly on their posttreatment. Decrystallizing with 70% zinc chloride or with hot sodium hydroxidy developed supersorbency. The two treatments in succession, respectively, gave the highest values. Metacrylic acid brought about less sorbency than the corrsponding acrylic acid grafts. Useful levels of grafting and supersorbency could be readily and practically achieved by the methods described.

  7. Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro

    2015-01-01

    MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.

  8. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. PMID:25045161

  9. Experimental and theoretical investigation of the complexation of methacrylic acid and diisopropyl urea.

    PubMed

    Pogány, Peter; Razali, Mayamin; Szekely, Gyorgy

    2017-01-01

    The present paper explores the complexation ability of methacrylic acid which is one of the most abundant functional monomer for the preparation of molecularly imprinted polymers. Host-guest interactions and the mechanism of complex formation between methacrylic acid and potentially genotoxic 1,3-diisopropylurea were investigated in the pre-polymerization solution featuring both experimental (NMR, IR) and in silico density functional theory (DFT) tools. The continuous variation method revealed the presence of higher-order complexes and the appearance of self-association which were both taken into account during the determination of the association constants. The quantum chemical calculations - performed at B3LYP 6-311++G(d,p) level with basis set superposition error (BSSE) corrections - are in agreement with the experimental observations, reaffirming the association constants and justifying the validity of computational investigation of such systems. Furthermore, natural bond orbital analysis was carried out to appraise the binding properties of the complexes.

  10. Experimental and theoretical investigation of the complexation of methacrylic acid and diisopropyl urea.

    PubMed

    Pogány, Peter; Razali, Mayamin; Szekely, Gyorgy

    2017-01-01

    The present paper explores the complexation ability of methacrylic acid which is one of the most abundant functional monomer for the preparation of molecularly imprinted polymers. Host-guest interactions and the mechanism of complex formation between methacrylic acid and potentially genotoxic 1,3-diisopropylurea were investigated in the pre-polymerization solution featuring both experimental (NMR, IR) and in silico density functional theory (DFT) tools. The continuous variation method revealed the presence of higher-order complexes and the appearance of self-association which were both taken into account during the determination of the association constants. The quantum chemical calculations - performed at B3LYP 6-311++G(d,p) level with basis set superposition error (BSSE) corrections - are in agreement with the experimental observations, reaffirming the association constants and justifying the validity of computational investigation of such systems. Furthermore, natural bond orbital analysis was carried out to appraise the binding properties of the complexes. PMID:27419640

  11. Synthesis and characterization of hydrolysed starch-g-poly(methacrylic acid) composite.

    PubMed

    Zahran, Magdy K; Ahmed, Enas M; El-Rafie, Mohamed H

    2016-06-01

    A novel method for the synthesis of starch-g-poly(methacrylic acid) composite was adopted by graft polymerization of hydrolysed starch (HS) and methacrylic acid (MAA) in aqueous medium using an efficient sodium perborate (SPB)-thiourea (TU) redox initiation system. The parameters influencing the redox system efficiency and thence the polymerization method were considered. These parameters comprehended the concentrations of MAA, SPB, TU and SPB/TU molar ratio as well as the polymerization temperature. The polymerization reaction was scrutinized through calculation of the MAA total conversion percent (TC%). The resultant poly(MAA-HS) composite was assessed by evaluating the polymer criteria (the graft yield, GY%; the grafting efficiency, GE%; the homopolymer, HP%; and the total conversion). The comportment of the apparent viscosity of the cooked poly(MAA)-starch composite paste, obtained under diverse polymerization conditions, was examined. Tentative mechanisms, which depict all occasions that happen amid the entire course of the polymerization reaction, have been proffered. PMID:26968925

  12. Study of the sequential conversion of citric to itaconic to methacrylic acid in near-critical and supercritical water

    SciTech Connect

    Carlsson, M.; Habenicht, C.; Kam, L.C.; Antal, M.J. Jr. ); Bian, N.; Cunningham, R.J.; Jones, M. Jr. . Dept. of Chemistry)

    1994-08-01

    Between 200 and 400 million lb of citric acid are produced annually in the USA by fermentation of molasses and other sugars using the microorganism Aspergillus niger. A lesser quantity of itaconic acid is manufactured by a similar technology using Aspergillus terreus. The recovery of citric acid from its fermentation broth via calcium salt precipitation is a costly, highly complex, sophisticated operation. USDOE estimates the cost of dry citric acid produced from a new plant to be about $0.59/lb, whereas the estimated cost of wet citric acid (in its fermentation broth) from a new plant is about $0.19/lb and from an old plant is about $0.15/lb. Citric acid rapidly reacts in hot (250 C), compressed (34.5 MPa) liquid water to form itaconic and citraconic acids with a combined selectivity that exceeds 90%. At higher temperatures (360 C), in the absence and presence of NaOH, itaconic acid decarboxylates to form methacrylic acid. The yield of methacrylic acid depends on the temperature, pH, and buffer strength of the medium, reaching a maximum of about 70% (by mole) of the itaconic acid feed. Conditions which favor the production of methacrylic acid also lead to the formation of its hydration product: hydroxyisobutyric acid. Under optimum conditions the combined yield of methacrylic acid and hydroxyisobutyric acid from itaconic acid exceeds 80%. Results are consistent with well-established dehydration and decarboxylation mechanisms.

  13. Reactive Poly(Amic Acid)/ Poly(Glycidyl Methacrylate-r-Poly(ethylene Glycol) Methyl Ether Methacrylate) Blends as Gas Permeation Membranes

    NASA Astrophysics Data System (ADS)

    Beaulieu, Michael; Watkins, James

    2012-02-01

    Polymers containing polar moieties, such as ether groups show an affinity for acidic gases, such as CO2 due to dipole-quadrapole interactions. Polymer blends in which one of the components is poly(ethylene glycol) (PEG) have been studied extensively in literature as a CO2/light gas permeation membrane, but due to the crystallization and poor mechanical properties have been difficult to incorporate PEG above 60wt%. In this study, a series of random copolymers containing both glycidyl methacrylate and poly(ethylene glycol) methyl ether methacrylate in different ratios are blended with a poly(amic acid) prepolymer made from 4, 4'-oxydianiline and pyromellitic dianhydride to create gas permeation membranes. By using a reactive blend PEG loadings above 70% have been realized with sufficient mechanical properties, and since the side chain on the PEGMA is short these blends do not suffer from crystallization.

  14. Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages.

    PubMed

    Chamberlain, Michael Dean; Wells, Laura A; Lisovsky, Alexandra; Guo, Hongbo; Isserlin, Ruth; Talior-Volodarsky, Ilana; Mahou, Redouan; Emili, Andrew; Sefton, Michael V

    2015-08-25

    An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell-material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered. PMID:26261332

  15. The influence of a small amount of maleic acid on crystal deposition phenomena of methacrylic acid in melt crystallization

    NASA Astrophysics Data System (ADS)

    Hino, Tomomichi; Kato, Shinpei; Takiyama, Hiroshi

    2013-06-01

    Crystal deposition phenomena were investigated in the suspension melt crystallization of an organic acid. Methacrylic acid was used as the target substance, a certain amount of methanol was used as the solvent, and the effect of a small amount of maleic acid by-produced in methacrylic acid synthesis was focused on. Batch crystallizations were carried out on a laboratory scale using various concentrations of maleic acid. In the presence of maleic acid, a certain deviation from equilibrium of the pure binary system was observed in the final composition of mother liquor. Moreover, nevertheless the final temperature in the crystallizer was same, the amount of crystal deposition in the presence of maleic acid was smaller than in the absence of maleic acid. It was suggested that the final amount of crystal deposition decreased in the presence of maleic acid. Additionally, it was observed that the obtained crystal size was smaller in the presence of maleic acid. Hence, a simplified kinetic analysis of crystal deposition rates was carried out to make the effect of maleic acid clear. Consequently, it was suggested that the cause of the above-mentioned phenomena was the existence of the maleic acid concentration dependent pseudo-liquidus line.

  16. Molecularly imprinted films of acrylonitrile/methyl methacrylate/acrylic acid terpolymers: influence of methyl methacrylate in the binding performance of L-ephedrine imprinted films.

    PubMed

    Brisbane, Carrie; McCluskey, Adam; Bowyer, Michael; Holdsworth, Clovia I

    2013-05-01

    Molecularly imprinted polymeric films (MIPFs) highly selective to 1R,2S(-)ephedrine (L-ephedrine, EPD) were produced by phase inversion post-polymerization imprinting on poly(acrylonitrile-co-methyl methacrylate-co-acrylic acid) (PAMA) terpolymers. The inclusion of methyl methacrylate (MMA) to the polymer formulation resulted in enhanced EPD selectivity which appears to be dictated by polymer composition to achieve the necessary balance between polymer rigidity and porosity. Substitution of MMA with methyl acrylate, ethyl acrylate and n-butyl acrylate resulted in a loss of EPD selectivity and EPD entrapment within the polymer matrix not observed in PAMA MIPFs. MMA, by virtue of its methyl group, is able to provide the scaffolding and rigidity necessary for stability and preservation of imprinted cavities within the PAMA MIPF leading to high EPD selectivity.

  17. Moleculary imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid.

    PubMed

    Takeuchi, T; Mukawa, T; Matsui, J; Higashi, M; Shimizu, K D

    2001-08-15

    A diastereoselective molecularly imprinted polymer (MIP) for (-)-cinchonidine, PPM(CD), was prepared by the combined use of methacrylic acid and vinyl-substituted zinc(II) porphyrin as functional monomers. Compared to MIPs using only methacrylic acid or zinc porphyrin as a functional monomer, PM(CD) and PP(CD), respectively, PPM(CD) showed higher binding ability for (-)-cinchonidine in chromatographic tests using the MIP-packed columns. Scatchard analysis gave a higher association constant of PPM(CD) for (-)-cinchonidine (1.14 x 10(7) M(-1)) than those of PP(CD) (1.45 x 10(6) M(-1)) and PM(CD) (6.78 x 10(6) M(-1)). The affinity distribution of binding sites estimated by affinity spectrum analysis showed a higher percentage of high-affinity sites and a lower percentage of low-affinity sites in PPM(CD). The MIPs containing a zinc(II) porphyrin in the binding sites, PPM(CD) and PP(CD), showed fluorescence quenching according to the binding of (-)-cinchonidine, and the quenching was significant in the low-concentration range, suggesting that the high-affinity binding sites contain the porphyrin residue. The correlation of the relative fluorescence intensity against log of (-)-cinchonidine concentrations showed a linear relationship. These results revealed that the MIP having highly specific binding sites was assembled by the two functional monomers, vinyl-substituted zinc(II) porphyrin and methacrylic acid, and they cooperatively worked to yield the specific binding. In addition, the zinc(II) porphyrin-based MIPs appeared to act as fluorescence sensor selectively responded by binding events of the template molecule.

  18. Positronium Formation Of Glyeisdyl Methacrylic Acid (GMA)/Styrene Grafted On PVDF Membrane For Fuel Cells

    SciTech Connect

    Abdel-Hady, E. E.; Abdel-Hamed, M. O.; Eltonny, M. M.

    2011-06-01

    Simultaneous gamma irradiation was used effectively for grafting of glycidyl methacrylic acid and styrene onto Poly vinyldine fluoride (PVDF). Membranes were characterized by thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). The properties of the obtained membranes were evaluated in terms of proton conductivity, methanol permeability and positron annihilation lifetime (PALS) parameters. The high probability of Positronium formation enables the application of PALS to the study of free volume. Good property values approved the applicability of the membrane from the cost benefit point of view.

  19. Synthesis and swelling behavior of Protein-g-poly Methacrylic acid/kaolin superabsorbent hydrogel composites

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad

    2008-08-01

    A novel superabsorbent hydrogel composite based on Collagen have been prepared via graft copolymerization of Methacrylic acid (MAA) in the presence of kaolin powder using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The composite structure was confirmed using FTIR spectroscopy. A new absorption band at 1728 cm-1 in the composite spectrum confirmed kaolin-organic polymer linkage. The effect of kaolin amount and MBA concentration showed that with increasing of these parameters, the water absorbency of the superabsorbent composite was decreased. The swelling measurements of the hydrogels were conducted in aqueous salt solutions.

  20. Thermal-induced conversion of maleic and fumaric acid anion radicals in poly(methyl methacrylate)

    SciTech Connect

    Torikai, A.; Fukumoto, M.

    1980-04-01

    Thermal-induced conversion of maleic and fumaric acid anion radicals produced by ..gamma.. irradiation at 77/sup 0/K in poly(methyl methacrylate) (PMMA) was studied by electron spin resonance (ESR) and optical absorption spectroscopic measurements. The ESR spectra of these acid anion radicals change into two-line spectra with a line separation of ca. 10 G by thermal annealing. This spectrum is assigned to a protonated radical of each acid anion radical. Anion radicals of the solutes are relatively stable below the ..gamma.. transition point of PMMA and the conversion reaction takes place near this point. This means that the molecular motion of matrix molecule affects the radical conversion reaction.

  1. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... number average molecular weight (in amu), 1,200 when used as an inert ingredient in a pesticide chemical... Register of July 19, 2013 (78 FR 43118) (FRL-9392- 9), EPA issued a notice pursuant to section 408 of FFDCA... number average molecular weight (in amu), 1,200 to include the monomer lauryl methacrylate. That...

  2. Determination of methacrylic acid in food simulants by pyrolytic butylation-gas chromatography.

    PubMed

    Huang, Zhongping; Qiu, Ruofeng; Liu, Tingfei; Huang, Yilei; Zhu, Zuoyi; Wang, Lili

    2016-07-01

    An on-line pyrolytic butylation approach was proposed to determine methacrylic acid (MA) in food simulants by gas chromatography (GC) without an expensive pyrolyzer. MA in food simulants was converted into butyl methacrylate in the presence of tetrabutylammonium hydroxide (TBAH) without any pretreatment at 330°C in the injection-port, contributing to high GC signal response. The derivatizing conditions for the proposed method were optimized, namely the injection-port temperature, type and amount of the organic alkaline used for derivatization. A series of standard solutions of MA in the range of 1.0-50mg/kg were analyzed with correlation coefficient r≥0.9975. The limits of detection (LODs) were less than 0.15mg/kg for MA in four matrix simulants (distilled water, 3%w/v acetic acid, 10%v/v ethanol, and isooctane). Relative standard deviations (RSDs) for retention time, peak height and peak area were all less than 3.88%. The technique was successfully applied to the analysis of MA migrating from plastic cup samples, with recoveries of added MA in the range of 96.5-123.0%. Direct injection of the simulants into the GC system after migration tests, without any pretreatment step, makes the developed method of great value for rapid screening analysis of samples in bulks. PMID:27262371

  3. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  4. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid

    NASA Astrophysics Data System (ADS)

    Guo, Baochun; Lei, Yanda; Chen, Feng; Liu, Xiaoliang; Du, Mingliang; Jia, Demin

    2008-12-01

    Methacrylic acid (MAA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed interaction mechanisms of MAA and the in situ formed zinc methacrylate (ZDMA) were revealed by X-ray diffraction (XRD), surface area and porosity analysis, X-ray photoelectron spectroscopy (XPS) together with crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through ZDMA and MAA intermediated linkages. ZDMA connects SBR and HNTs via grafting/complexation mechanism. MAA bonds SBR and HNTs through grafting/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and MAA or ZDMA was achieved. Effects of MAA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of MAA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and MAA or ZDMA and the largely improved dispersion of HNTs.

  5. Acoustic and ultrasonic characterization constraints of self-healing (ethylene-co-methacrylic acid) copolymers

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth, II; Buckley, Jonathan; Kalista, Stephen; Bowers, Nicholas

    Recent experiments indicate that small sample poly (ethylene-co-methacrylic acid) copolymers (EMAA copolymers) exhibit time dependent variation in their acoustic and ultrasonic resonant spectra after exposure to a damage event. However, due to the relatively soft nature of these thermoplastic materials, several experimental constraints affect efficacy of resonant spectral analysis. In this work we will the address the effect of several characterization constraints on a self-healing EMAA ionomer (commercially known as Dupont Surlyn 8920) including the effects of transducer loading, continuous rapid resonant excitation and temporally separated long-term resonant excitation. In some circumstances, these experimental constraints can influence the time dependence of sample resonant frequency evolution, quality factor, and variation in spectral waveform. By quantifying these effects, robust characterization of post-damage self-healing EMAA samples is possible and will be presented.

  6. Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs.

    PubMed

    Shi, Xizhi; Wu, Aibo; Qu, Guorun; Li, Rongxiu; Zhang, Dabing

    2007-09-01

    Specific molecularly imprinted polymers (MIPs) for the drug reserpine (RES) using methacrylic acid (MAA) as the functional monomer were developed and characterised for the first time in this study. Evaluation of the various polymers by binding assays indicated that the optimum ratio of functional monomer to template was 4:1. Furthermore, the imprinting effect of the MIPs was assessed by the chromatographic method, which demonstrated that the MIPs had better chromatographic behavior and selectivity than those of the corresponding NIPs. A combination of BET, NMR, UV spectroscopy, and MISPE analyses for investigation of the imprinting and recognition properties revealed that strong specific interactions between the functional monomer and RES in the prepolymerization solutions and the aqueous solutions were probably responsible for RES recognition. The preparation of RES MIPs and elucidation of imprinting and recognition mechanisms may serve as useful references for other drug MIPs.

  7. Poly(methacrylic acid)-mediated morphosynthesis of PbWO4 micro-crystals

    NASA Astrophysics Data System (ADS)

    Yu, J. G.; Zhao, X. F.; Liu, S. W.; Li, M.; Mann, S.; Ng, D. H. L.

    2007-04-01

    PbWO4 crystals with various morphologies were fabricated via a facile poly(methacrylic acid)-mediated hydrothermal route. Novel microsized PbWO4 single crystals with a needle-like shape as well as other morphologies, such as a fishbone, dendrite, sphere, spindle, ellipsoid, rod, and dumbbell with two dandelion-like heads, could be produced. The presence of PMAA, [Pb2+]/[WO4 2-] molar ratio (R), and aging temperature played key roles in the formation of the PbWO4 needle-like structures. Between temperatures of 60 to 150 °C, the length and photoluminescence intensities of the PbWO4 micro needles significantly increased with aging temperature, while the diameter did not change remarkably. Time-dependent experiments revealed that the formation of PbWO4 microneedles involved an unusual growth process, involving nucleation, oriented assembly and controlled mesoscale restructuring of nanoparticle building blocks.

  8. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery.

    PubMed

    Mundargi, Raghavendra C; Rangaswamy, Vidhya; Aminabhavi, Tejraj M

    2011-01-01

    pH-sensitive copolymeric hydrogels prepared from N-vinylcaprolactam and methacrylic acid monomers by free radical polymerization offered 52% encapsulation efficiency and evaluated for oral delivery of human insulin. The in vitro experiments performed on insulin-loaded microparticles in pH 1.2 media (stomach condition) demonstrated no release of insulin in the first 2 h, but almost 100% insulin was released in pH 7.4 media (intestinal condition) in 6 h. The carrier was characterized by Fourier transform infrared, differential scanning calorimeter, thermogravimetry and nuclear magnetic resonance techniques to confirm the formation of copolymer, while scanning electron microscopy was used to assess the morphology of hydrogel microparticles. The in vivo experiments on alloxan-induced diabetic rats showed the biological inhibition up to 50% and glucose tolerance tests exhibited 44% inhibition. The formulations of this study are the promising carriers for oral delivery of insulin.

  9. New Poly(amino acid methacrylate) Brush Supports the Formation of Well-Defined Lipid Membranes

    PubMed Central

    2015-01-01

    A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼−10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm2 s–1, which are comparable to those observed for lipid bilayers on glass substrates. PMID:25746444

  10. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-08-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of a similar magnitude, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity-dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  11. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-12-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters, and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied with experimental methods. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of similar magnitudes, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  12. Syntheses and luminescent properties of a copolymer of terbium-p-aminobenzoic acid-methacrylic acid and styrene.

    PubMed

    Zhang, A Q; Yang, Y M; Li, L P; Zhai, G M; Jia, H S; Liu, X G; Xu, B S

    2015-11-01

    A reactive Tb(III) complex with p-aminobenzoic acid (p-ABA) and methacrylic acid (MAA) as ligands was synthesized. A novel copolymer was synthesized by free radical copolymerization of styrene and the reactive Tb(III) complex in dimethyl sulfoxide (DMSO) with 2,2'-azobis(2-methylpropionitrile) (AIBN) as the initiator. IR and UV/Vis spectra indicate that the copolymer exhibited absorption from polystyrene and the complex. Thermogravimetric analysis indicates that the copolymer remained stable up to 357°C and the thermal stability was significantly improved in comparison with polymer matrix and the Tb(III) complex. The luminescent intensity of the synthetic terbium macromolecular complexes increased with increasing complex monomer content. Moreover, concentration quenching was not observed.

  13. Terpolymers of ethyl acrylate/methacrylic acid/unsaturated acid ester of alcohols and acids as anti-settling agents in coal water slurries

    SciTech Connect

    Savoly, A.; Villa, J.L.; Grinstein, R.H.; Nachfolger, S.J.

    1988-05-17

    This patent describes a pumpable stabilized coal water slurry, having a coal content of at least about 50% by weight wherein at least 80% of the coal particles are about 200 mesh or finer, containing from about 0.01% to about 1% by weight of the slurry of a water soluble terpolymer of ethylacrylate (A), metacrylic acid (B) and a third monomer (C) selected from the group consisting of an unsaturated carboxylic acid ester of an alcohol and an ethoxylated carboxylic acid. The unsaturated carboxylic acid is a mono- or di- basic unsaturated carboxylic acid of 3 to 10 carbon atoms selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid.

  14. A simple sonochemical method for fabricating poly(methyl methacrylate)/stearic acid phase change energy storage nanocapsules.

    PubMed

    Wang, Guxia; Xu, Weibing; Hou, Qian; Guo, Shengwei

    2015-11-01

    In this study, stearic acid suitable for thermal energy storage applications was nanoencapsulated in a poly(methyl methacrylate) shell. The nanocapsules were prepared using a simple ultrasonically initiated in situ polymerization method. The morphology and particle size of the poly(methyl methacrylate)/stearic acid phase change energy storage nanocapsules (PMS-PCESNs) were analyzed using transmission electron microscopy, scanning electron microscopy, atomic force microscopy and dynamic light scattering. The latent heat storage capacities of stearic acid and the PMS-PCESNs were determined using differential scanning calorimetry. The chemical composition of the nanocapsules was characterized using Fourier transform infrared spectroscopy. All of the results show that the PMS-PCESNs were synthesized successfully and that the latent heat storage capacity and encapsulation efficiency were 155.6 J/g and 83.0%, respectively, and the diameter of each nanocapsule was 80-90 nm.

  15. Composite Polylactic-Methacrylic Acid Copolymer Nanoparticles for the Delivery of Methotrexate

    PubMed Central

    Sibeko, Bongani; Choonara, Yahya E.; du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Khan, Riaz A.; Kumar, Pradeep; Ndesendo, Valence M. K.; Iyuke, Sunny E.; Pillay, Viness

    2012-01-01

    The purpose of this study was to develop poly(lactic acid)-methacrylic acid copolymeric nanoparticles with the potential to serve as nanocarrier systems for methotrexate (MTX) used in the chemotherapy of primary central nervous system lymphoma (PCNSL). Nanoparticles were prepared by a double emulsion solvent evaporation technique employing a 3-Factor Box-Behnken experimental design strategy. Analysis of particle size, absolute zeta potential, polydispersity (Pdl), morphology, drug-loading capacity (DLC), structural transitions through FTIR spectroscopy, and drug release kinetics was undertaken. Molecular modelling elucidated the mechanisms of the experimental findings. Nanoparticles with particle sizes ranging from 211.0 to 378.3 nm and a recovery range of 36.8–86.2 mg (Pdl ≤ 0.5) were synthesized. DLC values were initially low (12 ± 0.5%) but were finally optimized to 98 ± 0.3%. FTIR studies elucidated the comixing of MTX within the nanoparticles. An initial burst release (50% of MTX released in 24 hours) was obtained which was followed by a prolonged release phase of MTX over 84 hours. SEM images revealed near-spherical nanoparticles, while TEM micrographs revealed the presence of MTX within the nanoparticles. Stable nanoparticles were formed as corroborated by the chemometric modelling studies undertaken. PMID:22919501

  16. Metal chelate affinity precipitation: purification of BSA using poly(N-vinylcaprolactam-co-methacrylic acid) copolymers.

    PubMed

    Ling, Yuan-Qing; Nie, Hua-Li; Brandford-White, Christopher; Williams, Gareth R; Zhu, Li-Min

    2012-06-01

    This investigation involves the metal chelate affinity precipitation of bovine serum albumin (BSA) using a copper ion loaded thermo-sensitive copolymer. The copolymer of N-vinylcaprolactam with methacrylic acid PNVCL-co-MAA was synthesized by free radical polymerization in aqueous solution, and Cu(II) ions were attached to provide affinity properties for BSA. A maximum loading of 48.1mg Cu(2+) per gram of polymer was attained. The influence of pH, temperature, BSA and NaCl concentrations on BSA precipitation and of pH, ethylenediaminetetraacetic acid (EDTA) and NaCl concentrations on elution were systematically probed. The optimum conditions for BSA precipitation occurred when pH, temperature and BSA concentration were 6.0, 10°C and 1.0 mg/ml, respectively and the most favorable elution conditions were at pH 4.0, with 0.2M NaCl and 0.06 M EDTA. The maximum amounts of BSA precipitation and elution were 37.5 and 33.7 mg BSA/g polymer, respectively. It proved possible to perform multiple precipitation/elution cycles with a minimal loss of polymer efficacy. The results show that PNVCL-co-MAA is a suitable matrix for the purification of target proteins from unfractionated materials.

  17. Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite

    SciTech Connect

    Preda, N.; Rusen, E.; Musuc, A.; Enculescu, M.; Matei, E.; Marculescu, B.; Fruth, V.; Enculescu, I.

    2010-08-15

    The synthesis of a new hybrid composite based on PbS nanoparticles and poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid) [P(MMA-AMPSA)] copolymer is reported. The chemical synthesis consists in two steps: (i) a surfactant-free emulsion copolymerization between methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid and (ii) the generation of PbS particles in the presence of the P(MMA-AMPSA) latex, from the reaction between lead nitrate and thiourea. The composite was studied by scanning electron microscopy (SEM), X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The microstructure observed using SEM proves that the PbS nanoparticles are well dispersed in the copolymer matrix. The X-ray diffraction measurements demonstrate that the PbS nanoparticles have a cubic rock salt structure. It was also found that the inorganic semiconductor nanoparticles improve the thermal stability of the copolymer matrix.

  18. Morphological Origin of Thermomechanical Behavior in Semicrystalline Ethylene/Methacrylic Acid Ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki; Register, Richard A.

    2006-03-01

    Two peculiar and intriguing phenomena in ethylene/methacrylic acid (E/MAA) ionomers are an initial sharp increase in stiffness with neutralization and an inverse dependence of Young’s modulus on crystallinity. We have identified how the polyethylene crystallites, amorphous polymer segments, and ionic aggregates combine to produce these unusual effects. At temperatures just below the melting point of the primary crystallites, the ionomers can be satisfactorily described as two-phase composites of crystallites and ionically-crosslinked rubber, but at room temperature, the modulus is much greater. We trace this effect to a synergy between the ionic aggregates and secondary crystallites, which together form percolated rigid pathways through the amorphous phase at room temperature, generating a far higher modulus than one would anticipate from the modest crystallinity and ion content. When the secondary crystallites melt and/or the segments in the regions of restricted mobility surrounding the aggregates devitrify, these paths break down and the simple two-phase composite description is recovered.

  19. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    NASA Astrophysics Data System (ADS)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  20. Theoretical and experimental research on the self-assembled system of molecularly imprinted polymers formed by salbutamol and methacrylic acid.

    PubMed

    Jun-Bo, Liu; Yang, Shi; Shan-Shan, Tang; Rui-Fa, Jin

    2015-03-01

    The quantum chemical method was applied for screening functional monomers in the rational design of salbutamol-imprinted polymers. Salbutamol was the template molecule, and methacrylic acid was the single functional monomer. The LC-WPBE/6-31G(d,p) method was used to investigate the geometry optimization, active sites, natural bond orbital charges, binding energies of the imprinted molecule, and solvation energy. The mechanism of action between salbutamol and methacrylic acid was also discussed. The theoretical results show that salbutamol interacts with functional monomers by hydrogen bonds, and the salbutamol-imprinted polymers with a ratio of 1:4 (salbutamol/methacrylic acid) in acetonitrile had the highest stability. The salbutamol-imprinted polymers were prepared by precipitation polymerization. The experimental results indicated that the maximum adsorption capacity for salbutamol toward molecularly imprinted polymers was 7.33 mg/g, and the molecularly imprinted polymers had a higher selectivity for salbutamol than for norepinephrine and terbutaline sulfate. Herein, the studies can provide theoretical and experimental references for the salbutamol molecular imprinted system.

  1. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  2. Triblock copolyampholytes from 5-(N,N-dimethyl amino)isoprene styrene, and methacrylic acid: Synthesis and solution properties

    NASA Astrophysics Data System (ADS)

    Bieringer, R.; Abetz, V.; Müller, A. H. E.

    ABC triblock copolymers of the type poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(tert-butyl methacrylate) (AiST) were synthesized and hydrolyzed to yield poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(methacrylic acid) (AiSA) triblock copolyampholytes. Due to a complex solubility behavior the solution properties of these materials had to be investigated in THF/water solvent mixtures. Potentiometric titrations of AiSA triblock copolyampholytes showed two inflection points with the A block being deprotonated prior to the Ai hydrochloride block thus forming a polyzwitterion at the isoelectric point (iep). The aggregation behavior was studied by dynamic light scattering (DLS) and freeze-fracture/transmission electron microscopy (TEM). Large vesicular structures with almost pH-independent radii were observed.

  3. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE PAGES

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; Kharlampieva, Eugenia

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces butmore » roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  4. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    SciTech Connect

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; Kharlampieva, Eugenia

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.

  5. Synthesis and physicochemical properties of organofluorine esters of acrylic, methacrylic, and maleic acids

    SciTech Connect

    Gol'din, G.S.; Averbakh, K.O.; Lavygin, I.A.; Nekrasova, L.A.

    1985-12-01

    The authors synthesize and study the physicochemical properties of organofluorine acrylates, methacrylates, and maleates. The organofluorine esters are colorless liquids; their composition and structure were confirmed by elemental analysis and IR spectra. The results of studies of the dependence of the density, surface tension, and viscosity of these compounds on temperature are presented. The results revealed the influence of the length of the fluorocarbon chain on the combination of the physicochemical properties of organofluorine acrylates, methacrylates, and maleates, and also provided a method for estimating certain thermophysical characteristics of such compounds without recourse to experimental measurements.

  6. Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model.

    PubMed

    Lisovsky, Alexandra; Zhang, David K Y; Sefton, Michael V

    2016-08-01

    Poly(methacrylic acid-co-methyl methacrylate) (MAA) beads promote a vascular regenerative response when used in diabetic wound healing. Previous studies reported that MAA beads modulated the expression of sonic hedgehog (Shh) and inflammation related genes in diabetic wounds. The aim of this work was to follow up on these observations in a subcutaneous injection model to study the host response in the absence of the confounding factors of diabetic wound healing. In this model, MAA beads improved vascularization in healthy mice of both sexes compared to control poly(methyl methacrylate) (MM) beads, with a stronger effect seen in males than females. MAA-induced vessels were perfusable, as evidenced from the CLARITY-processed images. In Shh-Cre-eGFP/Ptch1-LacZ non-diabetic transgenic mice, the increased vessel formation was accompanied by a higher density of cells expressing GFP (Shh) and β-Gal (patched 1, Ptch1) suggesting MAA enhanced the activation of the Shh pathway. Ptch1 is the Shh receptor and a target of the pathway. MAA beads also modulated the inflammatory cell infiltrate in CD1 mice: more neutrophils and more macrophages were noted with MAA relative to MM beads at days 1 and 7, respectively. In addition, MAA beads biased macrophages towards a MHCII-CD206+ ("M2") polarization state. This study suggests that the Shh pathway and an altered inflammatory response are two elements of the complex mechanism whereby MAA-based biomaterials effect vascular regeneration. PMID:27264502

  7. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  8. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    PubMed

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-03-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days. PMID:26717846

  9. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    PubMed

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-01-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days.

  10. Melt mixed composites of poly(ethylene-co-methacrylic acid) ionomers and multiwall carbon nanotubes: influence of specific interactions.

    PubMed

    Bose, Suryasarathi; Bhattacharyya, Arup R; Chawley, Manish; Kodgire, Pravin V; Kulkarni, Ajit R; Misra, Ashok; Pötschke, Petra

    2008-04-01

    Multiwall carbon nanotubes (MWNT) were melt-mixed with poly(ethylene-co-methacrylic acid) ionomers (Surlyn) using twin screw microcompounder. The specific interactions existing between the Na+ moieties in Surlyn and the pi electron clouds of MWNT were supported by FTIR and Raman spectroscopic analysis. SAXS scattering patterns were found to be progressively broadened in presence of MWNT in Surlyn/MWNT composites. Morphological investigations revealed selective clustering of MWNT in the vicinity of the ionic domains in Surlyn. Further, the domain size of the ionic clusters was found to increase with increasing MWNT content disrupting the ionic pairs apart in the ionic domain. The melt rheological response of Surlyn was significantly affected in presence of MWNT and was profoundly dependent on the ionic clusters. The state of dispersion of MWNT was assessed by AC electrical conductivity measurements. The associated percolation threshold was observed between 1.5-2 wt% of MWNT.

  11. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications.

    PubMed

    Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka

    2016-10-01

    A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates. PMID:27287146

  12. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications.

    PubMed

    Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka

    2016-10-01

    A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates.

  13. Facile one-pot preparation and functionalization of luminescent chitosan-poly(methacrylic acid) microspheres based on polymer monomer pairs

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Wang, Changchun; Mao, Weiyong; Yang, Wuli; Liu, Changjia; Chen, Jiyao

    2008-08-01

    In this paper, we present a facile and robust approach to synthesize multifunctional organic/inorganic composite microspheres with chitosan-poly(methacrylic acid) (CS-PMAA) shells and cadmium tellurium/iron oxide nanoparticle cores. Due to the strong electrostatic interaction between the negatively charged nanoparticles and the protonated CS polymers, the CS/nanoparticle complexes were utilized as templates for the subsequent polymerization of methacrylic acid. The resulting composite microspheres with luminescence and magnetic properties have regular morphologies and narrow size distributions. In contrast to previous reports, this route was based on a one-pot strategy without the aid of surfactants, organic solvent, or polymerizable ligands in aqueous solution. The encapsulated CdTe semiconductor nanocrystals inside the microspheres exhibited strong and stable photoluminescence properties in the pH range 5.0-11.0. When the pH was adjusted below 4, the photoluminescence decreased sharply and even quenched completely. However, the weakened fluorescence emission could be recovered to some degree upon an increase of pH above 5. Additionally, when both Fe3O4 and CdTe nanoparticles were encapsulated within CS-PMAA microspheres, the magnetic content of the microspheres could be efficiently controlled by tuning the feeding molar ratio of MAA monomers and glucosamine units of CS. From the preliminary attempts, it was found that the multifunctional microspheres as imaging agents could improve the rate and extent of cellular uptake under short-term exposure to an applied magnetic field, and so exhibit a great potential as bioactive molecule carriers.

  14. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin.

  15. Ammonium methacrylate

    Integrated Risk Information System (IRIS)

    Ammonium methacrylate ; CASRN 16325 - 47 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  16. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    Methyl methacrylate ; CASRN 80 - 62 - 6 ( 03 / 02 / 98 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  17. Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels.

    PubMed

    Mittal, H; Jindal, R; Kaith, B S; Maity, A; Ray, S S

    2015-01-22

    This study reports the microwave-assisted synthesis of gum-ghatti (Gg)-grafted poly(acrylamide-co-methacrylic acid) (AAm-co-MAA) hydrogels for the development of biodegradable flocculants and adsorbents. The synthesized hydrogels were characterized using TGA, FTIR and SEM. TGA studies revealed that the synthesized hydrogels were thermally more stable than pristine Gg and exhibited maximum swelling capacity of 1959% at 60°C in neutral pH. The optimal Gg-cl-P(AAm-co-MAA) hydrogel was successfully employed for the removal of saline water from various petroleum fraction-saline emulsions. The maximum flocculation efficiency was achieved in an acidic clay suspension with a 15 mg polymer dose at 40°C. Moreover, the synthesized hydrogel adsorbed 94% and 75% of Pb(2+) and Cu(2+), respectively, from aqueous solutions. Finally, the Gg-cl-P(AAm-co-MAA) hydrogel could be degraded completely within 50 days. In summary, the Gg-cl-P(AAm-co-MAA) hydrogel was demonstrated to have potential for use as flocculants and heavy metal absorbents for industrial waste water treatment.

  18. Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Tomić, S. Lj.; Mićić, M. M.; Filipović, J. M.; Suljovrujić, E. H.

    2007-05-01

    The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks.

  19. Acid-base properties, deactivation, and in situ regeneration of condensation catalysts for synthesis of methyl methacrylate

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1996-12-31

    Condensation reaction of a propionate with formaldehyde is a novel route for synthesis of methyl methacrylate (MMA). The reaction mechanism involves a proton abstraction from the propionate on the basic sites and activation of the aliphatic aldehyde on the acidic sites of the catalyst. The acid-base properties of ternary V-Si-P oxide catalysts and their relation to the NWA yield in the vapor phase condensation of formaldehyde with propionic anhydride has been studied for the first time. Five different V-Si-P catalysts with different atomic ratios of vanadium, silicon, and phosphorous were synthesized, characterized, and tested in a fixed-bed microreactor system. A V-Si-P 1:10:2.8 catalyst gave the maximum condensation yield of 56% based on HCHO fed at 300{degrees}C and 2 atm and at a space velocity of 290 cc/g cat{center_dot}h. A parameter called the ``q-ratio`` has been defined to correlate the condensation yields to the acid-base properties. The correlation of q-ratio with the condensation yield shows that higher q-ratios are more desirable. The long-term deactivation studies on the V-Si-P 1: 10:2.8 catalyst at 300{degrees}C and 2 atm and at a space velocity of 290 cc/g cat{center_dot}h show that the catalyst activity drops by a factor of nearly 20 over a 180 h period. The activity can be restored to about 78% of the initial activity by a mild oxidative regeneration at 300{degrees}C and 2 atm. The performance of V-Si-P catalyst has been compared to a Ta/SiO{sub 2} catalyst. The Ta- catalyst is more stable and has a higher on-stream catalyst life.

  20. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation.

    PubMed

    Kuo, Wei-Hsuan; Wang, Meng-Jiy; Chien, Hsiu-Wen; Wei, Ta-Chin; Lee, Chiapyng; Tsai, Wei-Bor

    2011-12-12

    Zwitterionic sulfobetaine methacrylate (SBMA) polymers were known to possess excellent antifouling properties due to high hydration capacity and neutral charge surface. In this study, copolymers of SBMA and acrylic acid (AA) with a variety of compositions were synthesized and were immobilized onto polymeric substrates with layer-by-layer polyelectrolyte films via electrostatic interaction. The amounts of platelet adhesion and fibrinogen adsorption were determined to evaluate hemocompatibility of poly(SBMA-co-AA)-modified substrates. Among various deposition conditions by modulating SBMA ratio in the copolymers and pH of the deposition solution, poly(SBMA(56)-co-AA(44)) deposited at pH 3.0 possessed the best hemocompatibility. This work demonstrated that poly(SBMA-co-AA) copolymers adsorbed on polyelectrolyte-base films via electrostatic interaction improve hemocompatibility effectively and are applicable for various substrates including TCPS, PU, and PDMS. Furthermore, poly(SBMA-co-AA)-coated substrate possesses great durability under rigorous conditions. The preliminary hemocompatibility tests regarding platelet adhesion, fibrinogen adsorption, and plasma coagulation suggest the potential of this technique for the application to blood-contacting biomedical devices. PMID:22077421

  1. Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Urstöger, Georg; Resel, Roland; Koller, Georg; Coclite, Anna Maria

    2016-04-01

    A novel ionomer of hexamethyldisiloxane and methacrylic acid was synthesized by plasma enhanced chemical vapor deposition (PECVD). The PECVD process, being solventless, allows mixing of monomers with very different solubilities, and for polymers formed at high deposition rates and with high structural stability (due to the high number of cross-links and covalent bonding to the substrate) to be obtained. A kinetic study over a large set of parameters was run with the aim of determining the optimal conditions for high stability and proton conductivity of the polymer layer. Copolymers with good stability over 6 months' time in air and water were obtained, as demonstrated by ellipsometry, X-Ray reflectivity, and FT-IR spectroscopy. Stable coatings showed also proton conductivity as high as 1.1 ± 0.1 mS cm-1. Chemical analysis showed that due to the high molecular weight of the chosen precursors, it was possible to keep the plasma energy-input-per-mass low. This allowed limited precursor fragmentation and the functional groups of both monomers to be retained during the plasma polymerization.

  2. Radical polymerization of N-vinylpyrrolidone in the presence of syndiotactic poly(methacrylic acid) templates. [Gamma ray

    SciTech Connect

    Koetsier, D.W.; Tan, Y.Y.; Challa, G.

    1980-06-01

    Radical polymerization of N-vinylpyrrolidone along poly(methacrylic acid) templates of high syndiotactic content was followed dilatometrically in dimethylformamide, which was used as solvent. The effects of template concentration, template molar mass, and temperature on polymerization rate and average molar mass of the formed polyvinylpyrrolidone (PVP) were examined. Template concentrations were varied around the critical concentration for homogeneous segmental distribution, C. Below this concentration, template coils can act as separate microreactors wherein growing PVP radicals exhibit maximum rate enhancement, i.e., relative rate upsilon/sub R/ = upsilon/sub R max/. In the free solution, blank polymerization occurs, i.e., upsilon/sub R/ = 1. Consequently, upsilon/sub R/ can be approximated by the equation ..nu../sub R/ = phi..nu../sub R/max/ + (1 - phi), where phi represents the volume fraction occupied by template coils. The slight increase in ..nu../sub R/ and PVP molar mass with the template chain length is supposed to be caused by the influence of translational diffusion on the termination step. Over the investigated temperature range of 50 to 70/sup 0/C, the activation energy and entropy were almost identical for blank and template polymerization. An expected decrease of ..delta..E not equal to and ..delta..S not equal to in template systems is supposed to be compensated by the effects of desolvation of the template macromolecules during the propagation step.

  3. In vitro release dynamics of thiram fungicide from starch and poly(methacrylic acid)-based hydrogels.

    PubMed

    Singh, Baljit; Sharma, D K; Gupta, Atul

    2008-06-15

    In order to make the judicious use of pesticide/fungicide and to maintain the environment and ecosystem we have developed the starch and poly(methacrylic acid)-based agrochemical delivery system for their controlled and sustained release. The delivery device was prepared by using N,N'-methylenebisacrylamide (N,N'-MBAAm) as crosslinker and was characterized with FTIR, TGA and with swelling studies as a function of time and crosslinker concentration. This article discusses the swelling kinetics of polymer matrix and release dynamics of thiram (fungicide) from hydrogels for the evaluation of the diffusion mechanism and diffusion coefficients. The values of the diffusion exponent 'n' for both cases, that is the swelling of hydrogels and for the release of thiram from the hydrogels have been observed between 0.7 and 0.9 when the concentration of the crosslinker in the polymers were varied from 6.49x10(-3) to 32.43x10(-3) moles/L. It is inferred from the values of the 'n' that Non-Fickian diffusion mechanism has occurred in both the cases.

  4. Molecular Imprinted Polymer of Methacrylic Acid Functionalised β-Cyclodextrin for Selective Removal of 2,4-Dichlorophenol

    PubMed Central

    Surikumaran, Hemavathy; Mohamad, Sharifah; Sarih, Norazilawati Muhamad

    2014-01-01

    This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions. PMID:24727378

  5. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    NASA Astrophysics Data System (ADS)

    Kunst, S. R.; Cardoso, H. R. P.; Oliveira, C. T.; Santana, J. A.; Sarmento, V. H. V.; Muller, I. L.; Malfatti, C. F.

    2014-04-01

    The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane-poly (methyl methacrylate) (PMMA) hybrid film prepared by sol-gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane-PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase and irregular surface coverage.

  6. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate.

    PubMed

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation. PMID:19433871

  7. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  8. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. PMID:26652418

  9. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. PMID:23910267

  10. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials. PMID:24268266

  11. Synthetic cinchonidine receptors obtained by cross-linking linear poly(methacrylic acid) derivatives as an alternative molecular imprinting technique.

    PubMed

    Matsui, Jun; Minamimura, Norihito; Nishimoto, Kenji; Tamaki, Katsuyuki; Sugimoto, Naoki

    2004-05-01

    A molecular imprinting approach to construct synthetic receptors was examined, wherein a linear pre-polymer bearing functional groups for intermolecular interaction with a given molecule is cross-linked in the presence of the molecule as a template, and subsequent removal of the template from the resultant network-polymer is expected to leave a complementary binding site. Poly(methacrylic acid) (PMAA) derivatized with a vinylbenzyl group as a cross-linkable side chain was utilized as the pre-polymer for the molecular imprinting of a model template, (-)-cinchonidine. Selectivity of the imprinted polymer was evaluated by comparing the retentions of the original template, (-)-cinchonidine and its antipode (+)-cinchonine in chromatographic tests, exhibiting a selectivity factor up to 2.4. By assessment of the imprinted polymers in a batch mode, a dissociation constant at 20 degrees C for (-)-cinchonidine was estimated to be K (d) = 2.35 x 10(-6) M (the number of binding sites: 4.54 x 10(-6) mol/g-dry polymer). The displayed affinity and selectivity appeared comparable to those of an imprinted polymer prepared by a conventional monomer-based protocol, thus showing that the pre-polymer, which can be densely cross-linked, is an alternative imprinter for developing template-selective materials. (-)-Cinchonidine-imprinted polymers were prepared and assessed using the pre-polymers bearing different densities of the vinylbenzyl group and different amounts of the cross-linking agent to examine the appropriate density of the cross-linking side chain that was crucial for developing the high affinity and selectivity of the imprinted polymers.

  12. Poly(methacrylic acid)-Coated Gold Nanoparticles: Functional Platforms for Theranostic Applications.

    PubMed

    Yilmaz, Gokhan; Demir, Bilal; Timur, Suna; Becer, C Remzi

    2016-09-12

    The integration of drugs with nanomaterials have received significant interest in the efficient drug delivery systems. Conventional treatments with therapeutically active drugs may cause undesired side effects and, thus, novel strategies to perform these treatments with a combinatorial approach of therapeutic modalities are required. In this study, polymethacrylic acid coated gold nanoparticles (AuNP-PMAA), which were synthesized with reversible addition-fragmentation chain transfer (RAFT) polymerization, were combined with doxorubicin (DOX) as a model anticancer drug by creating a pH-sensitive hydrazone linkage in the presence of cysteine (Cys) and a cross-linker. Drug-AuNP conjugates were characterized via spectrofluorimetry, dynamic light scattering and zeta potential measurements as well as X-ray photoelectron spectroscopy. The particle size of AuNP-PMAA and AuNP-PMAA-Cys-DOX conjugate were calculated as found as 104 and 147 nm, respectively. Further experiments with different pH conditions (pH 5.3 and 7.4) also showed that AuNP-PMAA-Cys-DOX conjugate could release the DOX in a pH-sensitive way. Finally, cell culture applications with human cervix adenocarcinoma cell line (HeLa cells) demonstrated effective therapeutic impact of the final conjugate for both chemotherapy and radiation therapy by comparing free DOX and AuNP-PMAA independently. Moreover, cell imaging study was also an evidence that AuNP-PMAA-Cys-DOX could be a beneficial candidate as a diagnostic agent. PMID:27447298

  13. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature. PMID:26355463

  14. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  15. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2013-10-15

    Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N'-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA-TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.

  16. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-05-01

    The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  17. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  18. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  19. Copolymeric hexyl acrylate-methacrylic acid microspheres - surface vs. bulk reactive carboxyl groups. Coulometric and colorimetric determination and analytical applications for heterogeneous microtitration.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2016-10-01

    Copolymeric acrylate microspheres were prepared from hexyl acrylate using different amounts of methacrylic acid, resulting in a series of microspheres of gradually changing properties. The distribution of carboxyl groups - between surface and bulk of microspheres was evaluated. Bulk reactive carboxyl groups were determined using reverse coulometric titration with H(+) ions, following hydroxide ions have been generated and allowed to react with microspheres in the first step. It was found that the number of reactive carboxyl groups available in copolymeric microspheres is lower compared to number of methacrylic acid units used for polymerization process. Moreover, there is correlation between the number of groups introduced and found to be reactive in microspheres. On the other hand, the number of surface reactive groups was proportional to the number of groups introduced in course of polymerization. Thus, the surface reactive groups can be used as reagent, in novel heterogeneous microtitration procedure, in which a constant number of microspheres of different carboxyl groups contents is introduced to the sample to react with the analyte. The applicability of novel proposed method was tested on the example of Ni(2+) determination. PMID:27474305

  20. Facile "one-pot" synthesis of poly(methacrylic acid)-based hybrid monolith via thiol-ene click reaction for hydrophilic interaction chromatography.

    PubMed

    Lv, Xumei; Tan, Wangming; Chen, Ye; Chen, Yingzhuang; Ma, Ming; Chen, Bo; Yao, Shouzhuo

    2016-07-01

    A novel sol-gel "one-pot" approach in tandem with a radical-mediated thiol-ene reaction for the synthesis of a methacrylic acid-based hybrid monolith was developed. The polymerization monomers, tetramethoxysilane (TMOS) and 3-mercaptopropyl trimethoxysilane (MPTS), were hydrolyzed in high-concentration methacrylic acid solution that also served as a hydrophilic functional monomer. The resulting solution was then mixed with initiator (2, 2'-azobis (2-methylpropionamide) dihydrochloride) and porogen (urea, polyethylene glycol 20,000) in a capillary column and polymerized in water bath. The column had a uniform porous structure and a good permeability. The evaluation of the monolith was performed by separation of small molecules including nucleosides, phenols, amides, bases and Triton X-100. The calibration curves for uridine, inosine, adenosine and cytidine were determined. All the calibration curves exhibited good linear regressions (R(2)≥0.995) within the test ranges of 0.5-40μg/mL for four nucleosides. Additionaliy, atypical hydrophilic mechanism was proved by elution order from low to high according to polarity retention time increased with increases in the content of the organic solvent in the mobile phase. Further studies indicated that hydrogen bond and electrostatic interactions existed between the polar analytes and the stationary phase. This was the mechanism of retention. The excellent separation of the BSA digest showed good hydrophility of the column and indicated the potential in separation of complex biological samples.

  1. Facile "one-pot" synthesis of poly(methacrylic acid)-based hybrid monolith via thiol-ene click reaction for hydrophilic interaction chromatography.

    PubMed

    Lv, Xumei; Tan, Wangming; Chen, Ye; Chen, Yingzhuang; Ma, Ming; Chen, Bo; Yao, Shouzhuo

    2016-07-01

    A novel sol-gel "one-pot" approach in tandem with a radical-mediated thiol-ene reaction for the synthesis of a methacrylic acid-based hybrid monolith was developed. The polymerization monomers, tetramethoxysilane (TMOS) and 3-mercaptopropyl trimethoxysilane (MPTS), were hydrolyzed in high-concentration methacrylic acid solution that also served as a hydrophilic functional monomer. The resulting solution was then mixed with initiator (2, 2'-azobis (2-methylpropionamide) dihydrochloride) and porogen (urea, polyethylene glycol 20,000) in a capillary column and polymerized in water bath. The column had a uniform porous structure and a good permeability. The evaluation of the monolith was performed by separation of small molecules including nucleosides, phenols, amides, bases and Triton X-100. The calibration curves for uridine, inosine, adenosine and cytidine were determined. All the calibration curves exhibited good linear regressions (R(2)≥0.995) within the test ranges of 0.5-40μg/mL for four nucleosides. Additionaliy, atypical hydrophilic mechanism was proved by elution order from low to high according to polarity retention time increased with increases in the content of the organic solvent in the mobile phase. Further studies indicated that hydrogen bond and electrostatic interactions existed between the polar analytes and the stationary phase. This was the mechanism of retention. The excellent separation of the BSA digest showed good hydrophility of the column and indicated the potential in separation of complex biological samples. PMID:27264742

  2. Analysis Of Leakage In Carbon Sequestration Projects In Forestry:A Case Study Of Upper Magat Watershed, Philippines

    SciTech Connect

    Lasco, Rodel D.; Pulhin, Florencia B.; Sales, Renezita F.

    2007-06-01

    The role of forestry projects in carbon conservation andsequestration is receiving much attention because of their role in themitigation of climate change. The main objective of the study is toanalyze the potential of the Upper Magat Watershed for a carbonsequestration project. The three main development components of theproject are forest conservation, tree plantations, and agroforestry farmdevelopment. At Year 30, the watershed can attain a net carbon benefit of19.5 M tC at a cost of US$ 34.5 M. The potential leakage of the projectis estimated using historical experience in technology adoption inwatershed areas in the Philippines and a high adoption rate. Two leakagescenarios were used: baseline and project leakage scenarios. Most of theleakage occurs in the first 10 years of the project as displacement oflivelihood occurs during this time. The carbon lost via leakage isestimated to be 3.7 M tC in the historical adoption scenario, and 8.1 MtC under the enhanced adoption scenario.

  3. Grafting of Poly(methyl methacrylate) Brushes from Magnetite Nanoparticles Using a Phosphonic Acid Based Initiator by Ambient Temperature Atom Transfer Radical Polymerization (ATATRP)

    PubMed Central

    2008-01-01

    Poly(methyl methacrylate) in the brush form is grown from the surface of magnetite nanoparticles by ambient temperature atom transfer radical polymerization (ATATRP) using a phosphonic acid based initiator. The surface initiator was prepared by the reaction of ethylene glycol with 2-bromoisobutyrl bromide, followed by the reaction with phosphorus oxychloride and hydrolysis. This initiator is anchored to magnetite nanoparticles via physisorption. The ATATRP of methyl methacrylate was carried out in the presence of CuBr/PMDETA complex, without a sacrificial initiator, and the grafting density is found to be as high as 0.90 molecules/nm2. The organic–inorganic hybrid material thus prepared shows exceptional stability in organic solvents unlike unfunctionalized magnetite nanoparticles which tend to flocculate. The polymer brushes of various number average molecular weights were prepared and the molecular weight was determined using size exclusion chromatography, after degrafting the polymer from the magnetite core. Thermogravimetric analysis, X-ray photoelectron spectra and diffused reflection FT-IR were used to confirm the grafting reaction.

  4. Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on salecan and poly(N,N-diethylacrylamide-co-methacrylic acid).

    PubMed

    Wei, Wei; Qi, Xiaoliang; Liu, Yucheng; Li, Junjian; Hu, Xinyu; Zuo, Gancheng; Zhang, Jianfa; Dong, Wei

    2015-12-01

    Salecan is a water-soluble microbial polysaccharide produced by Agrobacterium sp. ZX09, a salt-tolerant strain isolated from a soil sample in our laboratory. Previous work inspired us salecan is a good candidate to fabricate hydrogels. Poly(N,N-diethylacrylamide) is one type of thermo sensitive polymer which is not investigated extremely as poly(N-isopropylacrylamide). Here, we report a novel pH-thermo dual responsive hydrogel based on salecan and poly(N,N-diethylacrylamide-co-methacrylic acid) semi-interpenetrating polymer networks (semi-IPNs). The physicochemical property of this hydrogel was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA), rheological test and Scanning Electron Microscopy (SEM). It was interesting that the storage modulus (G') and pore size of the hydrogel could be tuned by adjusting the content of salecan and crosslinker. The pH-thermo dual responsive property was demonstrated by swelling behavior test: the swelling ratio of the hydrogel decreased continuously as the temperature increased from 25 °C to 37 °C, while it was pH-dependent as well. Especially, when exposed to a higher temperature (37 °C) and acidic environment (pH 4.0), drug-loaded hydrogel would have a quick release. Finally, the cytotoxicity of drug-free hydrogels was investigated on A549 and HepG2 cells, results showed that it was non-toxic while the DOX released from hydrogels had comparable cytotoxicity with respect to free DOX. In conclusion, the novel salecan/poly(N,N-diethylacrylamide-co-methacrylic acid) semi-interpenetrating polymer network hydrogels were pH-thermo dual responsive and may be a promising candidate for drug delivery system. PMID:26590634

  5. Acoustic and Ultrasonic Spectral Evolution in Pre- and Post-Damage Self-Healing Poly (Ethylene Co-Methacrylic Acid) Ionomer Samples

    NASA Astrophysics Data System (ADS)

    Buckley, Jonathan; Pestka, Kenneth, II; Kalista, Stephen

    We measured the pre- and post-damage resonant spectra of several self-healing ionomer samples composed of poly (ethylene co-methacrylic acid) (EMAA). The post-damage results indicate significant time-dependent variation in the acoustic and ultrasonic resonant spectral waveforms of these self-healing samples. These results are consistent with other recent experiments that demonstrate time evolution of resonant frequencies and associated quality factors within samples of post-damage EMAA ionomers. However, in our experiments it was found that, in some circumstances, the quality factors and associated resonant frequencies can exhibit time-dependent variation both before and after external damage. By quantifying time-dependent variations in the spectra of undamaged samples, including quality factor, resonant frequency and spectral waveform, we demonstrate a method to isolate changes in the resonant spectra that are present solely due to the post-damage healing behavior of these EMAA ionomers.

  6. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    SciTech Connect

    Warangkhana, Phromma; Rathanawan, Magaraphan; Jana Sadhan, C.

    2015-05-22

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter led to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness.

  7. Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis.

    PubMed

    Chen, Tao; Li, Qiang; Guo, Lina; Yu, Li; Li, Zhenyan; Guo, Huixin; Li, Haicheng; Zhao, Meigui; Chen, Liang; Chen, Xunxun; Zhong, Qiu; Zhou, Lin; Wu, Ting

    2016-01-01

    To overcome the undesirable side effects and reduce the cytotoxicity of isoniazid (INH) and rifampin (RMP) in the digestive tract, a poly(methacrylic acid) (PMAA) nanogel was developed as a carrier of INH and RMP. This PMAA/INH/RMP nanogel was prepared as a treatment for intestinal tuberculosis caused by multidrug-resistant Mycobacterium tuberculosis (MTB). The morphology, size, and in vitro release properties were evaluated in a simulated gastrointestinal medium, and long-term antibacterial performance, cytotoxicity, stability, and activity of this novel PMAA/INH/RMP nanogel against multidrug-resistant MTB in the intestine were investigated. Our results indicate that the PMAA/INH/RMP nanogel exhibited extended antibacterial activity by virtue of its long-term release of INH and RMP in the simulated gastrointestinal medium. Further, this PMAA/INH/RMP nanogel exhibited lower cytotoxicity than did INH or RMP alone, suggesting that this PMAA/INH/RMP nanogel could be a more useful dosage form than separate doses of INH and RMP for intestinal MTB. The novel aspects of this study include the cytotoxicity study and the three-phase release profile study, which might be useful for other researchers in this field.

  8. Chromatographic separation of proteins on metal immobilized iminodiacetic acid-bound molded monolithic rods of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate).

    PubMed

    Luo, Q; Zou, H; Xiao, X; Guo, Z; Kong, L; Mao, X

    2001-08-17

    Continuous rod of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate) was prepared by a free radical polymerization within the confines of a stainless-steel column. The epoxide groups of the rod were modified by a reaction with iminodiacetic acid (IDA) that affords the active site to form metal IDA chelates used for immobilized metal affinity chromatography (IMAC). The efficiency of coupling of IDA to the epoxide-contained matrix was studied as a function of reaction time and temperature. High-performance separation of proteins, based on immobilized different metals on the column, were described. The influence of pH on the adsorption capacity of bovine serum albumin on the Cu2+-IDA continuous rod column was investigated in the range from 5.0 to 9.0. Purification of lysozyme from egg white and human serum albumin (HSA) on the commercially available HSA solution were performed on the naked IDA and Cu2+-IDA continuous rod columns, respectively; and the purity of the obtained fractions was detected by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. PMID:11556331

  9. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    NASA Astrophysics Data System (ADS)

    Islas, Luisa; Ruiz, Juan-Carlos; Muñoz-Muñoz, Franklin; Isoshima, Takashi; Burillo, Guillermina

    2016-10-01

    Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from 60Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C1s and O1s content at the catheter's surface, revealed that the catheter's surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC's Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  10. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. PMID:27040248

  11. One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly(ethylene-co-methacrylic acid).

    PubMed

    Lu, Lu; Li, Guoqiang

    2016-06-15

    Reversible elongation by cooling and contraction by heating, without the need for repeated programming, is well-known as the two-way shape-memory effect (2W-SME). This behavior is contrary to the common physics-contraction when cooling and expansion when heating. Materials with such behavior may find many applications in real life, such as self-sufficient grippers, fastening devices, optical gratings, soft actuators, and sealant. Here, it is shown that ionomer Surlyn 8940, a 50-year old polymer, exhibits both one-way multishape-memory effects and tunable two-way reversible actuation. The required external tensile stress to trigger the tunable 2W-SME is very low when randomly jumping the temperatures within the melting transition window. With a proper one-time programming, "true" 2W-SME (i.e., 2W-SME without the need for an external tensile load) is also achieved. A long training process is not needed to trigger the tunable 2W-SME. Instead, a proper one-time tensile programming is sufficient to trigger repeated and tunable 2W-SME. Because the 2W-SME of the ionomer Surlyn is driven by the thermally reversible network, here crystallization and melting transitions of the semicrystalline poly(ethylene-co-methacrylic acid), it is believed that a class of thermally reversible polymers should also exhibit tunable 2W-SMEs. PMID:27191832

  12. One-Pot Synthesis of Hydrophilic Superparamagnetic Fe3O4/Poly(methyl methacrylate-acrylic acid) Composite Nanoparticles with High Magnetization.

    PubMed

    Ma, Shaohua; Lan, Fang; Yang, Qi; Xie, Liqin; Wu, Yao; Gu, Zhongwei

    2015-01-01

    Uniform superparamagnetic Fe3O4/poly(methyl methacrylate-acrylic acid) (P(MMA-AA)) composite nanoparticles with high saturation magnetization and good hydrophilicity were successfully and directly synthesized via a facile one-pot miniemulsion polymerization approach. The mixture of the ferrofluids, MMA and AA monomers, surfactants and initiator was co-sonicated and emulsified to prepare stable miniemulsion for polymerization. The as-prepared products were characterized by SEM, TEM, FT-IR, XRD, TGA and VSM. The results of SEM indicated that the morphology of the Fe3O4/P(MMA-AA) composite nanoparticles all assumed near spherical geometry with diameters about 60 nm, 60 nm, and 100 nm respectively corresponding to the weight ratios of Fe3O4 to MMA and AA at 1:8, 1:4, and 1:2. The TEM images implied that the Fe3O4/P(MMA-AA) composite nanoparticles showed a perfect core-shell structure with a polymeric shell of about 2 nm thickness and a core encapsulating uniform and close packed Fe3O4 nanoparticles. TGA and VSM showed that the Fe3O4/P(MMA-AA) composite nanoparticles with a maximum saturation magnetization up to 45 emu g(-1) corresponding to the magnetite content of 78% exhibited superparamagntism. The hydrophilic modification and the high saturation magnetization impart a promising potential for biomedical applications to the as-synthesized composite nanoparticles. PMID:26328359

  13. Novel Crosslinked Graft Copolymer of Methacrylic Acid and Collagen as a Protein-Based Superabsorbent Hydrogel with Salt and Ph-Responsiveness Properties

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad; Hamzeh, Alireza

    2008-08-01

    In this paper, a novel protein-based superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto collagen, using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. The hydrogel structure was confirmed using FTIR spectroscopy. We were systematically optimized the certain variables of the graft copolymerization (i.e. the monomer, the initiator, and the crosslinker concentration) to achieve a hydrogel with maximum swelling capacity. Under the optimized conditions concluded, maximum capacity of swelling in distilled water was found to be 415 g/g. The swelling kinetics of the synthesized hydrogels with various particle sizes was preliminarily investigated. Absorbency in aqueous chloride salt solutions indicated that the swelling capacity decreased with an increase in the ionic strength of the swelling medium. The swelling of superabsorbing hydrogels was also measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-responsiveness character so that a swelling-collapsing pulsatile behavior was recorded at pHs 2 and 7. This behavior makes the synthesized hydrogels as an excellent candidate for controlled delivery of bioactive agents.

  14. In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation.

    PubMed

    Chen, Yanzuo; Yang, Wuli; Chang, Baisong; Hu, Hangting; Fang, Xiaoling; Sha, Xianyi

    2013-11-01

    The objective of this study was to develop and evaluate the antitumor activity and the safety of a delivery system containing mesoporous silica nanoparticles (MSN) coated with pH-responsive poly (N-isopropylacrylamide-co-methacrylic acid; P NIPAM-co-MAA) for doxorubicin (DOX) delivery (P-MSN-DOX) in vitro and in vivo. We reported that P-MSN-DOX nanoparticles (190 ± 30 nm) offered a DOX-loading coefficient of more than 20%. DOX release from the P-MSN-DOX formulation was pH-dependent with enhanced antitumor effects in vitro compared with traditional MSN-DOX, which was weakly cytotoxic due to negligible drug release at tested pHs. P-MSN-DOX circulated longer, with less cardiac and renal accumulation as shown by pharmacokinetics and biodistribution studies in vivo. Also, the P-MSN-DOX delivery system had greater antitumor activity in mice bearing a murine sarcoma S-180 cell line. This finding was correlated with both in vitro and in vivo. Subacute toxicity tests revealed a low P-MSN-DOX toxicity in vivo, as well. Thus, P-MSN-DOX appears to be an efficacious and safe cancer treatment strategy.

  15. One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly(ethylene-co-methacrylic acid).

    PubMed

    Lu, Lu; Li, Guoqiang

    2016-06-15

    Reversible elongation by cooling and contraction by heating, without the need for repeated programming, is well-known as the two-way shape-memory effect (2W-SME). This behavior is contrary to the common physics-contraction when cooling and expansion when heating. Materials with such behavior may find many applications in real life, such as self-sufficient grippers, fastening devices, optical gratings, soft actuators, and sealant. Here, it is shown that ionomer Surlyn 8940, a 50-year old polymer, exhibits both one-way multishape-memory effects and tunable two-way reversible actuation. The required external tensile stress to trigger the tunable 2W-SME is very low when randomly jumping the temperatures within the melting transition window. With a proper one-time programming, "true" 2W-SME (i.e., 2W-SME without the need for an external tensile load) is also achieved. A long training process is not needed to trigger the tunable 2W-SME. Instead, a proper one-time tensile programming is sufficient to trigger repeated and tunable 2W-SME. Because the 2W-SME of the ionomer Surlyn is driven by the thermally reversible network, here crystallization and melting transitions of the semicrystalline poly(ethylene-co-methacrylic acid), it is believed that a class of thermally reversible polymers should also exhibit tunable 2W-SMEs.

  16. Efficacy of citric acid denture cleanser on the Candida albicans biofilm formed on poly(methyl methacrylate): effects on residual biofilm and recolonization process

    PubMed Central

    2014-01-01

    Background It is well known that the use of denture cleansers can reduce Candida albicans biofilm accumulation; however, the efficacy of citric acid denture cleansers is uncertain. In addition, the long-term efficacy of this denture cleanser is not well established, and their effect on residual biofilms is unknown. This in vitro study evaluated the efficacy of citric acid denture cleanser treatment on C. albicans biofilm recolonization on poly(methyl methacrylate) (PMMA) surface. Methods C. albicans biofilms were developed for 72 h on PMMA resin specimens (n = 168), which were randomly assigned to 1 of 3 cleansing treatments (CTs) overnight (8 h). CTs included purified water as a control (CTC) and two experimental groups that used either a 1:5 dilution of citric acid denture cleanser (CT5) or a 1:8 dilution of citric acid denture cleanser (CT8). Residual biofilms adhering to the specimens were collected and quantified at two time points: immediately after CTs (ICT) and after cleaning and residual biofilm recolonization (RT). Residual biofilms were analyzed by quantifying the viable cells (CFU/mL), and biofilm architecture was evaluated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Denture cleanser treatments and evaluation periods were considered study factors. Data were analyzed using two-way ANOVA and Tukey’s Honestly Significant Difference (HSD) test (α = 0.05). Results Immediately after treatments, citric acid denture cleansing solutions (CT5 and CT8) reduced the number of viable cells as compared with the control (p < 0.01). However, after 48 h, both CT groups (CT5 and CT8) showed biofilm recolonization (p < 0.01). Residual biofilm recolonization was also detected by CLSM and SEM analysis, which revealed a higher biomass and average biofilm thickness for the CT8 group (p < 0.01). Conclusion Citric acid denture cleansers can reduce C. albicans biofilm accumulation and cell viability. However, this

  17. Highly Stable, Protein-Resistant Surfaces via the Layer-by-Layer Assembly of Poly(sulfobetaine methacrylate) and Tannic Acid.

    PubMed

    Ren, Peng-Fei; Yang, Hao-Cheng; Liang, Hong-Qing; Xu, Xiao-Ling; Wan, Ling-Shu; Xu, Zhi-Kang

    2015-06-01

    Zwitterionic materials have received great attention because of the non-fouling property. As a result of the electric neutrality of zwitterionic polymers, their layer-by-layer (LBL) assembly is generally conducted under specific conditions, such as very low pH values or ionic strength. The formed multilayers are unstable at high pH or in a high ionic strength environment. Therefore, the formation of highly stable multilayers of zwitterionic polymers via the LBL assembly process is still challenging. Here, we report the LBL assembly of poly(sulfobetaine methacrylate) (PSBMA) with a polyphenol, tannic acid (TA), for protein-resistant surfaces. The assembly process was monitored by a quartz crystal microbalance (QCM) and variable-angle spectroscopic ellipsometry (VASE), which confirms the formation of thin multilayer films. We found that the (TA/PSBMA)n multilayers are stable over a wide pH range of 4-10 and in saline, such as 1 M NaCl or urea solution. The surface morphology and chemical composition were characterized by specular reflectance Fourier transform infrared spectroscopy (FTIR/SR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Furthermore, (TA/PSBMA)n multilayers show high hydrophilicity, with a water contact angle lower than 15°. A QCM was used to record the dynamic protein adsorption process. Adsorption amounts of bovine serum albumin (BSA), lysozyme (Lys), and hemoglobin (Hgb) on (TA/PSBMA)20 multilayers decreased to 0.42, 52.9, and 37.9 ng/cm(2) from 328, 357, and 509 ng/cm(2) on a bare gold chip surface, respectively. In addition, the protein-resistance property depends upon the outmost layer. This work provides new insights into the LBL assembly of zwitterionic polymers. PMID:25966974

  18. Fluorescence quenching and electron transfer in water-soluble copolymers of methacrylic acid and vinylperylene or N-(10-(4-aminonaphthalimide))-2-methylacrylamide

    SciTech Connect

    Stramel, R.D.; Webber, S.E.; Rodgers, M.A.J. )

    1988-11-17

    Copolymers of methacrylic acid and vinylperylene or N-(10-(4-aminonaphthalimide))-2-methacrylamide (ANI) have been prepared, and the fluorescence spectroscopy of the polymers has been studied in aqueous solution. Methylviologen (MV{sup 2+}) and sulfonated propylviologen (SPV) quench the fluorescence of the chromophores, resulting in charge-separated products at low pH. Yields of the reduced viologens sensitized by perylene are 0.41 and 0.36 for SPV and MV{sup 2+}, respectively. For ANI these values are 0.18 and 0.07. Recombination of the charge-separated ions occurs via a second-order process: k{sub MV{center dot}{sup +}}/PER{center dot}{sup +} = (2.1 {plus minus} 0.5) {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1}; k{sub SPV{center dot}{sup {minus}}}/PER{center dot}{sup +} = (8.0 {plus minus} 3) {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}; k{sub MV{center dot}{sup +}}/ANI{center dot}{sup +} = (9.0 {plus minus} 0.5) {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}; k{sub SPV{center dot}{sup {minus}}}/ANI{center dot}{sup +} = (1.1 {plus minus} 0.1) {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1} (all in oxygen-free solution).

  19. Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications.

    PubMed

    Jaiswal, Maneesh; Koul, Veena

    2013-03-01

    The article describes the design of the multicomponent hydrogel system of poly(acrylic acid-HEMA)/gelatin for tissue engineering application. Derivative of polycaprolactone-diol (polycaprolactone diacrylate (PCL-DAr)) was used to cross-link acrylate monomers whereas gelatin was kept free for cell proliferation. Epigallocatechin gallate (EGCG), an anti-oxidant phytochemical, was loaded by diffusion method. Its in vitro release study in PBS (pH 6.5) at 37 ± 0.2°C (75 rpm) revealed a sustained release profile upto 20 days. Fitting of drug release data in Korsmeyer-Peppas model equation revealed probable release mechanism through the value of release coefficient (n), which was found to depend on formulations composition. Drug-polymer interaction, thermal behavior, and surface morphology were investigated by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopic (SEM). Swelling behavior of hydrogel in PBS (pH 6.5 and 7.4, 0.2 M) and in distilled water was found to increase with increasing AAc/HEMA ratio. Compression modulus decreased from 203 ± 3.7 KPa to 11.6 ± 1.1KPa, at 30% strain, whereas displacement values significantly increased from 3.2 ± 0.2 to 4.7 ± 0.6 mm at 20 N force (p < 0.05), with increasing AAc/HEMA ratio. Percentage cell viability was analyzed using indirect 3-[4, 5-dimethylthiazolyl-2]-2,5-diphenyltetrazo-liumbromide (MTT) assay with fibroblast L929 cells; showed ≥92.3% cell viability after 24 h incubation. Cell proliferation on the scaffold surface was found to increase with incorporation of HEMA in P(AAc)/G cross-linked hydrogel matrix upto a certain extent. These biocompatible, elastic, and swellable hydrogels can serve as a matrix for drug delivery and tissue engineering applications.

  20. Thermoforming polymethyl methacrylate.

    PubMed

    Jagger, R G; Okdeh, A

    1995-11-01

    This study characterized a range of commercially available polymethyl methacrylate sheets with respect to molecular weight, residual monomer content, and glass transition temperature and then developed a thermoforming procedure that produced visually satisfactory thermoformed polymethyl methacrylate specimens. Molecular weight values of Perspex material were considerably greater than those of the other materials. All materials but Diakon had residual monomer concentrations of less than 1% and glass transition temperature values greater than 100 degrees C. Perspex material was selected for further investigation. It was necessary to preheat Perspex sheets in an oven at 160 degrees C for at least 30 minutes before heating and forming on the thermoforming apparatus to obtain acceptable specimens.

  1. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.

    PubMed

    Yuan, Huiming; Zhang, Lihua; Zhang, Yukui

    2014-12-01

    In this work, a novel kind of organic-silica hybrid monolith based immobilized enzymatic reactor (IMER) was developed. The monolithic support was prepared by a single step "one-pot" strategy via the polycondensation of tetramethoxysilane and vinyltrimethoxysilane and in situ copolymerization of methacrylic acid and vinyl group on the precondensed siloxanes with ammonium persulfate as the thermal initiator. Subsequently, the monolith was activated by N-(3-dimethylaminopropyl) - N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS), followed by the modification of branched polyethylenimine (PEI) to improve the hydrophilicity. Finally, after activated by EDC and NHS, trypsin was covalently immobilized onto the monolithic support. The performance of such a microreactor was evaluated by the in sequence digestion of bovine serum albumin (BSA) and myoglobin, followed by MALDI-TOF-MS analysis. Compared to those obtained by traditional in-solution digestion, not only higher sequence coverages for BSA (74±1.4% vs. 59.5±2.7%, n=6) and myoglobin (93±3% vs. 81±4.5%, n=6) were obtained, but also the digestion time was shortened from 24h to 2.5 min, demonstrating the high digestion efficiency of such an IMER. The carry-over of these two proteins on the IMER was investigated, and peptides from BSA could not be found in mass spectrum of myoglobin digests, attributed to the good hydrophilicity of our developed monolithic support. Moreover, the dynamic concentration range for protein digestion was proved to be four orders of magnitude, and the IMER could endure at least 7-day consecutive usage. Furthermore, such an IMER was coupled with nano-RPLC-ESI/MS/MS for the analysis of extracted proteins from Escherichia coli. Compared to formerly reported silica hybrid monolith based IMER and the traditional in-solution counterpart, by our developed IMER, although the identified protein number was similar, the identified distinct peptide number was improved by 7% and 25% respectively

  2. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.

    PubMed

    Yuan, Huiming; Zhang, Lihua; Zhang, Yukui

    2014-12-01

    In this work, a novel kind of organic-silica hybrid monolith based immobilized enzymatic reactor (IMER) was developed. The monolithic support was prepared by a single step "one-pot" strategy via the polycondensation of tetramethoxysilane and vinyltrimethoxysilane and in situ copolymerization of methacrylic acid and vinyl group on the precondensed siloxanes with ammonium persulfate as the thermal initiator. Subsequently, the monolith was activated by N-(3-dimethylaminopropyl) - N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS), followed by the modification of branched polyethylenimine (PEI) to improve the hydrophilicity. Finally, after activated by EDC and NHS, trypsin was covalently immobilized onto the monolithic support. The performance of such a microreactor was evaluated by the in sequence digestion of bovine serum albumin (BSA) and myoglobin, followed by MALDI-TOF-MS analysis. Compared to those obtained by traditional in-solution digestion, not only higher sequence coverages for BSA (74±1.4% vs. 59.5±2.7%, n=6) and myoglobin (93±3% vs. 81±4.5%, n=6) were obtained, but also the digestion time was shortened from 24h to 2.5 min, demonstrating the high digestion efficiency of such an IMER. The carry-over of these two proteins on the IMER was investigated, and peptides from BSA could not be found in mass spectrum of myoglobin digests, attributed to the good hydrophilicity of our developed monolithic support. Moreover, the dynamic concentration range for protein digestion was proved to be four orders of magnitude, and the IMER could endure at least 7-day consecutive usage. Furthermore, such an IMER was coupled with nano-RPLC-ESI/MS/MS for the analysis of extracted proteins from Escherichia coli. Compared to formerly reported silica hybrid monolith based IMER and the traditional in-solution counterpart, by our developed IMER, although the identified protein number was similar, the identified distinct peptide number was improved by 7% and 25% respectively

  3. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.

    PubMed

    Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier

    2013-02-01

    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. PMID:23123033

  4. Acrylic resins: methacrylate polymers. 1964-April, 1981 (citations from the NTIS data base). Report for 1964-April 1981

    SciTech Connect

    Not Available

    1981-05-01

    Polymethyl methacrylate, polymethacrylic acid, and other methacrylate and methacrylic polymers, copolymers, and resins are covered in this bibliography. The citations include references concerning physical and chemical properties, synthesis, polymerization, and processing. (This updated bibliography contains 278 citations, 40 of which are new entries to the previous edition.)

  5. Poly(2 deoxy 2 methacrylamido glucopyranose) b Poly(methacrylate amine)s: Optimization of Diblock Glycopol ycations for Nucleic Acid Delivery

    PubMed Central

    Li, Haibo; Cortez, Mallory A.; Phillips, Haley R.; Wu, Yaoying; Reineke, Theresa M.

    2013-01-01

    A series of nine poly(2-deoxy-2-methacrylamido glucopyranose)-b-poly(methacrylate amine) diblock copolycations The cationic block was varied in length and in the degree of methyl group substitution (secondary, tertiary, quaternary) on the pendant amine in an effort to optimize the structure and activity for plasmid DNA delivery. Upon a thorough kinetic study of polymerization for each polymer, the glycopolymers were prepared with well-controlled Mn and Ð. The binding and colloidal stability of the polymer-pDNA nanocomplexes at different N/P ratios and in biological media has been investigated using gel electrophoresis and light scattering techniques. The toxicity and transfection efficiency of the polyplexes has been evaluated with Hep G2 (human liver hepatocellular carcinoma) cells; several polymers displayed excellent delivery and toxicity profiles justifying their further development for in vivo gene therapy. PMID:24179703

  6. Poly(2 deoxy 2 methacrylamido glucopyranose) b Poly(methacrylate amine)s: Optimization of Diblock Glycopol ycations for Nucleic Acid Delivery.

    PubMed

    Li, Haibo; Cortez, Mallory A; Phillips, Haley R; Wu, Yaoying; Reineke, Theresa M

    2013-03-19

    A series of nine poly(2-deoxy-2-methacrylamido glucopyranose)-b-poly(methacrylate amine) diblock copolycations The cationic block was varied in length and in the degree of methyl group substitution (secondary, tertiary, quaternary) on the pendant amine in an effort to optimize the structure and activity for plasmid DNA delivery. Upon a thorough kinetic study of polymerization for each polymer, the glycopolymers were prepared with well-controlled Mn and Ð. The binding and colloidal stability of the polymer-pDNA nanocomplexes at different N/P ratios and in biological media has been investigated using gel electrophoresis and light scattering techniques. The toxicity and transfection efficiency of the polyplexes has been evaluated with Hep G2 (human liver hepatocellular carcinoma) cells; several polymers displayed excellent delivery and toxicity profiles justifying their further development for in vivo gene therapy. PMID:24179703

  7. The acute aquatic toxicity of a series of acrylate and methacrylate esters

    SciTech Connect

    Staples, C.A.; McLaughlin, J.E.; Hamilton, J.D.

    1994-12-31

    Acute aquatic toxicity data for several acrylate and methacrylate esters were reviewed. Acrylates included acrylic acid, ethyl-, and butyl-acrylate. Methacrylates included methacrylic acid, methyl-, and butyl-methacrylate. Tests were 48 hr or 96 hr standard flow through (invertebrates and fish) assays (measured exposure concentrations). These data are currently used in a risk assessment of acrylate/methacrylate environmental safety. Algal growth (Selanastrum capricomutum) 96 hr EC{sub 50}s were 0.17 mg/L (NOEC < 0.13 mg/L) for acrylic acid, 11.0 mg/L (NOEC < 6.5 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC < 3.8 mg/L) for butyl acrylate. Invertebrate (Daphnia magna) 48 hr LC{sub 50}s were 95.0 mg/L (NOEC 23.0 mg/L) for acrylic acid, 7.9 mg/L (NOEC 3.4 mg/L) for ethyl acrylate, and 8.2 mg/L (NOEC 2.4 mg/L) for butyl acrylate. Rainbow trout (Oncorhynchus mykiss) 96 hr LC{sub 50}s were 27.0 mg/L (NOEC 6.3 mg/L) for acrylic acid, 4.6 mg/L (NOEC 0.78 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC 3.8 mg/L) for butyl acrylate. Algae 96 hr EC{sub 50}s were 0.59 mg/L (NOEC 0.38 mg/L) for methacrylic acid, 170.0 mg/L (NOEC 100.0 mg/L) for methyl methacrylate, and 130.0 mg/L for butyl methacrylate. Daphnia magna 48 hr LC{sub 50}s were > 130.0 mg/L (NOEC 130.0 mg/L) for methacrylic acid, 69.0 mg/L (NOEC 48.0 mg/L) for methyl methacrylate, and 32.0 mg/L (NOEC 23.0 mg/L) for butyl methacrylate. Trout 96 hr LC{sub 50}s were 85.0 mg/L (NOEC 12.0 mg/L) for methacrylic acid and > 79.0 mg/L (NOEC 40.0 mg/L) for methyl methacrylate. The fathead minnow (Pimephales promelas) 96 hr LC{sub 50} was 11.0 mg/L for butyl methacrylate.

  8. Influence of microgel architecture and oil polarity on stabilization of emulsions by stimuli-sensitive core-shell poly(N-isopropylacrylamide-co-methacrylic acid) microgels: Mickering versus Pickering behavior?

    PubMed

    Schmidt, Sabrina; Liu, Tingting; Rütten, Stephan; Phan, Kim-Ho; Möller, Martin; Richtering, Walter

    2011-08-16

    Charged poly(N-isopropylacrylamide-co-methacrylic acid) [P(NiPAM-co-MAA)] microgels can stabilize thermo- and pH-sensitive emulsions. By placing charged units at different locations in the microgels and comparing the emulsion properties, we demonstrate that their behaviors as emulsion stabilizers are very different from molecular surfactants and rigid Pickering stabilizers. The results show that the stabilization of the emulsions is independent of electrostatic repulsion although the presence and location of charges are relevant. Apparently, the charges facilitate emulsion stabilization via the extent of swelling and deformability of the microgels. The stabilization of these emulsions is linked to the swelling and structure of the microgels at the oil-water interface, which depends not only on the presence of charged moieties and on solvent polarity but also on the microgel (core-shell) morphology. Therefore, the internal soft and porous structure of microgels is important, and these features make microgel-stabilized emulsions characteristically different from classical, rigid-particle-stabilized Pickering emulsions, the stability of which depends on the surface properties of the particles.

  9. Synthesis and application of molecularly imprinted poly(methacrylic acid)-silica hybrid composite material for selective solid-phase extraction and high-performance liquid chromatography determination of oxytetracycline residues in milk.

    PubMed

    Lv, Yun-Kai; Wang, Li-Min; Yang, Lei; Zhao, Chen-Xi; Sun, Han-Wen

    2012-03-01

    A novel molecularly imprinted organic-inorganic hybrid composite material (MIP-HCM) was developed based on molecular imprinting technique in combination with hybrid composite synthesis and sol-gel technology for selective solid-phase extraction (SPE) of tetracyclines residues in milk. The MIP-HCM was prepared using oxytetracycline as the template, methacrylic acid as organic functional monomer, tetraethoxysilane as inorganic precursor and methacryloxypropyltrimethoxysilane as the coupling agent. Synthesis conditions are optimized by changing some factors to obtain sorbent with the controllable adsorption capacity, selectivity, hardness and toughness. Binding study demonstrated that the imprinted hybrid composites showed excellent affinity and high selectivity to oxytetracycline. An enrichment factor of 18.8 along with a good sample clean-up was obtained under the optimized SPE conditions. The average recoveries of three tetracyclines antibiotics spiked milk at 0.1, 0.2 and 0.5 mg kg⁻¹ were in the range of 80.9-104.3% with the precision of 1.5-5.0%. The limits of detection and quantitation of the proposed method were in a range of 4.8-12.7 μg kg⁻¹ and 16.0-42.3 μg kg⁻¹, respectively.

  10. Synthesis of acrylates and methacrylates from coal-derived syngas

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L.

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing of active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.

  11. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ...-5805. II. Background and Statutory Findings In the Federal Register of Friday, August 26, 2011 (76 FR... and Review (58 FR 51735, October 4, 1993). Because this final rule has been exempted from review under... Regulations That Significantly Affect Energy Supply, Distribution, or Use (66 FR 28355, May 22, 2001)...

  12. In situ preparation of powder and the sorption behaviors of molecularly imprinted polymers through the complexation between polymer ion of methyl methacrylate/acrylic acid and Ca++ ion.

    PubMed

    Chough, Sung Hyo; Park, Kwang Ho; Cho, Seung Jin; Park, Hye Ryoung

    2014-09-01

    Molecularly imprinted polymer (MIP) powders were prepared using a simple complexation strategy between the polymer carboxylate groups and template molecule followed by metal cation cross-linking of residual polymer carboxylates. Polymer powders were formed in situ by templating carboxylic acid containing polymers with 4-ethylaniline (4-EA), followed by addition of an aqueous CaCl2 solution. The solution remained homogeneous. The powders were prepared by precipitation by slowly adding a non-solvent, H2O, to the mixture. The resulting particles were very porous with uptake capacity that approached the theoretical value. We suggest two types of complexes are formed between the template, 4-EA, and polymer. The isolated entry type forms well defined cavities for the template with high specific selectivity, while the adjacent entry type forms wider binding sites without specific sorption for isomeric molecules. To evaluate conditions for forming materials with high affinity and selectivity, three MIPs were prepared containing 0.5, 1.0, and 1.5 equivalents of template to the base polymer. The MIP containing 0.5 eq showed higher specific selectivity to 4-EA, but the MIP containing 1.5 eq had noticeably lower selectivity. The lower selectivity is attributed to poorly formed binding sites with little selective sorption to any isomer when the higher ratio of template was used. However at the lower ratio of template the isolated entry is preferably formed to produce well defined binding cavities with higher selectivity to template.

  13. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  14. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  15. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate... generically as polymers of styrene, cyclohexyl methacrylate and substituted methacrylate (PMNs...

  16. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  17. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  18. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  19. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  20. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi; Samuel S. Tam

    1999-04-21

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (January-March/99), in-situ formaldehyde generation and condensation with methyl propionate were tested over various catalysts and reaction conditions. The patent application is in preparation and the results are retained for future reports.

  1. Phase holograms in polymethyl methacrylate

    NASA Technical Reports Server (NTRS)

    Maker, P. D.; Muller, R. E.

    1992-01-01

    A procedure is described for the fabrication of complex computer-generated phase holograms in polymethyl methacrylate (PMMA) by means of partial-exposure e-beam lithography and subsequent carefully controlled partial development. Following the development, the pattern appears (rendered in relief) in the PMMA, which then acts as the phase-delay medium. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 3 mm square, and consisted of up to 10 millions of 0.3-2.0-micron square pixels. Data files were up to 60 Mb-long, and the exposure times ranged to several hours. A Fresnel phase lens was fabricated with a diffraction-limited optical performance of 83-percent efficiency.

  2. Methacrylated glycol chitosan as a photopolymerizable biomaterial.

    PubMed

    Amsden, Brian G; Sukarto, Abby; Knight, Darryl K; Shapka, Stephen N

    2007-12-01

    Glycol chitosan is a derivative of chitosan that is soluble at neutral pH and possesses potentially useful biological properties. With the goal of obtaining biocompatible hydrogels for use as tissue engineering scaffolds or drug delivery depots, glycol chitosan was converted to a photopolymerizable prepolymer through graft methacrylation using glycidyl methacrylate in aqueous media at pH 9. N-Methacrylation was verified by both (1)H NMR and (13)C NMR. The degree of N-methacrylation, measured via (1)H NMR, was easily varied from 1.5% to approximately 25% by varying the molar ratio of glycidyl methacrylate to glycol chitosan and the reaction time. Using a chondrocyte cell line, the N-methacrylated glycol chitosan was found to be noncytotoxic up to a concentration of 1 mg/mL. The prepolymer was cross-linked in solution using UV light and Irgacure 2959 photoinitiator under various conditions to yield gels of low sol content ( approximately 5%), high equilibrium water content (85-95%), and thicknesses of up to 6 mm. Cross-polarization magic-angle spinning (13)C solid state NMR verified the complete conversion of the double bonds in the gel. Chondrocytes seeded directly onto the gel surface, populated the entirety of the gel and remained viable for up to one week. The hydrogels degraded slowly in vitro in the presence of lysozyme at a rate that increased as the cross-link density of the gels decreased. PMID:18031015

  3. Photolithography with polymethyl methacrylate (PMMA)

    NASA Astrophysics Data System (ADS)

    Carbaugh, Daniel J.; Wright, Jason T.; Parthiban, Rajan; Rahman, Faiz

    2016-02-01

    Polymethyl methacrylate (PMMA) is widely used as an electron beam resist but is not used as a photoresist because of its insensitivity to electromagnetic radiation with wavelengths longer than about 300 nm. In this paper we describe a technique for performing conventional photolithography with high molecular weight PMMA at the widely used 365 nm i-line wavelength. The technique involves photosensitizing PMMA with Irgacure 651—a commercially available photo-initiator that can cause PMMA strands to cross-link. Optimum amount of Irgacure can produce a negative tone photoresist with adequate photosensitivity and plasma etch resistance. We describe this technique in detail with complete processing conditions and discuss the effects of varying Irgacure 651 concentration in PMMA as well as changes in UV exposure dose. We also show example structures patterned with commonly available materials and equipment. Finally, we show that it is possible to carry out gradient lithography with this approach, in order to produce structures in relief in photosensitive PMMA.

  4. Polymethyl methacrylate microspheres in collagen.

    PubMed

    Haneke, Eckart

    2004-12-01

    Artecoll was developed about 20 years ago and underwent a number of production changes until it recently became FDA approved under the new name of Artefill. This product contains 20% polymethyl methacrylate (PMMA) microspheres with a diameter of 30 to 40 microm, which are suspended in a 3.5% atelo-collagen solution. The PMMA microspheres are now purified and no longer have an electrostatic charge, which in part was the cause for the early granulomatous reactions. Further, PMMA has long been known as bone cement and has been used in cosmetic surgery with a very good safety record. PMMA microspheres are biologically inert and nondegradable. The treatment results are therefore permanent and technical errors as well as incorrect injections will last. Due to the early record of granuloma formation, there is still a debate as to whether this product-as well as all other permanent fillers-should be injected for cosmetic reasons or not. With proper indications, excellent injection techniques, and realistic expectations as to what can be expected, this product has now proved to be one of the superior permanent filler substances.

  5. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  6. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  7. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  8. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  9. Novel syngas-based process for methyl methacrylate

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Choi, G.N.; Tam, S.S.; Tischer, R.E.; Srivastava, R.D.

    1996-12-31

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel are developing a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Pittsburgh Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the research on propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis, which shows that Eastman`s propionate synthesis process is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-SI-P and Ta metal oxide catalysts for condensation reactions of propionates with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields, acid-base properties, in situ condensation in a high- temperature, high-pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory reactor operating data, a cost estimate is also being developed for the integrated process.

  10. Chondrocyte Generation of Cartilage-Like Tissue Following Photoencapsulation in Methacrylated Polysaccharide Solution Blends.

    PubMed

    Hayami, James W S; Waldman, Stephen D; Amsden, Brian G

    2016-07-01

    Chondrocyte-seeded, photo-cross-linked hydrogels prepared from solutions containing 50% mass fractions of methacrylated glycol chitosan or methacrylated hyaluronic acid (MHA) with methacrylated chondroitin sulfate (MCS) are cultured in vitro under static conditions over 35 d to assess their suitability for load-bearing soft tissue repair. The photo-cross-linked hydrogels have initial equilibrium moduli between 100 and 300 kPa, but only the MHAMCS hydrogels retain an approximately constant modulus (264 ± 5 kPa) throughout the culture period. Visually, the seeded chondrocytes in the MHAMCS hydrogels are well distributed with an apparent constant viability in culture. Multicellular aggregates are surrounded by cartilaginous matrix, which contain aggrecan and collagen II. Thus, co-cross-linked MCS and MHA hydrogels may be suited for use in an articular cartilage or nucleus pulposus repair applications. PMID:27061241

  11. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  12. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  13. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  14. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  15. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  16. Reduction of ethylenediaminetetraacetic acid iron(III) by Klebsiella sp. FD-3 immobilized on iron(II, III) oxide poly (styrene-glycidyl methacrylate) magnetic porous microspheres: effects of inorganic compounds and kinetic study of effective diffusion in porous media.

    PubMed

    Zhou, Zuo-Ming; Wang, Xiao-Yan; Lin, Tian-Ming; Jing, Guo-Hua

    2014-11-01

    Fe3O4 poly (styrene-glycidyl methacrylate) magnetic porous microspheres (MPPMs) were introduced to immobilize Klebsiella sp. FD-3, an iron-reducing bacterium applied to reduce Fe(III)EDTA. The effects of potential inhibitors (S(2-), SO3(2-), NO3(-), NO2(-) and Fe(II)EDTA-NO) on Fe(III)EDTA reduction were investigated. S(2-) reacted with Fe(III)EDTA as an electron-shuttling compound and enhanced the reduction. But Fe(III)EDTA reduction was inhibited by SO3(2-) and Fe(II)EDTA-NO due to their toxic to microorganisms. Low concentrations of NO3(-) and NO2(-) accelerated Fe(III)EDTA reduction, but high concentrations inhibited the reduction, whether by free or immobilized FD-3. The immobilized FD-3 performed better than freely-suspended style. The substrate mass transfer and diffusion kinetics in the porous microspheres were calculated. The value of Thiele modulus and effectiveness factors showed that the intraparticle diffusion was fairly small and neglected in this carrier. Fe(III)EDTA reduction fitted first-order model at low Fe(III)EDTA concentration, and changed to zero-order model at high concentrations.

  17. Synthesis of acrylates and Methacrylates from Coal-Derived Syngas

    SciTech Connect

    1997-05-12

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees} C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. Eastman and Bechtel have also compared the RTI- Eastman-Bechtel three-step methanol route to five other process routes to MMA. The results show that the product MMA can be produced at 520/lb, for a 250 Mlb/year MMA plant, and this product cost is competitive to all other process routes to MMA, except propyne carbonylation. In the second step, RTI and Eastman have developed active and stable V-SI-P tertiary metal oxide catalysts, Nb/Si0{sub 2}, and Ta/Si0{sub 2} catalysts for condensation of propionic anhydride or propionic acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst performance. Eastman and Bechtel have used the RTI experimental results of a 20 percent Nb/Si0{sub 2} catalyst, in terms of reactant conversions, MAA selectivities, and MAA yield, for their economic analysis. Recent research focuses on enhancing the condensation reaction yields, a better understanding of the acid-base property correlation and enhancing the catalyst lifetime.

  18. Synthesis of Methyl Methacrylate from Coal-Derived Syngas

    SciTech Connect

    Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Makarand R. Gogate; Richard D. Colberg; Samuel S. Tam

    1998-04-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last month, RTI has finalized the design of a fixed-bed microreactor system for DME partial oxidation reactions. RTI incorporated some design changes to the feed blending system, so as to be able to blend varying proportions of DME and oxygen. RTI has also examined the flammability limits of DME-air mixtures. Since the lower flammability limit of DME in air is 3.6 volume percent, RTI will use a nominal feed composition of 1.6 percent in air, which is less than half the lower explosion limit for DME-air mixtures. This nominal feed composition is thus considered operationally safe, for DME partial oxidation reactions. RTI is also currently developing an analytical system for DME partial oxidation reaction system.

  19. Synthesis of Methyl Methacrylate From Coal-Derived Syngas

    SciTech Connect

    Ben W.-L. Jang; Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Richard D. Colberg; Samuel S. Tam

    1998-07-27

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(April-June, 1998), RTI has modified the reactor system including a new preheater and new temperature settings for the preheater. Continuous condensation of formaldehyde with propionic acid were carried out over 10% Nb O /SiO at 300°C without 2 5 2 interruption. Five activity and four regeneration cycles have been completed without plugging or material balance problems. The results show that 10% Nb O /SiO deactivates slowly with time 2 5 2 but can be regenerated, at least four times, to 100% of its original activity with 2% O in nitrogen 2 at 400°C. The cycles continue with consistent 90-95% of carbon balance. The reaction is scheduled to complete with 6 activity cycles and 5 regenerations. Used catalysts will be analyzed with TGA and XPS to determine bulk and surface coke content and coke properties. RTI will start the investigation of effects of propionic acid/formaldehyde ratio on reaction activity and product selectivity over 20% Nb O /SiO catalysts.

  20. Novel catalysts for the environmentally friendly synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.

    1997-11-01

    The development of a process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas can alleviate the environmental hazards associated with the current commercial MMA technology, the acetone cyanohydrin (ACH) process. A three-step syngas-based process consisted of synthesis of a propionic acid, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) to form MMA. The first two steps, propionic acid synthesis and condensation, are discussed here. The low-temperature, low-pressure process for single-step hydrocarbonylation of ethylene to propionic acid is carried out using a homogeneous iodine-promoted Mo(CO){sub 6} catalyst at pressures (30--70 atm) and temperatures (150--200 C) lower than those reported for other catalysts. Mechanistic investigations suggest that catalysis is initiated by a rate-limiting CO dissociation from Mo(CO){sub 6}. This dissociation appears to be followed by an inner electron-transfer process of an I atom from EtI to the coordinately unsaturated Mo(CO){sub 5}. This homogeneous catalyst for propionate synthesis represents the first case of an efficient carbonylation process based on Cr group metals. The condensation of formaldehyde with propionic acid is carried out by acid-base bifunctional catalysts. As a result of screening over 80 catalytic materials, group V metals supported on an amorphous silica are found to be most effective. A 20% Nb/SiO{sub 2} catalyst appears to be the most active and stable catalyst thus far. Preliminary relations among the reaction yield and catalyst properties indicate that a high surface area and a low overall surface acidity (<50 = mol of NH{sub 3}/g), with a high proportion of the acidity being weak (<350 C desorption of NH{sub 3}), are desirable. Long-term deactivation of V-Si-P, Nb-Si, and Ta-Si catalysts suggests that carbon deposition is the primary cause for activity decay, and the catalyst activity is partially restorable by oxidative regeneration.

  1. Rapid magnetic-mediated solid-phase extraction and pre-concentration of selected endocrine disrupting chemicals in natural waters by poly(divinylbenzene-co-methacrylic acid) coated Fe3O4 core-shell magnetite microspheres for their liquid chromatography-tandem mass spectrometry determination.

    PubMed

    Li, Qingling; Lam, Michael H W; Wu, Rudolf S S; Jiang, Biwang

    2010-02-19

    A new Fe(3)O(4)/poly(divinylbenzene-co-methacrylic acid) core-shell magnetite microspheric material have been successfully developed as magnetic-mediated solid-phase extraction micro-particle sorbent in dispersion mode (MM-SPE-MP) for the determination of selected estrogenic endocrine disrupting chemicals (EDCs), namely: estrone (E1), 17beta-estradiol (E2), estriol (E3), 17alpha-ethynylestradiol (EE2) and bisphenol-A (BPA), in natural water, via quantification by HPLC tandem mass spectrometry. The magnetite Fe(3)O(4) core of this MM-SPE-MP sorbent was fabricated by a solvothermal approach and the thin layer of amphipolar poly(divinylbenzene-co-methacrylic acid) (pDVB-MAA) coating was established via suspension polymerization. The resultant core-shell MM-SPE-MP sorbent material was characterized by electron microscopy, X-ray diffraction and Fourier-transformed infrared spectroscopy. Particle size distribution of the core-shell microspheres was within the range 300-700 nm in diameter and the thickness of the pDVB-MAA coating was ca. 10nm. This magnetite microspheric material can be easily dispersed in aqueous samples and retrieved by the application of external magnetic field via a small piece of permanent magnet. The MM-SPE-MP process for the selected estrogenic EDCs involved the dispersion of the core-shell microspheric sorbent in water samples with sonication, followed by magnetic aided retrieval of the sorbent and solvent (methanol) desorption of extracted EDCs for LC-MS/MS analysis. Partition equilibrium for all the selected EDCs onto this MM-SPE-MP sorbent was achieved within 15 min. Recoveries of the EDCs were in ranges of 56-111%. Analytes with smaller K(OW) value showed relatively lower recovery (and relatively longer equilibration time for partitioning). Method detection limits achieved were found to be 1-36 pg ml(-1) (n=3), while the repeatability was 6-34% (p<0.05, n=3). This work demonstrates the usefulness of MM-SPE-MP in the rapid and highly sensitive

  2. Dimensional accuracy of thermoformed polymethyl methacrylate.

    PubMed

    Jagger, R G

    1996-12-01

    Thermoforming of polymethyl methacrylate sheet is used to produce a number of different types of dental appliances. The purpose of this study was to determine the dimensional accuracy of thermoformed polymethyl methacrylate specimens. Five blanks of the acrylic resin were thermoformed on stone casts prepared from a silicone mold of a brass master die. The distances between index marks were measured both on the cast and on the thermoformed blanks with an optical comparator. Measurements on the blanks were made again 24 hours after processing and then 1 week, 1 month, and 3 months after immersion in water. Linear shrinkage of less than 1% (range 0.37% to 0.52%) was observed 24 hours after removal of the blanks from the cast. Immersion of the thermoformed specimens in water resulted in an increase in measured dimensions, but after 3 months' immersion these increases were still less than those of the cast (range 0.07% to 0.18%). It was concluded that it is possible to thermoform Perspex polymethyl methacrylate accurately.

  3. The mechanical properties of elastomeric poly(alkyl methacrylate)s.

    PubMed

    Davy, K W; Braden, M

    1987-09-01

    A range of poly(alkyl methacrylate)s in the range C5 to C13 with varying degrees of crosslinking, have been studied with respect to stress-strain behaviour. Where the extensions to break were sufficiently high, stress-strain properties conformed well to the statistical theory of rubber elasticity, the Mooney/Rivlin C2 term being sensibly zero. All materials studied were very elastic, exhibiting extremely little permanent set. The energy to break decreases very rapidly as the homologous series is ascended, and 0.5% crosslinking agent is perfectly adequate to give elastic properties. Hence either n-pentyl or hexyl methacrylates are to be preferred in soft prosthesis formulations on mechanical grounds.

  4. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG.

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200C to 500C. The conversion of DME first increases with temperature reaching an maximum at 400C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350C accompanied by

  5. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200°C to 500°C. The conversion of DME first increases with temperature reaching an maximum at 400°C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350

  6. 40 CFR 721.10397 - Alkyl acrylate-polyfluoro methacrylate-poly(oxyalkylenediyl)-methacrylates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl acrylate-polyfluoro methacrylate... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10397 Alkyl acrylate-polyfluoro... subject to reporting. (1) The chemical substances identified generically as alkyl...

  7. 40 CFR 721.10397 - Alkyl acrylate-polyfluoro methacrylate-poly(oxyalkylenediyl)-methacrylates (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl acrylate-polyfluoro methacrylate... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10397 Alkyl acrylate-polyfluoro... subject to reporting. (1) The chemical substances identified generically as alkyl...

  8. 40 CFR 721.10397 - Alkyl acrylate-polyfluoro methacrylate-poly(oxyalkylenediyl)-methacrylates (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl acrylate-polyfluoro methacrylate... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10397 Alkyl acrylate-polyfluoro... subject to reporting. (1) The chemical substances identified generically as alkyl...

  9. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1998-10-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (July-September, 1998), the project team has completed the continuous condensation of formaldehyde with propionic acid over 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. Six activity and five regeneration cycles have been completed. The results show that 10% Nb{sub 2}O{sub 5}/SiO{sub 2} deactivates slowly with time but can be regenerated to its original activity with 2% O{sub 2} in nitrogen over night at 400 C. We have investigated the effects of regeneration, propionic acid/formaldehyde ratio (PA/HCHO = 4.5/1 to 1.5/1) and reaction temperature(280-300 C) on reaction activity and product selectivity over 20% Nb{sub 2}O{sub 5}/SiO{sub 2} catalysts. The regeneration effect on 20% Nb{sub 2}O{sub 5}/SiO{sub 2} is similar to the effect on 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. The regeneration can bring the deactivated catalyst to its original activity. However, the selectivity to MAA decreases with regeneration while the selectivity to DEK and CO{sub 2} increases. When PA/HCHO ratio is decreased from 4.5/1 to 2.25/1 then to 1.5/1 at 300 C the MAA yield decreases but the MAA selectivity first increases then decreases. Decreasing the reaction temperature from 300 C to 280 C decreases the MAA yield from 39.5% to 30.7% but increases the MAA selectivity from 73.7% to 82.2%. The

  10. Staining methods applied to glycol methacrylate embedded tissue sections.

    PubMed

    Cerri, P S; Sasso-Cerri, E

    2003-01-01

    The use of glycol methacrylate (GMA) avoids some technical artifacts, which are usually observed in paraffin-embedded sections, providing good morphological resolution. On the other hand, weak staining have been mentioned during the use of different methods in plastic sections. In the present study, changes in the histological staining procedures have been assayed during the use of staining and histochemical methods in different GMA-embedded tissues. Samples of tongue, submandibular and sublingual glands, cartilage, portions of respiratory tract and nervous ganglion were fixed in 4% formaldehyde and embedded in glycol methacrylate. The sections of tongue and nervous ganglion were stained by H&E. Picrosirius, Toluidine Blue and Sudan Black B methods were applied, respectively, for identification of collagen fibers in submandibular gland, sulfated glycosaminoglycans in cartilage (metachromasia) and myelin lipids in nervous ganglion. Periodic Acid-Schiff (PAS) method was used for detection of glycoconjugates in submandibular gland and cartilage while AB/PAS combined methods were applied for detection of mucins in the respiratory tract. In addition, a combination of Alcian Blue (AB) and Picrosirius methods was also assayed in the sublingual gland sections. The GMA-embedded tissue sections showed an optimal morphological integrity and were favorable to the staining methods employed in the present study. In the sections of tongue and nervous ganglion, a good contrast of basophilic and acidophilic structures was obtained by H&E. An intense eosinophilia was observed either in the striated muscle fibers or in the myelin sheaths in which the lipids were preserved and revealed by Sudan Black B. In the cartilage matrix, a strong metachromasia was revealed by Toluidine Blue in the negatively-charged glycosaminoglycans. In the chondrocytes, glycogen granules were intensely positive to PAS method. Extracellular glycoproteins were also PAS positive in the basal membrane and in the

  11. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  12. Single femtosecond pulse holography using polymethyl methacrylate.

    PubMed

    Li, Yan; Yamada, Kazuhiro; Ishizuka, Tomohiko; Watanabe, Wataru; Itoh, Kazuyoshi; Zhou, Zhongxiang

    2002-10-21

    Holographic gratings have been written on the surface and inside transparent polymethyl methacrylate (PMMA) with individual 130 fs laser pulses at 800 nm. A surface-relief grating is fabricated by ablation and the diffraction efficiency is measured to be about 20%. A volume grating inside PMMA is formed by the change in the refractive index induced by the two-beam interference fringes. Holographic data storage on the surface is realized when one beam carries information. The stored information can be nondestructively reconstructed when the fluence of the read beam is reduced below the threshold.

  13. Methacrylic resin having a high solar radiant energy absorbing property and process for producing the same

    SciTech Connect

    Abe, K.; Kamada, K.; Nakai, Y.

    1981-10-20

    A methacrylic resin having a high solar radiant energy absorbing property wherein an organic compound (A) containing cupric ion and a compound (B) having at least one p-o-h bond in a molecule are contained into the methacrylic resin selected from poly(Methyl methacrylate) or methacrylic polymers containing at least 50% by weight of a methyl methacrylate unit. A process for producing said methacrylic resin is also disclosed.

  14. Cell-laden microengineered gelatin methacrylate hydrogels

    PubMed Central

    Nichol, Jason W.; Koshy, Sandeep; Bae, Hojae; Hwang, Chang Mo; Yamanlar, Seda; Khademhosseini, Ali

    2010-01-01

    The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification to the methacrylation degree and gel concentration. Pattern fidelity and resolution of GelMA was high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that requires cell-responsive microengineered hydrogels. PMID:20417964

  15. Cell-laden microengineered gelatin methacrylate hydrogels.

    PubMed

    Nichol, Jason W; Koshy, Sandeep T; Bae, Hojae; Hwang, Chang M; Yamanlar, Seda; Khademhosseini, Ali

    2010-07-01

    The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here, we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated, and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification of the methacrylation degree and gel concentration. The pattern fidelity and resolution of GelMA were high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that require cell-responsive microengineered hydrogels.

  16. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  17. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  18. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  19. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  20. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  1. DEGRADATION OF POLY(METHYL METHACRYLATE) IN SOLUTION

    EPA Science Inventory

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1000 psig (6.8 MPa) and at four different temperat...

  2. Regioselective ester cleavage during the preparation of bisphosphonate methacrylate monomers

    PubMed Central

    Chougrani, Kamel; Niel, Gilles; Boutevin, Bernard

    2011-01-01

    Summary New functional monomers bearing a methacrylate, a bisphosphonate function and, for most, an internal carboxylate group, were prepared for incorporation into copolymers with adhesive or anticorrosive properties. Methanolysis of some trimethylsilyl bisphosphonate esters not only deprotects the desired bisphosphonate function but also regioselectively cleaves the alkyl ester function without affecting the methacrylate ester. PMID:21512600

  3. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  4. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization

    PubMed Central

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2011-01-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering. PMID:21765959

  5. Poly(ethyl methacrylate) and poly(2-ethoxyethyl methacrylate) based polymer gel electrolytes

    NASA Astrophysics Data System (ADS)

    Reiter, Jakub; Michálek, Jiří; Vondrák, Jiří; Chmelíková, Dana; Přádný, Martin; Mička, Zdeněk

    New poly(ethyl methacrylate) and poly(2-ethoxyethyl methacrylate) gel electrolytes containing immobilised lithium perchlorate solution in propylene carbonate were prepared by UV radical polymerisation. Materials exhibit high ionic conductivity up to 0.23 mS cm -1 and long-term stability of chemical and mechanical properties. Both materials keep their suitable conductivity above -20 °C. The effect of material composition, temperature, cross-linking agent and salt concentration on the electrochemical and mechanical properties were studied using impedance spectroscopy and cyclic voltammetry. The accessible electrochemical window of both polymer electrolytes was estimated from -2.1 to 1.5 V versus Cd/Cd 2+. Impedance measurements showed almost one-order increase of conductivity when ethylene dimethacrylate was used as a cross-linking agent in comparison with the polymer electrolyte without agent.

  6. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi

    1999-07-19

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. During the April-June quarter(04-06/99) the first in-situ formaldehyde generation from DME and condensation with methyl propionate is demonstrated and the results are summarized. The supported niobium catalyst shows better condensation activity, but supported tungsten catalyst has higher formaldehyde selectivity. The project team has also completed a 200-hour long term test of PA-HCHO condensation over 30% Nb{sub 2}O{sub 5}/SiO{sub 2}. Three activity cycles and two regeneration cycles were carried out. 30% Nb{sub 2}O{sub 5}/SiO{sub 2} showed similar MAA yields as 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. However, the deactivation appears to be slower with 30% Nb{sub 2}O{sub 5}/SiO{sub 2} than 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. An detailed economic analysis of PA-HCHO condensation process for a 250 million lb/yr MMA plant is currently studied by Bechtel. Using the Amoco data-based azeotropic distillation model as the basis, an ASPEN flow sheet model was constructed to simulate the formaldehyde and propionic acid condensation processing section based on RTI's design data. The RTI MAA effluent azeotropic distillation column was found to be much more difficult to converge. The presence of non-condensible gases along with the byproduct DEK (both of which were not presented in

  7. Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films

    PubMed Central

    Figueiredo, Andrea G. P. R.; Figueiredo, Ana R. P.; Alonso-Varona, Ana; Fernandes, Susana C. M.; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J. D.; Pascoal Neto, Carlos; Freire, Carmen S. R.

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications. PMID:24093101

  8. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers.

    PubMed

    Wu, Ruizhi; Zhang, Jian-Feng; Fan, Yuwei; Stoute, Diana; Lallier, Thomas; Xu, Xiaoming

    2011-06-01

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 °C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  9. Synthesis of Acrylates and Methacrylates from Coal-Derived Syngas.

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.; Tam, S.S.

    1997-10-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy/Federal Energy Technology Center (DOE/FETC). This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, RTI carried out activity tests on a pure (99 percent) Nb{sub 2}O{sub 5} catalyst, received from Alfa Aesar, under the following experimental conditions: T=300 C; P=4 atm, 72:38:16:4:220 mmol/h, PA:H{sub 2}0:HCHO:CH{sub 3}0H:N{sub 2}; 5-g catalyst charge. For the pure material, the MAA yields (based on HCHO and PA) were at 8.8 and 1.5 percent, clearly inferior compared to those for a 10-percent Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst (20.1 and 4.5 percent). The X-ray diffraction (XRD) patterns of pure Nb{sub 2}O{sub 5} and 20-percent Nb{sub 2}O{sub 5}/Si0{sub 2} that while pure Nb{sub 2}O{sub 5} is very highly crystalline, Si0{sub 2} support for an amorphous nature of the 20 percent Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst the last quarter, RTI also began research on the use of dimethyl ether (DME), product of methanol dehydrocondensation, as an alternate feedstock in MMA synthesis. As a result, formaldehyde is generated either externally or in situ, from DME, in the process envisaged in the contract extension. The initial work on the DME extension of the contract focuses on a tradeoff analysis that will include a preliminary economic analysis of the DME and formaldehyde routes and catalyst synthesis and testing for DME partial oxidation and condensation reactions. Literature guides exist for DME partial oxidation catalysts; however, there are no precedent studies on catalyst development for DME-methyl propionate (MP) condensation reactions, thereby making DME-MP reaction studies a

  10. Synthesis of methyl methacrylate from coal-derived syngas: Quarterly report,, October 1-December 31, 1997

    SciTech Connect

    1998-09-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of three steps of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, Eastman developed two new processes which have resulted in two new invention reports. One process deals with carbonylation of benzyl ether which represents a model for coal liquefaction and the second focuses on the acceleration of carbonylation rates for propionic acid synthesis, via use of polar aprotic solvents. These two inventions are major improvements in the novel Mo-catalyzed homogeneous process for propionic acid synthesis technology, developed by Eastman. Over the last quarter, RTI completed three reaction cycles and two regeneration cycles as a part of long-term reaction regeneration cycle study on a 10% Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst, for vapor phase condensation reaction of formaldehyde with propionic acid.

  11. Synthesis of acrylates and methacrylates from coal-derived syngas. Quarterly report, October--December 1996

    SciTech Connect

    1997-05-02

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. the resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-Si-P ternary metal oxide catalysts Nb/SiO{sub 2} and Ta/SiO{sub 2} catalysts for the condensation of propionic anhydride and acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields by better understanding of the acid-base property correlation, in situ condensation in a high-temperature, high- pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory data, a cost estimate is also being developed for the integrated process.

  12. Final report of the Cosmetic Ingredient Review Expert Panel safety assessment of polymethyl methacrylate (PMMA), methyl methacrylate crosspolymer, and methyl methacrylate/glycol dimethacrylate crosspolymer.

    PubMed

    Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2011-05-01

    Polymethyl methacrylate (PMMA) and related cosmetic ingredients methyl methacrylate crosspolymer and methyl methacrylate/glycol dimethacrylate crosspolymer are polymers that function as film formers and viscosity-increasing agents in cosmetics. The Food and Drug Administration (FDA) determination of safety of PMMA use in several medical devices, which included human and animal safety data, was used as the basis of safety of PMMA and related polymers in cosmetics by the Cosmetic Ingredient Review (CIR) Expert Panel.  The PMMA used in cosmetics is substantially the same as in medical devices.  The Panel concluded that these ingredients are safe as cosmetic ingredients in the practices of use and concentrations as described in this safety assessment. PMID:21772027

  13. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-01-01

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation.

  14. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-01-01

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation. PMID:27609095

  15. Glycol Methacrylate Embedding for the Histochemical Study of the Gastrointestinal Tract of Dogs Naturally Infected with Leishmania Infantum

    PubMed Central

    Pinto, A.J.W.; de Amorim, I.F.G.; Pinheiro, L.J.; Madeira, I.M.V.M.; Souza, C.C.; Chiarini-Garcia, H.; Caliari, M.V.

    2015-01-01

    In canine visceral leishmaniasis a diffuse chronic inflammatory exudate and an intense parasite load throughout the gastrointestinal tract (GIT) has been previously reported. However, these studies did not allow a properly description of canine cellular morphology details. The aim of our study was to better characterize these cells in carrying out a qualitative and quantitative histological study in the gastrointestinal tract of dogs naturally infected with Leishmania infantum by examining gut tissues embedded in glycol methacrylate. Twelve infected adult dogs were classified in asymptomatic and symptomatic. Five uninfected dogs were used as controls. After necropsy, three samples of each gut segment, including oesophagus, stomach, duodenum, jejunum, ileum, cecum, colon, and rectum were collected and fixed in Carnoy’s solution for glycol methacrylate protocols. Sections were stained with hematoxylin-eosin, toluidine blue borate, and periodic acid-Schiff stain. Leishmania amastigotes were detected by immunohistochemistry employed in both glycol methacrylate and paraffin embedded tissues. The quantitative histological analysis showed higher numbers of plasma cells, lymphocytes and macrophages in lamina propria of all segments of GIT of infected dogs compared with controls. The parasite load was more intense and cecum and colon, independently of the clinical status of these dogs. Importantly, glycol methacrylate embedded tissue stained with toluidine blue borate clearly revealed mast cell morphology, even after mast cell degranulation. Infected dogs showed lower numbers of mast cells in all gut segments than controls. Despite the glycol methacrylate (GMA) protocol requires more attention and care than the conventional paraffin processing, this embedding procedure proved to be especially suitable for the present histological study, where it allowed to preserve and observe cell morphology in fine detail. PMID:26708180

  16. Complex microparticulate systems based on glycidyl methacrylate and xanthan.

    PubMed

    Lungan, Maria-Andreea; Popa, Marcel; Desbrieres, Jacques; Racovita, Stefania; Vasiliu, Silvia

    2014-04-15

    Porous microparticles based on glycidyl methacrylate, dimethacrylic monomers [ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate] and xanthan gum were synthesized by aqueous suspension polymerization method in the presence of toluene as diluent using two types of initiators: benzoyl peroxide and ammonium persulfate. The G microparticles based on glycidyl methacrylate and dimethacrylic monomers and X microparticles based on glycidyl methacrylate, xanthan and dimethacrylic monomers were characterized by various techniques including FT-IR spectroscopy, TG analysis, SEM analysis and DVS method. The specific surface areas were determined by DVS method, while the copolymer porosities and pore volume were obtained from the apparent and skeletal densities. The results have indicated that xanthan was included in the crosslinked matrix by means of covalent bonds. X microparticles have a porous structure with higher specific surface area (129-44 m(2)/g) and higher sorption capacities compared with G microparticles (69-31 m(2)/g). PMID:24607180

  17. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    NASA Astrophysics Data System (ADS)

    Pietrucha, K.; Pȩkala, W.; Kroh, J.

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  18. Poly(ethylene glycol) methacrylate hydrolyzable microspheres for transient vascular embolization.

    PubMed

    Louguet, Stéphanie; Verret, Valentin; Bédouet, Laurent; Servais, Emeline; Pascale, Florentina; Wassef, Michel; Labarre, Denis; Laurent, Alexandre; Moine, Laurence

    2014-03-01

    Poly(ethylene glycol) methacrylate (PEGMA) hydrolyzable microspheres intended for biomedical applications were readily prepared from poly(lactide-co-glycolide) (PLGA)-poly(ethylene glycol) (PEG)-PLGA crosslinker and PEGMA as a monomer using a suspension polymerization process. Additional co-monomers, methacrylic acid and 2-methylene-1,3-dioxepane (MDO), were incorporated into the initial formulation to improve the properties of the microspheres. All synthesized microspheres were spherical in shape, calibrated in the 300-500 μm range, swelled in phosphate-buffered saline (PBS) and easily injectable through a microcatheter. Hydrolytic degradation experiments performed in PBS at 37 °C showed that all of the formulations tested were totally degraded in less than 2 days. The resulting degradation products were a mixture of low-molecular-weight compounds (PEG, lactic and glycolic acids) and water-soluble polymethacrylate chains having molecular weights below the threshold for renal filtration of 50 kg mol(-1) for the microspheres containing MDO. Both the microspheres and the degradation products were determined to exhibit minimal cytotoxicity against L929 fibroblasts. Additionally, in vivo implantation in a subcutaneous rabbit model supported the in vitro results of a rapid degradation rate of microspheres and provided only a mild and transient inflammatory reaction comparable to that of the control group. PMID:24321348

  19. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  20. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  1. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  2. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  3. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  4. DISPERSION POLYMERIZATION OF 2-HYDROXYETHYL METHACRYLATE IN SUPERCRITICAL CARBON DIOXIDE. (R826115)

    EPA Science Inventory

    Herein we report a successful dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in a carbon dioxide continuous phase with a block copolymer consisting of polystyrene and poly(1,1-dihydroperfluorooctyl acrylate) as a stabilizer. Poly(2-hydroxyethyl methacrylate) was ...

  5. Utilization of Methacrylates and Polymer Matrices for the Synthesis of Ion Specific Resins

    SciTech Connect

    Czerwinski, Kenneth

    2013-10-29

    Disposal, storage, and/or transmutation of actinides such as americium (Am) will require the development of specific separation schemes. Existing efforts focus on solvent extraction systems for achieving suitable separation of actinide from lanthanides. However, previous work has shown the feasibility of ion-imprinting polymer-based resins for use in ion-exchange-type separations with metal ion recognition. Phenolic-based resins have been shown to function well for Am-Eu separations, but these resins exhibited slow kinetics and difficulties in the imprinting process. This project addresses the need for new and innovative methods for the selective separation of actinides through novel ion-imprinted resins. The project team will explore incorporation of metals into extended frameworks, including the possibility of 3D polymerized matrices that can serve as a solid-state template for specific resin preparation. For example, an anhydrous trivalent f-element chain can be formed directly from a metal carbonate, and methacrylic acid from water. From these simple coordination complexes, molecules of discrete size or shape can be formed via the utilization of coordinating ligands or by use of an anionic multi-ligand system incorporating methacrylate. Additionally, alkyl methyl methacrylates have been used successfully to create template nanospaces, which underscores their potential utility as 3D polymerized matrices. This evidence provides a unique route for the preparation of a specific metal ion template for the basis of ion-exchange separations. Such separations may prove to be excellent discriminators of metal ions, even between f-elements. Resins were prepared and evaluated for sorption behavior, column properties, and proton exchange capacity.

  6. Structual Studies of Poly(Fluoroalkyl Methacrylate)s and Poly(Fluoroalkyl α-Fluoroacrylate)s

    NASA Astrophysics Data System (ADS)

    Koizumi, Shun; Ohmori, Akira; Shimizu, Tetuo; Iwami, Motohiro

    1992-10-01

    Poly(fluoroalkyl methacrylate)s and poly(fluoroalkyl α-fluoroacrylate)s with various fluoroalkyl groups were prepared. These polymers were characterized for tacticity by proton and fluorine nuclear magnetic resonance (1H and 19F NMR) and investigated by Electron Spectroscopy for Chemical Analysis (ESCA) to assign each signal. We found that tacticity of poly(fluoroalkyl α-fluoroacrylate)s were independent of the fluoroalkyl structure. The relationship between the structure of polymers and ESCA signals for all polymers was clarified. Also, we found an orientation effect of fluoroalkyl groups on the surface of the polymer films through the analysis of F1s ESCA signals.

  7. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic.../methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers...

  8. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  9. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  10. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydroxypropyl methacrylate, reaction... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... reporting. (1) The chemical substance identified generically as hydroxypropyl methacrylate,...

  11. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  12. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydroxypropyl methacrylate, reaction... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... reporting. (1) The chemical substance identified generically as hydroxypropyl methacrylate,...

  13. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  14. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydroxypropyl methacrylate, reaction... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... reporting. (1) The chemical substance identified generically as hydroxypropyl methacrylate,...

  15. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  16. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    NASA Astrophysics Data System (ADS)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  17. Allergic contact dermatitis to methacrylates in ECG electrode dots.

    PubMed

    Lyons, Georgina; Nixon, Rosemary

    2013-02-01

    Acrylates are used widely in acrylic nails, dental restorative materials, paint, varnish, printing ink, adhesives, glue, orthopaedic prostheses, bone cement and diathermy pads. This is the first case of allergic contact dermatitis to methacrylates in electrocardiogram electrode dots reported in the literature.

  18. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-methyl methacrylate copolymers. 177.1830 Section 177.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and...

  19. Effect of reaction parameters on synthesis of citronellyl methacrylate by lipase-catalyzed transesterification.

    PubMed

    Athawale, Vilas; Manjrekar, Narendra; Athawale, Manoj

    2003-01-01

    The methacrylate ester of citronellol was synthesized using various lipases as catalyst. The effect of different reaction parameters such as amount of lipase, solvent, temperature, and acylating agent on the conversion of citronellol to citronellyl methacrylate was studied. Methyl methacrylate, vinyl methacrylate, and 2,3-butanedione mono-oxime methacrylate were used as acylating agents. Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Pseudomonas cepacia lipase (Amano-PS) were used as biocatalysts. Diisopropyl ether (DIPE) was found to be the most suitable solvent. The stereoselectivity of CRL in transesterification of (+/-)-citronellol was tested for the optimized reaction parameters.

  20. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins.

    PubMed

    Venhoven, B A; de Gee, A J; Davidson, C L

    1993-09-01

    The aim of this study was to investigate the polymerization contraction and the conversion of light-curing methacrylate resins based on bisphenol-A bis(2-hydroxypropyl)methacrylate (BisGMA) diluted with triethylene glycol dimethyacrylate (TEGDMA), methyl methacrylate (MMA), hydroxypropyl methacrylate (HPMA) or (+/-)-2-ethylhexyl methacrylate (EHMA). The contraction measurements were carried out with a linometer, a simple device to determine true linear polymerization contraction of liquid monomers at ambient temperature. The contraction increased with the amount of diluting monomer. The estimated conversion of the BisGMA-TEGDMA, calculated using the contraction, is consistent with literature values. The BisGMA-HPMA mixtures showed high conversions at moderate contraction.

  1. Physical properties of agave cellulose graft polymethyl methacrylate

    SciTech Connect

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  2. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  3. Physical properties of agave cellulose graft polymethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-01

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm-1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  4. Jumplike deformation of γ-irradiated polymethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Peschanskaya, N. N.; Smolyanskiĭ, A. S.; Shvedov, A. S.

    2009-06-01

    Nonuniformity of the microdeformation rate and the parameters of microdeformation jumps were studied in the creep regime for a polymethyl methacrylate irradiated by various dozes of the Co-60 γ radiation. The creep rate during compression of the polymethyl methacrylate was measured by an interferogram on 300-nm deformation increments. It is shown that the periods L of rate oscillations (jumps of deformation) on three scale levels are dependent on the irradiation doze and are also changed after prolonged exposure of samples in air. In the doze range 0 to 330 kGy, both a decrease and an increase in L are observed, which corresponds to the unstable kinetics of radiation chemical processes. The deformation jumps permit estimates of the radiation effect on various structural levels. It is concluded that the effect of radiation on coarser microstructural formations is the largest.

  5. Synthesis and characterization of magnetic poly(glycidyl methacrylate) microspheres

    NASA Astrophysics Data System (ADS)

    Horák, Daniel; Petrovský, Eduard; Kapička, Aleš; Frederichs, Theodor

    2007-04-01

    Magnetic nanoparticles encapsulated in poly(glycidyl methacrylate) microspheres were prepared and their detailed structural and magnetic characteristics given. Iron oxide nanoparticles were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts and stabilized with dextran, (carboxymethyl)dextran or tetramethylammonium hydroxide. The microspheres were prepared by emulsion or dispersion polymerization of glycidyl methacrylate in the presence of ferrofluid. The microspheres were uniform both in shape and usually also in size; their size distribution was narrow. All the magnetic parameters confirm superparamagnetic nature of the microspheres. Blocking temperature was not observed, suggesting the absence of magnetic interactions at low temperatures. This is most probably caused by complete encapsulation and the absence of agglomeration. Such microspheres can be used in biomedical applications.

  6. A new rapid silver impregnation for neuronal bodies on methacrylate sections.

    PubMed

    Tolivia, D; Tolivia, J

    1991-02-01

    A simple and rapid method for the impregnation of neuronal bodies applicable to methacrylate embedded sections is described in the present paper. Sections of 10-12 microns in thickness were attached to slides, placed in mordant for 1 min, rinsed in distilled water and impregnated in ammoniacal silver solution for 1 min. They were then rinsed in absolute ethanol for 30 s and developed in 50% formalin. Sections were toned in 0.25% gold chloride, reduced in 10% oxalic acid and fixed in 5% sodium thiosulfate. After washing, the sections were dehydrated through 90% and absolute ethanol, cleared in eucalyptol, and mounted in the usual way. When this method is used most of the neuronal somata and proximal dendritic trees are impregnated. Frequently some glial cell are also weakly impregnated but their density does not obscure the neurons.

  7. Glycol methacrylate embedding for light microscopy. I. enzyme histochemistry on semithin sections of undecalcified marrow cores.

    PubMed

    Islam, A; Henderson, E S

    1987-10-01

    A simple, routine procedure for water miscible glycol methacrylate (GMA) embedding of undecalcified bone marrow cores, which preserves the activity of enzymes useful in diagnosing various haematopoietic disorders, is described. The GMA used in this study has a low acid content that eliminates background staining, and the modified May-Grünwald-Giemsa stain provides good definition and excellent colour differentiation of various haematopoietic cells in the bone marrow, thereby providing optimal conditions for the study of the morphology and enzyme activity of bone marrow cells in the same preparation. The method is simple, reproducible, requires no expensive equipment, and is suitable for routine processing of small bone marrow cores in any histopathology or haematology laboratory.

  8. Methacrylate monolith chromatography as a tool for waterborne virus removal.

    PubMed

    Rački, N; Kramberger, P; Steyer, A; Gašperšič, J; Štrancar, A; Ravnikar, M; Gutierrez-Aguirre, I

    2015-02-13

    Enteric viruses are commonly present in environmental waters and represent the major cause of waterborne infections and outbreaks. Since traditional wastewater treatments fail to remove enteric viruses in the water purification process, they are released daily into environmental waters. Monolithic supports have enabled chromatography to enter the field of virology. They have been successfully used in virus purification and concentration. In this work quaternary amine (QA) methacrylate monoliths were exploited to remove enteric viruses from wastewater treatment plant effluent. Expectedly, chromatographic processing of such a complex medium was troublesome, even for monoliths, characterized by extremely large pore dimensions. This problem was solved by introducing a pre-step chromatography using hydroxyl (OH) methacrylate monoliths. This way, molecules, that would hinder virus binding to the anion-exchanger monolith, were removed. As a result, the OH pre-column reduced backpressure increase on the subsequent anion-exchanger column, and increased both QA column binding capacity and life time. Wastewater effluent samples were successfully purified from five waterborne enteric viruses (rotavirus, norovirus genogroup I and II, astrovirus, sapovirus), below the detection limit of RT-qPCR. The breakthrough of the rotavirus binding capacity was not reached for concentrations that significantly exceeded those expected in effluent waters. The obtained results confirm that methacrylate monoliths can be a valuable tool for simultaneous removal of different waterborne viruses from contaminated water sources.

  9. Magnetic poly(glycidyl methacrylate) microspheres for protein capture.

    PubMed

    Koubková, Jana; Müller, Petr; Hlídková, Helena; Plichta, Zdeněk; Proks, Vladimír; Vojtěšek, Bořivoj; Horák, Daniel

    2014-09-25

    The efficient isolation and concentration of protein antigens from complex biological samples is a critical step in several analytical methods, such as mass spectrometry, flow cytometry and immunochemistry. These techniques take advantage of magnetic microspheres as immunosorbents. The focus of this study was on the development of new superparamagnetic polymer microspheres for the specific isolation of the tumor suppressor protein p53. Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres measuring approximately 5 μm and containing carboxyl groups were prepared by multistep swelling polymerization of glycidyl methacrylate (GMA), 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) and ethylene dimethylacrylate (EDMA) as a crosslinker in the presence of cyclohexyl acetate as a porogen. To render the microspheres magnetic, iron oxide was precipitated within their pores; the Fe content in the particles received ∼18 wt%. Nonspecific interactions between the magnetic particles and biological media were minimized by coating the microspheres with poly(ethylene glycol) (PEG) terminated by carboxyl groups. The carboxyl groups of the magnetic PGMA microspheres were conjugated with primary amino groups of mouse monoclonal DO-1 antibody using conventional carbodiimide chemistry. The efficiency of protein p53 capture and the degree of nonspecific adsorption on neat and PEG-coated magnetic microspheres were determined by western blot analysis.

  10. Multi-steps green process for synthesis of six-membered functional cyclic carbonate from trimethylolpropane by lipase catalyzed methacrylation and carbonation, and thermal cyclization.

    PubMed

    Sayed, Mahmoud; Gaber, Yasser; Bornadel, Amin; Pyo, Sang-Hyun

    2016-01-01

    A highly functionalized six-membered cyclic carbonate, methacrylated trimethylolpropane (TMP) cyclic carbonate, which can be used as a potential monomer for bisphenol-free polycarbonates and isocyanate-free polyurethanes, was synthesized by two steps transesterifications catalyzed by immobilized Candida antarctica lipase B, Novozym(®) 435 (N435) followed by thermal cyclization. TMP was functionalized as 70 to 80% selectivity of mono-methacrylate with 70% conversion was achieved, and the reaction rate was evaluated using various acyl donors such as methacrylic acid, methacrylate-methyl ester, -ethyl ester, and -vinyl ester. As a new observation, the fastest rate obtained was for the transesterfication reaction using methacrylate methyl ester. Byproducts resulted from leaving groups were adsorbed on the molecular sieves (4Å) to minimize the effect of leaving group on the equilibrium. The difference of reaction rate was explained by molecular dynamic simulations on interactions between carbonyl oxygen and amino acid residues (Thr 40 and Glu 157) in the active site of lipase. Our docking studies revealed that as acyl donor, methyl ester was preferred for the initial conformation of the first tetrahederal intermediate with hydrogen bonding interactions. TMP-monomethacrylate (TMP-mMA) cyclic carbonate was obtained in 63% yield (74.1% calculated in 85% conversion) from the lipase-catalyzed carbonation reaction of TMP-mMA with dimethylcarbonate, and followed by thermal cyclization of the monocarbonate at 90°C. From the multiple reactions demonstrated in gram scale, TMP-mMA cyclic carbonate was obtained as a green process without using chlorinated solvent and reagent. PMID:26561375

  11. Different in vitro and in vivo behaviors between Poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate).

    PubMed

    Lin, Weifeng; Ma, Guanglong; Wu, Jiang; Chen, Shengfu

    2016-10-01

    Poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA) are two well-known zwitterionic polymers known for their excellent antifouling properties. In this work, these two zwitterionic polymers were compared both in vitro and in vivo. Both of them exhibited excellent antifouling properties and low macrophage uptake although there were negligible differences in resistance to nonspecific protein adsorption of their hydrogels and cell internalization of their star polymers. However, it is found that the β- Cyclodextrin-CBMA (CD-CBMA) showed a circulation time one order of magnitude longer than CD-SBMA, which implied that small differences in vitro may lead to a dramatic difference in vivo. This work demonstrated that pCBMA showed greater potential than pSBMA in biomedical applications.

  12. Different in vitro and in vivo behaviors between Poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate).

    PubMed

    Lin, Weifeng; Ma, Guanglong; Wu, Jiang; Chen, Shengfu

    2016-10-01

    Poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA) are two well-known zwitterionic polymers known for their excellent antifouling properties. In this work, these two zwitterionic polymers were compared both in vitro and in vivo. Both of them exhibited excellent antifouling properties and low macrophage uptake although there were negligible differences in resistance to nonspecific protein adsorption of their hydrogels and cell internalization of their star polymers. However, it is found that the β- Cyclodextrin-CBMA (CD-CBMA) showed a circulation time one order of magnitude longer than CD-SBMA, which implied that small differences in vitro may lead to a dramatic difference in vivo. This work demonstrated that pCBMA showed greater potential than pSBMA in biomedical applications. PMID:27459415

  13. A hematoxylin and eosin-like stain for glycol methacrylate embedded tissue sections.

    PubMed

    Troyer, H; Babich, E

    1981-01-01

    A staining procedure is described for use with glycol methacrylate embedded tissue sections which does not stain the plastic embedment or remove the sections from the glass slides. The basic dye is celestine blue B. It is prepared by treating 1 g of the dye with 0.5 ml concentrated sulfuric acid. It is then dissolved with the following solution. Add 14 ml glycerine to 100 ml 2.5% ferric ammonium sulfate and warm the solution to 50 C. Finally adjust the pH to 0.8 to 0.9 The acid staining solution consists of 0.075% ponceau de xylidine and 0.025% acid fuchsin in 10% acetic acid. Slides containing the dried plastic sections are immersed in the celestine blue solution for five minutes and in the ponceau-fuchsin solution for ten minutes with an intervening water rinse. After a final wash, the sections are air dried and coverslipped. This staining procedure colors the tissues nearly the same as hematoxylin and eosin procedures.

  14. Microleakage of Class V Methacrylate and Silorane-based Composites and Nano-ionomer Restorations in Fluorosed Teeth

    PubMed Central

    Shafiei, Fereshteh; Abouheydari, Mohadese

    2015-01-01

    Statement of the Problem Enamel and dentin marginal sealing ability of the new adhesive materials could play an important role in successful restoration on fluorosed teeth. Purpose The aim of this in vitro study was to evaluate the marginal microleakage of low-shrinkage silorane-based composite, nano-ionomer, and methacrylate-based composite through self-etching approach or with enamel acid etching. Materials and Method Seventy-two extracted human molars with moderate fluorosed (according to Thylstrup and Fejerskov index, TFI= 4-6) were randomly divided into six groups (n=12). Class V cavities were prepared on the buccal surface at the cementoenamel junction and restored with Clearfil SE Bond/Clearfil AP-X (methacrylate composite), Silorane Adhesive System/Filtek P90 , and nano primer/nano-ionomer according to the manufacturer’s instructions (self-etching approach) or with additional selective enamel acid etching before primer application for each adhesive. After water storage and thermocycling, microleakages of the samples were assessed using dye-penetration technique at the enamel and dentin margins. Data were analyzed using non-parametric tests (α = 0.05).   Results There was a significant difference among the six groups at the enamel margin (p= 0.001), but not at the dentin margin (p= 0.7). For all the three adhesive materials, additional enamel etching resulted in significantly reduced microleakage at the enamel margin (p< 0.05). Conclusion Methacrylate- and silorane-based composites and nano-ionomer revealed a similar and good performance in terms of dentin marginal sealing, but not at the enamel margin. The additional selective enamel etching might improve enamel sealing for the three materials. PMID:26046105

  15. Pentablock copolymers of pluronic F127 and modified poly(2-dimethyl amino)ethyl methacrylate for internalization mechanism and gene transfection studies

    PubMed Central

    Huang, Shih-Jer; Wang, Tzu-Pin; Lue, Sheng-I; Wang, Li-Fang

    2013-01-01

    Cationic polymers are one of the major nonviral gene delivery vectors investigated in the past decade. In this study, we synthesized several cationic copolymers using atom transfer radical polymerization (ATRP) for gene delivery vectors: pluronic F127-poly(dimethylaminoethyl methacrylate) (PF127-pDMAEMA), pluronic F127-poly (dimethylaminoethyl methacrylate-tert-butyl acrylate) (PF127-p(DMAEMA-tBA)), and pluronic F127-poly(dimethylaminoethyl methacrylate-acrylic acid) (PF127-p(DMAEMA-AA)). The copolymers showed high buffering capacity and efficiently complexed with plasmid deoxyribonucleic acid (pDNA) to form nanoparticles 80–180 nm in diameter and with positive zeta potentials. In the absence of 10% fetal bovine serum, PF127-p(DMAEMA-AA) showed the highest gene expression and the lowest cytotoxicity in 293T cells. After acrylic acid groups had been linked with a fluorescent dye, the confocal laser scanning microscopic image showed that PF127-p(DMAEMA-AA)/pDNA could efficiently enter the cells. Both clathrin-mediated and caveolae-mediated endocytosis mechanisms were involved. Our results showed that PF127-p(DMAEMA-AA) has great potential to be a gene delivery vector. PMID:23745045

  16. Characterization of glycidyl methacrylate – Crosslinked hyaluronan hydrogel scaffolds incorporating elastogenic hyaluronan oligomers

    PubMed Central

    Ibrahim, S.; Kothapalli, C.R.; Kang, Q.K.; Ramamurthi, A.

    2013-01-01

    Prior studies on two-dimensional cell cultures suggest that hyaluronic acid (HA) stimulates cell-mediated regeneration of extracellular matrix structures, specifically those containing elastin, though such biologic effects are dependent on HA fragment size. Towards being able to regenerate three-dimensional (3-D) elastic tissue constructs, the present paper studies photo-crosslinked hydrogels containing glycidyl methacrylate (GM)-derivatized bio-inert high molecular weight(HMW)HA (1 × 106 Da) and a bioactive HA oligomer mixture (HA-o: MW ~0.75 kDa). The mechanical (rheology, degradation) and physical (apparent crosslinking density, swelling ratio) properties of the gels varied as a function of incorporated HA oligomer content; however, overall, the mechanics of these hydrogels were too weak for vascular applications as stand-alone materials. Upon in vivo subcutaneous implantation, only a few inflammatory cells were evident around GM–HA gels, however their number increased as HA-o content within the gels increased, and the collagen I distribution was uniform. Smooth muscle cells (SMC) were encapsulated into GM hydrogels, and calcein acetoxymethyl detection revealed that the cells were able to endure twofold the level of UV exposure used to crosslink the gels. After 21 days of culture, SMC elastin production, measured by immunofluorescence quantification, showed HA-o to increase cellular deposition of elastic matrix twofold relative to HA-o-free GM–HAgels. These results demonstrate that cell response to HA/HA-o is not altered by their methacrylation and photo-crosslinking into a hydrogel, and that HA-o incorporation into cell-encapsulating hydrogel scaffolds can be useful for enhancing their production of elastic matrix structures in a 3-D space, important for regenerating elastic tissues. PMID:20709199

  17. A novel antibacterial orthodontic cement containing a quaternary ammonium monomer dimethylaminododecyl methacrylate

    PubMed Central

    Melo, Mary A.S.; Wu, Junling; Weir, Michael D.; Xu, Hockin H. K.

    2015-01-01

    Demineralized lesions in tooth enamel around orthodontic brackets are caused by acids from cariogenic biofilm. This study aimed to develop a novel antibacterial orthodontic cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM) into a commercial orthodontic cement, and to investigate the effects on microcosm biofilm response and enamel bond strength. DMADDM, a recently-synthetized antibacterial monomer, was incorporated into orthodontic cement at 0%, 1.5%, 3% and 5% mass fractions. Bond strength of brackets to enamel was measured. A microcosm biofilm model was used to measure metabolic activity, lactic acid production, and colony-forming units (CFU) on orthodontic cements. Shear bond strength was not reduced at 3% DAMDDM (p > 0.1), but was slightly reduced at 5% DMADDM, compared to 0% DMADDM. Biofilm viability was substantially inhibited when in contact with orthodontic cement containing 3% DMADDM. Biofilm metabolic activity, lactic acid production, and CFU were much lower on orthodontic cement containing DMADDM than control cement (p < 0.05). Therefore, the novel antibacterial orthodontic cement containing 3% DMADDM inhibited oral biofilms without compromising the enamel bond strength, and is promising to reduce or eliminate demineralization in enamel around orthodontic brackets. PMID:25035230

  18. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    PubMed

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-07-18

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  19. Jumpwise deformation of polymethyl methacrylate in the microplasticity region

    NASA Astrophysics Data System (ADS)

    Shpeizman, V. V.; Yakushev, P. N.; Mukhina, Zh. V.; Kuznetsov, E. V.; Smolyanskii, A. S.

    2013-05-01

    The deformation rate with a step of 325 nm has been measured under uniaxial compression at the initial stage of creep and shape recovery of a polymethyl methacrylate (PMMA) sample after unloading. The effect of low γ-ray doses and magnetic fields on the deformation has been studied. It has been shown that a weak pre-exposure of the PMMA sample structure to radiation and magnetic fields can cause a slight hardening in the microplasticity region. The deformation jump sizes have been determined on micro- and nanoscales. The effect of irradiation and magnetic fields manifests itself as redistributed contributions of various jumps to the deformation.

  20. Mechanism of the photoinduced refractive index increase in polymethyl methacrylate.

    PubMed

    Bowden, M J; Chandross, E A; Kaminow, I P

    1974-01-01

    Polymethyl methacrylate prepared under special circumstances exhibits a substantial increase in refractive index after irradiation with uv light. The essential step in the preparation is peroxidation of the monomer prior to polymerization. This increase in refractive index results from a photoinduced polymerization of unreacted monomer (1-2%) within the film which produces an increase in density (and hence refractive index) in the irradiated region. It is believed that peroxides, both polymeric and monomeric, act as photoinitiators. Sensitivity depends on the concentration of photoinitiator, but the absolute value of Deltan depends on the amount of unreacte monomer.

  1. Preparation of novel poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted core-shell magnetic chitosan microspheres and immobilization of lactase.

    PubMed

    Zhao, Wei; Yang, Rui-Jin; Qian, Ting-Ting; Hua, Xiao; Zhang, Wen-Bin; Katiyo, Wendy

    2013-06-06

    Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe3O4 cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6-17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization.

  2. Silane to enhance the bond between polymethyl methacrylate and titanium.

    PubMed

    May, K B; Fox, J; Razzoog, M E; Lang, B R

    1995-05-01

    The machined surface of wrought titanium frameworks used in implant-supported, fixed prostheses does not bond well with acrylic resin. Surface pretreatment has been suggested to enhance the retention of polymethyl methacrylate to machined titanium surfaces. This study evaluated a new bonding material (Rocatec) to determine its effect on the bond strength between titanium and polymethyl methacrylate. Twenty rod-shaped specimens of grade 2 titanium (7.6 x 0.3 cm in diameter) were divided into two groups of 10 samples. Group A received no pretreatment and group B was pretreated with 110 microns alumina air abrasive and the Rocatec material. Heat-cured denture base resin was processed around each titanium sample in a cylindrical shape approximately 0.9 x 1.5 cm. A Shell-Nielsen shear test was performed with a universal testing machine at a crosshead speed of 0.5 mm/minute to determine the bond strength in megapascals (MPa). Group B specimens (23.8 +/- 1.78 MPa) had a shear strength 68% greater than group A (16.1 +/- 1.61 MPa) (p 0.0001). The results of this study indicated that surface pretreatment of grade 2 titanium with 110 microns alumina air abrasive plus Rocatec bonding material significantly enhances the shear bond strength to PMMA.

  3. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning

    NASA Astrophysics Data System (ADS)

    Cengiz, Ugur; Avci, Merih Z.; Erbil, H. Yildirim; Sarac, A. Sezai

    2012-05-01

    A new statistical terpolymer containing perfluoroethyl alkyl methacrylate (Zonyl-TM), methyl methacrylate and butyl acrylate, poly(Zonyl-TM-ran-MMA-ran-BA) was synthesized in supercritical carbon dioxide at 200 bar and 80 °C using AIBN as an initiator by heterogeneous free radical copolymerization. Nanofibers of this terpolymer were produced by electrospinning from its DMF solution. The structural and thermal properties of terpolymers and electrospun poly(Zonyl-TM-MMA-BA) nanofibers were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and differential scanning calorimetry. Nanofiber morphology was investigated by scanning electron microscopy. Electrospun nanofiber layer was found to be superhydrophobic with a water contact angle of 172 ± 1° and highly oleophobic with hexadecane, glycerol and ethylene glycol contact angles of 70 ± 1°, 167 ± 1° and 163 ± 1° respectively. The change of the contact angle results on the electrospun fiber layer and flat terpolymer surfaces by varying feed monomer composition were compared and discussed in the text.

  4. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  5. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  6. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  7. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  8. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  9. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  10. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  11. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  12. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  13. Radiological properties of normoxic polymer gel dosimeters

    SciTech Connect

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.; Baldock, C.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% higher than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.

  14. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.

    PubMed

    Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F

    2015-06-01

    Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates.

  15. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.

    PubMed

    Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F

    2015-06-01

    Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates. PMID:25449186

  16. Investigation of infrared calibration methods for application to the study of methyl methacrylate polymerization.

    PubMed

    Kaczmarczyk, B; Morejko-Buz, B; Stolarzewicz, A

    2001-08-01

    Infrared spectroscopy has been used to monitor the polymerization of methyl methacrylate. Concentrations of methyl methacrylate in the reaction mixture were determined by use of three calibration methods. Classical quantitative analysis was used to measure the height of the stretching vibration bands of the vinyl group at 1639 cm(-1). A calibration procedure using the considerably higher intensity of the C = O stretching vibration band of the carbonyl ester group at 1725 cm(-1) seemed useful only for high concentrations of methyl methacrylate, i.e. at the beginning of reaction, because this band overlaps that of poly(methyl methacrylate). Use of second-derivative spectra and measuring their values at 1725 cm(-1) enabled estimation of ten times lower concentrations of methyl methacrylate the calibration using the band from the vinyl group. PMID:11569872

  17. UV-curable nanocomposite based on methacrylic-siloxane resin and surface-modified TiO2 nanocrystals.

    PubMed

    Ingrosso, Chiara; Esposito Corcione, Carola; Striani, Raffaella; Comparelli, Roberto; Striccoli, Marinella; Agostiano, Angela; Curri, M Lucia; Frigione, Mariaenrica

    2015-07-22

    A novel UV-light-curable nanocomposite material formed of a methacrylic-siloxane resin loaded with 1 wt % oleic acid and 3-(trimethoxysilyl)propyl methacrylate silane (OLEA/MEMO)-coated TiO2 nanorods (NRs) has been manufactured as a potential self-curing structural coating material for protection of monuments and artworks, optical elements, and dental components. OLEA-coated TiO2 NRs, presynthesized by a colloidal chemistry route, have been surface-modified by a treatment with the methacrylic-based silane coupling agent MEMO. The resulting OLEA/MEMO-capped TiO2 NRs have been dispersed in MEMO; that is a monomer precursor of the organic formulation, used as a "common solvent" for transferring the NRs in prepolymer components of the formulation. Differential scanning calorimetry and Fourier transform infrared spectroscopy have allowed investigation of the effects of the incorporation of the OLEA/MEMO-capped TiO2 NRs on reactivity and photopolymerization kinetics of the nanocomposite, demonstrating that the embedded NRs significantly increase curing reactivity of the neat organic formulation both in air and inert atmosphere. Such a result has been explained on the basis of the photoactivity of the nanocrystalline TiO2 which behaves as a free-radical donor photocatalyst in the curing reaction, finally turning out more effective than the commonly used commercial photoinitiator. Namely, the NRs have been found to accelerate the cure rate and increase cross-linking density, promoting multiple covalent bonds between the resin prepolymers and the NR ligand molecules, and, moreover, they limit inhibition effect of oxygen on photopolymerization. The NRs distribute uniformly in the photocurable matrix, as assessed by transmission electron microscopy analysis, and increase glass transition temperature and water contact angle of the nanocomposite with respect to the neat resin. PMID:26151152

  18. Facile Synthesis of Novel Polyethylene-Based A-B-C Block Copolymers Containing Poly(methyl methacrylate) Using a Living Polymerization System.

    PubMed

    Song, Xiangyang; Ma, Qiong; Cai, Zhengguo; Tanaka, Ryo; Shiono, Takeshi; Grubbs, Robert B

    2016-02-01

    Ethylene-propylene-methyl methacrylate (MMA) and ethylene-hexene-MMA A-B-C block copolymers with high molecular weight (>100,000) are synthesized using fluorenylamide-ligated titanium complex activated by modified methylaluminoxane and 2,6-di-tert-butyl-4-methylphenol for the first time. After diblock copolymerization of olefin is conducted completely, MMA is added and activated by aluminum Lewis acid to promote anionic polymerization. The length of polyolefin and poly (methyl methacrylate) (PMMA) is controllable precisely by the change of the additive amount of olefin and polymerization time, respectively. A soft amorphous polypropylene or polyhexene segment is located between two hard segments of semicrystalline polyethylene and glassy PMMA blocks.

  19. Simultaneous separation of water- and fat-soluble vitamins in isocratic pressure-assisted capillary electrochromatography using a methacrylate-based monolithic column.

    PubMed

    Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime

    2013-06-01

    A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed.

  20. Viability of hydroxyethyl methacrylate-methyl methacrylate-microencapsulated PC12 cells after omental pouch implantation within agarose gels.

    PubMed

    Fleming, A J; Sefton, M V

    2003-10-01

    Hydroxyethyl methacrylate-methyl methacrylate (HEMA-MMA, 75 mol% HEMA). Microcapsules containing viable PC12 cells (as an allogeneic transplant model) were implanted into omental pouches in Wistar rats. Two different capsule preparations were tested, based on differences in polymer solutions during extrusion: 10% HEMA-MMA in TEG, and 9% HEMA-MMA in TEG with 30% poly(vinyl pyrrolidone) (PVP). The omental pouch proved to be an ideal transplant site in terms of implantation, recovery, and blood vessel proximity (nutrient supply). To minimize the fibrous overgrowth and damaged capsules previously seen on implantation of individual capsules, agarose gels were used to embed the capsules before implantation. Cells proliferated within the microcapsule-agarose device during the first 7 days of implantation, but overall cell viability declined over the 3-week period, when compared with similar capsules maintained in vitro. Nonetheless, approximately 50% of the initial encapsulated cells were still viable after 3 weeks in vivo. This approach to HEMA-MMA microcapsule implantation improved cell viability and capsule integrity after 3 weeks in vivo, compared with capsules implanted without agarose.

  1. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    SciTech Connect

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  2. Improved performance of α-amylase immobilized on poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads.

    PubMed

    He, Tian; Tian, Yong-Le; Qi, Liang; Zhang, Jing; Zhang, Zhi-Qi

    2014-04-01

    α-Amylase was successfully immobilized onto poly(glycidyl methacrylate-co-ethylenedimethacrylate) (PGMA/EDMA) beads with high immobilization efficiency of 87.8%. PGMA/EDMA beads with a relatively uniform diameter of 2-3 μm were prepared by single-step swelling polymerization. After amination with ethanediamine and activation with glutaraldehyde, PGMA/EDMA beads showed commendable α-amylase immobilization capacity of 35.1 mg g(-1) carrier. Compared with free form, immobilized α-amylase had increasement of 12.94 mg mL(-1) for Km and 0.124 mmol mL(-1) min(-1) for Vmax, improved acid resistance (the optimal pH from 7 to 5), presented better thermal stability by retaining 61% activity than 40% at 90 °C, and displayed high operational reusability by retaining 58% of its initial activity after nine uses. Moreover, less than 10% of the free enzyme and more than 80% of the immobilized enzyme retained activity after 180 min pre-incubation at 50 °C. The easy modification, high immobilization efficiency and good properties of immobilized α-amylase in the present study indicate that PGMA/EDMA beads are suitable for α-amylase immobilization. The enhancement of acid resistance and thermo stability is doubtless of benefit for the industrial use of α-amylase.

  3. Dosimetry study of diagnostic X-ray using doped iodide normoxic polymer gels

    NASA Astrophysics Data System (ADS)

    Huang, Y. R.; Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Chu, C. H.; Hsieh, B. T.

    2014-11-01

    In radiotherapy, polymer gel dosimeters are used for three-dimensional (3D) dose distribution. However, the doses are within the Gy range. In this study, we attempted to develop a low-dose 3D dosimeter within the mGy range for diagnostic radiology. The effect of the iodinated compound was used as a dose enhancement sensitizer to enhance the dose sensitivity of normoxic polymer gel dosimeters. This study aims to use N-isopropylacrylamide(NIPAM)-based and methacrylic acid (MAGAT)-based gels to evaluate the potential dose enhancement sensitizer, as well as to compare two gels that may be suitable for measuring diagnostic radiation doses. The suitable formulation of NIPAM gel [5% (w/w) gelatin, 5% (w/w) NIPAM, 3% (w/w) N,N‧-methylenebisacrylamide (BIS), 5 mM tetrakis (hydroxymethyl) phosphonium chloride (THPC), and 87% (w/w) deionized distilled water] and MAGAT gel (4% MAA, 9% gelatin, 87% deionized water, and 10 mM THPC) were used and loaded with clinical iodinated contrast medium agent (Iobitridol, Xenetix® 350). Irradiation was conducted using X-ray computed tomography. The irradiation doses ranged from 0 mGy to 80 mGy. Optical computed tomography was the employed gel measurement system. The results indicate that the iodinated contrast agent yields a quantifiable dose enhancement ratio. The dose enhancement ratios of NIPAM and MAGAT gels are 3.35±0.6 and 1.36±0.3, respectively. The developed NIPAM gel in this study could be suitable for measuring diagnostic radiation doses.

  4. Deterioration of polymethyl methacrylate dentures in the oral cavity.

    PubMed

    Matsuo, Hiroshi; Suenaga, Hanako; Takahashi, Masatoshi; Suzuki, Osamu; Sasaki, Keiichi; Takahashi, Nobuhiro

    2015-01-01

    Polymethyl methacrylate (PMMA)-made prostheses used in the oral cavity were evaluated by multimodal assessment in order to elucidate the biodeterioration of PMMA. In used dentures (UD), the micro-Vickers hardness of the polished denture surface and denture basal surface was lower than that of the torn surface (p<0.05), whereas the shaved surface approximately 100 µm from the polished surface showed a similar value to the torn surface. By contrast, there were no differences among these surfaces in new resin (NR). The volatile content of UD was higher than that of NR (p<0.05). Component analysis by ATR-FTIR showed specific spectra (1,700-1,400 cm(-1)) only in UD. This study revealed that PMMA deteriorated during long-term use in the oral cavity in terms of hardness and volatile content with component alteration, and suggests the involvement of biodeterioration, possibly due to saliva and oral microbiota.

  5. Chest wall reconstruction with methacrylate prosthesis in Poland syndrome.

    PubMed

    Arango Tomás, Elisabet; Baamonde Laborda, Carlos; Algar Algar, Javier; Salvatierra Velázquez, Angel

    2013-10-01

    Poland syndrome is a rare congenital malformation. This syndrome was described in 1841 by Alfred Poland at Guy's Hospital in London. It is characterized by hypoplasia of the breast and nipple, subcutaneous tissue shortages, lack of the costosternal portion of the pectoralis major muscle and associated alterations of the fingers on the same side. Corrective treatment of the chest and soft tissue abnormalities in Poland syndrome varies according to different authors. We report the case of a 17-year-old adolescent who underwent chest wall reconstruction with a methyl methacrylate prosthesis. This surgical procedure is recommended for large anterior chest wall defects, and it prevents paradoxical movement. Moreover it provides for individual remodeling of the defect depending on the shape of the patient's chest. PMID:23453291

  6. Fabrication of electrospun poly (methyl methacrylate) nanofiber membranes

    NASA Astrophysics Data System (ADS)

    Sethupathy, M.; Sethuraman, V.; Manisankar, P.

    2013-02-01

    Electrospun nanofiber of poly(methyl methacrylate) (PMMA) was fabricated with different concentrations of polymer solution and the optimum concentration arrived at was 15 wt %. The surface morphology of the electrospun membrane was observed by scanning electron microscopy. It consist of thin fibers with an average diameter of about 200-450 nm. The images revealed that the nanofibers showed uniform diameter and no bead formation was observed. Impedance measurements were done for the membranes. PMMA nanofiber membrane showed an ionic conductivity of 1.53 × 10-3 Scm-1 at room temperature. FTIR results confirmed that there was no chemical change in the polymer. The results suggested that electrolyte uptake, ionic conduction and thermal behavior were improved for the PMMA electrospun nanofiber. Hence these nanofibres can very well be employed for the construction of dye-sensitized solar cells and Lithium batteries.

  7. Interaction between N-vinylpyrrolidone and methyl methacrylate

    NASA Astrophysics Data System (ADS)

    Zaitseva, V. V.; Shtonda, A. V.; Tyurina, T. G.; Bagdasarova, A. R.; Zaitsev, S. Yu.

    2014-04-01

    It is established that the interaction of the isomers of N-vinylpyrrolidone (NVP) and methyl methacrylate (MMA) leads to the formation of molecular π-H- and H-complexes with energies within the limits of 10.2-13.6 (AM1) or 18.2-24.0 (B3LYP/6-311++G( d)) kJ/mol. The structures of complex-bound molecules are examined with respect to changes in the charges on terminal -C1=C2- groups, the distance between them and atoms in an H-bond, and the presence of combined overlapping molecular orbitals (MOs). The presence of an averaged complex that includes presumably all possible structures and allows us to perform the copolymerization of specified monomers in the absence of an initiator is confirmed by means of UV and NMR spectroscopy.

  8. Chest wall reconstruction with methacrylate prosthesis in Poland syndrome.

    PubMed

    Arango Tomás, Elisabet; Baamonde Laborda, Carlos; Algar Algar, Javier; Salvatierra Velázquez, Angel

    2013-10-01

    Poland syndrome is a rare congenital malformation. This syndrome was described in 1841 by Alfred Poland at Guy's Hospital in London. It is characterized by hypoplasia of the breast and nipple, subcutaneous tissue shortages, lack of the costosternal portion of the pectoralis major muscle and associated alterations of the fingers on the same side. Corrective treatment of the chest and soft tissue abnormalities in Poland syndrome varies according to different authors. We report the case of a 17-year-old adolescent who underwent chest wall reconstruction with a methyl methacrylate prosthesis. This surgical procedure is recommended for large anterior chest wall defects, and it prevents paradoxical movement. Moreover it provides for individual remodeling of the defect depending on the shape of the patient's chest.

  9. Laser processing of poly(methyl methacrylate) Lambertian diffusers

    NASA Astrophysics Data System (ADS)

    Bubb, Daniel M.; Yi, Sunyong; Kuchmek, John; Corgan, Jeffrey; Papantonakis, Michael

    2010-10-01

    Matrix-assisted pulsed laser deposition was used to deposit poly(methyl methacrylate) on silicon wafers and sodium silicate glass slides for the purpose of making optical diffusers. After deposition, the reflectance of the coated substrates was measured as a function of scattering angle. We found that the angular dependence of the reflectance could be described as the sum of two functions. First, a Gaussian describes the specular reflection of the underlying substrate that has been broadened by passage through the film. Second, a cosine function describes the reflectance contribution from the film itself. We found that by increasing the thickness of the deposited film that we could eliminate the specular reflection to obtain Lambertian diffusers. Since we can control the surface roughness by adjusting the ratio of the two matrices in laser processing, this deposition technique offers the possibility of producing a wide range of diffusers of different types.

  10. Accuracy of adaptation of thermoformed poly(methyl methacrylate).

    PubMed

    Jagger, R G; Milward, P J; Jagger, D C; Vowles, R W

    2003-04-01

    Thermoformed poly(methyl methacrylate) (PMMA) sheet is used to produce a number of different dental appliances such as stents, occlusal splints and baseplates for occlusal rims. The purpose of the present study was to measure the accuracy of adaptation of Perspex PMMA sheet and to determine the effect of annealing on the accuracy of the thermoformed specimens. The results of the study showed that PMMA can produce specimens that are accurately adapted to the cast. Immersion in water resulted in an increase in the space between the cast and the specimen for both thermoformed and thermoformed and annealed acrylic resin. Annealing of the thermoformed specimens had significantly less increase in space between the cast and the specimens when immersed in water over a period of 3 months.

  11. Macrophage response to methacrylate conversion using a gradient approach.

    PubMed

    Lin, Nancy J; Bailey, LeeAnn O; Becker, Matthew L; Washburn, Newell R; Henderson, Lori A

    2007-03-01

    Incomplete conversion, an ongoing challenge facing photopolymerized methacrylate-based polymers, affects leachables as well as the resulting polymer network. As novel polymers and composites are developed, methods to efficiently screen cell response to these materials and their properties, including conversion, are needed. In this study, an in vitro screening methodology was developed to assess cells cultured directly on cross-linked polymer networks. A gradient in methacrylate double bond conversion was used to increase the experimental throughput. A substrate of 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl] propane (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) was prepared with a conversion ranging from 43.0% to 61.2%. Substrates aged for 7 days had no significant differences in surface roughness or hydrophilicity as a function of conversion. Leachables were detectable for at least 7 days using UV absorption, but their global cytotoxicity was insignificant after 5 days of aging. Thus, RAW 264.7 macrophage-like cells were cultured on aged substrates to evaluate the cell response to conversion, with possible contributions from the polymer network and local leachables. Conversions of 45% and 50% decreased viability (via calcein/ethidium staining) and increased apoptosis (via annexin-V staining). No significant changes (p>0.05) in tumor necrosis factor-alpha and interleukin-1beta gene expression, as measured by quantitative, real-time reverse transcription-polymerase chain reaction, were seen as conversion increased. Thus, conversions greater than 50% are recommended for equimolar BisGMA/TEGDMA. The ability to distinguish cell response as a function of conversion is useful as an initial biological screening platform to optimize dental polymers.

  12. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels.

    PubMed

    Chen, Ying-Chieh; Lin, Ruei-Zeng; Qi, Hao; Yang, Yunzhi; Bae, Hojae; Melero-Martin, Juan M; Khademhosseini, Ali

    2012-05-23

    The generation of functional, 3D vascular networks is a fundamental prerequisite for the development of many future tissue engineering-based therapies. Current approaches in vascular network bioengineering are largely carried out using natural hydrogels as embedding scaffolds. However, most natural hydrogels present a poor mechanical stability and a suboptimal durability, which are critical limitations that hamper their widespread applicability. The search for improved hydrogels has become a priority in tissue engineering research. Here, the suitability of a photopolymerizable gelatin methacrylate (GelMA) hydrogel to support human progenitor cell-based formation of vascular networks is demonstrated. Using GelMA as the embedding scaffold, it is shown that 3D constructs containing human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSCs) generate extensive capillary-like networks in vitro. These vascular structures contain distinct lumens that are formed by the fusion of ECFC intracellular vacuoles in a process of vascular morphogenesis. The process of vascular network formation is dependent on the presence of MSCs, which differentiate into perivascular cells occupying abluminal positions within the network. Importantly, it is shown that implantation of cell-laden GelMA hydrogels into immunodeficient mice results in a rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, it is shown that the degree of methacrylation of the GelMA can be used to modulate the cellular behavior and the extent of vascular network formation both in vitro and in vivo. These data suggest that GelMA hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues.

  13. Stearyl methacrylate-grafted-chitosan nanoparticle as a nanofiller for PLA: Radiation-induced grafting and characterization

    NASA Astrophysics Data System (ADS)

    Rattanawongwiboon, Thitirat; Haema, Kamonwon; Pasanphan, Wanvimol

    2014-01-01

    This paper reports a one-pot synthesis using radiation-induced grafting technique to modify biopolymer-based chitosan nanoparticles as a nanofiller for blending with poly(lactic acid) (PLA). Hydrophobic stearyl methacrylate (SMA) was grafted onto non-irradiated chitosan (CS0) and pre-irradiated chitosan with a γ-ray dose of 40 kGy (CS40) to obtain stearyl methacrylate-grafted-chitosan nanoparticles (SMA-g-CSNPs).The effects of the pre-irradiated CS, grafting doses and SMA concentrations on degree of grafting (DG) and particle formation were studied. FT-IR and XRD were used to characterize the chemical and packing structure of SMA-g-CSNPs. The particle formulation and size of SMA-g-CSNPs were observed by TEM and AFM. The spherical core-shell SMA-g-CSNPs with the size ranging from 50 to 140 nm were successfully prepared. The SMA-g-CSNPs from CS40 has higher DG and smaller particle size when compared with CS0. The SMA-g-CSNPs are able to improve the compatibility between CS and PLA.

  14. Development of erbium phosphate doped poly(glycidyl methacrylate/ethylene dimethacrylate) spin columns for selective enrichment of phosphopeptides.

    PubMed

    Güzel, Yüksel; Rainer, Matthias; Messner, Christoph B; Hussain, Shah; Meischl, Florian; Sasse, Michael; Tessadri, Richard; Bonn, Günther K

    2015-05-01

    In this study, a novel method for the highly selective enrichment of phosphopeptides using erbium phosphate doped poly(glycidyl methacrylate/ethylene dimethacrylate) spin columns is presented. Erbium phosphate was synthesized by precipitation from boiling phosphoric acid and incubated overnight in erbium chloride solutions. The resulting powder was embedded in a monolithic poly(glycidyl methacrylate/ethylene dimethacrylate) polymer. The monolith was synthesized in a spin column by radical polymerization. Erbium phosphate demonstrated a high affinity and selectivity for phosphopeptides due to the strong interaction of trivalent erbium ions with the phosphate groups of phosphopeptides. The high selectivity and performance of the designed spin columns were demonstrated by successfully enriching phosphopeptides from tryptically digested protein mixtures containing the model phosphoproteins α- and β-casein, bovine milk, and human saliva. By the implementation of several washing steps, unspecific components were removed and the enriched phosphopeptides were effectively eluted from the spin columns under alkaline conditions. The selective performance of the presented method was further demonstrated by the enrichment of two synthetic phosphopeptides, which were spiked in tryptically digested and dephosphorylated HeLa cell lysates at low ratios. Finally, the presented approach was compared to conventional phosphopeptide enrichment by titanium oxide and revealed higher recoveries for the erbium phosphate doped monoliths.

  15. Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes.

    PubMed

    Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S

    2010-08-01

    In an attempt to overcome existing limitations of experimental bone cements we here demonstrate a simple approach to synthesizing strontium-modified titania nanotubes (n-SrO-TiO(2) tubes) and functionalize them using the bifunctional monomer methacrylic acid. Then, using 'grafting from' polymerization with methyl methacrylate, experimental bone cements were produced with excellent mechanical properties, radiopacity and biocompatibility. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy mapping and backscattered SEM micrographs revealed a uniform distribution of SrO throughout the titanium matrix, with retention of the nanotubular morphology. Nanocomposites were then reinforced with 1, 2, 4 and 6 wt.% of the functionalized metal oxide nanotubes. Under the mixing and dispersion regime employed in this study, 2 wt.% appeared optimal, exhibiting a more uniform dispersion and stronger adhesion of the nanotubes in the poly(methyl methacrylate) matrix, as shown by TEM and SEM. Moreover, this optimum loading provided a significant increase in the fracture toughness (K(IC)) (20%) and flexural strength (40%) in comparison with the control matrix (unfilled) at P<0.05. Examination of the fracture surfaces by SEM showed that toughening was provided by the nanotubes interlocking with the acrylic matrix and crack bridging during fracture. On modifying the n-TiO(2) tubes with strontium oxide the nanocomposites exhibited a similar radiopacity to a commercial bone cement (CMW 1), while exhibiting a significant enhancement of osteoblast cell proliferation (242%) in vitro compared with the control at P<0.05. PMID:20170759

  16. Polystyrene-divinylbenzene-glycidyl methacrylate stationary phase grafted with poly (amidoamine) dendrimers for ion chromatography.

    PubMed

    Guo, Dandan; Lou, Chaoyan; Zhang, Peimin; Zhang, Jiajie; Wang, Nani; Wu, Shuchao; Zhu, Yan

    2016-07-22

    In this work, a novel ion exchange stationary phase based on different generations of poly (amidoamine) dendrimers (PAMAM) was developed for the determination of inorganic anions and carbohydrates. Synthesis of the PAMAM was carried out with the polymerization reaction of ethylenediamine and methyl acrylate. The synthesized PAMAM was then grafted to the polystyrene-divinylbenzene-glycidyl methacrylate (PS-GMA) to form PAMAM-based beads. These beads were finally modified with 1,4-butanediol diglycidyl ether (BDDE) to generate the anion exchanger, which were characterized by scanning electron microscopy (SEM), brunauer-emmett-teller (BET), fourier transform infrared spectroscopy (FTIR), and elemental analysis. Elemental analysis, breakthrough curves and capacity factors showed that more epoxy groups and higher PAMAM generations in stationary phase could result in higher anion exchange capacity. The efficiency, durability and stability of the proposed anion exchanger were investigated by using six inorganic anions (fluoride, chloride, nitrite, bromide, nitrate and sulfate) and four carbohydrates (trehalose, glucose, maltotriose and galacturonic acid) as analytes, respectively. The reliability of the proposed ion chromatographic stationary phase was demonstrated by determining the content of galacturonic acid in polysaccharides from Poria cocos and Atractylodes macrocephala. The relative standard deviations of retention time, peak height, and peak area for galacturonic acid were 0.39%, 1.22%, and 2.02%, respectively. The spiked recoveries were in the range of 88.29%-100.51% for plant polysaccharides. Due to the good structural homogeneity, intense internal porosity, biological compatibility and high density of active groups in PAMAM, this grafted stationary phase showed good ion-exchange characteristics, especially in biological charged molecules.

  17. Polystyrene-divinylbenzene-glycidyl methacrylate stationary phase grafted with poly (amidoamine) dendrimers for ion chromatography.

    PubMed

    Guo, Dandan; Lou, Chaoyan; Zhang, Peimin; Zhang, Jiajie; Wang, Nani; Wu, Shuchao; Zhu, Yan

    2016-07-22

    In this work, a novel ion exchange stationary phase based on different generations of poly (amidoamine) dendrimers (PAMAM) was developed for the determination of inorganic anions and carbohydrates. Synthesis of the PAMAM was carried out with the polymerization reaction of ethylenediamine and methyl acrylate. The synthesized PAMAM was then grafted to the polystyrene-divinylbenzene-glycidyl methacrylate (PS-GMA) to form PAMAM-based beads. These beads were finally modified with 1,4-butanediol diglycidyl ether (BDDE) to generate the anion exchanger, which were characterized by scanning electron microscopy (SEM), brunauer-emmett-teller (BET), fourier transform infrared spectroscopy (FTIR), and elemental analysis. Elemental analysis, breakthrough curves and capacity factors showed that more epoxy groups and higher PAMAM generations in stationary phase could result in higher anion exchange capacity. The efficiency, durability and stability of the proposed anion exchanger were investigated by using six inorganic anions (fluoride, chloride, nitrite, bromide, nitrate and sulfate) and four carbohydrates (trehalose, glucose, maltotriose and galacturonic acid) as analytes, respectively. The reliability of the proposed ion chromatographic stationary phase was demonstrated by determining the content of galacturonic acid in polysaccharides from Poria cocos and Atractylodes macrocephala. The relative standard deviations of retention time, peak height, and peak area for galacturonic acid were 0.39%, 1.22%, and 2.02%, respectively. The spiked recoveries were in the range of 88.29%-100.51% for plant polysaccharides. Due to the good structural homogeneity, intense internal porosity, biological compatibility and high density of active groups in PAMAM, this grafted stationary phase showed good ion-exchange characteristics, especially in biological charged molecules. PMID:27311659

  18. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Arola, Dwayne D.; Zhou, Xuedong; Xu, Hockin H. K.

    2013-01-01

    Objectives The main reason for restoration failure is secondary caries caused by biofilm acids. Replacing the failed restorations accounts for 50–70% of all operative work. The objectives of this study were to incorporate a new quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) and nanoparticles of silver (NAg) into a primer and an adhesive, and to investigate their effects on antibacterial and dentin bonding properties. Methods Scotchbond Multi-Purpose (SBMP) served as control. DMADDM was synthesized and incorporated with NAg into primer/adhesive. A dental plaque microcosm biofilm model with human saliva was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid. Dentin shear bond strengths were measured. Results Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the new DMADDM were orders of magnitude lower than those of a previous quaternary ammonium dimethacrylate (QADM). Uncured primer with DMADDM had much larger inhibition zones than QADM (p<0.05). Cured primer/adhesive with DMADDM-NAg greatly reduced biofilm metabolic activity (p<0.05). Combining DMADDM with NAg in primer/adhesive resulted in less CFU than DMADDM alone (p<0.05). Lactic acid production by biofilms was reduced by 20-fold via DMADDM-NAg, compared to control. Incorporation of DMADDM and NAg into primer/adhesive did not adversely affect dentin bond strength. Conclusions A new antibacterial monomer DMADDM was synthesized and incorporated into primer/adhesive for the first time. The bonding agents are promising to combat residual bacteria in tooth cavity and invading bacteria at tooth-restoration margins to inhibit caries. DMADDM and NAg are promising for use into a wide range of dental adhesive systems and restoratives. PMID:23353068

  19. Radiation-induced graft copolymerization of dimethylaminoethyl methacrylate onto graphene oxide for Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Ma, Hui-Ling; Zhang, Youwei; Zhang, Long; Wang, Liancai; Sun, Chao; Liu, Pinggui; He, Lihua; Zeng, Xinmiao; Zhai, Maolin

    2016-07-01

    Dimethylaminoethyl methacrylate (DMAEMA)-grafted graphene oxide hybrid materials (GO-g-P) were fabricated using γ-ray irradiation at ambient temperature. The morphology and structure of GO-g-P were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron (XPS), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). It was confirmed that DMAEMA was grafted successfully on the surface of graphene sheet. The grafting yield of GO-g-P increased with monomer concentration (0-2.5 mol L-1) and dose (0-40 kGy). The resulting adsorbent (GO-g-P) with amine groups was highly efficient for removing Cr(VI) from its acidic aqueous solution and could be easily separated by filtration. The optimum pH for Cr(VI) removal was observed at pH 1.1 and the Cr(VI) uptake of GO-g-P at this pH was 82.4 mg g-1.

  20. Analysis of stochastic effects in chemically amplified poly(4-hydroxystyrene-co-t-butyl methacrylate) resist

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2016-07-01

    Understanding of stochastic phenomena is essential to the development of a highly sensitive resist for nanofabrication. In this study, we investigated the stochastic effects in a chemically amplified resist consisting of poly(4-hydroxystyrene-co-t-butyl methacrylate), triphenylsulfonium nonafluorobutanesulfonate (acid generator), and tri-n-octylamine (quencher). Scanning electron microscopy (SEM) images of resist patterns were analyzed by Monte Carlo simulation on the basis of the sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. It was estimated that a ±0.82σ fluctuation of the number of protected units per polymer molecule led to line edge roughness formation. Here, σ is the standard deviation of the number of protected units per polymer molecule after postexposure baking (PEB). The threshold for the elimination of stochastic bridge generation was 4.38σ (the difference between the average number of protected units after PEB and the dissolution point). The threshold for the elimination of stochastic pinching was 2.16σ.

  1. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.

    PubMed

    Dong, Hong; Sliozberg, Yelena R; Snyder, James F; Steele, Joshua; Chantawansri, Tanya L; Orlicki, Joshua A; Walck, Scott D; Reiner, Richard S; Rudie, Alan W

    2015-11-18

    Cellulose nanofibrils (CNFs) are a class of cellulosic nanomaterials with high aspect ratios that can be extracted from various natural sources. Their highly crystalline structures provide the nanofibrils with excellent mechanical and thermal properties. The main challenges of CNFs in nanocomposite applications are associated with their high hydrophilicity, which makes CNFs incompatible with hydrophobic polymers. In this study, highly transparent and toughened poly(methyl methacrylate) (PMMA) nanocomposite films were prepared using various percentages of CNFs covered with surface carboxylic acid groups (CNF-COOH). The surface groups make the CNFs interfacial interaction with PMMA favorable, which facilitate the homogeneous dispersion of the hydrophilic nanofibrils in the hydrophobic polymer and the formation of a percolated network of nanofibrils. The controlled dispersion results in high transparency of the nanocomposites. Mechanical analysis of the resulting films demonstrated that a low percentage loading of CNF-COOH worked as effective reinforcing agents, yielding more ductile and therefore tougher films than the neat PMMA film. Toughening mechanisms were investigated through coarse-grained simulations, where the results demonstrated that a favorable polymer-nanofibril interface together with percolation of the nanofibrils, both facilitated through hydrogen bonding interactions, contributed to the toughness improvement in these nanocomposites.

  2. AGING OF ADHESIVE INTERFACES TREATED WITH BENZALKONIUM CHLORIDE AND BENZALKONIUM METHACRYLATE

    PubMed Central

    Sabatini, Camila; Pashley, David H.

    2015-01-01

    Inhibition of endogenous dentin matrix metalloproteinases (MMPs) within incompletely infiltrated hybrid layers can contribute to the preservation of resin-dentin bonds. This study evaluated the bond stability of interfaces treated with benzalkonium chloride (BAC) and benzalkonium methacrylate (MBAC), and its inhibitory properties in dentin MMP activity. Single-component adhesive ALL-BOND UNIVERSAL, modified with BAC or MBAC in concentrations of 0, 0.5, 1.0 and 2.0% was used for microtensile bond strength (μTBS) evaluation after 24 h, 6 months and 1 yr. Human dentin beams were treated with 37% phosphoric acid, dipped either in 0.5% BAC, 1.0% BAC or water (control) for 60 s and then incubated in SensoLyte generic MMP substrate to determine MMP activity. A significant decrease in μTBS after 6 months and 1 yr was observed for the control group only. No significant differences among groups were shown at 24 h. After 6 months and 1 yr, the control group demonstrated significantly lower μTBS than all treatment groups. Both 0.5% and 1.0%, BAC applied for 60 s inhibited total MMP activity by 31% and 54%, respectively. Both BAC and MBAC contributed to the preservation of resin-dentin bonds likely due to its inhibitory properties of endogenous dentin proteinases. PMID:25639285

  3. Aging of adhesive interfaces treated with benzalkonium chloride and benzalkonium methacrylate.

    PubMed

    Sabatini, Camila; Pashley, David H

    2015-04-01

    Inhibition of endogenous dentin matrix metalloproteinases (MMPs) within incompletely infiltrated hybrid layers can contribute to the preservation of resin-dentin bonds. This study evaluated the bond stability of interfaces treated with benzalkonium chloride (BAC) and benzalkonium methacrylate (MBAC), and the inhibitory properties of these compounds on dentin MMP activity. Single-component adhesive ALL-BOND UNIVERSAL, modified with BAC or MBAC at concentrations of 0, 0.5, 1.0, and 2.0%, was used for microtensile bond strength (μTBS) evaluation after 24 h, 6 months, and 1 yr. Beams produced from human dentin were treated with 37% phosphoric acid, dipped in 0.5% BAC, 1.0% BAC, or water (control) for 60 s, and then incubated in SensoLyte generic MMP substrate to determine MMP activity. A significant decrease in the μTBS after 6 months and 1 yr was observed for the control group only. No significant differences among groups were shown at 24 h. After 6 months and 1 yr, the control group demonstrated significantly lower μTBS than all treatment groups. When applied for 60 s, 0.5% BAC inhibited total MMP activity by 31%, and 1.0% BAC inhibited total MMP activity by 54%. Both BAC and MBAC contributed to the preservation of resin-dentin bonds, probably because of their inhibitory properties of endogenous dentin proteinases.

  4. Magnetic hydrophilic methacrylate-based polymer microspheres designed for polymerase chain reactions applications.

    PubMed

    Spanová, Alena; Horák, Daniel; Soudková, Eva; Rittich, Bohuslav

    2004-02-01

    Magnetic hydrophilic non-porous P(HEMA-co-EDMA), P(HEMA-co-GMA) and PGMA microspheres were prepared by dispersion (co)polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) or glycidyl methacrylate (GMA) in the presence of several kinds of magnetite. It was found that some components used in the preparation of magnetic carriers interfered with polymerase chain reaction (PCR). Influence of non-magnetic and magnetic microspheres, including magnetite nanoparticles and various components used in their synthesis, on the PCR course was thus investigated. DNA isolated from bacterial cells of Bifidobacterium longum was used in PCR evaluation of non-interfering magnetic microspheres. The method enabled verification of the incorporation of magnetite nanoparticles in the particular methacrylate-based polymer microspheres and evaluation of suitability of their application in PCR. Preferably, electrostatically stabilized colloidal magnetite (ferrofluid) should be used in the design of new magnetic methacrylate-based microspheres by dispersion polymerization. PMID:14698232

  5. 21 CFR 73.3121 - Poly(hydroxyethyl methacrylate)-dye copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...(hydroxyethyl methacrylate)-dye copolymers. (a) Identity. The color additives are formed by reacting one or more... sulfate group (or groups) or chlorine substituent of the dye is replaced by an ether linkage to...

  6. 21 CFR 73.3121 - Poly(hydroxyethyl methacrylate)-dye copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...(hydroxyethyl methacrylate)-dye copolymers. (a) Identity. The color additives are formed by reacting one or more... sulfate group (or groups) or chlorine substituent of the dye is replaced by an ether linkage to...

  7. 21 CFR 73.3121 - Poly(hydroxyethyl methacrylate)-dye copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...(hydroxyethyl methacrylate)-dye copolymers. (a) Identity. The color additives are formed by reacting one or more... sulfate group (or groups) or chlorine substituent of the dye is replaced by an ether linkage to...

  8. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218... 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2-...

  9. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218... 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2-...

  10. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218... 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2-...

  11. 40 CFR 721.10218 - 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-branched and linear alkyl esters, telomers with alkyl 2- thio]-2-alkanoate, aminoalkyl methacrylate and alkyl methacrylate, tert-Bu 2-ethylhexanoperoxoate-initiated (generic). 721.10218 Section 721.10218... 2-Propenoic acid, 2-mehtyl-, C12-15-branched and linear alkyl esters, telomers with alkyl 2-...

  12. Barrier layers against oxygen transmission on the basis of electron beam cured methacrylated gelatin

    NASA Astrophysics Data System (ADS)

    Scherzer, Tom

    1997-08-01

    The development of barrier layers against oxygen transmission on the basis of radiation-curable methacrylated gelatin will be reported. The electron beam cured gelatin coatings show an extremely low oxygen permeability and a high resistance against boiling water. Moreover, the methacrylated gelatins possess good adhesion characteristics. Therefore, they are suited as barrier adhesives in laminates for food packaging applications. If substrate foils from biodegradable polymers are used, the development of completely biodegradable packaging materials seems to be possible.

  13. Transparent and luminescent ionogels composed of Eu(3+)-coordinated ionic liquids and poly(methyl methacrylate).

    PubMed

    Zhou, Fan; Wang, Tianren; Li, Zhiqiang; Wang, Yige

    2015-12-01

    We report here on transparent and luminescent ionogels that consist of ionic ternary europium (III) complexes and the inexpensive non-toxic compound, poly(methyl methacrylate) (PMMA) and that were formed by dissolving these complexes in methacrylate (MMA) monomers followed by in situ polymerization. The resulting ionogels show a bright red emission under near-UV light irradiation. Luminescence data confirm the energy transfer from terpyridine-functionalized ionic liquid to Eu(3+) ions.

  14. Holographic Recording in Methacrylate Photopolymer Film Codoped with Benzyl n-Butyl Phthalate and Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Naito, Takahiro; Tomita, Yasuo

    2006-06-01

    Transmission volume holograms recorded in methacrylate photopolymer films codoped with benzyl n-butyl phthalate (BBP) and silica nanoparticles are studied. It is found that BBP, which is a well-known plasticizer, can be directly mixed with methacrylate monomer and that a refractive index modulation as high as ˜0.006 is recorded with a BBP concentration of 36 vol %. It is also found that the additional dispersion of silica nanoparticles substantially suppresses polymerization shrinkage without increasing optical scattering loss.

  15. The siloxane bond in contact lens materials: the siloxanyl alkyl methacrylate copolymers.

    PubMed

    Refojo, M F

    1984-11-01

    The siloxanyl alkyl methacrylate copolymers with methyl methacrylate and other components including hydrophilic monomers and crosslinking agents are used to make siloxane methacrylate oxygen-permeable rigid contact lenses. These copolymers contain the element silicon as siloxane bonds in side branches of the main polymer chain, which is made of carbon-to-carbon bonds. The siloxane bonds are the main contributing factor to the oxygen permeability of these materials. Because silicone is not a component of these contact lenses, it is not appropriate to refer to them as silicone methacrylate contact lenses. This paper analyzes data from three fundamental patents and gives the oxygen permeability coefficients of three types of siloxanyl alkyl methacrylate copolymers. In one type the siloxanyl component contains two silicon atoms, in the second type it contains three silicon atoms, and in the third type it contains four silicon atoms. A general relationship, expressed by a power function, is developed between the oxygen permeability coefficients of siloxanyl alkyl methacrylate copolymers and dimethylsilicone rubber and their percent disiloxane or silicon content. PMID:6517434

  16. In vivo genotoxicity assessment of acrylamide and glycidyl methacrylate.

    PubMed

    Dobrovolsky, Vasily N; Pacheco-Martinez, M Monserrat; McDaniel, L Patrice; Pearce, Mason G; Ding, Wei

    2016-01-01

    Acrylamide (ACR) and glycidyl methacrylate (GMA) are structurally related compounds used for making polymers with various properties. Both chemicals can be present in food either as a byproduct of processing or a constituent of packaging. We performed a comprehensive evaluation of ACR and GMA genotoxicity in Fisher 344 rats using repeated gavage administrations. Clastogenicity was measured by scoring micronucleated (MN) erythrocytes from peripheral blood, DNA damage in liver, bone marrow and kidneys was measured using the Comet assay, and gene mutation was measured using the red blood cell (RBC) and reticulocyte Pig-a assay. A limited histopathology evaluation was performed in order to determine levels of cytotoxicity. Doses of up to 20 mg/kg/day of ACR and up to 250 mg/kg/day of GMA were used. ACR treatment resulted in DNA damage in the liver, but not in the bone marrow. While ACR was not a clastogen, it was a weak (equivocal) mutagen in the cells of bone marrow. GMA caused DNA damage in the cells of bone marrow, liver and kidney, and induced MN reticulocytes and Pig-a mutant RBCs in a dose-dependent manner. Collectively, our data suggest that both compounds are in vivo genotoxins, but the genotoxicity of ACR is tissue specific.

  17. Ageing and moisture uptake in polymethyl methacrylate (PMMA) bone cements☆

    PubMed Central

    Ayre, Wayne Nishio; Denyer, Stephen P.; Evans, Samuel L.

    2014-01-01

    Bone cements are extensively employed in orthopaedics for joint arthroplasty, however implant failure in the form of aseptic loosening is known to occur after long-term use. The exact mechanism causing this is not well understood, however it is thought to arise from a combination of fatigue and chemical degradation resulting from the hostile in vivo environment. In this study, two commercial bone cements were aged in an isotonic fluid at physiological temperatures and changes in moisture uptake, microstructure and mechanical and fatigue properties were studied. Initial penetration of water into the cement followed Fickian diffusion and was thought to be caused by vacancies created by leaching monomer. An increase in weight of approximately 2% was experienced after 30 days ageing and was accompanied by hydrolysis of poly(methyl methacrylate) (PMMA) in the outermost layers of the cement. This molecular change and the plasticising effect of water resulted in reduced mechanical and fatigue properties over time. Cement ageing is therefore thought to be a key contributor in the long-term failure of cemented joint replacements. The results from this study have highlighted the need to develop cements capable of withstanding long-term degradation and for more accurate test methods, which fully account for physiological ageing. PMID:24445003

  18. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels.

    PubMed

    Nikkhah, Mehdi; Eshak, Nouran; Zorlutuna, Pinar; Annabi, Nasim; Castello, Marco; Kim, Keekyoung; Dolatshahi-Pirouz, Alireza; Edalat, Faramarz; Bae, Hojae; Yang, Yunzhi; Khademhosseini, Ali

    2012-12-01

    Engineering of organized vasculature is a crucial step in the development of functional and clinically relevant tissue constructs. A number of previous techniques have been proposed to spatially regulate the distribution of angiogenic biomolecules and vascular cells within biomaterial matrices to promote vascularization. Most of these approaches have been limited to two-dimensional (2D) micropatterned features or have resulted in formation of random vasculature within three-dimensional (3D) microenvironments. In this study, we investigate 3D endothelial cord formation within micropatterned gelatin methacrylate (GelMA) hydrogels with varying geometrical features (50-150 μm height). We demonstrated the significant dependence of endothelial cells proliferation, alignment and cord formation on geometrical dimensions of the patterned features. The cells were able to align and organize within the micropatterned constructs and assemble to form cord structures with organized actin fibers and circular/elliptical cross-sections. The inner layer of the cord structure was filled with gel showing that the micropatterned hydrogel constructs guided the assembly of endothelial cells into cord structures. Notably, the endothelial cords were retained within the hydrogel microconstructs for all geometries after two weeks of culture; however, only the 100 μm-high constructs provided the optimal microenvironment for the formation of circular and stable cord structures. Our findings suggest that endothelial cord formation is a preceding step to tubulogenesis and the proposed system can be used to develop organized vasculature for engineered tissue constructs.

  19. Directed Endothelial Cell Morphogenesis in Micropatterned Gelatin Methacrylate Hydrogels

    PubMed Central

    Nikkhah, Mehdi; Eshak, Nouran; Zorlutuna, Pinar; Annabi, Nasim; Castello, Marco; Kim, Keekyoung; Dolatshahi-Pirouz, Alireza; Edalat, Faramarz; Bae, Hojae; Yang, Yunzhi; Khademhosseini, Ali

    2013-01-01

    Engineering of organized vasculature is a crucial step in the development of functional and clinically relevant tissue constructs. A number of previous techniques have been proposed to spatially regulate the distribution of angiogenic biomolecules and vascular cells within biomaterial matrices to promote vascularization. Most of these approaches have been limited to two-dimensional (2D) micropatterned features or have resulted in formation of random vasculature within three-dimensional (3D) microenvironments. In this study, we investigate 3D endothelial cord formation within micropatterned gelatin methacrylate (GelMA) hydrogels with varying geometrical features (50–150 µm height). We demonstrated the significance dependence of endothelial cells proliferation, alignment and cord formation on geometrical dimensions of the patterned features. The cells were able to align and organize within the micropatterned constructs and assemble to form cord structures with organized actin fibers and circular/elliptical cross-sections. The inner layer of the cord structure was filled with gel showing that the micropatterned hydrogel constructs guided the assembly of endothelial cells into cord structures. Notably, the endothelial cords were retained within the hydrogel microconstructs for all geometries after two weeks of culture; however, only the 100 µm-high constructs provided the optimal microenvironment for the formation of circular and stable cord structures. Our findings suggest that endothelial cord formation is a preceding step to tubulogenesis and the proposed system can be used to develop organized vasculature for engineered tissue constructs. PMID:23018132

  20. Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification.

    PubMed

    Bux, Jaiyana; Manga, Mohamed S; Hunter, Timothy N; Biggs, Simon

    2016-07-28

    Accurate control of particle size at relatively narrow polydispersity remains a key challenge in the production of synthetic polymer particles at scale. A cross-flow membrane emulsification (XME) technique was used here in the preparation of poly(methyl methacrylate) microspheres at a 1-10 l h(-1) scale, to demonstrate its application for such a manufacturing challenge. XME technology has previously been shown to provide good control over emulsion droplet sizes with careful choice of the operating conditions. We demonstrate here that, for an appropriate formulation, equivalent control can be gained for a precursor emulsion in a batch suspension polymerization process. We report here the influence of key parameters on the emulsification process; we also demonstrate the close correlation in size between the precursor emulsion and the final polymer particles. Two types of polymer particle were produced in this work: a solid microsphere and an oil-filled matrix microcapsule.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.

  1. Thermal Properties of Polymethyl Methacrylate Composite Containing Copper Nanoparticles.

    PubMed

    Yu, Wei; Xie, Huaqing; Xin, Sha; Yin, Junshan; Jiang, Yitong; Wang, Mingzhu

    2015-04-01

    Thermal functional Materials have wide applications in thermal management fields, and inserting highly thermal conductive materials is effective in enhancing thermal conductivity of matrix. In this paper, copper nanoparticles were selected as the additive to prepare polymethyl methacrylate (PMMA) based nanocomposite with enhanced thermal properties. Uniform copper nanoparticles with pure face-centered lattice were prepared by liquid phase reduction method. Then, they were added into PMMA/N, N-Dimethylmethanamide (DMF) solution according to the different mass fraction for uniform dispersion. After DMF was evaporated, Cu-PMMA nanocomposites were gained. The thermal analysis measurement results showed that the decomposition temperature of nanocomposites decreased gradually with the increasing particle loadings. The thermal conductivity of the Cu-PMMA nanocomposites rose with the increasing contents of copper nanoparticles. With a 20 vol.% addition, the thermal conductivity was up to 1.2 W/m · K, a 380.5% increase compared to the pure PMMA. The results demonstrate that copper nanoparticles have great potential in enhancing thermal transport properties of polymer.

  2. Methyl methacrylate and respiratory sensitization: A Critical review

    PubMed Central

    Borak, Jonathan; Fields, Cheryl; Andrews, Larry S; Pemberton, Mark A

    2011-01-01

    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer. PMID:21401327

  3. Spallation Characteristics of Poly-Methyl Meth-Acrylic (PMMA)

    NASA Astrophysics Data System (ADS)

    Bartkowski, Peter; Dandekar, D. P.

    1999-06-01

    This work describes the results derived from plane shock wave spallation experiments performed on Poly-Methyl Meth-Acrylic (PMMA) Polymer. These experiments were conducted using the Army Research Laboratories 102 mm Bore, 8 m long Light Gas Gun located at Aberdeen Proving Ground, MD. The PMMA used in this work was manufactured by Rohm & Haas as their Ultra-Violet Absorbing (UVA), Type II Plexiglass. Its density is 1.188 Mg/m3 and longitudinal shock velocity is 2.72 mm/μ s. Spallation experiments were conducted at impact stresses between 0.2 and 2.0 GPa. The PMMA appears to exhibit a constant tensile strength of 0.15 GPa up to an impact stress of 0.75 GPa. Unlike metal and ceramic materials, the PMMA exhibits a dwell time in the spallation inversly proportional to the impact stress. At a low impact stress of 0.40 GPa, spallation of the PMMA occurs over a time period of 0.80 micro-seconds. At an impact stress of 0.75 GPa, the spallation occurs over 0.40 micro-seconds. This variation in time required to spall the PMMA will be analyzed and theories discussed.

  4. Characterization of methacrylate chromatographic monoliths bearing affinity ligands.

    PubMed

    Černigoj, Urh; Vidic, Urška; Nemec, Blaž; Gašperšič, Jernej; Vidič, Jana; Lendero Krajnc, Nika; Štrancar, Aleš; Podgornik, Aleš

    2016-09-16

    We investigated effect of immobilization procedure and monolith structure on chromatographic performance of methacrylate monoliths bearing affinity ligands. Monoliths of different pore size and various affinity ligands were prepared and characterized using physical and chromatographic methods. When testing protein A monoliths with different protein A ligand densities, a significant nonlinear effect of ligand density on dynamic binding capacity (DBC) for IgG was obtained and accurately described by Langmuir isotherm curve enabling estimation of protein A utilization as a function of ligand density. Maximal IgG binding capacity was found to be at least 12mg/mL exceeding theoretical monolayer adsorption value of 7.8mg/mL assuming hexagonal packing and IgG hydrodynamic diameter of 11nm. Observed discrepancy was explained by shrinkage of IgG during adsorption on protein A experimentally determined through calculated adsorbed IgG layer thickness of 5.4nm from pressure drop data. For monoliths with different pore size maximal immobilized densities of protein A as well as IgG dynamic capacity linearly correlates with monolith surface area indicating constant ligand utilization. Finally, IgGs toward different plasma proteins were immobilized via the hydrazide coupling chemistry to provide oriented immobilization. DBC was found to be flow independent and was increasing with the size of bound protein. Despite DBC was lower than IgG capacity to immobilized protein A, ligand utilization was higher. PMID:27554023

  5. Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification.

    PubMed

    Bux, Jaiyana; Manga, Mohamed S; Hunter, Timothy N; Biggs, Simon

    2016-07-28

    Accurate control of particle size at relatively narrow polydispersity remains a key challenge in the production of synthetic polymer particles at scale. A cross-flow membrane emulsification (XME) technique was used here in the preparation of poly(methyl methacrylate) microspheres at a 1-10 l h(-1) scale, to demonstrate its application for such a manufacturing challenge. XME technology has previously been shown to provide good control over emulsion droplet sizes with careful choice of the operating conditions. We demonstrate here that, for an appropriate formulation, equivalent control can be gained for a precursor emulsion in a batch suspension polymerization process. We report here the influence of key parameters on the emulsification process; we also demonstrate the close correlation in size between the precursor emulsion and the final polymer particles. Two types of polymer particle were produced in this work: a solid microsphere and an oil-filled matrix microcapsule.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298430

  6. Properties of holographic gratings photoinduced in polymethyl methacrylate.

    PubMed

    Moran, J M; Kaminow, I P

    1973-08-01

    Polymethyl methacrylate, PMMA, sensitized for lambda = 0.325 microm, is shown to exhibit a peak refractive index change of 2.3 x 10(-3). The index change has been characterized in relation to its sensitivity, temperature dependence, and development time. The sensitivity of the material is shown to be 1.7 x10(-4) alpha, where alpha is the intensity absorption coefficient. Laser light scattered by an exposed region is found to produce a double ring pattern due to the graininess of the index variation. Three-dimensional holographic diffraction gratings were made in the PMMA, and its diffraction efficiency was measured as a function of thickness, refractive index change, and reconstruction angle. The efficiencies measured agree fairly well with the theoretical sin(2) curve; however, higher peak diffraction efficiencies were obtained further out on this oscillatory curve. A maximum diffraction efficiency of 96% was obtained. Angular sensitivity measurements indicated that the effective thickness of the grating was less than its actual thickness due to the nonuniformity of the index variation with thickness. Potential applications as a dielectric waveguide, diffraction grating, and wavelength selector are discussed. Scattering, the relatively small maximum index change, and poor reproducibility are the chief limiting factors.

  7. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality.

    PubMed

    Lei, Zhen; Gao, Jiaxue; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-04-27

    We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained. PMID:27049528

  8. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality.

    PubMed

    Lei, Zhen; Gao, Jiaxue; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-04-27

    We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained.

  9. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins?

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Mazzoni, Annalisa; Carvalho, Ricardo M.; Carrilho, Marcela; Tersariol, Ivarne L.; Nascimento, Fabio D.; Imazato, Satoshi; Tjäderhane, Leo; Breschi, Lorenzo; Tay, Franklin R; Pashley, David H.

    2014-01-01

    Objective Dentin matrices release ICTP and CTX fragments during collagen degradation. ICTP fragments are known to be produced by MMPs. CTX fragments are thought to come from cathepsin K activity. The purpose of this study was to determine if quaternary methacrylates (QAMs) can inhibit matrix MMPs and cathepsins. Methods Dentin beams were demineralizated, and dried to constant weight. Beams were incubated with rh-cathepsin B, K, L or S for 24 h at pH 7.4 to identify which cathepsins release CTX at neutral pH. Beams were dipped in ATA, an antimicrobial QAM to determine if it can inhibit dentin matrix proteases. Other beams were dipped in another QAM (MDPB) to determine if it produced similar inhibition of dentin proteases. Results Only beams incubated with cathepsin K lost more dry mass than the controls and released CTX. Dentin beams dipped in ATA and incubated for 1 week at pH 7.4, showed a concentration-dependent reduction in weight-loss. There was no change in ICTP release from control values, meaning that ATA did not inhibit MMPs. Media concentrations of CTX fell significantly at 15 wt% ATA indicating that ATA inhibits capthesins. Beams dipped in increasing concentrations of MDPB lost progressively less mass, showing that MDPB is a protease-inhibitor. ICTP released from controls or beams exposed to low concentrations were the same, while 5 or 10% MDPB significantly lowered ICTP production. CTX levels were strongly inhibited by 2.5–10% MDPB, indicating that MDPB is a potent inhibitor of both MMPs and cathepsin K. Significance CTX seems to be released from dentin matrix only by cathepsin K. MMPs and cathepsin K and B may all contribute to matrix degradation. PMID:25467953

  10. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  11. Preparation and characterization of alkyl methacrylate-based monolithic columns for capillary gas chromatography applications.

    PubMed

    Yusuf, Kareem; Aqel, Ahmad; A L Othman, Zeid; Badjah-Hadj-Ahmed, Ahmed Yacine

    2013-08-01

    Gas chromatography (GC) is considered the least common application of both polymer and silica-based monolithic columns. This study describes the fabrication of alkyl methacrylate monolithic materials for use as stationary phases in capillary gas chromatography. Following the deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (TMSM), the monoliths were formed by the co-polymerization of either hexyl methacrylate (HMA) or lauryl methacrylate (LMA) with different percentage of ethylene glycol dimethacrylate (EDMA) in presence of an initiator (azobisisobutyronitrile, AIBN) and a mixture of porogens include 1-propanol, 1,4-butanediol and water. The monoliths were prepared in 500mm length capillaries possessing inner diameters of 250μm. The efficiencies of the monolithic columns for low molecular weight compounds significantly improved as the percentage of crosslinker was increased, because of the greater proportion of pores less than 50nm. The columns containing lower percentages of crosslinker were able to rapidly separate a series of 8 alkane members in 0.7min, but the separation was less efficient for the light alkanes. Columns prepared with the lauryl methacrylate monomer yielded a different morphology for the monolith-interconnected channels. The channels were more branched, which increased the separation time, and unlike the other columns, allowed for temperature programming.

  12. Chemical anchoring of lauryl methacrylate-based reversed phase monolith to 1/16″ o.d. polyetheretherketone tubing.

    PubMed

    Shu, Shin; Kobayashi, Hiroharu; Okubo, Masaki; Sabarudin, Akhmad; Butsugan, Michio; Umemura, Tomonari

    2012-06-15

    In this paper, we describe a method for the preparation of easy-to-use reversed-phase monolithic microbore columns. Polyetheretherketone (PEEK) tubing with an outer diameter of 1/16″ and an inner diameter of 1.0 mm was used as a column housing (empty column), and in it lauryl methacrylate (LMA) was copolymerized with ethylene dimethacrylate (EDMA). In order to chemically anchor the polymer monolith to the tube wall, the inner wall surface was pretreated by the following two-step procedure. (1) 50% sulfuric acid was filled into the PEEK tubing and left to stand for 6 h to generate sulfonate groups on the surface. (2) After washing with Milli-Q water, the sulfonated PEEK surface was brought into contact with 1 M glycidyl methacrylate in dichloromethane (or acetone) at 40°C for 4 h to introduce methacryloyl groups via the reaction of sulfonate groups and epoxy groups. Mechanical strength and column efficiency of the resulting monoliths were evaluated through the separation of a series of alkylbenzenes in acetonitrile-water (50:50, v/v) eluent over the flow rate range of 50-750 μL/min (corresponding to 1.7-25.5 mm/s). The poly(LMA-co-EDMA) monolith provided acceptable column efficiency of 2000 theoretical plates/10 cm (HETP value of 50 μm) for amylbenzene (separation factor k=40) and low flow resistance of 0.5 MPa/10 cm at a normal flow rate of 50 μL/min. The methacryloylated PEEK tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 15 MPa, allowing rapid separation at a 15-20 fold higher flow rate than normal. PMID:22560348

  13. Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods.

    PubMed

    Gramlich, William M; Holloway, Julianne L; Rai, Reena; Burdick, Jason A

    2014-01-10

    Injectable hydrogels provide locally controlled tissue bulking and a means to deliver drugs and cells to the body. The formation of hydrogels in vivo may involve the delivery of two solutions that spontaneously crosslink when mixed, with pH or temperature changes, or with light (e.g., visible or ultraviolet). With these approaches, control over the kinetics of gelation, introduction of the initiation trigger (e.g., limited penetration of ultraviolet light through tissues), or alteration of the material physical properties (e.g., mechanics) may be difficult to achieve. To overcome these limitations, we used the interaction of near-infrared (NIR) light with gold nanorods (AuNRs) to generate heat through the photothermal effect. NIR light penetrates tissues to a greater extent than other wavelengths and provides a means to indirectly initiate radical polymerization. Specifically, this heating coupled with a thermal initiator (VA-044) produced radicals that polymerized methacrylated hyaluronic acid (MeHA) and generated hydrogels. A range of VA-044 concentrations changed the gelation time, yielding a system stable at 37 ° C for 22 min that gels quickly (~3 min) when heated to 55 ° C. With a constant irradiation time (10 min) and laser power (0.3 W), different VA-044 and AuNR concentrations tuned the compressive modulus of the hydrogel. By changing the NIR irradiation time we attained a wide range of moduli at a set solution composition. In vivo mouse studies confirmed that NIR laser irradiation through tissue could gel an injected precursor solution transdermally.

  14. Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods

    NASA Astrophysics Data System (ADS)

    Gramlich, William M.; Holloway, Julianne L.; Rai, Reena; Burdick, Jason A.

    2014-01-01

    Injectable hydrogels provide locally controlled tissue bulking and a means to deliver drugs and cells to the body. The formation of hydrogels in vivo may involve the delivery of two solutions that spontaneously crosslink when mixed, with pH or temperature changes, or with light (e.g., visible or ultraviolet). With these approaches, control over the kinetics of gelation, introduction of the initiation trigger (e.g., limited penetration of ultraviolet light through tissues), or alteration of the material physical properties (e.g., mechanics) may be difficult to achieve. To overcome these limitations, we used the interaction of near-infrared (NIR) light with gold nanorods (AuNRs) to generate heat through the photothermal effect. NIR light penetrates tissues to a greater extent than other wavelengths and provides a means to indirectly initiate radical polymerization. Specifically, this heating coupled with a thermal initiator (VA-044) produced radicals that polymerized methacrylated hyaluronic acid (MeHA) and generated hydrogels. A range of VA-044 concentrations changed the gelation time, yielding a system stable at 37 ° C for 22 min that gels quickly (∼3 min) when heated to 55 ° C. With a constant irradiation time (10 min) and laser power (0.3 W), different VA-044 and AuNR concentrations tuned the compressive modulus of the hydrogel. By changing the NIR irradiation time we attained a wide range of moduli at a set solution composition. In vivo mouse studies confirmed that NIR laser irradiation through tissue could gel an injected precursor solution transdermally.

  15. Structure-activity relationships in the hydrolysis of acrylate and methacrylate esters by carboxylesterase in vitro.

    PubMed

    McCarthy, T J; Witz, G

    1997-01-15

    Acrylate esters are important chemicals in the plastics industry, whose toxicity is theorized to involve alkylation of critical cellular nucleophiles via the Michael addition. Carboxylesterase-mediated hydrolysis of acrylates may be a detoxification mechanism as the unsaturated acid produced is not electrophilic under physiological conditions. Using purified porcine liver carboxylesterase, the enzymatic hydrolysis of several acrylate esters was characterized to determine Km and Vmax values for each ester. The Km (microM) and Vmax (nmol/min) values observed for ethyl acrylate were 134 +/- 16 (S.D.) and 8.9 +/- 2.0, respectively. While the Km for ethyl methacrylate was not significantly different, the Vmax 5.5 +/- 2.5, was significantly lower compared with the corresponding value for ethyl acrylate. The Km and Vmax for butyl acrylate were 33.3 +/- 8.5 microM and 1.49 +/- 0.83 nmol/min, respectively, and the corresponding values for its alpha-methyl analog were not significantly different. The Km and Vmax for tetraethyleneglycol dimethacrylate were 39 +/- 15 microM and 2.9 +/- 1.0 nmol/min, respectively. The Vmax for ethyleneglycol dimethacrylate, 6.9 +/- 2.4 nmol/min, was significantly higher than that of the larger bifunctional ester tetraethyleneglycol dimethacrylate, but the Km was not significantly different. These results indicate that alpha-methyl substitution appears to have a minor effect in the enzymatic hydrolysis of acrylates, and suggest that the relative toxicity of acrylates is not due to differences in carboxylesterase-mediated hydrolysis.

  16. Poly(N,N-dimethylaminoethyl methacrylate) Brushes: pH-Dependent Switching Kinetics of a Surface-Grafted Thermoresponsive Polyelectrolyte.

    PubMed

    Thomas, Marc; Gajda, Martyna; Amiri Naini, Crispin; Franzka, Steffen; Ulbricht, Mathias; Hartmann, Nils

    2015-12-15

    The temperature-dependent switching behavior of poly(N,N-dimethylaminoethyl methacrylate) brushes in alkaline, neutral, and acidic solutions is examined. A novel microscopic laser temperature-jump technique is employed in order to study characteristic thermodynamic and kinetic parameters. Static laser micromanipulation experiments allow one to determine the temperature-dependent variation of the swelling ratio. The data reveal a strong shift of the volume phase transition of the polymer brushes to higher temperatures when going from pH = 10 to pH = 4. Dynamic laser micromanipulation experiments offer a temporal resolution on a submillisecond time scale and provide a means to determine the intrinsic rate constants. Both the swelling and the deswelling rates strongly decrease in acidic solutions. Complementary experiments using in situ atomic force microscopy show an increased polymer layer thickness at these conditions. The data are discussed on the basis of pH-dependent structural changes of the polymer brushes including protonation of the amine groups and conformational rearrangements. Generally, repulsive electrostatic interactions and steric effects are assumed to hamper and slow down temperature-induced switching in acidic solutions. This imposes significant restrictions for smart polymer surfaces, sensors, and devices requiring fast response times.

  17. Influencing Factors for Organic Spill Recovery Performance with a Novel Polypropylene-Methacrylate Sorbent.

    PubMed

    Li, Shaoning; Wei, Junfu; Chen, Yuan; Cui, Li; Zhang, Yue; Dai, Zhao; Zhao, Shihuai

    2015-08-01

    Insoluble organic matter released to the water body through accidental spillage imposes serious damage on the environment. Polypropylene (PP) fiber and methacrylate resin, however, end up in certain morphology or low sorption capacity after a single use. In this study, a novel sorbent was prepared by radiation-induced graft polymerization of butyl methacrylate (BMA) onto PP fiber matrix to retain the advantages of both PP fibers and methacrylate resins to overcome the shortcomings of each used alone. The different parameters including irradiation power, irradiation time and monomer concentration that effect the grafting degree of grafted fiber were studied. The resulting grafted fibers (PP-g-BMA) were evaluated in this study in terms of sorption capacity, retention behaviors and reusability properties. The investigation revealed that the homopolymerization rate, organic matter temperature and pH values of organic-over-water aqueous solution are the most important factors in the sorption performance of polypropylene grafted fiber sorbent. PMID:26237685

  18. Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.

    PubMed

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.

  19. Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer

    PubMed Central

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426

  20. Toughening epoxy resin with poly(methyl methacrylate)-grafted natural rubber

    SciTech Connect

    Rezaifard, A.H.; Hodd, K.A.; Barton, J.M.

    1993-12-31

    A novel rubber, poly(methyl methacrylate)-g-natural rubber (Hevea-plus MG), has been studied as a toughening agent for bisphenol A diglycidyl ether (Shell 828 epoxy resin) cured with piperidine. Effective dispersions of the rubber, in concentrations of 2-10 parts per hundred parts resin, were achieved by adjusting the solubility parameter of the epoxy to approximate that of poly(methyl methacrylate) by adding bisphenol A. The fracture energy of the rubber-modified resin was determined by compact tension tests (in the temperature range -60 to +40{degrees}C) and by Charpy impact tests. The poly(methyl methacrylate)-g-natural rubber was found to be an effective toughening agent for the epoxy resin at both low and high rates of strain. Possible fracture mechanisms are discussed. 22 refs., 16 figs., 5 tabs.

  1. Assessment of the skin sensitising potency of the lower alkyl methacrylate esters.

    PubMed

    Kimber, Ian; Pemberton, Mark A

    2014-10-01

    There is continued interest in, and imperatives for, the classification of contact allergens according to their relative skin sensitising potency. However, achieving that end can prove problematic, not least when there is an apparent lack of concordance between experimental assessments of potency and the prevalence allergic contact dermatitis as judged by clinical experience. For the purpose of exploring this issue, and illustrating the important considerations that are required to reach sound judgements about potency categorisation, the lower alkyl methacrylate esters (LAM) have been employed here as a case study. Although the sensitising potential of methyl methacrylate (MMA) has been reviewed previously, there is available new information that is relevant for assessment of skin sensitising potency. Moreover, for the purposes of this article, analyses have been extended to include also other LAM for which relevant data are available: ethyl methacrylate (EMA), n-butyl methacrylate (nBMA), isobutyl methacrylate (iBMA), and 2-ethylhexyl methacrylate (EHMA). In addressing the skin sensitising activity of these chemicals and in drawing conclusions regarding relative potency, a number of sources of information has been considered, including estimates of potency derived from local lymph node assay (LLNA) data, the results of guinea pig assays, and data derived from in silico methods and from recently developed in vitro approaches. Moreover, clinical experience of skin sensitisation of humans by LAM has also been evaluated. The conclusion drawn is that MMA and other LAM are contact allergens, but that none of these chemicals has any more than weak skin sensitising potency. We have also explored here the possible bases for this modest sensitising activity. Finally, the nature of exposure to LAM has been reviewed briefly and on the basis of that information, together with an understanding of skin sensitising potency, a risk assessment has been prepared. PMID:24956587

  2. Synthesis and characterization of carbon fibers functionalized with poly (glycidyl methacrylate) via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Yongwei; Xiong, Lei; Qin, Xiaokang; Wang, Zhengyue; Ding, Bei; Ren, Huan; Pi, Xiaolong

    2015-07-01

    In this work, polyacrylonitrile (PAN)-based carbon fibers (CF) were chemically modified with poly (glycidyl methacrylate) (PGMA) via atom transfer radical polymerization (ATRP) to improve the interaction between the CF and polymer matrix. The FT-IR, TGA, and XPS were used to determine the chemical structure of the resulting products and the quantities of PGMA chains grafted from the CF surface. The experimental results confirm that the CF surface was functionalized and glycidyl methacrylate was graft-polymerized onto the CF, and the grafting content of polymer could reach 10.2%.

  3. pH-sensitive methacrylic copolymer gels and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  4. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo.

    PubMed

    Rinkenauer, Alexandra C; Press, Adrian T; Raasch, Martin; Pietsch, Christian; Schweizer, Simon; Schwörer, Simon; Rudolph, Karl L; Mosig, Alexander; Bauer, Michael; Traeger, Anja; Schubert, Ulrich S

    2015-10-28

    Polymer-based nanoparticles are promising drug delivery systems allowing the development of new drug and treatment strategies with reduced side effects. However, it remains a challenge to screen for new and effective nanoparticle-based systems in vitro. Important factors influencing the behavior of nanoparticles in vivo cannot be simulated in screening assays in vitro, which still represent the main tools in academic research and pharmaceutical industry. These systems have serious drawbacks in the development of nanoparticle-based drug delivery systems, since they do not consider the highly complex processes influencing nanoparticle clearance, distribution, and uptake in vivo. In particular, the transfer of in vitro nanoparticle performance to in vivo models often fails, demonstrating the urgent need for novel in vitro tools that can imitate aspects of the in vivo situation more accurate. Dynamic cell culture, where cells are cultured and incubated in the presence of shear stress has the potential to bridge this gap by mimicking key-features of organs and vessels. Our approach implements and compares a chip-based dynamic cell culture model to the common static cell culture and mouse model to assess its capability to predict the in vivo success more accurately, by using a well-defined poly((methyl methacrylate)-co-(methacrylic acid)) and poly((methyl methacrylate)-co-(2-dimethylamino ethylmethacrylate)) based nanoparticle library. After characterization in static and dynamic in vitro cell culture we were able to show that physiological conditions such as cell-cell communication of co-cultured endothelial cells and macrophages as well as mechanotransductive signaling through shear stress significantly alter cellular nanoparticle uptake. In addition, it could be demonstrated by using dynamic cell cultures that the in vivo situation is simulated more accurately and thereby can be applied as a novel system to investigate the performance of nanoparticle systems in vivo

  5. Chest Wall Reconstruction Using a Methyl Methacrylate Neo-Rib and Mesh.

    PubMed

    Suzuki, Kei; Park, Bernard J; Adusumilli, Prasad S; Rizk, Nabil P; Huang, James; Jones, David R; Bains, Manjit S

    2015-08-01

    Prosthetic reconstruction of the chest wall after oncologic resection is performed by means of various techniques using different materials. We describe a new technique of chest wall reconstruction that includes the use of Marlex mesh and the creation of a neo-rib from a Steinmann pin and methyl methacrylate. PMID:26234861

  6. Chest Wall Reconstruction Using a Methyl Methacrylate Neo-rib and Mesh

    PubMed Central

    Suzuki, Kei; Park, Bernard J.; Adusumilli, Prasad S.; Rizk, Nabil P.; Huang, James; Jones, David R.; Bains, Manjit S.

    2016-01-01

    Prosthetic reconstruction of the chest wall after oncologic resection is performed by means of various techniques using different materials. We describe a new technique of chest wall reconstruction that includes the use of Marlex mesh and the creation of a neo-rib from a Steinmann pin and methyl methacrylate. PMID:26234861

  7. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer

    PubMed Central

    Arkhipova, Oksana V.; Meer, Margarita V.; Mikoulinskaia, Galina V.; Zakharova, Marina V.; Galushko, Alexander S.; Kondrashov, Fyodor A.

    2015-01-01

    The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1. PMID:25962149

  8. Organometallic nonlinear optical (NLO) polymers. Further development of pendant ferrocene poly(methyl methacrylate) copolymers

    SciTech Connect

    Wright, M.E.; Toplikar, E.G.

    1993-12-31

    The synthesis of several new ferrocene monomers is reported. The copolymerization of these new monomers with methyl methacrylate affords polymers of moderate molecular weights. Synthetic procedures for both monomers and polymers as well as analysis of the properties of the polymers will be presented.

  9. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (generic). 721.10517 Section 721.10517 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  10. RAFT "grafting-through" approach to surface-anchored polymers: Electrodeposition of an electroactive methacrylate monomer.

    PubMed

    Grande, C D; Tria, M C; Felipe, M J; Zuluaga, F; Advincula, R

    2011-02-01

    The synthesis of homopolymer and diblock copolymers on surfaces was demonstrated using electrodeposition of a methacrylate-functionalized carbazole dendron and subsequent reversible addition-fragmentation chain transfer (RAFT) "grafting-through" polymerization. First, the anodically electroactive carbazole dendron with methacrylate moiety (G1CzMA) was electrodeposited over a conducting surface (i.e. gold or indium tin oxide (ITO)) using cyclic voltammetry (CV). The electrodeposition process formed a crosslinked layer of carbazole units bearing exposed methacrylate moieties. This film was then used as the surface for RAFT polymerization process of methyl methacrylate (MMA), styrene (S), and tert-butyl acrylate (TBA) in the presence of a free RAFT agent and a free radical initiator, resulting in grafted polymer chains. The molecular weights and the polydispersity indices (PDI) of the sacrificial polymers were determined by gel permeation chromatography (GPC). The stages of surface modification were investigated using X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM) to confirm the surface composition, thickness, and film morphology, respectively. UV-Vis spectroscopy also confirmed the formation of an electro-optically active crosslinked carbazole film with a [Formula: see text] - [Formula: see text] absorption band from 450-650nm. Static water contact angle measurements confirmed the changes in surface energy of the ultrathin films with each modification step. The controlled polymer growth from the conducting polymer-modified surface suggests the viability of combining electrodeposition and grafting-through approach to form functional polymer ultrathin films.

  11. Crack resistance of polycarbonate and polymethyl methacrylate at high loading rates

    SciTech Connect

    Eremenko, A.S.; Girin, A.S.; Novikov, S.A.; Sinitsyn, V.A.

    1986-01-01

    The authors study the temperature and rate relationships of crack resistance of polymers. Disk specimens of polymethyl methacrylate and type PK-1 polycarbonate were tested at 20 + or - 1 C and -15 + or - 1 C. It was established that in the initial portion the crack propagates at an almost constant rate.

  12. Exposure to airborne methacrylates and natural rubber latex allergens in dental clinics.

    PubMed

    Henriks-Eckerman, M L; Alanko, K; Jolanki, R; Kerosuo, H; Kanerva, L

    2001-06-01

    The exposure of dental personnel to airborne methacrylates and natural rubber latex (NRL) allergens was studied during placing of composite resin restorations in six dental clinics in Finland. Both area and personal sampling were performed, and special attention was paid to measurement of short-term emissions from the patient's mouth. Methacrylates were collected onto thermal desorption tubes filled with Tenax TA and NRL allergens onto membrane filters. The methacrylate samples were thermally desorbed and analysed by gas chromatography with mass selective detection. The NRL allergen concentrations were determined by the allergen-specific IgE-ELISA-inhibition method. The median concentration of 2-hydroxyethylmethacrylate (2-HEMA) was 0.004 mg m-3 close to the dental nurse's work-desk and 0.003 mg m-3 in the breathing zone of the nurse with a maximum concentration of 0.033 mg m-3. Above the patient's mouth the concentration of 2-HEMA was about 0.01 mg m-3 during both working stages, i.e., during application of adhesive and composite resins and during finishing and polishing of the fillings. Maximum concentrations of 3-5 times higher than median concentrations were also measured. Triethyleneglycol dimethacrylate was released into the air mainly during the removal of old composite resin restorations (0.05 mg m-3) and only to a minor extent during finishing and polishing procedures. The median concentration of the NRL allergen was 0.12 au m-3 (au = arbitrary unit) with a maximum concentration of 1.1 au m-3. The results show that, except for short-term emissions from the patient's mouth, the exposure of dental personnel to methacrylates and NRL allergens is very low. Measures to reduce exposure are discussed, as the airborne concentrations of methacrylates should be kept as low as possible in order to reduce the risk of hypersensitivity.

  13. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Register of October 5, 2011 (76 FR 61647) (FRL-8890- 5), EPA issued a notice pursuant to section 408 of... Planning and Review (58 FR 51735, October 4, 1993). Because this final rule has been exempted from review... Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use (66 FR 28355, May...

  14. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated... Specific Chemical Substances § 721.10381 Cyclic carboxylic acid, polymer with dihydroxy dialkyl...

  15. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated... Specific Chemical Substances § 721.10381 Cyclic carboxylic acid, polymer with dihydroxy dialkyl...

  16. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated... Specific Chemical Substances § 721.10381 Cyclic carboxylic acid, polymer with dihydroxy dialkyl...

  17. Swelling of Poly(n-butyl methacrylate) Films Exposed to Supercritical Carbon Dioxide: A Comparative Study with Polystyrene.

    PubMed

    Bal, Jayanta Kumar; Beuvier, Thomas; Vignaud, Guillaume; Chebil, Mohamed Souheib; Ben-Jabrallah, Soumaya; Ahmed, Ikbal; Grohens, Yves; Gibaud, Alain

    2016-02-23

    We report here the swelling and relaxation properties of confined poly(n-butyl methacrylate) (PBMA) films having thicknesses of less than 70 nm under supercritical carbon dioxide (scCO2) using the X-ray reflectivity technique. Swellability is found to be dominant in thinner films compared to thicker ones as a consequence of the confinement-induced densification of the former. Swellability is proportionately increased with the density of the film. PBMA films exhibit a more significant swelling than do PS films, and their differences become more prominent with the increase in film thickness. A comparison between the results obtained for polystyrene (PS) and PBMA ultrathin films reveals that the swellability is dependent upon the specific intermolecular interaction between CO2 and the chemical groups available in the polymers. Owing to strong Lewis acid-base interactions with scCO2 and the lower glass-transition temperature (bulk Tg ≈ 29 °C), PBMA films exhibit a greater amount of swelling than do PS films (bulk Tg ≈ 100 °C). Though they reach to the different swollen state upon exposition, identical relaxation behavior as a function of aging time is evidenced. This unprecedented behavior can be ascribed to the strong bonding between trapped CO2 and PBMA that probably impedes the release of CO2 molecules from the swollen PBMA films manifested in suppressed relaxation.

  18. Phosphatidylcholine covalently linked to a methacrylate-based monolith as a biomimetic stationary phase for capillary liquid chromatography.

    PubMed

    Moravcová, Dana; Carrasco-Correa, Enrique Javier; Planeta, Josef; Lämmerhofer, Michael; Wiedmer, Susanne K

    2015-07-10

    In this study a strategy to immobilize phospholipids onto a polymer-based stationary phase is described. Methacrylate-based monoliths in capillary format (150×0.1mm) were modified by soybean phosphatidylcholine through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide coupling to obtain stationary phases suitable to mimic cell surface membranes. The covalent coupling reaction involves the phosphate group in phospholipids; therefore, the described methodology is suitable for all types of phospholipids. Immobilization of soy bean phosphatidylcholine on the monolith was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry of the fatty alcohol profile, generated upon reductive cleavage of the fatty acyl side chains of the phospholipid on the monolith surface with lithium aluminium hydride. The prepared stationary phases were evaluated through studies on the retention of low-molar mass model analytes including neutral, acidic, and basic compounds. Liquid chromatographic studies confirmed predominant hydrophobic interactions between the analytes and the synthesized stationary phase; however, electrostatic interactions contributed to the retention as well. The synthesized columns showed high stability even with fully aqueous mobile phases such as Dulbecco's phosphate-buffered saline solution.

  19. Construction of wettability gradient surface on copper substrate by controlled hydrolysis of poly(methyl methacrylate-butyl acrylate) films

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Cheng, Jiang; Yang, Zhuo-ru

    2014-10-01

    We report a gradient wettability surface on copper slide prepared by a simple controlled ester group hydrolysis procedure of poly(methyl methacrylate-butyl acrylate) [P (MMA-BA)] films coated on the copper substrate. In the method, sodium hydroxide solutions are selected to prepare surface gradient wettability on P (MMA-BA) films. The P (MMA-BA) copolymers with different MMA contents are first synthesized by a conventional free atom radical solution polymerization method. The transfer of surface chemical composition from the ester group to acid salt is achieved by hydrolysis in NaOH solution. The effects of different concentrations of NaOH solution and reaction times on the physicochemical properties of the resulting surfaces are studied. The field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) results show that the varying concentration along the substrate length is only attributed to the hydrolysis reaction of ester groups. The hydrolysis causes insignificant change on the morphology of the original film on the copper substrate. In addition, it is found that the MMA copolymer content has a significant influence on the concentration of ester groups on the outermost surface and thus important for forming the slope gradients.

  20. T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs.

    PubMed

    Xiang, Jun; Sun, Jianguo; Hong, Jiaxu; Wang, Wentao; Wei, Anji; Le, Qihua; Xu, Jianjiang

    2015-05-01

    Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. PMID:25746271

  1. Phosphatidylcholine covalently linked to a methacrylate-based monolith as a biomimetic stationary phase for capillary liquid chromatography.

    PubMed

    Moravcová, Dana; Carrasco-Correa, Enrique Javier; Planeta, Josef; Lämmerhofer, Michael; Wiedmer, Susanne K

    2015-07-10

    In this study a strategy to immobilize phospholipids onto a polymer-based stationary phase is described. Methacrylate-based monoliths in capillary format (150×0.1mm) were modified by soybean phosphatidylcholine through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide coupling to obtain stationary phases suitable to mimic cell surface membranes. The covalent coupling reaction involves the phosphate group in phospholipids; therefore, the described methodology is suitable for all types of phospholipids. Immobilization of soy bean phosphatidylcholine on the monolith was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry of the fatty alcohol profile, generated upon reductive cleavage of the fatty acyl side chains of the phospholipid on the monolith surface with lithium aluminium hydride. The prepared stationary phases were evaluated through studies on the retention of low-molar mass model analytes including neutral, acidic, and basic compounds. Liquid chromatographic studies confirmed predominant hydrophobic interactions between the analytes and the synthesized stationary phase; however, electrostatic interactions contributed to the retention as well. The synthesized columns showed high stability even with fully aqueous mobile phases such as Dulbecco's phosphate-buffered saline solution. PMID:26024990

  2. Surface functionalization of cotton cellulose with glycidyl methacrylate and its application for the adsorption of aromatic pollutants from wastewaters.

    PubMed

    Vismara, Elena; Melone, Lucio; Gastaldi, Giuseppe; Cosentino, Cesare; Torri, Giangiacomo

    2009-10-30

    Cellulose material C1 was prepared by grafting of glycidyl methacrylate (GMA) in the presence of Fenton-type reagent. This one-pot procedure provided C1 with glycidyl isobutyrate branches. Glycidyl epoxide ring opening with water turned C1-C2 material branched with glycerol isobutyrate. So, C1 surface bears hydrophobic branches ending with the glycidyl group, while C2 surface presents hydrophilic branches ending with the glycerol group. The adsorption of aromatic polluting substances like phenol (Ph), 4-nitrophenol (pNPh), 2,4-dinitrophenol (dNPh), 2,4,6-trinitrophenol (picric acid, tNPh) and 2-naphtol (BN) from their water solutions was tested with C1, C2 and with the untreated cellulose material C0. Phenol adsorption did not occur. All the other aromatic molecules were removed in different amount both by C1 and C2. C1 and C2 showed different affinities towards nitrophenols and 2-naphtol. While C1 was much more effective for removing the hydrophobic 2-naphtol, C2 had higher adsorption capacity towards the hydrophilic nitrophenols, in agreement with their branches polarity, respectively.

  3. Removal of 4,4'-dichlorinated biphenyl from aqueous solution using methyl methacrylate grafted multiwalled carbon nanotubes.

    PubMed

    Shao, Dadong; Hu, Jun; Jiang, Zhongqing; Wang, Xiangke

    2011-01-01

    Methyl methacrylate (MMA) is grafted on multiwalled carbon nanotubes (MWCNTs) by using N(2) plasma technique. The MMA grafted MWCNTs (MWCNT-g-pMMA) are characterized by using Raman spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, thermo gravimetric analysis-differential thermal analysis (TGA-DTA), and potentiometric acid-base titration method. The application of MWCNT-g-pMMA in the removal of 4,4'-dichlorinated biphenyl (4,4'-DCB) from large volumes of aqueous solutions is investigated under ambient conditions. The results indicate that the adsorption of 4,4'-DCB on MWCNT-g-pMMA is much higher than that of 4,4'-DCB on MWCNTs, and the adsorbed 4,4'-DCB is difficult to be thermally decomposed from MWCNT-g-pMMA according to the TGA-DTA analysis. MWCNT-g-pMMA are suitable materials in the preconcentration and immobilization of polychlorinated biphenyls (PCBs) from large volumes of aqueous solutions in environmental pollution cleanup.

  4. Proton conducting behavior of a novel polymeric gel membrane based on poly(ethylene oxide)-grafted-poly(methacrylate)

    NASA Astrophysics Data System (ADS)

    Qiao, Jinli; Yoshimoto, Nobuko; Morita, Masayuki

    A novel proton conducting polymeric gel membrane that consists of poly(ethylene oxide)-grafted-poly(methacrylate) (PEO-PMA) with poly(ethylene glycol) dimethyl ether (PEGDE) as a plasticizer doped with aqueous phosphoric acid (H 3PO 4) has been prepared and its physicochemical properties were studied in detail. The ionic conductivity was dependent much on the concentration of H 3PO 4, the immersion time, and content of the plasticizer. This type of proton conducting polymeric gels shares not only good mechanical properties but also thermal stability. Maximum conductivities up to 2.6×10 -2 S cm -1 at room temperature (25 °C) and 2.8×10 -2 S cm -1 at 70 °C were obtained for the composition of the polymer matrix to the plasticizer as 35/65 (in mass) after the H 3PO 4 doping from the aqueous solution with 2.93 mol l -1. FT-IR spectra showed that these high proton conductivities are attributed to the presence of excesses free H 3PO 4 in the polymeric gel in addition to the hydrogen-bonded H 3PO 4 to the polymer matrix.

  5. Cellular uptake and degradation behaviour of biodegradable poly(ethylene glycol-graft-methyl methacrylate) nanoparticles crosslinked with dimethacryloyl hydroxylamine.

    PubMed

    Scheler, Stefan; Kitzan, Martina; Fahr, Alfred

    2011-01-17

    Crosslinked polymers with hydrolytically cleavable linkages are highly interesting materials for the design of biodegradable drug carriers. The aim of this study was to investigate if nanoparticles made of such polymers have the potential to be used also for intracellular drug delivery. PEGylated nanoparticles were prepared by copolymerization of methacrylic acid esters and N,O-dimethacryloylhydroxylamine (DMHA). The particles were stable at pH 5.0. At pH 7.4 and 9.0 the degradation covered a time span of about 14 days, following first-order kinetics with higher crosslinked particles degrading slower. Cellular particle uptake and cytotoxicity were tested with L929 mouse fibroblasts. The particle uptake rate was found to correlate linearly with the surface charge and to increase as the zeta potential becomes less negative. Coating of the particle surface with polysorbate 80 drops the internalization rate close to zero and the charge dependence disappears. This indicates the existence of a second effect apart from surface charge. A similar pattern of correlation with zeta potential and coating was also found for the degree of membrane damage while there was no effect of polysorbate on the cell metabolism which increased as the negative charge decreased. It is discussed whether exocytotic processes may explain this behaviour.

  6. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    SciTech Connect

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2010-02-16

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group.

  7. Process for producing a well-adhered durable optical coating on an optical plastic substrate. [abrasion resistant polymethyl methacrylate lenses

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M. (Inventor)

    1978-01-01

    A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.

  8. ATOM TRANSFER RADICAL POLYMERIZATION OF N-BUTYL METHACRYLATE IN AQUEOUS DISPERSED SYSTEMS: A MINIEMULSION APPROACH. (R826735)

    EPA Science Inventory

    Ultrasonication was applied in combination with a hydrophobe for the copper-mediated atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system. A controlled polymerization was successfully achieved, as demonstrated by a linear correlation between...

  9. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    SciTech Connect

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  10. Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions).

    PubMed

    Huš, Sebastjan; Kolar, Mitja; Krajnc, Peter

    2016-03-11

    Removal of silver, lead and cadmium ions from both model solutions and real contaminated water was achieved, in a flow through manner, by using highly porous functionalized poly(glycidyl methacrylate) materials, prepared by the polymerisation of high internal phase emulsions (polyHIPE), with significant sorption differences between metals allowing for selective removal. PolyHIPEs, initially prepared from glycidyl methacrylate as a functional monomer, were functionalized with pentaerythritol tetrakis(3-mercaptopropionate), 1,9-nonanedithiol and 2-aminobenzenethiol via the epoxy ring opening on the polymer supports and applied in a flow-through manner via encasements into dedicated disk holders. Capacity of 21.7mg Ag per gram of polymer was found for 1,9-nonanedithiol functionalized polymers, while the capacity was decreasing with the decreasing ionic radius of the metal; the dynamics of sorption also depended on metal ion size and furthermore on the thiol used for the polymer functionalization.

  11. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template.

    PubMed

    Grama, S; Horák, D

    2015-01-01

    Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres were used as a template for preparing porous silica particles. The starting polymer microspheres that were 9.3 microm in size were synthesized by multistep swelling polymerization using a modified Ugelstad technique. Subsequently, silica (SiO2) was deposited on the surface and inside the PGMA microspheres to produce poly(glycidyl methacrylate)-silica hybrid particles (PGMA-SiO2). Upon calcination of the PGMA-SiO2 microspheres, porous silica particles were formed. The morphology, particle size, polydispersity and inner structure of the silica microspheres were investigated by scanning and transmission electron microscopy. Thermogravimetric analysis and dynamic adsorption of nitrogen determined the amount of silica formed and its specific surface area. Compared with the starting PGMA microspheres, the size of the porous silica particles decreased by up to 30%. These porous silica microspheres are promising for chromatography and biomedical applications. PMID:26447591

  12. Amphiphilic Copolymers of Polyfluorene Methacrylates Exhibiting Tunable Emissions for Ink-Jet Printing.

    PubMed

    Deng, Chao; Ling, Jun

    2016-08-01

    Functionalized polyfluorene receives more and more attention due to its wide applications. Here, the syntheses of three novel polyfluorene-based methacrylate macromonomers exhibiting a vast flexibility for further applications are reported. Their emissions strongly depend on the end groups and thus the macromonomers provide blue, green, and red emissions simultaneously with the same excitation light of 365 nm. Their well-defined copolymers with 2-(dimethylamino) ethyl methacrylate via reversible addition-fragmentation chain transfer polymerization are investigated in detail. These copolymers exhibit high quantum yields in solid film (up to 0.8), and self-assemble into photoluminescent nanoparticles in aqueous solutions with pure blue, green, and red emissions. By simply mixing them, perfect white light emission with high quality is obtained. These aqueous nanoparticles solutions are ready for ink-jet printing to produce exquisite bright and colorful fluorescent pictures. PMID:27310485

  13. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template.

    PubMed

    Grama, S; Horák, D

    2015-01-01

    Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres were used as a template for preparing porous silica particles. The starting polymer microspheres that were 9.3 microm in size were synthesized by multistep swelling polymerization using a modified Ugelstad technique. Subsequently, silica (SiO2) was deposited on the surface and inside the PGMA microspheres to produce poly(glycidyl methacrylate)-silica hybrid particles (PGMA-SiO2). Upon calcination of the PGMA-SiO2 microspheres, porous silica particles were formed. The morphology, particle size, polydispersity and inner structure of the silica microspheres were investigated by scanning and transmission electron microscopy. Thermogravimetric analysis and dynamic adsorption of nitrogen determined the amount of silica formed and its specific surface area. Compared with the starting PGMA microspheres, the size of the porous silica particles decreased by up to 30%. These porous silica microspheres are promising for chromatography and biomedical applications.

  14. Surface-initiated Polymerization of Azidopropyl Methacrylate and its Film Elaboration via Click Chemistry

    PubMed Central

    Saha, Sampa; Bruening, Merlin L.; Baker, Gregory L.

    2013-01-01

    Azidopropyl methacrylate (AzPMA), a functional monomer with a pendent azido group, polymerizes from surfaces and provides polymer brushes amenable to subsequent elaboration via click chemistry. In DMF at 50 °C, click reactions between poly(AzPMA) brushes and an alkynylated dye proceed with >90% conversion in a few minutes. However, in aqueous solutions, reaction with an alkyne-containing poly(ethylene glycol) methyl ether (mPEG, Mn=5000) gives <10% conversion after a 12-h reaction at room temperature. Formation of copolymers with AzPMA and polyethylene glycol methyl ether methacrylate (mPEGMA) enables control over the hydrophilicity and functional group density in the copolymer to increase the yield of aqueous click reactions. The copolymers show reaction efficiencies as high as 60%. These studies suggest that for aqueous applications such as bioconjugation via click chemistry, control over brush hydrophilicity is vital. PMID:24293702

  15. Quaternary ammonium silane-functionalized, methacrylate resin composition with antimicrobial activities and self-repair potential

    PubMed Central

    Gong, Shi-qiang; Niu, Li-na; Kemp, Lisa K.; Yiu, Cynthia K.Y.; Ryou, Heonjune; Qi, Yi-pin; Blizzard, John D.; Nikonov, Sergey; Brackett, Martha G.; Messer, Regina L.W.; Wu, Christine D.; Mao, Jing; Brister, L. Bryan; Rueggeberg, Frederick A.; Arola, Dwayne D.; Pashley, David H.; Tay, Franklin R.

    2012-01-01

    Design of antimicrobial polymers for enhancing healthcare issues and minimizing environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol-gel chemical route; these compounds possess flexible Si-O-Si bonds. In present work, a partially-hydrolyzed QAMS copolymerized with bis-GMA is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. Kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix. PMID:22659173

  16. Atom transfer radical polymerization to fabricate monodisperse poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres and its application for protein affinity purification.

    PubMed

    Yu, Ling; Shi, Zhuan Zhuan; Li, Chang Ming

    2015-09-01

    Poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres for the first time were successfully synthesized by atom transfer radical polymerization (ATRP) method at room temperature. The co-polymerization approach was investigated to delicately control the microsphere morphology and size-distribution by reaction conditions including solvent percentage, monomer loading and rotation speed. The results show that the average size of the microspheres is ∼5.7 μm with coexistence of epoxy, hydroxyl and ether groups, which provide plentiful functional sites for protein anchoring. The mechanism of the microsphere formation is proposed. The microsphere successfully demonstrates its unique application for affinity purification of proteins, in which the functional epoxy group facilitates a simple and efficient protein covalent immobilization to purify immunoglobulin G on the microspheres, while the hydrophilic poly (ethylene glycol) motif can repulse nonspecific protein adsorption for good specificity. This microspheres can be used in broad protein biosensors due to their abundant functional groups and high surface to volume ratio.

  17. Study of the water structure in poly(methyl methacrylate-block-2-hydroxyethyl methacrylate) and its relationship to platelet adhesion on the copolymer surface.

    PubMed

    Mochizuki, Akira; Namiki, Takahiro; Nishimori, Yusuke; Ogawa, Haruki

    2015-01-01

    The water structure and platelet compatibility of poly(methyl methacrylate (MMA)-block-2-hydroxyethyl methacrylate (HEMA)) were investigated. The molecular weight (Mn) of the polyHEMA segment was kept constant (average: 9600), while the Mn of the polyMMA segment was varied from 1340 to 7390. The equilibrium water content of the copolymers was found to be mainly governed by the HEMA content. The water structure in the copolymers was characterized in terms of the amounts of non-freezing and freezing water (abbreviated as Wnf and Wfz, respectively) using differential scanning calorimetry. It was found that the Wnf for the copolymers were higher than those estimated from the Wnf for the HEMA and MMA homopolymers and that the amount of excess non-freezing water depended on the polyMMA segment length. In addition, X-ray diffraction analysis revealed that some of the copolymers had cold-crystallizable water. These facts suggested that the polyMMA segments were involved in determining the water structures in the copolymers. Furthermore, the platelet compatibility of the copolymers was improved as compared to that of the HEMA homopolymer. It was therefore concluded that the platelet compatibility of the copolymer was related to the amount of excess non-freezing water.

  18. Fabrication of Poly(methyl Methacrylate) microfluidic chips by redox-initiated polymerization

    SciTech Connect

    Chen, Jiang; Lin, Yuehe; Chen, Gang

    2007-08-16

    In this report, a method based on the redox-initiated polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of PMMA microfluidic chips.The new fabrication approach obviates the need for special equipment and significantly simplifies the process of fabricating microdevices. The attractive performance of the novel PMMA microchips has been demonstrated in connection with contactless conductivity detection for the separation and detection of ionic species.

  19. Carboxybetaine methacrylate polymers offer robust, long-term protection against cell adhesion

    PubMed Central

    Mahmud, Goher; Huda, Sabil; Yang, Wei; Kandere-Grzybowska, Kristiana; Pilans, Didzis; Jiang, Shaoyi; Grzybowski, Bartosz A.

    2013-01-01

    Films of poly(carboxybetaine methacrylate), poly(CBMA), grafted onto microetched gold slides are effective in preventing non-specific adhesion of cells of different types. The degree of adhesion resistance is comparable to that achieved with the self-assembled monolayers, SAMs, of oligo(ethylene glycol) alkanethiolates. In sharp contrast to the SAMs, however, substrates protected with poly(CBMA) can be stored in dry state without losing their protective properties for periods up to two weeks. PMID:21711048

  20. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Technology (Revised) (Presentation)

    SciTech Connect

    Miller, D. C.; Carloni, J. D.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R.

    2012-01-01

    Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).

  1. Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber

    NASA Astrophysics Data System (ADS)

    Flores-Rojas, G. G.; Bucio, E.

    2016-10-01

    Silicone rubber (SR) was modified with a graft of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) using either gamma-radiation or azobisisobutyronitrile (AIBN). The graft efficiency was evaluated as a function of monomer concentration, absorbed dose, reaction temperature, and concentration of AIBN. The hydrophilicity of the grafted films was measured by contact angle and their equilibrium swelling time in ethanol. Additional characterization by infrared (FTIR-ATR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is also reported.

  2. Reactive aluminum metal nanoparticles within a photodegradable poly(methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    Patel, Ashish; Becic, Jasmin; Buckner, Steven W.; Jelliss, Paul A.

    2014-01-01

    We report here on new photoreactive core-matrix reactive metal nanoparticles. Poly(methyl methacrylate)-capped aluminum nanoparticles (PMMA-Al NPs) were synthesized and demonstrated air stability on the order of 2 months. Upon exposure of the PMMA-Al NPs to UV radiation the composite reacts more rapidly to release H2 gas from alkaline solution. FTIR spectroscopy indicates that the PMMA cap degrades under UV irradiation, exposing the reactive metal core.

  3. Study on stochastic phenomena induced in chemically amplified poly(4-hydroxystyrene-co-t-butyl methacrylate) resist (high performance model resist for extreme ultraviolet lithography)

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius J.; Itani, Toshiro

    2016-03-01

    Understanding of stochastic phenomena is essential to the development of highly sensitive resist for nanofabrication. In this study, we investigated the stochastic effects in a chemically amplified resist consisting of poly(4-hydroxystyrene-co-t-butyl methacrylate), triphenylsulfonium nonafluorobutanesulfonate (an acid generator), and tri-n-octylamine (a quencher). The SEM images of resist patterns were analyzed, using Monte Carlo simulation on the basis of the sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. It was estimated that +/-0.82σ fluctuation of the number of protected units per polymer molecule led to line edge roughness formation. Here, σ is the standard deviation of the number of protected units per polymer molecule after postexposure baking.

  4. Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement.

    PubMed

    Jayabalan, M; Thomas, V; Rajesh, P N

    2001-10-01

    Polypropylene fumarate/phloroglucinol triglycidyl methacrylate oligomeric blend-based bone cement was studied. Higher the percentage of phloroglucinol triglycidyl methacrylate, lesser the setting time. An optimum setting time could be arrived with 50:50 blend composition of the two oligomers. Composite cement of 50:50 blend prepared with hydroxyapatite granules of particle size 125 microm binds bovine rib bones. The tensile strength of this adhesive bond was found to be 1.11 kPa. The thermal studies suggest the onset of cross-linking reaction in the cured blend if the blend is heated. The absence of softening endotherm in the cured blend shows the thermosetting-like amorphous nature of blend system, which may restrict the changes in creep properties. The in vitro biodegradation studies reveal possible association of calcium ions with negatively charged units of degrading polymer chain resulting in slow down of degradation. Relatively slow degradation was observed in Ringer's solution. The study reveals the potential use of polypropylene fumarate/phloroglucinol triglycidyl methacrylate as partially degradable polymeric cement for orthopaedic applications. PMID:11545309

  5. Synthesis, Characterization, and In Vitro Evaluation of New Ibuprofen Polymeric Prodrugs Based on 2-Hydroxypropyl Methacrylate

    PubMed Central

    Babazadeh, Mirzaagha; Sheidaei, Maryam; Abbaspour, Sara; Edjlali, Ladan

    2013-01-01

    The present research work describes the synthesis and evaluation of new acrylic-type polymeric systems having degradable ester bonds linked to ibuprofen as materials for drug delivery. Ibuprofen was linked to 2-hydroxy-propyl methacrylate by an activated ester methodology in a one-pot procedure with a high yield. The resulting material was copolymerized with either 2-hydroxyethyl methacrylate or methyl methacrylate (in 1:3 mole ratios) by the free radical polymerization method, utilizing azoisobutyronitrile at 65–70 °C. The characterization of the resulting products by FTIR, 1H NMR, 13C NMR, DSC, and elemental analysis confirmed their synthesis successfully. Ibuprofen release from the obtained polymers was preliminarily evaluated at different buffered solutions (pH 1, 7.4, and 10) into dialysis bags to show the capacity of prodrugs to release the drug under hydrolytic conditions. Detection of hydrolysis by UV spectroscopy at selected intervals showed that the drug can be released by selective hydrolysis of the ester bond at the side of the drug moiety. The release profiles indicated that the hydrolytic behavior of polymers is strongly based on the polymer hydrophilicity and the pH value of the hydrolysis solution. The results suggest that these polymers could be useful in controlled release systems. PMID:23641345

  6. Mechanical Properties of Individual Composite Poly(methyl-methacrylate) -Multiwalled Carbon Nanotubes Nanofibers

    NASA Astrophysics Data System (ADS)

    Grabbert, Niels; Wang, Bei; Avnon, Asaf; Zhuo, Shuyao; Datsyuk, Vitaliy; Trotsenko, Svitlana; Mackowiak, Piotr; Kaletta, Katrin; Lang, Klaus-Dieter; Ngo, Ha-Duong

    2014-08-01

    Multiwalled carbon nanotubes with their superb mechanical properties are an unique filler material for polymer composites. Here, we present an investigation of mechanical properties of electrospun Poly-(methyl-methacrylate) multiwalled carbon nanotubes composite nanofibers. The method of electrospinning was used to fabricate suspended individual Poly-(methyl-methacrylate) multiwalled carbon nanotubes nanofibers. In order to reinforce the nanofibers, different high concentration of multiwalled carbon nanotubes were used. Transmission electron microscopy measurements reveal a successful filling of the nanofibers. The different types of nanofibers were deposited at SiO2 substrates. Which were previously etched, to create trenches for bend tests. Followed by fixing the nanofiber with a focus ion beam platinum deposition at the trench edges. An atomic force microscopy was used to perform the mechanical nanofiber bending tests over trenches. The results were compared with pristine Poly-(methyl- methacrylate) nanofibers to nanofibers with 15 weight% and 20 weight% multiwalled carbon nanotubes composite fibers. We observed that pristine nanofibers have Young's modulus of 136 MPa, while for composite nanofibers with 15 weight% have 2.65 GPa and with 20 weight% have 6.06 GPa (at room temperature and air ambiance). This corresponds to an increase of Young's modulus of 19 fold between the pristine nanofibers and the 15 weight% of mutliwalled carbon nanotubes filled nanofibers. Therefore the increase of the Young's modulus compared between the pristine and the 20 weight% MWCNT filled nanofibers corresponds to 45 fold.

  7. Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation.

    PubMed

    Bae, Hojae; Ahari, Amir F; Shin, Hyeongho; Nichol, Jason W; Hutson, Che B; Masaeli, Mahdokht; Kim, Su-Hwan; Aubin, Hug; Yamanlar, Seda; Khademhosseini, Ali

    2011-01-01

    The ability to encapsulate cells in three-dimensional (3D) environments is potentially of benefit for tissue engineering and regenerative medicine. In this paper, we introduce pullulan methacrylate (PulMA) as a promising hydrogel platform for creating cell-laden microscale tissues. The hydration and mechanical properties of PulMA were demonstrated to be tunable through modulation of the degree of methacrylation and gel concentration. Cells encapsulated in PulMA exhibited excellent viability. Interestingly, while cells did not elongate in PulMA hydrogels, cells proliferated and organized into clusters, the size of which could be controlled by the hydrogel composition. By mixing with gelatin methacrylate (GelMA), the biological properties of PulMA could be enhanced as demonstrated by cells readily attaching to, proliferating, and elongating within the PulMA/GelMA composite hydrogels. These data suggest that PulMA hydrogels could be useful for creating complex, cell-responsive microtissues, especially for applications that require controlled cell clustering and proliferation.

  8. Rapid determination of sterols in vegetable oils by CEC using methacrylate ester-based monolithic columns.

    PubMed

    Lerma-García, María Jesús; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo; Herrero-Martínez, José M

    2008-11-01

    A method for the determination of sterols in vegetable oils by CEC with UV-Vis detection, using methacrylate ester-based monolithic columns, has been developed. To prepare the columns, polymerization mixtures containing monomers of different hydrophobicities were tried. The influence of composition of polymerization mixture was optimized in terms of porogenic solvent, monomers/porogens and monomer/crosslinker ratios. The composition of the mobile phase was also studied. The optimum monolith was obtained with lauryl methacrylate monomer at 60:40% (wt:wt) lauryl methacrylate/ethylene dimethacrylate ratio and 60 wt% porogens with 20 wt% of 1,4-butanediol (12 wt% 1,4-butanediol in the polymerization mixture). Excellent resolution between sterols was achieved in less than 7 min with an 85:10:5 v/v/v ACN-2-propanol-water buffer containing 5 mM Tris at pH 8.0. The limits of detection were lower than 0.04 mM, and inter-day and column-to-column reproducibilities at 0.75 mM were better than 6.2%. The method was applied to the determination of sterols in vegetable oils with different botanical origins and to detect olive oil adulteration with sunflower and soybean oils.

  9. Study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    PubMed

    Bastiat, Guillaume; Grassl, Bruno; Khoukh, Abdel; François, Jeanne

    2004-07-01

    Sodium dodecyl sulfate (SDS)-poly(propylene oxide) methacrylate (PPOMA) (of molecular weight M(w) = 434 g x mol(-1)) mixtures have been studied using conductimetry, static light scattering, fluorescence spectroscopy, and 1H NMR. It has been shown that SDS and PPOMA form mixed micelles, and SDS and PPOMA aggregation numbers, N(ag SDS) and N(ag PPOMA), have been determined. Total aggregation numbers of the micelles (N(ag SDS) + N(ag PPOMA)) and those of SDS decrease upon increasing the weight ratio R = PPOMA/SDS. Localization of PPOMA inside the mixed micelles is considered (i) using 1H NMR to localize the methacrylate function at the hydrophobic core-water interface and (ii) by studying the SDS-PPO micellar system (whose M(w) = 400 g x mol(-1)). Both methods have indicated that the PPO chain of the macromonomer is localized at the SDS micelle surface. Models based on the theorical prediction of the critical micellar concentration of mixed micelles and structural model of swollen micelles are used to confirm the particular structure proposed for the SDS-PPOMA system, i.e., the micelle hydrophobic core is primarily composed of the C12 chains of the sodium dodecyl sulfate, the hydrophobic core-water interface is made up of the SDS polar heads as well as methacrylate functions of the PPOMA, the PPO chains of the macromonomer are adsorbed preferentially on the surface, i.e., on the polar heads of the SDS.

  10. CEC column behaviour of butyl and lauryl methacrylate monoliths prepared in non-aqueous media.

    PubMed

    Cantó-Mirapeix, Amparo; Herrero-Martínez, José M; Mongay-Fernández, Carlos; Simó-Alfonso, Ernesto F

    2009-02-01

    Polymeric monolithic stationary phases for capillary electrochromatography were prepared using two bulk monomers, butyl methacrylate (BMA) and lauryl methacrylate (LMA), by in situ polymerization in non-aqueous media. The effect of 1,4-butanediol/1-propanol ratio on porous properties was investigated separately for each monomer, keeping the proportion of monomers to pore-forming solvents fixed at 40:60 wt:wt. Also, mixtures of BMA and LMA at different 1,4-butanediol/1-propanol ratios were studied for tailoring the morphological features of the monolithic columns. The chromatographic performance of the different columns was evaluated by means of van Deemter plots of polycyclic aromatic hydrocarbons. Mercury-intrusion porosimetry, SEM, and nitrogen-adsorption measurements were also performed in order to understand their retention behaviour and porous properties. A comparison of these features was also performed for monoliths made with one bulk monomer (BMA or LMA) and with mixtures of both. These mixed monoliths showed satisfactory efficiencies and analysis times compared with those made with one bulk monomer; thus, the BMA-LMA monoliths constitute an attractive alternative to manipulate the electrochromatographic properties of methacrylate beds in CEC. PMID:19170053

  11. Determination of thermodynamic properties of poly (cyclohexyl methacrylate) by inverse gas chromatography.

    PubMed

    Kaya, Ismet; Pala, Cigdem Yigit

    2014-07-01

    In this work, some thermodynamic properties of poly (cyclohexyl methacrylate) were studied by inverse gas chromatography (IGC). For this purpose, the polymeric substance was coated on Chromosorb W and which was filled into a glass column. The retention times (t(r)) of the probes were determined from the interactions of poly (cyclohexyl methacrylate) with n-pentane, n-hexane, n-heptane, n-octane, n-decane, methanol, ethanol, 2-propanol, butanol, acetone, ethyl methyl ketone, benzene, toluene and o-xylene by IGC technique. Then, the specific volume (Vg(0)) was determined for each probe molecule. By using (1/T; lnVg(0)) graphics, the glass transition temperature of poly (cyclohexyl methacrylate) was found to be 373 K. The adsorption heat under the glass transition temperature (deltaH(a)), and partial molar heat of sorption above the glass transition (deltaH1(S)), partial molar free energy of sorption (deltaG1(S)) and partial molar entropy of sorption (deltaS1(S)) belonging to sorption for every probe were calculated. The partial molar heat of mixing at infinite dilution (deltaH1(infinity)), partial molar free energy of mixing at infinite dilution (deltaG1(infinity)), Flory-Huggins interaction parameter (chi12(infinity)) and weight fraction activity coefficient (a1/w1)(infinity) values of polymer-solute systems were calculated at different column temperatures. The solubility parameters (delta2) of the polymer were obtained by IGC technique. PMID:25255568

  12. Hypercalcemia secondary to granulomatous disease caused by the injection of methacrylate: a case series

    PubMed Central

    Negri, Armando Luis; Rosa Diez, Guillermo; Del Valle, Elisa; Piulats, Elsa; Greloni, Gustavo; Quevedo, Alejandra; Varela, Federico; Diehl, Maria; Bevione, Pablo

    2014-01-01

    Summary Association of dysregulated calcium homeostasis and granulomatous disease is well established. There exist reports in the literature of granulomatous reactions produced by silicones associated with hypercalcemia. In this case series we report four young women that underwent methacrylate injections in gluteus, thighs and calves that developed granulomas with posterior appearance of hypercalcemia. This complication presented as subacute around 6 months after the procedure. The four patients have as common elements the presence of moderate to severe renal insufficiency, suppressed PTH and elevated calcitriol levels for the degree of renal function. In the image studies, two patients presented in the nuclear magnetic resonance of the gluteus hypodense nodular images compatible with granulomas. Two patients had a positron emission tomography performed showing increased metabolic activity in the muscles of the gluteal region compatible with granulomas. Two patients had a partial surgical resection of the gluteal lesions with the finding of methacrylate associated to foreign body granulomas. In these patients hypercalcemia was treated with oral or local injections of corticoids, intravenous bisphosphonates or ketoconazole with good response. Although the prevalence of this complication with methacrylate injection is not common, hypercalcemia secondary to granulomas should be considered in the differential diagnosis of patients with hypercalcemia when there is a history of this procedure, and especially if they have a reduction in their renal function. PMID:25002879

  13. Clavanin bacterial sepsis control using a novel methacrylate nanocarrier

    PubMed Central

    Saúde, Amanda CM; Ombredane, Alicia S; Silva, Osmar N; Barbosa, João ARG; Moreno, Susana E; Guerra Araujo, Ana Claudia; Falcão, Rosana; Silva, Luciano P; Dias, Simoni C; Franco, Octávio L

    2014-01-01

    Controlling human pathogenic bacteria is a worldwide problem due to increasing bacterial resistance. This has prompted a number of studies investigating peptides isolated from marine animals as a possible alternative for control of human pathogen infections. Clavanins are antimicrobial peptides isolated from the marine tunicate Styela clava, showing 23 amino acid residues in length, cationic properties, and also high bactericidal activity. In spite of clear benefits from the use of peptides, currently 95% of peptide properties have limited pharmaceutical applicability, such as low solubility and short half-life in the circulatory system. Here, nanobiotechnology was used to encapsulate clavanin A in order to develop nanoantibiotics against bacterial sepsis. Clavanin was nanostructured using EUDRAGIT® L 100-55 and RS 30 D solution (3:1 w:w). Atomic force, scanning electron microscopy and dynamic light scattering showed nanoparticles ranging from 120 to 372 nm in diameter, with a zeta potential of -7.16 mV and a polydispersity index of 0.123. Encapsulation rate of 98% was assessed by reversed-phase chromatography. In vitro bioassays showed that the nanostructured clavanin was partially able to control development of Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Furthermore, nanostructures did not show hemolytic activity. In vivo sepsis bioassays were performed using C57BL6 mice strain inoculated with a polymicrobial suspension. Assays led to 100% survival rate under sub-lethal sepsis assays and 40% under lethal sepsis assays in the presence of nanoformulated clavanin A until the seventh day of the experiment. Data here reported indicated that nanostructured clavanin A form shows improved antimicrobial activity and has the potential to be used to treat polymicrobial infections. PMID:25382976

  14. Development of dental restorative materials based on visible light-cured multi-methacrylates

    NASA Astrophysics Data System (ADS)

    Tiba, Amer

    The studies described in this dissertation focus on new visible light-curing (VLC) oligomers exhibiting low shrinkage, low water sorption, and improved mechanical properties. A family of multi-methacrylates, based on poly(isopropylidenediphenol) resin (BPA), was synthesized, characterized, and evaluated. The commercial BPA resin is prepared from enzymatic polymerization (oligomerization) of bisphenol A. The BPA resin, having an average of eight phenolic hydroxyl groups per molecule, was treated with propylene carbonate, and the resultant product, i.e., propoxylated BPA (PEBPA) oligomer, was confirmed by Fourier transform infrared spectroscopy (FT-IR) and sp{13}C nuclear magnetic resonance (NMR). The propoxylated BPA was subsequently treated with methacryloyl chloride to produce the multi-methacrylates, identified by FT-IR and NMR. The PEBPA oligomer multimethacrylate: triethylene glycol dimethacrylate (TEGDMA) (50:50/wt:wt) blends were combined with 0.5 wt. % camphoroquinone (CQ) and 1.0 wt. % N,N-dimethylaminoethyl methacrylate (DMAEMA). The control polymers were 2,2-bis(4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl) propane (BisGMA): TEGDMA(50:50/wt:wt) blends having the same levels of CQ/DMAEMA. Differential photocalorimetry (DPC) and differential scanning calorimetry (DSC) showed these multimethacrylate/TEGDMA (neat resin) blends have polymerization characteristics comparable to the BisGMA/TEGDMA controls. These new multifunctional oligomers have lower polymerization shrinkage and lower uptake of water and other liquids, compared to BisGMA based materials. In addition, two experimental oligomers, PEBPA #2 and #3, have higher compressive strength than the BisGMA control. A biocompatibility test of the polymerized multi-methacrylate resins was performed and compared with the conventional BisGMA/TEGDMA resin and blank controls, using cell culture techniques. Human gingival fibroblasts were used for biocompatibility evaluation of these resins. The results revealed

  15. Hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater.

    PubMed

    Wang, Xia; Zhang, Luyan; Chen, Gang

    2011-11-01

    As a self-regulating heating device, positive temperature coefficient ceramic heater was employed for hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chip because it supplied constant-temperature heating without electrical control circuits. To emboss a channel plate, a piece of poly(methyl methacrylate) plate was sandwiched between a template and a microscopic glass slide on a positive temperature coefficient ceramic heater. All the assembled components were pressed between two elastic press heads of a spring-driven press while a voltage was applied to the heater for 10 min. Subsequently, the embossed poly(methyl methacrylate) plate bearing negative relief of channel networks was bonded with a piece of poly(methyl methacrylate) cover sheet to obtain a complete microchip using a positive temperature coefficient ceramic heater and a spring-driven press. High quality microfluidic chips fabricated by using the novel embossing/bonding device were successfully applied in the electrophoretic separation of three cations. Positive temperature coefficient ceramic heater indicates great promise for the low-cost production of poly(methyl methacrylate) microchips and should find wide applications in the fabrication of other thermoplastic polymer microfluidic devices.

  16. Effect of curing environment on mechanical properties and polymerizing behaviour of methyl-methacrylate autopolymerizing resin.

    PubMed

    Ogawa, T; Hasegawa, A

    2005-03-01

    Methyl-methacrylate autopolymerizing resin is used for multiple applications. Therefore, the mechanical properties of autopolymerizing resin should be assessed comprehensively including strength, stiffness and hardness. Any methods that effectively improve these mechanical properties are desirable. The objective of this study is to examine the effects of the curing environment: air or water with/without pressure, and air or water temperature during polymerization, on the strength, stiffness and hardness of autopolymerizing resin. In addition, we examined the polymerizing behaviour associated with the mechanical properties. Autopolymerizing methyl-methacrylate resin (Unifast II) was polymerized under the following conditions: in air and water with/without pressure at 10, 23, 30, 40, 60 and 80 degrees C. The resin specimens were subjected to a transverse test (three-point flexural test) and micro-Brinell surface hardness test. Fractured surfaces of the specimens after the transverse test were examined using a scanning electron microscope (SEM). The transverse strength and transverse modulus increased with increasing curing temperature in both wet and dry conditions. Pressured wet conditions increased transverse strength and transverse modulus over non-pressured wet and dry conditions. The resin polymerized in dry conditions showed higher surface hardness than the one polymerized in wet conditions at matching temperature. The SEM images of fractured surfaces cured at lower temperature exhibited porosity within the polymer base and cracks between the base and poly-methyl-methacrylate (PMMA) particulates. Surfaces of the resin polymerized in wet conditions were characterized with PMMA particulates having rougher surfaces suggestive of water incorporation. Raising temperature and pressuring during polymerization increase strength and stiffness of autopolymerizing resin. However, wet condition reduces surface hardness of resin compared with dry condition. These altered

  17. Flexural Strength Comparison of Silorane- and Methacrylate-Based Composites with Pre-impregnated Glass Fiber

    PubMed Central

    Doozandeh, Maryam; Alavi, Ali Asghar; Karimizadeh, Zahra

    2016-01-01

    Statement of the Problem Sufficient adhesion between silorane/methacrylate-based composites and methacrylate impregnated glass fiber increases the benefits of fibers and enhances the mechanical and clinical performance of both composites. Purpose The aim of this study was to evaluate the compatibility of silorane and methacrylate-based composites with pre-impregnated glass fiber by using flexural strength (FS) test. Materials and Method A total of 60 bar specimens were prepared in a split mold (25×2×2 mm) in 6 groups (n=10). In groups 1 and 4 (control), silorane-based (Filtek P90) and nanohybrid (Filtek Z350) composites were placed into the mold and photopolymerized with a high-intensity curing unit. In groups 2 and 5, pre-impregnated glass fiber was first placed into the mold and after two minutes of curing, the mold was filled with respective composites. Prior to filling the mold in groups 3 and 6, an intermediate adhesive layer was applied to the glass fiber. The specimens were stored in distilled water for 24 hours and then their flexural strength was measured by 3 point bending test, using universal testing machine at the crosshead speed of 1 mm/min. Two-way ANOVA and post-hoc test were used for analyzing the data (p< 0.05). Results A significant difference was observed between the groups (p< 0.05). The highest FS was registered for combination of Z350 composite, impregnated glass fiber, and application of intermediate adhesive layer .The lowest FS was obtained in Filtek P90 alone. Cohesive failure in composite was the predominant failure in all groups, except group 5 in which adhesive failure between the composite and fiber was exclusively observed. Conclusion Significant improvement in FS was achieved for both composites with glass fiber. Additional application of intermediate adhesive layer before composite build up seems to increase FS. Nanohybrid composite showed higher FS than silorane-based composite. PMID:27284555

  18. Influence of exchange group of modified glycidyl methacrylate polymer on phenol removal: A study by batch and continuous flow processes.

    PubMed

    Aversa, Thiago Muza; da Silva, Carla Michele Frota; da Rocha, Paulo Cristiano Silva; Lucas, Elizabete Fernandes

    2016-11-01

    Contamination of water by phenol is potentially a serious problem due to its high toxicity and its acid character. In this way some treatment process to remove or reduce the phenol concentration before contaminated water disposal on the environment is required. Currently, phenol can be removed by charcoal adsorption, but this process does not allow easy regeneration of the adsorbent. In contrast, polymeric resins are easily regenerated and can be reused in others cycles of adsorption process. In this work, the interaction of phenol with two polymeric resins was investigated, one of them containing a weakly basic anionic exchange group (GD-DEA) and the other, a strongly basic group (GD-QUAT). Both ion exchange resins were obtained through chemical modifications from a base porous resin composed of glycidyl methacrylate (GMA) and divinyl benzene (DVB). Evaluation tests with resins were carried out with 30 mg/L of phenol in water solution, at pH 6 and 10, employing two distinct processes: (i) batch, to evaluate the effect of temperature, and (ii) continuous flow, to assess the breakthrough of the resins. Batch tests revealed that the systems did not follow the model proposed by Langmuir due to the negative values obtained for the constant b and for the maximum adsorption capacity, Q0. However, satisfactory results for the constants KF and n allowed assuming that the behavior of systems followed the Freundlich model, leading to the conclusion that resin GD-DEA had the best interaction with the phenol when in a solution having pH 10 (phenoxide ions). The continuous flow tests corroborated this conclusion since the performance of GD-DEA in removing phenol was also best at pH 10, indicating that the greater availability of the electron pair in the resin with the weakly basic donor group contributed to enhance the resin's interaction with the phenoxide ions. PMID:27494606

  19. Nano-engineered optical properties of iodine doped poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Mehta, Sheetal; Keller, Jag Mohan; Das, Kallol

    2016-05-01

    Poly (methyl methacrylate) (PMMA) and Iodine hybrid matrixes have been prepared and characterized. The optical properties of the prepared I-PMMA hybrid composites were characterized by linear absorption studies and these composites have been found to contain embedded Iodine nanoparticles. The size of the nanoparticles was found to be a function of the Iodine content of PMMA. Refractive index measurements were undertaken for different wavelengths. The results showed that the refractive index of the composite is dependent on thermal annealing and also varies nonlinearly with the doping concentration at low Iodine concentration or in the region of nanoparticles formation.

  20. Quantitative analysis of (styrene/acrylonitrile/methyl methacrylate) co-polymer systems by infrared resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.; Jiang, Tao; Fengqi, Liu; Ding, C.; Darwish, Abdalla M.

    2002-02-01

    A detailed careful analysis of the infrared resonance (IR) spectra of polystyrene (PSt), polymethyl methacrylate (PMMA), polyacrylonitrile (PAN) and their co-mixtures were performed. Through this study the absorption peak area to weight ratios as well as working curves were obtained to test for their reliability as well as their suitability. Satisfactory results were achieved and these working curves were then used to measure the polymerized components of binary and ternary co-polymers. By investigating the acquired data we conclude that the monomer preferential polymeric sequence is St>MMA>AN. A quantitative method to measure P (St/AN/MMA) concentrations by IR spectroscopy is proposed in this work.

  1. Vibrational overtone enhancement of methyl methacrylate polymerization initiated by benzoyl peroxide decomposition

    NASA Astrophysics Data System (ADS)

    Grinevich, Oleg; Snavely, D. L.

    1997-03-01

    Vibrational overtone initiated polymerization has been demonstrated using intracavity photolysis of a benzoyl peroxide/methyl methacrylate mixture. Excitation of the 6 νCH overtone transition of the ground electronic state of benzoyl peroxide creates radicals which subsequently begin the polymerization process. Polymer yield was monitored by comparison of the 2 νCH overtone absorptions for the methyl, methylenic and olefinic CH stretches at 5946 and 6170 cm -1, respectively. Plots of polymer yield versus time demonstrate an autoacceleration of the polymerization rate commencing many hours after the photolysis period. The delay before autoacceleration depends on the duration of the photolysis.

  2. Microstructure-property relationships in alumina trihydrate filled poly (methyl methacrylate) composite materials

    NASA Astrophysics Data System (ADS)

    Zhang, Ruoyu

    2015-07-01

    The mechanical properties (Young's modulus and fracture toughness) of composite made from a poly (methyl methacrylate) (PMMA) matrix filled with alumina trihydrate(ATH) are reported. The experiments were performed using flexural tests and single edge notched bend (SENB) tests. The composites samples were tested at a range of filler volume fractions (34.7%, 39.4% and 44.4%) and mean filler diameters (8 pm, 15 pm and 25 pm). The data of Young's modulus agreed well with the results of Lielens model and finite element analysis (FEA) model.

  3. Properties of cellulase as template molecule on chitosan—methyl methacrylate membrane

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xuefang; Wu, Haixia; Song, Shitao; Wang, Dongjun

    2015-12-01

    In this study, a novel molecular imprinting membrane made of chitosan and methyl methacrylate (MMA) was fabricated with cellulase as template molecule and the thermal response to cellulase was characterized. The film was characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and the permeation experiment. The results showed that the space structure of the film was as similar as the cellulase. Moreover, the membrane had advanced molecular imprinting capability to cellulase comparing to pepsin and pectinase at any temperature and the film had excellent ability to identify specific template molecule (cellulase) at the synthesis temperature compared to other temperatures.

  4. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study.

    PubMed

    Berrong, J M; Weed, R M; Young, J M

    1990-01-01

    The reinforcing effect of Kevlar fibers incorporated in processed poly(methyl methacrylate) resin samples was studied using 0% (controls), 0.5%, 1%, and 2% by weight of the added fibers. The samples were subjected to impact testing to determine fracture resistance, and sample groups were statistically compared using an ANOVA. Each reinforced sample had significantly greater fracture resistance (P less than 0.05) than the control, and no difference was found either within or between control groups. The use of reinforcing Kevlar fibers appears to enhance the fracture resistance of acrylic resin denture base materials.

  5. In-situ photopolymerization of monodisperse and discoid oxidized methacrylated alginate microgels in a microfluidic channel

    DOE PAGES

    Wang, Shuo; Jeon, Oju; Shankles, Peter G.; Liu, Yuan; Alsberg, Eben; Retterer, Scott T.; Lee, Bruce P.; Choi, Chang Kyoung

    2016-02-03

    Here, we present a simple microfluidic technique to in-situ photopolymerize (by 365 nm ultraviolet) monodisperse oxidized methacrylated alginate (OMA) microgels using a photoinitiator (VA-086). By this technique, we generated monodisperse spherical OMA beads and discoid non-spherical beads with better shape consistency than ionic crosslinking methods do. We found that a high monomer concentration (8 w/v %), a high photoinitiator concentration (1.5 w/v %) and absence of oxygen are critical factors to cure OMA microgels. This photopolymerizing method is an alternative to current methods to form alginate microgels and is a simpler approach to generate non-spherical alginate microgels.

  6. Novel synthesis of cellulose-based diblock copolymer of poly(hydroxyethyl methacrylate) by mechanochemical reaction.

    PubMed

    Ohura, Takeshi; Tsutaki, Yusaku; Sakaguchi, Masato

    2014-01-01

    The mechanical fracture of polymer produces polymeric free radical chain-ends, by which liner block copolymers have been synthesized. A diblock copolymer of microcrystalline cellulose (MCC) and poly 2-hydroxyethyl methacrylate (pHEMA) was produced by the mechanochemical polymerization under vacuum and room temperature. The fraction of pHEMA in MCC-block-pHEMA produced by the mechanochemical polymerization increased up to 21 mol% with increasing fracture time (~6 h). Then, the tacticities of HEMA sequences in MCC-block-pHEMA varied according to the reaction time. In the process of mechanochemical polymerization, cellulose could play the role of a radical polymerization initiator capable of controlling stereoregularity.

  7. Effects of preheating on the properties of silorane- and methacrylate-based composites.

    PubMed

    Dickson, Peggy L; Vandewalle, Kraig S; Lien, Wen; Wajdowicz, Michael N; Santos, Maria

    2014-01-01

    This study evaluated how preheating affected the properties of a silorane-based composite restorative material and 4 methacrylate-based composites. Viscosity, compressive strength, depth of cure, and polymerization shrinkage were examined. Data were analyzed with a 2-way ANOVA per physical property and composite type. With the exception of the flowable composite, significant reductions in viscosity were found between all preheated and room temperature composites, with no significant difference in other properties. In general, preheating the restorative composites decreased viscosity, but did not affect compressive strength, depth of cure, or shrinkage per composite type.

  8. Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends

    NASA Astrophysics Data System (ADS)

    Mathur, Vishal; Sharma, Kananbala

    2016-02-01

    The present paper reports the investigationsto evaluate thermal behavior of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends, prepared at different compositions through solution casting method. The glass transition temperatures have been obtained using dynamic mechanical analyzer. Simultaneous measurements of temperature dependentthermal transport properties (thermal conductivity and thermal diffusivity) have been made using Hot Disk Thermal Constants Analyzer based on transient plane source. The study reveals that blending of PS with PMMA leads to different phase morphologies corresponding to different composition range which further affects the thermal performance of respective blends.

  9. Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications

    NASA Astrophysics Data System (ADS)

    Mehlem, Jeremy John

    Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well

  10. Amine functionalization of cellulose surface grafted with glycidyl methacrylate by γ-initiated RAFT polymerization

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Güven, Olgun; Kodama, Yasko

    2016-07-01

    This study presents the functionalization of poly(glycidyl methacrylate) (PGMA) grafted cellulose filter paper by a model compound, ethylenediamine (EDA), through the epoxy groups of PGMA. Cellulose based copolymers were prepared via the radiation-induced and RAFT-mediated graft polymerization. The samples were characterized by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurements and scanning electron microscopy (SEM). An efficient modification density of around 1 mmol EDA/mg copolymer was attained within ca. 8 h, indicating that chemical composition of well-defined copolymers may further be tuned by appropriately selecting the reactive agents for use in many emerging fields.

  11. Grafting of Methacrylonitrile and Ethyl Methacrylate onto Jute Fibre: Physico-chemical Characteristics of Grafted Jute

    NASA Astrophysics Data System (ADS)

    Mondal, Md. Ibrahim H.; Islam Farouqui, Faisul; Abu Hanif, Md.; Shafiur Rahman, G. M.; Asadul Hoque, Md.

    2005-10-01

    Modification of bleached jute fibre was done by graft co-polymerization with vinyl monomers e.g. methacrylonitrile and ethyl methacrylate, in aqueous medium using H2O2-Na2S2O3 as redox initiators. To make the process efficient, the optimized polymerization condition was established. The maximum percent grafting and grafting efficiency obtained at optimum grafting condition were 11.3 and 20.4% for MAN, respectively and that of 17.6 and 27.5% for EMA. Modification of bleached jute fibre with MAN and EMA reduced the loss in breaking strength and the yellowing on exposure to sunlight in air.

  12. Controlling of optical energy gap of Co-ferrite quantum dots in poly (methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    El-Sayed, H. M.; Agami, W. R.

    2015-07-01

    Different crystallite sizes of Co-ferrite nanoparticles were prepared and dispersed in the matrix of poly (methyl methacrylate) (PMMA) polymer. The effect of crystallite size on the structure and optical energy gap of Co-nanoferrite/PMMA composite has been studied. The optical energy gap of Co-ferrite was greatly affected by the crystallite size. This result was discussed in terms of the formation of electron-hole exciton using particle in a box model. The effective mass and the Bohr radius of the formed exciton have been calculated from the spectroscopic measurements.

  13. Far infrared-assisted encapsulation of filter paper strips in poly(methyl methacrylate) for proteolysis.

    PubMed

    Chen, Qiwen; Bao, Huimin; Zhang, Luyan; Chen, Gang

    2016-02-01

    Filter paper strips were enclosed between two poly(methyl methacrylate) plates to fabricate paper-packed channel microchips under pressure in the presence of far infrared irradiation. After the enclosed paper strip was oxidized by periodate, trypsin was covalently immobilized in them to fabricate microfluidic proteolysis bioreactor. The feasibility and performance of the unique bioreactor were demonstrated by digesting BSA and lysozyme. The results were comparable to those of conventional in-solution proteolysis while the digestion time was significantly reduced to ∼18 s. The suitability of the microfluidic paper-based bioreactors to complex proteins was demonstrated by digesting human serum.

  14. Generalized peripheral neuropathy in a dental technician exposed to methyl methacrylate monomer

    SciTech Connect

    Donaghy, M.; Rushworth, G.; Jacobs, J.M. )

    1991-07-01

    A 58-year-old dental prosthetic technician developed generalized sensorimotor peripheral neuropathy. Neurophysiologic studies showed a generalized sensorimotor neuropathy of axonal degeneration type. Examination of a sural nerve biopsy showed a moderately severe axonal neuropathy with loss of large myelinated fibers and unmyelinated axons. There was evidence of slow ongoing degeneration and considerable fiber regeneration. Electron microscopy showed increased numbers of filaments in a few fibers. These findings show resemblances to the nerve changes caused by another acrylic resin, acrylamide. They suggest that the neuropathy may have been caused by 30 years of occupational cutaneous and inhalational exposure to methyl methacrylate monomer since they excluded other recognized causes of neuropathy.

  15. Temperature dependence properties of holographic gratings in phenanthrenquinone doped poly(methyl methacrylate) photopolymers.

    PubMed

    Russo, Juan Manuel; Kostuk, Raymond K

    2007-10-20

    We examine the temperature dependence of edge-illuminated holographic filters formed in phenanthrenquinone doped poly(methyl methacrylate) (PQ/PMMA) operating at 1550 nm. It was found that the thermally induced change to the refractive index and volume can be used to select the wavelength filtered by the grating. The temperature can be varied over a range of 15 degrees C without introducing noticeable hysteresis effects. The wavelength can be tuned at a rate of 0.03 nm/degrees C over this temperature range. A model for the temperature tuning effect is presented and compared to experimental results.

  16. Supported nickel bromide catalyst for atom transfer radical polymerization (ATRP) of methyl methacrylate.

    PubMed

    Duquesne, E; Degée, Ph; Habimana, J; Dubois, Ph

    2004-03-21

    A new supported catalytic system, i.e. nickel bromide catalyst ligated by triphenylphosphine (TPP) ligands immobilized onto crosslinked polystyrene resins (PS-TPP) is reported. Per se, this catalyst does not allow any control over the polymerization of methyl methacrylate (MMA) initiated by ethyl 2-bromoisobutyrate but, in the presence of a given amount of purposely added free TPP, it promotes controlled ATRP of MMA. Indeed colorless PMMA chains of low polydispersity indices are readily recovered, the molecular weight of which linearly increases with monomer conversion and agrees with the expected values. Recycling of the supported catalyst is evidenced and does not prevent the polymerization from being controlled. PMID:15010758

  17. Viscoelastic properties of polycarbonate, poly(methyl methacrylate) and their nanocomposites via nanoindentation experiments

    NASA Astrophysics Data System (ADS)

    Noll, Kenneth; Wong, Maranda; Evke, Erin; Rende, Deniz; Ozisik, Rahmi

    2014-03-01

    Polycarbonate, PC, and poly(methyl methacrylate), PMMA, are economic alternatives to glass mainly die to their mecahnical and optical properties. The uses of PC and PMMA can be expanded if their impact response and scratch resistance are improved. Carbon nanotubes are known to increase the toughness of PMMA and improve its resistance impact forces. In the current study, the viscoelastic properties of PC, PMMA and their nanocomposites were investigated via nanoindentation experiments. Stress relaxation experiments were performed under various loading rates._ The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574.

  18. Aquatic toxicity of acrylates and methacrylates: quantitative structure-activity relationships based on Kow and LC50

    SciTech Connect

    Reinert, K.H.

    1987-12-01

    Recent EPA scrutiny of acrylate and methacrylate monomers has resulted in restrictive consent orders and Significant New Use Rules under the Toxic Substances Control Act, based on structure-activity relationships using mouse skin painting studies. The concern is centered on human health issues regarding worker and consumer exposure. Environmental issues, such as aquatic toxicity, are still of concern. Understanding the relationships and environmental risks to aquatic organisms may improve the understanding of the potential risks to human health. This study evaluates the quantitative structure-activity relationships from measured log Kow's and log LC50's for Pimephales promelas (fathead minnow) and Carassius auratus (goldfish). Scientific support of the current regulations is also addressed. Two monomer classes were designated: acrylates and methacrylates. Spearman rank correlation and linear regression were run. Based on this study, an ecotoxicological difference exists between acrylates and methacrylates. Regulatory activities and scientific study should reflect this difference.

  19. Chemically induced graft copolymerization of 2-hydroxyethyl methacrylate onto polyurethane surface for improving blood compatibility

    NASA Astrophysics Data System (ADS)

    He, Chunli; Wang, Miao; Cai, Xianmei; Huang, Xiaobo; Li, Li; Zhu, Haomiao; Shen, Jian; Yuan, Jiang

    2011-11-01

    To improve hydrophilicity and blood compatibility properties of polyurethane (PU) film, we chemically induced graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto the surface of polyurethane film using benzoyl peroxide as an initiator. The effects of grafting temperature, grafting time, monomer and initiator concentrations on the grafting yields were studied. The maximum grafting yield value was obtained 0.0275 g/cm2 for HEMA. Characterization of the films was carried out by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle measurements. ATR-FTIR data showed that HEMA was successfully grafted onto the PU films surface. Water contact angle measurement demonstrated the grafted films possessed a relatively hydrophilic surface. The blood compatibility of the grafted films was preliminarily evaluated by a platelet-rich plasma adhesion test and hemolysis test. The results of platelet adhesion experiment showed that polyurethane grafted polymerization with monomer of 2-hydroxyethyl methacrylate had good blood compatibility featured by the low platelet adhesion. Hemolysis rate of the PU-g-PHEMA films was dramatically decreased than the ungrafted PU films. This kind of new biomaterials grafted with HEMA monomers might have a potential usage for biomedical applications.

  20. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings.

    PubMed

    Aldred, Nick; Li, Guozhu; Gao, Ye; Clare, Anthony S; Jiang, Shaoyi

    2010-08-01

    Zwitterionic polymers such as poly(sulfobetaine methacrylate) (polySBMA) and poly(carboxybetaine methacrylate) (polyCBMA) have demonstrated impressive fouling-resistance against proteins and mammalian cells. In this paper, the effects of these surface chemistries on the settlement and behavior of an ubiquitous fouling organism, the cypris larva of the barnacle Balanus amphitrite (=Amphibalanus amphitrite), were studied in the laboratory. Conventional settlement assays and behavioral analysis of cyprids using Noldus Ethovision 3.1 demonstrated significant differences in settlement and behavior on different surfaces. Cyprids did not settle on the polySBMA or polyCBMA surfaces over the course of the assay, whereas settlement on glass occurred within expected limits. Individual components of cyprid behavior were shown to differ significantly between glass, polySBMA and polyCBMA. Cyprids also responded differently to the two zwitterionic surfaces. On polySBMA, cyprids were unwilling or unable to settle, whereas on polyCBMA cyprids did not attempt exploration and left the surface quickly. In neither case was toxicity observed. It is concluded that a zwitterionic approach to fouling-resistant surface development has considerable potential in marine applications. PMID:20658383

  1. Photoinitiated chemical vapor deposition of cytocompatible poly(2-hydroxyethyl methacrylate) films.

    PubMed

    McMahon, Brian J; Pfluger, Courtney A; Sun, Bing; Ziemer, Katherine S; Burkey, Daniel D; Carrier, Rebecca L

    2014-07-01

    Poly(2-hydroxyethyl methacrylate) (pHEMA) is a widely utilized biomaterial due to lack of toxicity and suitable mechanical properties; conformal thin pHEMA films produced via chemical vapor deposition (CVD) would thus have broad biomedical applications. Thin films of pHEMA were deposited using photoinitiated CVD (piCVD). Incorporation of ethylene glycol diacrylate (EGDA) into the pHEMA polymer film as a crosslinker, confirmed via Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, resulted in varied swelling and degradation behavior. 2-Hydroxyethyl methacrylate-only films showed significant thickness loss (up to 40%), possibly due to extraction of low-molecular-weight species or erosion, after 24 h in aqueous solution, whereas films crosslinked with EGDA (9.25-12.4%) were stable for up to 21 days. These results differ significantly from those obtained with plasma-polymerized pHEMA, which degraded steadily over a 21-day period, even with crosslinking. This suggests that the piCVD films differ structurally from those fabricated via plasma polymerization (plasma-enhanced CVD). piCVD pHEMA coatings proved to be good cell culture materials, with Caco-2 cell attachment and viability comparable to results obtained on tissue-culture polystyrene. Thus, thin film CVD pHEMA offers the advantage of enabling conformal coating of a cell culture substrate with tunable properties depending on method of preparation and incorporation of crosslinking agents.

  2. Reaction of pectin and glycidyl methacrylate and ulterior formation of free films by reticulation.

    PubMed

    Maior, João Fhilype Andrade Souto; Reis, Adriano Valim; Muniz, Edvani C; Cavalcanti, Osvaldo Albuquerque

    2008-05-01

    In this work, low-methoxyl pectin was chemically modified by reaction with glycidyl methacrylate (GMA) to give a material with low hydrosolubility. After physio-chemical characterization by FT-IR, DSC, and TGA analyses, the methacrylated/modified pectin (Pect-GMA) was crosslinked after the addition of sodium persulfate (SP), that actuates as initiator, at 50 degrees C for 24 and 48h either in the presence or not of aqueous polymethacrylate dispersion (Eudragit RS 30 D) to obtain free films by Teflon plate "casting" process. Different Pect-GMA/Eudragit RS 30 D ratios and SP concentrations were used. The free films were characterized by the determination of water vapor transmission (WVT), the swelling index (Ieq%) in simulated gastric (SGF) and intestinal (SIF) fluids, and by scanning electron microscopy (SEM). The presence of ionized groups in Pect-GMA turned the films pH-dependent because Ieq% of swollen crosslinked Pect-GMA films was larger at pH 6.8 than at pH 1.2. This was confirmed by the large pore size observed in the micrographs of SIF-swollen lyophilized films. In this way, films containing Pect-GMA and Eudragit RS 30 D, a time-dependent polymer, may present a synergistic action that favors specific biodegradation of the film in distal end of the gastrointestinal tract (GIT) by enzymes produced by the colonic microflora, enabling the modification of the release kinetics of drugs.

  3. Effect of Nanoclay on Thermal Conductivity and Flexural Strength of Polymethyl Methacrylate Acrylic Resin

    PubMed Central

    Ghaffari, Tahereh; Barzegar, Ali; Hamedi Rad, Fahimeh; Moslehifard, Elnaz

    2016-01-01

    Statement of the Problem The mechanical and thermal properties of polymethyl methacrylate (PMMA) acrylic resin should be improved to counterweigh its structural deficiencies. Purpose The aim of this study was to compare the flexural strength and thermal conductivity of conventional acrylic resin and acrylic resin loaded with nanoclay. Materials and Method The methacrylate monomer containing the 0.5, 1 and 2 wt% of nanoclay was placed in an ultrasonic probe and mixed with the PMMA powder. Scanning electron microscopy was used to verify homogeneous distribution of particles. Twenty-four 20×20×200-mm cubic samples were prepared for flexural strength test; 18 samples containing nanoclay and 6 samples for the control group. Another 24 cylindrical samples of 38×25 mm were prepared for thermal conductivity test. One-way ANOVA was used for statistical analysis, followed by multiple-comparison test (Scheffé’s test). Statistical significance was set at p< 0.05. Results Increasing the concentration of nanoclay incorporated into the acrylic resin samples increased thermal conductivity but decreased flexural strength (p< 0.05). Conclusion Based on the results of this study, adding nanoclay particles to PMMA improved its thermal conductivity, while it had a negative effect on the flexural strength. PMID:27284557

  4. Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTs.

    PubMed

    Grishkewich, Nathan; Akhlaghi, Seyedeh Parinaz; Zhaoling, Yao; Berry, Richard; Tam, Kam C

    2016-06-25

    This paper reports on the synthesis of poly(oligoethylene glycol) methyl ether acrylate (POEGMA) grafted cellulose nanocrystals (CNCs) via surface initiated atom transfer radical polymerization (ATRP). An ATRP initiator (α-Bromoisobutyryl bromide) was covalently bonded to the surface of CNCs, followed by copolymerizing di(ethylene glycol) methyl ether methacrylate (MEO2MA) and oligoethylene glycol methyl ether methacrylate (OEGMA300) monomers from the surface using Cu(I)Br/2,2-dipyridal. Multiple POEGMA-g-CNC systems with varying MEO2MA/OEGMA300 content were synthesized, and they displayed a range of lower critical solution temperatures (LCSTs) in aqueous medium. μDSC endotherms and microstructural analysis indicated the collapse of POEGMA chains, followed by the aggregation of nanoparticles above their LCSTs. Cloud point measurements demonstrated a hysteresis in the heating and cooling of the POEGMA-g-CNC systems. It was found that the LCST of the nanoparticles could be tuned to between 23.8 to 63.8°C by adjusting the OEGMA300 content of the POEGMA brushes. PMID:27083811

  5. Analyses of preservatives by capillary electrochromatography using methacrylate ester-based monolithic columns.

    PubMed

    Huang, Hsi-Ya; Chiu, Chen-Wen; Huang, I-Yun; Yeh, Jui-Ming

    2004-10-01

    Five common food preservatives were analyzed by capillary electrochromatography, utilizing a methacrylate ester-based monolithic capillary as separation column. In order to optimize the separation of these preservatives, the effects of the pore size of the polymeric stationary phase, the pH and composition of the mobile phase on separation were examined. For all analytes, it was found that an increase in pore size caused a reduction in retention time. However, separation performances were greatly improved in monolithic columns with smaller pore sizes. The pH of the mobile phase had little influence on separation resolution, but a dramatic effect on the amount of sample that was needed to be electrokinetically injected into the monolithic column. In addition, the retention behaviors of these analytes were strongly influenced by the level of acetonitrile in the mobile phase. An optimal separation of the five preservatives was obtained within 7.0 min with a pH 3.0 mobile phase composed of phosphate buffer and acetonitrile 35:65 v/v. Finally, preservatives in real commercial products, including cold syrup, lotion, wine, and soy sauces, were successfully determined by the methacrylate ester-based polymeric monolithic column under this optimized condition.

  6. Radiopacity of Methacrylate and Silorane Composite Resins Using a Digital Radiographic System

    PubMed Central

    Firoozmand, Leily Macedo; Cordeiro, Mariana Gonçalves; Da Silva, Marcos André dos Santos

    2016-01-01

    The aim of this study was to evaluate the radiopacity of silorane and methacrylate resin composites, comparing them to the enamel, dentin, and aluminum penetrometer using a digital image. From six resin composites (Filtek™ P90, Filtek Z350, Filtek Z350 XT flow, Tetric Ceram, TPH Spectrum, and SureFil SDR flow) cylindrical disks (5 × 1 mm) were made and radiographed by a digital method, together with a 15-step aluminum step-wedge and a 1 mm slice of human tooth. The degree of radiopacity of each image was quantified using digital image processing. The mean values of the shades of gray of the tested materials were measured and the equivalent width of aluminum was calculated for each resin. The results of our work yielded the following radiopacity values, given here in descending order: Tetric Ceram > TPH > SDR > Z350 > Z350 flow > P90 > enamel > dentin. The radiopacity of the materials was different both for the enamel and for the dentin, except for resin P90, which was no different than enamel. In conclusion, silorane-based resin exhibited a radiopacity higher than dentin and closest to the enamel; a large portion of the methacrylate-based flow and conventional resins demonstrated greater radiopacity in comparison to dentin and enamel. PMID:27722199

  7. Effect of Montmorillonite Modification on Ultra Violet Radiation Cured Nanocomposite Filled with Glycidyl Methacrylate Modified Kenaf

    NASA Astrophysics Data System (ADS)

    Rozyanty, A. R.; Rozman, H. D.; Zhafer, S. F.; Musa, L.; Zuliahani, A.

    2016-06-01

    In this study nanocomposite cured by ultra violet radiation, were produced using modified montmorillonite (MMT) as reinforcing agent, chemically modified kenaf bast fiber as filler and unsaturated polyester as the matrix. Kenaf bast fiber was chemically modified with glycidyl methacrylate (GMA) whilst MMT were modified with cetyl trimethyl ammonium bromide (CTAB) and glycidyl methacrylate (GMA). Fixed 12 percent of GMA modified kenaf bast fiber with different percentage (i.e., 1, 3 and 5) of unmodified and modified MMT loading was used to produce the composite. The performed of GMA reaction with hydroxyl group of cellulose in kenaf bast fiber was evaluated using Fourier Transform infrared (FTIR) spectroscopy. GMA-MMT filled composite showed higher mechanical properties than MMT and CTAB-MMT filled composite. However, the increase of MMT, CTAB-MMT and GMA- MMT loading resulted in the reduction of mechanical properties. Scanning electron microscopy (SEM) analysis showed the evidence of compatibility enhancement between MMT and kenaf bast fiber with unsaturated polyester matrix.

  8. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering.

    PubMed

    Huber, Birgit; Borchers, Kirsten; Tovar, Günter Em; Kluger, Petra J

    2016-01-01

    In vitro engineering of autologous fatty tissue constructs is still a major challenge for the treatment of congenital deformities, tumor resections or high-graded burns. In this study, we evaluated the suitability of photo-crosslinkable methacrylated gelatin (GM) and mature adipocytes as components for the composition of three-dimensional fatty tissue constructs. Cytocompatibility evaluations of the GM and the photoinitiator Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) showed no cytotoxicity in the relevant range of concentrations. Matrix stiffness of cell-laden hydrogels was adjusted to native fatty tissue by tuning the degree of crosslinking and was shown to be comparable to that of native fatty tissue. Mature adipocytes were then cultured for 14 days within the GM resulting in a fatty tissue construct loaded with viable cells expressing cell markers perilipin A and laminin. This work demonstrates that mature adipocytes are a highly valuable cell source for the composition of fatty tissue equivalents in vitro. Photo-crosslinkable methacrylated gelatin is an excellent tissue scaffold and a promising bioink for new printing techniques due to its biocompatibility and tunable properties.

  9. Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High-Tg Polymeric Materials

    PubMed Central

    2016-01-01

    As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition–fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o-methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties. PMID:27213117

  10. Exposure assessment of acrylates/methacrylates in radiation-cured applications

    SciTech Connect

    Not Available

    1987-09-25

    Occupational exposures to radiation-cured acrylates/methacrylates during their processing and use in coatings, inks, and adhesives were evaluated in 12 walk-through surveys at formulator and applicator sites. Inhalation and dermal-exposure routes were studied. According to the authors, the basic process used to formulate coatings, inks, and adhesives consists of blending raw materials in closed mixing vessels using local exhaust ventilation in the form of elephant trunks at vessel charging and packaging locations. Application methods surveyed included reverse-roll coaters, direct roll coaters, curtain/rain coaters, laminators, pneumatic injection, spray guns, and manual application. At the sites surveyed, the number of workers potentially exposed at each site ranged from two to 142. Process operators at applicator sites had the greatest potential for dermal exposure. Generally, the potential for inhalation exposure was low due to low volatility of the multifunctional acrylates/methacrylates used in the formulations. No reliable air-monitoring data were available at any site. Respirator use was limited and sporadic.

  11. Engineered Contractile Skeletal Muscle Tissue on a Microgrooved Methacrylated Gelatin Substrate

    PubMed Central

    Hosseini, Vahid; Ahadian, Samad; Ostrovidov, Serge; Camci-Unal, Gulden; Chen, Song; Kaji, Hirokazu; Ramalingam, Murugan

    2012-01-01

    To engineer tissue-like structures, cells must organize themselves into three-dimensional (3D) networks that mimic the native tissue microarchitecture. Microfabricated hydrogel substrates provide a potentially useful platform for directing cells into biomimetic tissue architecture in vitro. Here, we present microgrooved methacrylated gelatin hydrogels as a suitable platform to build muscle-like fibrous structures in a facile and highly reproducible fashion. Microgrooved hydrogel substrates with two different ridge sizes (50 and 100 μm) were fabricated to assess the effect of the distance between engineered myofibers on the orientation of the bridging C2C12 myoblasts and the formation of the resulting multinucleated myotubes. It was shown that although the ridge size did not significantly affect the C2C12 myoblast alignment, the wider-ridged micropatterned hydrogels generated more myotubes that were not aligned to the groove direction as compared to those on the smaller-ridge micropatterns. We also demonstrated that electrical stimulation improved the myoblast alignment and increased the diameter of the resulting myotubes. By using the microstructured methacrylated gelatin substrates, we built free-standing 3D muscle sheets, which contracted when electrically stimulated. Given their robust contractility and biomimetic microarchitecture, engineered tissues may find use in tissue engineering, biological studies, high-throughput drug screening, and biorobotics. PMID:22963391

  12. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel.

    PubMed

    Lin, Ruei-Zeng; Chen, Ying-Chieh; Moreno-Luna, Rafael; Khademhosseini, Ali; Melero-Martin, Juan M

    2013-09-01

    The search for hydrogel materials compatible with vascular morphogenesis is an active area of investigation in tissue engineering. One candidate material is methacrylated gelatin (GelMA), a UV-photocrosslinkable hydrogel that is synthesized by adding methacrylate groups to the amine-containing side-groups of gelatin. GelMA hydrogels containing human endothelial colony-forming cells (ECFCs) and mesenchymal stem cells (MSCs) can be photopolymerized ex vivo and then surgically transplanted in vivo as a means to generate vascular networks. However, the full clinical potential of GelMA will be best captured by enabling minimally invasive implantation and in situ polymerization. In this study, we demonstrated the feasibility of bioengineering human vascular networks inside GelMA constructs that were first subcutaneously injected into immunodeficient mice while in liquid form, and then rapidly crosslinked via transdermal exposure to UV light. These bioengineered vascular networks developed within 7 days, formed functional anastomoses with the host vasculature, and were uniformly distributed throughout the constructs. Most notably, we demonstrated that the vascularization process can be directly modulated by adjusting the initial exposure time to UV light (15-45 s range), with constructs displaying progressively less vascular density and smaller average lumen size as the degree of GelMA crosslinking was increased. Our studies support the use of GelMA in its injectable form, followed by in situ transdermal photopolymerization, as a preferable means to deliver cells in applications that require the formation of vascular networks in vivo.

  13. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel

    PubMed Central

    Lin, Ruei-Zeng; Chen, Ying-Chieh; Moreno-Luna, Rafael; Khademhosseini, Ali; Melero-Martin, Juan M.

    2013-01-01

    The search for hydrogel materials compatible with vascular morphogenesis is an active area of investigation in tissue engineering. One candidate material is methacrylated gelatin (GelMA), a UV-photocrosslinkable hydrogel that is synthesized by adding methacrylate groups to the amine-containing side-groups of gelatin. GelMA hydrogels containing human endothelial colony-forming cells (ECFCs) and mesenchymal stem cells (MSCs) can be photopolymerized ex vivo and then surgically transplanted in vivo as a means to generate vascular networks. However, the full clinical potential of GelMA will be best captured by enabling minimally invasive implantation and in situ polymerization. In this study, we demonstrated the feasibility of bioengineering human vascular networks inside GelMA constructs that were first subcutaneously injected into immunodeficient mice while in liquid form, and then rapidly crosslinked via transdermal exposure to UV light. These bioengineered vascular networks developed within 7 days, formed functional anastomoses with the host vasculature, and were uniformly distributed throughout the constructs. Most notably, we demonstrated that the vascularization process can be directly modulated by adjusting the initial exposure time to UV light (15–45 s range), with constructs displaying progressively less vascular density and smaller average lumen size as the degree of GelMA crosslinking was increased. Our studies support the use of GelMA in its injectable form, followed by in situ transdermal photopolymerization, as a preferable means to deliver cells in applications that require the formation of vascular networks in vivo. PMID:23773819

  14. Effects of Dental Methacrylates on Oxygen Consumption and Redox Status of Human Pulp Cells

    PubMed Central

    Nocca, Giuseppina; Callà, Cinzia; Martorana, Giuseppe Ettore; Cicillini, Loredana; Lupi, Alessandro; Cordaro, Massimo; Luisa Gozzo, Maria

    2014-01-01

    Several studies have already demonstrated that the incomplete polymerization of resin-based dental materials causes the release of monomers which might affect cell metabolism. The aim of this study was to investigate the effects of triethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, urethane dimethacrylate, and 2-hydroxyethyl methacrylate on (1) cellular energy metabolism, evaluating oxygen consumption rate, glucose consumption, glucose 6-phosphate dehydrogenase activity, and lactate production, and (2) cellular redox status, through the evaluation of glutathione concentration and of the activities of enzymes regulating glutathione metabolism. Methods. Human pulp cells were used and oxygen consumption was measured by means of a Clark electrode. Moreover, reactive oxygen species production was quantified. Enzymatic activity and glucose and lactate concentrations were determined through a specific kit. Results. Triethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, and 2-hydroxyethyl methacrylate induced a decrease in oxygen consumption rate, an enhancement of glucose consumption, and lactate production, whilst glucose 6-phosphate dehydrogenase and glutathione reductase activity were not significantly modified. Moreover, the monomers induced an increase of reactive oxygen species production with a consequent increase of superoxide dismutase and catalase enzymatic activities. A depletion of both reduced and total glutathione was also observed. Conclusion. The obtained results indicate that dental monomers might alter energy metabolism and glutathione redox balance in human pulp cells. PMID:24693541

  15. Visible Light Crosslinking of Methacrylated Hyaluronan Hydrogels for Injectable Tissue Repair

    PubMed Central

    Fenn, Spencer L.; Oldinski, Rachael A.

    2015-01-01

    Tissue engineering hydrogels are primarily cured in situ using ultraviolet (UV) radiation which limits the use of hydrogels as drug or cell carriers. Visible green light activated crosslinking systems are presented as a safe alternative to UV photocrosslinked hydrogels, without compromising material properties such as viscosity and stiffness. The objective of this study was to fabricate and characterize photocrosslinked hydrogels with well-regulated gelation kinetics and mechanical properties for the repair or replacement of soft tissue. An anhydrous methacrylation of hyaluronan (HA) was performed to control the degree of modification (DOM) of HA, verified by 1H-NMR spectroscopy. UV activated crosslinking was compared to visible green light activated crosslinking. While the different photocrosslinking techniques resulted in varied crosslinking times, comparable mechanical properties of UV and green light activated crosslinked hydrogels were achieved using each photocrosslinking method by adjusting time of light exposure. Methacrylated HA (HA-MA) hydrogels of varying molecular weight, DOM and concentration exhibited compressive moduli ranging from 1 kPa to 116 kPa, for UV crosslinking, and 3 kPa to 146 kPa, for green light crosslinking. HA-MA molecular weight and concentration were found to significantly influence moduli values. HA-MA hydrogels did not exhibit any significant cytotoxic affects towards human mesenchymal stem cells. Green light activated crosslinking systems are presented as a viable method to form natural-based hydrogels in situ. PMID:26097172

  16. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering.

    PubMed

    Huber, Birgit; Borchers, Kirsten; Tovar, Günter Em; Kluger, Petra J

    2016-01-01

    In vitro engineering of autologous fatty tissue constructs is still a major challenge for the treatment of congenital deformities, tumor resections or high-graded burns. In this study, we evaluated the suitability of photo-crosslinkable methacrylated gelatin (GM) and mature adipocytes as components for the composition of three-dimensional fatty tissue constructs. Cytocompatibility evaluations of the GM and the photoinitiator Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) showed no cytotoxicity in the relevant range of concentrations. Matrix stiffness of cell-laden hydrogels was adjusted to native fatty tissue by tuning the degree of crosslinking and was shown to be comparable to that of native fatty tissue. Mature adipocytes were then cultured for 14 days within the GM resulting in a fatty tissue construct loaded with viable cells expressing cell markers perilipin A and laminin. This work demonstrates that mature adipocytes are a highly valuable cell source for the composition of fatty tissue equivalents in vitro. Photo-crosslinkable methacrylated gelatin is an excellent tissue scaffold and a promising bioink for new printing techniques due to its biocompatibility and tunable properties. PMID:26017717

  17. Morphological characterization of silica obtained by calcination of methacrylic and epoxy - silica hybrid systems

    NASA Astrophysics Data System (ADS)

    Tescione, F.; Lionetto, F.; Corcione, C. Esposito; Buonocore, G. G.; Striani, R.; Lavorgna, M.; Frigione, M.

    2016-05-01

    The work is addressed to investigating the potentiality of calcination of organic-inorganic (O-I) hybrids as a feasible approach to produce silica particles, at mild temperature conditions and with tailored morphology. Two different innovative hybrid systems were obtained through sol-gel process with a siloxane content ranging from 6 to 26wt%. The two O-I hybrids differed for i) the organic matrix (methacrylic or epoxy), ii) its crosslinking mechanism (photopolymerization for methacrylic systems or thermal cold-cure for epoxy systems) and iii) the rate ratio between sol-gel and crosslinking reactions. Different characterization techniques were used to understand the effect of composition and curing method on the morphology of the silica obtained from O-I hybrids after calcination in air. The results confirm the morphology and properties of silica particles in terms of surface and porosity may be tailored over a wide range by varying the composition and nature of organic and inorganic precursors of hybrids.

  18. Low-cost fabrication of poly(methyl methacrylate) microchips using disposable gelatin gel templates.

    PubMed

    Chen, Zhi; Yu, Zhengyin; Chen, Gang

    2010-06-15

    A simple method based on disposable gelatin gel templates has been developed for the low-cost fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips. Gelatin was dissolved in glycerol aqueous solution under heat to prepare a thermally reversible impression material. The molten gel was then sandwiched between a glass plate and a SU-8 template bearing negative relief of microstructure. After cooling, the negative SU-8 template could be easily separated from the solidified gelatin gel and a layer of gelatin template bearing positive relief of the microstructure was left on the glass plate. Subsequently, prepolymerized methyl methacrylate molding solution containing a UV-initiator was sandwiched between the gel template and a PMMA plate and was allowed to polymerize under UV light to fabricate PMMA channel plate at room temperature. Complete microchips could be obtained by bonding the channel plates with covers using plasticizer-assisted thermal bonding at 90 degrees C. Gelatin gel template can be mass-produced and will find application in the mass production of PMMA microchips at low cost. The prepared microfluidic microchips have been successfully employed in the capillary electrophoresis analysis of several ions in connection with contactless conductivity detection.

  19. Effects of star-shape poly(alkyl methacrylate) arm uniformity on lubricant properties

    DOE PAGES

    Robinson, Joshua W.; Qu, Jun; Erck, Robert; Cosimbescu, Lelia; Zhou, Yan

    2016-03-29

    Star-shaped poly(alkyl methacrylate)s (PAMAs) were prepared and blended into an additive-free engine oil to assess the structure property relationship between macromolecular structure and lubricant performance. These additives were designed with a comparable number of repeating units per arm and the number of arms was varied between 3 and 6. Well-defined star-shaped PAMAs were synthesized by atom transfer radical polymerization (ATRP) via a core-first strategy from multi-functional headgroups. Observations of the polymer-oil blends suggest that stars with less than four arms are favorable as a viscosity index improver (VII), and molecular weight dominates viscosity-related effects over other structural features. Star-shaped PAMAs,more » as oil additives, effectively reduce the friction coefficient in both mixed and boundary lubrication regime. Several analogs outperformed commercial VIIs in both viscosity and friction performance. Furthermore, increased wear rates were observed for these star-shaped PAMAs in the boundary lubrication regime suggesting pressure-sensitive conformations may exist.« less

  20. Bond Strengths of Silorane- and Methacrylate-Based Composites to Various Underlying Materials

    PubMed Central

    Ozer, Sezin; Sen Tunc, Emine; Gonulol, Nihan

    2014-01-01

    Objective. To evaluate shear bond strength (SBS) values of a methacrylate (FZ 250) and a silorane-based (FS) resin composite to various underlying materials. Materials and Methods. A total of 80 samples were prepared with four different underlying materials; a flowable (FLC) and a bulk-fill flowable composite (BFC), and a conventional (CGIC) and resin modified glass-ionomer cement (RMGIC). These underlying materials were laminated plus to methacrylate or silorane-based resin composites (n = 10). To evaluate the specimens SBS values were evaluated with a universal testing machine (cross-head speed; 1.0 mm/min). Statistical comparisons were carried out using two-way ANOVA and Tukey's post hoc test with a significance level of P < 0.05. Results. SBS values for FZ250 were significantly higher than for FS for all of the underlying materials tested (P < 0.05). SBS values of FZ250 to BFC were significantly higher than to all other materials (P < 0.05), whereas SBS values of FS did not vary significantly according to underlying material (P > 0.05). Conclusion. The use of FS in conjunction with any of the tested materials showed lower SBS than the FZ 250. Also, new low elastic modulus liner BFC presented slightly good interfacial adhesion so, the usage of BFC as an underlying material may be preferable for FZ 250. PMID:24895608

  1. Semi-micro reversed-phase liquid chromatography for the separation of alkyl benzenes and proteins exploiting methacrylate- and polystyrene-based monolithic columns.

    PubMed

    Masini, Jorge Cesar

    2016-05-01

    Monolithic columns were synthesized inside 1.02 mm internal diameter fused-silica lined stainless-steel tubing. Styrene and butyl, hexyl, lauryl, and glycidyl methacrylates were the functional monomers. Ethylene glycol dimethacrylate and divinylbenzene were the crosslinkers. The glycidyl methacrylate polymer was modified with gold nanoparticles and dodecanethiol (C12 ). The separation of alkylbenzenes was investigated by isocratic elution in 60:40 v/v acetonitrile/water. The columns based on polystyrene-co-divinylbenzene and poly(glycidyl methacrylate)-co-ethylene glycol dimethacrylate modified with dodecanethiol did not provide any separation of alkyl benzenes. The poly(hexyl methacrylate)-co-ethylene glycol dimethacrylate and poly(lauryl methacrylate)-co-ethylene glycol dimethacrylate columns separated the alkyl benzenes with plate heights between 30 and 60 μm (50 μL min(-1) and 60°C). Similar efficiency was achieved in the poly(butyl methacrylate)-co-ethylene glycol dimethacrylate column, but only at 10 μL min(-1) (0.22 mm s(-1) ). Backpressures varied from 0.38 MPa in the hexyl methacrylate to 13.4 MPa in lauryl methacrylate columns (50 μL min(-1) and 60°C). Separation of proteins was achieved in all columns with different efficiencies. At 100 μL min(-1) and 60°C, the lauryl methacrylate columns provided the best separation, but their low permeability prevented high flow rates. Flow rates up to 500 μL min(-1) were possible in the styrene, butyl and hexyl methacrylate columns.

  2. Effects of temperature and alkyl groups of poly(alkyl methacrylate)s on inter- and intramolecular interactions of excited singlet states of pyrenyl guest molecules.

    PubMed

    Abraham, Shibu; Atvars, Teresa D Z; Weiss, Richard G

    2010-09-30

    Temperature-induced changes in the static and dynamic characteristics of the fluorescence from pyrene and N,N-dimethyl-3-(pyren-1-yl)propan-1-amine (PyC3NMe2) have been used to determine the locations and mobilities of these probes in the anisotropic environments provided by films of 5 poly(alkyl methacrylate) (PAMA) polymers in which alkyl is ethyl, butyl, isobutyl, cyclohexyl, and hexadecyl. Whereas emission from pyrene reports on the polarity of the guest sites and the ability of molecules to diffuse translationally between sites, emission from PyC3NMe2 yields information about the fluidity and the shape of the guest sites. Data have been obtained from 20 to >400 K, a range that spans the onsets of several relaxation processes in the hosts. Those data indicate that the pyrenyl groups reside near to ester functionalities in most of the PAMAs, although the distance from them (and the main chains) depends upon the bulkiness of the alkyl groups. Among the most important conclusions derived from this research is that the rates of segmental relaxation phenomena near the probe molecules--and not free volume, as was concluded previously from fluorescence measurements in polyethylene films--are the dominant contributors to the fluorescence changes. Of practical importance, changes in those rates have permitted the onset temperatures of many of the relaxation phenomena occurring in the vicinity of the probes to be located.

  3. DETECTION OF 2,4-DICHLOROPHENOXYACETIC ACID USING A FLUORESCENCE IMMUNOANALYZER

    EPA Science Inventory

    A flow immunoassay method for the measurement of 2,4-dichlorophenoxyacetic acid (2,4-D) was developed. The competitive fluorescence immunoassay relies on the use of antibody- or antigen-coated poly(methyl methacrylate) particles (98 um diameter) as a renewable solid phase. The as...

  4. Study of two cohorts of workers exposed to methyl methacrylate in acrylic sheet production

    PubMed Central

    Tomenson, J; Bonner, S; Edwards, J; Pemberton, M; Cummings, T; Paddle, G

    2000-01-01

    OBJECTIVES—To study mortality among 4324 workers at two United Kingdom factories, Darwen, Lancashire and Wilton, Cleveland, producing polymethyl methacrylate (PMMA) sheet. The Darwen factory is still active, but the Wilton one was closed in 1970. Also, to investigate patterns of mortality after exposure to methyl methacrylate; in particular, mortality from colon and rectal cancer.
METHODS—All male employees at the Darwen factory with a record of employment in 1949-88 and all men ever employed at the Wilton factory (1949-70) were investigated. The vital status of both cohorts was ascertained on 31 December 1995. The exposure of 1526 subjects at the Darwen plant who were engaged from 1949 onwards could be characterised. The mean duration of exposure was 7.6 years at 13.2 ppm (8 hour time weighted average), although exposures in some work groups were as high as 100 ppm. It was not possible to calculate the cumulative exposure of workers first employed at the Darwen plant before 1949 or workers at the Wilton factory.
RESULTS—In the Darwen cohort, 622 deaths were identified and a further 700 deaths in the Wilton cohort. Mortalities for the cohort were compared with national and local rates and expressed as standardised mortality ratios (SMRs). In the subcohort of Darwen workers with more than minimal exposure to MMA, reduced mortalities compared with national and local rates, were found for all causes (SMR 94), and colorectal cancer (SMR 92), but mortality from all cancers was slightly increased (SMR 104). No relations were found with cumulative exposure to MMA. In the subcohort of Wilton workers, mortality from all causes of death was significantly reduced (SMR 89), but mortality from all cancers (SMR 103) and colorectal cancer (SMR 124) were increased. The excess of colorectal cancer was confined to employees with less than 1 year of employment.
CONCLUSION—The study provided no clear evidence that employment at the factories or exposure to

  5. On the degelation of networks - Case of the radiochemical degradation of methyl methacrylate - ethylene glycol dimethacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Richaud, Emmanuel; Gilormini, Pierre; Verdu, Jacques

    2016-05-01

    Methyl methacrylate networks were synthetized and submitted to radiochemical degradation. Ageing was monitored by means of sol-gel analysis and glass transition temperature measurements. Networks were shown to undergo exclusively chain scission process leading to the degelation of network. The critical conversion degree corresponding to degelation (loss of all elastically active chains) is discussed regarding a statistical theory.

  6. Poly(glycidyl methacrylate)-grafted hydrophobic charge-induction agarose resins with 5-aminobenzimidazole as a functional ligand.

    PubMed

    Liu, Tao; Lin, Dong-Qiang; Wang, Cun-Xiang; Yao, Shan-Jing

    2016-08-01

    Hydrophobic charge-induction chromatography is a new technology for antibody purification. To improve antibody adsorption capacity of hydrophobic charge-induction resins, new poly(glycidyl methacrylate)-grafted hydrophobic charge-induction resins with 5-aminobenzimidazole as a functional ligand were prepared. Adsorption isotherms, kinetics, and dynamic binding behaviors of the poly(glycidyl methacrylate)-grafted resins prepared were investigated using human immunoglobulin G as a model protein, and the effects of ligand density were discussed. At the moderate ligand density of 330 μmol/g, the saturated adsorption capacity and equilibrium constant reached the maximum of 140 mg/g and 25 mL/mg, respectively, which were both much higher than that of non-grafted resin with same ligand. In addition, effective pore diffusivity and dynamic binding capacity of human immunoglobulin G onto the poly(glycidyl methacrylate)-grafted resins also reached the maximum at the moderate ligand density of 330 μmol/g. Dynamic binding capacity at 10% breakthrough was as high as 76.3 mg/g when the linear velocity was 300 cm/h. The results indicated that the suitable polymer grafting combined with the control of ligand density would be a powerful tool to improve protein adsorption of resins, and new poly(glycidyl methacrylate)-grafted hydrophobic charge-induction resins have a promising potential for antibody purification applications. PMID:27465269

  7. New Functionalities of PA6,6 Fabric Modified by Atmospheric Pressure Plasma and Grafted Glycidyl Methacrylate Derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative atmospheric pressure plasma was utilized to activate surface of PA 6,6 fabrics followed by graft copolymerization of glycidyl methacrylate (GMA) and further reacted with triethylene tetramine (TETA), quaternary ammonium chitosan (HTCC) or cyclodextrin (CD). The inner CD cavity was complexe...

  8. Light-curing time and aging effects on the nanomechanical properties of methacrylate- and silorane-based restorations.

    PubMed

    Catelan, A; Pollard, T; Bedran-Russo, Ak; Santos, Ph Dos; Ambrosano, Gmb; Aguiar, Fhb

    2014-01-01

    SUMMARY The aim of this study was to assess the influence of light-curing time on the nanohardness (H) and reduced elastic modulus (Er) of components (underlying dentin, hybrid layer, adhesive, and composite) of methacrylate- and silorane-based restorations after 24 hours and six months of storage. Class II slot preparations were carried out in human molars (n=3) and restored with methacrylate (Clearfil SE Bond [Kuraray] + Filtek Z250 [3M ESPE]) or silorane (LS restorative system [3M ESPE]) restorative systems and light-cured using light-emitting diode at 1390 mW/cm(2) for the recommended manufacturers' time or double time. Restorations were sectioned, and bonded dentin-resin interfaces were embedded in epoxy resin and polished for evaluation with a Berkovich fluid cell tip (TI 700 Ubi-1 nanoindenter, Hysitron). Data were statistically analyzed by analysis of variance and Tukey's test (alpha=0.05). Overall, the H and Er values were higher for methacrylate-based restorations than for silorane materials (p≤0.05), an increase in curing time did not improve the H and Er of the bonded interface components of either material (p>0.05), and aging significantly decreased the mechanical properties of interface components of both resin-based restorative systems (p≤0.05). In general, nanomechanical properties decreased after six months of storage, the methacrylate restorative system exhibited higher H and Er than silorane, and light-curing time did not influence the properties tested.

  9. A model for hot tack behavior in ethylene acid copolymer films

    SciTech Connect

    Shekhar, A. )

    1994-01-01

    A model has been developed for hot tack behavior in ethylene methacrylic acid and ethylene acrylic acid copolymers based on statistical regression of data. This model shows trends and provides insights on the factors that influence hot tack strength. A correlation of eight independent variables with hot tack strength showed that the two factors with the greatest impact on hot tack strength are seal temperature and acid content of the film. The melt indices, melt point temperatures, and synthesis temperatures of the film resin had insignificant correlations with hot tack. No significant difference in hot tack strength was found between acrylic and methacrylic acid copolymers. This model provides a better understanding of an important phenomenon in packaging applications, and it can be used to approximate hot tack behavior in acid copolymers when certain variables are specified.

  10. Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors.

    PubMed

    Zhang, Wei; Webb, David J; Peng, Gang-Ding

    2015-09-01

    In poly(methyl methacrylate) (PMMA)-based optical fiber gratings (POFBGs), the temperature response is determined by thermal expansion and the thermo-optic effect of the fiber. Because thermal expansion introduces a positive change and the thermo-optic effect introduces a negative change in the Bragg wavelength of the POFBG, they cancel out each other to some extent, leading to reduced and varying temperature sensitivity. By pre-straining a POFBG, the contribution of thermal expansion can be removed, and, consequently, the temperature sensitivity of POFBG can be greatly enhanced. Theoretical analysis also indicates a reduced thermo-optic coefficient of POFBG due to restrained linear expansion that matches experimental results. PMID:26368708

  11. Tensile behaviour of blends of poly(vinylidene fluoride) with poly(methyl methacrylate)

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy; Chung, Shirley Y.

    1990-01-01

    Blends of poly(vinylidene fluoride) (PVF2) and poly(methyl methacrylate) (PMMA) were prepared over a wide concentration range and tested in tension at the same relative temperature below the glass transition. In nearly all blends, under conditions favoring disentanglement, (decrease in strain rate, or increase in test temperature), the yield stress and drawing stress decreased while the breaking strain increased. For materials with about the same degree of crystallinity, those with a higher proportion of amorphous PVF2 exhibited brittle-like behavior as a result of interlamellar tie molecules. In the semicrystalline blends, yield stress remains high as the test temperature approaches Tg, whereas in the amorphous blends the yield stress falls to zero near Tg. Results of physical aging support the role of interlamellar ties which cause semicrystalline blends to exhibit aging at temperatures above Tg.

  12. Fabrication of carbohydrate microarrays on a poly(2-hydroxyethyl methacrylate)-based photoactive substrate.

    PubMed

    Sundhoro, Madanodaya; Wang, Hui; Boiko, Scott T; Chen, Xuan; Jayawardena, H Surangi N; Park, JaeHyeung; Yan, Mingdi

    2016-01-21

    We report the fabrication of carbohydrate microarrays on a photoactive polymer, poly(HEMA-co-HEMA-PFPA), synthesized by RAFT copolymerization of 2-hydroxyethyl methacrylate (HEMA) and perfluorophenyl azide (PFPA)-derivatized HEMA (HEMA-PFPA). PFPA allows the covalent immobilization of carbohydrates whereas the HEMA polymer provides an antifouling surface, thus the microarrays can be used directly without pretreating the array with a blocking agent. The microarrays were prepared by spin-coating the polymer followed by printing the carbohydrates. Subsequent irradiation simultaneously immobilized the carbohydrates and crosslinked the polymer matrix. The obtained 3D carbohydrate microarrays showed enhanced fluorescence signals upon treating with a fluorescent lectin in comparison with a 2D microarray. The signals were acquired at a lower lectin concentration and a shorter incubation time. When treated with E. coli bacteria, the carbohydrate microarray showed results that were consistent with their binding patterns. PMID:26646384

  13. Self-Diffusion of Poly(isobutyl methacrylate) in Thin Films

    NASA Astrophysics Data System (ADS)

    Katzenstein, Joshua; Janes, Dustin; Hocker, Haley; Chandler, Justin; Ellison, Christopher

    2013-03-01

    While relevant to a variety of applications, such as nanocomposite intercalation and molecular transfer printing, the diffusion of polymers parallel to their confining interfaces has received limited experimental attention to date. A refinement of fluorescence recovery after patterned photobleaching (FRAPP) has been developed by our group as a versatile platform for understanding nanoconfined diffusion. Poly(isobutyl methacrylate) (PiBMA) is an ideal candidate for these studies because (in quartz or silicon wafer supported thin films) it exhibits a film thickness independent glass transition temperature (Tg). This is important because, according to the Rouse model, the diffusion coefficient does not depend simply on the absolute temperature, but on the distance from Tg. Therefore, in our systems the origin of the diffusion coefficient is possibly decoupled from Tg changes that are present in other polymer systems. In this talk, the effect of a variety of parameters, such as film thickness, diffusion temperature, and confining interfaces, will be discussed.

  14. Development of an anthropomorphic head phantom using dolomite and polymethyl methacrylate for dosimetry in computed tomography

    NASA Astrophysics Data System (ADS)

    Ximenes, R. E.; Silva, A.; Balbino, D.; Poletti, M. E.; Maia, A. F.

    2015-12-01

    A real human skull was selected to be a mold for the construction of an anthropomorphic head phantom with a mixture of dolomite and polymethyl methacrylate (PMMA). Using linear attenuation coefficients, we show that it is possible to use dolomite as a bone simulator as long as the proportion of the mixture is 1:1. Acrylic tubes were placed in the phantom constructed to enable the insertion of the ionization chamber to estimate the effective dose. Values for a typical head computed tomography examination found in the literature vary from 0.9 to 4.0 mSv. Dosimetric studies showed that the effective dose for the anthropomorphic phantom was (2.70±0.03) mSv and for the geometric PMMA phantom (3.67±0.04) mSv, values which are in agreement with the intervals reported in the literature. The investment to produce the phantom was approximately US160.00.

  15. Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites.

    PubMed

    Littunen, Kuisma; Hippi, Ulla; Saarinen, Tapio; Seppälä, Jukka

    2013-01-01

    Composites of poly(methyl methacrylate) (PMMA) and nanofibrillated cellulose (NFC) were prepared by solution blending and further processed by injection and compression molding. To improve adhesion at the PMMA/NFC interface, the nanofibrils were covalently grafted with PMMA. Formation of a percolating nanofibril network was observed between 1 and 5 wt.% of NFC by dynamic rotational rheometry in molten state. This observation was further supported by the behavior of glass transition temperature which decreased at low NFC concentrations but recovered above the percolation threshold, indicating a decreased mobility of the matrix polymer. This effect was more pronounced with ungrafted NFC, possibly due to a stronger network. The unmodified NFC induced a minor degradation of the molar mass of PMMA. As thin plates, the composites were transparent at low NFC concentrations but became partially aggregated at the highest NFC concentrations. Despite the continuous NFC network, tensile testing showed no improvement of the mechanical properties.

  16. Synthesis, characterization and molecular dynamic simulation on dendronized poly(diphtalimidoalky phenyl) methacrylates

    NASA Astrophysics Data System (ADS)

    Radić, D.; Alegría, L.; Sandoval, C.; Gargallo, L.

    2012-07-01

    Dendronized methacrylates containing 3,5-diphtalimido alkylphenyl moieties with ethyl (M-EthylG1), propyl (M-PropylG1) and butyl (M-ButylG1) spacer groups were synthesized. Monomers of the first generation were polymerized by radical polymerization using AIBN as initiator. The corresponding polymers (P-EthylG1), (P-PropylG1) and (P-ButylG1) were obtained. Monomers and polymers were characterized by 1H-NMR, 13C-NMR, FTIR spectroscopic measurements. Molecular weight was estimated by following the nitrogen content in the obtained polymers. Molecular Dynamic Simulation (MDS) was performed in order to evaluate the radius of gyration (Rg) and the end-to-end distance (ree) to estimate the stiffness of the backbone and of the dendrimers. According to the conformational analysis it is possible to observe different spacial arrangements depending on the length of the spacer group.

  17. Direct measurements of the mechanical strength of carbon nanotube-poly(methyl methacrylate) interfaces.

    PubMed

    Chen, Xiaoming; Zheng, Meng; Park, Cheol; Ke, Changhong

    2013-10-11

    Understanding the interfacial stress transfer between carbon nanotubes (CNTs) and polymer matrices is of great importance to the development of CNT-reinforced polymer nanocomposites. In this paper, an experimental study is presented of the interfacial strength between individual double-walled CNTs and poly(methyl methacrylate) (PMMA) using an in situ nanomechanical single-tube pull-out testing scheme inside a high-resolution electron microscope. By pulling out individual tubes with different embedded lengths, this work reveals the shear lag effect on the nanotube-polymer interface and demonstrates that the effective interfacial load transfer occurs only within a certain embedded length. These results show that the CNT-PMMA interface possesses an interfacial fracture energy within 0.054-0.80 J/m(2) and a maximum interfacial strength within 85-372 MPa. This work is useful to better understand the local stress transfer on nanotube-polymer interfaces. PMID:23606544

  18. Phase Behavior of Star-shaped polystyrene-block-poly(methyl methacrylate) Copolymers

    NASA Astrophysics Data System (ADS)

    Jang, Sangshin; Moon, Hongchul; Lee, Youngmin; Kim, Jin Kon

    2012-02-01

    Star-shaped polystyrene-block-poly(methyl methacrylate) copolymer (PS-b-PMMA) was synthesized by utilizing α-cyclodextrin (α-CD) as a junction point of the star-shaped block copolymer. Eighteen hydroxyl groups on α-CD were substituted with bromine by the reaction with α-bromoisobutyryl bromide for atom transfer radical polymerization. We found that the number of bromine substituted arms per one α-CD was higher than 16 measured by nuclear magnetic resonance and Matrix-assisted laser desorption/ionization. We could control molecular weight of this unusual kind of block copolymer depending on polymerization times. Those polymers were characterized by gel permeation chromatography and nuclear magnetic resonance. Phase behavior of these star-shaped block copolymers were investigated.

  19. Phase behavior of multi-arm star-shaped polystyrene-block-poly(methyl methacrylate) copolymer

    NASA Astrophysics Data System (ADS)

    Jang, Sangshin; Moon, Hong Chul; Bae, Dusik; Kwak, Jonghen; Kim, Jin Kon

    2013-03-01

    We synthesized star-shaped polystyrene-block-poly(methyl methacrylate) copolymer (PS- b-PMMA) by utilizing α-cyclodextrin (α-CD) as a core of the star-shaped block copolymer. Eighteen hydroxyl groups on α-CD were transformed to bromine by the reaction with α-bromoisobutyryl bromide. We found that the number of bromine substituted arms per one α-CD was higher than 16, which was determined by nuclear magnetic resonance and Matrix-assisted laser desorption/ionization. We could control molecular weight of block copolymers by changing polymerization times. The block copolymers were characterized by gel permeation chromatography and nuclear magnetic resonance. Phase behaviors of these star-shaped block copolymers were investigated by small angle X-ray scattering and transmission electron microscopy.

  20. Evaluation of Bone Regeneration on Polyhydroxyethyl-polymethyl Methacrylate Membrane in a Rabbit Calvarial Defect Model.

    PubMed

    Kim, Somin; Hwang, Yawon; Kashif, Muhammad; Jeong, Dosun; Kim, Gonhyung

    This study was conducted to evaluate the capacity of guiding bone regeneration of polyhydroxyethyl-polymethyl methacrylate (PHEMA-PMMA) membrane as a guided tissue regeneration membrane for bone defects. Two 8-mm diameter transosseous round defects were made at the parietal bone of 18 New Zealand White rabbits. Defects were covered with or without PHEMA-PMMA membrane. Radiological and histological evaluation revealed that the bone tissue over the defect was more regenerated with time in both groups. However, there was significantly more bone regeneration at 8 weeks in the experimental group than the control group (p<0.05). There was no sign of membrane degradation or tissue inflammation and no invasion of muscle and fibrous tissue into defects. PHEMA-PMMA is a potential material for guided tissue regeneration membrane as it induces no adverse tissue reaction and effectively supports selective bone regeneration.

  1. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  2. Non-viscoelastic Alloy by Reactive Blending of Nylon with Poly(ethylene-co-glycidyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Sato, Daisuke; Kadowaki, Yuji; Ishibashi, Junya; Kobayashi, Sadayuki; Inoue, Takashi

    Polyamide (PA) was blended with a reactive polyolefin, poly(ethylene-co-glycidyl methacrylate), using an extremely long (L/D=100, L: screw length, D: screw diameter) twin-screw extruder. The reactive blending yielded a unique morphology of the sub-μm polyolefin particles in which 20 nm PA micelles were occluded. It implies that the in situ-formed graft copolymer was pulled in the dispersed particles. The blend showed ultra-high toughness (non-break at Izod impact test) and non-viscoelastic tensile property: the higher deformation rate led to the lower modulus and the larger elongation at break. In the tensile stress-strain curve, the sharp yielding point characteristic to crystalline polymer was hardly seen and the necking stress was maintained almost constant without strain hardening. It suggests a potential application for the energy absorbing car parts, to be friendly for pedestrian and driver.

  3. The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte

    NASA Astrophysics Data System (ADS)

    Latif, Famiza; Aziz, Madzlan; Katun, Nasir; Ali, Ab Malik Marwan; Yahya, Muhd Zuazhan

    In this research, new thin freestanding films of poly(methyl methacrylate) (PMMA)/50% epoxidised natural rubber (ENR 50) were doped with lithium triflate, LiCF 3SO 3 salt was prepared by a solvent casting method. The incorporation of ENR 50 is found to increase the conductivity of PMMA/LiCF 3SO 3 by two orders of magnitude at room temperature. The highest conductivity achieved was 5.09 × 10 -5 S cm -1 at room temperature when 60% of LiCF 3SO 3 salt was introduced into the PMMA blend containing 10% ENR 50. The formation of excessive hydrogen bonds and interchain crosslinking limit the performance of the blend at higher concentrations of ENR 50. The ionic conduction mechanisms in PMMA/ENR 50/LiCF 3SO 3 electrolytes obey the Arrhenius rule in which the ion transport in these materials is thermally assisted.

  4. Synthesis, characterization and fluorescence studies of novel bi-phenyl based acrylate and methacrylate

    NASA Astrophysics Data System (ADS)

    Baskar, R.; Subramanian, K.

    2011-09-01

    4-[(1 E)-3-(biphenyl-4-yl)buta-1,3-dien-1-yl]phenyl prop-2-enoate ( ACH) and 4-[(1 E)-3-(biphenyl-4-yl)buta-1,3-dien-1-yl]phenyl 2-methylprop-2-enoate ( MCH) was synthesized from biphenyl in three steps and their structures were confirmed by elemental analysis, IR, NMR ( 1H, 13C, DEPT135, 1H- 1H COSY, 1H- 13C HSQC and 1H- 13C HMBC) spectroscopic techniques. In this present study, various physicochemical characteristics we demonstrate solubility, color, absorbance and fluorescence property of novel biphenyl based acrylate and methacrylate measured in different solvents like benzene, dichloromethane, tetrahydrofuran, acetonitrile, dimethylsulfoxide and ethanol.

  5. Air plasma processing of poly(methyl methacrylate) micro-beads: Surface characterisations

    NASA Astrophysics Data System (ADS)

    Liu, Chaozong; Cui, Nai-Yi; Osbeck, Susan; Liang, He

    2012-10-01

    This paper reports the surface processing of poly(methyl methacrylate) (PMMA) micro-beads by using a rotary air plasma reactor, and its effects on surface properties. The surface properties, including surface wettability, surface chemistry and textures of the PMMA beads, were characterised. It was observed that the air plasma processing can improve the surface wettability of the PMMA microbeads significantly. A 15 min plasma processing can reduce the surface water contact angle of PMMA beads to about 50° from its original value of 80.3°. This was accompanied by about 8% increase in surface oxygen concentration as confirmed by XPS analysis. The optical profilometry examination revealed the air plasma processing resulted in a rougher surface that has a “delicate” surface texture. It is concluded that the surface chemistry and texture, induced by air plasma processing, co-contributed to the surface wettability improvement of PMMA micro-beads.

  6. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    NASA Astrophysics Data System (ADS)

    Süske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-01

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  7. Radiation grafting of oligo(ethylene glycol) ethyl ether methacrylate on polypropylene

    NASA Astrophysics Data System (ADS)

    Komasa, Justyna; Miłek, Andrzej; Ulański, Piotr; Rosiak, Janusz M.

    2014-01-01

    Oligo(ethylene glycol) ethyl ether methacrylate (OEGMA) can be grafted onto polypropylene (PP) films by post-irradiation grafting, forming a thermosensitive polymer layer, as indicated by FT-IR and contact angle measurements. In the first step, PP foils are irradiated by electron beam (5.5 kGy/min, up to 300 kGy) in the presence of air. Subsequently, the irradiated foils react with the monomer in oxygen-free solutions in isopropanol (up to 2 M of monomer) at 70 °C. Degree of grafting of OEGMA can be controlled by proper selection of absorbed dose, monomer concentration and reaction time. This work is a part of a broader project on thermosensitive materials facilitating cell growth and detachment for optimizing cell layer engineering techniques in the treatment of burn wounds.

  8. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.

    PubMed

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan; Mohamed, Faizal

    2015-07-10

    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component. PMID:25857961

  9. Dissolution And Swelling Studies Of Poly(Methyl Methacrylate) Resist Films

    NASA Astrophysics Data System (ADS)

    Papanu, J. S.; Manjkow, J.; Hess, D. W.; Soong, D. S.; Bell, A. T.

    1987-08-01

    The swelling and dissolution of thin film poly(methyl methacrylate), PMMA, in methyl isobutyl ketone (MIBK), and in solvent/nonsolvent mixtures of MIBK/methanol and methyl ethyl ketone/isopropanol have been investigated. Films were monitored using in situ ellipsometry. Parametric studies of the effects of molecular weight, molecular weight distribution, softbaking quench rate, solvent size, and temperature were performed with MIBK. These parameters were shown to have a significant effect on dissolution. The effects of solvent composition and temperature on swelling and dissolution were investigated with the binary solvents. Ternary diagrams based on Flory-Huggins interaction parameters were used to interpret the thermodynamics of swelling and dissolution. A narrow transition region (NTR) where the developer changed from a swelling to dissolving agent with a small change in composition or temperature was observed.

  10. Direct measurements of the mechanical strength of carbon nanotube-poly(methyl methacrylate) interfaces.

    PubMed

    Chen, Xiaoming; Zheng, Meng; Park, Cheol; Ke, Changhong

    2013-10-11

    Understanding the interfacial stress transfer between carbon nanotubes (CNTs) and polymer matrices is of great importance to the development of CNT-reinforced polymer nanocomposites. In this paper, an experimental study is presented of the interfacial strength between individual double-walled CNTs and poly(methyl methacrylate) (PMMA) using an in situ nanomechanical single-tube pull-out testing scheme inside a high-resolution electron microscope. By pulling out individual tubes with different embedded lengths, this work reveals the shear lag effect on the nanotube-polymer interface and demonstrates that the effective interfacial load transfer occurs only within a certain embedded length. These results show that the CNT-PMMA interface possesses an interfacial fracture energy within 0.054-0.80 J/m(2) and a maximum interfacial strength within 85-372 MPa. This work is useful to better understand the local stress transfer on nanotube-polymer interfaces.

  11. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    SciTech Connect

    Xia Minggang; Su Zhidan; Zhang Shengli

    2012-09-15

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  12. Surface-initiated atom transfer radical polymerization of methyl methacrylate from magnetite nanoparticles at ambient temperature.

    PubMed

    Raghuraman, G K; Dhamodharan, R

    2006-07-01

    The synthesis of methyl methacrylate (MMA) brush from the surface of magnetite nanoparticles (core-shell structure), from initiator moieties anchored covalently to the nanoparticles, via room temperature atom transfer radical polymerization (ATRP) is described. The surface-initiated polymerization was carried out from a surface-confined initiator containing a 2-bromoisobutyrate moiety with Cu(I)Br/PMDETA catalytic system. The initiator moiety was covalently anchored to the nanoparticles via a two step modification reaction scheme. Controlled polymerization was observed if ethyl-2-bromoisobutyrate (2-EiBrB) was added as a free/sacrificial initiator. A linear increase of molecular weight and a narrow molecular weight distribution of the PMMA formed in solution, provide evidence for a controlled surface-initiated polymerization, leading to surface-attached polymer brushes under mild conditions. The grafted PMMA provides good stability and dispersibility for the nanoparticles in organic solvents.

  13. Evaluation of Bone Regeneration on Polyhydroxyethyl-polymethyl Methacrylate Membrane in a Rabbit Calvarial Defect Model.

    PubMed

    Kim, Somin; Hwang, Yawon; Kashif, Muhammad; Jeong, Dosun; Kim, Gonhyung

    This study was conducted to evaluate the capacity of guiding bone regeneration of polyhydroxyethyl-polymethyl methacrylate (PHEMA-PMMA) membrane as a guided tissue regeneration membrane for bone defects. Two 8-mm diameter transosseous round defects were made at the parietal bone of 18 New Zealand White rabbits. Defects were covered with or without PHEMA-PMMA membrane. Radiological and histological evaluation revealed that the bone tissue over the defect was more regenerated with time in both groups. However, there was significantly more bone regeneration at 8 weeks in the experimental group than the control group (p<0.05). There was no sign of membrane degradation or tissue inflammation and no invasion of muscle and fibrous tissue into defects. PHEMA-PMMA is a potential material for guided tissue regeneration membrane as it induces no adverse tissue reaction and effectively supports selective bone regeneration. PMID:27566076

  14. Preparation And Lithographic Properties Of Poly(Trimethylsilylmethyl Methacrylate-Co-Chloromethyl Styrene)

    NASA Astrophysics Data System (ADS)

    Novembre, Anthony E.; Reichmanis, Elsa; Davis, Myrtle

    1986-07-01

    The random copolymer comprised of trimethylsilylmethyl methacrylate (SI) and chloromethyl styrene (CMS) is shown to function as a negative acting e-beam and deep UV resist. The resist is prepared using free radical solution polymerization techniques. Reactivity ratios were calculated using the least squares treatment of Fineman-Ross, and were determined to be 0.49 and 0.54 for SI and CMS, respectively. This material exhibits etching resistance in an 02 reactive ion etching discharge, and is applicable to bileveli pthographic processes. The resist system exhibits an e-beam and deep UV sensitivity (pg. ) equal to 1.95 11C/cm2 and 18mJ/cm2, respectively. The ratio of etching rates of the planarizing layer HPR-206 to this material is 12 to 1 in 02. Preliminary results indicate this system to have submicron resolution capability.

  15. Facile One-step Micropatterning Using Photodegradable Methacrylated Gelatin Hydrogels for Improved Cardiomyocyte Organization and Alignment

    PubMed Central

    Tsang, Kelly M.C.; Annabi, Nasim; Ercole, Francesca; Zhou, Kun; Karst, Daniel; Li, Fanyi; Haynes, John M.; Evans, Richard A.; Thissen, Helmut

    2015-01-01

    Hydrogels are often employed as temporary platforms for cell proliferation and tissue organization in vitro. Researchers have incorporated photodegradable moieties into synthetic polymeric hydrogels as a means of achieving spatiotemporal control over material properties. In this study protein-based photodegradable hydrogels composed of methacrylated gelatin (GelMA) and a crosslinker containing o-nitrobenzyl ester groups have been developed. The hydrogels are able to degrade rapidly and specifically in response to UV light and can be photopatterned to a variety of shapes and dimensions in a one-step process. Micropatterned photodegradable hydrogels are shown to improve cell distribution, alignment and beating regularity of cultured neonatal rat cardiomyocytes. Overall this work introduces a new class of photodegradable hydrogel based on natural and biofunctional polymers as cell culture substrates for improving cellular organization and function. PMID:26327819

  16. Synthesis, characterization, and antimicrobial activity of poly(acrylonitrile-co-methyl methacrylate) with silver nanoparticles.

    PubMed

    El-Aassar, M R; Hafez, Elsayed E; Fouda, Moustafa M G; Al-Deyab, Salem S

    2013-10-01

    Nanotechnology is expected to open some new aspects to fight and prevent diseases using atomic-scale tailoring of materials. The main aim of this study is to biosynthesize silver nanoparticles (AgNPs) using Trichoderma viride (HQ438699); the metabolite of this fungus will help either in reduction of the silver nitrate-adding active materials which will be loaded on the surface of the produced AgNPs. Poly(acrylonitrile-co-methyl methacrylate) copolymer (poly (AN-co-MMA)) was grafted with the prepared AgNPs. The poly(AN-co-MMA)/AgNPs were examined against ten different pathogenic bacterial strains, and the result was compared with another four different generic antibiotics. The produced poly(AN-co-MMA)/AgNPs showed high antibacterial activity compared with the four standard antibiotics. Moreover, the grafting of these AgNPs into the copolymer has potential application in the biomedical field. PMID:23873643

  17. Preparation of medical magnetic nanobeads with ferrite particles encapsulated in a polyglycidyl methacrylate (GMA) for bioscreening

    SciTech Connect

    Nishibiraki, H.; Kuroda, C.S.; Maeda, M.; Matsushita, N.; Abe, M.; Handa, H.

    2005-05-15

    Ferrite nanoparticles (an intermediate between Fe{sub 3}O{sub 4} and {gamma}-Fe{sub 2}O{sub 3}), {approx}7 nm in diameter, were embedded in beads of a mixed polymer of styrene (St) and glycidyl methacrylate (GMA) by emulsifier-free emulsion polymerization method. The beads were coated with GMA by a seeded polymerization method in order to suppress nonspecific protein binding on the surfaces; GMA exhibits very low nonspecific protein binding, which is required for carriers used for bioscreening. The beads have diameters of 180{+-}50 nm and saturation magnetizations of 28 emu/g, exceeding commercially available polymer-coated beads of micron size having a weaker saturation magnetization ({approx}12 emu/g)

  18. Interaction between physical aging, deformation, and segmental mobility in poly(methyl methacrylate) glasses

    NASA Astrophysics Data System (ADS)

    Lee, Hau-Nan; Ediger, M. D.

    2010-07-01

    Optical photobleaching experiments were used to investigate the interaction between physical aging, segmental mobility, and mechanical properties in polymer glasses. Mechanical creep experiments were performed on lightly cross-linked poly(methyl methacrylate) glasses with systematically varying aging histories. By directly measuring the molecular mobility of polymer glasses under deformation, we observe that stresses in the preflow regime and flow regime have qualitatively different influences on the aging process. In the preflow regime, the effects of aging and stress on mobility act as two independent processes; stress causes an increase in segmental mobility but does not erase the influence of previous aging. In contrast, as a sample enters the flow regime, plastic deformation takes the glass into a high mobility state that is independent of any predeformation aging history.

  19. Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization

    NASA Astrophysics Data System (ADS)

    Desmet, Gilles; Takács, Erzsébet; Wojnárovits, László; Borsa, Judit

    2011-12-01

    Cotton-cellulose was functionalized using gamma-irradiation-induced grafting of glycidyl methacrylate (GMA) to obtain a hydrophobic cellulose derivative with epoxy groups suitable for further chemical modification. Two grafting techniques were applied. In pre-irradiation grafting (PIG) cellulose was irradiated in air and then immersed in a GMA monomer solution, whereas in simultaneous grafting (SG) cellulose was irradiated in an inert atmosphere in the presence of the monomer. PIG led to a more homogeneous fiber surface, while SG resulted in higher grafting yield but showed clear indications of some GMA-homopolymerization. Effects of the reaction parameters (grafting method, absorbed dose, monomer concentration, solvent composition) were evaluated by SEM, gravimetry (grafting yield) and FTIR spectroscopy. Water uptake of the cellulose decreased while adsorption of a pesticide molecule increased upon grafting. The adsorption was further enhanced by β-cyclodextrin immobilization during SG. This method can be applied to produce adsorbents from cellulose based agricultural wastes.

  20. Thermoelastic temperature changes in poly(methyl methacrylate) at high hydrostatic pressure: Experimental

    NASA Astrophysics Data System (ADS)

    Rodriquez, E. L.; Filisko, F. E.

    1982-10-01

    Temperature changes as a result of large rapid hydrostatic pressure changes were measured for poly(methyl methacrylate) at various temperatures from ambient to 95 °C and for various pressure increments from 14 to 207 MN/m2. We observe complete reversibility of the measurements over the pressure range studied. The value of the incremental ratio ΔT/ΔP was a function of both temperature and pressure, ranging from 0.04 to 0.09 K/MNm-2 from 298 to 368 K at low pressures, and 0.03-0.05 at 200 MN/m2 over the same temperature range. The largest variation of ΔT/ΔP with pressure was at low pressures, the ratio becoming nearly constant above about 200 MN/M2.

  1. Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties

    SciTech Connect

    Beckel, E. R.; Berchtold, K. A.; Nie, J.; Lu, H.; Stansbury, J. W.; Bowman, C. N.

    2002-01-01

    Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondary functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.

  2. Near-field mapping of plasmonic antennas by multiphoton absorption in poly(methyl methacrylate).

    PubMed

    Volpe, Giorgio; Noack, Monika; Aćimović, Srdjan S; Reinhardt, Carsten; Quidant, Romain

    2012-09-12

    Mapping the optical near-field response around nanoantennas is a challenging yet indispensable task to engineer light-matter interaction at the nanometer scale. Recently, photosensitive molecular probes, which undergo morphological or chemical changes induced by the local optical response of the nanostructures, have been proposed as a handy alternative to more cumbersome optical and electron-based techniques. Here, we report four-photon absorption in poly(methyl methacrylate) (PMMA) as a very promising tool for nanoimaging the optical near-field around nanostructures over a broad range of near-infrared optical wavelengths. The high performance of our approach is demonstrated on single-rod antennas and coupled gap antennas by comparing experimental maps with 3D numerical simulations of the electric near-field intensity.

  3. Fabrication of Poly (methyl methacrylate) and Poly(vinyl alcohol) Thin Film Capacitors on Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Salim, Bindu; Meenaa Pria KNJ, Jaisree; Alagappan, M.; Kandaswamy, A.

    2015-11-01

    Flexible electronics is becoming more popular with introduction of more and more organic conducting materials and processes for making thin films. The use of polymers as gate dielectric has over ruled the usage of conventional inorganic oxides in Organic Thin Film Transistors (OTFTs) on account of its solution process ability and ease of making highly insulating thin film. In this work Capacitance is fabricated with polymeric dielectrics namely poly (methyl methacrylate) - PMMA and poly (vinyl alcohol) - PVA. The electrodes used for these capacitors are Indium Tin Oxide (ITO) and Aluminium. Capacitance value of 9.5nF/cm2 and 33.12nF/cm2 is achieved for thickness of 510 nm of PMMA and 80 nm of PVA respectively. This study on capacitance can be used for assessing the suitability of these polymers as gate insulators in OTFTs.

  4. Mechanical properties of methacrylate-based model dentin adhesives: effect of loading rate and moisture exposure.

    PubMed

    Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Park, Jonggu; Spencer, Paulette

    2013-11-01

    The aim of this study is to investigate the mechanical behavior of model methacrylate-based dentin adhesives under conditions that simulate the wet oral environment. A series of monotonic and creep experiments were performed on rectangular beam samples of dentin adhesive in three-point bending configuration under different moisture conditions. The monotonic test results show a significant effect of loading rate on the failure strength and the linear limit (yield point) of the stress-strain response. In addition, these tests show that the failure strength is low, and the failure occurs at a smaller deformation when the test is performed under continuously changing moisture conditions. The creep test results show that under constant moisture conditions, the model dentin adhesives can have a viscoelastic response under certain low loading levels. However, when the moisture conditions vary under the same low loading levels, the dentin adhesives have an anomalous creep response accompanied by large secondary creep and high strain accumulation. PMID:23744598

  5. Miniemulsion fabricated Fe3O4/poly(methyl methacrylate) composite particles and their magnetorheological characteristics

    NASA Astrophysics Data System (ADS)

    Park, B. O.; Song, K. H.; Park, B. J.; Choi, H. J.

    2010-05-01

    In order to improve drawbacks such as sedimentation of magnetic particles and abrasion of the magnetorheological (MR) fluid, we have fabricated Fe3O4/poly(methyl methacrylate) (PMMA) composite particles via a double miniemulsion method and studied their MR properties. Morphology and chemical composition of the synthesized Fe3O4/PMMA composite particles were investigated by transmission electron microscopy and Fourier transform infrared, respectively. The density of the Fe3O4/PMMA composite particles was measured to be lower than that of the as-synthesized Fe3O4 particles, indicative of an improvement of the composite particles to stay dispersed. Rheological characteristics of the Fe3O4/PMMA based MR fluid dispersed in a nonmagnetic carrier fluid were measured by both static and dynamic tests using a rotational rheometer under an external magnetic field. Shear stress, yield stress, and storage modulus from the rheological measurements were obtained to be increased with applied magnetic field strengths.

  6. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.

    PubMed

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan; Mohamed, Faizal

    2015-07-10

    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component.

  7. Enhancement of impact strength of poly (methyl methacrylate) with surface fine-tuned nano-silica

    NASA Astrophysics Data System (ADS)

    Wen, Bin; Dong, Yixiao; Wu, Lili; Long, Chao; Zhang, Chaocan

    2015-07-01

    Highly dispersible nanoparticles in organic solvent always receive wide interests due to their compatibility with polymer materials. This paper reported a kind of isopropanol alcohol silica dispersion which obtained using a method of azeotropic distillation. The isopropanol alcohol dispersed silica (IPADS) were treated with coupling agents to fine-tune their surface properties. Polymethyl methacrylate (PMMA) was then used as a research object to test the compatibility between IPADS and polymer. UV-vis spectra indicate that IPADS would reach its high compatibility with PMMA if coupling with trimethoxypropylsilane (PTMS). Followed experiments on PMMA proved that the high compatibility can prominently enhance the impact strength about 30%. The results may provide reference both for nano-silica modification and better understanding of nano-enhanced materials.

  8. Dye-attached magnetic poly(hydroxyethyl methacrylate) nanospheres for albumin depletion from human plasma.

    PubMed

    Gökay, Öznur; Karakoç, Veyis; Andaç, Müge; Türkmen, Deniz; Denizli, Adil

    2015-02-01

    The selective binding of albumin on dye-affinity nanospheres was combined with magnetic properties as an alternative approach for albumin depletion from human plasma. Magnetic poly(hydroxyethyl methacrylate) (mPHEMA) nanospheres were synthesized using mini-emulsion polymerization method in the presence of magnetite powder. The specific surface area of the mPHEMA nanospheres was found to be 1302 m(2)/g. Subsequent to Cibacron Blue F3GA (CB) immobilization onto mPHEMA nanospheres, a serial characterization processing was implemented. The quantity of immobilized CB was calculated as 800 μmol/g. Ultimately, albumin adsorption performance of the CB-attached mPHEMA nanospheres from both aqueous dissolving medium and human plasma were explored.

  9. Phosphate sensor based on immobilized aluminium-morin in poly (glycidyl methacrylate) microspheres

    NASA Astrophysics Data System (ADS)

    Ahmad, Amalina; Hanifah, Sharina Abu; Hasbullah, Siti Aishah; Suhud, Khairi; Zaini, Norhadisah Mohd; Heng, Lee Yook

    2014-09-01

    This paper reports the development of dihydrogen phosphate ion (H2PO4-) sensor in free solution and immobilized aluminium-morin (Al-Mo) complex on poly(glycidyl methacrylate) (pGMA) microspheres. The immobilization was carried out by suspension photopolymerization technique. Based on Al-Mo solution work, phosphate can be detected from 0.1 - 15.0 ppm of dihydrogen phosphate at pH 5. Phosphate detection only takes about 5 minutes. Morphology analyses showed that the immobilization of Aluminium-Morin complex maintained the size of the microspheres and proved that entrapment involves in the formation of the microspheres. This result is further explained by Attenuated Total Reflectance (ATR) spectrum which does not show any formation of new bands. The microspheres were then used for further applications.

  10. Electron capture of dopants in two-photonic ionization in a poly(methyl methacrylate) solid

    SciTech Connect

    Tsuchida, Akira; Sakai, Wataru; Nakano, Mitsuru; Yamamoto, Masahide

    1992-10-29

    Behavior of the electron produced by two-photonic excitation of an aromatic donor in a poly(methyl methacrylate) solid was studied by the addition of the electron scavengers to the system. According to the Perrin type analysis for the two-photonically ejected electron, the capture radii (R{sub c}) of the scavengers examined were estimated to be from 8 to 40 {Angstrom}. For the two-photonically ejected electrons, R{sub c} is a capture radius for thermalized electrons. In this case the parent electron donor is not necessarily within this radius. On the other hand, for the fluorescence quenching, the distance between the donor and acceptor is within the static quenching radius (R{sub q}) of the donor. 13 refs., 4 figs., 2 tabs.

  11. Facile Soap-Free Miniemulsion Polymerization of Methyl Methacrylate via Reverse Atom Transfer Radical Polymerization.

    PubMed

    Zhu, Gaohua; Zhang, Lifen; Pan, Xiangqiang; Zhang, Wei; Cheng, Zhenping; Zhu, Xiulin

    2012-12-21

    A facile soap-free miniemulsion polymerization of methyl methacrylate (MMA) was successfully carried out via a reverse ATRP technique, using a water-soluble potassium persulfate (KPS) or 2,2'-azobis(2-methylpropionamidine) dihydrochloride (V-50) both as the initiator and the stabilizer, and using an oil-soluble N,N-n-butyldithiocarbamate copper (Cu(S2CN(C4H9)2)2) as the catalyst without adding any additional ligand. Polymerization results demonstrated the "living"/controlled characteristics of ATRP and the resultant latexes showed good colloidal stability with average particle size around 300-700 nm in diameter. The monomer droplet nucleation mechanism was proposed. NMR spectroscopy and chain-extension experiments under UV light irradiation confirmed the attachment and livingness of UV light sensitive -S-C(=S)-N(C4H9)2 group in the chain end. PMID:23019131

  12. Methyl methacrylate as a healing agent for self-healing cementitious materials

    NASA Astrophysics Data System (ADS)

    Van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; De Belie, N.

    2011-12-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice.

  13. Multidisciplinary approach for reconstruction of cranial defect with polymethyl methacrylate resin reinforced with titanium mesh.

    PubMed

    Sane, Vikrant Dilip; Kadam, Pankaj; Jadhav, Aniket; Saddiwal, Rashmi; Merchant, Yash

    2016-01-01

    Cranial defects occur most commonly as a sequelae to trauma, the incidence being as high as 70%. The successful management of a case of trauma in an emergency situation requires quick evacuation of the hematoma, repair of the dura, and the scalp but not necessarily the integrity of the calvarial segment as an immediate measure. So the reconstruction of the calvarial defect in these cases is mostly carried out as a secondary procedure. Various materials are used for reconstruction of cranial defects, polymethyl methacrylate (PMMA) resin being one of them. In this article, we report a case which was successfully treated by PMMA resin in combination with a titanium mesh for reconstruction of the cranial defect as a secondary procedure. PMID:27621551

  14. Thermosensitive poly(N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release.

    PubMed

    Li, Penghui; Xu, Ruizhen; Wang, Wenhao; Li, Xiaolong; Xu, Zushun; Yeung, Kelvin W K; Chu, Paul K

    2013-01-01

    A new type of thermosensitive microgels with epoxy functional groups is designed and synthesized for drug delivery. The thermosensitive poly(N-isopropylacrylamide-co-glycidyl methacrylate) (designated as P(NIPAM-co-GMA)) microgels are prepared by an emulsifier-free emulsion polymerization method and the chemical composition of the copolymer is determined by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance ((1)H NMR). The lower critical solution temperature (LCST) of the microgels is 32°C based on the transmittance changes at 500 nm monitored by UV/visible spectrophotometry. The hydrodynamic diameter and morphology of the microgel particles are examined by dynamic light scattering (DLS) and scanning electron microscopy (SEM), respectively. The drug release properties determined using 5-FU as the drug model in vitro reveal temperature dependence and low cytotoxicity. The thermosensitive microgels have large potential as targeted anti-cancer drug carriers. PMID:23010027

  15. Bonding efficacy and side effects of the high purity glyceryl mono-methacrylate.

    PubMed

    Takahashi, Y; Itoh, K; Manabe, A; Tani, C; Hisamitsu, H

    2004-12-01

    The purpose of this study was to examine the efficacy of experimentally developed high purity glyceryl mono-methacrylate (GM) as a dentine primer and to evaluate the possibility of allergic reaction. The efficacy of experimental dentine primers was evaluated by measuring the polymerization contraction gap width and the tensile bond strength. Allergic reaction was evaluated by the guinea-pig maximization test. The skin reaction was evaluated according to the criteria of the International Contact Dermatitis Research Group. Contraction gap formation was completely prevented and the tensile bond strength was not significantly affected by priming with GM on high-purity GM. The allergic response decreased when high-purity GM was employed as the challenger. It was concluded that the clinical use of the high-purity GM is beneficial as the delayed allergic reaction could be avoided with no detrimental effect on the dentine bonding. PMID:15544652

  16. Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties.

    PubMed

    Heinzmann, Christian; Salz, Ulrich; Moszner, Norbert; Fiore, Gina L; Weder, Christoph

    2015-06-24

    Hydrogen-bonded, side-chain-functionalized supramolecular poly(alkyl methacrylate)s were investigated as light- and temperature-responsive reversible adhesives that are useful for bonding and debonding on demand applications. Here, 2-hydroxyethyl methacrylate (HEMA) was functionalized with 2-ureido-4[1H]pyrimidinone (UPy) via a hexamethylenediisocyanate (HMDI) linker, to create a monomer (UPy-HMDI-HEMA) that serves to form supramolecular cross-links by way of forming quadruple hydrogen bonded dimers. UPy-HMDI-HEMA was copolymerized with either hexyl methacrylate or butyl methacrylate to create copolymers comprising 2.5, 5, or 10 mol % of the cross-linker. The mechanical properties of all (co)polymers were investigated with stress-strain experiments and dynamic mechanical analysis. Furthermore, the adhesive properties were studied at temperatures between 20 and 60 °C by testing single lap joints formed with stainless steel substrates. It was found that increasing the concentration of the UPy-HMDI-HEMA cross-linker leads to improved mechanical and adhesive properties at elevated temperatures. Concurrently, the reversibility of the bond formation remained unaffected, where rebonded samples displayed the same adhesive strength as regularly bonded samples. Debonding on demand abilities were also tested exemplarily for one copolymer, which for light-induced debonding experiments was blended with a UV-absorber that served as light-heat converter. Single lap joints were subjected to a constant force and heated or irradiated with UV light until debonding occurred. The necessary debonding temperature was comparable for direct heating and UV irradiation and varied between 28 and 82 °C, depending on the applied force. The latter also influenced the debonding time, which under the chosen conditions ranged from 30 s to 12 min. PMID:26043809

  17. Protective effect of chitosan oligosaccharide lactate against DNA double-strand breaks induced by a model methacrylate dental adhesive

    PubMed Central

    Szczepanska, Joanna; Pawlowska, Elzbieta; Synowiec, Ewelina; Czarny, Piotr; Rekas, Marek; Blasiak, Janusz; Szaflik, Jacek Pawel

    2011-01-01

    Summary Background Monomers of methacrylates used in restorative dentistry have been recently reported to induce DNA double-strand breaks (DSBs) in human gingival fibroblasts (HGFs) in vitro. Because such monomers may penetrate the pulp and oral cavity due to the incompleteness of polymerization and polymer degradation, they may induce a similar effect in vivo. DSBs are the most serious type of DNA damage and if misrepaired or not repaired may lead to mutation, cancer transformation and cell death. Therefore, the protection against DSBs induced by methacrylate monomers released from dental restorations is imperative. Material/Methods We examined the protective action of chitosan oligosaccharide lactate (ChOL) against cytotoxic and genotoxic effects induced by monomers of the model adhesive consisting of 55% bisphenol A-diglycidyl dimethacrylate (Bis-GMA) and 45% 2-hydroxyethyl methacrylate (HEMA). We evaluated the extent of DSBs by the neutral comet assay and the phosphorylation of the H2AX histone test. Results ChOL increased the viability of HGFs exposed to Bis-GMA/HEMA as assessed by flow cytometry. ChOL decreased the extent of DSBs induced by Bis-GMA/HEMA as evaluated by neutral comet assay and phosphorylation of the H2AX histone. ChOL did not change mechanical properties of the model adhesive, as checked by the shear bond test. Scanning electron microscopy revealed a better sealing of the dentinal microtubules in the presence of ChOL, which may protect pulp cells against the harmful action of the monomers. Conclusions ChOL can be considered as an additive to methacrylate-based dental materials to prevent DSBs induction, but further studies are needed on its formulation with the methacrylates. PMID:21804456

  18. Novel Nanocomposites of Poly(lauryl methacrylate)-Grafted Al2O3 Nanoparticles in LDPE.

    PubMed

    Cobo Sánchez, Carmen; Wåhlander, Martin; Taylor, Nathaniel; Fogelström, Linda; Malmström, Eva

    2015-11-25

    Aluminum oxide nanoparticles (NPs) were surface-modified by poly(lauryl methacrylate) (PLMA) using surface-initiated atom-transfer radical polymerization (SI-ATRP) of lauryl methacrylate. Nanocomposites were obtained by mixing the grafted NPs in a low-density polyethylene (LDPE) matrix in different ratios. First, the NPs were silanized with different aminosilanes, (3-aminopropyl)triethoxysilane, and 3-aminopropyl(diethoxy)methylsilane (APDMS). Subsequently, α-BiB, an initiator for SI-ATRP, was attached to the amino groups, showing higher immobilization ratios for APDMS and confirming that fewer self-condensation reactions between silanes took place. In a third step SI-ATRP of LMA at different times was performed to render PLMA-grafted NPs (NP-PLMAs), showing good control of the polymerization. Reactions were conducted for 20 to 60 min, obtaining a range of molecular weights between 23 000 and 83 000 g/mol, as confirmed by size-exclusion chromoatography of the cleaved grafts. Nanocomposites of NP-PLMAs at low loadings in LDPE were prepared by extrusion. At low loadings, 0.5 wt % of inorganic content, the second yield point, storage, and loss moduli increased significantly, suggesting an improved interphase as an effect of the PLMA grafts. These observations were also confirmed by an increase in transparency of the nanocomposite films. At higher loadings, 1 wt % of inorganics, the increasing amount of PLMA gave rise to the formation of small aggregates, which may explain the loss of mechanical properties. Finally, dielectric measurements were performed, showing a decrease in tan δ values for LDPE-NP-PLMAs, as compared to the nanocomposites containing unmodified NP, thus indicating an improved interphase between the NPs and LDPE.

  19. Evaluation of three-dimensional biofilms on antibacterial bonding agents containing novel quaternary ammonium methacrylates

    PubMed Central

    Zhou, Han; Weir, Michael D; Antonucci, Joseph M; Schumacher, Gary E; Zhou, Xue-Dong; Xu, Hockin HK

    2014-01-01

    Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alkyl chain length effects on three-dimensional biofilms adherent on adhesives for the first time. Six quaternary ammonium methacrylates with chain lengths of 3, 6, 9, 12, 16 and 18 were synthesized and incorporated into Scotchbond Multi-Purpose. Streptococcus mutans bacteria were cultured on resin to form biofilms. Confocal laser scanning microscopy was used to measure biofilm thickness, live/dead volumes and live-bacteria percentage vs. distance from resin surface. Biofilm thickness was the greatest for Scotchbond control; it decreased with increasing chain length, reaching a minimum at chain length 16. Live-biofilm volume had a similar trend. Dead-biofilm volume increased with increasing chain length. The adhesive with chain length 9 had 37% live bacteria near resin surface, but close to 100% live bacteria in the biofilm top section. For chain length 16, there were nearly 0% live bacteria throughout the three-dimensional biofilm. In conclusion, strong antibacterial activity was achieved by adding quaternary ammonium into adhesive, with biofilm thickness and live-biofilm volume decreasing as chain length was increased from 3 to 16. Antibacterial adhesives typically only inhibited bacteria close to its surface; however, adhesive with chain length 16 had mostly dead bacteria in the entire three-dimensional biofilm. Antibacterial adhesive with chain length 16 is promising to inhibit biofilms at the margins and combat secondary caries. PMID:24722581

  20. Methyl methacrylate levels in orthopedic surgery: comparison of two conventional vacuum mixing systems.

    PubMed

    Jelecevic, Jasmin; Maidanjuk, Stanislaw; Leithner, Andreas; Loewe, Kai; Kuehn, Klaus-Dieter

    2014-05-01

    Poly-methyl methacrylate bone cements contain methyl methacrylate (MMA), which is known for its sensitizing and toxic properties. Therefore, in most European countries and in the USA, guidelines or regulations exist for occupational exposures. The use of vacuum mixing systems can significantly reduce airborne MMA concentrations during bone setting. Our goal was to test two commonly used vacuum mixing systems (Palamix(®) and Optivac(®)) using Palacos(®) R bone cement for their effectiveness at preventing MMA vapor release in a series of standardized trials in a laboratory as well as in an operating theatre. MMA was quantified every second over a period of 3 min using a photoionization detector (MiniRAE(®) 3000) device positioned in the breathing area of the user. Significant differences in MMA mean vapor concentrations over 180 s were observed in the two experimental spaces, with the highest mean concentrations (7.61 and 7.98 ppm for Palamix(®) and Optivac(®), respectively) observed in a laboratory with nine air changes per hour and the lowest average concentrations (1.06 and 1.12 ppm for Palamix(®) and Optivac(®), respectively) in an operating theatre with laminar flow ventilation and 22 air changes per hour. No significant differences in overall MMA concentrations were found between the two vacuum mixing systems in either location. Though, differences were found between both systems during single mixing phases. Thus, typical handling of MMA in orthopedic procedures must be seen as not harmful as concentrations do not reach the short-term exposure limit of 100 ppm. Additionally, laminar airflow seems to have an influence on lowering MMA concentrations in operation theatres.

  1. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    NASA Astrophysics Data System (ADS)

    Tan, Guoxin; Zhou, Lei; Ning, Chengyun; Tan, Ying; Ni, Guoxin; Liao, Jingwen; Yu, Peng; Chen, Xiaofeng

    2013-08-01

    Immobilizing organic-inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic-mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  2. Reinforcement of Dental Methacrylate with Glass Fiber after Heated Silane Application

    PubMed Central

    Fonseca, Rodrigo Borges; de Paula, Marcella Silva; Favarão, Isabella Negro; Kasuya, Amanda Vessoni Barbosa; de Almeida, Letícia Nunes; Mendes, Gustavo Adolfo Martins; Carlo, Hugo Lemes

    2014-01-01

    This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I) or pure (P), on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%). Six groups (n = 10) were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10 × 2 × 1 mm) and for compressive strength 9.5 × 5.5 × 3 mm) and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P < 0.05): I-sil: 155.89 ± 45.27BC; P-sil: 155.89 ± 45.27BC; I-sil/heat: 130.20 ± 22.11C; P-sil/heat: 169.86 ± 50.29AB; I: 131.87 ± 15.86C. For compressive strength, the following are demonstrated: I-sil: 1367.25 ± 188.77ab; P-sil: 867.61 ± 102.76d; I-sil/heat: 1162.98 ± 222.07c; P-sil/heat: 1499.35 ± 339.06a; and I: 1245.78 ± 211.16bc. Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate. PMID:24967361

  3. [Analysis of the character of film decomposition of methyl methacrylate (MMA) coated urea by infrared spectrum].

    PubMed

    Li, Dong-po; Wu, Zhi-jie; Liang, Cheng-hua; Chen, Li-jun; Zhang, Yu-lan; Nie, Yan-xi

    2012-03-01

    The degradability characteristics of film with 4 kinds of methyl methacrylate coated urea amended with inhibitors were analyzed by FITR, which was purposed to supply theoretical basis for applying the FITR analysis method to film decomposition and methyl methacrylate coated urea fertilizers on farming. The result showed that the chemical component, molecule structure and material form of the membrane were not changed because of adding different inhibitors to urea. the main peaks of expressing film degradation process were brought by the -C-H of CH3 & CH2, -OH, C-O, C-C, C-O-C, C=O, C=C flexing vibrancy in asymmetry and symmetry in 3 479-3 195, 2 993--2 873, 1 741-1 564, 1 461-925 and 850-650 cm(-1). The peak value changed from smooth to tip, and from width to narrow caused by chemical structural transform of film The infrared spectrum of 4 kinds of fertilizers was not different remarkably before 60 days, and the film was slowly degraded. But degradation of the film was expedited after 60 days, it was most quickened at 120 day, and the decomposition rate of film was decreased at 310 day. The substantiality change of film in main molecule structure of 4 kinds of fertilizers didn't happen in 310 days. The main component of film materials was degraded most slowly in brown soil. The speed of film degradation wasn't heavily impacted by different inhibitors. The characteristic of film degradation may be monitored entirely by infrared spectrum. The degradation dynamic, chemical structure change, degradation speed difference of the film could be represented through infrared spectrum. PMID:22582622

  4. Robust naphthyl methacrylate monolithic column for high performance liquid chromatography of a wide range of solutes.

    PubMed

    Jonnada, Murthy; El Rassi, Ziad

    2015-08-28

    An organic monolithic column based on the co-polymerization of 2-naphthyl methacrylate (NAPM) as the functional monomer and trimethylolpropane trimethacrylate (TRIM) as the crosslinker was introduced for high performance reversed-phase liquid chromatography (RPC). The co-polymerization was performed in situ in a stainless steel column of 4.6mm i.d. in the presence of a ternary porogen consisting of 1-dodecanol and cyclohexanol. This monolithic column (referred to as naphthyl methacrylate monolithic column or NMM column) showed high mechanical stability at relatively high mobile phase flow velocity indicating that the column has excellent hydrodynamic characteristics. To characterize the NMM column, different probe molecules including alkyl benzenes, and aniline, benzene, toluene and phenol derivatives were chromatographed on the column and the results in terms of k, selectivity and plate counts were compared to those obtained on an octadecyl silica (ODS) column in order to assess the presence of π-π and hydrophobic interactions on the NMM column under otherwise the same elution conditions. The NMM column offered additional π-π interactions with aromatic molecules in addition to hydrophobic interactions under RPC elution conditions. Run-to-run and column-to-column reproducibility of solute k values were evaluated, and percent relative standard deviation of <1% and ∼2-3.5%, respectively, were obtained. Six standard proteins were readily separated on the NMM column using shallow (30min at 1.0mL/min), steep (10min at 1.0mL/min) and ultra steep (1min at 3.0mL/min) linear gradient elution at increasing ACN concentration in the mobile phase using a 10cm×4.6mm i.d. column in case of shallow and steep linear gradients and a 3cm×4.6mm i.d. column for ultra steep linear gradient.

  5. [Analysis of the character of film decomposition of methyl methacrylate (MMA) coated urea by infrared spectrum].

    PubMed

    Li, Dong-po; Wu, Zhi-jie; Liang, Cheng-hua; Chen, Li-jun; Zhang, Yu-lan; Nie, Yan-xi

    2012-03-01

    The degradability characteristics of film with 4 kinds of methyl methacrylate coated urea amended with inhibitors were analyzed by FITR, which was purposed to supply theoretical basis for applying the FITR analysis method to film decomposition and methyl methacrylate coated urea fertilizers on farming. The result showed that the chemical component, molecule structure and material form of the membrane were not changed because of adding different inhibitors to urea. the main peaks of expressing film degradation process were brought by the -C-H of CH3 & CH2, -OH, C-O, C-C, C-O-C, C=O, C=C flexing vibrancy in asymmetry and symmetry in 3 479-3 195, 2 993--2 873, 1 741-1 564, 1 461-925 and 850-650 cm(-1). The peak value changed from smooth to tip, and from width to narrow caused by chemical structural transform of film The infrared spectrum of 4 kinds of fertilizers was not different remarkably before 60 days, and the film was slowly degraded. But degradation of the film was expedited after 60 days, it was most quickened at 120 day, and the decomposition rate of film was decreased at 310 day. The substantiality change of film in main molecule structure of 4 kinds of fertilizers didn't happen in 310 days. The main component of film materials was degraded most slowly in brown soil. The speed of film degradation wasn't heavily impacted by different inhibitors. The characteristic of film degradation may be monitored entirely by infrared spectrum. The degradation dynamic, chemical structure change, degradation speed difference of the film could be represented through infrared spectrum.

  6. Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation.

    PubMed

    Wu, Jingjing; Xu, Suju; Qiu, Zhiye; Liu, Peng; Liu, Huiying; Yu, Xiang; Cui, Fu-Zhai; Chunhua, Zhao Robert

    2016-01-01

    Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility. Better performance in mechanical match and bone integration is highly desirable. Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo. In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate). Human marrow mesenchymal stem cells are used in this experiment. Adhesion and proliferation were used to characterize biocompatibility. Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts. Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level. The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days. Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern.

  7. Specialty polymeric membranes. 8: Separation of benzene from benzene/cyclohexane mixtures with nylon 6-graft-poly(butyl methacrylate) membranes

    SciTech Connect

    Yoshikawa, Masakazu; Tsubouchi, Keisuke; Kitao, Toshio

    1999-02-01

    A novel pervaporation membrane was prepared by radical graft polymerization of butyl methacrylate onto nylon 6. The permselectivity toward benzene was increased by the introduction of poly(butyl methacrylate) onto a nylon 6 membrane. From pervaporation and sorption experiments, it was shown that the introduction of poly(butyl methacrylate) onto a nylon 6 membrane leads to the enhancement of permselectivity toward benzene. The solubility data for benzene were described by a combination of simple sorption and specific sorption, while cyclohexane solubility was described by simple sorption.

  8. Determination of Sudan dyes in chili pepper powder by online solid-phase extraction with a butyl methacrylate monolithic column coupled to liquid chromatography with tandem mass spectrometry.

    PubMed

    Liu, Yao; Wang, Man-Man; Ai, Lian-Feng; Zhang, Chang-Kun; Li, Xin; Wang, Xue-Sheng

    2014-07-01

    A poly(butyl methacrylate-co-ethylene dimethacrylate) monolithic column was fabricated and used as a novel sorbent for online solid-phase extraction coupled to liquid chromatography with tandem mass spectrometry for the simultaneous determination of Sudan I-IV in chili pepper powder. The prepared columns were characterized by scanning electron microscopy, nitrogen adsorption-desorption, and pressure drop measurements. Online solid-phase extraction was performed on the synthesized monolithic column using 10 mM ammonium acetate solution as the loading solution with the aid of an online cleanup chromatography system. The desorption of Sudan I-IV was achieved with acetonitrile as the eluting solution at the flow rate of 0.5 mL/min. The extracted analytes were subsequently eluted into a C18 analytical column for chromatographic separation using a mixture of 10% acetonitrile/90% formic acid (0.5%) solution as the mobile phase. Under the optimized conditions, the developed method had linear range of 1.0-50 μg/kg, a detection limit of 0.3 μg/kg, and a quantification limit of 1.0 μg/kg for each analyte. The intraday and interday recoveries of Sudan I-IV in chili pepper powder samples ranged from 94.8 to 100.9% and 94.9 to 99.4%, respectively. The intraday and interday precision were between 3.37-7.01% and 5.01-7.68%, respectively. PMID:24723310

  9. Poly methyl methacrylate films containing metallophthalocyanines in the presence of CdTe quantum dots: Non-linear optical behaviour and triplet state lifetimes

    NASA Astrophysics Data System (ADS)

    Britton, Jonathan; Durmuş, Mahmut; Chauke, Vongani; Nyokong, Tebello

    2013-12-01

    Non-linear optical (NLO) parameters were determined for phthalocyanine complexes containing In, Ga and Zn as central metals when embedded in poly (methyl methacrylate) polymer in the absence and presence of quantum dots (QDs) in an effort to create the most optimal optical limiting material. The QDs employed were CdTe-TGA (TGA = thioglylcolic acid). Triplet lifetimes generally increased as the value of the ratio of absorption cross sections of the excited state to that of the ground state (k) decreased on addition of CdTe-TGA to the phthalocyanines. The saturation energy density (Fsat) values were generally smaller in the films when compared to the solutions. Fsat, Ilim, Im[χ(3)]/α and γ all gave values which were of optimal range (i.e. the Im[χ(3)]/α and γ values were high enough to ensure adequate optical limiting but not too high to make the compounds behave like optical filters. Also, the Fsat and Ilim values were small enough to mean that the optical limiting process started at an intensity which was not too high) for complex 10 containing Zn central metal and tetrasubstituted with amino groups.

  10. In situ fabrication of ionic polyacrylamide-based preconcentrator on a simple poly(methyl methacrylate) microfluidic chip for capillary electrophoresis of anionic compounds.

    PubMed

    Yamamoto, Sachio; Hirakawa, Shingo; Suzuki, Shigeo

    2008-11-01

    A simple and efficient method was developed for fabrication of an anionic sample preconcentrator on a channel of a commercial poly(methyl methacrylate) (PMMA)-made microchip using no photolithography or etching technique. The originality of our preconcentrator is based on simple photochemical copolymerization of monomers using the following procedure: All channels of the PMMA-made microchip were filled with gel solution comprising acrylamide, N,N'-methylene-bisacrylamide, and 2-acrylamide-2-methylpropanesulfonic acid with riboflavin as a photocatalytic initiator. In situ polymerization near the cross of the sample outlet channel was performed by irradiation with an argon ion laser beam, which is also used as the light source for fluorometric detection. The electrokinetic property and electric repulsion between sample components and anionic groups on the polyacrylamide gel layer produce, trap, and concentrate anions within a few minutes at the interface of the cathodic side of the gel layer. This method displays concentration factors as high as 10 (5). The availability of ionic preconcentrator was demonstrated by applying sensitive analysis of oligosaccharides labeled with 8-aminopyrene-1,3,6-trisulfonate and some glycoproteins labeled with fluorescein isothiocyanate under various buffer systems.

  11. Polyelectrolyte complexes of poly[(2-dimethylamino) ethyl methacrylate]/chondroitin sulfate obtained at different pHs: I. Preparation, characterization, cytotoxicity and controlled release of chondroitin sulfate.

    PubMed

    Bonkovoski, Letícia C; Martins, Alessandro F; Bellettini, Ismael C; Garcia, Francielle P; Nakamura, Celso V; Rubira, Adley F; Muniz, Edvani C

    2014-12-30

    For the first time, polyelectrolyte complex based on poly[(2-dimethylamino) ethyl methacrylate] (PDMAEMA) and chondroitin sulfate (CS) was prepared. The properties of novel material and precursors were investigated by WAXS, FTIR, TGA, SEM and DLS analysis. The PDMAEMA/CS PECs presented hydrophilic-hydrophobic transition at pHs 6.0, 7.0 and 8.0 whereas the non-complexed PDMAEMA showed such a transition at pH 8.0 and not at pHs 6.0 and 7.0. Studies of CS release from PECs at pHs 6 and 8 confirmed that the samples possess the potential to release the CS in alkaline and not in acidic conditions. Since PECs are thermo-responsive due to the reduction of LCST caused by the increase in pH, the release of CS was dependent on temperature and pH factors. Cytotoxicity assays using healthy VERO cells showed that the complexation between CS and PDMAEMA increased the PECs' biocompatibility related to PDMAEMA. However, the biocompatibility depends on the amount of CS present in the PECs.

  12. One-step method for the preparation of poly(methyl methacrylate) modified titanium-bioactive glass three-dimensional scaffolds for bone tissue engineering.

    PubMed

    Han, Xiao; Lin, Huiming; Chen, Xiang; Li, Xin; Guo, Gang; Qu, Fengyu

    2016-04-01

    A novel three-dimensional (3D) titanium (Ti)-doping meso-macroporous bioactive glasses (BGs)/poly(methyl methacrylate) (PMMA) composite was synthesised using PMMA and EO20PO70EO20 (P123) as the macroporous and mesoporous templates, respectively. Unlike the usual calcination method, the acid steam technique was used to improve the polycondensation of Ti-BGs, and then PMMA was partially extracted via chloroform to induce the macroporous structure. Simultaneously, the residual PMMA which remained in the wall enhanced the compressive strength to 2.4 MPa (0.3 MPa for pure BGs). It is a simple and green method to prepare the macro-mesoporous Ti-BGs/PMMA. The materials showed the 3D interconnected hierarchical structure (250 and 3.4 nm), making the fast inducing-hydroxyapatite growth and the controlled drug release. Besides mentioned above, the good antimicrobial property and biocompatible of the scaffold also ensure it is further of clinical use. Herein, the fabricated materials are expected to have potential application on bone tissue regeneration.

  13. Determination of Sudan dyes in chili pepper powder by online solid-phase extraction with a butyl methacrylate monolithic column coupled to liquid chromatography with tandem mass spectrometry.

    PubMed

    Liu, Yao; Wang, Man-Man; Ai, Lian-Feng; Zhang, Chang-Kun; Li, Xin; Wang, Xue-Sheng

    2014-07-01

    A poly(butyl methacrylate-co-ethylene dimethacrylate) monolithic column was fabricated and used as a novel sorbent for online solid-phase extraction coupled to liquid chromatography with tandem mass spectrometry for the simultaneous determination of Sudan I-IV in chili pepper powder. The prepared columns were characterized by scanning electron microscopy, nitrogen adsorption-desorption, and pressure drop measurements. Online solid-phase extraction was performed on the synthesized monolithic column using 10 mM ammonium acetate solution as the loading solution with the aid of an online cleanup chromatography system. The desorption of Sudan I-IV was achieved with acetonitrile as the eluting solution at the flow rate of 0.5 mL/min. The extracted analytes were subsequently eluted into a C18 analytical column for chromatographic separation using a mixture of 10% acetonitrile/90% formic acid (0.5%) solution as the mobile phase. Under the optimized conditions, the developed method had linear range of 1.0-50 μg/kg, a detection limit of 0.3 μg/kg, and a quantification limit of 1.0 μg/kg for each analyte. The intraday and interday recoveries of Sudan I-IV in chili pepper powder samples ranged from 94.8 to 100.9% and 94.9 to 99.4%, respectively. The intraday and interday precision were between 3.37-7.01% and 5.01-7.68%, respectively.

  14. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Shokri, Babak; Sharifian, M.

    2016-01-01

    This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid-base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was observed that plasma-treated samples exhibited significantly better biocompatibility, comparing to the pristine one.

  15. Poly(2-hydroxyethyl methacrylate) grafted halloysite nanotubes as a molecular host matrix for luminescent ions prepared by surface-initiated RAFT polymerization and coordination chemistry

    NASA Astrophysics Data System (ADS)

    Islam, Md. Rafiqul; Bach, Long Giang; Lim, Kwon Taek

    2013-07-01

    A fluorescent nanohybrid complex comprising of halloysite nanotubes (HNTs), poly(2-hydroxyethyl methacrylate) (PHEMA), and europium ions (Eu3+) was synthesized by the combination of surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and coordination chemistry. Initially, PHEMA was grafted from the HNTs by SI-RAFT and then reacted with succinic anhydride to provide carboxyl acid groups on the external layers of HNTs-g-PHEMA nanohybrids. The subsequent coordination of the nanohybrids with Eu3+ ions afforded photoluminescent Eu3+ tagged HNTs-g-PHEMA nanohybrid complexes (HNTs-g-PHEMA-Eu3+). The structure, morphology, and fluorescence properties of the Eu3+ coordinated nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR, XPS, and EDS analyses suggested the formation of the HNTs-g-PHEMA-Eu3+ nanohybrids. FE-SEM images indicated the immobilization of polymer layers on HNTs. TGA scans further demonstrated the grafting of PHEMA onto HNTs surface. The optical properties of HNTs-g-PHEMA-Eu3+ nanohybrid complexes were investigated by photoluminescence spectroscopy.

  16. One-step method for the preparation of poly(methyl methacrylate) modified titanium-bioactive glass three-dimensional scaffolds for bone tissue engineering.

    PubMed

    Han, Xiao; Lin, Huiming; Chen, Xiang; Li, Xin; Guo, Gang; Qu, Fengyu

    2016-04-01

    A novel three-dimensional (3D) titanium (Ti)-doping meso-macroporous bioactive glasses (BGs)/poly(methyl methacrylate) (PMMA) composite was synthesised using PMMA and EO20PO70EO20 (P123) as the macroporous and mesoporous templates, respectively. Unlike the usual calcination method, the acid steam technique was used to improve the polycondensation of Ti-BGs, and then PMMA was partially extracted via chloroform to induce the macroporous structure. Simultaneously, the residual PMMA which remained in the wall enhanced the compressive strength to 2.4 MPa (0.3 MPa for pure BGs). It is a simple and green method to prepare the macro-mesoporous Ti-BGs/PMMA. The materials showed the 3D interconnected hierarchical structure (250 and 3.4 nm), making the fast inducing-hydroxyapatite growth and the controlled drug release. Besides mentioned above, the good antimicrobial property and biocompatible of the scaffold also ensure it is further of clinical use. Herein, the fabricated materials are expected to have potential application on bone tissue regeneration. PMID:27074853

  17. Organic-inorganic random copolymers from methacrylate-terminated poly(ethylene oxide) with 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane: synthesis via RAFT polymerization and self-assembly behavior.

    PubMed

    Wei, Kun; Li, Lei; Zheng, Sixun; Wang, Ge; Liang, Qi

    2014-01-14

    In this contribution, we report the synthesis of organic-inorganic random polymers from methacrylate-terminated poly(ethylene oxide) (MAPEO) (Mn = 950) and 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MAPOSS) macromers via reversible addition-fragmentation chain transfer (RAFT) polymerization with 4-cyano-4-(thiobenzoylthio) valeric acid (CTBTVA) as the chain transfer agent. The organic-inorganic random copolymers were characterized by means of (1)H NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results of GPC indicate that the polymerizations were carried out in a controlled fashion. Transmission electron microscopy (TEM) showed that the organic-inorganic random copolymers in bulk were microphase-separated and the POSS microdomains were formed via POSS-POSS interactions. In aqueous solutions the organic-inorganic random copolymers were capable of self-assembling into spherical nanoobjects as evidenced by transmission electron microscopy (TEM) and dynamic laser scattering (DLS). The self-assembly behavior of the organic-inorganic random copolymers was also found to occur in the mixtures with the precursors of epoxy. The nanostructures were further fixed via subsequent curing reaction and thus the organic-inorganic nanocomposites were obtained. The formation of nanophases in epoxy thermosets was confirmed by transmission electron microscopy (TEM) and dynamic mechanical thermal analysis (DMTA). The organic-inorganic nanocomposites displayed the enhanced surface hydrophobicity as evidenced by surface contact angle measurements.

  18. In situ fabrication of ionic polyacrylamide-based preconcentrator on a simple poly(methyl methacrylate) microfluidic chip for capillary electrophoresis of anionic compounds.

    PubMed

    Yamamoto, Sachio; Hirakawa, Shingo; Suzuki, Shigeo

    2008-11-01

    A simple and efficient method was developed for fabrication of an anionic sample preconcentrator on a channel of a commercial poly(methyl methacrylate) (PMMA)-made microchip using no photolithography or etching technique. The originality of our preconcentrator is based on simple photochemical copolymerization of monomers using the following procedure: All channels of the PMMA-made microchip were filled with gel solution comprising acrylamide, N,N'-methylene-bisacrylamide, and 2-acrylamide-2-methylpropanesulfonic acid with riboflavin as a photocatalytic initiator. In situ polymerization near the cross of the sample outlet channel was performed by irradiation with an argon ion laser beam, which is also used as the light source for fluorometric detection. The electrokinetic property and electric repulsion between sample components and anionic groups on the polyacrylamide gel layer produce, trap, and concentrate anions within a few minutes at the interface of the cathodic side of the gel layer. This method displays concentration factors as high as 10 (5). The availability of ionic preconcentrator was demonstrated by applying sensitive analysis of oligosaccharides labeled with 8-aminopyrene-1,3,6-trisulfonate and some glycoproteins labeled with fluorescein isothiocyanate under various buffer systems. PMID:18841941

  19. [Evaluations of poly(methyl methacrylate) bearing glucose pendant or cellobiose pendant in high performance liquid chromatography as polymeric chiral stationary phases].

    PubMed

    Ye, Zhibing; Yang, Lanfen; Peng, Ya; Chen, Xuexian; Yuan, Liming

    2011-03-01

    The glucopyranos units consisting of cyclodextrin and polysaccharide derivatives have been extensively used as chromatographic chiral stationary phases. The synthetic polymeric chiral stationary phases based on methyl methacrylate bearing glucose or cellobiose pendants for high performance liquid chromatography (HPLC) were prepared by radical polymerization. Fifteen racemic chiral compounds including alcohols, amines, amides and ketones, were resolved on the two chiral stationary phases using hexane-isopropanol (90/10, v/v), hexane-isopropanol-triethylamine (90/10/0.2, v/v/v) or hexane-isopropanol-trifluoroacetic acid (90/ 10/0.2, v/v/v) as mobile phase, separately. The results showed that both chiral stationary phases possessed good enantioselectivity for most of the racemic alcohols and amines. A few amides and ketones could also be separated. There was some compensation of the chiral discriminating abilities between the two chiral stationary phases. This work indicates that polymers of mono- and disaccharide derivatives can soon become a very attractive new chiral stationary phase for HPLC.

  20. Fabrication of flexible, transparent and conductive films from single-walled carbon nanotubes with high aspect ratio using poly((furfuryl methacrylate)-co-(2-(dimethylamino)ethyl methacrylate)) as a new polymeric dispersant

    NASA Astrophysics Data System (ADS)

    Lee, Taeheon; Kim, Byunghee; Kim, Sumin; Han, Jong Hun; Jeon, Heung Bae; Lee, Young Sil; Paik, Hyun-Jong

    2015-04-01

    We synthesized poly((furfuryl methacrylate)-co-(2-(dimethylamino)ethyl methacrylate)) (p(FMA-co-DMAEMA)) for the dispersion of single-walled carbon nanotubes (SWCNTs) while maintaining their high aspect ratios. The nanotubes' length and height were 2.0 μm and 2 nm, as determined by transmission electron microscopy and atomic force microscopy, respectively. Transparent conductive films (TCFs) were fabricated by individually dispersed long SWCNTs onto a flexible polyethylene terephthalate substrate. The sheet resistance (Rs) was 210 Ω □-1 with 81% transmittance at a wavelength of 550 nm. To reduce their Rs, the TCFs were treated with HNO3 and SOCl2. After treatment, the TCFs had an Rs of 85.75 Ω □-1 at a transmittance of 85%. The TCFs exhibited no appreciable change over 200 repeated bending cycles. Dispersing SWCNTs with this newly synthesized polymer is an effective way to fabricate a transparent, highly conductive and flexible film.