Science.gov

Sample records for magat methacrylic acid

  1. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... AGENCY 40 CFR Part 180 Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether... residues of methacrylic acid-methyl methacrylate- polyethylene glycol monomethyl ether methacrylate graft... permissible level for residues of methacrylic acid-methyl methacrylate-polyethylene glycol monomethyl...

  2. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  3. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  4. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  5. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  6. Zwitterionic Poly(amino acid methacrylate) Brushes

    PubMed Central

    2014-01-01

    A new cysteine-based methacrylic monomer (CysMA) was conveniently synthesized via selective thia-Michael addition of a commercially available methacrylate-acrylate precursor in aqueous solution without recourse to protecting group chemistry. Poly(cysteine methacrylate) (PCysMA) brushes were grown from the surface of silicon wafers by atom-transfer radical polymerization. Brush thicknesses of ca. 27 nm were achieved within 270 min at 20 °C. Each CysMA residue comprises a primary amine and a carboxylic acid. Surface zeta potential and atomic force microscopy (AFM) studies of the pH-responsive PCysMA brushes confirm that they are highly extended either below pH 2 or above pH 9.5, since they possess either cationic or anionic character, respectively. At intermediate pH, PCysMA brushes are zwitterionic. At physiological pH, they exhibit excellent resistance to biofouling and negligible cytotoxicity. PCysMA brushes undergo photodegradation: AFM topographical imaging indicates significant mass loss from the brush layer, while XPS studies confirm that exposure to UV radiation produces surface aldehyde sites that can be subsequently derivatized with amines. UV exposure using a photomask yielded sharp, well-defined micropatterned PCysMA brushes functionalized with aldehyde groups that enable conjugation to green fluorescent protein (GFP). Nanopatterned PCysMA brushes were obtained using interference lithography, and confocal microscopy again confirmed the selective conjugation of GFP. Finally, PCysMA undergoes complex base-catalyzed degradation in alkaline solution, leading to the elimination of several small molecules. However, good long-term chemical stability was observed when PCysMA brushes were immersed in aqueous solution at physiological pH. PMID:24884533

  7. Uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Ge, Maofa; Wang, Weigang

    2012-01-01

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol formation from isoprene and its gas-phase oxidation products, but the lack of kinetics data significantly limited the evaluation of this process in the atmosphere. Here we report the first measurement of the uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide. Isoprene cannot readily partition into the solution because of its high volatility and low solubility, which hinders its further liquid-phase oxidation. Both methacrylic acid and methyl methacrylate can enter the solutions and be oxidized by hydrogen peroxide, and steady-state uptake was observed with the acidity of solution above 30 wt.% and 70 wt.%, respectively. The steady-state uptake coefficient of methacrylic acid is much larger than that of methyl methacrylate for a solution with same acidity. These observations can be explained by the different reactivity of these two compounds caused by the different electron-withdrawing conjugation between carboxyl and ester groups. The atmospheric lifetimes were estimated based on the calculated steady-state uptake coefficients. These results demonstrate that the multiphase acid-catalyzed oxidation of methacrylic acid plays a role in secondary organic aerosol formation, but for isoprene and methyl methacrylate, this process is not important in the troposphere.

  8. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  9. Effect of methacrylic acid:methyl methacrylate monomer ratios on polymerization rates and properties of polymethyl methacrylates.

    PubMed

    Chen, T; Kusy, R P

    1997-08-01

    Five binary formulations were prepared from methyl methacrylate (MMA) and methacrylic acid (MAA) monomers, and six ternary formulations were prepared from polysols of 30% wt polymethyl methacrylate (PMMA)/MMA and MAA. Using thermal analyses (DSC and TGA) the polymerization kinetics, condition of postcuring, relative amount of residual monomers, and glass transition temperature (Tg) were determined. From bar-shaped samples, 25 x 5 x 0.9 mm in dimensions, mechanical properties [flexural moduli (E) and maximum strengths (sigma)] were measured in three-point bending. Polymerization kinetics of binary formulations improved over pure PMMA (from 15 to 4 min) as a result of over a 60-fold increase in propagation-to-termination constants (Kp/Kt) of MAA/MMA. The further addition of PMMA increased the viscosity, slowed down termination, and, consequently, improved the polymerization kinetics twofold. These enhancements occurred without a substantive change in the Tg of the ternary system (ca. 107 degrees C) over pure PMMA (ca. 112 degrees C). Moreover, the Es of the four ternary formulations averaged 2.94 GPa, which was comparable with many values reported in the literature. In contrast the sigma s of these same formulations averaged 97 MPa, which was about 25% better than earlier investigations of pure acrylic. When a thermoplastic material is required for pultruding profiles that cure fast and have good thermal-mechanical properties, ternaries of PMMA/MMA/MAA should be considered.

  10. Protonation of diethylaminoethyl methacrylate by acids in various solvents

    SciTech Connect

    Zhuravleva, I.L.; Bune, E.V.; Bogachev, Yu.S.; Sheinker, A.P.; Teleshov, E.N.

    1988-04-10

    It was established by /sup 1/H and /sup 13/C NMR that diethylaminoethyl methacrylate exists in the unprotonated form in solvents which are not acids. In the presence of an equimolar amount of hydrochloric or trifluoroacetic acids the amino ester is fully protonated, irrespective of the solvent. The diethylaminoethyl methacrylate-acetic acid system exists in the form of a molecular complex with a hydrogen bond and in the protonated form; the proportions of the protonated form were estimated in various solvents. The change in the reactivity of diethylaminoethyl methacrylate and its salts in polymerization was explained by a change in the electronic state of CH/sub 2/ = group of the monomer as a result of its protonation and of the formation of a hydrogen bond between the C = O group of the monomer and the solvent.

  11. Improvement of holographic thermal stability in phenanthrenequinone-doped poly(methyl methacrylate-co-methacrylic acid) photopolymer

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Hongpeng; Wang, Heng; Wang, Jian; Jiang, Yongyuan; Sun, Xiudong

    2011-08-01

    Experimental studies of holographic thermal stability in phenanthrenequinone (PQ)-doped poly(methyl methacrylate-co-methacrylic acid) [P(MMA-co-MAA)] photopolymers are presented. A possibility to improve the thermal stability of holograms is demonstrated by doping methacrylic acid (MAA) into the poly(methyl methacrylate) (PMMA) polymer matrix. MAA as a copolymerization monomer can form a more stable polymer matrix with methyl methacrylate (MMA) monomer and increase average molecular weight of photoproducts, which finally depress the diffusion of photoproduct. The optimized MAA concentration copolymerized into P(MMA-co-MAA) polymer matrix can bring nearly a month's lifetime of gratings, which is obviously an improvement over the usual PQ-PMMA material under thermal treatment.

  12. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate, and its...

  13. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  14. Radiation synthesis of nanosilver nanohydrogels of poly(methacrylic acid)

    NASA Astrophysics Data System (ADS)

    Gupta, Bhuvanesh; Gautam, Deepti; Anjum, Sadiya; Saxena, Shalini; Kapil, Arti

    2013-11-01

    Nanosilver nanohydrogels (nSnH) of poly(methacrylic acid) were synthesized and stabilized using gamma irradiation. The main objective of this study was to develop silver nanoparticles and to evaluate the antimicrobial activity. Radiation helps in the polymerization, crosslinking and reduction of silver nitrate as well. Highly stable and uniformly distributed silver nanoparticles have been obtained within hydrogel network by water in oil nanoemulsion polymerization and were evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) respectively. TEM showed almost spherical and uniform distribution of silver nanoparticles through the hydrogel network. The mean size of silver nanoparticles ranging is 10-50 nm. The nanohydrogels showed good swelling in water. Antibacterial studies of nSnH suggest that it can be a good candidate as coating material in biomedical applications.

  15. Poly(methacrylic acid-co-methyl methacrylate) beads promote vascularization and wound repair in diabetic mice.

    PubMed

    Martin, Daniel C; Semple, John L; Sefton, Michael V

    2010-05-01

    Topical application of beads made from poly(methacrylic acid-co-methyl methacrylate) (45 mol % methacrylic acid, MAA) increased the number of blood vessels and improved 1.5 x 1.5 cm full thickness wound closure in a diabetic mouse (db/db) model. Three groups were compared: MAA beads, control poly(methyl methacrylate) beads (PMMA), and no bead blanks. MAA bead treatment significantly increased percent wound closure at all timepoints (7, 14, and 21 days) with MAA bead-treated wounds almost closed at day 21 (91 +/- 5.4% MAA vs. 79 +/- 3.2% PMMA or 76 +/- 4.8% no beads; p < 0.05). This was consistent with the expected significant increase in vascularity in the MAA group at days 7 and 14. For example at day 14, MAA bead-treated wounds had a vascular density of 22.7 +/- 2.6 vessels/hpf compared with 17.0 +/- 2.0 vessels/hpf in the PMMA bead group (p < 0.05). Epithelial gap and migration measurements suggested that the increased vascularity leads to enhanced epithelial cell migration as a principal means of wound closure. Although studies are underway to elucidate the mechanism of this angiogenic response, the results presented here support the notion that such materials, perhaps in other forms, may be useful in wound care or in other situations where vascularity is to be enhanced without the use of exogenous growth factors.

  16. MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler

    NASA Astrophysics Data System (ADS)

    Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre

    This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.

  17. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    SciTech Connect

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.; Galushko, A.S.; Akimenko, V.K.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizing propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.

  18. Monitoring of acid-base status of workers at a methyl methacrylate and polymethyl methacrylate production plant in Bulgaria.

    PubMed

    Prakova, Gospodinka R

    2003-01-01

    This study was carried out on 104 workers at three work operations and a control (nonproduction) area, within a methyl methacrylate (MMA)/polymethyl methacrylate (PMMA) production facility in Bulgaria. Airborne monitoring was conducted over a 10-year period for MMA and the reactant chemicals methanol and acetone cyanhydrine at the MMA operation, and MMA was monitored at the PMMA operation. Acid-base status of the workers was evaluated using traditional criteria (pH, pCO(2), pO(2), and HCO(3) in plasma). Data from retrospective monitoring of air levels of the chemicals were compared with the acid-base status of workers at the plant. In some cases air concentrations exceeded the threshold limit value, with the highest percentage of overexposure occurring with airborne MMA in the PMMA production operation. Acid-base disruption indicated by reductions in plasma pH and HCO(3) was found for all groups except the control population. The highest percentage reduction was associated with PMMA production workers. Additionally, respiratory acidosis, indicated by increased pCO(2), was noted in the MMA production and maintenance groups, implying that the response to MMA exposure may involve both the metabolic and respiratory acidosis component. This study was unique in that the combined exposure to MMA and the precursor chemical (methanol) were shown to produce the same effects in workers. It is suggested that when combined exposure occurs, disruption of acid-base status may occur. Enforcement of PPM requirements for coveralls and gloves should prevent skin contamination. Additionally, improvement of equipment in MMA and PMMA production areas is recommended: (1) automation of some manual operations; (2) use of respiratory protection during equipment cleaning; and (3) installation of local ventilation when applicable.

  19. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography.

    PubMed

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren

    2015-04-29

    In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate-MAA ratios were investigated to prepare a series of 30% alkyl methacrylate-MAA-EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  20. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2009-11-03

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. 1H and 13C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.

  1. Analytical strategy for the molecular weight determination of random copolymers of poly(methyl methacrylate) and poly(methacrylic acid).

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2010-06-01

    Molecular weight characterization of random amphiphilic copolymers currently represents an analytical challenge. In particular, molecules composed of methacrylic acid (MAA) and methyl methacrylate (MMA) as the repeat units raise issues in commonly used techniques. The present study shows that when random copolymers cannot be properly ionized by MALDI, and hence detected and measured in MS, one possible analytical strategy is to transform them into homopolymers, which are more amenable to this ionization technique. Then, by combining the molecular weight of the so-obtained homopolymers, as measured by MS, with the relative molar proportion of the MMA and MMA units, as given by (1)H NMR spectrum, one can straightforwardly estimate the molecular weight of the initial copolymer. A methylation reaction was performed to transform MAA-MMA copolymer samples into PMMA homopolymers, using trimethylsilyldiazomethane as a derivatization agent. Weight average molecular weight (M(w)) parameters of the MAA-MMA copolymers could then be derived from M(w) values obtained for the methylated MAA-MMA molecules by MALDI, which were also validated by pulsed gradient spin echo (PGSE) NMR. An alkene function in one of the studied copolymer end-groups was also shown to react with the methylation agent, giving rise to MMA-like polymeric by-products characterized by tandem mass spectrometry and which could be avoided by adjusting the amount of the trimethylsilyldiazomethane in the reaction medium.

  2. Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier.

    PubMed

    Zecheru, Teodora; Rotariu, Traian; Rusen, Edina; Mărculescu, Bogdan; Miculescu, Florin; Alexandrescu, Laura; Antoniac, Iulian; Stancu, Izabela-Cristina

    2010-10-01

    In the present study polymeric microbeads of poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid) or p(HEMA-co-dDMA-co-AA) were synthesised and characterized through FT-IR and scanning electron microscopy (SEM); their swelling behavior against saline solution was explored and their in vitro cytotoxicity was evaluated. Further, in order to elucidate kinetic aspects regarding the ternary system p(HEMA-co-dDMA-co-AA), a mathematical model of the reactivity ratios of the comonomers in the terpolymer has been conceived and analyzed. An intensified tendency of AA units accumulation in the copolymer has been noticed, in spite of HEMA units, while dDMA conserves in the copolymer the fraction from the feed. Three compositions have been selected for nafcillin-loading and their in vitro release capacity was evaluated. The compositions of 80:10:10 and 75:10:15 M ratios appear suitable for further in vivo testing, in order to be used as drug delivery systems in the treatment of different osseous diseases.

  3. Enthalpy of mixing of methacrylic acid with organic solvents at 293 K

    NASA Astrophysics Data System (ADS)

    Sergeev, V. V.

    2016-03-01

    The enthalpies of mixing of binary systems of methacrylic acid with acetonitrile, benzene, hexane, 1,2-dichloroethane, and acetic acid are measured calorimetrically at 293 K and atmospheric pressure. The enthalpy of mixing of all the studied binary systems is positive over the range of concentrations.

  4. Copolymer of methacrylic acid with its diethylammonium salt: Effective waterproofing agent for oil wells

    SciTech Connect

    Kuznetsova, O.N.; Avvakumova, N.I.

    1992-08-10

    In the development of technology for the copolymerization of methacrylic acid with its diethylammonium salt (MAA-MAA{center_dot}DEA), the polymer-like reaction of polymethacrylic acid (PMAA) with diethylamine (DEA) and the polymerization of MAA in the presence of DEA have been studied. 13 refs., 3 figs., 4 tabs.

  5. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY 40 CFR Part 180 Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2...-styrene polymer when used as an inert ingredient in a pesticide chemical formulation....

  6. 75 FR 770 - Acrylic acid-benzyl methacrylate-1-propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... AGENCY 40 CFR Part 180 Acrylic acid-benzyl methacrylate-1-propanesulfonic acid, 2- methyl-2... residues of acrylic acid-benzyl methacrylate-1- propanesulfonic acid, 2-methyl-2- -, monosodium salt... to establish a maximum permissible level for residues of acrylic acid-benzyl...

  7. Radiation grafting of acrylic and methacrylic acid to cellulose fibers to impart high water sorbency

    SciTech Connect

    Zahran, A.H.; Williams, J.L.; Stannett, V.T.

    1980-04-01

    Acrylic and methacrylic acids have been directly grafted to rayon and cotton using the preirradiation technique with /sup 60/ Co gamma rays. The rate of grafting increased with increasing temperature and monomer concentration, as did the final degree of grafting. The amount and rate of grafting also increased with the total irradiation dose but tended to level off at higher doses, in agreement with the leveling off of the radical content reported previously. Methacrylic acid grafted more and faster than acrylic acid to both rayon and cotton. Methacrylic acid grafted more with rayon than cotton, but acrylic acid gave somewhat similar yields with both fibers. The water abosrbency of the grafted fibers depended strongly on their posttreatment. Decrystallizing with 70% zinc chloride or with hot sodium hydroxidy developed supersorbency. The two treatments in succession, respectively, gave the highest values. Metacrylic acid brought about less sorbency than the corrsponding acrylic acid grafts. Useful levels of grafting and supersorbency could be readily and practically achieved by the methods described.

  8. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs.

    PubMed

    Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H

    2015-08-01

    A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier.

  9. Combinatory approach of methacrylated alginate and acid monomers for concrete applications.

    PubMed

    Mignon, Arn; Devisscher, Dries; Graulus, Geert-Jan; Stubbe, Birgit; Martins, José; Dubruel, Peter; De Belie, Nele; Van Vlierberghe, Sandra

    2017-01-02

    Polysaccharides, and especially alginate, can be useful for self-healing of cracks in concrete. Instead of weak electrostatic bonds present within calcium alginate, covalent bonds, by methacrylation of the polysaccharides, will result in mechanically stronger superabsorbent polymers (SAPs). These methacrylated alginate chains as backbone are combined with two acrylic monomers in a varying molar fraction. These SAPs show a moisture uptake capacity up to 110% their own weight at a relative humidity of 95%, with a negligible hysteresis. The swelling capacity increased (up to 246 times its own weight) with a decreasing acrylic acid/2 acrylamido-2-methylpropane sulfonic acid ratio. The SAPs also showed a thermal stability up to 200°C. Interestingly, the SAP composed of alginate and acrylic acid exerted a very limited decrease in compressive strength (up to 7% with addition of 1wt% SAP) rendering this material interesting for the envisaged self-healing application.

  10. Methylation of acidic moieties in poly(methyl methacrylate-co-methacrylic acid) copolymers for end-group characterization by tandem mass spectrometry.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2010-07-30

    The complete structural characterization of a copolymer composed of methacrylic acid (MAA) and methyl methacrylate (MMA) units was achieved using tandem mass spectrometry. In a first step, collision-induced dissociation (CID) of sodiated MAA-MMA co-oligomers allowed us to determine the co-monomeric composition, the random nature of the copolymer and the sum of the end-group masses. However, dissociation reactions of MAA-based molecules mainly involve the acidic pendant groups, precluding individual characterization of the end groups. Therefore, methylation of all the acrylic acid moieties was performed to transform the MAA-MMA copolymer into a PMMA homopolymer, for which CID mainly proceeds via backbone cleavages. Using trimethylsilyldiazomethane as a derivatization agent, this methylation reaction was shown to be complete without affecting the end groups. Using fragmentation rules established for PMMA polymers together with accurate mass measurements of the product ions and knowledge of reagents used for the studied copolymer synthesis, a structure could be proposed for both end groups and it was found to be consistent with signals obtained in nuclear magnetic resonance spectra.

  11. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate.

  12. Experimental and theoretical investigation of the complexation of methacrylic acid and diisopropyl urea

    NASA Astrophysics Data System (ADS)

    Pogány, Peter; Razali, Mayamin; Szekely, Gyorgy

    2017-01-01

    The present paper explores the complexation ability of methacrylic acid which is one of the most abundant functional monomer for the preparation of molecularly imprinted polymers. Host-guest interactions and the mechanism of complex formation between methacrylic acid and potentially genotoxic 1,3-diisopropylurea were investigated in the pre-polymerization solution featuring both experimental (NMR, IR) and in silico density functional theory (DFT) tools. The continuous variation method revealed the presence of higher-order complexes and the appearance of self-association which were both taken into account during the determination of the association constants. The quantum chemical calculations - performed at B3LYP 6-311 ++G(d,p) level with basis set superposition error (BSSE) corrections - are in agreement with the experimental observations, reaffirming the association constants and justifying the validity of computational investigation of such systems. Furthermore, natural bond orbital analysis was carried out to appraise the binding properties of the complexes.

  13. 2-hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation.

    PubMed

    Szczepanska, Joanna; Poplawski, Tomasz; Synowiec, Ewelina; Pawlowska, Elzbieta; Chojnacki, Cezary J; Chojnacki, Jan; Blasiak, Janusz

    2012-02-01

    HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.

  14. Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers

    NASA Astrophysics Data System (ADS)

    Arifur Rahman, Md; Penco, Maurizio; Peroni, Isabella; Ramorino, Giorgio; Janszen, Gerardus; Di Landro, Luca

    2012-03-01

    The development of autonomous healing material has an enormous scientific and technological interest. In this context, this research work deals with the investigation of autonomous healing behavior of epoxidized natural rubber (ENR) and its blends with ethylene methacrylic acid ionomers. The autonomous healing behavior of ENR and its blends containing two different ionomers [poly(ethylene-co-methacrylic acid sodium salt) (EMNa) and poly(ethylene-co-methacrylic acid zinc salt) (EMZn)] has been studied by ballistic puncture tests. Interestingly, EMNa/ENR blends exhibit complete healing just after the ballistic test but EMZn/ENR blends do not show full self-repairing. The healing efficiency has been evaluated by optical microscopy and a depressurized air-flow test. The healing mechanism has been investigated by characterizing thermal and mechanical properties of the blends. The chemical structure studied by FTIR and thermal analysis show that the ion content of ionomers and functionality of ENR has a significant influence on the self-healing behavior.

  15. Mechanical Characterization of a Dynamic and Tunable Methacrylated Hyaluronic Acid Hydrogel

    PubMed Central

    Ondeck, Matthew G.; Engler, Adam J.

    2016-01-01

    Hyaluronic acid (HA) is a commonly used natural polymer for cell scaffolding. Modification by methacrylate allows it to be polymerized by free radicals via addition of an initiator, e.g., light-sensitive Irgacure, to form a methacrylated hyaluronic acid (MeHA) hydrogel. Light-activated crosslinking can be used to control the degree of polymerization, and sequential polymerization steps allow cells plated onto or in the hydrogel to initially feel a soft and then a stiff matrix. Here, the elastic modulus of MeHA hydrogels was systematically analyzed by atomic force microscopy (AFM) for a number of variables including duration of UV exposure, monomer concentration, and methacrylate functionalization. To determine how cells would respond to a specific two-step polymerization, NIH 3T3 fibroblasts were cultured on the stiffening MeHA hydrogels and found to reorganize their cytoskeleton and spread area upon hydrogel stiffening, consistent with cells originally cultured on substrates of the final elastic modulus. PMID:26746491

  16. Reactive Poly(Amic Acid)/ Poly(Glycidyl Methacrylate-r-Poly(ethylene Glycol) Methyl Ether Methacrylate) Blends as Gas Permeation Membranes

    NASA Astrophysics Data System (ADS)

    Beaulieu, Michael; Watkins, James

    2012-02-01

    Polymers containing polar moieties, such as ether groups show an affinity for acidic gases, such as CO2 due to dipole-quadrapole interactions. Polymer blends in which one of the components is poly(ethylene glycol) (PEG) have been studied extensively in literature as a CO2/light gas permeation membrane, but due to the crystallization and poor mechanical properties have been difficult to incorporate PEG above 60wt%. In this study, a series of random copolymers containing both glycidyl methacrylate and poly(ethylene glycol) methyl ether methacrylate in different ratios are blended with a poly(amic acid) prepolymer made from 4, 4'-oxydianiline and pyromellitic dianhydride to create gas permeation membranes. By using a reactive blend PEG loadings above 70% have been realized with sufficient mechanical properties, and since the side chain on the PEGMA is short these blends do not suffer from crystallization.

  17. Molecularly imprinted films of acrylonitrile/methyl methacrylate/acrylic acid terpolymers: influence of methyl methacrylate in the binding performance of L-ephedrine imprinted films.

    PubMed

    Brisbane, Carrie; McCluskey, Adam; Bowyer, Michael; Holdsworth, Clovia I

    2013-05-07

    Molecularly imprinted polymeric films (MIPFs) highly selective to 1R,2S(-)ephedrine (L-ephedrine, EPD) were produced by phase inversion post-polymerization imprinting on poly(acrylonitrile-co-methyl methacrylate-co-acrylic acid) (PAMA) terpolymers. The inclusion of methyl methacrylate (MMA) to the polymer formulation resulted in enhanced EPD selectivity which appears to be dictated by polymer composition to achieve the necessary balance between polymer rigidity and porosity. Substitution of MMA with methyl acrylate, ethyl acrylate and n-butyl acrylate resulted in a loss of EPD selectivity and EPD entrapment within the polymer matrix not observed in PAMA MIPFs. MMA, by virtue of its methyl group, is able to provide the scaffolding and rigidity necessary for stability and preservation of imprinted cavities within the PAMA MIPF leading to high EPD selectivity.

  18. Moleculary imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid.

    PubMed

    Takeuchi, T; Mukawa, T; Matsui, J; Higashi, M; Shimizu, K D

    2001-08-15

    A diastereoselective molecularly imprinted polymer (MIP) for (-)-cinchonidine, PPM(CD), was prepared by the combined use of methacrylic acid and vinyl-substituted zinc(II) porphyrin as functional monomers. Compared to MIPs using only methacrylic acid or zinc porphyrin as a functional monomer, PM(CD) and PP(CD), respectively, PPM(CD) showed higher binding ability for (-)-cinchonidine in chromatographic tests using the MIP-packed columns. Scatchard analysis gave a higher association constant of PPM(CD) for (-)-cinchonidine (1.14 x 10(7) M(-1)) than those of PP(CD) (1.45 x 10(6) M(-1)) and PM(CD) (6.78 x 10(6) M(-1)). The affinity distribution of binding sites estimated by affinity spectrum analysis showed a higher percentage of high-affinity sites and a lower percentage of low-affinity sites in PPM(CD). The MIPs containing a zinc(II) porphyrin in the binding sites, PPM(CD) and PP(CD), showed fluorescence quenching according to the binding of (-)-cinchonidine, and the quenching was significant in the low-concentration range, suggesting that the high-affinity binding sites contain the porphyrin residue. The correlation of the relative fluorescence intensity against log of (-)-cinchonidine concentrations showed a linear relationship. These results revealed that the MIP having highly specific binding sites was assembled by the two functional monomers, vinyl-substituted zinc(II) porphyrin and methacrylic acid, and they cooperatively worked to yield the specific binding. In addition, the zinc(II) porphyrin-based MIPs appeared to act as fluorescence sensor selectively responded by binding events of the template molecule.

  19. Synthesis and swelling behavior of Protein-g-poly Methacrylic acid/kaolin superabsorbent hydrogel composites

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad

    2008-08-01

    A novel superabsorbent hydrogel composite based on Collagen have been prepared via graft copolymerization of Methacrylic acid (MAA) in the presence of kaolin powder using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The composite structure was confirmed using FTIR spectroscopy. A new absorption band at 1728 cm-1 in the composite spectrum confirmed kaolin-organic polymer linkage. The effect of kaolin amount and MBA concentration showed that with increasing of these parameters, the water absorbency of the superabsorbent composite was decreased. The swelling measurements of the hydrogels were conducted in aqueous salt solutions.

  20. Photoinduced graft-copolymer synthesis and characterization of methacrylic acid onto natural biodegradable lignocellulose fiber.

    PubMed

    Khan, Ferdous

    2004-01-01

    UV radiation induced graft copolymerization of methacrylic acid onto natural lignocellulose (jute) fiber was carried out both by "simultaneous irradiation and grafting" and by preirradiation methods using 1-hydroxycyclohexyl-phenyl ketone as a photoinitiator. In the "simultaneous irradiation and grafting" method, the variation of graft weight with UV-radiation time, monomer concentration, and the concentration of photoinitiator was investigated. In the case of the preirradiation method, the incorporation of 2-methyl-2-propene 1-sulfonic acid, sodium salt, into the grafting reaction solution played a most important role in suppressing the homopolymer/gel formation and facilitating graft copolymerization. The optimum value of the reaction parameters on the percentage of grafting was evaluated. In comparison, results showed that the method of graft-copolymer synthesis has significant influence on graft weight. The study on the mechanical and thermal properties of grafted samples was conducted. The results showed that the percentage of grafting has a significant effect on the mechanical and thermal properties in the case of grafted samples. Considering the water absorption property, the jute-poly(methacrylic acid)-grafted sample showed a maximum up to 42% increase in hydrophilicity with respect to that of the "as received" sample. Attenuated total reflection infrared studies indicate that the estimation of the degree of grafting could be achieved by correlating band intensities with the percent graft weight.

  1. Effects of metal ions on entero-soluble poly(methacrylic acid-methyl methacrylate) coating: a combined analysis by ATR-FTIR spectroscopy and computational approaches.

    PubMed

    Cilurzo, Francesco; Gennari, Chiara G M; Selmin, Francesca; Vistoli, Giulio

    2010-04-05

    Poly(methacrylic acid-methyl methacrylate)s (HPMMs) are pH-dependent polymers which ionize and form salts (PMMs) in neutral conditions. Despite their wide use in tablet coating, the interactions of PMMs with electrolytes present in biorelevant media and luminal fluids have been scantly investigated. The data generated in the current work provide the basic information on the effect of bivalent cations, namely, Ca2+, Zn2+ and Mn2+, on the HPMMs' solubility and, consequently, on the performances (disintegration and drug dissolution) of acetaminophen gastroresistant tablets when exposed to fluid containing such salts. The interactions between polymers and metal ions were analyzed by ATR-FTIR spectroscopy and in silico combining molecular dynamics simulations to explore the conformational profiles of several oligomers with different M(w), taken as model of the polymers, with ab initio and semiempirical calculations in the gas phase. The computational results agree with the experimental data in terms of spatial disposition of the bications with respect to PMMs (Ca2+ and Mn2+ as bidentate form and Zn2+ as monodentate ligand) and interaction strength (Zn2+ > Mn(2+) > Ca2+). The tablet disintegration and dissolution rate of acetaminophen were strongly affected by the interactions of the dissolving copolymer with the metal ions which led to coating insolubilization. These preliminary results underline that the ingestion of metal ions at high concentrations could affect the drug liberation from gastroresistant dosage forms.

  2. The synthesis, properties, and applications of hydrophilic polymers and copolymers of hydroxyalkyl esters of acrylic and methacrylic acids

    NASA Astrophysics Data System (ADS)

    Asadov, Z. G.; Aliev, V. S.

    1992-05-01

    The scientific-technical and patent literature on the synthesis of hydroxyalkyl esters of acrylic and methacrylic acids by their catalytic reaction with epoxyalkanes, by the radical copolymerisation and polymerisation of presynthesised monomeric esters, and also by the chemical modification of polymerisation and copolymerisation products is surveyed. A wide variety of physicochemical properties of the polymers and copolymers based on the hydroxyalkyl esters of acrylic and methacrylic acids are described. The principal trends and prospects in the application of the high-molecular-weight products obtained in various branches of the national economy are indicated. The bibliography includes 158 references.

  3. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  4. Synthesis and characterization of anionic amphiphilic model conetworks of 2-butyl-1-octyl-methacrylate and methacrylic acid: effects of polymer composition and architecture.

    PubMed

    Kali, Gergely; Georgiou, Theoni K; Iván, Béla; Patrickios, Costas S; Loizou, Elena; Thomann, Yi; Tiller, Joerg C

    2007-10-09

    Seven amphiphilic conetworks of methacrylic acid (MAA) and a new hydrophobic monomer, 2-butyl-1-octyl-methacrylate (BOMA), were synthesized using group transfer polymerization. The MAA units were introduced via the polymerization of tetrahydropyranyl methacrylate (THPMA) followed by the removal of the protecting tetrahydropyranyl group by acid hydrolysis after network formation. Both THPMA and BOMA were in-house synthesized. Ethylene glycol dimethacrylate (EGDMA) was used as the cross-linker. Six of the conetworks were model conetworks, containing copolymer chains between cross-links of precise molecular weight and composition. The prepared conetwork series covered a wide range of compositions and architectures. In particular, the MAA content was varied from 67 to 94 mol %, and three different conetwork architectures were constructed: ABA triblock copolymer-based, statistical copolymer-based, and randomly cross-linked. The linear conetwork precursors were analyzed by gel permeation chromatography and 1H NMR spectroscopy in terms of their molecular weight and composition, both of which were found to be close to the theoretically calculated values. The degrees of swelling (DS) of all the amphiphilic conetworks were measured in water and in THF over the whole range of ionization of the MAA units. The DSs in water increased with the degree of ionization (DI) and the content of the hydrophilic MAA units in the conetwork, while the DSs in THF increased with the degree of polymerization of the chains between the cross-links and by reducing the DI of the MAA units. Finally, the nanophase behavior of the conetworks was probed using small-angle neutron scattering and atomic force microscopy.

  5. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery.

    PubMed

    Mundargi, Raghavendra C; Rangaswamy, Vidhya; Aminabhavi, Tejraj M

    2011-01-01

    pH-sensitive copolymeric hydrogels prepared from N-vinylcaprolactam and methacrylic acid monomers by free radical polymerization offered 52% encapsulation efficiency and evaluated for oral delivery of human insulin. The in vitro experiments performed on insulin-loaded microparticles in pH 1.2 media (stomach condition) demonstrated no release of insulin in the first 2 h, but almost 100% insulin was released in pH 7.4 media (intestinal condition) in 6 h. The carrier was characterized by Fourier transform infrared, differential scanning calorimeter, thermogravimetry and nuclear magnetic resonance techniques to confirm the formation of copolymer, while scanning electron microscopy was used to assess the morphology of hydrogel microparticles. The in vivo experiments on alloxan-induced diabetic rats showed the biological inhibition up to 50% and glucose tolerance tests exhibited 44% inhibition. The formulations of this study are the promising carriers for oral delivery of insulin.

  6. The Competing Effects of Hyaluronic and Methacrylic Acid in Model Contact Lenses.

    PubMed

    Weeks, Andrea; Subbaraman, Lakshman N; Jones, Lyndon; Sheardown, Heather

    2012-01-01

    The aim of this study was to determine the influence of hyaluronic acid (HA) on lysozyme sorption in model contact lenses containing varying amounts of methacrylic acid (MAA). One model conventional hydrogel (poly(2-hydroxyethyl methacrylate) (pHEMA)) and two model silicone hydrogels (pHEMA, methacryloxypropyltris(trimethylsiloxy)silane (pHEMA TRIS) and N,N-dimethylacrylamide, TRIS (DMAA TRIS)) lens materials were prepared with and without MAA at two different concentrations (1.7 and 5%). HA, along with dendrimers, was loaded into these model contact lens materials and then cross-linked with 1-ethyl-3-(3-dimethylamino propyl)-carbodiimide (EDC). Equilibrium water content (EWC), advancing water contact angle and lysozyme sorption on these lens materials were investigated. In the HA-containing materials, the presence (P < 0.05) and amount (P < 0.05) of MAA increased the EWC of the materials. For most materials, addition of MAA reduced the advancing contact angles (P < 0.05) and for all the materials, the addition of HA further improved hydrophilicity (P < 0.05). For the non-HA containing hydrogels, the presence (P < 0.05) and amount (P < 0.05) of MAA increased lysozyme sorption. The presence of HA decreased lysozyme sorption for all materials (P < 0.05). MAA appears to work synergistically with HA to increase the EWC in addition to improving the hydrophilicity of model pHEMA-based and silicone hydrogel contact lens materials. Hydrogel materials that contain HA have tremendous potential as hydrophilic, protein-resistant contact lens materials.

  7. Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate) copolymer

    PubMed Central

    Lee, Kyung Dong; Jeong, Young-Il; Kim, Da Hye; Lim, Gyun-Taek; Choi, Ki-Choon

    2013-01-01

    Background Although cisplatin is extensively used in the clinical field, its intrinsic toxicity limits its clinical use. We investigated nanoparticle formations of poly(acrylic acid-co-methyl methacrylate) (PAA-MMA) incorporating cisplatin and their antitumor activity in vitro and in vivo. Methods Cisplatin-incorporated nanoparticles were prepared through the ion-complex formation between acrylic acid and cisplatin. The anticancer activity of cisplatin-incorporated nanoparticles was assessed with CT26 colorectal carcinoma cells. Results Cisplatin-incorporated nanoparticles have small particle sizes of less than 200 nm with spherical shapes. Drug content was increased according to the increase of the feeding amount of cisplatin and acrylic acid content in the copolymer. The higher acrylic acid content in the copolymer induced increase of particle size and decrease of zeta potential. Cisplatin-incorporated nanoparticles showed a similar growth-inhibitory effect against CT26 tumor cells in vitro. However, cisplatin-incorporated nanoparticles showed improved antitumor activity against an animal tumor xenograft model. Conclusion We suggest that PAA-MMA nanoparticles incorporating cisplatin are promising carriers for an antitumor drug-delivery system. PMID:23966778

  8. Preparation and characterization of pH-sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid).

    PubMed

    Ju, Junping; Wang, Chao; Wang, Tingmei; Wang, Qihua

    2014-11-15

    Functional terpolymer of poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) (P(MMA-HEMA-AA)) was synthesized via a radical polymerization method. The terpolymer could be directly blended with poly(vinylidene fluoride) (PVDF) to prepare the microfiltration (MF) membranes via phase separate process. The synthesized polymers were characterized by Fourier transform infrared (FTIR), the nuclear magnetic resonance proton spectra ((1)H NMR). The membrane had the typical asymmetric structure and the hydrophilic side chains tended to aggregate on the membrane surface. The surface enrichment of amphiphilic copolymer and morphology of MF membranes were characterized by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The contact angle (CA) and water uptake were also tested to assess the hydrophilicity and wetting characteristics of the polymer surface. The water filtration properties were measured. It was found the modified membranes showed excellent pH-sensitivity and pH-reversibility behavior. Furthermore, the hydrophilicity of the blended membranes increased, and the membranes showed good protein antifouling property.

  9. Acrylates and Methacrylates,

    DTIC Science & Technology

    1987-09-15

    of ethylene and hydrocyanic acid through ethylene cyanohydrin. In the presence of basic catalysts ethylene oxide easily adds hydrocyanic acid with the...of synthesis of methacrylates. At present methacrylates are obtained in the industry by continuous method from acetone and hydrocyanic acid through...acetone cyanohydrin. The addition/connection to it of hydrocyanic acid with the formation of acetone cyanohydrin is one of the most important reactions

  10. Positive mode electrospray tandem mass spectrometry of poly(methacrylic acid) oligomers.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2009-06-01

    The dissociation of small poly(methacrylic acid) (PMAA) cations produced by electrospray was characterized by tandem mass spectrometry. Similarly to PMAA ions produced in the negative ion mode, the two electrosprayed cationic forms, namely [PMAA+Na](+) and [PMAA-H+2Na](+), were shown to fragment via a major pathway consisting of successive dehydration steps. Elimination of a water molecule would occur between two consecutive acid groups in a charged-remote mechanism and was shown to proceed as many times as pairs of acidic pendant groups were available. As a result, comparing the number of dehydration steps observed in the MS/MS spectrum of two consecutive oligomers from the polymeric distribution reveals the degree of polymerization of the molecule. Secondary less informative reactions were shown to consist of losses of CO and/or CO(2), depending on the nature of the precursor ion. These fragmentation rules could be used to characterize PMAA-based copolymers, as successfully demonstrated for a polymeric impurity in the tested PMAA sample.

  11. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.

    PubMed

    Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V

    2017-02-01

    Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3adesarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization.

  12. A simple sonochemical method for fabricating poly(methyl methacrylate)/stearic acid phase change energy storage nanocapsules.

    PubMed

    Wang, Guxia; Xu, Weibing; Hou, Qian; Guo, Shengwei

    2015-11-01

    In this study, stearic acid suitable for thermal energy storage applications was nanoencapsulated in a poly(methyl methacrylate) shell. The nanocapsules were prepared using a simple ultrasonically initiated in situ polymerization method. The morphology and particle size of the poly(methyl methacrylate)/stearic acid phase change energy storage nanocapsules (PMS-PCESNs) were analyzed using transmission electron microscopy, scanning electron microscopy, atomic force microscopy and dynamic light scattering. The latent heat storage capacities of stearic acid and the PMS-PCESNs were determined using differential scanning calorimetry. The chemical composition of the nanocapsules was characterized using Fourier transform infrared spectroscopy. All of the results show that the PMS-PCESNs were synthesized successfully and that the latent heat storage capacity and encapsulation efficiency were 155.6 J/g and 83.0%, respectively, and the diameter of each nanocapsule was 80-90 nm.

  13. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    PubMed

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications.

  14. Composite Polylactic-Methacrylic Acid Copolymer Nanoparticles for the Delivery of Methotrexate

    PubMed Central

    Sibeko, Bongani; Choonara, Yahya E.; du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Khan, Riaz A.; Kumar, Pradeep; Ndesendo, Valence M. K.; Iyuke, Sunny E.; Pillay, Viness

    2012-01-01

    The purpose of this study was to develop poly(lactic acid)-methacrylic acid copolymeric nanoparticles with the potential to serve as nanocarrier systems for methotrexate (MTX) used in the chemotherapy of primary central nervous system lymphoma (PCNSL). Nanoparticles were prepared by a double emulsion solvent evaporation technique employing a 3-Factor Box-Behnken experimental design strategy. Analysis of particle size, absolute zeta potential, polydispersity (Pdl), morphology, drug-loading capacity (DLC), structural transitions through FTIR spectroscopy, and drug release kinetics was undertaken. Molecular modelling elucidated the mechanisms of the experimental findings. Nanoparticles with particle sizes ranging from 211.0 to 378.3 nm and a recovery range of 36.8–86.2 mg (Pdl ≤ 0.5) were synthesized. DLC values were initially low (12 ± 0.5%) but were finally optimized to 98 ± 0.3%. FTIR studies elucidated the comixing of MTX within the nanoparticles. An initial burst release (50% of MTX released in 24 hours) was obtained which was followed by a prolonged release phase of MTX over 84 hours. SEM images revealed near-spherical nanoparticles, while TEM micrographs revealed the presence of MTX within the nanoparticles. Stable nanoparticles were formed as corroborated by the chemometric modelling studies undertaken. PMID:22919501

  15. Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite

    SciTech Connect

    Preda, N.; Rusen, E.; Musuc, A.; Enculescu, M.; Matei, E.; Marculescu, B.; Fruth, V.; Enculescu, I.

    2010-08-15

    The synthesis of a new hybrid composite based on PbS nanoparticles and poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid) [P(MMA-AMPSA)] copolymer is reported. The chemical synthesis consists in two steps: (i) a surfactant-free emulsion copolymerization between methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid and (ii) the generation of PbS particles in the presence of the P(MMA-AMPSA) latex, from the reaction between lead nitrate and thiourea. The composite was studied by scanning electron microscopy (SEM), X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The microstructure observed using SEM proves that the PbS nanoparticles are well dispersed in the copolymer matrix. The X-ray diffraction measurements demonstrate that the PbS nanoparticles have a cubic rock salt structure. It was also found that the inorganic semiconductor nanoparticles improve the thermal stability of the copolymer matrix.

  16. Smart poly(2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application

    NASA Astrophysics Data System (ADS)

    Tomić, Simonida Lj; Mićić, Maja M.; Dobić, Sava N.; Filipović, Jovanka M.; Suljovrujić, Edin H.

    2010-05-01

    pH- and temperature-sensitive hydrogels, based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) copolymers, were prepared by γ-irradiation and characterized in order to examine their potential use in biomedical applications. The influence of comonomer ratio in these smart copolymers on their morphology, mechanical and thermal properties, biocompatibility and microbe penetration capability was investigated. The mechanical properties of copolymers were investigated using the dynamic mechanical analysis (DMA), while their thermal properties and morphology were examined by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The morphology, mechanical and thermal properties of these hydrogels were found to be suitable for most requirements of biomedical applications. The in vitro study of P(HEMA/IA) biocompatibility showed no evidence of cell toxicity nor any considerable hemolytic activity. Furthermore, the microbe penetration test showed that neither Staphylococcus aureus nor Escherichia coli passed through the hydogel dressing; thus the P(HEMA/IA) dressing could be considered a good barrier against microbes. All results indicate that stimuli-responsive P(HEMA/IA) hydrogels have great potential for biomedical applications, especially for skin treatment and wound dressings.

  17. Efficient structural characterization of poly(methacrylic acid) by activated-electron photodetachment dissociation.

    PubMed

    Girod, Marion; Brunet, Claire; Antoine, Rodolphe; Lemoine, Jérôme; Dugourd, Philippe; Charles, Laurence

    2012-01-01

    Characterization of end-groups in poly(methacrylic acid) (PMAA) was achieved using tandem mass spectrometry after activated-electron photodetachment dissociation (activated-EPD). In this technique, multiply deprotonated PMAA oligomers produced in the negative-ion mode of electrospray ionization were oxidized into radical anions upon electron photodetachment using a 220 nm laser wavelength, and further activated by collision. In contrast to conventional collision induced dissociation of negatively charged PMAA, which mainly consists of multiple dehydration steps, fragmentation of odd-electron species is shown to proceed via a radical-induced decarboxylation, followed by reactions involving backbone bond cleavages, giving rise to product ions containing one or the other oligomer termination. A single radical-induced mechanism accounts for the four main fragment series observed in MS/MS. The relative position of the radical and of the anionic center in distonic precursor ions determines the nature of the reaction products. Experiments performed using PMAA sodium salts allowed us to account for relative abundances of product ions in series obtained from PMAA, revealing that ion stability is ensured by hydrogen bonds within pairs of MAA units.

  18. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    NASA Astrophysics Data System (ADS)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  19. Theoretical and experimental research on the self-assembled system of molecularly imprinted polymers formed by salbutamol and methacrylic acid.

    PubMed

    Jun-Bo, Liu; Yang, Shi; Shan-Shan, Tang; Rui-Fa, Jin

    2015-03-01

    The quantum chemical method was applied for screening functional monomers in the rational design of salbutamol-imprinted polymers. Salbutamol was the template molecule, and methacrylic acid was the single functional monomer. The LC-WPBE/6-31G(d,p) method was used to investigate the geometry optimization, active sites, natural bond orbital charges, binding energies of the imprinted molecule, and solvation energy. The mechanism of action between salbutamol and methacrylic acid was also discussed. The theoretical results show that salbutamol interacts with functional monomers by hydrogen bonds, and the salbutamol-imprinted polymers with a ratio of 1:4 (salbutamol/methacrylic acid) in acetonitrile had the highest stability. The salbutamol-imprinted polymers were prepared by precipitation polymerization. The experimental results indicated that the maximum adsorption capacity for salbutamol toward molecularly imprinted polymers was 7.33 mg/g, and the molecularly imprinted polymers had a higher selectivity for salbutamol than for norepinephrine and terbutaline sulfate. Herein, the studies can provide theoretical and experimental references for the salbutamol molecular imprinted system.

  20. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  1. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid.

    PubMed

    Milosavljević, Nedeljko B; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Filipović, Jovanka M; Strbac, Svetlana B; Rakočević, Zlatko Lj; Kalagasidis Krušić, Melina T

    2011-08-30

    Novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were applied as adsorbents for the removal of Zn(2+) ions from aqueous solution. In batch tests, the influence of solution pH, contact time, initial metal ion concentration and temperature was examined. The sorption was found pH dependent, pH 5.5 being the optimum value. The adsorption process was well described by the pseudo-second order kinetic. The hydrogels were characterized by spectral (Fourier transform infrared-FTIR) and structural (SEM/EDX and atomic force microscopy-AFM) analyses. The surface topography changes were observed by atomic force microscopy, while the changes in surface composition were detected using phase imaging AFM. The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. The best fitting isotherms were Langmuir and Redlich-Peterson and it was found that both linear and nonlinear methods were appropriate for obtaining the isotherm parameters. However, the increase of temperature leads to higher adsorption capacity, since swelling degree increased with temperature.

  2. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE PAGES

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; ...

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces butmore » roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  3. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    SciTech Connect

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; Kharlampieva, Eugenia

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.

  4. Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model.

    PubMed

    Lisovsky, Alexandra; Zhang, David K Y; Sefton, Michael V

    2016-08-01

    Poly(methacrylic acid-co-methyl methacrylate) (MAA) beads promote a vascular regenerative response when used in diabetic wound healing. Previous studies reported that MAA beads modulated the expression of sonic hedgehog (Shh) and inflammation related genes in diabetic wounds. The aim of this work was to follow up on these observations in a subcutaneous injection model to study the host response in the absence of the confounding factors of diabetic wound healing. In this model, MAA beads improved vascularization in healthy mice of both sexes compared to control poly(methyl methacrylate) (MM) beads, with a stronger effect seen in males than females. MAA-induced vessels were perfusable, as evidenced from the CLARITY-processed images. In Shh-Cre-eGFP/Ptch1-LacZ non-diabetic transgenic mice, the increased vessel formation was accompanied by a higher density of cells expressing GFP (Shh) and β-Gal (patched 1, Ptch1) suggesting MAA enhanced the activation of the Shh pathway. Ptch1 is the Shh receptor and a target of the pathway. MAA beads also modulated the inflammatory cell infiltrate in CD1 mice: more neutrophils and more macrophages were noted with MAA relative to MM beads at days 1 and 7, respectively. In addition, MAA beads biased macrophages towards a MHCII-CD206+ ("M2") polarization state. This study suggests that the Shh pathway and an altered inflammatory response are two elements of the complex mechanism whereby MAA-based biomaterials effect vascular regeneration.

  5. Characterization and comparison of methacrylic acid with 2-acrylamido-2-methyl-1-propanesulfonic acid in the preparation of monolithic column for capillary electrochromatography.

    PubMed

    Horiguchi, Daisuke; Ohyama, Kaname; Masunaga, Tomoko; Fujita, Yoshiko; Ali, Marwa Fathy Bakr; Kishikawa, Naoya; Kuroda, Naotaka

    2013-01-01

    Butyl methacrylate (BMA)-ethylene dimethacrylate (EDMA)-methacrylic acid (MAA) and BMA-EDMA-2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) monolithic columns were prepared by varying the percentage of ionic monomers for capillary electrochromatography. Monolithic columns with a higher content of ionic monomers provided better column efficiency, and the performance of BMA-EDMA-MAA monoliths was better than BMA-EDMA-AMPS. To characterize and optimize BMA-EDMA-MAA monoliths, the effects of the content of cross-linker and the total monomer in the polymerization mixture on column performance were also studied. Plate heights of 8.2 µm for the unretained solute (thiourea) and 12.6 µm for the retained solute (naphthalene) were achieved with a monolithic column using 2.5% MAA (Column I).

  6. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan.

    PubMed

    dos Santos, K S C R; Coelho, J F J; Ferreira, P; Pinto, I; Lorenzetti, S G; Ferreira, E I; Higa, O Z; Gil, M H

    2006-03-09

    Chitosan based membranes to be applied on wound healing as topical drug delivery systems were developed by graft copolymerization of acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) onto chitosan using cerium ammonium nitrate as chemical initiator. Evidence for graft copolymerization of the vinyl monomers onto chitosan was obtained by FTIR and DMTA. Swelling degree, cytotoxicity, thrombogenicity and haemolytic activity of these membranes were evaluated. Chitosan-graft-AA-graft-HEMA showed to be the best matrix for drug delivery systems than chitosan-graft-AA because it retains good swelling properties, but the content in HEMA has improved cytocompatibility, hemocompatibility and thrombogenic character.

  7. Synthesis and characterization of new composite materials based on poly(methacrylic acid) and hydroxyapatite with applications in dentistry.

    PubMed

    Cucuruz, Andrei Tiberiu; Andronescu, Ecaterina; Ficai, Anton; Ilie, Andreia; Iordache, Florin

    2016-08-30

    The use of methacrylic acid (MAA) in medicine was poorly investigated in the past but can be of great importance because the incorporation of hydroxyapatite (HA) can lead to new composite materials with good properties due to the strong electrostatic interactions between carboxylate groups of polymer and Ca(2+) ions from HA. The scope of this study was to determine the potential of using composite materials based on poly(methacrylic acid) (PMAA) and hydroxyapatite in dentistry. Two routes of synthesis were taken into account: i) HA was synthesised in situ and ii) commercial HA was used. Fourier transform infrared spectroscopy and X-ray diffraction were used for compositional assessments. Scanning electron microscopy was performed to determine the morphology and differential thermal analysis (DTA) coupled with thermogravimetric analysis (TG) was used to study the thermal behaviour and to observe quantitative changes. In-vitro tests were also performed in order to evaluate the biocompatibility of both PMAA/HA composites by monitoring the development potential of human endothelial cells using MTT assay and fluorescent microscopy.

  8. Fabrication and characterization of Sb-doped Sn02 thin films derived from methacrylic acid modified tin(IV)alkoxides

    NASA Astrophysics Data System (ADS)

    Kololuoma, Terho K.; Tolonen, Ari; Johansson, Leena-Sisko; Campbell, Joseph M.; Karkkainen, Ari H. O.; Hiltunen, Marianne; Haatainen, Tomi; Rantala, Juha T.

    2002-10-01

    We report on the fabrication of transparent, conductive and directly photopatternable, pure and Sb-doped tin dioxide thin films. Precursors used were antimony(III)isopropoxide and a photo-reactive tin alkoxide synthesized from tin(IV)isopropoxide and methacrylic acid. The synthesis of methacrylic acid modified tin alkoxide was monitored in-situ using IR- and ESI-TOF mass spectroscopic techniques. Sb-doped organo-tin films were deposited via single layer spin coating. After deposition the films were patterned via photopolymerization, using a mercury I-line UV-lamp. All investigated materials could be patterned with 3 μm features. After development in isopropanol, the films were annealed in air, in order to obtain crystalline and conductive films. The electrical conductivities of the annealed thin films with, and without, UV-irradiation were determined using a linear four-point method. The direct photopatterning process was found to increase the film conductivity for all the Sb-doping levels tested. The mechanisms for the increased conductivity were characterized using AFM, XPS and XRD techniques.

  9. A strong inorganic acid-initiated methacrylate polymerization strategy for room temperature preparation of monolithic columns for capillary electrochromatography.

    PubMed

    Wang, Man-Man; Wang, He-Fang; Jiang, Dong-Qing; Wang, Shan-Wei; Yan, Xiu-Ping

    2010-05-01

    A facile strong inorganic acid-initiated methacrylate polymerization strategy was developed for fabricating monolithic columns at room temperature. The prepared monoliths were characterized by FTIR spectrometry, mercury intrusion porosimeter and SEM, while their performance was evaluated by CEC for the separation of various types of compounds including alkyl benzenes, polycyclic aromatic hydrocarbons, nonsteroidal anti-inflammatory drugs, anilines, and nitrophenol isomers. The column-to-column and batch-to-batch reproducibility for the prepared monoliths in terms of the RSD of EOF flow velocity, retention factor, and the minimum plate height of naphthalene ranged from 3.4 to 12.4%. The fabricated monoliths gave excellent performance for the separation of the test neutral compounds with the theoretical plates of 170,000-232,000 plates per meter for thiourea, and 77,400-112,300 plates per meter for naphthalene. The proposed strong inorganic acid-initiated methacrylate polymerization strategy is a promising alternative for fabricating organic polymer-based monoliths.

  10. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  11. Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery.

    PubMed

    Dragan, Ecaterina Stela; Cocarta, Ana Irina; Gierszewska, Magdalena

    2016-03-01

    Designing structure and morphology of macroporous hydrogels is crucial for their applications in controlled release systems of macromolecular drugs. Macroporous hydrogels, consisting of methacrylic acid (MAA) and either acryl amide (AAm) or 2-hydroxyethyl methacrylate (HEMA) (1st network), were prepared for this purpose by cryogelation (single network cryogels, SNCs). Macroporous interpenetrating polymer network (IPN) hydrogel composites were then prepared by a sequential strategy, the 2nd network consisting of chitosan (CS) cross-linked with poly(ethyleneglycol) diglycidyl ether (PEGDGE) being generated by the sorption of a CS and PEGDGE mixture in the 1st network followed by cross-linking. A strong difference in the behavior of SNCs and IPN hydrogel composites was found during the loading and release of lysozyme (LYS) used as macromolecular drug model. Thus, while the amount of LYS loaded on SNCs was higher than that loaded on the IPNs, the release of LYS from SNCs occurred at pH 2, when the ratio between MAA and AAm was 50:50, and only at pH 1 when the ratio between MAA and AAm was 70:30. The 2nd network led to the decrease of the pore size of the IPNs, mainly when the initial concentration of monomers was 10wt/v%, but the presence of CS facilitates the LYS release from IPNs, mainly at a concentration of monomer of 5wt/v%, and when HEMA was used as nonionic comonomer.

  12. Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone.

    PubMed

    Wang, Ke; Xu, Xu; Wang, YuJun; Yan, Xi; Guo, Gang; Huang, MeiJuan; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2010-04-15

    In this work, a novel pH-sensitive hydrogels based on macromonomer of methoxyl poly(ethylene glycol)-poly(caprolactone)-acryloyl chloride (MPEG-PCL-AC, PCE-AC), poly(ethylene glycol) methyl ether methacrylate (MPEGMA), and methacrylic acid (MAA) were successfully synthesized by heat-initiated free radical polymerization method. The obtained macromonomers and hydrogels were characterized by (1)H NMR and FT-IR, respectively. Morphology study, swelling behavior, in vitro drug release behavior, acute oral toxicity of hydrogels, and cytotoxicity of PCE-AC macromonomer were also investigated in this paper. Finally, the hydrogels demonstrated that the sharp change in different pH value, thus believing to be promising the suitability of the candidate for oral drug-delivery systems.

  13. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    PubMed

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-01-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days.

  14. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    TOXICOLOGICAL REVIEW of METHYL METHACRYLATE ( CAS No . 80 - 62 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) January 1998 U.S . Environmental Protection Agency Washington , DC TABLE OF CONTENTS DISCLAIMER . . . . . . . . . . . . . . . . . . . . . . . . .

  15. Chitosan microsphere scaffold tethered with RGD-conjugated poly(methacrylic acid) brushes as effective carriers for the endothelial cells.

    PubMed

    Yang, Zhenyi; Yuan, Shaojun; Liang, Bin; Liu, Yang; Choong, Cleo; Pehkonen, Simo O

    2014-09-01

    Endothelial cell-matrix interactions play a vital role in promoting vascularization of engineered tissues. The current study reports a facile and controllable method to develop a RGD peptide-functionalized chitosan microsphere scaffolds for rapid cell expansion of human umbilical vein endothelial cells (HUVECs). Functional poly(methacrylic acid) (PMAA) brushes are grafted from the chitosan microsphere surfaces via surface-initiated ATRP. Subsequent conjugation of RGD peptides on the pendent carboxyl groups of PMAA side chain is accomplished by carbodiimide chemistry to facilitate biocompatibility of the 3D CS scaffolding system. In vitro cell-loading assay of HUVECs exhibits a significant improvment of cell adhesion, spreading, and proliferation on the RGD peptide-immobilized CS microsphere surfaces.

  16. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    NASA Astrophysics Data System (ADS)

    Park, Sung-Eun; Nho, Young-Chang; Kim, Hyung-Il

    2004-02-01

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2.

  17. Proton-conducting polymer membrane comprised of a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Walker, Charles W.

    In order to identify a proton-conducting polymer membrane suitable for replacing Nafion ® 117 in direct methanol fuel cells (DMFC), we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 2-hydroxyethyl methacrylate (HEMA). Fumed silicas were also added in an attempt to increase the amount of water adsorbed by the membrane and to enhance water retention. Hydrated copolymer membranes adsorbed significantly more water than Nafion ® 117, but were no better at retaining water during drying under ambient conditions. Films composed of 4% AMPS—96% HEMA had a room temperature proton conductivity of 0.029 S cm -1, which increased to 0.06 S cm -1 at 80 °C.

  18. Swelling and thermodynamic studies of temperature responsive 2-hydroxyethyl methacrylate/itaconic acid copolymeric hydrogels prepared via gamma radiation

    NASA Astrophysics Data System (ADS)

    Tomić, Simonida L. J.; Mićić, Maja M.; Filipović, Jovanka M.; Suljovrujić, Edin H.

    2007-08-01

    The copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were synthesized by gamma radiation induced radical polymerization. Swelling and thermodynamic properties of PHEMA and copolymeric P(HEMA/IA) hydrogels with different IA contents (2, 3.5 and 5 mol%) were studied in a wide pH and temperature range. Initial studies of so-prepared hydrogels show interesting pH and temperature sensitivity in swelling and drug release behavior. Special attention was devoted to temperature investigations around physiological temperature (37 °C), where small changes in temperature significantly influence swelling and drug release of these hydrogels. Due to maximum swelling of hydrogels around 40 °C, the P(HEMA/IA) hydrogel containing 5 mol% of IA without and with drug-antibiotic (gentamicin) were investigated at pH 7.40 and in the temperature range 25-42 °C, in order to evaluate their potential for medical applications.

  19. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications.

    PubMed

    Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka

    2016-10-01

    A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates.

  20. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin.

  1. Ammonium methacrylate

    Integrated Risk Information System (IRIS)

    Ammonium methacrylate ; CASRN 16325 - 47 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  2. Analysis Of Leakage In Carbon Sequestration Projects In Forestry:A Case Study Of Upper Magat Watershed, Philippines

    SciTech Connect

    Lasco, Rodel D.; Pulhin, Florencia B.; Sales, Renezita F.

    2007-06-01

    The role of forestry projects in carbon conservation andsequestration is receiving much attention because of their role in themitigation of climate change. The main objective of the study is toanalyze the potential of the Upper Magat Watershed for a carbonsequestration project. The three main development components of theproject are forest conservation, tree plantations, and agroforestry farmdevelopment. At Year 30, the watershed can attain a net carbon benefit of19.5 M tC at a cost of US$ 34.5 M. The potential leakage of the projectis estimated using historical experience in technology adoption inwatershed areas in the Philippines and a high adoption rate. Two leakagescenarios were used: baseline and project leakage scenarios. Most of theleakage occurs in the first 10 years of the project as displacement oflivelihood occurs during this time. The carbon lost via leakage isestimated to be 3.7 M tC in the historical adoption scenario, and 8.1 MtC under the enhanced adoption scenario.

  3. Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Tomić, S. Lj.; Mićić, M. M.; Filipović, J. M.; Suljovrujić, E. H.

    2007-05-01

    The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks.

  4. Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion.

    PubMed

    Alves, P; Pinto, S; Kaiser, Jean-Pierre; Bruinink, Arie; de Sousa, Hermínio C; Gil, M H

    2011-02-01

    The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application. In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan(®)1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed. If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV.

  5. Acid-base properties, deactivation, and in situ regeneration of condensation catalysts for synthesis of methyl methacrylate

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1996-12-31

    Condensation reaction of a propionate with formaldehyde is a novel route for synthesis of methyl methacrylate (MMA). The reaction mechanism involves a proton abstraction from the propionate on the basic sites and activation of the aliphatic aldehyde on the acidic sites of the catalyst. The acid-base properties of ternary V-Si-P oxide catalysts and their relation to the NWA yield in the vapor phase condensation of formaldehyde with propionic anhydride has been studied for the first time. Five different V-Si-P catalysts with different atomic ratios of vanadium, silicon, and phosphorous were synthesized, characterized, and tested in a fixed-bed microreactor system. A V-Si-P 1:10:2.8 catalyst gave the maximum condensation yield of 56% based on HCHO fed at 300{degrees}C and 2 atm and at a space velocity of 290 cc/g cat{center_dot}h. A parameter called the ``q-ratio`` has been defined to correlate the condensation yields to the acid-base properties. The correlation of q-ratio with the condensation yield shows that higher q-ratios are more desirable. The long-term deactivation studies on the V-Si-P 1: 10:2.8 catalyst at 300{degrees}C and 2 atm and at a space velocity of 290 cc/g cat{center_dot}h show that the catalyst activity drops by a factor of nearly 20 over a 180 h period. The activity can be restored to about 78% of the initial activity by a mild oxidative regeneration at 300{degrees}C and 2 atm. The performance of V-Si-P catalyst has been compared to a Ta/SiO{sub 2} catalyst. The Ta- catalyst is more stable and has a higher on-stream catalyst life.

  6. Molecular Imprinted Polymer of Methacrylic Acid Functionalised β-Cyclodextrin for Selective Removal of 2,4-Dichlorophenol

    PubMed Central

    Surikumaran, Hemavathy; Mohamad, Sharifah; Sarih, Norazilawati Muhamad

    2014-01-01

    This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions. PMID:24727378

  7. Chitosan-functionalised poly(2-hydroxyethyl methacrylate) core-shell microgels as drug delivery carriers: salicylic acid loading and release.

    PubMed

    Mahattanadul, Natshisa; Sunintaboon, Panya; Sirithip, Piyawan; Tuchinda, Patoomratana

    2016-09-01

    This work presents the evaluation of chitosan-functionalised poly(2-hydroxyethyl methacrylate) (CS/PHEMA) core-shell microgels as drug delivery carriers. CS/PHEMA microgels were prepared by emulsifier-free emulsion polymerisation with N,N '-methylenebisacrylamide (MBA) as a crosslinker. The study on drug loading, using salicylic acid (SA) as a model drug, was performed. The results showed that the encapsulation efficiency (EE) increased as drug-to-microgel ratio was increased. Higher EE can be achieved with the increase in degree of crosslinking, by increasing the amount of MBA from 0.01 g to 0.03 g. In addition, the highest EE (61.1%) was observed at pH 3. The highest release of SA (60%) was noticed at pH 2.4, while the lowest one (49.4%) was obtained at pH 7.4. Moreover, the highest release of SA was enhanced by the presence of 0.2 M NaCl. The pH- and ionic-sensitivity of CS/PHEMA could be useful as a sustained release delivery device, especially for oral delivery.

  8. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    NASA Astrophysics Data System (ADS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  9. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation.

    PubMed

    Kuo, Wei-Hsuan; Wang, Meng-Jiy; Chien, Hsiu-Wen; Wei, Ta-Chin; Lee, Chiapyng; Tsai, Wei-Bor

    2011-12-12

    Zwitterionic sulfobetaine methacrylate (SBMA) polymers were known to possess excellent antifouling properties due to high hydration capacity and neutral charge surface. In this study, copolymers of SBMA and acrylic acid (AA) with a variety of compositions were synthesized and were immobilized onto polymeric substrates with layer-by-layer polyelectrolyte films via electrostatic interaction. The amounts of platelet adhesion and fibrinogen adsorption were determined to evaluate hemocompatibility of poly(SBMA-co-AA)-modified substrates. Among various deposition conditions by modulating SBMA ratio in the copolymers and pH of the deposition solution, poly(SBMA(56)-co-AA(44)) deposited at pH 3.0 possessed the best hemocompatibility. This work demonstrated that poly(SBMA-co-AA) copolymers adsorbed on polyelectrolyte-base films via electrostatic interaction improve hemocompatibility effectively and are applicable for various substrates including TCPS, PU, and PDMS. Furthermore, poly(SBMA-co-AA)-coated substrate possesses great durability under rigorous conditions. The preliminary hemocompatibility tests regarding platelet adhesion, fibrinogen adsorption, and plasma coagulation suggest the potential of this technique for the application to blood-contacting biomedical devices.

  10. Experimental study of albumin and lysozyme adsorption onto acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) surfaces.

    PubMed

    Moradi, Omid; Modarress, Hamid; Noroozi, Mehdi

    2004-03-01

    Many commercial soft contact lenses are based on poly-2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA) hydrogels. The adsorption of proteins, albumin and lysozyme, on such contact lens surfaces may cause problems in their applications. In this work the adsorption of proteins, albumin and lysozyme, on hydrogel surfaces, AA and HEMA, was investigated as a function of concentration of protein. Also the effects of pH and ionic strength of protein solution on the adsorption of protein were examined. The obtained results indicated that the degree of adsorption of protein increased with the concentration of protein, and the adsorption of albumin on HEMA surface at the studied pHs (6.2-8.6) was higher than AA surface, whereas the adsorption of lysozyme on AA surface at the same pHs was higher than HEMA. The change in ionic strength of protein solution affected the proteins adsorption on both AA and HEMA surfaces. Also, the amount of sodium ions deposited on the AA surface was much higher than HEMA surface. This effect can be related to the negative surface charge of AA and its higher tendency for adsorption of sodium ions compared to the HEMA surface.

  11. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    NASA Astrophysics Data System (ADS)

    Kunst, S. R.; Cardoso, H. R. P.; Oliveira, C. T.; Santana, J. A.; Sarmento, V. H. V.; Muller, I. L.; Malfatti, C. F.

    2014-04-01

    The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane-poly (methyl methacrylate) (PMMA) hybrid film prepared by sol-gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane-PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase and irregular surface coverage.

  12. Tandem mass spectrometry of poly(methacrylic Acid) oligomers produced by negative mode electrospray ionization.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2009-01-01

    Dissociation of small poly(methyl acrylic acid) (PMAA) anions produced by electrospray was characterized by tandem mass spectrometry. Upon collisional activation, singly, and doubly deprotonated PMAA oligomers were shown to fragment via two major reactions, dehydration and decarboxylation. The elimination of a water molecule would occur between two consecutive acid groups in a charged-remote mechanism, giving rise to cyclic anhydrides, and was shown to proceed as many times as pairs of neutral pendant groups were available. As a result, the number of dehydration steps, together with the abundance of the fragment ions produced after the release of all water molecules, revealed the polymerization degree of the molecule in the particular case of doubly charged oligomers. For singly deprotonated molecules, the exact number of MAA units could be reached from the number of carbon dioxide molecules successively eliminated from the fully dehydrated precursor ions. In contrast to dehydration, decarboxylation reactions would proceed via a charge-induced mechanism. The proposed dissociation mechanisms are consistent with results commonly reported in thermal degradation studies of poly(acrylic acid) resins and were supported by accurate mass measurements. These fragmentation rules were successfully applied to characterize a polymeric impurity detected in the tested PMAA sample.

  13. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  14. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate.

    PubMed

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-03

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  15. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  16. Plasma-induced graft copolymerization of poly(methacrylic acid) on electrospun poly(vinylidene fluoride) nanofiber membrane.

    PubMed

    Kaur, Satinderpal; Ma, Zuwei; Gopal, Renuga; Singh, Gurdev; Ramakrishna, Seeram; Matsuura, Takeshi

    2007-12-18

    Electrospun nanofibrous membranes (ENM) which have a porous structure have a huge potential for various liquid filtration applications. In this paper, we explore the viability of using plasma-induced graft copolymerization to reduce the pore sizes of ENMs. Poly(vinylidene) fluoride (PVDF) was electrospun to produce a nonwoven membrane, comprised of nanofibers with diameters in the range of 200-600 nm. The surface of the ENM was exposed to argon plasma and subsequently graft-copolymerized with methacrylic acid. The effect of plasma exposure time on grafting was studied for both the ENM and a commercial hydrophobic PVDF (HVHP) membrane. The grafting density was quantitatively measured with toluidine blue-O. The degree of grafting increased steeply with an increase in plasma exposure time for the ENM, attaining a maximum of 180 nmol/mg after 120 s of plasma treatment. However, the increase in the grafting density on the surface of the HVHP membrane was not as drastic, reaching a plateau of 65 nmol/mg after 60 s. The liquid entry permeation of water dropped extensively for both membranes, indicating a change in surface properties. Field emission scanning electron microscopy micrographs revealed an alteration in the surface pore structure for both membranes after grafting. Bubble point measurements of the ENM reduced from 3.6 to 0.9 um after grafting. The pore-size distribution obtained using the capillary flow porometer for the grafted ENM revealed that it had a similar profile to that of a commercial hydrophilic commercial PVDF (HVLP) membrane. More significantly, water filtration studies revealed that the grafted ENM had a better flux throughput than the HVLP membrane. This suggests that ENMs can be successfully engineered through surface modification to achieve smaller pores while retaining their high flux performance.

  17. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials.

  18. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials.

  19. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    PubMed

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.

  20. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  1. One-pot synthesis of biocompatible boronic acid-functionalized poly(methyl methacrylate) nanoparticles at sub-100 nm scale for glucose sensing

    NASA Astrophysics Data System (ADS)

    Sakalak, Huseyin; Ulasan, Mehmet; Yavuz, Emine; Camli, Sevket Tolga; Yavuz, Mustafa Selman

    2014-12-01

    Poly(methyl methacrylate) nanoparticles containing 4-vinylphenyl boronic acid were synthesized in one pot by surfactant-free emulsion polymerization. The nanoparticles were characterized by scanning electron microscopy and dynamic light scattering. Boron content in the nanoparticles was confirmed by electron-dispersive X-ray spectroscopy. In polymerization process, several co-monomer ratios were studied in order to obtain optimum nanoparticle size. Average hydrodynamic diameter and polydispersity index of nanoparticles versus variation of acetone percentage in the solvent mixture and total monomer concentration were investigated. The effect of boronic acid concentration in the monomer mixture on nanoparticle size and size distribution was also reported. Without further functionalization to the nanoparticles, the catechol dye, alizarin red S, was bound to boronic acid-containing nanoparticles. These nanoparticles behave as a nanosensor by which glucose or fructose can be easily detected. Dye-containing nanoparticles were undertaken displacement reaction by glucose or fructose. The glucose or fructose content was also monitored by UV-Visible spectrophotometer. Furthermore, cytotoxicity studies of boronic acid-carrying poly(methyl methacrylate) nanoparticles were carried out in 3T3 cells, which showed no toxicity effect on the cells.

  2. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2013-10-15

    Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N'-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA-TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.

  3. Synthesis and evaluation of chitosan-graft-poly (2-hydroxyethyl methacrylate-co-itaconic acid) as a drug carrier for controlled release of tramadol hydrochloride.

    PubMed

    Subramanian, Kaliappa Gounder; Vijayakumar, Vediappan

    2012-07-01

    Chitosan-graft-poly (2-hydroxyethyl methacrylate-co-itaconic acid) has been synthesized for different feed ratios of 2-hydroxyethyl methacrylate and itaconic acid and characterized by FT-IR, thermogravimetry and swelling in simulated biological fluids (SBF) and evaluated as a drug carrier with model drug, tramadol hydrochloride (TRM). Grafting decreased the thermal stability of chitosan. FT-IR spectra of tablet did not reveal any molecular level (i.e. at <10 nm scale) drug-polymer interaction. But differential scanning calorimetric studies indicated a probable drug-polymer interaction at a scale >100 nm level. The observed Korsmeyer-Peppas's power law exponents (0.19-1.21) for the in vitro release profiles of TRM in SBF and other drugs such as 5-fluorouracil (FU), paracetamol (PCM) and vanlafaxine hydrochloride (VNF) with the copolymer carriers revealed an anomalous drug release mechanism. The decreased release rates for the grafted chitosan and the enhanced release rate for the grafts with increasing itaconic acid content in the feed were more likely attributed to the enhanced drug-matrix interaction and polymer-SBF interactions, respectively. The different release profiles of FU, PCM, TRM and VNF with the copolymer matrix are attributed to the different chemical structures of drugs. The above features suggest the graft copolymer's candidature for use as a promising oral drug delivery system.

  4. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-05-01

    The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  5. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  6. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  7. Facile "one-pot" synthesis of poly(methacrylic acid)-based hybrid monolith via thiol-ene click reaction for hydrophilic interaction chromatography.

    PubMed

    Lv, Xumei; Tan, Wangming; Chen, Ye; Chen, Yingzhuang; Ma, Ming; Chen, Bo; Yao, Shouzhuo

    2016-07-08

    A novel sol-gel "one-pot" approach in tandem with a radical-mediated thiol-ene reaction for the synthesis of a methacrylic acid-based hybrid monolith was developed. The polymerization monomers, tetramethoxysilane (TMOS) and 3-mercaptopropyl trimethoxysilane (MPTS), were hydrolyzed in high-concentration methacrylic acid solution that also served as a hydrophilic functional monomer. The resulting solution was then mixed with initiator (2, 2'-azobis (2-methylpropionamide) dihydrochloride) and porogen (urea, polyethylene glycol 20,000) in a capillary column and polymerized in water bath. The column had a uniform porous structure and a good permeability. The evaluation of the monolith was performed by separation of small molecules including nucleosides, phenols, amides, bases and Triton X-100. The calibration curves for uridine, inosine, adenosine and cytidine were determined. All the calibration curves exhibited good linear regressions (R(2)≥0.995) within the test ranges of 0.5-40μg/mL for four nucleosides. Additionaliy, atypical hydrophilic mechanism was proved by elution order from low to high according to polarity retention time increased with increases in the content of the organic solvent in the mobile phase. Further studies indicated that hydrogen bond and electrostatic interactions existed between the polar analytes and the stationary phase. This was the mechanism of retention. The excellent separation of the BSA digest showed good hydrophility of the column and indicated the potential in separation of complex biological samples.

  8. Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on salecan and poly(N,N-diethylacrylamide-co-methacrylic acid).

    PubMed

    Wei, Wei; Qi, Xiaoliang; Liu, Yucheng; Li, Junjian; Hu, Xinyu; Zuo, Gancheng; Zhang, Jianfa; Dong, Wei

    2015-12-01

    Salecan is a water-soluble microbial polysaccharide produced by Agrobacterium sp. ZX09, a salt-tolerant strain isolated from a soil sample in our laboratory. Previous work inspired us salecan is a good candidate to fabricate hydrogels. Poly(N,N-diethylacrylamide) is one type of thermo sensitive polymer which is not investigated extremely as poly(N-isopropylacrylamide). Here, we report a novel pH-thermo dual responsive hydrogel based on salecan and poly(N,N-diethylacrylamide-co-methacrylic acid) semi-interpenetrating polymer networks (semi-IPNs). The physicochemical property of this hydrogel was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA), rheological test and Scanning Electron Microscopy (SEM). It was interesting that the storage modulus (G') and pore size of the hydrogel could be tuned by adjusting the content of salecan and crosslinker. The pH-thermo dual responsive property was demonstrated by swelling behavior test: the swelling ratio of the hydrogel decreased continuously as the temperature increased from 25 °C to 37 °C, while it was pH-dependent as well. Especially, when exposed to a higher temperature (37 °C) and acidic environment (pH 4.0), drug-loaded hydrogel would have a quick release. Finally, the cytotoxicity of drug-free hydrogels was investigated on A549 and HepG2 cells, results showed that it was non-toxic while the DOX released from hydrogels had comparable cytotoxicity with respect to free DOX. In conclusion, the novel salecan/poly(N,N-diethylacrylamide-co-methacrylic acid) semi-interpenetrating polymer network hydrogels were pH-thermo dual responsive and may be a promising candidate for drug delivery system.

  9. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    SciTech Connect

    Warangkhana, Phromma; Rathanawan, Magaraphan; Jana Sadhan, C.

    2015-05-22

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter led to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness.

  10. Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media.

    PubMed

    Anirudhan, T S; Rijith, S

    2012-04-01

    A novel adsorbent poly(methacrylic acid)-grafted chitosan/bentonite (CTS-g-PMAA/Bent) composite was prepared through graft copolymerization reaction of methacrylic acid and chitosan in the presence of bentonite (Bent) and N,N'- methylenebisacrylamide as a crosslinker. The composite was well characterized using FTIR, XRD, XPS, SEM-EDS, surface area and zeta potential analyzers. The adsorption behavior of the composite toward uranium(VI) from aqueous media was studied under varying operating conditions of pH, concentration of U(VI), contact time, adsorbent dose and temperature. The optimum pH range for U(VI) adsorption was 5.5 at 30 °C. Concentration and temperature dependent rate constants were evaluated using pseudo-second-order kinetic model. The equilibrium data were correlated with the Langmuir isotherm model with an endothermic behavior. The equilibrium U(VI) sorption capacity was estimated to be 117.2 mg g(-1) at 30 °C. For the quantitative recovery of 100 mg L(-1) U(VI) from 1.0 L simulated nuclear industry wastewater, a minimum adsorbent dosage of 2.0 g CTS-g-PMAA/Bent was required. The calculated energy of activation (E(a) = 47.83 kJ/mol) was positively correlated with chemical adsorption process. The values of enthalpy, entropy and free energy of activation were calculated to explain the nature of adsorption process. Adsorption-desorption experiments over four cycles illustrate the feasibility of the repeated uses of this composite for the extraction of U(VI) from aqueous solutions.

  11. Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA-SiO₂) hybrid material synthesized with different molar ratios.

    PubMed

    Clausen, Débora Nobile; Pires, Igor Matheus Ruiz; Tarley, César Ricardo Teixeira

    2014-11-01

    The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.

  12. The influence of the copolymer composition on the diltiazem hydrochloride release from a series of pH-sensitive poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels.

    PubMed

    Díez-Peña, Eva; Frutos, Paloma; Frutos, Gloria; Quijada-Garrido, Isabel; Barrales-Rienda, José Manuel

    2004-04-20

    A series of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] (P[(N-iPAAm)-co-(MAA)]) hydrogels was investigated to determine the composition that exhibits a better pH-modulated release of diltiazem hydrochloride (DIL.HCl). For this purpose hydrogel slabs were loaded with DIL.HCl by the immersion method, and its release under acidic medium (0.1N HCl, pH 1.2) and in phosphate buffer pH 7.2, using United States Pharmacopeia (USP) 24 Apparatus 1, was investigated. According to the results from the slabs, copolymers with 85% mol N-iPAAm content were selected to prepare tablets with different particle size. The effect of pH and particle size changes on DIL.HCl release from these last hydrogel tablets was investigated by a stepwise pH variation of the dissolution medium. The amount of DIL.HCl released from high N-iPAAm content copolymer slabs under acidic pH medium was not only very low but it was also released at a slow rate. In the 85% N-iPAAm tablets, significant differences between and within release profiles were found as a function of particle size and pH, respectively. A relationship between particle size and release rate has been found. The lower DIL.HCl release at acidic pH from enriched N-iPAAm copolymers is interpreted by a cooperative thermal- and pH-collapse. Although for the whole range of copolymer composition a dependence of the equilibrium of swelling on the pH was found, DIL.HCl release experiments indicated that hydrogels with 85% mol N-iPAAm are the more adequate to be used for modulated drug delivery systems. Additionally, the particle size of the tablet can be used to tailor the release rate.

  13. Gamma-radiation-induced grafting of binary mixture of methacrylic acid and 4-vinyl pyridine onto Teflon-FEP film as an effective polar membrane for separation processes

    NASA Astrophysics Data System (ADS)

    Kaur, Inderjeet; Rattan, Sunita; Chauhan, Sandeep; Gupta, Nitika

    2010-05-01

    Ionic bifunctional membranes have been synthesized by grafting binary mixture of methacrylic acid (MAAc) and 4-vinyl pyridine (4-VP) onto Teflon-FEP film by pre-irradiation method. Optimum conditions pertaining to maximum percentage of grafting were evaluated as a function of different reaction parameters. Maximum percentage of grafting of binary mixture (MAAc-co-4-VP) (71.29%) was obtained at an optimum total dose of 54.48 kGy and the total concentration was 9.49 mol/L ([4-VP] = 0.07 mol/L and [MAAc ] = 9.42 mol/L) in 5 ml of water. The effect of alcohols as additives to the reaction medium on percent grafting of the binary mixture has also been studied. The membranes were characterized by FTIR spectroscopy, scanning electron microscopy and thermogravimetric analysis. Swelling studies of the membranes were performed in different solvents such as water, benzene, carbon tetrachloride and dimethyl formamide (DMF). Maximum swelling was observed in DMF with minimum swelling in benzene. Metal ion (Cu 2+, Ni 2+ and Fe 2+) uptake studies show better affinity for Fe 2+ ions. Conductance measurements in different aqueous salt solution showed that these membranes have affinity for Na +/K + ions and Cl - ions and hence can be used in desalination/separation processes for the separation of both type of cationic and anionic ions.

  14. Microfluidic immunosensor based on mesoporous silica platform and CMK-3/poly-acrylamide-co-methacrylate of dihydrolipoic acid modified gold electrode for cancer biomarker detection.

    PubMed

    Regiart, Matías; Fernández-Baldo, Martin A; Villarroel-Rocha, Jhonny; Messina, Germán A; Bertolino, Franco A; Sapag, Karim; Timperman, Aaron T; Raba, Julio

    2017-04-22

    We report a hybrid glass-poly (dimethylsiloxane) microfluidic immunosensor for epidermal growth factor receptor (EGFR) determination, based on the covalent immobilization of anti-EGFR antibody (anti-EGFR) on amino-functionalized mesoporous silica (AMS) retained in the central channel of a microfluidic device. The synthetized AMS was characterized by N2 adsorption-desorption isotherm, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and infrared spectroscopy. The cancer biomarker was quantified in human serum samples by a direct sandwich immunoassay measuring through a horseradish peroxidase-conjugated anti-EGFR. The enzymatic product was detected at -100 mV by amperometry on a sputtering gold electrode, modified with an ordered mesoporous carbon (CMK-3) in a matrix of poly-acrylamide-co-methacrylate of dihydrolipoic acid (poly(AC-co-MDHLA)) through in situ copolymerization. CMK-3/poly(AC-co-MDHLA)/gold was characterized by cyclic voltammetry, EDS and SEM. The measured current was directly proportional to the level of EGFR in human serum samples. The linear range was from 0.01 ng mL(-1) to 50 ng mL(-1). The detection limit was 3.03 pg mL(-1), and the within- and between-assay coefficients of variation were below 5.20%. The microfluidic immunosensor is a very promising device for the diagnosis of several kinds of epithelial origin carcinomas.

  15. Novel Crosslinked Graft Copolymer of Methacrylic Acid and Collagen as a Protein-Based Superabsorbent Hydrogel with Salt and Ph-Responsiveness Properties

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad; Hamzeh, Alireza

    2008-08-01

    In this paper, a novel protein-based superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto collagen, using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. The hydrogel structure was confirmed using FTIR spectroscopy. We were systematically optimized the certain variables of the graft copolymerization (i.e. the monomer, the initiator, and the crosslinker concentration) to achieve a hydrogel with maximum swelling capacity. Under the optimized conditions concluded, maximum capacity of swelling in distilled water was found to be 415 g/g. The swelling kinetics of the synthesized hydrogels with various particle sizes was preliminarily investigated. Absorbency in aqueous chloride salt solutions indicated that the swelling capacity decreased with an increase in the ionic strength of the swelling medium. The swelling of superabsorbing hydrogels was also measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-responsiveness character so that a swelling-collapsing pulsatile behavior was recorded at pHs 2 and 7. This behavior makes the synthesized hydrogels as an excellent candidate for controlled delivery of bioactive agents.

  16. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    NASA Astrophysics Data System (ADS)

    Islas, Luisa; Ruiz, Juan-Carlos; Muñoz-Muñoz, Franklin; Isoshima, Takashi; Burillo, Guillermina

    2016-10-01

    Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from 60Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C1s and O1s content at the catheter's surface, revealed that the catheter's surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC's Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  17. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption.

  18. Preparation of methacrylic acid copolymer S nano-fibers using a solvent-based electrospinning method and their application in pharmaceutical formulations.

    PubMed

    Hamori, Mami; Shimizu, Yuki; Yoshida, Kaori; Fukushima, Keizo; Sugioka, Nobuyuki; Nishimura, Asako; Naruhashi, Kazumasa; Shibata, Nobuhito

    2015-01-01

    In this study, we applied an electrospinning (ES) method, which is mainly employed in the textile industry, to the field of pharmaceuticals. We developed and modified an ES instrument and then utilized it to produce methacrylic acid copolymer S (MAC) nano-fibers to prepare tablets. By attaching a conductor rod made from stainless steel to the central part of the nano-fiber-collection plate of the ES apparatus, a MAC nano-fiber sheet could be produced effectively. In addition, we studied various operating conditions for this new ES method, including needle gauge, voltage between the electrodes, distance between the needle and nano-fiber-collection plate and the flow rate of MAC polymer solution, but these had no significant effect on the diameter of MAC nano-fibers. On the other hand, the viscosity (concentration) of MAC polymer solution and permittivity of solvent used to dilute MAC were closely related to the mean diameter of the nano-fibers. Tableting of MAC nano-fibers was performed using a tableting machine without lubricants, and addition of Tween 20 to the tablets enabled regulation of the release profile of a water-soluble drug. The modified ES method reported here is a useful technique for the controlled-release of drugs and has wide-ranging potential for pharmaceutical applications.

  19. Poly(methacrylic acid-ethylene glycol dimethacrylate) monolith in-tube solid phase microextraction coupled to high performance liquid chromatography and analysis of amphetamines in urine samples.

    PubMed

    Fan, Yi; Feng, Yu-Qi; Zhang, Jian-Tao; Da, Shi-Lu; Zhang, Min

    2005-05-13

    In-tube solid-phase microextraction (SPME) based on a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was investigated for the extraction of amphetamine, methamphetamine and their methylenedioxy derivatives. The monolithic capillary column showed high extraction efficiency towards target analytes, which could be attributed to its larger loading amount of extraction phase than conventional open-tubular extraction capillaries and the convective mass transfer procedure provided by its monolithic structure. The extraction mechanism was studied, and the results indicated that the extraction process of the target analytes was involved with hydrophobic interaction and ion-exchange interaction. The polymer monolith in-tube SPME-HPLC system with UV detection was successfully applied to the determination of amphetamine, methamphetamine and their methylenedioxy derivatives in urine samples, yielding the detection limits of 1.4 - 4.0 ng/mL. Excellent method reproducibility (RSD < 2.9%) was found over a linear range of 0.05-5 microg/mL, and the time for the whole analysis was only approximately 25 min. The monolithic capillary column was reusable in coping with the complicated urine samples.

  20. One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly(ethylene-co-methacrylic acid).

    PubMed

    Lu, Lu; Li, Guoqiang

    2016-06-15

    Reversible elongation by cooling and contraction by heating, without the need for repeated programming, is well-known as the two-way shape-memory effect (2W-SME). This behavior is contrary to the common physics-contraction when cooling and expansion when heating. Materials with such behavior may find many applications in real life, such as self-sufficient grippers, fastening devices, optical gratings, soft actuators, and sealant. Here, it is shown that ionomer Surlyn 8940, a 50-year old polymer, exhibits both one-way multishape-memory effects and tunable two-way reversible actuation. The required external tensile stress to trigger the tunable 2W-SME is very low when randomly jumping the temperatures within the melting transition window. With a proper one-time programming, "true" 2W-SME (i.e., 2W-SME without the need for an external tensile load) is also achieved. A long training process is not needed to trigger the tunable 2W-SME. Instead, a proper one-time tensile programming is sufficient to trigger repeated and tunable 2W-SME. Because the 2W-SME of the ionomer Surlyn is driven by the thermally reversible network, here crystallization and melting transitions of the semicrystalline poly(ethylene-co-methacrylic acid), it is believed that a class of thermally reversible polymers should also exhibit tunable 2W-SMEs.

  1. Determination of N-methylcarbamate pesticides in vegetables by poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction coupled with high performance liquid chromatography.

    PubMed

    Ma, Huihui; Feng, Wei; Tian, Miaomiao; Jia, Qiong

    2013-06-15

    A simple, rapid and sensitive method for simultaneous determination of three N-methylcarbamate pesticides (carbaryl, pirimicarb, and isoprocarb) in vegetables was developed by coupling polymer monolith microextraction (PMME) to high-performance liquid chromatography (HPLC). A poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith was selected as the extraction medium for PMME. To achieve optimum extraction performance, several parameters were investigated, including desorption solvent, desorption flow rate, sample flow rate, sample volume, sample pH values, inorganic salt and organic solvent content of the sample solution. Under the optimum experimental conditions, the method provides an acceptable linearity (5-5000μg/kg), low limits of detection (0.36-2.6μg/kg), good precision (intra-day relative standard deviations<2.53%, inter-day relative standard deviations <6.36%). Finally, the developed method was successfully applied to the determination of N-methylcarbamate pesticides in vegetables, and the trueness was evaluated by recovery experiments. The obtained relative recoveries were in the range of 70.4-98.5%. This PMME method integrates sample extraction, purification, and preconcentration of analytes into one single step and it also has several advantages such as solvent-free extraction, small sample volume, high enrichment, convenience, and flexibility operation.

  2. Radiation-induced synthesis and swelling properties of p(2-hydroxyethyl methacrylate/itaconic acid/oligo (ethylene glycol) acrylate) terpolymeric hydrogels

    NASA Astrophysics Data System (ADS)

    Micic, M.; Stamenic, D.; Suljovrujic, E.

    2012-09-01

    Since it is presumed that by incorporation of pH-responsive (IA) and temperature-responsive (OEGA) co-monomers, it is possible to prepare P(HEMA/IA/OEGA) hydrogels with dual (pH and thermo) responsiveness, the main purpose of our study is to investigate the influence of different mole fractions of IA and especially OEGA on the diversity of the swelling properties of the obtained hydrogels. For that reason, a series of terpolymeric hydrogels with different mole ratios of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and oligo(ethylene glycol) acrylates (OEGA) was synthesised by gamma radiation. The obtained hydrogels were characterised by swelling studies in the wide pH (2.2-9.0) and temperature range (20-70 °C), confirming dual (pH and thermo) responsiveness and a large variation in the swelling capability. It was observed that the equilibrium swelling of P(HEMA/IA/OEGA) hydrogels, for a constant amount of IA, increased progressively with an increase in OEGA share. On the other hand, the dissociation of carboxyl groups from IA occurs at pH>4; therefore, small mole fractions of IA render good pH sensitivity and a large increase in the swelling capacity of these hydrogels at higher pH values. Additional characterisation of structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical measurements, confirming that the inherent properties of P(HEMA/IA/OEGA) hydrogels can be significantly tuned by variation in their composition. According to all presented, it seems that the obtained hydrogels can be a beneficial synergetic combination for controlled delivery of bioactive molecules such as drugs, peptides, proteins, etc.

  3. Utilization of theoretical studies of the imprinting ratio to guide experimental research into the molecular imprinted polymers formed using enrofloxacin and methacrylic acid.

    PubMed

    Liu, Junbo; Dai, Zhengqiang; Li, Bo; Tang, Shanshan; Jin, Ruifa

    2014-10-01

    Computational approaches have been suggested as rational and fast methods for optimizing imprinting ratios. The B3LYP/6-31 g(d,p) level was applied to simulate the self-assembled system of molecularly imprinted polymers (MIPs) formed by enrofloxacin (ENRO) and methacrylic acid (MAA). Geometry optimization, the bonding situation, and the binding energies involved were studied to determine the impact of varying the imprinting ratio on the recognition characteristics. These theoretical results showed that the compound with an ENRO:MAA ratio of 1:7 had the lowest binding energy and the most stable structure. MIPs with different imprinting ratios of ENRO to MAA were then prepared in order to study the binding capacities of the polymers experimentally. The experimental and theoretically calculated results for these polymers were found to be consistent with each other. In dynamic adsorption experiments on the MIPs, the adsorption reaction was observed to reach a balanced state after 120 min. Analysis of the Scatchard plot revealed that the dissociation constant (K d) and the apparent maximum binding capacity (Q max) of MIPs with high-affinity sites were 451.67 mg/L and 42.23 mg/g, respectively, whereas the dissociation constant and apparent maximum binding capacity of MIPs with low-affinity sites were 883.39 mg/L and 73.15 mg/g, respectively. The quantity of ENRO adsorbed onto the MIPs was considerably higher than the quantities of ciprofloxacin (CIP) and ofloxacin (OFL) adsorbed, indicating that these MIPs have a much higher specific absorption capacity than the corresponding non-imprinted polymers.

  4. Development of molecularly imprinted poly(methacrylic acid)/silica for clean-up and selective extraction of cholesterol in milk prior to analysis by HPLC-UV.

    PubMed

    Clausen, D N; Visentainer, J V; Tarley, C R T

    2014-10-07

    In the present paper the assessment of a novel molecularly imprinted polymer, poly(methacrylic acid)/silica, for clean-up and selective extraction of cholesterol in milk samples is described. The relative selectivity coefficient (k) values for cholesterol/5-α-cholestane and cholesterol/7-dehydrocholesterol systems were found to be 5.08 and 6.08, respectively, thus attesting the selectivity of the MIP for cholesterol under competitive adsorption with structurally analogous steroid compounds. The milk analysis was initially based on saponification followed by liquid-liquid extraction with n-hexane. Then, the protocol of molecularly imprinted solid phase extraction (MISPE) was carried out by loading the milk hexanic extract through 200 mg of MIP or NIP (non-imprinted polymer) packed into SPE cartridges at a flow rate of 0.6 mL min(-1). The washing step was performed by using n-hexane followed by further elution with ethanol and HPLC-UV analysis at 208 nm. From the breakthrough curve the maximum adsorption capacity of the MIP towards cholesterol was found to be 29.51 mg g(-1). The precision of the MISPE protocol was assessed as intra- and inter-days yielding RSD (relative standard deviations) lower than 4.10%. Cleaner HPLC chromatograms were obtained for milk samples submitted to the MISPE protocol in comparison to the solid phase extraction using the NIP or modified octadecyl silica (C18). Recoveries varying from 96.6 up to 102.2% for milk samples spiked with cholesterol were achieved, thus ensuring the accuracy of the proposed method.

  5. Multifunctional poly(alkyl methacrylate) films for dental care.

    PubMed

    Nielsen, Birthe V; Nevell, Thomas G; Barbu, Eugen; Smith, James R; Rees, Gareth D; Tsibouklis, John

    2011-02-01

    Towards the evaluation of non-permanent dental coatings for their capacity to impart dental-care benefits, thin films of a homologous series of comb-like poly(alkyl methacrylate)s (ethyl to octadecyl) have been deposited, from aqueous latex formulations, onto dentally relevant substrates. AFM studies have shown that the thickness (40-300 nm) and surface roughness (8-12 nm) of coherent polymer films are influenced by the degree of polymerization and by the length of the pendant chain. Of the polymers under consideration, poly(butyl methacrylate) formed a close-packed film that conferred to dental substrates a high degree of inhibition to acid-mediated erosion (about 27%), as evaluated by released-phosphate determinations. The potential utility of the coatings to act as anti-sensitivity barriers has been evaluated by determining the hydraulic conductance of coated bovine-dentine substrates; single treatments of dentine discs with poly(butyl methacrylate) or with poly(ethyl methacrylate) effected mean respective reductions in fluid flow of about 23% with respect to water-treated controls; repeated applications of the poly(butyl methacrylate) latex led to mean reductions in fluid flow of about 80%. Chromometric measurements have shown that pellicle-coated hydroxyapatite discs treated with poly(butyl methacrylate), poly(hexyl methacrylate) or poly(lauryl methacrylate) exhibit significant resistance to staining by food chromogens.

  6. Improved wet bonding of methyl methacrylate-tri-n-butylborane resin to dentin etched with ten percent phosphoric acid in the presence of ferric ions.

    PubMed

    Iwasaki, Yasuhiko; Toida, Tetsuya; Nakabayashi, Nobuo

    2004-03-01

    The objective of this study was to determine the influence of dissolved dentinal substances in demineralized dentin on the hybridization of resin for bonding to dentin. It was hypothesized that these substances, including polyelectrolytes, significantly change the substrates, which could then be assessed by the addition of Na(+), Ca(2+), or Fe(3+) in 10% phosphoric acid. Bovine dentin specimens were etched for 10 s with a solution of 10% phosphoric acid (control) or of 22.0 mM dissolved sodium chloride (10P-Na), calcium chloride (10P-Ca), or ferric chloride (10P-Fe). The specimens were then rinsed, blot-dried, and primed three times with 5% 4-methacryloyloxyethyl trimellitate anhydride in acetone for 60 s. Methyl methacrylate-tri-n-butylborane resin was then applied. The tensile bond strength of each of the dumbbell-shaped specimens was then measured. The fractured surfaces and modified cross-sections were examined by scanning electron microscopy. The cross-sections were soaked in 6N HCl for 10 s and then in 1% sodium hypochlorite for 30 min to determine the resin content in the hybridized specimens. Shrinkage of the demineralized dentins upon drying was assessed by atomic force microscopy. The tensile bond strengths were 10.8 +/- 4.5 (control), 15.0 +/- 7.0 (10P-Na), 19.3 +/- 5.5 (10P-Ca), and 27.8 +/- 8.1 (10P-Fe) MPa. The atomic force microscopy studies showed that Fe(3+) minimized the shrinkage by drying for 10 s but Ca(2+) and Na(+) did not decrease the shrinkage the same as the control. The results support the hypothesis that the monomer permeability of wet demineralized dentin is effectively improved by dissolving ferric ions in the phosphoric acid, resulting in a greater bond strength and higher resin content in the hybridized dentin. The dissolved dentinal substances, including the polyelectrolytes, had a significant influence on the characteristics of the demineralized dentin, changing the degree of hybridization and bonding.

  7. Thermoforming polymethyl methacrylate.

    PubMed

    Jagger, R G; Okdeh, A

    1995-11-01

    This study characterized a range of commercially available polymethyl methacrylate sheets with respect to molecular weight, residual monomer content, and glass transition temperature and then developed a thermoforming procedure that produced visually satisfactory thermoformed polymethyl methacrylate specimens. Molecular weight values of Perspex material were considerably greater than those of the other materials. All materials but Diakon had residual monomer concentrations of less than 1% and glass transition temperature values greater than 100 degrees C. Perspex material was selected for further investigation. It was necessary to preheat Perspex sheets in an oven at 160 degrees C for at least 30 minutes before heating and forming on the thermoforming apparatus to obtain acceptable specimens.

  8. The lower alkyl methacrylates: Genotoxic profile of non-carcinogenic compounds.

    PubMed

    Albertini, Richard J

    2017-03-01

    All of the lower alkyl methacrylates are high production chemicals with potential for human exposure. The genotoxicity of seven mono-functional alkyl esters of methacrylic acid, i.e. methyl methacrylate, ethyl methacrylate, hydroxyethyl methacrylate, n-, i- and t-butyl methacrylate and 2 ethyl hexyl methacrylate, as well as methacrylic acid itself, the acyl component common to all, is reviewed and compared with the lack of carcinogenicity of methyl methacrylate, the representative member of the series so evaluated. Also reviewed are the similarity of structure, chemical and biological reactivity, metabolism and common metabolic products of this group of compounds which allows a category approach for assessing genotoxicity. As a class, the lower alkyl methacrylates are universally negative for gene mutations in prokaryotes but do exhibit high dose clastogenicity in mammalian cells in vitro. There is no convincing evidence that these compounds induce genotoxic effects in vivo in either sub-mammalian or mammalian species. This dichotomy of effects can be explained by the potential genotoxic intermediates generated in vitro. This genotoxic profile of the lower alkyl methacrylates is consistent with the lack of carcinogenicity of methyl methacrylate.

  9. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.

    PubMed

    Yuan, Huiming; Zhang, Lihua; Zhang, Yukui

    2014-12-05

    In this work, a novel kind of organic-silica hybrid monolith based immobilized enzymatic reactor (IMER) was developed. The monolithic support was prepared by a single step "one-pot" strategy via the polycondensation of tetramethoxysilane and vinyltrimethoxysilane and in situ copolymerization of methacrylic acid and vinyl group on the precondensed siloxanes with ammonium persulfate as the thermal initiator. Subsequently, the monolith was activated by N-(3-dimethylaminopropyl) - N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS), followed by the modification of branched polyethylenimine (PEI) to improve the hydrophilicity. Finally, after activated by EDC and NHS, trypsin was covalently immobilized onto the monolithic support. The performance of such a microreactor was evaluated by the in sequence digestion of bovine serum albumin (BSA) and myoglobin, followed by MALDI-TOF-MS analysis. Compared to those obtained by traditional in-solution digestion, not only higher sequence coverages for BSA (74±1.4% vs. 59.5±2.7%, n=6) and myoglobin (93±3% vs. 81±4.5%, n=6) were obtained, but also the digestion time was shortened from 24h to 2.5 min, demonstrating the high digestion efficiency of such an IMER. The carry-over of these two proteins on the IMER was investigated, and peptides from BSA could not be found in mass spectrum of myoglobin digests, attributed to the good hydrophilicity of our developed monolithic support. Moreover, the dynamic concentration range for protein digestion was proved to be four orders of magnitude, and the IMER could endure at least 7-day consecutive usage. Furthermore, such an IMER was coupled with nano-RPLC-ESI/MS/MS for the analysis of extracted proteins from Escherichia coli. Compared to formerly reported silica hybrid monolith based IMER and the traditional in-solution counterpart, by our developed IMER, although the identified protein number was similar, the identified distinct peptide number was improved by 7% and 25% respectively

  10. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.

    PubMed

    Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier

    2013-02-01

    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm.

  11. Dependence of copolymer composition, swelling history, and drug concentration on the loading of diltiazem hydrochloride (DIL.HCl) into poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels and its release behaviour from hydrogel slabs.

    PubMed

    Sousa, Ricardo G; Prior-Cabanillas, Alberto; Quijada-Garrido, Isabel; Barrales-Rienda, José M

    2005-02-16

    The loading of an antihypertensive cationic drug, diltiazem hydrochloride (DIL.HCl), into poly(N-isopropylacrylamide) [P(N-iPAAm)], poly(methacrylic acid) [P(MAA)], and their poly[(N-isopropylacrylamide)-co-(methacrylic acid)] P[(N-iPAAm)-co-(MAA)] hydrogels as well as their release behaviour have been investigated. For this purpose, two series of hydrogels have been tested, one previously soaked under acidic pH (treated hydrogels) and the other from the synthesis and washed in deionized water (untreated hydrogels). For the drug loading, these two series of hydrogels have been soaked in drug solutions with different concentrations. DIL.HCl amounts loaded by the gels as well as swelling degrees as a function of both hydrogel composition and DL.HCl concentration in the loading solution have been analyzed. Due to the interactions among DIL.HCl and the MAA group, "untreated" enriched MAA copolymer hydrogels present the highest drug load and loading efficiency. A DIL.HCl concentration of 320 microm/mL has been employed to load copolymers for release experiments, because for this concentration, hydrogels reach relative high drug load with a still high efficiency of loading. Release has been tested in three media, namely, fresh water (Milli-Q grade, pH 7.0), 0.1 N hydrogen chloride (pH 1.2), and a phosphate buffer (pH 7.0). In general, release is lower in fresh water and acidic media than in phosphate buffer. To explain these results, the effect of temperature, medium, and composition on the pH and thermo sensitivity of the hydrogels as well as the diltiazem-polymer interactions have been taken into account.

  12. Methacrylate-based monolithic layers for planar chromatography of polymers.

    PubMed

    Maksimova, E F; Vlakh, E G; Tennikova, T B

    2011-04-29

    A series of macroporous monolithic methacrylate-based materials was synthesized by in situ free radical UV-initiated copolymerization of functional monomers, such as glycidyl methacrylate (GMA), butyl methacrylate (BuMA), 2-aminoethyl methacrylate (AEMA), 2-hydroxyethyl methacrylate (HEMA) and 2-cyanoethyl methacrylate (CEMA), with crosslinking agent, namely, ethylene glycol dimethacrylate (EDMA). The materials obtained were applied as the stationary phases in simple and robust technique - planar chromatography (PLC). The method of separation layer fabrication representing macroporous polymer monolith bound to the specially prepared glass surface was developed and optimized. The GMA-EDMA and BuMA-EDMA matrixes were successfully applied for the separation of low molecular weight compounds (the mixture of several dies), as well as poly(vinylpyrrolidone) and polystyrene homopolymers of different molecular weights using reversed-phase mechanism. The materials based on copolymers AEMA-HEMA-EDMA and CEMA-HEMA-EDMA were used for normal-phase PLC separation of 2,4-dinitrophenyl amino acids and polystyrene standards.

  13. The acute aquatic toxicity of a series of acrylate and methacrylate esters

    SciTech Connect

    Staples, C.A.; McLaughlin, J.E.; Hamilton, J.D.

    1994-12-31

    Acute aquatic toxicity data for several acrylate and methacrylate esters were reviewed. Acrylates included acrylic acid, ethyl-, and butyl-acrylate. Methacrylates included methacrylic acid, methyl-, and butyl-methacrylate. Tests were 48 hr or 96 hr standard flow through (invertebrates and fish) assays (measured exposure concentrations). These data are currently used in a risk assessment of acrylate/methacrylate environmental safety. Algal growth (Selanastrum capricomutum) 96 hr EC{sub 50}s were 0.17 mg/L (NOEC < 0.13 mg/L) for acrylic acid, 11.0 mg/L (NOEC < 6.5 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC < 3.8 mg/L) for butyl acrylate. Invertebrate (Daphnia magna) 48 hr LC{sub 50}s were 95.0 mg/L (NOEC 23.0 mg/L) for acrylic acid, 7.9 mg/L (NOEC 3.4 mg/L) for ethyl acrylate, and 8.2 mg/L (NOEC 2.4 mg/L) for butyl acrylate. Rainbow trout (Oncorhynchus mykiss) 96 hr LC{sub 50}s were 27.0 mg/L (NOEC 6.3 mg/L) for acrylic acid, 4.6 mg/L (NOEC 0.78 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC 3.8 mg/L) for butyl acrylate. Algae 96 hr EC{sub 50}s were 0.59 mg/L (NOEC 0.38 mg/L) for methacrylic acid, 170.0 mg/L (NOEC 100.0 mg/L) for methyl methacrylate, and 130.0 mg/L for butyl methacrylate. Daphnia magna 48 hr LC{sub 50}s were > 130.0 mg/L (NOEC 130.0 mg/L) for methacrylic acid, 69.0 mg/L (NOEC 48.0 mg/L) for methyl methacrylate, and 32.0 mg/L (NOEC 23.0 mg/L) for butyl methacrylate. Trout 96 hr LC{sub 50}s were 85.0 mg/L (NOEC 12.0 mg/L) for methacrylic acid and > 79.0 mg/L (NOEC 40.0 mg/L) for methyl methacrylate. The fathead minnow (Pimephales promelas) 96 hr LC{sub 50} was 11.0 mg/L for butyl methacrylate.

  14. Preparation of thermoresponsive Fe3O4/P(acrylic acid-methyl methacrylate-N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein.

    PubMed

    Zhang, Baoliang; Zhang, Hepeng; Fan, Xinlong; Li, Xiangjie; Yin, Dezhong; Zhang, Qiuyu

    2013-05-15

    In this work, Fe3O4/P(acrylic acid-methyl methacrylate-N-isopropylacrylamide) (Fe3O4/P(AA-MMA-NIPAm)) thermoresponsive magnetic composite microspheres have been prepared by controlled radical polymerization in the presence of 1,1-diphenylethene (DPE). The shell thickness of thermosensitive polymer (PNIPAm), which was on the surface of the microspheres, can be controlled by using DPE method. The morphology and thermosensitive properties of the composite microspheres, polymerization mechanism of the shell were characterized by TEM, FTIR, VSM, Laser Particle Sizer, TGA, NMR, and GPC. The microspheres with narrow particle size distribution show high saturation magnetization and superparamagnetism. The thermosensitive properties of the composite microspheres can be adjusted indirectly via controlling the addition amount of monomer (NIPAm) in the second step during controlled radical polymerization. Phenolphthalein was chosen as a model drug to investigate drug release behavior of the thermoresponsive magnetic composite microspheres with different shell thickness. Controlled drug release testing reveals that the release behavior depends on the thickness of polymer on the surface of the microspheres.

  15. Construction of a portable sample preparation device with a magnetic poly(methacrylic acid-co-ethylene dimethacrylate) monolith as the extraction medium and its application in the enrichment of UV filters in water samples.

    PubMed

    Li, Jing; Xu, Li; Yu, Qiong-Wei; Shi, Zhi-Guo; Zhang, Ting; Liu, Yan

    2014-10-01

    A portable sample preparation device with a magnetic polymer monolith as the extraction medium was constructed. The monolith was synthesized by polymerizing methacrylic acid and ethylene dimethacrylate around a cylindrical magnet. In this way, the monolith with a magnetic core could be readily attached to the extraction device by magnetism. The constructed device was evaluated for the enrichment of UV filters in water samples, followed by high-performance liquid chromatographic analysis. The extraction efficiency for the targets was satisfactory with no matrix interference. Good linearities were obtained for the UV filters with the correlation coefficients >0.9986. The limits of detection and quantification for the UV filters were 0.3-0.8 and 1.0-2.4 ng/mL, respectively. The recoveries of the UV filters from the spiked water samples at the concentration of 100 ng/mL were 95.3-101.7%, with relative standard deviations <10%. Accordingly, the proposed portable device was demonstrated to be suitable for on-site simultaneous sampling, purification, and preconcentration within a single step.

  16. Hybrid molecularly imprinted polymers synthesized with 3-aminopropyltriethoxysilane-methacrylic acid monomer for miniaturized solid-phase extraction: A new and economical sample preparation strategy for determination of acyclovir in urine.

    PubMed

    Yan, Hongyuan; Wang, Mingyu; Han, Yehong; Qiao, Fengxia; Row, Kyung Ho

    2014-06-13

    The miniaturized molecularly imprinted solid-phase extraction (mini-MISPE) coupled with high-performance liquid chromatography was proposed for the determination of acyclovir in urine. 1.5-mL tapered plastic centrifuge tube filled with hybrid molecularly imprinted polymers (HMIPs) was used as the cartridge of mini-MISPE, and the HMIPs synthesized with 3-aminopropyltriethoxy silane-methacrylic acid as monomer exhibited good recognition and selectivity for acyclovir. Under the optimized condition, good linear calibration was obtained in a range of 0.5-15μgmL(-1) with the correlation coefficient of 0.9994, and the recoveries at three spiked levels were 91.6-103.3% in urine with the relative standard deviation (RSD) of ≤3.5%. Excellent intra-day and inter-day repeatability were achieved with RSD of ≤2.6% and 4.0% in three different concentrations. This method combined the advantages of HMIPs and mini-MISPE, and it could become an alternative tool for analyzing the residues of acyclovir in complex urine matrices.

  17. Enhancement of light harvesting efficiency of silicon solar cell utilizing arrays of poly(methyl methacrylate-co-acrylic acid) nano-spheres and nano-spheres with embedded silver nano-particles

    NASA Astrophysics Data System (ADS)

    Lee, Chee-Leong; Goh, Wee-Sheng; Chee, Swee-Yong; Yik, Lai-Kuan

    2017-02-01

    An array of uniformly distributed monolayer of poly(methyl methacrylate-co-acrylic acid) nano-spheres were deposited onto an amorphous silicon photovoltaic cell utilizing dip coating technique. The electrical characteristics of the coated photovoltaic cell reveal that the nano-spheres with an average diameter size of 101 nm exhibits excellent light harvesting characteristics if compared to the nano-spheres of other sizes. The power conversion efficiency from such integration of the nano-structures (i.e. 3.14% per PV cell) indicates that at least 1.6 times of improvement (or relative enhancement of 57%) can be achieved comparatively to the uncoated photovoltaic cell (i.e. 2% per PV cell). Further increment of the power conversion efficiency of the solar cell has been attained with the incorporation of the silver nano-particles into the nano-spheres of similar average size. With the inclusion of the silver nano-particles into such nano-spheres, the power conversion efficiency of the solar cell has attained 5.57% per PV cell, which is about 2.8 times (or relative enhancement of 179%) if compared to the uncoated samples. Hence, this novel and controllable technique of fabricating omnidirectional light-harvesting nano-spheres with embedded silver nano-particles will indubitably be beneficial to various types of optoelectronic devices.

  18. Synthesis of acrylates and methacrylates from coal-derived syngas

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L.

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing of active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.

  19. Langmuir-Blodgett films of random copolymers of fluoroalkyl(meth)acrylate and methacrylic acid: Fabrication and X-ray diffraction study

    SciTech Connect

    Safronov, V.; Feigin, L.A.; Budovskaya, L.D.; Ivanova, V.N.

    1994-12-31

    Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.

  20. Synthesis of three different galactose-based methacrylate monomers for the production of sugar-based polymers.

    PubMed

    Desport, Jessica S; Mantione, Daniele; Moreno, Mónica; Sardón, Haritz; Barandiaran, María J; Mecerreyes, David

    2016-09-02

    Glycopolymers, synthetic sugar-containing macromolecules, are attracting ever-increasing interest from the chemistry community. Glycidyl methacrylate (GMA) is an important building block for the synthesis of sugar based methacrylate monomers and polymers. Normally, glycidyl methacrylate shows some advantages such as reactivity against nucleophiles or milder synthetic conditions such as other reactive methacrylate monomers. However, condensation reactions of glycidyl methacrylate with for instance protected galactose monomer leads to a mixture of two products due to a strong competition between the two possible pathways: epoxide ring opening or transesterification. In this paper, we propose two alternative routes to synthesize regiospecific galactose-based methacrylate monomers using the epoxy-ring opening reaction. In the first alternative route, the protected galactose is first oxidized to the acid in order to make it more reactive against the epoxide of GMA. In the second route, the protected sugar was first treated with epichlorohydrin followed by the epoxy ring opening reaction with methacrylic acid, to create an identical analogue of the ring-opening product of GMA. These two monomers were polymerized using conventional radical polymerization and were compared to the previously known galactose-methacrylate one. The new polymers show similar thermal stability but lower glass transition temperature (Tg) with respect to the known galactose methacrylate polymer.

  1. In situ preparation of powder and the sorption behaviors of molecularly imprinted polymers through the complexation between polymer ion of methyl methacrylate/acrylic acid and Ca++ ion.

    PubMed

    Chough, Sung Hyo; Park, Kwang Ho; Cho, Seung Jin; Park, Hye Ryoung

    2014-09-02

    Molecularly imprinted polymer (MIP) powders were prepared using a simple complexation strategy between the polymer carboxylate groups and template molecule followed by metal cation cross-linking of residual polymer carboxylates. Polymer powders were formed in situ by templating carboxylic acid containing polymers with 4-ethylaniline (4-EA), followed by addition of an aqueous CaCl2 solution. The solution remained homogeneous. The powders were prepared by precipitation by slowly adding a non-solvent, H2O, to the mixture. The resulting particles were very porous with uptake capacity that approached the theoretical value. We suggest two types of complexes are formed between the template, 4-EA, and polymer. The isolated entry type forms well defined cavities for the template with high specific selectivity, while the adjacent entry type forms wider binding sites without specific sorption for isomeric molecules. To evaluate conditions for forming materials with high affinity and selectivity, three MIPs were prepared containing 0.5, 1.0, and 1.5 equivalents of template to the base polymer. The MIP containing 0.5 eq showed higher specific selectivity to 4-EA, but the MIP containing 1.5 eq had noticeably lower selectivity. The lower selectivity is attributed to poorly formed binding sites with little selective sorption to any isomer when the higher ratio of template was used. However at the lower ratio of template the isolated entry is preferably formed to produce well defined binding cavities with higher selectivity to template.

  2. Thermomechanical behavior of amorphous tactic methacrylate polymers

    NASA Technical Reports Server (NTRS)

    Kiran, E.; Gillham, J. K.; Gipstein, E.

    1974-01-01

    Dynamic mechanical spectra of amorphous stereoregular poly(methyl methacrylate)s and poly(t-butyl methacrylate)s with assigned microtacticities are presented and discussed. An intermolecular argument is invoked to account for the higher glass transition temperature of syndiotactic vis a vis isotactic PMMA, in spite of the higher density of the latter at 30 C. An argument is presented to show that the ratio of glassy-region relaxation temperature to glass transition temperature is not only a measure of the degree of coupling of the beta and glass transition processes, but also of the degree to which intermolecular factors influence these processes. The greater extent of the low-temperature irreversibilities observed in the thermomechanical spectra of poly(t-butyl methacrylate)s is attributed to the brittle character induced by the bulky side groups which presumably weaken cohesive forces.

  3. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  4. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  5. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate... generically as polymers of styrene, cyclohexyl methacrylate and substituted methacrylate (PMNs...

  6. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  9. Biomimetic potential of some methacrylate-based copolymers: a comparative study.

    PubMed

    Zecheru, Teodora; Filmon, Robert; Rusen, Edina; Mărculescu, Bogdan; Zerroukhi, Amar; Cincu, Corneliu; Chappard, Daniel

    2009-11-01

    Preparation of new biocompatible materials for bone recovery has consistently gained interest in the last few decades. Special attention was given to polymers that contain negatively charged groups, such as phosphate, carboxyl, and sulfonic groups toward calcification. This present paper work demonstrates that other functional groups present also potential application in bone pathology. New copolymers of 2-hydroxyethyl methacrylate with diallyldimethylammonium chloride (DADMAC), glycidyl methacrylate (GlyMA), methacrylic acid (MAA), 2-methacryloyloxymethyl acetoacetate (MOEAA), 2-methacryloyloxyethyltriethylammonium chloride (MOETAC), and tetrahydrofurfuryl methacrylate (THFMA) were obtained. The copolymers were characterized by FTIR, swelling potential, and they were submitted to in vitro tests for calcification and cytotoxicity evaluation. GlyMA and MOETAC-containing copolymers show promising results for further in vivo mineralization tests, as a potential alternative to the classical bone grafts, in bone tissue engineering.

  10. UV-Curable Polyurethane-Methacrylate Co-Networks and Interpenetrating Networks

    DTIC Science & Technology

    1989-05-30

    were: methyl methacrylate (MMA), ethyl methacrylate (EMA), hydroxyethyl methacrylate ( HEMA ), butyl methacrylate (BMA), lauryl methacrylate (LMA), and...ACCESSION NO. 11. TITLE (include Security Classification) UV’V-Curable Polyurethane- Methacrylate Co-Networks and Interpenetrating Networks 12. PERSONAL...by block number 4 Castor oil was reacted in varying ratios with 6-isocyanatoethyl methacrylate to form a liquid urethane- methacrylate prepolymer. This

  11. [Gas chromatographic analysis of methyl methacrylate and methanol in its esterification mixture].

    PubMed

    Wu, C; Zeng, C

    1997-09-01

    A fast, simple and accurate gas chromatographic method is established for determining the content of methyl methacrylate (MMA) and methanol in the esterification mixture of methacrylic acid with methanol in the presence of sulfuric acid. In the measurement, polyethylene glycol-20M/sodium hydroxide was adopted as liquid phase, coated on the acid-washed 201 pink support. n-Heptane was used as the internal standard and the correction factors of MMA and methanol obtained were 1.65 and 4.10, respectively. It is significant for this method to be used to control MMA production by acetone cyanohydrin method and to improve the production technology.

  12. Evaluation of alternate routes for the synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1998-12-31

    The use of coal-derived syngas to produce high value chemicals is an important means of upgrading this resource. One example of a chemical that can be produced from coal-derived syngas is methyl methacrylate (MMA). Poly-methyl methacrylate is widely used in coatings and in various industrial molded products. The most widely practiced commercial technology for the synthesis of MMA is the acetone cyanohydrin (ACH) process. This process requires handling of large quantities of toxic hydrogen cyanide and generates one mole of ammonium bisulfate waste per mole of MMA. This bisulfate must either be regenerated or discarded, either of which substantially increases the cost. The ACH technology is thus environmentally and economically untenable for any new MMA plant expansions that would be needed to meet increasing demand. The RTI-Eastman-Bechtel research team is developing an alternative, environmentally benign route to MMA consisting of three steps; (step 1) synthesis of a propionate from ethylene, carbon monoxide, and steam, (step 2) condensation of this propionate with formaldehyde, and (step 3) esterification of resulting methacrylic acid with methanol to form MMA. This paper describes the preliminary economics of the overall process compared to other emerging processes, and focuses on step 2, including long term testing of catalysts for the condensation of propionic acid with formaldehyde to form MAA.

  13. Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication.

    PubMed

    Puodziukynaite, Egle; Wang, Hsin-Wei; Lawrence, Jimmy; Wise, Adam J; Russell, Thomas P; Barnes, Michael D; Emrick, Todd

    2014-08-06

    We report the synthesis of novel azulene-substituted methacrylate polymers by free radical polymerization, in which the azulene moieties represent hydrophobic dipoles strung pendant to the polymer backbone and impart unique electronic properties to the polymers. Tunable optoelectronic properties were realized by adjusting the azulene density, ranging from homopolymers (having one azulene group per repeat unit) to copolymers in which the azulene density was diluted with other pendant groups. Treating these polymers with organic acids revealed optical and excitonic behavior that depended critically on the azulene density along the polymer chain. Copolymers of azulene with zwitterionic methacrylates proved useful as cathode modification layers in bulk-heterojunction solar cells, where the relative azulene content affected the device metrics and the power conversion efficiency reached 7.9%.

  14. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi; Samuel S. Tam

    1999-04-21

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (January-March/99), in-situ formaldehyde generation and condensation with methyl propionate were tested over various catalysts and reaction conditions. The patent application is in preparation and the results are retained for future reports.

  15. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  16. Exposure to volatile methacrylates in dental personnel.

    PubMed

    Hagberg, Stig; Ljungkvist, Göran; Andreasson, Harriet; Karlsson, Stig; Barregård, Lars

    2005-06-01

    Dental personnel are exposed to acrylates due to the acrylic resin-based composites and bonding agents used in fillings. It is well known that these compounds can cause contact allergy in dental personnel. However, in the 1990s, reports emerged on asthma also caused by methacrylates. The main volatile acrylates in dentistry are 2-hydroxyethyl methacrylate and methyl methacrylate. The aim of this study was to quantify the exposure to these acrylates in Swedish dental personnel. We studied the exposure to 2-hydroxyethyl methacrylate and methyl methacrylate in five randomly selected public dental clinics and at the Faculty of Odontology at Göteborg University. In total, 21 whole-day and 46 task-specific short-term (1-18 min) measurements were performed. The median 8-hour time-weighted averages were 2.5 microg/m3 (dentists) and 2.9 microg/m3 (dental nurses) for 2-hydroxyethyl methacrylate, and 0.8 microg/m3 (dentists) and 0.3 microg/m3 (dental nurses) for methyl methacrylate. The maximum short-term exposure levels were 79 microg/m3 for 2-hydroxyethyl methacrylate and 15 microg/m3 for methyl methacrylate, similar in dentists and dental nurses. The observed levels are much lower than in complete denture fabrication. We found only one previous study in dentistry and it showed similar results (though it reported short-term measurements only). Irritant effects would not be expected in healthy people at these levels. Nevertheless, occupational respiratory diseases due to methacrylates may occur in dental personnel, and improvements in the handling of these chemicals in dentistry are warranted. This includes better vials for the bonding agents and avoiding evaporation from discarded materials.

  17. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering.

    PubMed

    Kubinová, Sárka; Horák, Daniel; Syková, Eva

    2009-09-01

    Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and laminin have been developed to design scaffolds that promote cell-surface interaction. Cholesterol-modified superporous PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA) and the cross-linking agent ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate crystals to introduce interconnected superpores in the matrix. With the aim of immobilizing laminin (LN), carboxyl groups were also introduced to the scaffold by the copolymerization of the above monomers with 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA). Subsequently, the MCMEMA moiety in the resulting hydrogel was hydrolyzed to [2-(methacryloyloxy)ethoxy]acetic acid (MOEAA), and laminin was immobilized via carbodiimide and N-hydroxysulfosuccinimide chemistry. The attachment, viability and morphology of mesenchymal stem cells (MSCs) were evaluated on both nonporous and superporous laminin-modified as well as laminin-unmodified PHEMA and poly(2-hydroxyethyl methacrylate-co-cholesterol methacrylate) P(HEMA-CHLMA) hydrogels. Neat PHEMA and laminin-modified PHEMA (LN-PHEMA) scaffolds facilitated MSC attachment, but did not support cell spreading and proliferation; the viability of the attached cells decreased with time of cultivation. In contrast, MSCs spread and proliferated on P(HEMA-CHLMA) and LN-P(HEMA-CHLMA) hydrogels.

  18. Methacrylated glycol chitosan as a photopolymerizable biomaterial.

    PubMed

    Amsden, Brian G; Sukarto, Abby; Knight, Darryl K; Shapka, Stephen N

    2007-12-01

    Glycol chitosan is a derivative of chitosan that is soluble at neutral pH and possesses potentially useful biological properties. With the goal of obtaining biocompatible hydrogels for use as tissue engineering scaffolds or drug delivery depots, glycol chitosan was converted to a photopolymerizable prepolymer through graft methacrylation using glycidyl methacrylate in aqueous media at pH 9. N-Methacrylation was verified by both (1)H NMR and (13)C NMR. The degree of N-methacrylation, measured via (1)H NMR, was easily varied from 1.5% to approximately 25% by varying the molar ratio of glycidyl methacrylate to glycol chitosan and the reaction time. Using a chondrocyte cell line, the N-methacrylated glycol chitosan was found to be noncytotoxic up to a concentration of 1 mg/mL. The prepolymer was cross-linked in solution using UV light and Irgacure 2959 photoinitiator under various conditions to yield gels of low sol content ( approximately 5%), high equilibrium water content (85-95%), and thicknesses of up to 6 mm. Cross-polarization magic-angle spinning (13)C solid state NMR verified the complete conversion of the double bonds in the gel. Chondrocytes seeded directly onto the gel surface, populated the entirety of the gel and remained viable for up to one week. The hydrogels degraded slowly in vitro in the presence of lysozyme at a rate that increased as the cross-link density of the gels decreased.

  19. Poly(triallyl isocyanurate-co-ethylene dimethacrylate-co-alkyl methacrylate) stationary phases in the chromatographic separation of hydrophilic solutes.

    PubMed

    Lin, Cheng-Lan; Singco, Brenda; Wu, Ching-Yi; Liang, Pei-Zhu; Cheng, Yi-Jie; Huang, Hsi-Ya

    2013-01-11

    This study describes the ability of triallyl isocyanurate (TAIC)-co-methacrylate ester polymer monoliths as stationary phases for the separation of hydrophilic compounds (phenolic acids, amino acids and catecholamines) in capillary electrochromatography (CEC) and ultra high pressure liquid chromatography (UHPLC). Several TAIC-co-methacrylate ester polymer monoliths prepared by single-step in situ copolymerization of TAIC, ethylene dimethacrylate (EDMA) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), with or without alkyl methacrylates were characterized by examining the SEM image, surface area, contact angle, and the thermal decomposition temperature. Compared to the conventional methacrylate ester-based monoliths, these proposed monoliths possessed hydrophilic character thus increased wettability which improved chromatographic separation selectivity of polar phenolic acids. Among the proposed TAIC-co-methacrylate monoliths, poly(TAIC-co-EDMA-AMPS-co-stearyl methacrylate (SMA)) showed separation selectivity with an increased analyte resolution from 0.0 to 0.92 for 4-hydroxybenzoic acid and vanillic acid, which were consistently difficult to resolve in the reversed-phase chromatographic mechanism of these monoliths in aqueous mobile phases. Moreover, stable ionization efficiencies were observed when this monolith was combined with ESI-MS detector possibly because an organic solvent-rich sheath liquid was used in the CEC-MS. This study demonstrates the potentiality of novel TAIC-co-methacrylate polymer monoliths in hydrophilic solute separation either in CEC or UHPLC mode.

  20. Novel syngas-based process for methyl methacrylate

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Choi, G.N.; Tam, S.S.; Tischer, R.E.; Srivastava, R.D.

    1996-12-31

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel are developing a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Pittsburgh Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the research on propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis, which shows that Eastman`s propionate synthesis process is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-SI-P and Ta metal oxide catalysts for condensation reactions of propionates with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields, acid-base properties, in situ condensation in a high- temperature, high-pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory reactor operating data, a cost estimate is also being developed for the integrated process.

  1. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  2. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  3. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  4. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  5. Versatility of Alkyne-Modified Poly(Glycidyl Methacrylate) Layers for Click Reactions

    SciTech Connect

    Soto-Cantu, Dr. Erick; Lokitz, Bradley S; Hinestrosa Salazar, Juan Pablo; Deodhar, Chaitra; Messman, Jamie M; Ankner, John Francis; Kilbey, II, S Michael

    2011-01-01

    Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for 'click' chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using 'click' chemistry, and grafting densities in the range of 0.007-0.95 chains nm{sup -2} were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm{sup -3}. The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.

  6. Novel poly(methyl methacrylate)-based semi-interpenetrating polyelectrolyte gels for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Kalapala, Saibabu; Easteal, Allan J.

    Novel semi-interpenetrating polymer gel electrolytes designed for use in rechargeable lithium polymer batteries are synthesised from methyl methacrylate and the lithium salt of 2-acrylamido-2-methylpropanesulfonic acid (LiAMPS). The gels are made by first synthesising linear chains of poly(LiAMPS) by free radical polymerisation of LiAMPS dissolved in dimethyl acetamide (DMA) or DMA/ethylene carbonate mixtures, then co-polymerisation of methyl methacrylate and a cross-linking monomer (tetraethyleneglycol diacrylate) to form the semi-interpenetrating network. The electrical conductivity of the gels is determined as a function of LiAMPS and methyl methacrylate (MMA) concentrations, cross-link density, and solvent composition. The conductivity ( σ) is found to be in the range 0.2 ≤ σ ≤ 0.8 mS cm -1 at ambient temperature (20 ± 1 °C).

  7. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  8. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  9. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  10. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  11. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  12. Reactive compatibilization of PBT/ABS blends by methyl methacrylate, glycidyl methacrylate, ethyl acrylate terpolymers

    NASA Astrophysics Data System (ADS)

    Hale, Wesley Raymond

    The impact resistance of poly(butylene terephthalate), PBT, has been improved by blending with acrylonitrile-butadiene-styrene terpolymers, ABS, as a minor dispersed phase; however, extensive coarsening of the dispersed phase in the blends occurs under certain heat fabrication conditions. The incorporation of certain reactive polymers (compatibilizers) that are miscible with the styrene/acrylonitrile (SAN) matrix of ABS should result in more stable morphologies. Terpolymers of methyl methacrylate, glycidyl methacrylate (GMA), ethyl acrylate, MGE, are effective as reactive compatibilizers for blends of PBT with SAN and ABS materials. The epoxide groups of MGE react with the carboxyl endgroups of PBT to form a MGE-g-PBT graft copolymer at the PBT/SAN interface to provide improved SAN or ABS dispersion, morphological stability, and a broadening of the melt processing window. Additionally, compatibilization produces large improvements in the low temperature fracture toughness of PBT/ABS blends; however, the toughness depends on the order of mixing blend components due to crosslinking reactions involving the epoxide groups of MGE catalyzed by residual acids present in some emulsion-made ABS materials. The PBT, ABS, and MGE type, content, and composition have been examined to evaluate their effects on the mechanical and morphological properties of PBT/ABS blends. Additionally, the effects of different processing conditions have been examined. High PBT melt viscosity is desirable for improving ABS dispersion and low temperature toughness of the blends. Generally, ABS materials with a high rubber content and low melt viscosity are desirable for toughening PBT. Moderate amounts of GMA in the blend were found to significantly improve blend properties. Melt blending can be performed using a variety of equipment; however, a co-rotating intermeshing twin screw extruder is the most effective for producing blends with excellent properties. The fracture properties of PBT

  13. Synthesis of acrylates and Methacrylates from Coal-Derived Syngas

    SciTech Connect

    1997-05-12

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees} C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. Eastman and Bechtel have also compared the RTI- Eastman-Bechtel three-step methanol route to five other process routes to MMA. The results show that the product MMA can be produced at 520/lb, for a 250 Mlb/year MMA plant, and this product cost is competitive to all other process routes to MMA, except propyne carbonylation. In the second step, RTI and Eastman have developed active and stable V-SI-P tertiary metal oxide catalysts, Nb/Si0{sub 2}, and Ta/Si0{sub 2} catalysts for condensation of propionic anhydride or propionic acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst performance. Eastman and Bechtel have used the RTI experimental results of a 20 percent Nb/Si0{sub 2} catalyst, in terms of reactant conversions, MAA selectivities, and MAA yield, for their economic analysis. Recent research focuses on enhancing the condensation reaction yields, a better understanding of the acid-base property correlation and enhancing the catalyst lifetime.

  14. Solute solvent interaction in methyl methacrylate and 2-hydroxyethyl methacrylate monomers solutions

    NASA Astrophysics Data System (ADS)

    Al-ghamdi, Attieh A.; Bahattab, M. A.; Farhoud, M.; Al-Dossary, Mishal; Al-Enizi, Abdullah; Al-Deyab, S. S.

    2006-11-01

    Solute-solvent interactions are studied using induced birefringence measurements in monomers solutions of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA), dissolved in ethanol, acetone, ethyl acetate, tetrahydrofuran and dimethyl sulfoxide, over a broad range of concentrations. The data are combined with refractive index and density to calculate the electric, optical and molar Kerr constants. All related microscopic parameters concerning the molecular structure such as nonlinear Kerr constants, anisotropic factors, and optical anisotropy have been calculated.

  15. Synthesis of Methyl Methacrylate from Coal-Derived Syngas

    SciTech Connect

    Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Makarand R. Gogate; Richard D. Colberg; Samuel S. Tam

    1998-04-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last month, RTI has finalized the design of a fixed-bed microreactor system for DME partial oxidation reactions. RTI incorporated some design changes to the feed blending system, so as to be able to blend varying proportions of DME and oxygen. RTI has also examined the flammability limits of DME-air mixtures. Since the lower flammability limit of DME in air is 3.6 volume percent, RTI will use a nominal feed composition of 1.6 percent in air, which is less than half the lower explosion limit for DME-air mixtures. This nominal feed composition is thus considered operationally safe, for DME partial oxidation reactions. RTI is also currently developing an analytical system for DME partial oxidation reaction system.

  16. CEC separation of heterocyclic amines using methacrylate monolithic columns.

    PubMed

    Barceló-Barrachina, Elena; Moyano, Encarnación; Puignou, Lluís; Galceran, Maria Teresa

    2007-06-01

    Two methacrylate-based monolithic columns, one with a negatively charged group (sulfonic group) and another with a new monomer N,N-dimethylamino ethyl acrylate (DMAEA), were prepared and tested for the separation of basic compounds by CEC. This new monolithic stationary phase was prepared by the in situ polymerization of DMAEA with butyl methacrylate and ethylene dimethacrylate, using a ternary porogenic solvent consisting of water, 1-propanol and 1,4-butanediol. The performance of this column was evaluated by means of the analysis of a family of heterocyclic amines. Separation conditions such as pH, amount of organic modifier, ionic strength and elution mode (normal or counterdirectional flow) were studied. At the optimal running electrolyte composition, and using the counterdirectional mode, symmetrical electrochromatographic peaks were obtained, with the number of theoretical plates up to 30,000 and a good resolution between closely related peaks. The 2-acrylamido-2-methyl-1-propane-sulfonic acid column was used for CEC-MS, taking advantage of the compatibility of its elution mode (normal flow) with the MS coupling.

  17. The biological properties of a novel ethyl methacrylate resin.

    PubMed

    Suzuki, T; Jinno, S; Hattori, N; Okeya, H; Ishikawa, A; Deguchi, M; Ohno, Y; Kawai, T; Noguchi, T

    2006-01-01

    A novel ethyl methacrylate (EMA) resin was developed to overcome the tissue, organ and systemic damage associated with the residual monomer of conventional methyl methacrylate (MMA) resin bone cement. EMA resin is a chemical/ photopolymerizable material and is easy to handle during clinical procedures. The biocompatibility of EMA was evaluated in accordance with ISO10993-6. No inflammatory response was observed 1 and 9 weeks after implantation in the dorsal subcutaneous tissue of ddY mice. EMA resin also demonstrated better biocompatibility when compared with conventional bone cements. Poly-L-lactic acid (PLLA) was used as a carrier for bone morphogenetic protein (BMP) and added to the EMA slurry. The EMA-PLLA composite membrane was sticky and BMP readily adhered to its surface. The EMA-PLLA-BMP composite membrane induced new bone formation, the new bone growing in the shape of the EMA in the thigh muscle pouch of ddY mice. This novel EMA resin has many potential clinical applications.

  18. Synthesis of Methyl Methacrylate From Coal-Derived Syngas

    SciTech Connect

    Ben W.-L. Jang; Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Richard D. Colberg; Samuel S. Tam

    1998-07-27

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(April-June, 1998), RTI has modified the reactor system including a new preheater and new temperature settings for the preheater. Continuous condensation of formaldehyde with propionic acid were carried out over 10% Nb O /SiO at 300°C without 2 5 2 interruption. Five activity and four regeneration cycles have been completed without plugging or material balance problems. The results show that 10% Nb O /SiO deactivates slowly with time 2 5 2 but can be regenerated, at least four times, to 100% of its original activity with 2% O in nitrogen 2 at 400°C. The cycles continue with consistent 90-95% of carbon balance. The reaction is scheduled to complete with 6 activity cycles and 5 regenerations. Used catalysts will be analyzed with TGA and XPS to determine bulk and surface coke content and coke properties. RTI will start the investigation of effects of propionic acid/formaldehyde ratio on reaction activity and product selectivity over 20% Nb O /SiO catalysts.

  19. Novel catalysts for the environmentally friendly synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.

    1997-11-01

    The development of a process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas can alleviate the environmental hazards associated with the current commercial MMA technology, the acetone cyanohydrin (ACH) process. A three-step syngas-based process consisted of synthesis of a propionic acid, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) to form MMA. The first two steps, propionic acid synthesis and condensation, are discussed here. The low-temperature, low-pressure process for single-step hydrocarbonylation of ethylene to propionic acid is carried out using a homogeneous iodine-promoted Mo(CO){sub 6} catalyst at pressures (30--70 atm) and temperatures (150--200 C) lower than those reported for other catalysts. Mechanistic investigations suggest that catalysis is initiated by a rate-limiting CO dissociation from Mo(CO){sub 6}. This dissociation appears to be followed by an inner electron-transfer process of an I atom from EtI to the coordinately unsaturated Mo(CO){sub 5}. This homogeneous catalyst for propionate synthesis represents the first case of an efficient carbonylation process based on Cr group metals. The condensation of formaldehyde with propionic acid is carried out by acid-base bifunctional catalysts. As a result of screening over 80 catalytic materials, group V metals supported on an amorphous silica are found to be most effective. A 20% Nb/SiO{sub 2} catalyst appears to be the most active and stable catalyst thus far. Preliminary relations among the reaction yield and catalyst properties indicate that a high surface area and a low overall surface acidity (<50 = mol of NH{sub 3}/g), with a high proportion of the acidity being weak (<350 C desorption of NH{sub 3}), are desirable. Long-term deactivation of V-Si-P, Nb-Si, and Ta-Si catalysts suggests that carbon deposition is the primary cause for activity decay, and the catalyst activity is partially restorable by oxidative regeneration.

  20. Dendrimer/methyl methacrylate co-polymers: residual methyl methacrylate and degree of conversion.

    PubMed

    Viljanen, Eeva K; Skrifvars, Mikael; Vallittu, Pekka K

    2005-01-01

    Dendrimer/methyl methacrylate co-polymers were studied for use in dental composites. The aim was to determine the effects of methyl methacrylate concentration in the resin mixture and polymerization method on the degree of conversion and residual monomer content of the copolymers. Two dendrimers were studied, D12 with 12 reactive methacrylate groups and D24 with 24 reactive groups. The concentration of methyl methacrylate varied from 20 wt% to 50 wt% of monomers. Camphorquinone (CQ) was used as the light-activation initiator and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) as the activator, both in the quantity of 3.0 wt%. Three polymerization methods were used: photo-polymerization, photo-polymerized immediately followed by post-polymerization at 120 degrees C for 15 min, and photo-polymerization followed by postpolymerization after 7 days. The degree of conversion was determined using FT-IR. Residual monomers were extracted with tetrahydrofuran and methanol and analyzed with HPLC. The highest degrees of conversion were 65 and 62%, and the lowest residual monomer contents 1.0 and 1.5% for D12 and D24, respectively. These were measured after heat-induced post-polymerization. For D12, increasing the proportion of methyl methacrylate decreased the degree of conversion and increased the residual monomer content after photo-polymerization. Post-polymerization enhanced the polymerization of the dendrimer co-polymers in respect of degree of conversion and residual monomer content. The present study suggested that the tested dendrimer/methyl methacrylate copolymers require heat-induced polymerization to reach the generally accepted levels of degree of conversion and residual monomers.

  1. Porous conductive polyblends of polyaniline in poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Price, Aaron D.; Naguib, Hani E.

    2008-03-01

    The conductive polymer polyaniline is typically blended with conventional industrial thermoplastics in order to obtain an electrically conductive polymer blend with adequate mechanical properties. Processing these polyblends into foams yields a porous conductive material that exhibits immense application potential such as dynamic separation media and low-density electrostatic discharge protection. In the current study, the morphology of a thermally-processable blend consisting of an electrically conductive polyaniline-dodecylbenzene sulfonic acid complex and poly(methyl methacrylate) is explored using a two-phase batch foaming setup. The effect of blend composition and processing parameters on the resulting cellular morphology is investigated. Finally, the impact of the underlying microstructure on the frequency dependent electrical conductivity is elucidated.

  2. A pre-formed methyl methacrylate cranioplasty.

    PubMed

    Cooper, P R; Schechter, B; Jacobs, G B; Rubin, R C; Wille, R L

    1977-09-01

    The use of a pre-formed methyl methacrylate cranioplasty prosthesis reinforced with stainless steel wire is described. The prosthesis is non-reactive, virtually unbreakable, and undentable. Pre-forming of the prosthesis in the dental laboratory using a mold of the patient's bony defect as a model saves considerable operating time, and when employed for a large cranial defect the three dimensional cosmetic effect is superior to intra-operatively fashioned prostheses.

  3. Use of methacrylate-modified chitosan to increase the durability of dentine bonding systems.

    PubMed

    Diolosà, Marina; Donati, Ivan; Turco, Gianluca; Cadenaro, Milena; Di Lenarda, Roberto; Breschi, Lorenzo; Paoletti, Sergio

    2014-12-08

    This study aimed at investigating the effect of a methacrylate-modified chitosan on the durability of adhesive interfaces to improve the clinical performance of dental restorations. Chitosan was modified with methacrylic acid (Chit-MA70) on 16% of the amino groups. Viscosity, rheology, and (1)H NMR spectroscopy were performed to characterize the modified polysaccharide. Chit-MA70 was blended into a primer of an "etch-and-rinse" experimental adhesive system and tested on human teeth. The presence of methacrylate moieties and of residual positive charges on the polysaccharide chain allowed Chit-MA70 to covalently bind to the restorative material and electrostatically interact with demineralized dentin. The Chit-MA70 containing an adhesive system showed values of the immediate bond strength (26.0 ± 8.7 MPa) comparable to the control adhesive system (25.5 ± 8.7 MPa). However, it was shown that upon performing thermo-mechanical cycling treatment of the dental restoration on human teeth, the adhesive with the methacrylate-modified chitosan, in variance with the control adhesive, did not show any decrease in the bond strength (28.4 ± 8.8 MPa). The modified chitosan is proposed as a component of the "etch-and-rinse" adhesive system to efficiently improve the durability of dental restorations.

  4. Vascular responsiveness to dimethylaminoethyl methacrylate and its degradation products.

    PubMed

    Abebe, Worku; Maddux, William F; Schuster, George S; Lewis, Jill B

    2003-07-01

    The increasing use of acrylate-based resins in dentistry has raised questions about the biocompatibility of these substances with oral tissues. The focus of the present investigation was to assess the responsiveness of blood vessels to the resin polymerization accelerating agent dimethylaminoethyl methacrylate (DMAEMA) and its degradation products dimethylethanolamine (DME) and methacrylic acid (MAA), using the rat aortic ring preparation as a tissue model. DMAEMA induced concentration-dependent relaxation of norepinephrine (NE)-contracted aortic rings with and without endothelium. N-nitro-L-arginine methyl ester (L-NAME) selectively inhibited the endothelium-dependent relaxation induced by DMAEMA, suggesting the release of nitric oxide from the endothelium by DMAEMA. Both indomethacin and glybenclamide attenuated the vasorelaxation elicited by DMAEMA in the presence as well as in the absence of endothelium, providing evidence for the role of vasorelaxant prostanoid(s) and K(ATP) channel activation in the responses observed. On the other hand, while MAA was without any apparent effect on the rat aorta, DMAEMA at high and DME at relatively low concentrations caused contraction of the tissues with and without endothelium in the absence of NE. The DME-induced contraction was inhibited by indomethacin, suggesting the involvement of contractile arachidonic acid metabolite(s) in the action of DME. This observation was supported by the findings of increased thromboxane A(2) (TXA(2)) production in aortic rings incubated with DME. Taken together, the data suggest that both DMAEMA and its degradation product, DME, are vasoactive, inducing vasorelaxation and contraction by various mechanisms that may involve the release of nitric oxide from the endothelium, the activation of smooth muscle K(ATP) channels, and the generation of vasorelaxant prostanoid(s) and TXA(2). These effects may play a role in tissue homeostasis and certain adverse conditions associated with the use of

  5. Reactivity of methacrylates in insertion polymerization.

    PubMed

    Rünzi, Thomas; Guironnet, Damien; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2010-11-24

    Polymerization of ethylene by complexes [{(P^O)PdMe(L)}] (P^O = κ(2)-(P,O)-2-(2-MeOC(6)H(4))(2)PC(6)H(4)SO(3))) affords homopolyethylene free of any methyl methacrylate (MMA)-derived units, even in the presence of substantial concentrations of MMA. In stoichiometric studies, reactive {(P^O)Pd(Me)L} fragments generated by halide abstraction from [({(P^O)Pd(Me)Cl}μ-Na)(2)] insert MMA in a 1,2- as well as 2,1-mode. The 1,2-insertion product forms a stable five-membered chelate by coordination of the carbonyl group. Thermodynamic parameters for MMA insertion are ΔH(++) = 69.0(3.1) kJ mol(-1) and ΔS(++) = -103(10) J mol(-1) K(-1) (total average for 1,2- and 2,1-insertion), in comparison to ΔH(++) = 48.5(3.0) kJ mol(-1) and ΔS(++) = -138(7) J mol(-1) K(-1) for methyl acrylate (MA) insertion. These data agree with an observed at least 10(2)-fold preference for MA incorporation vs MMA incorporation (not detected) under polymerization conditions. Copolymerization of ethylene with a bifunctional acrylate-methacrylate monomer yields linear polyethylenes with intact methacrylate substituents. Post-polymerization modification of the latter was exemplified by free-radical thiol addition and by cross-metathesis.

  6. Dimensional accuracy of thermoformed polymethyl methacrylate.

    PubMed

    Jagger, R G

    1996-12-01

    Thermoforming of polymethyl methacrylate sheet is used to produce a number of different types of dental appliances. The purpose of this study was to determine the dimensional accuracy of thermoformed polymethyl methacrylate specimens. Five blanks of the acrylic resin were thermoformed on stone casts prepared from a silicone mold of a brass master die. The distances between index marks were measured both on the cast and on the thermoformed blanks with an optical comparator. Measurements on the blanks were made again 24 hours after processing and then 1 week, 1 month, and 3 months after immersion in water. Linear shrinkage of less than 1% (range 0.37% to 0.52%) was observed 24 hours after removal of the blanks from the cast. Immersion of the thermoformed specimens in water resulted in an increase in measured dimensions, but after 3 months' immersion these increases were still less than those of the cast (range 0.07% to 0.18%). It was concluded that it is possible to thermoform Perspex polymethyl methacrylate accurately.

  7. The thickening additives for mineral and synthetic oils based on the copolymers of alkyl acrylates or methacrylates and butyl vinyl ether

    NASA Astrophysics Data System (ADS)

    Geraskina, Evgeniya V.; Moikin, Alexey A.; Semenycheva, Ludmila L.

    2014-05-01

    A new method for synthesizing of the copolymers of acrylic and methacrylic acid esters with butyl vinyl ether in an excess of low-boiling monomer, which has proven effective for a number of alkyl methacrylates was proposed. Tests of thickening efficiency of the obtained copolymers were carried out. The resistance to mechanical degradation of the mineral, semi synthetic and synthetic base oils doped with the copolymers was evaluated.

  8. Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes.

    PubMed

    Ren, Tanchen; Mao, Zhengwei; Moya, Sergio Enrique; Gao, Changyou

    2014-08-01

    The immobilization of enzymes is of paramount importance to maintain their activity and stability. In this study, surface-initiated atom-transfer radical polymerization was applied to prepare poly(2-hydroxyethyl methacrylate)-block-poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) brushes on glass slides. The polymerization kinetics was followed by using a quartz crystal microbalance with dissipation monitoring and ellipsometry in terms of mass and thickness growth, respectively. The surface chemical compositions of the obtained polymer brushes were characterized by X-ray photoelectron spectroscopy. Their mass, thickness, and enzyme-immobilization ability could be easily tuned by the initiator reaction time, monomer ratio, and polymerization time. The antibacterial activity and stability of the immobilized lysozymes were studied by fluorescent staining and bacteria lysis assay, which revealed that the lysozymes on the copolymer brushes had good stability during storage at 4 °C for up to 30 days.

  9. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG.

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200C to 500C. The conversion of DME first increases with temperature reaching an maximum at 400C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350C accompanied by

  10. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200°C to 500°C. The conversion of DME first increases with temperature reaching an maximum at 400°C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350

  11. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1998-10-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (July-September, 1998), the project team has completed the continuous condensation of formaldehyde with propionic acid over 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. Six activity and five regeneration cycles have been completed. The results show that 10% Nb{sub 2}O{sub 5}/SiO{sub 2} deactivates slowly with time but can be regenerated to its original activity with 2% O{sub 2} in nitrogen over night at 400 C. We have investigated the effects of regeneration, propionic acid/formaldehyde ratio (PA/HCHO = 4.5/1 to 1.5/1) and reaction temperature(280-300 C) on reaction activity and product selectivity over 20% Nb{sub 2}O{sub 5}/SiO{sub 2} catalysts. The regeneration effect on 20% Nb{sub 2}O{sub 5}/SiO{sub 2} is similar to the effect on 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. The regeneration can bring the deactivated catalyst to its original activity. However, the selectivity to MAA decreases with regeneration while the selectivity to DEK and CO{sub 2} increases. When PA/HCHO ratio is decreased from 4.5/1 to 2.25/1 then to 1.5/1 at 300 C the MAA yield decreases but the MAA selectivity first increases then decreases. Decreasing the reaction temperature from 300 C to 280 C decreases the MAA yield from 39.5% to 30.7% but increases the MAA selectivity from 73.7% to 82.2%. The

  12. On permeability of methyl methacrylate, 2-hydroxyethyl methacrylate and triethyleneglycol dimethacrylate through protective gloves in dentistry.

    PubMed

    Andreasson, Harriet; Boman, Anders; Johnsson, Stina; Karlsson, Stig; Barregård, Lars

    2003-12-01

    Continuous glove use is more common in dentistry than in most other occupations, and the glove should offer protection against blood-borne infections, skin irritants and contact allergens. Methacrylate monomers are potent contact allergens, and it is known that these substances may penetrate the glove materials commonly used. The aim of this study was to assess the permeability of various types of gloves to methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA) and triethyleneglycol dimethacrylate (TEGDMA) with special reference to combinations with ethanol or acetone. The permeation rate and time lag breakthrough (lag-BT) for MMA (neat, or diluted to 30% in ethanol or acetone), HEMA (30% in water, ethanol, or acetone) and TEGDMA (30% in ethanol or acetone) were investigated for different protective gloves. Nine different types of gloves were tested for one or several of these methacrylates. The lag-BT for neat MMA was

  13. A rocket-like encapsulation and delivery system with two-stage booster layers: pH-responsive poly(methacrylic acid)/poly(ethylene glycol) complex-coated hollow silica vesicles.

    PubMed

    Lay, Chee Leng; Kumar, Jatin N; Liu, Connie K; Lu, Xuehong; Liu, Ye

    2013-10-01

    Rocket-like vesicles formed are composed of poly(acrylic aicd) (PMAA )/poly(ethylene glycol) (PEG) complex coated hollow silica spheres, and the structure and composition of the vesicles are characterized using TGA, (1)H NMR, FTIR, and TEM. Although only one-third of EG units of PEG brushes grafted to hollow silica spheres form the complex with PMAA via hydrogen bonding, the first "booster" layer composed of PMAA/PEG complex can provide secure encapsulation of model compound calcein blue under an acidic condition. The second "booster" layer composed of PEG brushes can be formed by changing acidic pH to 7.4 through the disassociation of the PMAA/PEG complex. A higher molecular weight PMAA exhibits a faster disassembly due to the formation of a looser PMAA/PEG complex on the surfaces of hollow silica spheres.

  14. Proton nuclear magnetic resonance spectroscopic detection and determination of ethylene glycol dimethacrylate as a contaminant of methyl methacrylate raw material.

    PubMed

    Hanna, G M; Lau-Cam, C A

    1995-01-01

    A simple, specific, and accurate proton nuclear magnetic resonance (1H NMR) spectroscopic method is presented for detection and assay of ethylene glycol dimethacrylate dimer as a contaminant of methyl methacrylate monomer. In addition to minimizing exposure of the analyst to the irritant and toxic methacrylic acid esters, the proposed method requires no sample preparation. Quantitations are based on integrals for signals of methylene protons of ethylene glycol dimethacrylate at 4.37 ppm and methyl protons of methyl methacrylate at 3.70 ppm. Analysis of 10 synthetic mixtures of the monomer with 1-11% of dimer yielded a dimer recovery of 100.5 +/- 2.05% (mean +/- standard deviation). Correspondence (correlation coefficient, r = 0.9999) between the amount of dimer added and the amount found was excellent. The proposed method measures as little as 1% of dimer.

  15. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  16. Methacrylic resin having a high solar radiant energy absorbing property and process for producing the same

    SciTech Connect

    Abe, K.; Kamada, K.; Nakai, Y.

    1981-10-20

    A methacrylic resin having a high solar radiant energy absorbing property wherein an organic compound (A) containing cupric ion and a compound (B) having at least one p-o-h bond in a molecule are contained into the methacrylic resin selected from poly(Methyl methacrylate) or methacrylic polymers containing at least 50% by weight of a methyl methacrylate unit. A process for producing said methacrylic resin is also disclosed.

  17. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  18. Synthesis and characterization of functionalized methacrylates for coatings and biomedical applications

    NASA Astrophysics Data System (ADS)

    Shemper, Bianca Sadicoff

    The research presented in this dissertation involves the design of polymers for biomaterials and for coatings applications. The development of non-wettable, hard UV-curing, or reactive coatings is discussed. The biomaterials section involves the syntheses of linear and star-like polymers of the functionalized monomer poly(propylene glycol) monomethacrylate (PPGM) via atom transfer radical polymerization (ATRP) (Chapter II). Its copolymerization with a perfluoroalkyl ethyl methacrylate monomer (1H,1H,2H,2H-heptadecafluorodecyl methacrylate) and the syntheses of linear and star-like amphiphilic copolymers containing the fluorinated monomer and poly(ethyleneglycol) methyl ether methacrylate (MPEGMA) are discussed in Chapter III. The four-arm amphiphilic block copolymer obtained showed unique associative properties leading to micellization in selective solvents. Chapter IV includes research involving the design of films with low surface energy by incorporating fluorine into the polymer. The synthesis, characterization and polymerization of a perfluoroalkylether-substituted methacrylic acid (C8F7) are discussed, and the properties of coatings obtained after its photopolymerization on different substrates are evaluated to confirm formation of low-surface energy polymeric coatings. Subsequently, hard coatings based on methyl (alpha-hydroxymethyl)acrylate (MHMA) were prepared via photopolymerization using UV-light. Firstly, mechanistic investigations into the photopolymerization behavior of (alpha-hydroxymethyl)acrylates (RHMA's) are reported (Chapter V). RHMA derivatives were photopolymerized with various multifunctional acrylates and methacrylates and the effect of crosslinker type and degree of functionality on photopolymerization rates and conversions was investigated. Then, in Chapter VI the synthesis of a series of new crosslinkers is described and their photopolymerization kinetics was investigated in bulk. The effect of these novel crosslinkers on the

  19. Physicochemical, mechanical, and biological properties of bone cements prepared with functionalized methacrylates.

    PubMed

    Sabino, Marco A; Ajami, Diana; Salih, Vehid; Nazhat, Showan N; Vargas-Coronado, Rossana; Cauich-Rodríguez, Juan V; Ginebra, Ma Pau

    2004-10-01

    Bone cements prepared with methyl methacrylate (MMA) as a base monomer and either methacrylic acid (MAA) or diethyl amino ethyl methacrylate (DEAEMA) as comonomers were characterized in terms of curing behavior, mechanical properties, and their in vitro biocompatibility. The curing time and setting temperature were found to be composition dependent while the residual monomer was not greatly affected by the presence of either acidic or alkaline comonomers in the bone cements. For samples with MAA comonomer, a faster curing time and higher setting temperature were observed when compared to the cement with DEAEMA comonomer. In terms of mechanical properties, the highest compressive strength was exhibited by formulations containing MAA, while the highest impact strength was shown by the formulations prepared with DEAEMA. There were no differences observed between the two formulations for tensile, shear, and bending strength values. Similarly, fatigue crack propagation studies did not reveal differences with the addition of either DEAEMA or MAA.No differences were observed in the initial number of attached primary rat femur osteoblasts on the different bone cements and positive controls. However, after 48 h there was a reduced proliferation in the cells grown on bone cements containing MAA.

  20. DEGRADATION OF POLY(METHYL METHACRYLATE) IN SOLUTION

    EPA Science Inventory

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1000 psig (6.8 MPa) and at four different temperat...

  1. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization.

    PubMed

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2010-09-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance ((13)C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering.

  2. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization

    PubMed Central

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2011-01-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering. PMID:21765959

  3. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi

    1999-07-19

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. During the April-June quarter(04-06/99) the first in-situ formaldehyde generation from DME and condensation with methyl propionate is demonstrated and the results are summarized. The supported niobium catalyst shows better condensation activity, but supported tungsten catalyst has higher formaldehyde selectivity. The project team has also completed a 200-hour long term test of PA-HCHO condensation over 30% Nb{sub 2}O{sub 5}/SiO{sub 2}. Three activity cycles and two regeneration cycles were carried out. 30% Nb{sub 2}O{sub 5}/SiO{sub 2} showed similar MAA yields as 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. However, the deactivation appears to be slower with 30% Nb{sub 2}O{sub 5}/SiO{sub 2} than 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. An detailed economic analysis of PA-HCHO condensation process for a 250 million lb/yr MMA plant is currently studied by Bechtel. Using the Amoco data-based azeotropic distillation model as the basis, an ASPEN flow sheet model was constructed to simulate the formaldehyde and propionic acid condensation processing section based on RTI's design data. The RTI MAA effluent azeotropic distillation column was found to be much more difficult to converge. The presence of non-condensible gases along with the byproduct DEK (both of which were not presented in

  4. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.

    PubMed

    Dawlee, S; Jayakrishnan, A; Jayabalan, M

    2009-12-01

    A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.

  5. Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers

    NASA Astrophysics Data System (ADS)

    Giffin, Shirin M.; McKinnie, Iain T.; Wadsworth, William J.; Woolhouse, Anthony D.; Smith, Gerald J.; Haskell, Tim G.

    1999-03-01

    The laser performance of a range of solid state dye lasers based on rhodamine 590-doped co-polymers of 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) has been investigated. The optimisation of preparation conditions, including polymerisation initiator and solvent for dye delivery is discussed in detail. Laser efficiency is compared for different polymeric hosts and dye concentrations with a range of output couplers, cavity lengths and repetition rates. Passive and dynamic loss have been determined for each host medium. Laser efficiencies of optimised polymers are among the highest reported for rhodamine 590-doped solid state dye lasers under these operating conditions. Highest slope efficiency of 35% and lowest threshold fluence of 0.06 J cm -2 were obtained with dimethyl sulphoxide (DMSO) additive in MPMMA at 10 Hz repetition rate.

  6. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate.

    PubMed

    Pawlowska, Elzbieta; Poplawski, Tomasz; Ksiazek, Dominika; Szczepanska, Joanna; Blasiak, Janusz

    2010-02-01

    Resin-based methacrylate materials are widely used in restorative dentistry. They are viscous substances that are converted into solid material via polymerization. This process, however, may be incomplete, leading to the release of monomers into the oral cavity and the pulp, which can be reached through the dentin micro-channels. This opens the opportunity for the monomers to reach the bloodstream. Monomers can reach concentrations in the millimolar range, high enough to cause cellular damage, so it is justified to study their potential toxic effects. In the present work we investigated the cytotoxicity and genotoxicity of 2-hydroxyethyl methacrylate (HEMA) in human peripheral blood lymphocytes and A549 lung-tumour cells. HEMA at concentrations up to 10mM neither affected the viability of the cells nor interacted with isolated plasmid DNA during a 1h exposure. However, HEMA induced concentration-dependent DNA damage in lymphocytes, as assessed by alkaline and pH 12.1 versions of the comet assay. HEMA did not cause double-strand breaks, as assessed by the neutral version of the comet assay and pulsed-field gel electrophoresis. The use of DNA repair enzymes, spin traps and vitamin C produced results suggesting that HEMA induced oxidative modifications to DNA bases. DNA damage caused by HEMA at 10mM was removed within 120min. HEMA induced apoptosis in a concentration-dependent manner and caused cell-cycle delay at the G0/G1-checkpoint. Methylglycol chitosan displayed a protective effect against the DNA-damaging action of HEMA. The results obtained in this study suggest that HEMA induces adverse biological effects, mainly via reactive oxygen species, which can lead to DNA damage, apoptosis and cell-cycle delay. Chitosan and its derivatives can be considered as additional components of dental restoration to decrease the harmful potency of HEMA.

  7. Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films

    PubMed Central

    Figueiredo, Andrea G. P. R.; Figueiredo, Ana R. P.; Alonso-Varona, Ana; Fernandes, Susana C. M.; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J. D.; Pascoal Neto, Carlos; Freire, Carmen S. R.

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications. PMID:24093101

  8. Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films.

    PubMed

    Figueiredo, Andrea G P R; Figueiredo, Ana R P; Alonso-Varona, Ana; Fernandes, Susana C M; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J D; Pascoal Neto, Carlos; Freire, Carmen S R

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications.

  9. Synthesis of Acrylates and Methacrylates from Coal-Derived Syngas.

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.; Tam, S.S.

    1997-10-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy/Federal Energy Technology Center (DOE/FETC). This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, RTI carried out activity tests on a pure (99 percent) Nb{sub 2}O{sub 5} catalyst, received from Alfa Aesar, under the following experimental conditions: T=300 C; P=4 atm, 72:38:16:4:220 mmol/h, PA:H{sub 2}0:HCHO:CH{sub 3}0H:N{sub 2}; 5-g catalyst charge. For the pure material, the MAA yields (based on HCHO and PA) were at 8.8 and 1.5 percent, clearly inferior compared to those for a 10-percent Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst (20.1 and 4.5 percent). The X-ray diffraction (XRD) patterns of pure Nb{sub 2}O{sub 5} and 20-percent Nb{sub 2}O{sub 5}/Si0{sub 2} that while pure Nb{sub 2}O{sub 5} is very highly crystalline, Si0{sub 2} support for an amorphous nature of the 20 percent Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst the last quarter, RTI also began research on the use of dimethyl ether (DME), product of methanol dehydrocondensation, as an alternate feedstock in MMA synthesis. As a result, formaldehyde is generated either externally or in situ, from DME, in the process envisaged in the contract extension. The initial work on the DME extension of the contract focuses on a tradeoff analysis that will include a preliminary economic analysis of the DME and formaldehyde routes and catalyst synthesis and testing for DME partial oxidation and condensation reactions. Literature guides exist for DME partial oxidation catalysts; however, there are no precedent studies on catalyst development for DME-methyl propionate (MP) condensation reactions, thereby making DME-MP reaction studies a

  10. Synthesis of methyl methacrylate from coal-derived syngas: Quarterly report,, October 1-December 31, 1997

    SciTech Connect

    1998-09-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of three steps of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, Eastman developed two new processes which have resulted in two new invention reports. One process deals with carbonylation of benzyl ether which represents a model for coal liquefaction and the second focuses on the acceleration of carbonylation rates for propionic acid synthesis, via use of polar aprotic solvents. These two inventions are major improvements in the novel Mo-catalyzed homogeneous process for propionic acid synthesis technology, developed by Eastman. Over the last quarter, RTI completed three reaction cycles and two regeneration cycles as a part of long-term reaction regeneration cycle study on a 10% Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst, for vapor phase condensation reaction of formaldehyde with propionic acid.

  11. Synthesis of acrylates and methacrylates from coal-derived syngas. Quarterly report, October--December 1996

    SciTech Connect

    1997-05-02

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. the resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-Si-P ternary metal oxide catalysts Nb/SiO{sub 2} and Ta/SiO{sub 2} catalysts for the condensation of propionic anhydride and acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields by better understanding of the acid-base property correlation, in situ condensation in a high-temperature, high- pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory data, a cost estimate is also being developed for the integrated process.

  12. Quaternary ammonium poly(diethylaminoethyl methacrylate) possessing antimicrobial activity.

    PubMed

    Farah, Shady; Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Beyth, Nurit; Domb, Abraham J

    2015-04-01

    Quaternary ammonium (QA) methacrylate monomers and polymers were synthesized from a N-alkylation of N,N-diethylaminoethyl methacrylate (DEAEM) monomer. Linear copolymers, and for the first time reported crosslinked nanoparticles (NPs), based QA-PDEAEM were prepared by radical polymerization of the quaternized QA-DEAEM monomers with either methyl methacrylate (MMA) or a divinyl monomer. QA-PDEAEM NPs of 50-70 nm were embedded in polyethylene vinyl acetate coating. QA-polymers with N-C8 and N-C18 alkyl chains and copolymers with methyl methacrylate were prepared at different molar ratios and examined for their antimicrobial effectiveness. These coatings exhibited strong antibacterial activity against four representative Gram-positive and Gram-negative bacteria.

  13. Thermally Switchable Thin Films of an ABC Triblock Copolymer of Poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    SciTech Connect

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.; He, Lihong; Hong, Kunlun; Mays, Jimmy; Allen, Mark

    2011-01-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  14. Thermally switchable thin films of an ABC triblock copolymer of poly( n -butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.; He, Lihong; Hong, Kunlun; Mays, Jimmy W.; Allen, Mark G.

    2011-09-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly( n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  15. Chlorhexidine-releasing methacrylate dental composite materials.

    PubMed

    Leung, Danny; Spratt, David A; Pratten, Jonathan; Gulabivala, Kishor; Mordan, Nicola J; Young, Anne M

    2005-12-01

    Light curable antibacterial, dental composite restoration materials, consisting of 80 wt% of a strontium fluoroaluminosilicate glass dispersed in methacrylate monomers have been produced. The monomers contained 40-100 wt% of a 10 wt% chlorhexidine diacetate (CHXA) in hydroxyethylmethacrylate (HEMA) solution and 60-0 wt% of a 50/50 mix of urethane dimethacrylate (UDMA) and triethyleneglycol dimethacrylate (TEGDMA). On raising HEMA content, light cure polymerisation rates decreased. Conversely, water sorption induced swelling and rates of diffusion controlled CHXA release from the set materials increased. Experimental composites with 50 and 90 wt% of the CHXA in HEMA solution in the monomer were shown, within a constant depth film fermentor (CDFF), to have slower rates of biofilm growth on their surfaces between 1 and 7 days than the commercial dental composite Z250 or fluoride-releasing dental cements, Fuji II LC and Fuji IX. When an excavated bovine dentine cylinder re-filled with Z250 was placed for 10 weeks in the CDFF, both bacteria and polymers from the artificial saliva penetrated between the material and dentine. With the 50 wt% experimental HEMA/CHXA formulation, this bacterial microleakage was substantially reduced. Polymer leakage, however, still occurred. Both polymer and bacterial microleakage were prevented with a 90 wt% HEMA/CHXA restoration in the bovine dentine due to swelling compensation for polymerisation shrinkage in combination with antibacterial release.

  16. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-09-08

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation.

  17. Sequence dependent conformations of glycidyl methacrylate/butyl methacrylate copolymers in the gas phase

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Gidden, Jennifer; Simonsick, William J.; Grady, Michael C.; Bowers, Michael T.

    2004-11-01

    Sequence dependent conformations of a series of glycidyl methacrylate/butyl methacrylate (GMA/BMA) copolymers cationized by sodium were analyzed in the gas phase using ion mobility methods. GMA and BMA have the same nominal mass but vary in exact mass by 0.036 Da (CH4 versus O). Matrix assisted laser desorption/ionization (MALDI) was used to form Na+(GMA/BMA) copolymer ions and their collision cross-sections were measured in helium using ion mobility methods. The copolymer sequences from Na+(GMA/BMA)3 to Na+(GMA/BMA)5 (i.e. for the trimer to the pentamer) were studied. Analysis by molecular mechanics/dynamics indicates that each copolymer (regardless of sequence) forms a ring around the sodium ions due to Na+/oxygen electrostatic interactions. However, the structures vary in size, since the epoxy oxygen atoms in the glycidyl groups are attracted to the sodium ions while the carbon-composed butyl groups are not. This allows copolymers with more GMA segments to fold tighter (more spherically) around the sodium ion and have smaller cross-sections than copolymers with a larger amount of BMA segments in the sequence. Due to this cross-sectional difference, the GMA/BMA sequence compositions of the trimer and tetramer could be quantified.

  18. Characterization of new acrylic bone cement based on methyl methacrylate/1-hydroxypropyl methacrylate monomer.

    PubMed

    Pascual, B; Goñi, I; Gurruchaga, M

    1999-01-01

    New formulations of acrylic bone cement based on methyl methacrylate/1-hydroxypropyl methacrylate (MMA/HPMA) monomers were developed with the purpose of obtaining more ductile materials with reduced polymerization shrinkage. In this way, the ductility of such materials increased, but the introduction of high percentages of the hydrophilic component produced an important decrease in Young's modulus and strength. To ascertain the reason for the deterioration of the tensile parameters, an analysis by scanning electron microscopy of these formulations was carried out; it revealed poor adhesion between the matrix and poly(MMA) beads. We also observed that the polymerization shrinkage increased as the amount of hydrophilic monomer in the formulation decreased, and the 50% (v/v) HPMA modified bone cement compensated for this volume reduction with its water uptake swelling. Measurements taken on the setting time and polymerization exotherm showed a decrease in the former and an increase in the latter, because of the introduction of a more reactive monomer in the bone cement formulation.

  19. Nonviral Plasmid DNA Carriers Based on N,N'-Dimethylaminoethyl Methacrylate and Di(ethylene glycol) Methyl Ether Methacrylate Star Copolymers.

    PubMed

    Mendrek, Barbara; Sieroń, Łukasz; Żymełka-Miara, Iwona; Binkiewicz, Paulina; Libera, Marcin; Smet, Mario; Trzebicka, Barbara; Sieroń, Aleksander L; Kowalczuk, Agnieszka; Dworak, Andrzej

    2015-10-12

    Star polymers with random and block copolymer arms made of cationic N,N'-dimethylaminoethyl methacrylate (DMAEMA) and nonionic di(ethylene glycol) methyl ether methacrylate (DEGMA) were synthesized via atom transfer radical polymerization (ATRP) and used for the delivery of plasmid DNA in gene therapy. All stars were able to form polyplexes with plasmid DNA. The structure and size of the polyplexes were precisely determined using light scattering and cryo-TEM microscopy. The hydrodynamic radius of a complex of DNA with star was dependent on the architecture of the star arms, the DEGMA content and the number of amino groups in the star compared to the number of phosphate groups of the nucleic acid (N/P ratio). The smallest polyplexes (Rh90°∼50 nm) with positive zeta potentials (∼15 mV) were formed of stars with N/P=6. The introduction of DEGMA into the star structure caused a decrease of polyplex cytotoxicity in comparison to DMAEMA homopolymer stars. The overall transfection efficiency using HT-1080 cells showed that the studied systems are prospective gene delivery agents. The most promising results were obtained for stars with random copolymer arms of high DEGMA content.

  20. Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in charge and hydrophobicity.

    PubMed

    Harkes, G; Feijen, J; Dankert, J

    1991-11-01

    The adhesion of three Escherichia coli strains on to six poly(methacrylates) differing in hydrophobicity and surface charge was measured as a function of time under laminar flow conditions. Polymers used were poly(methyl methacrylate) (PMMA), poly(hydroxyethyl methacrylate) (PHEMA) and copolymers of MMA or HEMA with either 15% methacrylic acid (MAA) or 15% trimethylaminoethyl methacrylate-HCl salt (TMAEMA-Cl). Bacterial and polymer surfaces were characterized by means of water contact angles and zeta potentials. Both the sessile drop contact angles and the zeta potentials of the bacterial surfaces were significantly different. No significant differences in the sessile drop contact angles of the polymer surfaces were observed. Using the Wilhelmy plate technique large contact angle hysteresis was observed for the different polymer surfaces. Surfaces of copolymers with MAA had more negative zeta potentials than those of the corresponding homopolymers. Surfaces of copolymers with TMAEMA-Cl had positive zeta potentials. The highest numbers of adherent bacteria were found on materials with positive zeta potentials, irrespective of the bacterial strain used. Bacterial adhesion on to copolymers with MAA was less than on to the corresponding homopolymers. Bacterial equilibrium adhesion values correlate with the zeta potentials of the polymer surfaces (r greater than 0.85). On substrates with less negative zeta potentials high numbers of adhered bacteria were observed. Additionally, the equilibrium bacterial adhesion values could be related with receding contact angles of polymer surfaces with negative zeta potentials (r greater than 0.86). High equilibrium adhesion values were obtained for polymers with high contact angles. No correlation between the zeta potentials and contact angles of the bacteria with the adhesion values was found.

  1. Glycol Methacrylate Embedding for the Histochemical Study of the Gastrointestinal Tract of Dogs Naturally Infected with Leishmania Infantum

    PubMed Central

    Pinto, A.J.W.; de Amorim, I.F.G.; Pinheiro, L.J.; Madeira, I.M.V.M.; Souza, C.C.; Chiarini-Garcia, H.; Caliari, M.V.

    2015-01-01

    In canine visceral leishmaniasis a diffuse chronic inflammatory exudate and an intense parasite load throughout the gastrointestinal tract (GIT) has been previously reported. However, these studies did not allow a properly description of canine cellular morphology details. The aim of our study was to better characterize these cells in carrying out a qualitative and quantitative histological study in the gastrointestinal tract of dogs naturally infected with Leishmania infantum by examining gut tissues embedded in glycol methacrylate. Twelve infected adult dogs were classified in asymptomatic and symptomatic. Five uninfected dogs were used as controls. After necropsy, three samples of each gut segment, including oesophagus, stomach, duodenum, jejunum, ileum, cecum, colon, and rectum were collected and fixed in Carnoy’s solution for glycol methacrylate protocols. Sections were stained with hematoxylin-eosin, toluidine blue borate, and periodic acid-Schiff stain. Leishmania amastigotes were detected by immunohistochemistry employed in both glycol methacrylate and paraffin embedded tissues. The quantitative histological analysis showed higher numbers of plasma cells, lymphocytes and macrophages in lamina propria of all segments of GIT of infected dogs compared with controls. The parasite load was more intense and cecum and colon, independently of the clinical status of these dogs. Importantly, glycol methacrylate embedded tissue stained with toluidine blue borate clearly revealed mast cell morphology, even after mast cell degranulation. Infected dogs showed lower numbers of mast cells in all gut segments than controls. Despite the glycol methacrylate (GMA) protocol requires more attention and care than the conventional paraffin processing, this embedding procedure proved to be especially suitable for the present histological study, where it allowed to preserve and observe cell morphology in fine detail. PMID:26708180

  2. Osteoblast cell death on methacrylate polymers involves apoptosis.

    PubMed

    Gough, J E; Downes, S

    2001-12-15

    The success of an implant depends on the implant-tissue interface. There are many causes of implant failure, one of which is tissue necrosis. The aim of this in vitro study was to determine whether cell death of primary human osteoblasts (implant site specific cells) occurred by apoptosis (a form of programmed cell death) on two methacrylate polymers. Cells were cultured on poly(ethyl methacrylate)/tetrahydrofurfuryl methacrylate and poly(methyl methacrylate in the form of 13-mm discs, in conditioned medium containing leachable monomer and in the presence of various concentrations of monomer itself in the culture medium. It was found that monomer and leached monomer caused apoptosis of human osteoblast cells in this system. Tetrahydrofurfuryl methacrylate monomer was found to be more toxic than currently used monomer methylmethacrylate. Preincubation of polymers in serum containing medium was found to increase the biocompatibility of the polymers. High levels of apoptosis occurred on polymer used directly after polymerization. Apoptosis levels were decreased after polymer was incubated at 60 degrees C overnight or for 3 days. Apoptosis therefore may occur in cells at the implant site in vivo.

  3. Poly(methyl methacrylate)-titania hybrid materials by sol-gel processing

    SciTech Connect

    Zhang, J.; Luo, S.; Gui, L.; Tang, Y.

    1996-12-31

    Sol-gel derived Poly(methyl methacrylate)-titania hybrid materials were synthesized by using acrylic acid or allyl acetylacetone (3-allyl-2,4-pentanedione) as coupling agents. Titanium butoxide modified with acrylic acid (or titanium isopropoxide modified with allyl acetylacetone) was hydrolyzed to produce a titania network, and then poly (methyl methacrylate) (PMMA) chains formed in situ through a radical polymerization were chemically bonded to the forming titania network to synthesize a hybrid material. Transparent hybrid materials with different contents of titania were achieved. With the increase of the titania content, the colors of the products changed form yellow to dark red. The synthesis process was investigated step by step by using FTIR spectroscopy, and the experimental results demonstrated that acrylate or acetylacetonato groups bound to titanium remain in the final hybrid materials. The thermal stability of the hybrid materials was considerably improved relative to pure PMMA. Field emission scanning electron microscopy (FE-SEM) analyses showed the hybrid materials are porous and pore diameters vary from 10nm to 100nm. The hybrid materials using allyl acetylacetone as the coupling agent exhibited thermochromic effects that both pure PMMA and titania do not have.

  4. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    NASA Astrophysics Data System (ADS)

    Pietrucha, K.; Pȩkala, W.; Kroh, J.

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  5. Complex microparticulate systems based on glycidyl methacrylate and xanthan.

    PubMed

    Lungan, Maria-Andreea; Popa, Marcel; Desbrieres, Jacques; Racovita, Stefania; Vasiliu, Silvia

    2014-04-15

    Porous microparticles based on glycidyl methacrylate, dimethacrylic monomers [ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate] and xanthan gum were synthesized by aqueous suspension polymerization method in the presence of toluene as diluent using two types of initiators: benzoyl peroxide and ammonium persulfate. The G microparticles based on glycidyl methacrylate and dimethacrylic monomers and X microparticles based on glycidyl methacrylate, xanthan and dimethacrylic monomers were characterized by various techniques including FT-IR spectroscopy, TG analysis, SEM analysis and DVS method. The specific surface areas were determined by DVS method, while the copolymer porosities and pore volume were obtained from the apparent and skeletal densities. The results have indicated that xanthan was included in the crosslinked matrix by means of covalent bonds. X microparticles have a porous structure with higher specific surface area (129-44 m(2)/g) and higher sorption capacities compared with G microparticles (69-31 m(2)/g).

  6. Health and Environmental Effects Profile for ethyl methacrylate

    SciTech Connect

    Not Available

    1986-06-01

    The Health and Environmental Effects Profile for ethyl methacrylate was prepared to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human health, aquatic life and environmental effects. Quantitative estimates are presented provided sufficient data are available. Ethyl methacrylate has been determined to be a systemic toxicant. An acceptable daily intake (ADI) for ethyl methacrylate is 0.086 mg/kg/day for oral exposure.

  7. Poly(methyl methacrylate)-cellulose nitrate copolymers. I. Preparation

    SciTech Connect

    Badran, B.M.; Sherif, S.; Abu-Sedira, A.A.

    1981-03-01

    Poly(methyl methacrylate)-cellulose nitrate copolymers were prepared in the form of rods and sheets by bulk polymerization using benzoyl peroxide as initiator. Suspension polymerization did not succeed in preparing poly(methyl methacrylate)-cellulose nitrate copolymers, especially when cellulose nitrate of 11.4% nitrogen content was used. The parameters such as cellulose nitrate concentration, nitrogen content of cellulose nitrate, the amount of initiator and the reaction time, and the temperature are discussed. The prepared copolymers were irradiated for specified periods of up to 11.83 Mrad. It was found that poly(methyl methacrylate)-cellulose nitrate copolymers did not dissolve in any conventional solvent, but they swelled. Swelling decreases with increasing cellulose nitrate concentrations, nitrogen content of cellulose nitrate, and irradiation dose, indicating the crosslinked structure of the prepared copolymers.

  8. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    DTIC Science & Technology

    2005-05-01

    unreacted) acid in the VE system [10]. Approximately 1 g of the VE reaction mixture was dissolved in 5 g acetone.Fig. 1. The reaction of methacrylic acid...free acid, was the maximum allowable acid number. If the acid number was too high, the methacrylation reaction was allowed to continue until future acid...Epon with two bisphenol units (nZ1) while the large peak at 15.5 min represents the Epon with one bisphenol unit (nZ0). After reaction with methacrylic

  9. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  10. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  11. Utilization of Methacrylates and Polymer Matrices for the Synthesis of Ion Specific Resins

    SciTech Connect

    Czerwinski, Kenneth

    2013-10-29

    Disposal, storage, and/or transmutation of actinides such as americium (Am) will require the development of specific separation schemes. Existing efforts focus on solvent extraction systems for achieving suitable separation of actinide from lanthanides. However, previous work has shown the feasibility of ion-imprinting polymer-based resins for use in ion-exchange-type separations with metal ion recognition. Phenolic-based resins have been shown to function well for Am-Eu separations, but these resins exhibited slow kinetics and difficulties in the imprinting process. This project addresses the need for new and innovative methods for the selective separation of actinides through novel ion-imprinted resins. The project team will explore incorporation of metals into extended frameworks, including the possibility of 3D polymerized matrices that can serve as a solid-state template for specific resin preparation. For example, an anhydrous trivalent f-element chain can be formed directly from a metal carbonate, and methacrylic acid from water. From these simple coordination complexes, molecules of discrete size or shape can be formed via the utilization of coordinating ligands or by use of an anionic multi-ligand system incorporating methacrylate. Additionally, alkyl methyl methacrylates have been used successfully to create template nanospaces, which underscores their potential utility as 3D polymerized matrices. This evidence provides a unique route for the preparation of a specific metal ion template for the basis of ion-exchange separations. Such separations may prove to be excellent discriminators of metal ions, even between f-elements. Resins were prepared and evaluated for sorption behavior, column properties, and proton exchange capacity.

  12. Review of Polymerization and Properties of Aminoalkyl Acrylates and Aminoalkyl Methacrylates

    DTIC Science & Technology

    1988-07-01

    to Russian investigators Korshunov, Bodnaryuk, and Kut’in, in 1975.2 The patent concerned the synthesis of methacrylate monomers containing an amino...group through transesterification. These researchers used alkyl methacrylates , mainly methyl methacrylate (MMA), as precursors for the synthesis. For...Ratios (rl, r2) of Aminoalkyl Methacrylates and Other Vinyl Monomers Monomer1 Moromer2 rl r2 DMAEMA MMA 0.717 0.676 DMAEMA BMA 0.705 0.66 BDIMA MMA 0.612

  13. Final report of the safety assessment of methacrylate ester monomers used in nail enhancement products.

    PubMed

    2005-01-01

    Methacrylate ester monomers are used in as artificial nail builders in nail enhancement products. They undergo rapid polymerization to form a hard material on the nail that is then shaped. While Ethyl Methacrylate is the primary monomer used in nail enhancement products, other methacrylate esters are also used. This safety assessment addresses 22 other methacrylate esters reported by industry to be present in small percentages as artificial nail builders in cosmetic products. They function to speed up polymerization and/or form cross-links. Only Tetrahydrofurfuryl Methacrylate was reported to the FDA to be in current use. The polymerization rates of these methacrylate esters are within the same range as Ethyl Methacrylate. While data are not available on all of these methacrylate esters, the available data demonstrated little acute oral, dermal, or i.p. toxicity. In a 28-day inhalation study on rats, Butyl Methacrylate caused upper airway irritation; the NOAEL was 1801 mg/m3. In a 28-day oral toxicity study on rats, t-Butyl Methacrylate had a NOAEL of 20 mg/kg/day. Beagle dogs dosed with 0.2 to 2.0 g/kg/day of C12 to C18 methacrylate monomers for 13 weeks exhibited effects only in the highest dose group: weight loss, emesis, diarrhea, mucoid feces, or salivation were observed. Butyl Methacrylate (0.1 M) and Isobutyl Methacrylate (0.1 M) are mildly irritating to the rabbit eye. HEMA is corrosive when instilled in the rabbit eye, while PEG-4 Dimethacrylate and Trimethylolpropane Trimethacrylate are minimally irritating to the eye. Dermal irritation caused by methacrylates is documented in guinea pigs and rabbits. In guinea pigs, HEMA, Isopropylidenediphenyl Bisglycidyl Methacrylate, Lauryl Methacrylate, and Trimethylolpropane Trimethacrylate are strong sensitizers; Butyl Methacrylate, Cyclohexyl Methacrylate, Hexyl Methacrylate, and Urethane Methacrylate are moderate sensitizers; Hydroxypropyl Methacrylate is a weak sensitizer; and PEG-4 Dimethacrylate and

  14. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  15. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  16. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  17. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  18. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  19. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic.../methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers...

  20. Mössbauer studies of solid state decomposition of methyl methacrylate-ethyl methacrylate copolymers containing ferric chloride

    NASA Astrophysics Data System (ADS)

    Kapur, G. S.; Brar, A. S.

    1990-07-01

    Methyl methacrylate (MMA)-ethyl methacrylate (EMA) copolymers of different monomer concentrations containing anhydrous ferric chloride were prepared by bulk polymerization at 70°C. TGA studies showed that inclusion of iron salt increases the thermal stability of copolymers by 50°C. Mössbauer spectra of copolymers heated at different temperatures showed the presence of Fe3+ species only, in different environments. The mechanism of thermal stabilization of copolymer has been proposed on the basis of IR, TGA and Mössbauer spectroscopy studies.

  1. Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Costela, A.; Florido, F.; Garcia-Moreno, I.; Duchowicz, R.; Amat-Guerri, F.; Figuera, J. M.; Sastre, R.

    1995-04-01

    Rhodamine 6G has been dissolved in copolymers of 2-HydroxyEthyl MethAcrylate (HEMA) and Methyl MethAcrylate (MMA) and the resulting solid-state solutions have been pumped at 337 nm and 532 nm. Lasing efficiencies similar to those found in ethanol solution have been obtained with a 1:1 vol/vol HEMA: MMA copolymer matrix, and lifetimes of ca. 10 000 (337 nm pumping) and ca. 75 000 (532 nm pumping) pulses at repetition rates up to 15 Hz and 10 Hz, respectively, have been demonstrated.

  2. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    NASA Astrophysics Data System (ADS)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  3. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate copolymers identified in this section may be safely used as components of plastic articles... weight percent of polymer units derived from styrene. (b) The finished plastic food-contact article, when... not to exceed an absorbance of 0.15. (3) Ultraviolet-absorbing distilled water and 8 and 50...

  4. Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds

    PubMed Central

    Reeves, Robert; Ribeiro, Andreia; Lombardo, Leonard; Boyer, Richard; Leach, Jennie B.

    2012-01-01

    Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based hydrogels that are stable in routine culture, but degrade when exposed to exogenous cellulase. Solutions of CMC-methacrylate and polyethylene glycol dimethacrylate (PEG-DM) were co-crosslinked to form stable hydrogels; we found that greater CMC-methacrylate content resulted in increased gel swelling, protein diffusion and rates of degradation by cellulase, as well as decreased gel shear modulus. CMC-methacrylate/PEG-DM gels modified with the adhesive peptide RGD supported fibroblast adhesion and viability. We conclude that hydrogels based on CMC-methacrylate are suitable for bioengineering applications where selective degradability may be favorable, such as cell scaffolds or controlled release devices. PMID:22708058

  5. Occupational asthma due to methyl methacrylate and cyanoacrylates.

    PubMed Central

    Lozewicz, S; Davison, A G; Hopkirk, A; Burge, P S; Boldy, D A; Riordan, J F; McGivern, D V; Platts, B W; Davies, D; Newman Taylor, A J

    1985-01-01

    Five patients had asthma provoked by cyanoacrylates and one by methyl methacrylate, possibly because of the development of a specific hypersensitivity response. Acrylates have wide domestic as well as industrial uses, and inhalation of vapour emitted during their use can cause asthma. PMID:4071461

  6. Synthesis and Examination of Nanocomposites Based on Poly(2-hydroxyethyl methacrylate) for Medicinal Use.

    PubMed

    Kukolevska, Olena S; Gerashchenko, Igor I; Borysenko, Mykola V; Pakhlov, Evgenii M; Machovsky, Michal; Yushchenko, Tetyana I

    2017-12-01

    Preparation of poly(2-hydroxyethyl methacrylate) (PHEMA) based nanocomposites using different approaches such as synthesis with water as the porogen, filling of polymer matrix by silica and formation of interpenetrating polymer networks with polyurethane was demonstrated. Incorporation of various biologically active compounds (BAC) such as metronidazole, decamethoxin, zinc sulphate, silver nitrate or amino acids glycine and tryptophan into nanocomposites was achieved. BAC were introduced into the polymer matrix either (1) directly, or (2) with a solution of colloidal silica, or (3) through immobilization on silica (sol-densil). Morphology of prepared materials was investigated by laser scanning microscopy and low-vacuum scanning electron microscopy. In vacuum freeze-drying, prior imaging was proposed for improving visualization of the porous structure of composites. The interaction between PHEMA matrix and silica filler was investigated by IR spectroscopy. Adsorption of 2-hydroxyethyl methacrylate and BAC from aqueous solution on the silica surface was also examined. Phase composition and thermal stability of composites were studied by the differential thermogravimetry/differential thermal analysis. Release of BAC into water medium from prepared composites were shown to depend on the synthetic method and differed significantly. Obtained PHEMA-base materials which are characterized by controlled release of BAC have a strong potential for application in manufacturing of different surgical devices like implants, catheters and drainages.

  7. Synthesis and Examination of Nanocomposites Based on Poly(2-hydroxyethyl methacrylate) for Medicinal Use

    NASA Astrophysics Data System (ADS)

    Kukolevska, Olena S.; Gerashchenko, Igor I.; Borysenko, Mykola V.; Pakhlov, Evgenii M.; Machovsky, Michal; Yushchenko, Tetyana I.

    2017-02-01

    Preparation of poly(2-hydroxyethyl methacrylate) (PHEMA) based nanocomposites using different approaches such as synthesis with water as the porogen, filling of polymer matrix by silica and formation of interpenetrating polymer networks with polyurethane was demonstrated. Incorporation of various biologically active compounds (BAC) such as metronidazole, decamethoxin, zinc sulphate, silver nitrate or amino acids glycine and tryptophan into nanocomposites was achieved. BAC were introduced into the polymer matrix either (1) directly, or (2) with a solution of colloidal silica, or (3) through immobilization on silica (sol-densil). Morphology of prepared materials was investigated by laser scanning microscopy and low-vacuum scanning electron microscopy. In vacuum freeze-drying, prior imaging was proposed for improving visualization of the porous structure of composites. The interaction between PHEMA matrix and silica filler was investigated by IR spectroscopy. Adsorption of 2-hydroxyethyl methacrylate and BAC from aqueous solution on the silica surface was also examined. Phase composition and thermal stability of composites were studied by the differential thermogravimetry/differential thermal analysis. Release of BAC into water medium from prepared composites were shown to depend on the synthetic method and differed significantly. Obtained PHEMA-base materials which are characterized by controlled release of BAC have a strong potential for application in manufacturing of different surgical devices like implants, catheters and drainages.

  8. 76 FR 69662 - Methacrylic Polymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... and sodium 2-methyl-2-[(1- oxo-2-propen-1-yl) amino]-1-propanesulfonate (1:1), sodium salt (CAS Reg... residues of 2-Propenoic acid, 2-methyl-, telomer with 2-ethylhexyl 2- propenoate, 2-propanol and sodium 2-methyl-2-[(1-oxo-2-propen-1-yl) amino]-1-propanesulfonate (1:1), sodium salt on food or feed...

  9. Poly(sulfobetaine methacrylate)s as electrode modifiers for inverted organic electronics.

    PubMed

    Lee, Hyunbok; Puodziukynaite, Egle; Zhang, Yue; Stephenson, John C; Richter, Lee J; Fischer, Daniel A; DeLongchamp, Dean M; Emrick, Todd; Briseno, Alejandro L

    2015-01-14

    We demonstrate the use of poly(sulfobetaine methacrylate) (PSBMA), and its pyrene-containing copolymer, as solution-processable work function reducers for inverted organic electronic devices. A notable feature of PSBMA is its orthogonal solubility relative to solvents typically employed in the processing of organic semiconductors. A strong permanent dipole moment on the sulfobetaine moiety was calculated by density functional theory. PSBMA interlayers reduced the work function of metals, graphene, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by over 1 eV, and an ultrathin interlayer of PSBMA reduced the electron injection barrier between indium tin oxide (ITO) and C70 by 0.67 eV. As a result, the performance of organic photovoltaic devices with PSBMA interlayers is significantly improved, and enhanced electron injection is demonstrated in electron-only devices with ITO, PEDOT:PSS, and graphene electrodes. This work makes available a new class of dipole-rich, counterion-free, pH insensitive polymer interlayers with demonstrated effectiveness in inverted devices.

  10. Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices.

    PubMed

    Wei, Suying; Vaidya, Bikas; Patel, Ami B; Soper, Steven A; McCarley, Robin L

    2005-09-08

    We report here the photochemical surface modification of poly(methyl methacrylate), PMMA, microfluidic devices by UV light to yield pendant carboxylic acid surface moieties. Patterns of carboxylic acid sites can be formed from the micrometer to millimeter scale by exposure of PMMA through a contact mask, and the chemical patterns allow for further functionalization of PMMA microdevice surfaces to yield arrays or other structured architectures. Demonstrated here is the relationship between UV exposure time and PMMA surface wettability, topography, surface functional group density, and electroosmotic flow (EOF) of aqueous buffer solutions in microchannels made of PMMA. It is found that the water contact angle on PMMA surfaces decreases from 70 degrees to 24 degrees after exposure to UV light as the result of the formation of carboxylic acid sites. However, upon rinsing with 2-propanol, the water contact angle increases to approximately 80 degrees , and this increase is attributed to changes in surface roughness resulting from removal of low molecular weight PMMA formed from scission events. In addition, the surface roughness and surface coverage of carboxylic acid groups exhibit a characteristic trend with UV exposure time. Electroosmotic flow (EOF) in PMMA microchannels increases upon UV modification and is pH dependent. The possible photolysis mechanism for formation of carboxylic acid groups on PMMA surfaces under the conditions outlined in this work is discussed.

  11. High Performance Fatty Acid-Based Vinyl Ester Resin for Liquid Molding

    DTIC Science & Technology

    2007-07-01

    Diglycidyl ether of bisphenol-A ( DGEBA ) Methacrylic Acid Figure 1: The reaction of DGEBA and methacrylic acid to produce the vinyl ester 2.3...High Performance Fatty Acid -Based Vinyl Ester Resin for Liquid Molding by Xing Geng, John J. La Scala, James M. Sands, and Giuseppe R...it to the originator. Army Research Laboratory Aberdeen Proving Ground, MD 21005-5069 ARL-RP-184 July 2007 High Performance Fatty Acid

  12. Multi-steps green process for synthesis of six-membered functional cyclic carbonate from trimethylolpropane by lipase catalyzed methacrylation and carbonation, and thermal cyclization.

    PubMed

    Sayed, Mahmoud; Gaber, Yasser; Bornadel, Amin; Pyo, Sang-Hyun

    2016-01-01

    A highly functionalized six-membered cyclic carbonate, methacrylated trimethylolpropane (TMP) cyclic carbonate, which can be used as a potential monomer for bisphenol-free polycarbonates and isocyanate-free polyurethanes, was synthesized by two steps transesterifications catalyzed by immobilized Candida antarctica lipase B, Novozym(®) 435 (N435) followed by thermal cyclization. TMP was functionalized as 70 to 80% selectivity of mono-methacrylate with 70% conversion was achieved, and the reaction rate was evaluated using various acyl donors such as methacrylic acid, methacrylate-methyl ester, -ethyl ester, and -vinyl ester. As a new observation, the fastest rate obtained was for the transesterfication reaction using methacrylate methyl ester. Byproducts resulted from leaving groups were adsorbed on the molecular sieves (4Å) to minimize the effect of leaving group on the equilibrium. The difference of reaction rate was explained by molecular dynamic simulations on interactions between carbonyl oxygen and amino acid residues (Thr 40 and Glu 157) in the active site of lipase. Our docking studies revealed that as acyl donor, methyl ester was preferred for the initial conformation of the first tetrahederal intermediate with hydrogen bonding interactions. TMP-monomethacrylate (TMP-mMA) cyclic carbonate was obtained in 63% yield (74.1% calculated in 85% conversion) from the lipase-catalyzed carbonation reaction of TMP-mMA with dimethylcarbonate, and followed by thermal cyclization of the monocarbonate at 90°C. From the multiple reactions demonstrated in gram scale, TMP-mMA cyclic carbonate was obtained as a green process without using chlorinated solvent and reagent.

  13. Radiological properties of normoxic polymer gel dosimeters

    SciTech Connect

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.; Baldock, C.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% higher than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.

  14. Multipin peptide synthesis at the micromole scale using 2-hydroxyethyl methacrylate grafted polyethylene supports.

    PubMed

    Valerio, R M; Bray, A M; Campbell, R A; Dipasquale, A; Margellis, C; Rodda, S J; Geysen, H M; Maeji, N J

    1993-07-01

    The multipin peptide synthesis procedure has been adapted to allow the synthesis of peptides at micromole loadings. The original solid pin support was replaced with a detachable crown-shaped polyethylene support with an increased surface area. In addition, the polyethylene crowns were radiation-grafted with 2-hydroxyethyl methacrylate monomer instead of acrylic acid to yield hydroxy functionalized supports with a larger concentration of polymer and hence a larger peptide capacity. Fmoc-beta-Alanine was directly esterified to the HEMA hydroxy groups with subsequent addition of a diketopiperazine-forming handle for peptide attachment. Peptides varying in length from 10 to 25 residues were assembled at a number of loadings from 1.0 to 2.2 mumol. Purity of peptides at all loadings was equal to, and in some instances superior to, that achieved on conventional solid-phase supports.

  15. Synthesis, characterization and stability of chitosan and poly(methyl methacrylate) grafted carbon nanotubes.

    PubMed

    Carson, Laura; Hibbert, Kemar; Akindoju, Feyisayo; Johnson, Chevaun; Stewart, Melisa; Kelly-Brown, Cordella; Beharie, Gavannie; Fisher, Tavis; Stone, Julia; Stoddart, Dahlia; Oki, Aderemi; Neelgund, Gururaj M; Regisford, Gloria; Traisawatwong, Pasakorn; Zhou, Jianren; Luo, Zhiping

    2012-10-01

    The single walled carbon nanotubes (CNTs) were effectively functionalized through grafting with chitosan (CTS) and poly(methyl methacrylate) (PMMA). Prior to grafting reaction, the carboxylated SWNCTs (SWNCTs-COOH) were obtained by treating pristine CNTs with a mixture of 3:1 (v/v) H(2)SO(4) and HNO(3), and the successive treatment of SWNCTs-COOH with SOCl(2) yielded the acylated CNTs (CNTs-COCl). The functionalized derivatives of CNTs were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. Both CTS and PMMA grafted CNTs showed better dispersability in acetic acid and tetrahydrofuran, in addition to higher stability in solution.

  16. Synthesis, characterization and stability of chitosan and poly(methyl methacrylate) grafted carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Carson, Laura; Hibbert, Kemar; Akindoju, Feyisayo; Johnson, Chevaun; Stewart, Melisa; Kelly-Brown, Cordella; Beharie, Gavannie; Fisher, Tavis; Stone, Julia; Stoddart, Dahlia; Oki, Aderemi; Neelgund, Gururaj M.; Regisford, Gloria; Traisawatwong, Pasakorn; Zhou, Jianren; Luo, Zhiping

    2012-10-01

    The single walled carbon nanotubes (CNTs) were effectively functionalized through grafting with chitosan (CTS) and poly(methyl methacrylate) (PMMA). Prior to grafting reaction, the carboxylated SWNCTs (SWNCTs-COOH) were obtained by treating pristine CNTs with a mixture of 3:1 (v/v) H2SO4 and HNO3, and the successive treatment of SWNCTs-COOH with SOCl2 yielded the acylated CNTs (CNTs-COCl). The functionalized derivatives of CNTs were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. Both CTS and PMMA grafted CNTs showed better dispersability in acetic acid and tetrahydrofuran, in addition to higher stability in solution.

  17. Thermal behavior of poly(2-hydroxyethyl methacrylate-bis-[trimethoxysilylpropyl]amine) networks

    NASA Astrophysics Data System (ADS)

    Bustos Figueroa, L. A.; Salgado Delgado, R.; García Hernandez, E.; Vargas Galarza, Z.; Rubio Rosas, E.; Salgado Rodriguez, R.

    2013-06-01

    Poly(HEMA-BisSi) networks were prepared by using acid-catalyzed sol-gel of bis-[trimethoxysilylpropyl]amine (BisSi) and free radical polymerization of 2-hydroxyethyl methacrylate (HEMA). The thermal properties of the poly(HEMA-BisSi) networks were investigated with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The thermal behavior of these networks was also compared with homopolymers (The networks formed in both PHEMA and PBisSi gels were identified). The glass transition temperature (Tg) of PHEMA homopolymer was found as 103.74 °C. The thermal degradation of the poly(HEMA-BisSi) networks with different silica contents (e.g. 10, 15 and 25 wt%) were evaluated with use of DTG. It was observed that the thermal degradation temperature of poly(HEMA-BisSi) networks changed much with the BisSi content.

  18. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  19. Physical properties of agave cellulose graft polymethyl methacrylate

    SciTech Connect

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  20. [Chest granuloma secondary to methyl methacrylate. Case report].

    PubMed

    Martínez-Bistrain, Ricardo; Robles García, Verónica; Cornejo-Morales, Ivonne

    2010-01-01

    We present the case of a patient with a history of a massive left hemithorax crushing injury in 1985; the exact management of the lesion is unknown. Twenty years later he had a thoracic fistula with a culture that was reported as positive for Enteroccocus faecalis and Staphyloccocus epidermidis. The patient was referred by the chest surgery service with the diagnosis of rib osteomyelitis once complementary imaging tests were performed (plain X-rays, CAT scan and MRI). The patient underwent surgery at our service; a granulomatous reaction secondary to a foreign body (methyl methacrylate and Ethibon) was reported. Chest reconstruction for massive lesions is possible with methyl methacrylate. Imaging studies involve the well-known difficulty to identify this material, given that it may produce signals and densities that are difficult to interpret by specialized physicians.

  1. Penile enlargement with methacrylate injection: is it safe?

    PubMed

    Torricelli, Fabio Cesar Miranda; Andrade, Enrico Martins de; Marchini, Giovanni Scala; Lopes, Roberto Iglesias; Claro, Joaquim Francisco Almeida; Cury, Jose; Srougi, Miguel

    2013-01-01

    CONTEXT Penis size is a great concern for men in many cultures. Despite the great variety of methods for penile augmentation, none has gained unanimous acceptance among experts in the field. However, in this era of minimally invasive procedure, injection therapy for penile augmentation has become more popular. Here we report a case of methacrylate injection in the penis that evolved with penile deformity and sexual dysfunction. This work also reviews the investigation and management of this pathological condition. CASE REPORT A 36-year-old male sought medical care with a complaint of penile deformity and sexual dysfunction after methacrylate injection. The treatment administered was surgical removal. Satisfactory cosmetic and functional results were reached after two months. CONCLUSIONS There is a need for better structured scientific research to evaluate the outcomes and complication rates from all penile augmentation procedures.

  2. Positron annihilation investigations on poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abd-Elsadek, Gomaa G.

    2000-06-01

    Positron lifetime and Doppler broadened annihilation radiation were measured for seven different samples of poly(methyl methacrylate) at room temperature in vacuum. The polymerisation of methyl methacrylate was carried out as a bulk polymerisation in the presence of benzoyl peroxide as an initiator. The effect of the amount of the initiator on the viscosity-average molecular weight was studied. It was found that the viscosity-average molecular weight decreased with increasing amount of the initiator. The average lifetime and intensity of ortho-positronium ( o-Ps) increased with increasing viscosity-average molecular weight up to 6.85 × 10 4 and remained constant after that. The S-parameter showed a similar behaviour as that of the o-Ps intensity.

  3. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  4. Physical properties of agave cellulose graft polymethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-01

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm-1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  5. Surface characterisation of various bone cements prepared with functionalised methacrylates/bioactive ceramics in relation to HOB behaviour.

    PubMed

    Salih, Vehid; Mordan, Nicky; Abou Neel, Ensanya A; Armitage, David A; Jones, Frances H; Knowles, Jonathan C; Nazhat, Showan N; Vargas-Coronado, R; Cauich-Rodriguez, Juan V

    2006-03-01

    This study reports the relationship between the biocompatibility and surface properties of experimental bone cements. The effect of hydroxyapatite (HA) or alpha-tri-calcium phosphate (alpha-TCP) incorporated into bone cements prepared with methyl methacrylate as base monomer and either methacrylic acid or diethyl amino ethyl methacrylate (DEAEMA) as comonomers was investigated. The in vitro biocompatibility of these composite cements was assessed in terms of the interaction of primary human osteoblasts grown on the materials over a period of 5 days and compared with a control surface. These results were related to the surface properties investigated through a number of techniques, namely Fourier transform infrared, contact angle measurements, X-ray photoelectron spectroscopy and energy dispersive analysis of X-rays. Complementary techniques of thermal analysis and ion chromatography were also performed. Biocompatibility results showed that the addition of alpha-TCP improves biocompatibility regardless of comonomer type. This is in contrast to HA-based cements where cell proliferation was significantly lower. Surface characterisations showed that structural integrity of the materials was maintained in the presence of the acid and base comonomers, and water contact angles were reduced particularly in DEAEMA containing materials. Furthermore, ion chromatography confirmed higher Ca2+ and PO4(3-) ion release by both types of ceramics, particularly for those containing DEAEMA. In conclusion, the incorporation of acidic and basic comonomers to either HA or alpha-TCP ceramics containing bone cements can have differential effects upon the attachment and proliferation of bone cells in vitro. Moreover, those cements consisting of alpha-TCP and containing DEAEMA comonomer indicated the most favourable biocompatibility.

  6. Gelatin methacrylate microspheres for controlled growth factor release.

    PubMed

    Nguyen, Anh H; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C

    2015-02-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles (MPs) formulated with a wide range of different cross-linking densities (15-90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor than conventional GA cross-linked MPs, despite the GA MPs having an order of magnitude greater gelatin content. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 and basic fibroblast growth factor and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery.

  7. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  8. Enhanced surface segregation of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate by introduction of a second block.

    PubMed

    Ni, Huagang; Gao, Jie; Li, Xuehua; Hu, Yanyan; Yan, Donghuan; Ye, XiuYun; Wang, Xinping

    2012-01-01

    New fluorinated copolymers of poly(methyl methacrylate)-b-poly(butyl methacrylate) or poly(n-octadecyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate (PMMA(x)-b-PBMA(y)-ec-PFMA(z) or PMMA(x)-b-PODMA(y)-ec-PFMA(z)) were synthesized by living atom transfer radical polymerization. Thin films made of PMMA(230)-b-PODMA(y)-ec-PFMA(1) were characterized by differential scanning calorimetry, angle-resolved X-ray photoelectron spectroscopy and X-ray diffraction. These films were found to exhibit robust surface segregation of the end groups. Furthermore, the fluorine enrichment factor at the film surface was found to increase linearly with increasing degree of polymerization of poly(n-octadecyl methacrylate) and its increasing fusion enthalpy in the second block, which enhances the segregation of the fluorinated moieties.

  9. Multifunctional methacrylate-based coatings for glass and metal surfaces

    NASA Astrophysics Data System (ADS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  10. Methacrylate based gel polymer electrolyte for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Isken, P.; Winter, M.; Passerini, S.; Lex-Balducci, A.

    2013-03-01

    A methacrylate based gel polymer electrolyte (GPE) was prepared and electrochemically investigated. The polymer was synthesized as a statistical co-polymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and benzyl methacrylate (BnMA) by free radical polymerization. The ethylene glycol side chain of OEGMA should be able to interact with the liquid electrolyte, thus keeping it inside the GPE, whereas BnMA was used to enhance the mechanical stability of the GPE. Such a polymer was able to retain liquid electrolyte up to 400% of its own weight, while the mechanical stability of the GPE was still high enough to be used as separator in lithium-ion batteries. The GPE displayed a conductivity of 1.8 mS cm-1 at 25 °C and an electrochemical stability window comparable to that of a standard liquid electrolyte. When used in lithium-ion batteries, such a GPE allowed a performance comparable to that obtained using conventional liquid electrolytes. Therefore the reported electrolyte was identified as a promising candidate as electrolyte for lithium-ion batteries.

  11. Efficient Synthesis of Poly(hydroxyethyl Methacrylate)-b-Poly(dimethylaminoethyl Methacrylate) Block Copolymer by Atom Transfer Radical Polymerization.

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Loo, Yueh-Lin

    2009-03-01

    Polymers containing hydroxyethyl methacrylate (HEMA) and dimethylaminoethyl methacrylate (DMAEMA) have found wide applications in areas such as bioseparation, tissue engineering and controlled drug delivery. The controlled synthesis of block copolymers of PDMAEMA-b-PHEMA from PDMAEMA macroinitiator by atom transfer radical polymerization (ATRP), however, has not been successful due to the loss of chain end functionality during polymerization. We report an ATRP system that affords efficient chain extension from PDMAEMA to HEMA using Cu(0)/1,1,4,7,10,10-hexamethyltriethylenetetramine as the catalyst, 2-chloropropionitrile as the initiator in methanol at room temperature. A clear peak shift in the gel permeation chromatography trace towards shorter elution times indicates chain growth on HEMA addition. The chain end functionalities of PDMAEMA are thus retained and can be used to efficiently initiate chain extension reaction of HEMA. This new synthetic route opens new possibilities for the synthesis of pH- and temperature-responsive systems containing DMAEMA.

  12. Synthesis and characterization of injectable, water-soluble copolymers of tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates.

    PubMed

    Anderson, Brian C; Mallapragada, Surya K

    2002-11-01

    Several homopolymers and copolymers of 2-(diethylamino)ethyl methacrylate (DEAEM) and poly(ethylene glycol) methyl ether methacrylate (PEGMEM) were synthesized using anionic polymerization initiated by potassium t-butoxide. The polymers were characterized by average molecular weight, polydispersity and monomeric unit composition. A very narrow molecular weight distribution was achieved with a well-controlled composition. The glass transition temperatures and compositions of the copolymers followed a Gordon-Taylor relationship. The water solubility and biocompatibility of the copolymers was compared to their parent homopolymers to determine if the addition of a poly(ethylene glycol) group was sufficient to solubilize the polymers in aqueous buffer solutions and to increase the biocompatibility of the polymers. These water-soluble, injectable cationic copolymers have potential applications in gene delivery as well as other biomaterial applications.

  13. Preparation of hydroxyapatite/poly(methyl methacrylate) and calcium silicate/poly(methyl methacrylate) interpenetrating hybrid composites.

    PubMed

    Monvisade, Pathavuth; Siriphannon, Punnama; Jermsungnern, Rapee; Rattanabodee, Sirirat

    2007-10-01

    Hydroxyapatite/poly(methyl methacrylate) (HAp/PMMA) and calcium silicate/poly(methyl methacrylate) (CS/PMMA) composites were prepared by interpenetrating bulk polymerization of methyl methacrylate (MMA) monomer in porous structures of HAp and CS. The porous HAp and CS templates were prepared by mixing their calcined powders with poly(vinyl alcohol) (PVA) solution, shaping by uniaxial pressing and then firing at 1,100 degrees C for HAp and 900 degrees C for CS. The templates were soaked in the solution mixture of MMA monomer and 0.1 mol% of benzoyl peroxide (BPO) for 24 h. The pre-composites were then bulk polymerized at 85 degrees C for 24 h under nitrogen atmosphere. The microstructures of the composites showed the interpenetrating of PMMA into the porous HAp and CS structures. Thermogravimetric analysis indicated that the PMMA content in the HAp/PMMA and CS/PMMA composites were 13 and 26 wt%, respectively. Weight average molecular weights (M(w)) of PMMA were about 491,000 for HAp/PMMA composites and about 348,000 for CS/PMMA composites. Compressive strengths of these composites were about 90-131 MPa in which they were significantly higher than their starting porous templates.

  14. Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.

    PubMed

    Chen, C H; Lee, W C

    2001-06-29

    Non-porous particles having an average diameter of 2.1 microm were prepared by co-polymerization of styrene, methyl methacrylate and glycidyl methacrylate, which was abbreviated as P(S-MMA-GMA). The particles were mechanically stable due to the presence of benzene rings in the backbone of polymer chains, and could withstand high pressures when a column packed with these particles was operated in the HPLC mode. The polymer particles were advantaged by immobilization of ligands via the epoxy groups on the particle surface that were introduced by one of the monomers, glycidyl methacrylate. As a model system, Cibacron Blue 3G-A was covalently immobilized onto the non-porous copolymer beads. The dye-immobilized P(S-MMA-GMA) particles were slurry packed into a 1.0 cm x 0.46 cm I.D. column. This affinity column was effective for the separation of turkey egg white lysozyme from a protein mixture. The bound lysozyme could be eluted to yield a sharp peak by using a phosphate buffer containing 1 M NaCl. For a sample containing up to 8 microg of lysozyme, the retained portion of proteins could be completely eluted without any slit peak. Due to the use of a shorter column, the analysis time was shorter in comparison with other affinity systems reported in the literature. The retention time could be reduced significantly by increasing the flow-rate, while the capacity factor remained at the same level.

  15. Molecular Dynamics Simulations of Hugoniot Relations for Poly[methyl methacrylate

    DTIC Science & Technology

    2011-11-01

    Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ] by Tanya L. Chantawansri, Edward F. C. Byrd, Betsy M. Rice...Ground, MD 21005-5066 ARL-TR-5819 November 2011 Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ...4. TITLE AND SUBTITLE Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ] 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  16. Microleakage of Class V Methacrylate and Silorane-based Composites and Nano-ionomer Restorations in Fluorosed Teeth

    PubMed Central

    Shafiei, Fereshteh; Abouheydari, Mohadese

    2015-01-01

    Statement of the Problem Enamel and dentin marginal sealing ability of the new adhesive materials could play an important role in successful restoration on fluorosed teeth. Purpose The aim of this in vitro study was to evaluate the marginal microleakage of low-shrinkage silorane-based composite, nano-ionomer, and methacrylate-based composite through self-etching approach or with enamel acid etching. Materials and Method Seventy-two extracted human molars with moderate fluorosed (according to Thylstrup and Fejerskov index, TFI= 4-6) were randomly divided into six groups (n=12). Class V cavities were prepared on the buccal surface at the cementoenamel junction and restored with Clearfil SE Bond/Clearfil AP-X (methacrylate composite), Silorane Adhesive System/Filtek P90 , and nano primer/nano-ionomer according to the manufacturer’s instructions (self-etching approach) or with additional selective enamel acid etching before primer application for each adhesive. After water storage and thermocycling, microleakages of the samples were assessed using dye-penetration technique at the enamel and dentin margins. Data were analyzed using non-parametric tests (α = 0.05).   Results There was a significant difference among the six groups at the enamel margin (p= 0.001), but not at the dentin margin (p= 0.7). For all the three adhesive materials, additional enamel etching resulted in significantly reduced microleakage at the enamel margin (p< 0.05). Conclusion Methacrylate- and silorane-based composites and nano-ionomer revealed a similar and good performance in terms of dentin marginal sealing, but not at the enamel margin. The additional selective enamel etching might improve enamel sealing for the three materials. PMID:26046105

  17. A thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability

    PubMed Central

    Ma, Zuwei; Nelson, Devin M.; Hong, Yi; Wagner, William R.

    2011-01-01

    Injectable thermoresponsive hydrogels are of interest for a variety of biomedical applications, including regional tissue mechanical support as well as drug and cell delivery. Within this class of materials there is a need to provide options for gels with stronger mechanical properties as well as variable degradation profiles. To address this need, the hydrolytically labile monomer, methacrylate-polylactide (MAPLA), with an average 2.8 lactic acid units, was synthesized and copolymerized with N-isopropylacrylamide (NIPAAm) and 2-hydroxyethyl methacrylate (HEMA) to obtain bioabsorbable thermally responsive hydrogels. Poly(NIPAAm-co-HEMA-co-MAPLA) with three monomer feed ratios (84/10/6, 82/10/8 and 80/10/10) was synthesized and characterized with NMR, FTIR and GPC. The copolymers were soluble in saline at reduced temperature (<10°C), forming clear solutions that increased in viscosity with the MAPLA feed ratio. The copolymers underwent sol-gel transition at lower critical solution temperatures of 12.4, 14.0 and 16.2°C respectively and solidified immediately upon being placed in a 37°C water bath. The warmed hydrogels gradually excluded water to reach final water contents of ~45%. The hydrogels as formed were mechanically strong, with tensile strengths as high as 100 kPa and shear moduli of 60 kPa. All three hydrogels were completely degraded (solubilized) in PBS over a 6–8 month period at 37°C, with a higher MAPLA feed ratio resulting in a faster degradation period. Culture of primary vascular smooth muscle cells with degradation solutions demonstrated a lack of cytotoxicity. The synthesized hydrogels provide new options for biomaterial injection therapy where increased mechanical strength and relatively slow resorption rates would be attractive. PMID:20575552

  18. Poly(glycerol methacrylate)-based degradable nanoparticles for delivery of small interfering RNA.

    PubMed

    Morsi, Noha G; Ali, Shimaa M; Elsonbaty, Sherouk S; Afifi, Ahmed A; Hamad, Mostafa A; Gao, Hui; Elsabahy, Mahmoud

    2017-04-07

    Nucleic acids therapeutic efficiency is generally limited by their low stability and intracellular bioavailability, and by the toxicity of the carriers used to deliver them to the target sites. Aminated poly(glycerol methacrylate) polymers are biodegradable and pH-sensitive polymers that have been used previously to deliver antisense oligonucleotide and show high transfection efficiency. The purpose of this study is to compare the efficiency and toxicity of aminated linear poly(glycerol methacrylate) (ALT) biodegradable polymer to the most commonly used cationic degradable (i.e. chitosan) and non-degradable (i.e. polyethylenimine (PEI)) polymers for delivery of short interfering RNA (siRNA). ALT, PEI and chitosan polymers were able to form nanosized particles with siRNA. Size, size-distribution and zeta-potential were measured over a wide range of nitrogen-to-phosphate (N/P) ratios, and the stability of the formed nanoparticles in saline and upon freeze-drying was also assessed. No significant cytotoxicity at the range of the tested concentrations of ALT and chitosan nanoparticles was observed, whereas the non-degradable PEI showed significant toxicity in huh-7 hepatocyte-derived carcinoma cell line. The safety profiles of the degradable polymers (ALT and chitosan) over non-degradable PEI were demonstrated in vitro and in vivo. In addition, ALT nanoparticles were able to deliver siRNA in vivo with significantly higher efficiency than chitosan nanoparticles. The results in the present study give evidence of the great implications of ALT nanoparticles in biomedical applications due to their biocompatibility, low cytotoxicity, high stability and simple preparation method.

  19. Antibacterial Effect of Dental Adhesive Containing Dimethylaminododecyl Methacrylate on the Development of Streptococcus mutans Biofilm

    PubMed Central

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H. K.; Weir, Michael D.; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-01-01

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives. PMID:25046750

  20. Hardness of irradiated poly(methyl methacrylate) at elevated temperatures

    SciTech Connect

    Lu, K.-P.; Lee, Sanboh; Cheng, Cheu Pyeng

    2001-08-15

    The decrease in hardness induced by gamma irradiation in poly(methyl methacrylate) (PMMA) has been investigated. The hardness is assumed to decrease linearly with the concentration of radiation-induced defects. Annealing at high temperatures induces defect annihilation as tracked by an increase in hardness. The annihilation follows first-order kinetics during isothermal annealing. The dependence of hardness on the reciprocal of the time constant satisfies the Arrhenius equation, and the corresponding activation energy of the kinetic process decreases with increasing dose. The hardness of postannealed PMMA decreases linearly with increasing dose. {copyright} 2001 American Institute of Physics.

  1. Characterization and degradation of functionalized chitosan with glycidyl methacrylate.

    PubMed

    Flores-Ramírez, Nelly; Elizalde-Peña, Eduardo A; Vásquez-García, Salomón R; González-Hernández, Jesús; Martinez-Ruvalcaba, Agustín; Sanchez, Isaac C; Luna-Bárcenas, Gabriel; Gupta, Ram B

    2005-01-01

    The synthesis, characterization and degradation of a hybrid chitosan (CTS)/glycidyl methacrylate (GMA) material are reported. These versatile materials (natural-synthetic materials) are potential candidates for dental restoratives. All materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction and thermal (DSC) analysis. Particular attention was paid to the thermal stability and chemical resistance of the hybrid CTS materials. From dynamical rheological tests, it was concluded that CTS-GMA solutions behave as physical hydrogels. These pH-sensitive gels are an example of stimuli-responsive polymers, also known as 'smart polymers'.

  2. Methyl methacrylate permeability of dental and industrial gloves.

    PubMed

    Thomas, Sebastian; Padmanabhan, T V

    2009-01-01

    Our study was undertaken to measure the amount and time it took for methyl methacrylate monomer (MMA) to permeate latex, vinyl and industrial neoprene gloves and to compare the results to obtain a rating of the permeability of each of the gloves studied to MMA. The monomer, permeated under static conditions, was measured using a spectrophotometer. Latex and vinyl clinical gloves became permeable to MMA in a very short amount of time. Neoprene industrial gloves remained impervious for 25 minutes. Dentists and dental technicians should be aware of the toxic effects of MMA and understand that clinical gloves do not afford protection from MMA.

  3. Preparation of novel poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted core-shell magnetic chitosan microspheres and immobilization of lactase.

    PubMed

    Zhao, Wei; Yang, Rui-Jin; Qian, Ting-Ting; Hua, Xiao; Zhang, Wen-Bin; Katiyo, Wendy

    2013-06-06

    Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe3O4 cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6-17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization.

  4. Synthesis of branched poly(methyl methacrylate)s via controlled/living polymerisations exploiting ethylene glycol dimethacrylate as branching agent.

    PubMed

    Isaure, Francoise; Cormack, Peter A G; Graham, Susan; Sherrington, David C; Armes, Steven P; Bütun, Vural

    2004-05-07

    With appropriate choice of reaction composition and conditions, copolymerisation of methyl methacrylate and ethylene glycol dimethacrylate using Cu-based ATRP or GTP methodologies yields soluble branched polymers in facile one-pot reactions.

  5. Cell toxicity of methacrylate monomers-the role of glutathione adduct formation.

    PubMed

    Ansteinsson, V; Kopperud, H B; Morisbak, E; Samuelsen, J T

    2013-12-01

    Polymer-based dental restorative materials are designed to polymerize in situ. However, the conversion of methacrylate monomer to polymer is never complete, and leakage of the monomer occurs. It has been shown that these monomers are toxic in vitro; hence concerns regarding exposure of patients and dental personnel have been raised. Different monomer methacrylates are thought to cause toxicity through similar mechanisms, and the sequestration of cellular glutathione (GSH) may be a key event. In this study we examined the commonly used monomer methacrylates, 2-hydroxyethylmethacrylate (HEMA), triethylenglycol-dimethacrylate (TEGDMA), bisphenol-A-glycidyl-dimethacrylate (BisGMA), glycerol-dimethacrylate (GDMA) and methyl-methacrylate (MMA). The study aimed to establish monomers' ability to complex with GSH, and relate this to cellular toxicity endpoints. Except for BisGMA, all the monomer methacrylates decreased the GSH levels both in cells and in a cell-free system. The spontaneous formation of methacrylate-GSH adducts were observed for all methacrylate monomers except BisGMA. However, we were not able to correlate GSH depletion and toxic response measured as SDH activity and changes in cell growth pattern. Together, the current study indicates mechanisms other than GSH-binding to be involved in the toxicity of methacrylate monomers.

  6. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  7. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  8. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  9. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  10. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  11. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  12. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  13. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  14. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  15. Allergic contact gingivostomatitis from a temporary crown made of methacrylates and epoxy diacrylates.

    PubMed

    Kanerva, L; Alanko, K; Estlander, T

    1999-12-01

    Occupational allergic contact dermatitis caused by (meth)acrylates is common in dental personnel, whereas dental acrylic fillings and crowns have rarely been reported to cause problems in dental patients. Here we report on a 48-year-old woman who developed gingivitis, stomatitis, and perioral dermatitis after a temporary crown made of restorative, two-component material had been inserted. The manufacturer stated that the temporary crown base paste and catalyst contained three (meth)acrylates, namely, a proacrylate, which is a modification of 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BIS-GMA); a tricyclate, which is a saturated, aliphatic, tricyclic methacrylate; and urethane methacrylate. The manufacturer refused to give more exact information on the (meth)acrylates. Patch testing revealed that the patient was highly allergic to BIS-GMA, other epoxy diacrylates, and (meth)acrylates, as well as to the base paste and catalyst of the temporary crown. Accordingly, it was concluded that the allergic reaction was caused by BIS-GMA, or a cross-reacting (meth)acrylate, or other (meth)acrylates in the temporary crown.

  16. Facile Synthesis of Novel Polyethylene-Based A-B-C Block Copolymers Containing Poly(methyl methacrylate) Using a Living Polymerization System.

    PubMed

    Song, Xiangyang; Ma, Qiong; Cai, Zhengguo; Tanaka, Ryo; Shiono, Takeshi; Grubbs, Robert B

    2016-02-01

    Ethylene-propylene-methyl methacrylate (MMA) and ethylene-hexene-MMA A-B-C block copolymers with high molecular weight (>100,000) are synthesized using fluorenylamide-ligated titanium complex activated by modified methylaluminoxane and 2,6-di-tert-butyl-4-methylphenol for the first time. After diblock copolymerization of olefin is conducted completely, MMA is added and activated by aluminum Lewis acid to promote anionic polymerization. The length of polyolefin and poly (methyl methacrylate) (PMMA) is controllable precisely by the change of the additive amount of olefin and polymerization time, respectively. A soft amorphous polypropylene or polyhexene segment is located between two hard segments of semicrystalline polyethylene and glassy PMMA blocks.

  17. Simultaneous separation of water- and fat-soluble vitamins in isocratic pressure-assisted capillary electrochromatography using a methacrylate-based monolithic column.

    PubMed

    Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime

    2013-06-01

    A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed.

  18. Antibacterial Adhesion of Polymethyl Methacrylate Modified by Borneol Acrylate.

    PubMed

    Sun, Xueli; Qian, Zhiyong; Luo, Lingqiong; Yuan, Qipeng; Guo, Ximin; Tao, Lei; Wei, Yen; Wang, Xing

    2016-10-07

    Polymethyl methacrylate (PMMA) is a widely used biomaterial. But there is still a challenge facing its unwanted bacterial adhesion, because the subsequent biofilm formation usually leads to failure of related implants. Herein, we present a borneol-modified PMMA based on a facile and effective stereochemical strategy, generating antibacterial copolymer named as P(MMA-co-BA). It was synthesized by free radical polymerization and studied with different ratio between methyl methacrylate (MMA) and borneol acrylate (BA) monomers. NMR, GPC and EA etc. were used to confirm their chemical features. Their films were challenged with Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive), showing a BA content-dependent antibacterial performance. The minimum effective dose should be 10%. Then in vivo subcutaneous implantations in mice demonstrated their biocompatibilities through routine histotomy and HE staining. Therefore, P(MMA-co-BA)s not only exhibited their unique antibacterial character, but also suggested a potential for the safe usage of borneol-modified PMMA frame and devices for further implantation.

  19. Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate.

    PubMed

    Pascual, B; Gurruchaga, M; Ginebra, M P; Gil, F J; Planell, J A; Vázquez, B; San Román, J; Goñi, I

    1999-03-01

    One cause of arthroplasty failure is the brittle mechanical behavior of bone cements. However, the improvement of cement formulations must also be accompanied by the maintenance of a wide variety of characteristics. New bone cements were obtained by the substitution of high percentages, up to 60% (v/v), of methyl methacrylate (MMA) by a higher molecular weight and more hydrophilic monomer, ethoxytriethyleneglycol methacrylate (TEG). The essential advantages of these materials were the decrease of maximum temperature together with a decrease in the residual monomer content with respect to conventional cement formulations. The water absorption process obeyed diffusion laws and the equilibrium water content increased by the introduction of higher percentages of the hydrophilic component. This characteristic had an appreciable effect on the viscoelastic behavior analyzed by DMTA. These modified bone cements had reduced polymerization shrinkage and similar levels of porosity. Tensile test revealed that the introduction of TEGMA gave rise to an important modification of the mechanical behavior, with a noticeable increase in the fracture strain. This fact was also confirmed by means of the analysis of the fracture surfaces by SEM.

  20. Degradation of poly(methyl methacrylate) in solution

    SciTech Connect

    Madras, G.; Smith, J.M.; McCoy, B.J.

    1996-06-01

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1,000 psig (6.8 MPa) and at four different temperatures (200, 225, 275, and 300 C). The polymer concentration was varied by 1 to 4 g/L. A discrete model for the first-order rate of polymer degradation was derived and compared to the continuous kinetics approach. Both models lead to the same expression for monomer concentration increasing linearly with time. Rate constants were evaluated using the moments of the molecular weight distributions of the reacted and unreacted polymer. The rate was first order in polymer concentration, and the activation energy was 8.4 kcal/mol (34 kJ/mol). This activation energy suggests that the rate controlling step for the thermal degradation of PMMA is the depropagation process.

  1. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning

    NASA Astrophysics Data System (ADS)

    Cengiz, Ugur; Avci, Merih Z.; Erbil, H. Yildirim; Sarac, A. Sezai

    2012-05-01

    A new statistical terpolymer containing perfluoroethyl alkyl methacrylate (Zonyl-TM), methyl methacrylate and butyl acrylate, poly(Zonyl-TM-ran-MMA-ran-BA) was synthesized in supercritical carbon dioxide at 200 bar and 80 °C using AIBN as an initiator by heterogeneous free radical copolymerization. Nanofibers of this terpolymer were produced by electrospinning from its DMF solution. The structural and thermal properties of terpolymers and electrospun poly(Zonyl-TM-MMA-BA) nanofibers were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and differential scanning calorimetry. Nanofiber morphology was investigated by scanning electron microscopy. Electrospun nanofiber layer was found to be superhydrophobic with a water contact angle of 172 ± 1° and highly oleophobic with hexadecane, glycerol and ethylene glycol contact angles of 70 ± 1°, 167 ± 1° and 163 ± 1° respectively. The change of the contact angle results on the electrospun fiber layer and flat terpolymer surfaces by varying feed monomer composition were compared and discussed in the text.

  2. UV-curable nanocomposite based on methacrylic-siloxane resin and surface-modified TiO2 nanocrystals.

    PubMed

    Ingrosso, Chiara; Esposito Corcione, Carola; Striani, Raffaella; Comparelli, Roberto; Striccoli, Marinella; Agostiano, Angela; Curri, M Lucia; Frigione, Mariaenrica

    2015-07-22

    A novel UV-light-curable nanocomposite material formed of a methacrylic-siloxane resin loaded with 1 wt % oleic acid and 3-(trimethoxysilyl)propyl methacrylate silane (OLEA/MEMO)-coated TiO2 nanorods (NRs) has been manufactured as a potential self-curing structural coating material for protection of monuments and artworks, optical elements, and dental components. OLEA-coated TiO2 NRs, presynthesized by a colloidal chemistry route, have been surface-modified by a treatment with the methacrylic-based silane coupling agent MEMO. The resulting OLEA/MEMO-capped TiO2 NRs have been dispersed in MEMO; that is a monomer precursor of the organic formulation, used as a "common solvent" for transferring the NRs in prepolymer components of the formulation. Differential scanning calorimetry and Fourier transform infrared spectroscopy have allowed investigation of the effects of the incorporation of the OLEA/MEMO-capped TiO2 NRs on reactivity and photopolymerization kinetics of the nanocomposite, demonstrating that the embedded NRs significantly increase curing reactivity of the neat organic formulation both in air and inert atmosphere. Such a result has been explained on the basis of the photoactivity of the nanocrystalline TiO2 which behaves as a free-radical donor photocatalyst in the curing reaction, finally turning out more effective than the commonly used commercial photoinitiator. Namely, the NRs have been found to accelerate the cure rate and increase cross-linking density, promoting multiple covalent bonds between the resin prepolymers and the NR ligand molecules, and, moreover, they limit inhibition effect of oxygen on photopolymerization. The NRs distribute uniformly in the photocurable matrix, as assessed by transmission electron microscopy analysis, and increase glass transition temperature and water contact angle of the nanocomposite with respect to the neat resin.

  3. Rapid Prototyping of Poly(methyl methacrylate) Microfluidic Systems Using Solvent Imprinting and Bonding

    PubMed Central

    Sun, Xiuhua; Peeni, Bridget A.; Yang, Weichun; Becerril, Hector A.

    2011-01-01

    We have developed a method for rapid prototyping of hard polymer microfluidic systems using solvent imprinting and bonding. We investigated the applicability of patterned SU-8 photoresist on glass as an easily fabricated template for solvent imprinting. Poly(methyl methacrylate) (PMMA) exposed to acetonitrile for 2 min then had an SU-8 template pressed into the surface for 10 min, which provided appropriately imprinted channels and a suitable surface for bonding. After a PMMA cover plate had also been exposed to acetonitrile for 2 min, the imprinted and top PMMA pieces could be bonded together at room temperature with appropriate pressure. The total fabrication time was less than 15 min. Under the optimized fabrication conditions, nearly 30 PMMA chips could be replicated using a single patterned SU-8 master with high chip-to-chip reproducibility. Relative standard deviations were 2.3% and 5.4% for the widths and depths of the replicated channels, respectively. Fluorescently labeled amino acid and peptide mixtures were baseline separated using these PMMA microchips in <15 s. Theoretical plate numbers in excess of 5000 were obtained for a ~3 cm separation distance, and the migration time relative standard deviation for an amino acid peak was 1.5% for intra-day and 2.2% for inter-day analysis. This new solvent imprinting and bonding approach significantly simplifies the process for fabricating microfluidic structures in hard polymers such as PMMA. PMID:17466320

  4. Improved performance of α-amylase immobilized on poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads.

    PubMed

    He, Tian; Tian, Yong-Le; Qi, Liang; Zhang, Jing; Zhang, Zhi-Qi

    2014-04-01

    α-Amylase was successfully immobilized onto poly(glycidyl methacrylate-co-ethylenedimethacrylate) (PGMA/EDMA) beads with high immobilization efficiency of 87.8%. PGMA/EDMA beads with a relatively uniform diameter of 2-3 μm were prepared by single-step swelling polymerization. After amination with ethanediamine and activation with glutaraldehyde, PGMA/EDMA beads showed commendable α-amylase immobilization capacity of 35.1 mg g(-1) carrier. Compared with free form, immobilized α-amylase had increasement of 12.94 mg mL(-1) for Km and 0.124 mmol mL(-1) min(-1) for Vmax, improved acid resistance (the optimal pH from 7 to 5), presented better thermal stability by retaining 61% activity than 40% at 90 °C, and displayed high operational reusability by retaining 58% of its initial activity after nine uses. Moreover, less than 10% of the free enzyme and more than 80% of the immobilized enzyme retained activity after 180 min pre-incubation at 50 °C. The easy modification, high immobilization efficiency and good properties of immobilized α-amylase in the present study indicate that PGMA/EDMA beads are suitable for α-amylase immobilization. The enhancement of acid resistance and thermo stability is doubtless of benefit for the industrial use of α-amylase.

  5. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    SciTech Connect

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  6. CEC with new monolithic stationary phase based on a fluorinated monomer, trifluoroethyl methacrylate.

    PubMed

    Yurtsever, Arda; Saraçoğlu, Berna; Tuncel, Ali

    2009-02-01

    A new, fluorinated monolithic stationary phase for CEC was first synthesized by a single-stage, thermally initiated copolymerization of a fluorinated monomer, 2,2,2-trifluoroethyl methacrylate (TFEM) and ethylene dimethacrylate (EDMA) in the presence of a porogen mixture. In this preparation, 2-acrylamido-2-methyl-1-propanesulfonic acid was used as the charge-bearing monomer. The porogen mixture was prepared by mixing isoamylalcohol and 1,4-butanediol. A clear increase in the electroosmotic mobility was observed with increasing pH. The electroosmotic mobility decreased with increasing ACN concentration. Poly(TFEM-co-EDMA) monolith prepared under optimized polymerization conditions was successfully used in the separation of alkylbenzenes and phenols by CEC. The best chromatographic separation for alkylbenzenes was performed with lower ACN concentrations (i.e. 60% v/v) with respect to the common acrylic-based CEC monoliths. The theoretical plate numbers up to 220 000 plates/m were achieved in the reversed phase separation of phenols. Poly(TFEM-co-EDMA) monolith also allowed the simultaneous separation of aniline and benzoic acid derivatives by a single run and by using a lower ACN concentration in the mobile phase with respect to the similar electrochromatographic separations. A stable retention behaviour in reversed phase separation of alkylbenzenes was obtained with the poly(TFEM-co-EDMA) monolith.

  7. Radiation-induced grafting of glycidyl methacrylate onto cotton fabric waste and its modification for anchoring hazardous wastes from their solutions.

    PubMed

    Sokker, Hesham H; Badawy, Sayed M; Zayed, Ehab M; Nour Eldien, Faten A; Farag, Ahmad M

    2009-08-30

    Ion exchange adsorbents based on cellulosic fabric wastes carrying sulfonic acid and amine functional groups were synthesized by radiation-induced graft polymerization of glycidyl methacrylate (GMA) with subsequent chemical modification of the epoxy groups of poly-GMA graft chains with sodium sulfite/H(2)SO(4) and triethylamine, respectively. The conversion of epoxy groups into the functional groups was investigated. Factors affecting on grafting process such as radiation dose, monomer concentration and solvent were studied. The synthesized adsorbent and its applications in the removal of different types of hazardous pollutants e.g. acidic dye, cobalt, dichromate and phenols from aqueous solution were also studied.

  8. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles.

    PubMed

    You, Jin-Oh; Auguste, Debra T

    2008-04-01

    pH-Sensitive poly(N,N-dimethylaminoethyl methacrylate (DMAEMA)/2-hydroxyethyl methacrylate (HEMA)) nanoparticles were prepared for the triggered release of paclitaxel within a tumor microenvironment. Tumors exhibit a lower extracellular pH than normal tissues. We show that paclitaxel release from DMAEMA/HEMA particles can be actively triggered by small, physiological changes in pH (within 0.2-0.6 pH units). Monodispersed nanoparticles were synthesized by forming an O/W emulsion followed by photopolymerization. Particles were characterized by transmission electron microscopy, dynamic light scattering, electrophoresis, and cytotoxicity. High release rates and swelling ratios are achieved at low pH, low crosslinking density, and high content of DMAEMA. Paclitaxel release is limited to 9% of the payload at pH 7.4 after a 2-h incubation at 37 degrees C. After adjusting to pH 6.8, 25% of the payload is released within 2h. Cell viability studies indicate that pH-sensitive DMAEMA/HEMA nanoparticles are not cytotoxic and may be used as an efficient, feedback-regulated drug delivery carrier.

  9. Radiation-grafted polymers for biomaterial applications. I. 2-hydroxyethyl methacrylate: ethyl methacrylate grafting onto low density polyethylene films

    SciTech Connect

    Cohn, D.; Hoffman, A.S.; Ratner, B.D.

    1984-08-01

    Studies were conducted on the radiation grafting of 2-hydroxyethyl methacrylate (HEMA) and ethyl methacrylate (EMA) by the mutual irradation technique onto low density polyethylene. Four different solution concentrations were used, and radiation doses ranged from 0.03 to 0.50 Mrad. Four copolymer compositions having different HEMA:EMA ratios were also studied using two total monomer concentrations. The kinetics of the grafting process demonstrated by the two monomers were basically different. While EMA showed a typical diffusion-controlled kinetic pattern, HEMA exhibited a more complex behavior, the main features of which were an induction period, a slight autoacceleration and a significant drop in graft level after a maximum is reached. The difference in behavior was interpreted in terms of partitioning of monomers into the polyethlene substrate. The surface topography of the grafted films was studied by means of scanning electron microscopy. A mechanism based on osmotic cell formation was suggested for the HEMA graft system. The copolymer systems investigated showed that the graft reaction is faster in the initial stages for higher percentages of EMA in the monomer mixtures; as grafting proceeds the trend is reversed. 24 references, 16 figures, 2 tables.

  10. Development of erbium phosphate doped poly(glycidyl methacrylate/ethylene dimethacrylate) spin columns for selective enrichment of phosphopeptides.

    PubMed

    Güzel, Yüksel; Rainer, Matthias; Messner, Christoph B; Hussain, Shah; Meischl, Florian; Sasse, Michael; Tessadri, Richard; Bonn, Günther K

    2015-05-01

    In this study, a novel method for the highly selective enrichment of phosphopeptides using erbium phosphate doped poly(glycidyl methacrylate/ethylene dimethacrylate) spin columns is presented. Erbium phosphate was synthesized by precipitation from boiling phosphoric acid and incubated overnight in erbium chloride solutions. The resulting powder was embedded in a monolithic poly(glycidyl methacrylate/ethylene dimethacrylate) polymer. The monolith was synthesized in a spin column by radical polymerization. Erbium phosphate demonstrated a high affinity and selectivity for phosphopeptides due to the strong interaction of trivalent erbium ions with the phosphate groups of phosphopeptides. The high selectivity and performance of the designed spin columns were demonstrated by successfully enriching phosphopeptides from tryptically digested protein mixtures containing the model phosphoproteins α- and β-casein, bovine milk, and human saliva. By the implementation of several washing steps, unspecific components were removed and the enriched phosphopeptides were effectively eluted from the spin columns under alkaline conditions. The selective performance of the presented method was further demonstrated by the enrichment of two synthetic phosphopeptides, which were spiked in tryptically digested and dephosphorylated HeLa cell lysates at low ratios. Finally, the presented approach was compared to conventional phosphopeptide enrichment by titanium oxide and revealed higher recoveries for the erbium phosphate doped monoliths.

  11. Clickable and Antifouling Platform of Poly[(propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine)] for Biosensing Applications.

    PubMed

    Wiarachai, Oraphan; Vilaivan, Tirayut; Iwasaki, Yasuhiko; Hoven, Voravee P

    2016-02-02

    A functional copolymer platform, namely, poly[(propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine)] (PPgMAMPC), was synthesized by reversible addition-fragmentation chain-transfer polymerization. In principle, the alkyne moiety of propargyl methacrylate (PgMA) should serve as an active site for binding azide-containing molecules via a click reaction, i.e., Cu-catalyzed azide/alkyne cycloaddition (CuAAC), and 2-methacryloyloxyethyl phosphorylcholine (MPC), the hydrophilic monomeric unit, should enable the copolymer to suppress nonspecific adsorption. The copolymers were characterized using Fourier transform infrared (FTIR) and (1)H NMR spectroscopies. Thiol-terminated, PPgMAMPC-SH, obtained by aminolysis of PPgMAMPC, was immobilized on a gold-coated substrate using a "grafting to" approach via self-assembly. Azide-containing species, namely, biotin and peptide nucleic acid (PNA), were then immobilized on the alkyne-containing copolymeric platform via CuAAC. The potential use of surface-attached PPgMAMPC in biosensing applications was shown by detection of specific target molecules, i.e., streptavidin (SA) and DNA, by the developed sensing platform using a surface plasmon resonance technique. The copolymer composition strongly influenced the performance of the developed sensing platform in terms of signal-to-noise ratio in the case of the biotin-SA system and hybridization efficiency and mismatch discrimination for the PNA-DNA system.

  12. Stearyl methacrylate-grafted-chitosan nanoparticle as a nanofiller for PLA: Radiation-induced grafting and characterization

    NASA Astrophysics Data System (ADS)

    Rattanawongwiboon, Thitirat; Haema, Kamonwon; Pasanphan, Wanvimol

    2014-01-01

    This paper reports a one-pot synthesis using radiation-induced grafting technique to modify biopolymer-based chitosan nanoparticles as a nanofiller for blending with poly(lactic acid) (PLA). Hydrophobic stearyl methacrylate (SMA) was grafted onto non-irradiated chitosan (CS0) and pre-irradiated chitosan with a γ-ray dose of 40 kGy (CS40) to obtain stearyl methacrylate-grafted-chitosan nanoparticles (SMA-g-CSNPs).The effects of the pre-irradiated CS, grafting doses and SMA concentrations on degree of grafting (DG) and particle formation were studied. FT-IR and XRD were used to characterize the chemical and packing structure of SMA-g-CSNPs. The particle formulation and size of SMA-g-CSNPs were observed by TEM and AFM. The spherical core-shell SMA-g-CSNPs with the size ranging from 50 to 140 nm were successfully prepared. The SMA-g-CSNPs from CS40 has higher DG and smaller particle size when compared with CS0. The SMA-g-CSNPs are able to improve the compatibility between CS and PLA.

  13. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers.

    PubMed

    Narain, Ravin; Armes, Steven P

    2003-01-01

    We report the facile preparation of a range of novel, well-defined cyclic sugar methacrylate-based polymers without recourse to protecting group chemistry. 2-Gluconamidoethyl methacrylate (GAMA) and 2-lactobionamidoethyl methacrylate (LAMA) were prepared directly by reacting 2-aminoethyl methacrylate with D-gluconolactone and lactobionolactone, respectively. Homopolymerization of GAMA and LAMA by atom transfer radical polymerization (ATRP) gave reasonably low polydispersities as judged by aqueous gel permeation chromatography. A wide range of sugar-based block copolymers were prepared using near-monodisperse macroinitiators based on poly(ethylene oxide) [PEO], poly(propylene oxide) [PPO], or poly(e-caprolactone) [PCL] and/or by sequential monomer addition of other methacrylic monomers such as 2-(diethylamino)ethyl methacrylate [DEA], 2-(diisopropylaminoethyl methacrylate [DPA], or glycerol monomethacrylate [GMA]. The reversible micellar self-assembly of selected sugar-based block copolymers [PEO23-GAMA50-DEA100, PEO23-LAMA30-DEA50, PPO33-GAMA50, and PPO33-LAMA50] was studied in aqueous solution as a function of pH and temperature using dynamic light scattering, transmission electron microscopy, surface tensiometry, and 1H NMR spectroscopy.

  14. Poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases in capillary electrochromatography.

    PubMed

    Huang, Hsi-Ya; Cheng, Yi-Jie; Liu, Wan-Ling; Hsu, Yi-Fen; Lee, Szetsen

    2010-09-10

    In this study, a series of poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases, which were prepared by single step in situ polymerization of divinylbenzene and various alkyl methacrylates (butyl-, octyl-, or lauryl-methacrylate), were developed as separation columns of benzophenone compounds for capillary electrochromatography (CEC). In addition to the presence of plenty of benzene moieties, the stationary phases contained long and flexible alkyl groups on the surface. With an increase in the molecular length of alkyl methacrylate, the polymeric monolith, which had higher hydrophobicity, effectively reduced the peak tailing of benzophenones, but a weaker retention was observed. The unusual phenomenon was likely due to the pi-pi interaction between the aromatic compound and the polymeric material. The usage of longer alkyl methacrylate as reaction monomer limited the retention of aromatic compounds on the stationary phase surface, thus the pi-pi interaction between them was possibly reduced. Consequently, the retention time of aromatic compounds was markedly decreased with an increase in carbon length of alkyl methacrylate that was carried on the polymeric monolith. Compared to previous reports on polystyrene-based columns in which the peak-tailing problem was reduced by decreasing the benzene moieties on the stationary phase, this study demonstrated that the undesirable retention (peak-tailing) could also be improved by the inclusion of long alkyl methacrylate to the polystyrene-based columns.

  15. Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity.

    PubMed

    Yoshii, E

    1997-12-15

    Thirty-nine acrylates and methacrylates that had been used in dental resin materials were evaluated by a cytotoxicity test, and the relationships between their structures and cytotoxicity were studied to predict cytotoxic levels of dental resin materials in order to develop new low-toxic resin materials. All the acrylates evaluated were more toxic than corresponding methacrylates. In both the acrylates and methacrylates, a hydroxyl group seemed to enhance cytotoxicity. Dimethacrylates with 14 or fewer oxyethylene chains showed similar cytotoxicity while dimethacrylates with 23 oxyethylene chains showed lower cytotoxicity. The cytotoxicity ranking of monomers widely used in dental resin materials was bisphenol A bis 2-hydroxypropyl methacrylate (bisGMA) > urethane dimethacrylate (UDMA) > triethyleneglycol dimethacrylate (3G) > 2-hydroxyethyl methacrylate (HEMA) > methyl methacrylate (MMA). In acrylates, methacrylates, and ethylmethacrylates with either substituents, the lipophilicity of substituents affected their cytotoxicity, and an inverse correlation between IC50 and logP was observed. These results will be useful in developing new resin materials with low toxic monomer compositions.

  16. Synthesis and fluorescence properties of divalent europium-poly(methacrylate containing crown ether structure) complexes

    SciTech Connect

    Higashiyama, N.; Nakamura, H.; Mishima, T.; Shiokawa, J.; Adachi, G. )

    1991-02-01

    This paper reports on divalent europium complexes with poly(methacrylate containing crown ether structure)s, poly(crown ether)s, prepared and their fluorescence properties studied. The polymers used were poly(15-crown-5-methyl methacrylate) (PMA15C5), copoly(15- crown-5-methyl methacrylate-X) (copoly(MA15C5-X)); (X = MMA, EMA, BMA, 2-methoxyethyl methacrylate (MAGI) 3,6,9,12,15- pentaoxahexadecyl methacrylate (MAG5)), poly(18-crown-6- methyl methacrylate) (PMA18C6), and copoly(18-crown-6-methyl methacrylate-MMA) (copoly(MA18C6-MMA)), which were obtained by bulk polymerization. The fluorescence properties of Eu{sup 2+} polymers activated by complexing Eu{sup 2+} ions with crown ether groups were measured in powder form. The Eu{sup 2+}-poly (crown ether)s irradiated by UV light generally gave blue bright emission in the region of 420-465 nm. It was Eu{sup 2+}-copoly(Ma15C5-X); (X = MMA, EMA, and MAG1) that showed the largest emission intensity among the Eu{sup 2+} polymers, and its emission intensity was ca. 20% of that for CaWO{sub 4}:Pb (NBS1026) whose quantum efficiency is about 76%. The intensities of emission for the Eu{sup 2+} polymers containing 15-crown-5 were much larger than that for the ones containing 18-crown-6.

  17. Dye attached poly(hydroxyethyl methacrylate) cryogel for albumin depletion from human serum.

    PubMed

    Andac, Muge; Galaev, Igor; Denizli, Adil

    2012-05-01

    Cibacron Blue F3GA was immobilized on poly(hydroxyethyl methacrylate) cryogel and it was used for selective and efficient depletion of albumin from human serum. The poly(hydroxyethyl methacrylate) was selected as the basic component because of its inertness, mechanical strength, chemical and biological stability, and biocompatibility. Cibacron Blue F3GA was covalently attached to the poly(hydroxyethyl methacrylate) cryogel to produce poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel affinity column. The poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was characterized with respect to gelation yield, swelling degree, total volume of macropores, Fourier Transform Infrared spectroscopy, and scanning electron microscopy. It was found that the maximum amount of adsorption (343 mg/g of dry cryogel) obtained from experimental results is very close to the calculated Langmuir adsorption capacity (345 mg/g of dry cryogel). The maximum adsorption capacity for poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel column was obtained as 950 mg/g of dry cryogel for nondiluted serum. The adsorption capacity decreased with increasing dilution ratios while the depletion ratio of albumin remained as 77% in serum sample. Finally, the poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was optimized for using in the fast protein liquid chromatography system for rapid removal of the high abundant proteins from the human serum.

  18. Study of scintillation in natural and synthetic quartz and methacrylate

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Borjabad, S.; Cebrián, S.; Cuesta, C.; Fortuño, D.; García, E.; Ginestra, C.; Gómez, H.; Herrera, D. C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2014-06-01

    Samples from different materials typically used as optical windows or light guides in scintillation detectors were studied in a very low background environment, at the Canfranc Underground Laboratory, searching for scintillation. A positive result can be confirmed for natural quartz: two distinct scintillation components have been identified, not being excited by an external gamma source. Although similar effect has not been observed neither for synthetic quartz nor for methacrylate, a fast light emission excited by intense gamma flux is evidenced for all the samples in our measurements. These results could affect the use of these materials in low energy applications of scintillation detectors requiring low radioactive background conditions, as they entail a source of background.

  19. A review of methods used to reinforce polymethyl methacrylate resin.

    PubMed

    Vallittu, P K

    1995-09-01

    Various methods to reinforce acrylic denture base material have been used to repair fractures in complete dentures. Metal wires and plates have been tested as reinforcement of polymethyl methacrylate (PMMA) resin. The contributions of the studies conducted on this biphase composite system are discussed in this review article. The literature has reported that even thin metal wires incorporated into the PMMA matrix increased the transverse strength of the PMMA construction. Metal mesh inserted into PMMA resin had negligible effects on the transverse strength of the restoration. macroscopic retention of the metal strengtheners to the PMMA had only a minor effect on the strength in contrast to microscopic retention, which showed a more marked effect. Chemical bonding between the PMMA and metal reinforcer enhanced the strength of the prosthesis with some exceptions.

  20. Methyl Methacrylate Polymerization in Nanoporous Matrix: Reactivity and Molecular Weight

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Simon, Sindee

    2011-03-01

    The influence of nanoconfinement on the free radical polymerization of methyl methacrylate is investigated. Nanoporous controlled pore glass (CPG) is used as a nanoconfining matrix for the polymerization. The reaction is followed by measuring heat flow as a function of reaction time during isothermal polymerization using differential scanning calorimetry (DSC). Preliminary results indicate several interesting effects for polymerization in 110 nm diameter pores: the induction time increases under nanoconfinement, the effective reaction rate constant increases, the effective activation energy is unchanged, and the gel effect or autoaccleration occurs at earlier times after induction. The latter result concerning the gel effect is presumably due to the decrease in diffusivity under nanoconfinement which results in a decrease in the termination rate of free radicals. The cause of the longer induction times and accelerated reaction rates just after induction are under investigation. The influence of nanoconfinement on molecular weight will also be examined.

  1. Interaction between N-vinylpyrrolidone and methyl methacrylate

    NASA Astrophysics Data System (ADS)

    Zaitseva, V. V.; Shtonda, A. V.; Tyurina, T. G.; Bagdasarova, A. R.; Zaitsev, S. Yu.

    2014-04-01

    It is established that the interaction of the isomers of N-vinylpyrrolidone (NVP) and methyl methacrylate (MMA) leads to the formation of molecular π-H- and H-complexes with energies within the limits of 10.2-13.6 (AM1) or 18.2-24.0 (B3LYP/6-311++G( d)) kJ/mol. The structures of complex-bound molecules are examined with respect to changes in the charges on terminal -C1=C2- groups, the distance between them and atoms in an H-bond, and the presence of combined overlapping molecular orbitals (MOs). The presence of an averaged complex that includes presumably all possible structures and allows us to perform the copolymerization of specified monomers in the absence of an initiator is confirmed by means of UV and NMR spectroscopy.

  2. Chest wall reconstruction with methacrylate prosthesis in Poland syndrome.

    PubMed

    Arango Tomás, Elisabet; Baamonde Laborda, Carlos; Algar Algar, Javier; Salvatierra Velázquez, Angel

    2013-10-01

    Poland syndrome is a rare congenital malformation. This syndrome was described in 1841 by Alfred Poland at Guy's Hospital in London. It is characterized by hypoplasia of the breast and nipple, subcutaneous tissue shortages, lack of the costosternal portion of the pectoralis major muscle and associated alterations of the fingers on the same side. Corrective treatment of the chest and soft tissue abnormalities in Poland syndrome varies according to different authors. We report the case of a 17-year-old adolescent who underwent chest wall reconstruction with a methyl methacrylate prosthesis. This surgical procedure is recommended for large anterior chest wall defects, and it prevents paradoxical movement. Moreover it provides for individual remodeling of the defect depending on the shape of the patient's chest.

  3. Reactivity of Monovinyl (Meth)Acrylates Containing Cyclic Carbonates.

    PubMed

    Berchtold, Kathryn A; Nie, Jun; Stansbury, Jeffrey W; Bowman, Christopher N

    2008-12-09

    The tremendous diversity of materials properties available with polymers is due in large part to the ability to design structures from the monomeric state. The ease of use of comonomer mixtures only expands this versatility. While final polymer properties are obviously important in the selection or development of a material for a given purpose, for a number of applications, such as optical fiber coatings, photolithography and microelectronics, the additional requirement of a very rapid polymerization process may be equally critical. A class of unusually reactive mono-(meth)acrylate monomers bearing secondary functionality that includes carbonates, carbamates and oxazolidones, has been demonstrated but not fully explained. Here, the influence of an integral cyclic carbonate functional group on (meth)acrylate photopolymerization kinetics is examined in detail with respect to monomers with a wide variety of alternative secondary functionality structure as well as in comparison to conventional mono- and di-(meth)acrylates. The kinetic results from full cure studies of several cyclic carbonate-containing monomers clearly highlight specific structural variations that effectively promote monomer reactivity. Copolymerizations with tetrahydrofurfuryl methacrylate reflect similar dramatic kinetic effects associated with the novel monomers while partial cure homopolymerization studies reveal exceptional dark cure behavior linked to observations of uncommonly low ratios of termination to propagation rates throughout the conversion profile. Temperature effects on reaction kinetics, including both reaction rate and the individual kinetic parameters, as well as the temperature dependence of hydrogen bonding interactions specifically involving the secondary functional groups are probed as a means to understand better the fundamentally interesting and practically important behavior of these monomers.

  4. Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes.

    PubMed

    Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S

    2010-08-01

    In an attempt to overcome existing limitations of experimental bone cements we here demonstrate a simple approach to synthesizing strontium-modified titania nanotubes (n-SrO-TiO(2) tubes) and functionalize them using the bifunctional monomer methacrylic acid. Then, using 'grafting from' polymerization with methyl methacrylate, experimental bone cements were produced with excellent mechanical properties, radiopacity and biocompatibility. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy mapping and backscattered SEM micrographs revealed a uniform distribution of SrO throughout the titanium matrix, with retention of the nanotubular morphology. Nanocomposites were then reinforced with 1, 2, 4 and 6 wt.% of the functionalized metal oxide nanotubes. Under the mixing and dispersion regime employed in this study, 2 wt.% appeared optimal, exhibiting a more uniform dispersion and stronger adhesion of the nanotubes in the poly(methyl methacrylate) matrix, as shown by TEM and SEM. Moreover, this optimum loading provided a significant increase in the fracture toughness (K(IC)) (20%) and flexural strength (40%) in comparison with the control matrix (unfilled) at P<0.05. Examination of the fracture surfaces by SEM showed that toughening was provided by the nanotubes interlocking with the acrylic matrix and crack bridging during fracture. On modifying the n-TiO(2) tubes with strontium oxide the nanocomposites exhibited a similar radiopacity to a commercial bone cement (CMW 1), while exhibiting a significant enhancement of osteoblast cell proliferation (242%) in vitro compared with the control at P<0.05.

  5. Polystyrene-divinylbenzene-glycidyl methacrylate stationary phase grafted with poly (amidoamine) dendrimers for ion chromatography.

    PubMed

    Guo, Dandan; Lou, Chaoyan; Zhang, Peimin; Zhang, Jiajie; Wang, Nani; Wu, Shuchao; Zhu, Yan

    2016-07-22

    In this work, a novel ion exchange stationary phase based on different generations of poly (amidoamine) dendrimers (PAMAM) was developed for the determination of inorganic anions and carbohydrates. Synthesis of the PAMAM was carried out with the polymerization reaction of ethylenediamine and methyl acrylate. The synthesized PAMAM was then grafted to the polystyrene-divinylbenzene-glycidyl methacrylate (PS-GMA) to form PAMAM-based beads. These beads were finally modified with 1,4-butanediol diglycidyl ether (BDDE) to generate the anion exchanger, which were characterized by scanning electron microscopy (SEM), brunauer-emmett-teller (BET), fourier transform infrared spectroscopy (FTIR), and elemental analysis. Elemental analysis, breakthrough curves and capacity factors showed that more epoxy groups and higher PAMAM generations in stationary phase could result in higher anion exchange capacity. The efficiency, durability and stability of the proposed anion exchanger were investigated by using six inorganic anions (fluoride, chloride, nitrite, bromide, nitrate and sulfate) and four carbohydrates (trehalose, glucose, maltotriose and galacturonic acid) as analytes, respectively. The reliability of the proposed ion chromatographic stationary phase was demonstrated by determining the content of galacturonic acid in polysaccharides from Poria cocos and Atractylodes macrocephala. The relative standard deviations of retention time, peak height, and peak area for galacturonic acid were 0.39%, 1.22%, and 2.02%, respectively. The spiked recoveries were in the range of 88.29%-100.51% for plant polysaccharides. Due to the good structural homogeneity, intense internal porosity, biological compatibility and high density of active groups in PAMAM, this grafted stationary phase showed good ion-exchange characteristics, especially in biological charged molecules.

  6. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Arola, Dwayne D.; Zhou, Xuedong; Xu, Hockin H. K.

    2013-01-01

    Objectives The main reason for restoration failure is secondary caries caused by biofilm acids. Replacing the failed restorations accounts for 50–70% of all operative work. The objectives of this study were to incorporate a new quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) and nanoparticles of silver (NAg) into a primer and an adhesive, and to investigate their effects on antibacterial and dentin bonding properties. Methods Scotchbond Multi-Purpose (SBMP) served as control. DMADDM was synthesized and incorporated with NAg into primer/adhesive. A dental plaque microcosm biofilm model with human saliva was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid. Dentin shear bond strengths were measured. Results Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the new DMADDM were orders of magnitude lower than those of a previous quaternary ammonium dimethacrylate (QADM). Uncured primer with DMADDM had much larger inhibition zones than QADM (p<0.05). Cured primer/adhesive with DMADDM-NAg greatly reduced biofilm metabolic activity (p<0.05). Combining DMADDM with NAg in primer/adhesive resulted in less CFU than DMADDM alone (p<0.05). Lactic acid production by biofilms was reduced by 20-fold via DMADDM-NAg, compared to control. Incorporation of DMADDM and NAg into primer/adhesive did not adversely affect dentin bond strength. Conclusions A new antibacterial monomer DMADDM was synthesized and incorporated into primer/adhesive for the first time. The bonding agents are promising to combat residual bacteria in tooth cavity and invading bacteria at tooth-restoration margins to inhibit caries. DMADDM and NAg are promising for use into a wide range of dental adhesive systems and restoratives. PMID:23353068

  7. Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels.

    PubMed

    Dalton, Paul D; Flynn, Lauren; Shoichet, Molly S

    2002-09-01

    Hydrogel tubes of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) made by liquid-liquid centrifugal casting are being investigated as potential nerve guidance channels in the central nervous system. An important criterion for the nerve guidance channel is that its mechanical properties are similar to those of the spinal cord, where it will be implanted. The formulated p(HEMA-co-MMA) tubes are soft and flexible, consisting of a gel-like outer layer, and an interconnected macroporous, inner layer. The relative thickness of the gel phase to macroporous phase is controlled by the formulation chemistry, and specifically by the ratio of co-monomers, HEMA and MMA. By varying the surface chemistry of the mold within which the tubes are synthesized, tubes were prepared with either a "cracked" or a smooth outer morphology. Tubes with the cracked outer morphology had periodic channels that traversed the wall of the tube, which resulted in a lower modulus than smooth outer morphology tubes, yet likely greater diffusive permeability. For tubes (and not rods) to be formed, phase separation must precede gelation as is detailed in a formulation phase diagram for HEMA, MMA and water. The tensile elastic modulus of p(HEMA-co-MMA) tubes reflected the formulation chemistry, with greater moduli (up to 400 kPa) recorded for tubes having 10 wt% MMA. The p(HEMA-co-MMA) tubes therefore had similar mechanical properties to those of the spinal cord, which has a reported elastic modulus range between 200 and 600 kPa.

  8. Preparation and characterization of lignin based macromonomer and its copolymers with butyl methacrylate.

    PubMed

    Liu, Xiaohuan; Wang, Jifu; Yu, Juan; Zhang, Mingming; Wang, Chunpeng; Xu, Yuzhi; Chu, Fuxiang

    2013-09-01

    Copolymerization of butyl methacrylate (BMA) with biobutanol lignin (BBL) was achieved by free-radical polymerization (FRP) using a lignin-based macromonomer. The lignin-based macromonomer containing acrylic groups was prepared by reacting acryloyl chloride with biobutanol lignin using triethylamine (TEA) as absorb acid agentin. From the results of elemental analysis and GPC, the average degree of polymerization (DP) of BBL was estimated to be five. A detailed molecular characterization has been performed, including techniques such as (1)H NMR, (13)C NMR and UV-vis spectroscopies, which provided quantitative information about the composition of the copolymers. The changes in the solubility of lignin-g-poly(BMA) copolymers in ethyl ether were dependent on the length of poly(BMA) side chain. TGA analysis indicated that the lignin-containing poly(BMA) graft copolymers exhibited high thermal stability. The bulky aromatic group of lignin increased the glass-transition temperature of poly(BMA). In order to confirm the main structure of copolymer, (AC-g-BBL)-co-BMA copolymer was also synthesized by atom transfer radical polymerization (ATRP), and the results revealed that the copolymer prepared by ATRP had the same solution behavior as that prepared by FRP, and the lignin-based macromonomer showed no homopolymerizability due to the steric hindrance. In addition, the lignin-co-BMA copolymer had a surprisingly higher molecular weight than poly(BMA) under the same reaction condition, suggesting that a branched lignin based polymer could be formed.

  9. Radiation-induced graft copolymerization of dimethylaminoethyl methacrylate onto graphene oxide for Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Ma, Hui-Ling; Zhang, Youwei; Zhang, Long; Wang, Liancai; Sun, Chao; Liu, Pinggui; He, Lihua; Zeng, Xinmiao; Zhai, Maolin

    2016-07-01

    Dimethylaminoethyl methacrylate (DMAEMA)-grafted graphene oxide hybrid materials (GO-g-P) were fabricated using γ-ray irradiation at ambient temperature. The morphology and structure of GO-g-P were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron (XPS), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). It was confirmed that DMAEMA was grafted successfully on the surface of graphene sheet. The grafting yield of GO-g-P increased with monomer concentration (0-2.5 mol L-1) and dose (0-40 kGy). The resulting adsorbent (GO-g-P) with amine groups was highly efficient for removing Cr(VI) from its acidic aqueous solution and could be easily separated by filtration. The optimum pH for Cr(VI) removal was observed at pH 1.1 and the Cr(VI) uptake of GO-g-P at this pH was 82.4 mg g-1.

  10. Preparation and characterization of methacrylate-based monolith for capillary hydrophilic interaction chromatography.

    PubMed

    Chen, Ming-Luan; Li, Li-Man; Yuan, Bi-Feng; Ma, Qiao; Feng, Yu-Qi

    2012-03-23

    In current study, poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EDMA) monolith was successfully prepared for capillary hydrophilic liquid chromatography (cHILIC). The polymerization was optimized by changing the ratio of MAA to EDMA, the type and amount of porogen. The characterization indicated that "hydrophilic" monolithic column possessed homogeneous column bed, good permeability and narrow pore size distribution. Under HILIC mode, the "hydrophilic" monolith prepared with PEG and DMSO showed stronger hydrophilicity than the "hydrophobic" monolith prepared with dodecanol and toluene. Finally, the "hydrophilic" monolith was applied in the separation of tryptic digests of bovine serum albumin (BSA) with cHILIC-ESI-qTOF-MS system. Our results revealed that 49 peptides were identified with 50% sequence coverage under HILIC mode, which was much better than the peptides identified using particulate-packed commercial column with RPLC-ESI-qTOF-MS system or "hydrophobic" monolith with cHILIC-ESI-qTOF-MS system. Taken together, the "hydrophilic" monolithic column prepared in current study, demonstrated the excellent chromatographic performance on the separation of complex samples, which offers the potential application of the monolith on proteomics study.

  11. AGING OF ADHESIVE INTERFACES TREATED WITH BENZALKONIUM CHLORIDE AND BENZALKONIUM METHACRYLATE

    PubMed Central

    Sabatini, Camila; Pashley, David H.

    2015-01-01

    Inhibition of endogenous dentin matrix metalloproteinases (MMPs) within incompletely infiltrated hybrid layers can contribute to the preservation of resin-dentin bonds. This study evaluated the bond stability of interfaces treated with benzalkonium chloride (BAC) and benzalkonium methacrylate (MBAC), and its inhibitory properties in dentin MMP activity. Single-component adhesive ALL-BOND UNIVERSAL, modified with BAC or MBAC in concentrations of 0, 0.5, 1.0 and 2.0% was used for microtensile bond strength (μTBS) evaluation after 24 h, 6 months and 1 yr. Human dentin beams were treated with 37% phosphoric acid, dipped either in 0.5% BAC, 1.0% BAC or water (control) for 60 s and then incubated in SensoLyte generic MMP substrate to determine MMP activity. A significant decrease in μTBS after 6 months and 1 yr was observed for the control group only. No significant differences among groups were shown at 24 h. After 6 months and 1 yr, the control group demonstrated significantly lower μTBS than all treatment groups. Both 0.5% and 1.0%, BAC applied for 60 s inhibited total MMP activity by 31% and 54%, respectively. Both BAC and MBAC contributed to the preservation of resin-dentin bonds likely due to its inhibitory properties of endogenous dentin proteinases. PMID:25639285

  12. Aging of adhesive interfaces treated with benzalkonium chloride and benzalkonium methacrylate.

    PubMed

    Sabatini, Camila; Pashley, David H

    2015-04-01

    Inhibition of endogenous dentin matrix metalloproteinases (MMPs) within incompletely infiltrated hybrid layers can contribute to the preservation of resin-dentin bonds. This study evaluated the bond stability of interfaces treated with benzalkonium chloride (BAC) and benzalkonium methacrylate (MBAC), and the inhibitory properties of these compounds on dentin MMP activity. Single-component adhesive ALL-BOND UNIVERSAL, modified with BAC or MBAC at concentrations of 0, 0.5, 1.0, and 2.0%, was used for microtensile bond strength (μTBS) evaluation after 24 h, 6 months, and 1 yr. Beams produced from human dentin were treated with 37% phosphoric acid, dipped in 0.5% BAC, 1.0% BAC, or water (control) for 60 s, and then incubated in SensoLyte generic MMP substrate to determine MMP activity. A significant decrease in the μTBS after 6 months and 1 yr was observed for the control group only. No significant differences among groups were shown at 24 h. After 6 months and 1 yr, the control group demonstrated significantly lower μTBS than all treatment groups. When applied for 60 s, 0.5% BAC inhibited total MMP activity by 31%, and 1.0% BAC inhibited total MMP activity by 54%. Both BAC and MBAC contributed to the preservation of resin-dentin bonds, probably because of their inhibitory properties of endogenous dentin proteinases.

  13. Analysis of stochastic effects in chemically amplified poly(4-hydroxystyrene-co-t-butyl methacrylate) resist

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2016-07-01

    Understanding of stochastic phenomena is essential to the development of a highly sensitive resist for nanofabrication. In this study, we investigated the stochastic effects in a chemically amplified resist consisting of poly(4-hydroxystyrene-co-t-butyl methacrylate), triphenylsulfonium nonafluorobutanesulfonate (acid generator), and tri-n-octylamine (quencher). Scanning electron microscopy (SEM) images of resist patterns were analyzed by Monte Carlo simulation on the basis of the sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. It was estimated that a ±0.82σ fluctuation of the number of protected units per polymer molecule led to line edge roughness formation. Here, σ is the standard deviation of the number of protected units per polymer molecule after postexposure baking (PEB). The threshold for the elimination of stochastic bridge generation was 4.38σ (the difference between the average number of protected units after PEB and the dissolution point). The threshold for the elimination of stochastic pinching was 2.16σ.

  14. Interactions between endothelial cells and electrospun methacrylic terpolymer fibers for engineered vascular replacements.

    PubMed

    Veleva, A N; Heath, D E; Johnson, J K; Nam, J; Patterson, C; Lannutti, J J; Cooper, S L

    2009-12-15

    A compliant terpolymer made of hexylmethacrylate (HMA), methylmethacrylate (MMA), and methacrylic acid (MAA) intended for use in small diameter vascular graft applications has been developed. The mechanical properties and in vitro biostability of this terpolymer have been previously characterized. The goal of this investigation was to examine the interactions between endothelial cells and the new terpolymer and to evaluate endothelial cell function. Electrospinning was used to produce both oriented and random terpolymer fiber scaffolds. Smooth solution cast films and tissue culture polystyrene were used as negative and positive controls, respectively. Human blood outgrowth endothelial cells and human umbilical vein endothelial cells were incubated with the test and control samples and characterized with respect to initial cell attachment, proliferation, viability, and maintenance of the endothelial cell phenotype. It was found that the terpolymer is cytocompatible allowing endothelial cell growth, with random fibers being more effective in promoting enhanced cellular activities than oriented fibers. In addition, endothelial cells cultured on these substrates appeared to maintain their phenotype. The results from this study demonstrate that electrospun HMA:MMA:MAA terpolymer has the potential to be used successfully in fabricating small diameter blood vessel replacements.

  15. Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Choudhary, Shobhna

    2014-06-01

    Solid polymer nanocomposite electrolytes (SPNEs) consisted of poly(methyl methacrylate) (PMMA) and lithium perchlorate (LiClO4) of molar ratio C=O:Li+=4:1 with varying concentration of montmorillonite (MMT) clay as nanofiller have been prepared by classical solution casting and high intensity ultrasonic assisted solution casting methods. The dielectric/electrical dispersion behaviour of these electrolytes was studied by dielectric relaxation spectroscopy at ambient temperature. The dielectric loss tangent and electric modulus spectra have been analyzed for relaxation processes corresponding to the side groups rotation and the segmental motion of PMMA chain, which confirm their fluctuating behaviour with the sample preparation methods and also with change of MMT concentration. The feasibility of these relaxation fluctuations has been explained using a transient complex structural model based on Lewis acid-base interactions. The low permittivity and moderate dc ionic conductivity at ambient temperature suggest the suitability of these electrolytes in fabrication of ion conducting electrochromic devices and lithium ion batteries. The amorphous behaviour and the exfoliated/intercalated MMT structures of these nanocomposite electrolytes were confirmed by X-ray diffraction measurements.

  16. Radical Polymerization of Vinyl Acetate and Methyl Methacrylate Using Organochromium Initiators Complexed with Macrocyclic Polyamines

    DTIC Science & Technology

    1994-06-30

    METHYL METHACRYLATE USING ORGANOCHROMIUM REA NTS COMPLEXED WITH MACROCYCLIC A• by Daniela Mardare, Scott Gaynor, Krzysztof Matyjaszewski DTIC Published... Daniela Mardare, Scott Gaynor, Krzysztof Matyjaszewski 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) a. PERFORMING ORGANIZATION Carnegie Mellon

  17. Amphiphilic copolymers of sucrose methacrylate and acrylic monomers: bio-based materials from renewable resource.

    PubMed

    de Oliveira, Heitor F N; Felisberti, Maria Isabel

    2013-04-15

    Regioselective sucrose 1'-O-methacrylate obtained by transesterification catalyzed by Proteinase-N was copolymerized with hydrophilic N-isopropylacrylamide and hydrophobic methyl methacrylate in different molar ratios by free radical polymerization. The copolymers were characterized by (13)C nuclear magnetic resonance spectroscopy, gel permeation chromatography, differential scanning calorimetry and thermogravimetry. Solubility and phase behavior of aqueous solutions were also investigated. The glass transition of the copolymers presents a positive deviation from the values of the homopolymers due to the high density of inter and intramolecular hydrogen bonding. Their solubility is strongly dependent on the composition. Copolymers poor in methyl methacrylate are water soluble, while copolymers richer in methyl methacrylate behaves as hydrogel. These hydrogels are not chemically crosslinked and their form can be design prior swelling by the conventional processing methods, such as solvent casting and extrusion for instance. Copolymers of N-isopropylacrylamide are water soluble and their aqueous solutions present a lower critical solution temperature behavior forming thermoreversible hydrogels.

  18. Estimation of monomer content in polymethyl methacrylate contact lens materials by Raman spectroscopy.

    PubMed

    Kantarci, Z; Aksoy, S; Hasirci, N

    1997-07-01

    Polymethyl methacrylate is the most commonly used contact lens material due to its excellent optical properties. However the presence of residual monomer in the structure alters its transparency as well as its biocompatibility, thus, there is a need to detect any remaining methyl methacrylate. Raman spectroscopy is a rapid, sensitive, and non destructive method as compared to other spectroscopic, chromatographic or polarographic methods. In this study, the spectra of some lens materials (prepared from methyl methacrylate, 2-hydroxy ethyl methacrylate, Hexamethyl disiloxane and polypropylene glycol with or without the addition of crosslinker ethylene glycol dimethylacrylate) were obtained by Raman spectroscopy. It was observed that an amount of crosslinker present in the structure proves effective for the unpolymerized monomer content. None of the samples, except those containing nexamethyl disiloxane, demonstrated any monomer residue.

  19. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (generic). 721.10517... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (PMN P-10-485) is...

  20. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (generic). 721.10517... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (PMN P-10-485) is...

  1. Fabrication of ordered poly(methyl methacrylate) nanobowl arrays using SiO2 colloidal crystal templates.

    PubMed

    Deng, Lier; Fu, Ming; Tao, Yinglei; Guo, Xiaoyun

    2014-06-01

    A simple approach is presented for the fabrication of poly(methyl methacrylate) (PMMA) nanobowl arrays over cm2 areas using SiO2 colloidal crystal templates. SiO2 colloidal crystal templates were prepared on a clean glass substrate by self-assembled SiO2 spheres of 410 nm in diameter. The air between the silica spheres was filled by the superfluous monomer of PMMA that can be subsequently polymerized. After infiltration, the SiO2-PMMA templates were immersed in a 3 wt% hydrofluoric acid (HF) aqueous solution. After 24 h, silica spheres were etched and a free-standing nanobowl sheet was obtained. The size of the nanobowls could be controlled by the size of the SiO2 spheres and the area of the nanobowl sheet could be altered by the size of the glass substrate.

  2. Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite

    DTIC Science & Technology

    2001-11-01

    methacrylate] [PMMA] and Montmorillonite DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Society V6.4 Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite Elena Vasiliul, Chyi-Shan Wang"’ 2...exchanged with 1.40 meq/g of dimethyl dehydrogenated tallow ammonium from a sodium montmorillonite , Cloisite Na+ (CNa). Since the cation-exchange

  3. Synthesis and properties of methacrylic-functionalized tween monomer networks.

    PubMed

    Muzzalupo, Rita; Tavano, Lorena; Rossi, Cesare Oliviero; Cassano, Roberta; Trombino, Sonia; Picci, Nevio

    2009-02-03

    Tween surfactants possess very interesting properties such as biodegradability, biocompatibility, and low toxicity. The synthesis of acrylate monomers by means of the chemical modification of polysorbate surfactants Tween 20, 40, and 60 with unsaturated groups is described. Monomers were obtained as a result of the reaction of methacrylic anhydride with different grades of Tween surfactants. Further polymerization was carried out in tetrahydrofuran, dimethylformamide, and a mixture of water-tetrahydrofuran. Physicochemistry properties of the polymer networks were investigated, and the obtained results reveal that they strongly depend on the type of solvent used during the polymerization, as well as on the concentration of the casting solution. In particular, our study demonstrated that, depending on the solvent boiling point, i.e., the facility to remove the solvent from the polymer matrix, it is possible to predict properties of the network morphology. Moreover, in vitro studies on controlled release were accomplished to demonstrate the possibility of utilizing these new materials as drug delivery systems. All resulting networks represent a novel class of cross-linked polymeric materials useful both in pharmaceutical and chemical applications.

  4. Methyl methacrylate and respiratory sensitization: A Critical review

    PubMed Central

    Borak, Jonathan; Fields, Cheryl; Andrews, Larry S; Pemberton, Mark A

    2011-01-01

    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer. PMID:21401327

  5. Methyl Methacrylate Polymerization in Nanoporous Matrix: Reactivity and Resulting Properties

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Begum, Fatema; Simon, Sindee

    2012-02-01

    Nanoconfinement is well known to affect the properties of polymers, including changes in the glass transition temperature (Tg). In this work, the focus is on the influence of nanoconfinement on free radical polymerization reaction kinetics and the properties of the polymer produced. Controlled pore glass (CPG) is used as a nanoconfining matrix for methyl methacrylate (MMA) polymerization with pore diameters of 13 nm, 50 nm, and 110 nm. The reaction is followed by measuring heat flow as a function of reaction time during isothermal polymerization at temperatures ranging from 60 C to 95 C using differential scanning calorimetry (DSC). After reaction, the properties of the polymer are measured, including Tg, molecular weight, and tacticity. Nanoconfiment is found to result in earlier onset of autoacceleration, presumablely due to a decrease in the rate of termination arising from decreases in chain diffusivity in the confined state. In addition, Tg and molecular weight of the resulting PMMA are found to increase. A model of the nanoconfined reaction is able to quantitatively capture these effects by accounting for changes in chain diffusivity, and in native pores, also accounting for changes in intrinsic reaction rates.

  6. Directed Endothelial Cell Morphogenesis in Micropatterned Gelatin Methacrylate Hydrogels

    PubMed Central

    Nikkhah, Mehdi; Eshak, Nouran; Zorlutuna, Pinar; Annabi, Nasim; Castello, Marco; Kim, Keekyoung; Dolatshahi-Pirouz, Alireza; Edalat, Faramarz; Bae, Hojae; Yang, Yunzhi; Khademhosseini, Ali

    2013-01-01

    Engineering of organized vasculature is a crucial step in the development of functional and clinically relevant tissue constructs. A number of previous techniques have been proposed to spatially regulate the distribution of angiogenic biomolecules and vascular cells within biomaterial matrices to promote vascularization. Most of these approaches have been limited to two-dimensional (2D) micropatterned features or have resulted in formation of random vasculature within three-dimensional (3D) microenvironments. In this study, we investigate 3D endothelial cord formation within micropatterned gelatin methacrylate (GelMA) hydrogels with varying geometrical features (50–150 µm height). We demonstrated the significance dependence of endothelial cells proliferation, alignment and cord formation on geometrical dimensions of the patterned features. The cells were able to align and organize within the micropatterned constructs and assemble to form cord structures with organized actin fibers and circular/elliptical cross-sections. The inner layer of the cord structure was filled with gel showing that the micropatterned hydrogel constructs guided the assembly of endothelial cells into cord structures. Notably, the endothelial cords were retained within the hydrogel microconstructs for all geometries after two weeks of culture; however, only the 100 µm-high constructs provided the optimal microenvironment for the formation of circular and stable cord structures. Our findings suggest that endothelial cord formation is a preceding step to tubulogenesis and the proposed system can be used to develop organized vasculature for engineered tissue constructs. PMID:23018132

  7. The toxicokinetics and distribution of 2-hydroxyethyl methacrylate in mice.

    PubMed

    Durner, J; Kreppel, H; Zaspel, J; Schweikl, H; Hickel, R; Reichl, Franz X

    2009-04-01

    The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized resin-based composites due to the degradation processes or the incomplete polymerisation of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental resin-based composites. It was shown in vitro that HEMA was released into the adjacent biophase from such materials during the first days after placement. In this study uptake, distribution, and excretion of 14C-HEMA applied via gastric tube or subcutaneous administration at dose levels well above those encountered in dental care were examined in mice to test the hypothesis that HEMA can reach cytotoxic levels in mammalian tissues. 14C-HEMA was taken up rapidly from the stomach and intestines after gastric administration and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as (14)CO(2). Two metabolic pathways of 14C-HEMA can be described. The peak HEMA levels in all tissues examined after 24h were lower than known toxic levels. Therefore the study did not support the hypothesis.

  8. Aggregation and transport of Brij surfactants in hydroxyethyl methacrylate hydrogels.

    PubMed

    Kapoor, Yash; Bengani, Lokendrakumar C; Tan, Grace; John, Vijay; Chauhan, Anuj

    2013-10-01

    Surfactant loaded polymeric hydrogels find applications in several technological areas including drug delivery. Drug transport can be attenuated in surfactant loaded gels through partitioning of the drug in the surfactant aggregates. The drug transport depends on the type of the aggregates and also on the surfactant transport because diffusion of the surfactant leads to dissolution of the aggregates. The drug and the surfactant transport can be characterized by the surfactant monomer diffusivity Ds. and the critical aggregation concentration C(*). Here we focus on the transport in hydroxyethyl methacrylate (HEMA) hydrogels loaded with three different types of Brij surfactants. We measure transport of a hydrophobic drug cyclosporine and the surfactant for surfactant loadings ranging from 0.1% to 8%, and utilize the data to predict the values of Ds. and C(*). We show that the predictions based on surfactant transport are significantly different from those based on modeling the drug transport. The differences are attributed to the assumption of just one type of aggregate in the gel irrespective of the total concentration. The transport data suggests existence of multiple types of aggregates and this hypothesis is validated for Brij 98 by imaging of the microstructure with free fracture SEM.

  9. 2-hydroxyethyl methacrylate as an inhibitor of matrix metalloproteinase-2.

    PubMed

    Carvalho, Rodrigo V; Ogliari, Fabrício A; de Souza, Ana P; Silva, Adriana F; Petzhold, Cesar L; Line, Sergio R P; Piva, Evandro; Etges, Adriana

    2009-02-01

    This study evaluated the effect of different concentrations of 2-hydroxyethyl methacrylate (HEMA) on the inhibition of matrix metalloproteinase-2 (MMP-2) in vitro. Mouse gingival explants were cultured overnight in Dulbecco's modified Eagle's minimal essential medium, following which the expression of secreted enzymes was analyzed by gelatin zymography and the effects of different amounts of HEMA on enzyme activity were investigated. The gelatinolytic proteinases present in the conditioned media were characterized as being matrix metalloproteinases (MMPs) by means of specific chemical inhibition. The MMPs present in the conditioned media were identified, using immunoprecipitation, as MMP-2. Three major bands were detected in the zymographic assays and were characterized, according to their respective molecular weights, into the following forms of MMP-2: zymogene (72 kDa), intermediate (66 kDa), and active (62 kDa). All forms of MMP-2 were inhibited by HEMA in a dose-dependent manner, implying that MMP-2 may be inhibited by HEMA in vivo.

  10. Carboxybetaine methacrylate oligomer modified nylon for circulating tumor cells capture.

    PubMed

    Dong, Chaoqun; Wang, Huiyu; Zhang, Zhuo; Zhang, Tao; Liu, Baorui

    2014-10-15

    Circulating tumor cells (CTC) capture is one of the most effective approaches in diagnosis and treatment of cancers in the field of personalized cancer medicine. In our study, zwitterionic carboxybetaine methacrylate (CBMA) oligomers were grafted onto nylon via atomic transfer random polymerization (ATRP) which would serve as a novel material for the development of convenient CTC capture interventional medical devices. The chemical, physical and biological properties of pristine and modified nylon surfaces were assessed by Fourier transform infrared spectra, atomic force microscope, water contact angle measurements, X-ray photoelectron spectroscopy, protein adsorption, platelet adhesion, and plasma recalcification time (PRT) determinations, etc. The results, including the significant decrease of proteins adsorption and platelets adhesion, as well as prolonged PRTs demonstrated the extraordinary biocompatibility and blood compatibility of the modified surface. Furthermore, we showed that upon immobilization of anti-epithelial cell adhesion molecular (anti-EpCAM) antibody onto the CBMA moiety, the modified nylon surface can selectively capture EpCAM positive tumor cells from blood with high efficiency, indicating the potential of the modified nylon in the manufacture of convenient interventional CTC capture medical devices.

  11. Wettability interpretation of oxygen plasma modified poly(methyl methacrylate).

    PubMed

    Chai, Jinan; Lu, Fuzhi; Li, Baoming; Kwok, Daniel Y

    2004-12-07

    Poly(methyl methacrylate) (PMMA) has been modified via a dc pulsed oxygen plasma for different treatment times. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), optical profilometer, zeta potential, and advancing contact angle measurements. The measured advancing contact angles of water decreased considerably as a function of discharge. Several oxygen-based functionalities (carbonyl, carboxyl, carbonate, etc.) were detected by XPS, while zeta potential measurements confirmed an increase in negative charge for the treated PMMA surface. Evaluating the correlation between the concentration of polar chemical species and zeta potential, we found that increase in surface hydrophilicity results from the coeffect due to incorporation of oxygen functional groups and creation of charge states. The electrical double layer (EDL) effect was also considered in contact angle interpretation by introducing an additional surface tension term into Young's equation. We also found that EDL contribution to the solid-liquid interfacial tension is negligible and can be safely ignored for the systems considered here.

  12. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications.

    PubMed

    Buga, Mihaela-Ramona; Zaharia, Cătălin; Bălan, Mihai; Bressy, Christine; Ziarelli, Fabio; Margaillan, André

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2'-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70°C for 24h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, (13)C, (29)Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization.

  13. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality.

    PubMed

    Lei, Zhen; Gao, Jiaxue; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-04-27

    We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained.

  14. Synthesis and characterization of fluorinated methacrylates-based copolymers containing cross-linkable pendant groups for optical waveguides

    NASA Astrophysics Data System (ADS)

    Kim, Ho June; Kim, Kwangsok; Chin, In-Joo

    2006-02-01

    Methacrylate based copolymers containing thermal and UV cross-linkable groups were prepared, ad their optical properties were investigated. Copolymerization of octafluoropentyl methacrylate (OFPMA) with hydroxyethyl methacrylate (HEMA) was followed by reacting HEMA and methacrylic anhydride (MAAN), yielding a fluorinated copolymer with cross-linkable pendant group. The refractive indices of the copolymers before cross-linking ranged from 1.4329 to 1.4646, and those of the cross-linked copolymers varied from 1.4500 to 1.4822, depending on the fluorine content.

  15. Horseradish peroxidase mediated free radical polymerization of methyl methacrylate.

    PubMed

    Kalra, B; Gross, R A

    2000-01-01

    This paper reports the free radical polymerization of methyl methacrylate (MMA) catalyzed by horseradish peroxidase (HRP). A novel method was developed whereby MMA polymerization can be carried out at ambient temperatures in the presence of low concentrations of hydrogen peroxide and 2,4-pentanedione in a mixture of water and a water-miscible solvent. Polymers of MMA formed were highly stereoregular with predominantly syndiotactic sequences (syn-dyad fractions from 0.82 to 0.87). Analyses of the chloroform-soluble fraction of syndio-PMMA products by GPC showed that they have number-average molecular weights, Mn, that range from 7500 to 75,000. By using 25% v/v of the cosolvents dioxane, tetrahydrofuran, acetone, and dimethylformamide, 85, 45, 7 and 2% product yields, respectively, resulted after 24 h. Increasing the proportion of dioxane to water from 1:3 to 1:1 and 3:1 resulted in a decrease in polymer yield from 45 to 38 and 7%, respectively. Increase in the enzyme concentration from 70 to 80 and 90 mg/mL resulted in increased reaction kinetics. By adjustment of the molar ratio of 2,4-pentanedione to hydrogen peroxide between 1.30:1.0 and 1.45:1.0, the product yields and Mn values were increased. On the basis of the catalytic properties of HRP and studies herein, we believe that the keto-enoxy radicals from 2,4-pentanedione are the first radical species generated. Then, initiation may take place through this radical or by the radical transfer to another molecule.

  16. Dual-functional electrospun poly(2-hydroxyethyl methacrylate).

    PubMed

    Zhang, Bo; Lalani, Reza; Cheng, Fang; Liu, Qingsheng; Liu, Lingyun

    2011-12-01

    Poly(2-hydroxyethyl methacrylate) (pHEMA) has been widely used in many biomedical applications due to its well-known biocompatibility. For tissue engineering applications, porous scaffolds that mimic fibrous structures of natural extracellular matrix and possess high surface-area-to-volume ratios are highly desirable. So far, a systematic approach to control diameter and morphology of pHEMA fibers has not been reported and potential applications of pHEMA fibers have barely been explored. In this work, pHEMA was synthesized and processed into fibrous scaffolds using an electrospinning approach. Fiber diameters from 270 nm to 3.6 μm were achieved by controlling polymer solution concentration and electrospinning flow rate. Post-electrospinning thermal treatment significantly improves integrity of the electrospun membranes in water. The pHEMA microfibrous membranes exhibited water absorption up to 280% (w/w), whereas the pHEMA hydrogel only absorbed 70% water. Fibrinogen adsorption experiments demonstrate that the electrospun pHEMA fibers highly resist nonspecific protein adsorption. Hydroxyl groups on electrospun pHEMA fibers were further activated for protein immobilization. A bovine serum albumin (BSA) binding capacity as high as 120 mg BSA/g membrane was realized at an intermediate fiber diameter. The pHEMA fibrous scaffolds functionalized with collagen I significantly promoted fibroblast adhesion, spreading, and proliferation. We conclude that the electrospun pHEMA fibers are dual functional, that is, they resist nonspecific protein adsorption meanwhile abundant hydroxyl groups on fibers allow effective conjugation of biomolecules in a nonfouling background. High water absorption and dual functionality of the electrospun pHEMA fibers may lead to a number of potential applications such as wound dressings, tissue scaffolds, and affinity membranes.

  17. Assessment of methyl methacrylate genotoxicity by the micronucleus test.

    PubMed

    Araújo, Amarildo Mariano de; Alves, Guilherme Rodrigues; Avanço, Guilherme Trevisan; Parizi, José Luiz Santos; Nai, Gisele Alborghetti

    2013-01-01

    The aim of this study was to evaluate the genotoxic potential of methyl methacrylate (MMA) vapor by simulating standard occupational exposure of 8 hours per day and using the micronucleus test. We used 32 adult male Wistar rats divided into three groups: A - 16 rats exposed to MMA for 8 hours a day, B - Eight rats receiving single subcutaneous doses of cyclophosphamide on the first day of the experiment (positive control), C - Eight rats receiving only water and food ad libitum (negative control). Eight rats from group A and all of the rats from groups B and C were sacrificed 24 hours after beginning the experiment (acute exposure in group A). The remaining animals in group A were sacrificed 5 days after the experiment began (repeated exposure assessment in group A, simulating occupational exposure 40 hours/week). Femoral bone marrow was collected from each rat at the time of sacrifice for use in the micronucleus test. Two slides were completed per animal and were stained with Giemsa staining. Two thousand polychromatic erythrocytes were counted per animal. The Kruskal-Wallis test followed by a multiple comparisons test (Dunn test) was used for statistical analysis. The median number of micronuclei was 7.00 in the group exposed to MMA for 1 day, 2.00 in the group exposed to MMA for 5 days, 9.00 in the group exposed to cyclophosphamide (positive control) and 0.756 in the negative control group (p < 0.0001). MMA was genotoxic when measured after 1 day of exposure but was not evidently genotoxic after 5 days.

  18. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins?

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Mazzoni, Annalisa; Carvalho, Ricardo M.; Carrilho, Marcela; Tersariol, Ivarne L.; Nascimento, Fabio D.; Imazato, Satoshi; Tjäderhane, Leo; Breschi, Lorenzo; Tay, Franklin R; Pashley, David H.

    2014-01-01

    Objective Dentin matrices release ICTP and CTX fragments during collagen degradation. ICTP fragments are known to be produced by MMPs. CTX fragments are thought to come from cathepsin K activity. The purpose of this study was to determine if quaternary methacrylates (QAMs) can inhibit matrix MMPs and cathepsins. Methods Dentin beams were demineralizated, and dried to constant weight. Beams were incubated with rh-cathepsin B, K, L or S for 24 h at pH 7.4 to identify which cathepsins release CTX at neutral pH. Beams were dipped in ATA, an antimicrobial QAM to determine if it can inhibit dentin matrix proteases. Other beams were dipped in another QAM (MDPB) to determine if it produced similar inhibition of dentin proteases. Results Only beams incubated with cathepsin K lost more dry mass than the controls and released CTX. Dentin beams dipped in ATA and incubated for 1 week at pH 7.4, showed a concentration-dependent reduction in weight-loss. There was no change in ICTP release from control values, meaning that ATA did not inhibit MMPs. Media concentrations of CTX fell significantly at 15 wt% ATA indicating that ATA inhibits capthesins. Beams dipped in increasing concentrations of MDPB lost progressively less mass, showing that MDPB is a protease-inhibitor. ICTP released from controls or beams exposed to low concentrations were the same, while 5 or 10% MDPB significantly lowered ICTP production. CTX levels were strongly inhibited by 2.5–10% MDPB, indicating that MDPB is a potent inhibitor of both MMPs and cathepsin K. Significance CTX seems to be released from dentin matrix only by cathepsin K. MMPs and cathepsin K and B may all contribute to matrix degradation. PMID:25467953

  19. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  20. Preparation and characterization of alkyl methacrylate-based monolithic columns for capillary gas chromatography applications.

    PubMed

    Yusuf, Kareem; Aqel, Ahmad; A L Othman, Zeid; Badjah-Hadj-Ahmed, Ahmed Yacine

    2013-08-02

    Gas chromatography (GC) is considered the least common application of both polymer and silica-based monolithic columns. This study describes the fabrication of alkyl methacrylate monolithic materials for use as stationary phases in capillary gas chromatography. Following the deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (TMSM), the monoliths were formed by the co-polymerization of either hexyl methacrylate (HMA) or lauryl methacrylate (LMA) with different percentage of ethylene glycol dimethacrylate (EDMA) in presence of an initiator (azobisisobutyronitrile, AIBN) and a mixture of porogens include 1-propanol, 1,4-butanediol and water. The monoliths were prepared in 500mm length capillaries possessing inner diameters of 250μm. The efficiencies of the monolithic columns for low molecular weight compounds significantly improved as the percentage of crosslinker was increased, because of the greater proportion of pores less than 50nm. The columns containing lower percentages of crosslinker were able to rapidly separate a series of 8 alkane members in 0.7min, but the separation was less efficient for the light alkanes. Columns prepared with the lauryl methacrylate monomer yielded a different morphology for the monolith-interconnected channels. The channels were more branched, which increased the separation time, and unlike the other columns, allowed for temperature programming.

  1. Flexural properties of ethyl or methyl methacrylate-UDMA blend polymers.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2010-10-01

    Light-curing polyethyl methacrylate (PEMA)-urethane dimethacrylate (UDMA) resins and polymethyl methacrylate (PMMA)-UDMA resins were prepared by two processes. For first step, PEMA or PMMA powders were fully dissolved in ethyl methacrylate (EMA) or methyl methacrylate (MMA) and then the PEMA-EMA/PMMA-MMA mixtures were mixed with UDMA. The flexural properties of cured PEMA-UDMA and PMMA-UDMA polymers were measured using two PEMA (Mw: 300,000-400,000 and 650,000-1,000,000) and three PMMA (Mw: 30,000-60,000, 350,000 and 650,000-1,000,000) powders with different molecular weight, four mixing ratios of PMMA-MMA, and three mixing ratios of PMMA-MMA mixture and UDMA oligomer. Polymers with PMMA(Mw: 350,000) MMA=25/50, and with PMMA(Mw: 350,000)-MMA/UDMA=1/2 and =1/1, showed no-fracture in a flexural test at 1 mm/min and flexural strength and flexural modulus showed no significant difference compared with those of commercially available heat- and self-curing acrylic resins (p>0.01). Within limitation of this investigation, methyl methacrylate-UDMA blend polymer of this composition is available for denture base resin.

  2. Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods.

    PubMed

    Gramlich, William M; Holloway, Julianne L; Rai, Reena; Burdick, Jason A

    2014-01-10

    Injectable hydrogels provide locally controlled tissue bulking and a means to deliver drugs and cells to the body. The formation of hydrogels in vivo may involve the delivery of two solutions that spontaneously crosslink when mixed, with pH or temperature changes, or with light (e.g., visible or ultraviolet). With these approaches, control over the kinetics of gelation, introduction of the initiation trigger (e.g., limited penetration of ultraviolet light through tissues), or alteration of the material physical properties (e.g., mechanics) may be difficult to achieve. To overcome these limitations, we used the interaction of near-infrared (NIR) light with gold nanorods (AuNRs) to generate heat through the photothermal effect. NIR light penetrates tissues to a greater extent than other wavelengths and provides a means to indirectly initiate radical polymerization. Specifically, this heating coupled with a thermal initiator (VA-044) produced radicals that polymerized methacrylated hyaluronic acid (MeHA) and generated hydrogels. A range of VA-044 concentrations changed the gelation time, yielding a system stable at 37 ° C for 22 min that gels quickly (~3 min) when heated to 55 ° C. With a constant irradiation time (10 min) and laser power (0.3 W), different VA-044 and AuNR concentrations tuned the compressive modulus of the hydrogel. By changing the NIR irradiation time we attained a wide range of moduli at a set solution composition. In vivo mouse studies confirmed that NIR laser irradiation through tissue could gel an injected precursor solution transdermally.

  3. Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods

    NASA Astrophysics Data System (ADS)

    Gramlich, William M.; Holloway, Julianne L.; Rai, Reena; Burdick, Jason A.

    2014-01-01

    Injectable hydrogels provide locally controlled tissue bulking and a means to deliver drugs and cells to the body. The formation of hydrogels in vivo may involve the delivery of two solutions that spontaneously crosslink when mixed, with pH or temperature changes, or with light (e.g., visible or ultraviolet). With these approaches, control over the kinetics of gelation, introduction of the initiation trigger (e.g., limited penetration of ultraviolet light through tissues), or alteration of the material physical properties (e.g., mechanics) may be difficult to achieve. To overcome these limitations, we used the interaction of near-infrared (NIR) light with gold nanorods (AuNRs) to generate heat through the photothermal effect. NIR light penetrates tissues to a greater extent than other wavelengths and provides a means to indirectly initiate radical polymerization. Specifically, this heating coupled with a thermal initiator (VA-044) produced radicals that polymerized methacrylated hyaluronic acid (MeHA) and generated hydrogels. A range of VA-044 concentrations changed the gelation time, yielding a system stable at 37 ° C for 22 min that gels quickly (∼3 min) when heated to 55 ° C. With a constant irradiation time (10 min) and laser power (0.3 W), different VA-044 and AuNR concentrations tuned the compressive modulus of the hydrogel. By changing the NIR irradiation time we attained a wide range of moduli at a set solution composition. In vivo mouse studies confirmed that NIR laser irradiation through tissue could gel an injected precursor solution transdermally.

  4. Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer

    PubMed Central

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426

  5. Toughening epoxy resin with poly(methyl methacrylate)-grafted natural rubber

    SciTech Connect

    Rezaifard, A.H.; Hodd, K.A.; Barton, J.M.

    1993-12-31

    A novel rubber, poly(methyl methacrylate)-g-natural rubber (Hevea-plus MG), has been studied as a toughening agent for bisphenol A diglycidyl ether (Shell 828 epoxy resin) cured with piperidine. Effective dispersions of the rubber, in concentrations of 2-10 parts per hundred parts resin, were achieved by adjusting the solubility parameter of the epoxy to approximate that of poly(methyl methacrylate) by adding bisphenol A. The fracture energy of the rubber-modified resin was determined by compact tension tests (in the temperature range -60 to +40{degrees}C) and by Charpy impact tests. The poly(methyl methacrylate)-g-natural rubber was found to be an effective toughening agent for the epoxy resin at both low and high rates of strain. Possible fracture mechanisms are discussed. 22 refs., 16 figs., 5 tabs.

  6. Night-time atmospheric degradation of a series of butyl methacrylates

    NASA Astrophysics Data System (ADS)

    Teruel, Mariano A.; López, Rocío S. Pérez; Barnes, Ian; Blanco, María B.

    2016-11-01

    Rate coefficients for the reactions of NO3 with n-butyl methacrylate (k1), iso-butyl methacrylate (k2) and tert-butyl methacrylate (k3) have been determined at 298 K and atmospheric pressure using the relative rate method. The following rate coefficients (×10-15 cm3 molecule-1 s-1) were obtained for the first time: k1 = (5.5 ± 2.6), k2 = (5.8 ± 2.8) and k3 = (5.6 ± 2.5). The NO3 reactions of these compounds could contribute to the removal of NOx and as NOy reservoirs. The potential importance for the tropospheric nitrogen budget of these reactions is discussed and atmospheric lifetimes for the butyl esters are calculated.

  7. Development and characterization of thermoplastic films from sorghum distillers dried grains grafted with various methacrylates.

    PubMed

    Reddy, Narendra; Shi, Zhen; Temme, Lisa; Xu, Helan; Xu, Lan; Hou, Xiuliang; Yang, Yiqi

    2014-03-19

    Distillers Dried Grains (DDG) obtained during production of ethanol from grain sorghum were grafted with methacrylates and compression molded into films with good dry and wet tensile properties. Since sorghum DDG contains up to 45% proteins that are indigestible by animals, it is necessary to find alternative applications to make sorghum ethanol economically competitive. In this research, sorghum DDG was grafted with methyl, ethyl, and butyl methacrylates, the grafted DDG was compression molded into films, and the properties of the grafted DDG and films were studied. At a grafting ratio of 40%, butyl methacrylate (BMA) grafted films had a strength of 4.8 MPa and elongation of 1.8% when dry and 3.1 MPa and 8.1% when wet, indicating that the films had good strength and wet stability. Films developed from grafted DDG show the potential to overcome the brittleness and poor water stability of biopolymer-based films and be useful for various applications.

  8. Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.

    PubMed

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.

  9. Basic study of a new denture base resin applying hydrophobic methacrylate monomer.

    PubMed

    Umemoto, K; Kurata, S

    1997-06-01

    To improve the water sorption of poly(methyl methacrylate), new hydrophobic monomers, such as norbonyl and phenyl methacrylate, were studied to determine the resin with lower water sorption with no decrease in mechanical property. Water sorption of the copolymers of the hydrophobic monomers and MMA decreased with the increase in the concentration of the monomers. Compressive and bending strength of the copolymers were higher than that of PMMA, and the elastic modulus in bending was the same as that of PMMA. In addition, the transverse-deflection values satisfied ADA specifications. Dynamic mechanical thermal analysis of the copolymers showed a similar tendency to that of PMMA in spite of the introduction of bulky groups, such as norbonyl and phenyl, in the polymer molecule. The polymerization shrinkage in volume was in the following order: norbonyl < phenyl < methyl methacrylate.

  10. Assessment of the skin sensitising potency of the lower alkyl methacrylate esters.

    PubMed

    Kimber, Ian; Pemberton, Mark A

    2014-10-01

    There is continued interest in, and imperatives for, the classification of contact allergens according to their relative skin sensitising potency. However, achieving that end can prove problematic, not least when there is an apparent lack of concordance between experimental assessments of potency and the prevalence allergic contact dermatitis as judged by clinical experience. For the purpose of exploring this issue, and illustrating the important considerations that are required to reach sound judgements about potency categorisation, the lower alkyl methacrylate esters (LAM) have been employed here as a case study. Although the sensitising potential of methyl methacrylate (MMA) has been reviewed previously, there is available new information that is relevant for assessment of skin sensitising potency. Moreover, for the purposes of this article, analyses have been extended to include also other LAM for which relevant data are available: ethyl methacrylate (EMA), n-butyl methacrylate (nBMA), isobutyl methacrylate (iBMA), and 2-ethylhexyl methacrylate (EHMA). In addressing the skin sensitising activity of these chemicals and in drawing conclusions regarding relative potency, a number of sources of information has been considered, including estimates of potency derived from local lymph node assay (LLNA) data, the results of guinea pig assays, and data derived from in silico methods and from recently developed in vitro approaches. Moreover, clinical experience of skin sensitisation of humans by LAM has also been evaluated. The conclusion drawn is that MMA and other LAM are contact allergens, but that none of these chemicals has any more than weak skin sensitising potency. We have also explored here the possible bases for this modest sensitising activity. Finally, the nature of exposure to LAM has been reviewed briefly and on the basis of that information, together with an understanding of skin sensitising potency, a risk assessment has been prepared.

  11. Lipase catalyzed HEMA initiated ring-opening polymerization: in situ formation of mixed polyester methacrylates by transesterification.

    PubMed

    Takwa, Mohamad; Xiao, Yan; Simpson, Neil; Malmström, Eva; Hult, Karl; Koning, Cor E; Heise, Andreas; Martinelle, Mats

    2008-02-01

    2-Hydroxyethyl methacrylate (HEMA) was used as initiator for the enzymatic ring-opening polymerization (ROP) of omega-pentadecalactone (PDL) and epsilon-caprolactone (CL). The lipase B from Candida antarctica was found to catalyze the cleavage of the ester bond in the HEMA end group of the formed polyesters, resulting in two major transesterification processes, methacrylate transfer and polyester transfer. This resulted in a number of different polyester methacrylate structures, such as polymers without, with one, and with two methacrylate end groups. Furthermore, the 1,2-ethanediol moiety (from HEMA) was found in the polyester products as an integral part of HEMA, as an end group (with one hydroxyl group) and incorporated within the polyester (polyester chains acylated on both hydroxyl groups). After 72 h, as a result of the methacrylate transfer, 79% (48%) of the initial amount of the methacrylate moiety (from HEMA) was situated (acylated) on the end hydroxyl group of the PPDL (PCL) polyester. In order to prepare materials for polymer networks, fully dimethacrylated polymers were synthesized in a one-pot procedure by combining HEMA-initiated ROP with end-capping using vinyl methacrylate. The novel PPDL dimethacrylate (>95% incorporated methacrylate end groups) is currently in use for polymer network formation. Our results show that initiators with cleavable ester groups are of limited use to obtain well-defined monomethacrylated macromonomers due to the enzyme-based transesterification processes. On the other hand, when combined with end-capping, well-defined dimethacrylated polymers (PPDL, PCL) were prepared.

  12. Production of microencapsulate glycidyl methacrylate with melamine formaldehyde resin shell materials

    NASA Astrophysics Data System (ADS)

    Bel, T.; Ulku, G.; Kizilcan, N.; Cimenoglu, H.; Yahya, N.; Baydogan, N.

    2016-11-01

    This study gives some information about the preparation of Glycidyl Methacrylate (GMA) microcapsules with Melamine Formaldehyde (MF) resin as a shell material (MF-GMA). Melamine formaldehyde resin containing hydroxyl groups was synthesized in the first step. Second step includes the addition of GMA monomer along with Sodium Dodecyl Benzenesulfonate (SDBS) and Polyvinyl Alcohol (PVA) aqueous solution for getting emulsible solution. The resultant MF-GMA microcapsules had good enclosing performance and thermal stability. The characteristic properties and the morphology of microencapsulated Glycidyl Methacrylate were examined by using FTIR analysis and their morphology was investigated by using optical microscope.

  13. The Mark-Houwink-Sakurada Relation for Poly(Methyl Methacrylate)

    NASA Astrophysics Data System (ADS)

    Wagner, Herman L.

    1987-04-01

    In this third review of a series, the literature values for the viscosity-molecular weight relationship (Mark-Houwink-Sakurada) for poly(methyl methacrylate) have been critically evaluated. Although most of the studies have been concerned with conventionally produced poly(methyl methacrylate), some work has also been done with the isotactic polymer. The Mark-Houwink relations for the following solvents are discussed: benzene, toluene, acetone, chloroform, 2-butanone, and tetrahydrofuran, as well as for several other infrequently used solvents. The values of the coefficient K in the relation [η]=KM0.5 for several theta solvents are also reported.

  14. Photo-Physical Behavior and Fluorescence of Thermo Switchable Nanocomposite Based on Methyl Methacrylate -Spirobenzopyran.

    PubMed

    Rouhani, Shohre; Pishvaei, Malihe

    2017-03-01

    Nanocomposites with thermo and photo-switchable fluorescent properties were synthesized via mini-emulsion polymerization based on spiropyran and methyl methacrylate monomer. The photophysical behavior of fluorescence nanocomposites was investigated by fluorescence spectrophotometry in different temperature, UV-light and time of exposure. It was found that methyl methacrylate polymer is capable of acting as a protective layer and play a critical role in improving the photostability of colorants. The nanocomposites exhibited excellent fluorescent thermo-switching action with respect to the free spiro molecule. Graphical Abstract ᅟ.

  15. pH-sensitive methacrylic copolymer gels and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  16. Disabling disturbance of olfaction in a dental technician following exposure to methyl methacrylate.

    PubMed

    Braun, D; Wagner, W; Zenner, H-P; Schmahl, F W

    2002-10-01

    It is often difficult to diagnose dysosmia due to occupational olfactotoxic substances. The authors present a case of disabling disturbance of olfaction in a dental technician. This is very likely to have been caused by exposure to methyl methacrylate. From 1988-1992, the dental technician had very extensive and sustained contact with a self-polymerizing acrylic resin based on methyl methacrylate. Her perception of smell was still normal in 1988, but it deteriorated up to 1992. The olfactory disorders have persisted and impede social life and occupational rehabilitation.

  17. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo.

    PubMed

    Rinkenauer, Alexandra C; Press, Adrian T; Raasch, Martin; Pietsch, Christian; Schweizer, Simon; Schwörer, Simon; Rudolph, Karl L; Mosig, Alexander; Bauer, Michael; Traeger, Anja; Schubert, Ulrich S

    2015-10-28

    Polymer-based nanoparticles are promising drug delivery systems allowing the development of new drug and treatment strategies with reduced side effects. However, it remains a challenge to screen for new and effective nanoparticle-based systems in vitro. Important factors influencing the behavior of nanoparticles in vivo cannot be simulated in screening assays in vitro, which still represent the main tools in academic research and pharmaceutical industry. These systems have serious drawbacks in the development of nanoparticle-based drug delivery systems, since they do not consider the highly complex processes influencing nanoparticle clearance, distribution, and uptake in vivo. In particular, the transfer of in vitro nanoparticle performance to in vivo models often fails, demonstrating the urgent need for novel in vitro tools that can imitate aspects of the in vivo situation more accurate. Dynamic cell culture, where cells are cultured and incubated in the presence of shear stress has the potential to bridge this gap by mimicking key-features of organs and vessels. Our approach implements and compares a chip-based dynamic cell culture model to the common static cell culture and mouse model to assess its capability to predict the in vivo success more accurately, by using a well-defined poly((methyl methacrylate)-co-(methacrylic acid)) and poly((methyl methacrylate)-co-(2-dimethylamino ethylmethacrylate)) based nanoparticle library. After characterization in static and dynamic in vitro cell culture we were able to show that physiological conditions such as cell-cell communication of co-cultured endothelial cells and macrophages as well as mechanotransductive signaling through shear stress significantly alter cellular nanoparticle uptake. In addition, it could be demonstrated by using dynamic cell cultures that the in vivo situation is simulated more accurately and thereby can be applied as a novel system to investigate the performance of nanoparticle systems in vivo

  18. Terminal-Selective Transesterification of Chlorine-Capped Poly(Methyl Methacrylate)s: A Modular Approach to Telechelic and Pinpoint-Functionalized Polymers.

    PubMed

    Ogura, Yusuke; Terashima, Takaya; Sawamoto, Mitsuo

    2016-04-20

    Terminal-selective transesterification of chlorine-capped poly(methyl methacrylate)s (PMMA-Cl) with alcohols was developed as a modular approach to create telechelic and pinpoint-functionalized polymers. Being sterically less hindered and electronically activated, both the α-end ethyl ester and ω-end methyl ester of PMMA-Cl were efficiently and selectively transesterified with diverse alcohols in the presence of a titanium alkoxide catalyst, while retaining the pendent esters intact, to almost quantitatively give various chlorine-capped telechelic PMMAs. In sharp contrast to conventional telechelic counterparts, the telechelic polymers obtained herein yet carry a chlorine atom at the ω-terminal to further work as a macroinitiator in living radical polymerization. The iterative process of living radical polymerization and terminal-selective transesterification successfully afforded unique pinpoint-functionalized polymers where a single functional monomer unit was introduced into the desired site of the polymer chains.

  19. Effects of monomers and homopolymer contents on the dry and wet tensile properties of starch films grafted with various methacrylates.

    PubMed

    Shi, Zhen; Reddy, Narendra; Shen, Li; Hou, Xiuliang; Yang, Yiqi

    2014-05-21

    Starch grafted with four different methacrylates was compression molded to form thermoplastic films with good strength and water stability. Starch is an inexpensive and biodegradable polymer but is nonthermoplastic and needs to be chemically modified to make starch suitable for various applications. In this research, starch was grafted with four methacrylates (methyl, ethyl, butyl, and hexyl), and the effect of the length of the alkyl ester group on grafting parameters, thermoplasticity, and properties of thermoplastic films developed have been studied. Influence of grafting conditions on % grafting efficiency, % homopolymers, and % monomer conversion were studied, and the grafted starch was characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and nuclear magnetic resonance ((1)H NMR). At similar grafting ratios, butyl methacrylate (BMA) provided better strength and elongation to the starch films than the other three methacrylates. Grafting of methacrylates appears to be an economical approach to develop thermoplastic products from starch.

  20. In situ synthesis of cobalt ferrite nanoparticle/polymer hybrid from a mixed Fe-Co methacrylate for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Hayashi, Koichiro; Maeda, Kazuki; Moriya, Makoto; Sakamoto, Wataru; Yogo, Toshinobu

    2012-09-01

    Hyperthermic CoFe2O4 nanoparticle (CFO NP)/polymer hybrids were synthesized by hydrolysis-condensation from a complex of Co and Fe possessing methacrylate ligands. Single-crystal analysis revealed that the complex consisted of two Co and four Fe metal atoms coordinated by methacrylate and 2-methoxyethoxy groups. The complex was copolymerized with 2-hydroxyethyl methacrylate (HEMA) and the resulting copolymer was then hydrolyzed to form a CFO NP/copolymer of poly(methacrylate) and poly(2-hydroxyethyl methacrylate) hybrid. Copolymerization with HEMA enhanced the stability of the hybrid in water. The size and magnetic properties of CFO in the hybrid were controlled by adjusting the hydrolysis conditions. Moreover, the hybrid generated heat under an alternating current magnetic field; its exothermal properties depended on the magnetic properties of the hybrid, the strength of the applied field, and the CFO NP content in the agar phantom matrix.

  1. Characterisation of poly(alkyl methacrylate)s by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS)

    NASA Astrophysics Data System (ADS)

    Jackson, Anthony T.; Slade, Susan E.; Scrivens, James H.

    2004-11-01

    Electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) has been employed for the characterisation of two poly(alkyl methacrylate) polymers, namely poly(methyl methacrylate) (PMMA) and poly(n-butyl methacrylate) (PBMA). Collision-induced dissociation (CID) experiments were performed in a quadrupole orthogonal time-of-flight (ToF) tandem mass spectrometer fitted with a nanospray source. Tandem mass spectra from singly, doubly and triply charged precursor ions (with alkali metals used for cationisation of the oligomers) are shown and the data are compared to those previously generated by means of matrix-assisted laser desorption/ionisation-collision-induced dissociation (MALDI-CID). These data indicate that cations with greater ionic radii may yield the most useful structural information as the mass-to-charge ratio of the precursor ion increases, whereas lithium or sodium ions are proposed to be ideal for obtaining spectra from lower molecular weight oligomers. Fragment ions at low mass-to-charge ratios dominate the spectra. Two series of peaks may be used to calculate the masses of the initiating and terminating end groups of the polymer. Ion peaks of greater mass-to-charge ratios form series that may be used to infer sequence information from the polymers.

  2. Methacrylate-based diol monolithic stationary phase for the separation of polar and non-polar compounds in capillary liquid chromatography.

    PubMed

    Linda, Roza; Lim, Lee Wah; Takeuchi, Toyohide

    2013-01-01

    A monolithic capillary column prepared with glycidyl methacrylate (GMA) and poly(ethylene glycol) dimethacrylate (PEGDMA) was investigated and used in capillary liquid chromatography. The polymer monolith was synthesized in the presence of methanol and decanol as the biporogenic solvents by in situ polymerization of GMA and PEGDMA, and the optimum composition of monomer and porogen was investigated. After polymerization, glycidyl groups were hydrolyzed with sulfuric acid to produce diol groups at the surface of the porous monolith via epoxy-ring-opening. The GMA content in the polymerization mixture affected the hydrophilicity of the monolith. The separation capability was evaluated by separation of phenol compounds, phthalic acids, and polycyclic aromatic hydrocarbons. The poly(GMA-PEGDMA) monolithic capillary column exhibited satisfactory stability.

  3. Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate)

    DTIC Science & Technology

    2013-10-01

    measurements for cellulose and PMMA thin- films . ..13  v List of Tables Table 1. Recorded optical data for nanocellulose in water...applications beyond thin films . In particular, the effects of nanocellulose fibers in higher concentrations, processed in different solvents, and...Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate) by James F. Snyder, Joshua Steele

  4. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    PubMed

    Arkhipova, Oksana V; Meer, Margarita V; Mikoulinskaia, Galina V; Zakharova, Marina V; Galushko, Alexander S; Akimenko, Vasilii K; Kondrashov, Fyodor A

    2015-01-01

    The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  5. Controlled Degradation of Poly(Ethyl Cyanoacrylate-Co-Methyl Methacrylate)(PECA-Co-PMMA) Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes a method for modifying poly(ethyl cyanoacrylate) in order to control the degradation and the stability as well as the glass transition temperatures. Copolymers of poly(ethyl cyanoacrylate-co-methyl methacrylate) (PECA-co-PMMA) with various compositions were synthesized by free ...

  6. Chest Wall Reconstruction Using a Methyl Methacrylate Neo-Rib and Mesh.

    PubMed

    Suzuki, Kei; Park, Bernard J; Adusumilli, Prasad S; Rizk, Nabil P; Huang, James; Jones, David R; Bains, Manjit S

    2015-08-01

    Prosthetic reconstruction of the chest wall after oncologic resection is performed by means of various techniques using different materials. We describe a new technique of chest wall reconstruction that includes the use of Marlex mesh and the creation of a neo-rib from a Steinmann pin and methyl methacrylate.

  7. RAFT "grafting-through" approach to surface-anchored polymers: Electrodeposition of an electroactive methacrylate monomer.

    PubMed

    Grande, C D; Tria, M C; Felipe, M J; Zuluaga, F; Advincula, R

    2011-02-01

    The synthesis of homopolymer and diblock copolymers on surfaces was demonstrated using electrodeposition of a methacrylate-functionalized carbazole dendron and subsequent reversible addition-fragmentation chain transfer (RAFT) "grafting-through" polymerization. First, the anodically electroactive carbazole dendron with methacrylate moiety (G1CzMA) was electrodeposited over a conducting surface (i.e. gold or indium tin oxide (ITO)) using cyclic voltammetry (CV). The electrodeposition process formed a crosslinked layer of carbazole units bearing exposed methacrylate moieties. This film was then used as the surface for RAFT polymerization process of methyl methacrylate (MMA), styrene (S), and tert-butyl acrylate (TBA) in the presence of a free RAFT agent and a free radical initiator, resulting in grafted polymer chains. The molecular weights and the polydispersity indices (PDI) of the sacrificial polymers were determined by gel permeation chromatography (GPC). The stages of surface modification were investigated using X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM) to confirm the surface composition, thickness, and film morphology, respectively. UV-Vis spectroscopy also confirmed the formation of an electro-optically active crosslinked carbazole film with a [Formula: see text] - [Formula: see text] absorption band from 450-650nm. Static water contact angle measurements confirmed the changes in surface energy of the ultrathin films with each modification step. The controlled polymer growth from the conducting polymer-modified surface suggests the viability of combining electrodeposition and grafting-through approach to form functional polymer ultrathin films.

  8. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.

    PubMed

    Kubinová, Sárka; Horák, Daniel; Hejčl, Aleš; Plichta, Zdeněk; Kotek, Jiří; Syková, Eva

    2011-12-15

    Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and the introduction of large pores have been developed to create highly superporous hydrogels that promote cell-surface interactions and that can serve as a permissive scaffold for spinal cord injury (SCI) treatment. Highly superporous cholesterol-modified PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA), and ethylene dimethacrylate (EDMA) cross-linking agent in the presence of ammonium oxalate crystals to establish interconnected pores in the scaffold. Moreover, 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) was incorporated in the polymerization recipe and hydrolyzed, thus introducing carboxyl groups in the hydrogel to control its swelling and softness. The hydrogels supported the in vitro adhesion and proliferation of rat mesenchymal stem cells. In an in vivo study of acute rat SCI, hydrogels were implanted to bridge a hemisection cavity. Histological evaluation was done 4 weeks after implantation and revealed the good incorporation of the implanted hydrogels into the surrounding tissue, the progressive infiltration of connective tissue and the ingrowth of neurofilaments, Schwann cells, and blood vessels into the hydrogel pores. The results show that highly superporous cholesterol-modified PHEMA hydrogels have bioadhesive properties and are able to bridge a spinal cord lesion.

  9. Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by gamma-radiation.

    PubMed

    Khan, Ferdous

    2005-01-14

    Gamma-radiation-induced graft copolymerization of methyl methacrylate onto natural lignocellulose (jute) fiber was carried out by the preirradiation method in an aqueous medium by using octylphenoxy-polyethoxyethanol as an emulsifier. The different factors that influenced the graft copolymer reaction process were investigated. In the case of radiation-dose-dependent grafting, samples irradiated in the presence of air produced up to 73% graft weight compared to 53% obtained in the case of irradiation in a nitrogen environment. By assuming Arrhenius reaction kinetics, the activation energy (E(a)) of the grafting reaction process was evaluated for different reaction temperatures. Moreover, the graft copolymer reaction was controlled by incorporating a homopolymer-inhibiting agent and three different chain-transfer agents in the reaction medium. The mechanical and thermal properties of jute fiber 'as received' and jute-graft-poly(methyl methacrylate) were also investigated. The results showed that the percentage of grafting with jute fiber has a significant effect on the properties. The kinetic parameters were evaluated from TGA thermograms by using Broido's method in the temperature range 240-350 degrees C. Scanning electron micrographs show that the structural changes on the surface of jute fibers were induced by graft copolymerization of methyl methacrylate monomer. Fiber-fiber surface friction was measured in terms of the average maximum load and the kinetic friction. SEM of jute-graft-poly(methyl methacrylate).

  10. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  11. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES:...

  12. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  13. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .../styrene/methyl methacrylate copolymer consists of: (1) 73 to 79 parts by weight of a matrix polymer... composition range as the matrix polymer. (b) Adjuvants. The copolymer identified in paragraph (a) of this...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces §...

  14. Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Nuesca, Guillermo M.; Abad, Lucille V.

    2013-04-01

    Water hyacinth fibers (Eichhornia crassipes) were functionalized using radiation-induced graft polymerization of glycidyl methacrylate by γ-rays from 60Co source. The simultaneous grafting technique was employed wherein the water hyacinth fibers were irradiated in nitrogen atmosphere in the presence of glycidyl methacrylate dissolved in water/methanol solvent. The effects of different grafting parameters to the grafting yield were evaluated. The optimal values of solvent, absorbed dose, dose rate, and concentration of monomer were found to be 1:3 (volume/volume) water-methanol solvent, 10 kGy, 8 kGy h-1 dose rate and 5% volume/volume glycidyl methacrylate, respectively. Using the optimum conditions, degree of grafting of approximately 58% was achieved. The grafted water hyacinth fibers were characterized using Attenuated Total Reflectance-Fourier Transformed Infrared Spectroscopy (ATR-FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). The results of these tests confirmed the successful grafting of glycidyl methacrylate onto water hyacinth fibers.

  15. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  16. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  17. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  18. Synthesis of nanoporous Al2O3 membranes from polybutyl methacrylate functionalized SiO2 particles as a sacrificial template.

    PubMed

    Tseng, Wenjea J; Guo, Shiuan-Fu

    2012-10-01

    SiO2 surface is first modified with 3-trimethoxysilyl propyl methacrylate (MPS) in order to graft with polymerized butyl methacrylate (BMA) to form SiO2@MPS-BMA core--shell hybrid particles. The polymeric BMA shell enables anchoring of aluminum ions in tetrachloroethylene solvent, results in SiO2 @Al2O3 composite particles upon subjected to calcination. Removal of the SiO2 core by acid etching forms nanoporous gamma-Al2O3 membrane with a Horvath-Kawazoe (HK) pore size of 1.4 nm and a Brunauer-Emmett-Teller (BET) surface area of 78.6 m2 x g(-1). Transmission electron microscopy reveals formation of interconnected pore channels in the membrane. It is interesting to note that the Al2O3 membrane remains at a reasonably high surface area (53.9 m2 x g(-1)) after an isothermal holding at 1200 degrees C, when gamma-Al2O3 changed into predominately alpha-Al2O3. The process is indeed general and can be extended to the synthesis of other inorganic porous solids.

  19. Properties of methacrylate-thiol-ene formulations as dental restorative materials

    PubMed Central

    Cramer, Neil B.; Couch, Charles L.; Schreck, Kathleen M.; Boulden, Jordan E.; Wydra, Robert; Stansbury, Jeffrey W.; Bowman, Christopher N.

    2010-01-01

    Objectives The objective of this study was to evaluate ternary methacrylate-thiol-ene systems, with varying thiol-ene content and thiol:ene stoichiometry, as dental restorative resin materials. It was hypothesized that an off-stoichiometric thiol-ene component would enhance interactions between the methacrylate and thiol-ene processes to reduce shrinkage stress while maintaining equivalent mechanical properties. Methods Polymerization kinetics and functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Cured resin mechanical properties were evaluated using a three-point flexural test, carried out with a hydraulic universal test system. Polymerization shrinkage stress was measured with a tensometer coupled with simultaneous real-time conversion monitoring. Results The incorporation of thiol-ene mixtures as reactive diluents into conventional dimethacrylate resins previously was shown to combine synergistically advantageous methacrylate mechanical properties with the improved polymerization kinetics and reduced shrinkage stress of thiol-ene systems. In these systems, due to thiol consumption resultant from both the thiol-ene reaction and chain transfer involving the methacrylate polymerization, the optimum thiol:ene stoichiometry deviates from the traditional 1:1 ratio. Increasing the thiol:ene stoichiometry up to 3:1 results in systems with equivalent flexural modulus, 6 – 20 % reduced flexural strength, and 5 – 33 % reduced shrinkage stress relative to 1:1 stoichiometric thiol:ene systems. Significance Due to their improved overall functional group conversion, and shrinkage stress reduction while maintaining equivalent flexural modulus, methacrylate-thiol-ene resins, particularly those with excess thiol, beyond the conventional 1:1 thiol:ene molar ratio, yield superior dental restorative materials compared with purely dimethacrylate resins. PMID:20553973

  20. Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells.

    PubMed

    Brasuel, M; Kopelman, R; Miller, T J; Tjalkens, R; Philbert, M A

    2001-05-15

    Fluorescent spherical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), in the 500 nm-1 microm size range have been developed using decyl methacrylate as a matrix. A general scheme for the polymerization and introduction of sensing components creates a matrix that allows for the utilization of the highly selective ionophores used in poly(vinyl chloride) and decyl methacrylate ion-selective electrodes. We have applied these optically silent ionophores to fluorescence-based sensing by using ion-exchange and highly selective pH chromoionophores. This allows the tailoring of selective submicrometer sensors for use in intracellular measurements of important analytes for which selective enough fluorescent probes do not exist. The protocol for sensor development has been worked out for potassium sensing. It is based on the BME-44 ionophore (2-dodecyl-2-methyl-1,3-propanediylbis[N-[5'nitro(benzo-15-crown-5)-4'-yl]carbamate]). The general scheme should work for any available ionophore used in PVC or decyl methacrylate ion-selective electrodes, with minor adjustments to account for differences in ionophore charge and analyte binding constant. The reversible and highly selective sensors developed have a subsecond response time and an adjustable dynamic range. Applications to live C6 glioma cells demonstrate their utility; the intracellular potassium activity is followed in real time upon extracellular administration of kainic acid.

  1. Synthesis and Characterization of Amphiphilic Graft Copolymers of Poly (1,3dioxolane) Macromonomers with Styrene and Methyl Methacrylate

    NASA Astrophysics Data System (ADS)

    Bendaikha, H.; Clisson, G.; Khoukh, A.; François, J.; Kada, S. Ould; Krallafa, A.

    2008-08-01

    Methacrylate-terminated Poly (1,3dioxolane) (PDXL) macromonomers were synthesized by cationic ring-opening polymerization in the presence of 2-hydroxypropyl methacrylate (2-HPMA) as transfer agent. Molecular weights and polydispersity index of the PDXL macromonomers were evaluated by size exclusion chromatography (SEC) and 1H-NMR. Copolymerizations of PDXL macromonomers with styrene (St) and methyl methacrylate (MMA) were carried out using various feed molar ratios. Monomer reactivity ratios between the macromonomers and the comonomers were estimated from the copolymerization results. Glass transition temperatures of the copolymers were found to decrease with an increase in the amount of PDXL in the copolymers.

  2. Biodegradation of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} hydrogels containing peptide-based cross-linking agents.

    PubMed

    Casadio, Ylenia S; Brown, David H; Chirila, Traian V; Kraatz, Heinz-Bernhard; Baker, Murray V

    2010-11-08

    PHEMA-peptide and P[HEMA-co-(MeO-PEGMA)]-peptide conjugate hydrogels [where PHEMA = poly(2-hydroxyethyl methacrylate; PEGMA = poly(ethylene glycol) methacrylate] were readily prepared via photoinitiated free-radical polymerization in water. The PHEMA-peptide hydrogels were opaque and had a heterogeneous morphology of interconnected polymer droplets, characteristic of polymers that separate from the aqueous phase during the polymerization experiment. The P[HEMA-co-(MeO-PEGMA)]-peptide conjugates were transparent gels with a homogeneous morphology when formed in water, but when formed in aqueous NaCl solutions the P[HEMA-co-(MeO-PEGMA)]-peptide conjugates were also opaque and exhibited the heterogeneous morphology of interconnected polymer droplets. When incubated in solutions containing activated papain, P[HEMA-co-(MeO-PEGMA)]-peptide conjugates underwent degradation that was characterized by macroscopic changes to sample shape and size, sample weight, and microscopic structure. PHEMA-peptide conjugates did not undergo any significant degradation when incubated with papain, although ninhydrin-staining experiments suggested that some peptide cross-linker groups were cleaved during the incubation. The difference in degradation behavior of PHEMA-peptide and P[HEMA-co-(MeO-PEGMA)]-peptide conjugates is attributed to differences in aqueous solubility of PHEMA and P[HEMA-co-(MeO-PEGMA)].

  3. Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device.

    PubMed

    Liu, Yingshuai; Wang, Wei; Hu, Weihua; Lu, Zhisong; Zhou, Xiaoqun; Li, Chang Ming

    2011-08-01

    Flow-through immunoassay is an attractive method for fast, inexpensive and high-throughput protein analyses. However, its practical application is limited by low sensitivity. In this work, a highly sensitive flow-through microarray immunoassay device is developed, in which a poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] (P(GMA-co-PEGMA)) brush as a flexible matrix is uniformly coated on a glass slide through a purge-free surface-initiated atom transfer radical polymerization (SI-ATRP) to immobilize capture proteins for a larger loading capacity and higher bioactivity while allowing easy target access to the brush-attached probes for efficient antibody-antigen (Ab-Ag) bindings. The integrated device is then constructed by simply laminating the protein-arrayed slide onto a ready-for-bonding double-sided adhesive tape-attached poly(methyl methacrylate) (PMMA) microfluidic structure. As a demonstration, a parallel microarray panel is designed to perform flow-through immunoassays for good detection flexibility and simultaneous analysis of various samples. The limit of detection (LOD) of 1-10 pg/mL for detected target proteins is achieved, which is one to two orders better than those of reported flow-through immunoassays. The device also demonstrates significantly reduced total assay time over the static microarray immunoassay. The rapid and sensitive detection can be mainly ascribed to the P(GMA-co-PEGMA) brushed substrate, of which both the hydrophilicity from its PEG component and the binding capability from its GMA moiety result in higher protein loading capacity, lower nonspecific adsorption, and higher Ab-Ag binding efficiency. The integrated microfluidic device was further used to detect an important cancer biomarker carcinoembryonic antigen (CEA) in serum and achieved a LOD of 10 pg/mL, demonstrating its great potential for clinical applications.

  4. Surface functionalization of cotton cellulose with glycidyl methacrylate and its application for the adsorption of aromatic pollutants from wastewaters.

    PubMed

    Vismara, Elena; Melone, Lucio; Gastaldi, Giuseppe; Cosentino, Cesare; Torri, Giangiacomo

    2009-10-30

    Cellulose material C1 was prepared by grafting of glycidyl methacrylate (GMA) in the presence of Fenton-type reagent. This one-pot procedure provided C1 with glycidyl isobutyrate branches. Glycidyl epoxide ring opening with water turned C1-C2 material branched with glycerol isobutyrate. So, C1 surface bears hydrophobic branches ending with the glycidyl group, while C2 surface presents hydrophilic branches ending with the glycerol group. The adsorption of aromatic polluting substances like phenol (Ph), 4-nitrophenol (pNPh), 2,4-dinitrophenol (dNPh), 2,4,6-trinitrophenol (picric acid, tNPh) and 2-naphtol (BN) from their water solutions was tested with C1, C2 and with the untreated cellulose material C0. Phenol adsorption did not occur. All the other aromatic molecules were removed in different amount both by C1 and C2. C1 and C2 showed different affinities towards nitrophenols and 2-naphtol. While C1 was much more effective for removing the hydrophobic 2-naphtol, C2 had higher adsorption capacity towards the hydrophilic nitrophenols, in agreement with their branches polarity, respectively.

  5. Surface modification of PdlLGA microspheres with gelatine methacrylate: Evaluation of adsorption, entrapment, and oxygen plasma treatment approaches.

    PubMed

    Baki, Abdulrahman; Rahman, Cheryl V; White, Lisa J; Scurr, David J; Qutachi, Omar; Shakesheff, Kevin M

    2017-01-16

    Injectable poly (dl-lactic-co-glycolic acid) (PdlLGA) microspheres are promising candidates as biodegradable controlled release carriers for drug and cell delivery applications; however, they have limited functional groups on the surface to enable dense grafting of tissue specific biocompatible molecules. In this study we have evaluated surface adsorption, entrapment and oxygen plasma treatment as three approaches to modify the surfaces of PdlLGA microspheres with gelatine methacrylate (gel-MA) as a biocompatible and photo cross-linkable macromolecule. Time of flight secondary ion mass spectroscopy (TOF SIMS) and X-ray photoelectron spectroscopy (XPS) were used to detect and quantify gel-MA on the surfaces. Fluorescent and scanning electron microscopies (SEM) were used to image the topographical changes. Human mesenchymal stem cells (hMSCs) of immortalised cell line were cultured on the surface of gel-MA modified PdlLGA microspheres and Presto-Blue assay was used to study the effect of different surface modifications on cell proliferation. Data analysis showed that the oxygen plasma treatment approach resulted in the highest density of gel-MA deposition. This study supports oxygen plasma treatment as a facile approach to modify the surface of injectable PdlLGA microspheres with macromolecules such as gel-MA to enhance proliferation rate of injected cells and potentially enable further grafting of tissue specific molecules.

  6. Dynamic modification of poly(methyl methacrylate) chips using poly(vinyl alcohol) for glycosaminoglycan disaccharide isomer separation.

    PubMed

    Zhang, Yong; Ping, Guichen; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2007-09-01

    We describe a microchip electrophoresis (MCE) method for the assay of unsaturated disaccharides of chondroitin sulfates, dermatan sulfates, and hyaluronic acid (HA). Poly(vinyl alcohol) (PVA) could be irreversibly adsorbed onto poly(methyl methacrylate) (PMMA) substrates and this approach was applicable for dynamic coating. The characteristics of the PMMA surface with PVA coating were evaluated in terms of the wettability, EOF, and adsorption of 2-aminoacridone (AMAC)-labeled disaccharide. The water contact angle decreased from 73 degrees on a pristine PMMA surface to 37.5 degrees on a PVA-coated surface, indicating that the PVA coating increased hydrophilicity. EOF was reduced approximately twofold and was relatively stable. Scanning electron microscopy and fluorescence microscopy images showed that adsorption of AMAC-labeled disaccharides was dramatically suppressed. Using the PVA coating, baseline separation of two pairs of glycosaminoglycan (GAG) disaccharide isomers, DeltaDi-diS(B)/DeltaDi-diS(D) and DeltaDi-0S/DeltaDi-HA, was achieved in Tris-borate buffer within 130 s by MCE.

  7. Charging of poly(methyl methacrylate) (PMMA) colloids in cyclohexyl bromide: locking, size dependence, and particle mixtures.

    PubMed

    van der Linden, Marjolein N; Stiefelhagen, Johan C P; Heessels-Gürboğa, Gülşen; van der Hoeven, Jessi E S; Elbers, Nina A; Dijkstra, Marjolein; van Blaaderen, Alfons

    2015-01-13

    We studied suspensions of sterically stabilized poly(methyl methacrylate) (PMMA) particles in the solvent cyclohexyl bromide (CHB; εr = 7.92). We performed microelectrophoresis measurements on suspensions containing a single particle species and on binary mixtures, using confocal microscopy to measure the velocity profiles of the particles. We measured the charge of so-called locked PMMA particles, for which the steric stabilizer, a comb-graft stabilizer of poly(12-hydroxystearic acid) (PHSA) grafted on a backbone of PMMA, was covalently bonded to the particle, and for unlocked particles, for which the stabilizer was adsorbed to the surface of the particle. We observed that locked particles had a significantly higher charge than unlocked particles. We found that the charge increase upon locking was due to chemical coupling of 2-(dimethylamino)ethanol to the PMMA particles, which was used as a catalyst for the locking reaction. For particles of different size we obtained the surface potential and charge from the electrophoretic mobility of the particles. For locked particles we found that the relatively high surface potential (∼ +5.1 kBT/e or +130 mV) was roughly constant for all particle diameters we investigated (1.2 μm < σ < 4.4 μm), and that the particle charge was proportional to the square of the diameter.

  8. Cellular uptake and degradation behaviour of biodegradable poly(ethylene glycol-graft-methyl methacrylate) nanoparticles crosslinked with dimethacryloyl hydroxylamine.

    PubMed

    Scheler, Stefan; Kitzan, Martina; Fahr, Alfred

    2011-01-17

    Crosslinked polymers with hydrolytically cleavable linkages are highly interesting materials for the design of biodegradable drug carriers. The aim of this study was to investigate if nanoparticles made of such polymers have the potential to be used also for intracellular drug delivery. PEGylated nanoparticles were prepared by copolymerization of methacrylic acid esters and N,O-dimethacryloylhydroxylamine (DMHA). The particles were stable at pH 5.0. At pH 7.4 and 9.0 the degradation covered a time span of about 14 days, following first-order kinetics with higher crosslinked particles degrading slower. Cellular particle uptake and cytotoxicity were tested with L929 mouse fibroblasts. The particle uptake rate was found to correlate linearly with the surface charge and to increase as the zeta potential becomes less negative. Coating of the particle surface with polysorbate 80 drops the internalization rate close to zero and the charge dependence disappears. This indicates the existence of a second effect apart from surface charge. A similar pattern of correlation with zeta potential and coating was also found for the degree of membrane damage while there was no effect of polysorbate on the cell metabolism which increased as the negative charge decreased. It is discussed whether exocytotic processes may explain this behaviour.

  9. Encapsulation of glucose oxidase within poly(ethylene glycol) methyl ether methacrylate microparticles for developing an amperometric glucose biosensor.

    PubMed

    Hervás Pérez, J P; López-Cabarcos, E; López-Ruiz, B

    2008-06-15

    Poly(ethylene glycol) methyl ether methacrylate (PEGMEM) microparticles were synthesized and glucose oxidase (GOx) was immobilized within the microparticles. An amperometric biosensor was fabricated using the microparticles with GOx as biological component. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content used in the preparation of the microparticles in the response of the biosensor. The best analytical results were obtained with the microparticles prepared with 0.21 M PEGMEM and 0.74% cross-linking. Furthermore, we have investigated the influence on the biosensor behaviour of parameters such as working potential, pH, temperature and enzymatic load. In addition, analytical properties such as sensitivity, linear range, response time and detection limit were determined. The biosensor was used to determine glucose in human serum samples and to avoid common interferents present in human serum such as uric and ascorbic acids. A Nafion layer was deposited on the electrode surface with satisfactory results. The useful lifetime of the biosensor was at least 520 days.

  10. Controlling the surface chemistry and chromatographic properties of methacrylate-ester-based monolithic capillary columns via photografting.

    PubMed

    Eeltink, Sebastiaan; Hilder, Emily F; Geiser, Laurent; Svec, Frantisek; Fréchet, Jean M J; Rozing, Gerard P; Schoenmakers, Peter J; Kok, Wim Th

    2007-02-01

    Preparation of monolithic capillary columns for separations in the CEC mode using UV-initiated polymerization of the plain monolith followed by functionalization of its pore surface by photografting has been studied. The first step enabled the preparation of generic poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths with optimized porous properties, controlled by the percentages of porogens 1-decanol and cyclohexanol in the polymerization mixture, irradiation time, and UV light intensity. Ionizable monomers [2-(methacryloyloxy)ethyl]trimethylammonium chloride or 2-acryloamido-2-methyl-1-propanesulfonic acid were then photografted onto the monolithic matrix, allowing us to control the direction of the EOF in CEC. Different strategies were applied to control the grafting density and, thereby, the magnitude of the EOF. To control the hydrophobic properties, two approaches were tested: (i) cografting of a mixture of the ionizable and hydrophobic monomers and (ii) sequential grafting of the ionizable and hydrophobic monomers. Cografting resulted in similar retention but higher EOF. With sequential grafting, more than 50% increase in retention factors was obtained and a slight decrease in EOF was observed due to shielding of the ionizable moieties.

  11. ATOM TRANSFER RADICAL POLYMERIZATION OF N-BUTYL METHACRYLATE IN AQUEOUS DISPERSED SYSTEMS: A MINIEMULSION APPROACH. (R826735)

    EPA Science Inventory

    Ultrasonication was applied in combination with a hydrophobe for the copper-mediated atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system. A controlled polymerization was successfully achieved, as demonstrated by a linear correlation between...

  12. A rare case of pseudotumor formation associated with methyl methacrylate hypersensitivity in a patient following cemented total knee arthroplasty.

    PubMed

    Kenan, Shachar; Kahn, Leonard; Haramati, Noga; Kenan, Samuel

    2016-08-01

    Hypersensitivity to orthopedic implant materials has been well documented with potential catastrophic consequences if not addressed pre-operatively. The spectrum of reactions is wide, from mild non-specific pain with localized erythema to severe periprosthetic inflammatory destruction and pseudotumor formation. It is therefore essential to identify patients who have or are at risk for implant-associated hypersensitivity. Although metal sensitivity is commonly cited as the cause of these reactions, methyl methacrylate (MMA) has rarely been implicated. To the best of our knowledge, methyl methacrylate-associated pseudotumor formation has not yet been described. The following is a case report of a 68-year-old female who, after undergoing a routine cemented right total knee arthroplasty, developed a painless, enlarging mass during a 13-year period. This mass was found to be a pseudotumor in association with methyl methacrylate hypersensitivity. A review of pseudotumor pathogenesis, methyl methacrylate hypersensitivity, and preoperative preventative care is discussed.

  13. Process for producing a well-adhered durable optical coating on an optical plastic substrate. [abrasion resistant polymethyl methacrylate lenses

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M. (Inventor)

    1978-01-01

    A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.

  14. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2010-02-16

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group.

  15. Study on stochastic phenomena induced in chemically amplified poly(4-hydroxystyrene-co-t-butyl methacrylate) resist (high performance model resist for extreme ultraviolet lithography)

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius J.; Itani, Toshiro

    2016-03-01

    Understanding of stochastic phenomena is essential to the development of highly sensitive resist for nanofabrication. In this study, we investigated the stochastic effects in a chemically amplified resist consisting of poly(4-hydroxystyrene-co-t-butyl methacrylate), triphenylsulfonium nonafluorobutanesulfonate (an acid generator), and tri-n-octylamine (a quencher). The SEM images of resist patterns were analyzed, using Monte Carlo simulation on the basis of the sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. It was estimated that +/-0.82σ fluctuation of the number of protected units per polymer molecule led to line edge roughness formation. Here, σ is the standard deviation of the number of protected units per polymer molecule after postexposure baking.

  16. Synergistic effect on corrosion resistance of Phynox substrates grafted with surface-initiated ATRP (co)polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-hydroxyethyl methacrylate (HEMA).

    PubMed

    Barthélémy, Bastien; Maheux, Simon; Devillers, Sébastien; Kanoufi, Frédéric; Combellas, Catherine; Delhalle, Joseph; Mekhalif, Zineb

    2014-07-09

    Phynox is of high interest for biomedical applications due to its biocompatibility and corrosion resistance. However, some Phynox applications require specific surface properties. These can be imparted with suitable surface functionalizations of its oxide layer. The present work investigates the surface-initiated atom transfer radical polymerization (ATRP) of 2-methacryloyoxyethyl phosphorylcholine (MPC), 2-hydroxyethyl methacrylate (HEMA), and ATRP copolymerization of (HEMA-co-MPC) (block and statistic copolymerization with different molar ratios) on grafted Phynox substrates modified with 11-(2-bromoisobutyrate)-undecyl-1-phosphonic acid (BUPA) as initiator. It is found that ATRP (co)polymerization of these monomers is feasible and forms hydrophilic layers, while improving the corrosion resistance of the system.

  17. (1)H and (13)C NMR chemical shifts of methacrylate molecules associated with DMPC and/or DPPC liposomes.

    PubMed

    Fujisawa, Seiichiro; Ishihara, Mariko; Kadoma, Yoshinori

    2005-01-01

    In the light of recent developments, changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC (L-alpha dimyristoylphosphatidylcholine) or DPPC (L-alpha-dipalmitoylphosphatidylcholine) liposomes as a model for mimic native lipid bilayers were studied at 30, 37, and 52 degrees C. The chemical shifts of 3Ha, 3C, and 4C resonances in methacrylates (see Fig. 2) were greatly shifted higher field, suggesting the methacrylate molecule-lipid bilayer interaction. Comparison of the findings with methyl methacrylate (MMA), ethylene dimethacrylate (EDMA), and triethyleneglycol dimethacrylate (TEGDMA) revealed that the interaction of dimethacrylates (EDMA, TEGDMA) was greater than monomethacrylate, MMA. Their interaction with DMPC liposomes was also judged by a differential scanning calorimetry (DSC), indicating that the interaction was characterized by decreasing the enthalpy, entropy, and transition co-operativity. The evidence of the upfield NMR-shifts for methacrylate molecules was also judged by the descriptors such as the reactivity (HOMO-LUMO energy) and the electrostatic function (partial charges) between methacrylate molecules and DPPC, calculated by a PM 3 semiempirical MO method. The upfield NMR shifts were considerably well interpreted from the descriptors. NMR screening technique in methacrylates to phospholipid targets would be highly valuable in biomaterial developments. Figure 2 Changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC or DPPC liposomes. DMPC liposomes/MMA (1:1, molar ratio) and DMPC/TEGDMA (1:1) liposomes were measured at 30 degrees C. In DPPC liposome system, the rippled gel phase was measured at 30 degrees C, whereas the liquid crystalline phase for MMA and for both EDMA and TEGDMA were measured at 52 degrees C and 37 degrees C, respectively.

  18. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate.

    PubMed

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-02

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  19. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR).

  20. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  1. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    PubMed Central

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-01-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances. PMID:28252049

  2. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    SciTech Connect

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  3. Quaternary ammonium silane-functionalized, methacrylate resin composition with antimicrobial activities and self-repair potential

    PubMed Central

    Gong, Shi-qiang; Niu, Li-na; Kemp, Lisa K.; Yiu, Cynthia K.Y.; Ryou, Heonjune; Qi, Yi-pin; Blizzard, John D.; Nikonov, Sergey; Brackett, Martha G.; Messer, Regina L.W.; Wu, Christine D.; Mao, Jing; Brister, L. Bryan; Rueggeberg, Frederick A.; Arola, Dwayne D.; Pashley, David H.; Tay, Franklin R.

    2012-01-01

    Design of antimicrobial polymers for enhancing healthcare issues and minimizing environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol-gel chemical route; these compounds possess flexible Si-O-Si bonds. In present work, a partially-hydrolyzed QAMS copolymerized with bis-GMA is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. Kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix. PMID:22659173

  4. Surface-initiated Polymerization of Azidopropyl Methacrylate and its Film Elaboration via Click Chemistry.

    PubMed

    Saha, Sampa; Bruening, Merlin L; Baker, Gregory L

    2012-11-27

    Azidopropyl methacrylate (AzPMA), a functional monomer with a pendent azido group, polymerizes from surfaces and provides polymer brushes amenable to subsequent elaboration via click chemistry. In DMF at 50 °C, click reactions between poly(AzPMA) brushes and an alkynylated dye proceed with >90% conversion in a few minutes. However, in aqueous solutions, reaction with an alkyne-containing poly(ethylene glycol) methyl ether (mPEG, Mn=5000) gives <10% conversion after a 12-h reaction at room temperature. Formation of copolymers with AzPMA and polyethylene glycol methyl ether methacrylate (mPEGMA) enables control over the hydrophilicity and functional group density in the copolymer to increase the yield of aqueous click reactions. The copolymers show reaction efficiencies as high as 60%. These studies suggest that for aqueous applications such as bioconjugation via click chemistry, control over brush hydrophilicity is vital.

  5. Ab initio study of acrylate polymerization reactions: methyl methacrylate and methyl acrylate propagation.

    PubMed

    Yu, Xinrui; Pfaendtner, Jim; Broadbelt, Linda J

    2008-07-24

    The kinetic parameters of the free radical propagation of methyl methacrylate and methyl acrylate have been calculated using quantum chemistry and transition state theory. Multiple density functional theory (DFT) methods were used to calculate the activation energy, and it was found that MPWB1K/6-31G(d,p) yields results that are in very good agreement with experimental data. To obtain values of the kinetic parameters that were in the best agreement with experimental data, low frequencies were treated using a one-dimensional internal rotor model. Chain length effects were also explored by examining addition reactions of monomeric, dimeric, and trimeric radicals to monomer for both methyl methacrylate and methyl acrylate. The results show that the values for the addition of the trimeric radical to monomer are closest to experimental data. The kinetic parameters that were calculated using a continuum description of the monomer as a solvent were not significantly different from the vacuum results.

  6. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP.

    PubMed

    Wang, Yan; Xiao, Yan; Huang, Xiujuan; Lang, Meidong

    2011-08-15

    Surface-initiated reverse atom transfer radical polymerization (reverse ATRP) technical was successfully employed to modify hydroxyapatite (HAP) nanoparticles with poly(methyl methacrylate) (PMMA). The peroxide initiator moiety for reverse ATRP was covalently attached to the HAP surface through the surface hydroxyl groups. Reverse ATRP of methyl methacrylate (MMA) from the initiator-functionalized HAP was carried out, and the end bromide groups of grafted PMMA initiated ATRP of MMA subsequently. Fourier transformation infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM) were employed to confirm the grafting and to characterize the nanoparticle structure. The grafted PMMA gave HAP nanoparticles excellent dispersibility in MMA monomer. As the amount of grafted PMMA increased, the dispersibility of surface-grafted HAP and the compressive strength of HAP/PMMA composites were improved.

  7. Preparation of poly(methyl methacrylate) grafted titanate nanotubes by in situ atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Gao, Xueping; Zhou, Yongfeng; Yan, Deyue

    2008-12-01

    This paper reports the successful preparation of core-shell hybrid nanocomposites by a 'grafting from' approach based on in situ atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from titanate nanotubes (TNTs). Transmission electron microscope (TEM) images of the products provide direct evidence for the formation of a core-shell structure, possessing a hard core of TNTs and a soft shell of poly-MMA (PMMA). Fourier-transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance (1H NMR), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA) were used to determine the chemical structure, morphology, and the grafted PMMA quantities of the resulting products. The grafted PMMA content was well controlled and increased with increasing monomer/initiator ratio. Further copolymerization of hydroxyethyl methacrylate (HEMA) with PMMA-coated TNTs as initiators was realized, illustrating the 'living' characteristics of the ATRP method used in this paper.

  8. RGDS- and SIKVAVS-Modified Superporous Poly(2-hydroxyethyl methacrylate) Scaffolds for Tissue Engineering Applications.

    PubMed

    Macková, Hana; Plichta, Zdeněk; Proks, Vladimír; Kotelnikov, Ilya; Kučka, Jan; Hlídková, Helena; Horák, Daniel; Kubinová, Šárka; Jiráková, Klára

    2016-11-01

    Three-dimensional hydrogel supports for mesenchymal and neural stem cells (NSCs) are promising materials for tissue engineering applications such as spinal cord repair. This study involves the preparation and characterization of superporous scaffolds based on a copolymer of 2-hydroxyethyl and 2-aminoethyl methacrylate (HEMA and AEMA) crosslinked with ethylene dimethacrylate. Ammonium oxalate is chosen as a suitable porogen because it consists of needle-like crystals, allowing their parallel arrangement in the polymerization mold. The amino group of AEMA is used to immobilize RGDS and SIKVAVS peptide sequences with an N-γ-maleimidobutyryloxy succinimide ester linker. The amount of the peptide on the scaffold is determined using (125) I radiolabeled SIKVAVS. Both RGDS- and SIKVAVS-modified poly(2-hydroxyethyl methacrylate) scaffolds serve as supports for culturing human mesenchymal stem cells (MSCs) and human fetal NSCs. The RGDS sequence is found to be better for MSC and NSC proliferation and growth than SIKVAVS.

  9. Fabrication slab waveguide based polymethyl methacrylate (PMMA) with spin coating method

    NASA Astrophysics Data System (ADS)

    Andriawan, Alan; Pramono, Yono Hadi; Masoed, Asnawi

    2016-11-01

    Fabrication and characterization slab waveguide based polymethyl methacrylate (PMMA) has been carried out. Slab waveguide fabrication done by the spin coating method. Slab waveguide fabrication process carried out by the rotational speed of 1000, 2000, and 3000 rpm respectively played for 10 seconds. Then the slab waveguides heated using a hot plate. Heating process starting from room temperature then increased 5°C to 70°C with a 5 minute warm-up time interval. From the results of characterization fabricated slab waveguides to determine the film thickness is made. Then made observations on the waveguide by passing the light beam He-Ne laser on the thin layer through a single mode optical fiber. From the results of characterization is known that the fabrication of a slab waveguide with a layer thickness of 166 μm. From this research it is known that polymethyl methacrylate (PMMA) can be used as a waveguide with a spin coating method.

  10. The color stability of silorane- and methacrylate-based resin composites.

    PubMed

    Kang, Aromi; Son, Sung-Ae; Hur, Bock; Kwon, Young Hoon; Ro, Jung Hoon; Park, Jeong-Kil

    2012-01-01

    The purpose of this study were to evaluate the discoloration of a silorane-based resin and two methacrylated-based resin composites upon exposure to different staining solutions coffee, red wine, porcine liver esterase and distilled water for 7 days. The colors of all specimens before and after storage in the solutions were measured by a spectrophotometer based on CIE Lab system, and the color differences thereby calculated. Data were statistically analyzed by ANOVA and Scheffe's test. For coffee and red wine, the mean color change in silorane-based resin was significantly lower than that in methacylate-based resin composites (p<0.05). For porcine liver esterase and distilled water, there was no significant difference in the mean values of color change between silorane- and methacrylate-based resin composites (p>0.05). In conclusion, the silorane-based resin composites exhibited better color stability (less ΔE) after exposure to the colored staining solutions.

  11. Preparation and Characterization of Poly(methyl methacrylate)-functionalized Carboxyl Multi-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Meng, Qing-jie; Zhang, Xing-xiang; Bai, Shi-he; Wang, Xue-chen

    2007-12-01

    An in situ polymerization process was used to prepare poly (methyl methacrylate) (PMMA)-functionalized carboxyl multi-walled carbon nanotubes using carboxylate carbon nanotubes and methyl methacrylate as reactants and benzoyl peroxide as an initiator agent. The functionalized multi-walled carbon nanotubes were characterized using transmission electron microscope, scanning electron microscope, nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman. The results indicate that the PMMA chains are covalently linked with the surface of carboxylate carbon nanotubes. The surface morphology is controlled by the content of carboxylate carbon nanotubes in the reactants. The PMMA functionalized multi-walled carbon nanotubes are soluble in deuterated chloroform. The storage modulus and tanδ magnitude increase as the content of CCNTs increases up to 0.3%.

  12. Poly(methyl methacrylate)-cellulose nitrate copolymers. II. Physical and mechanical properties

    SciTech Connect

    Badran, B.M.; Sherif, S.; El-Sheltawi, S.T.; Abu-Sedira, A.A.

    1981-03-01

    Poly(methyl methacrylate)-cellulose nitrate copolymers were prepared by bulk polymerization using benzoyl peroxide as initiator. Cellulose nitrates of two different nitrogen contents (11.4 and 12.2%) were used. The prepared copolymers were ..gamma..-irradiated for specified periods of up to 11.83 Mrad. Their physical and mechanical properties were measured before and after irradiation. The title copolymers showed lower modulus, tensile strength, and elongation at break than poly(methyl methacrylate) itself, but they showed better hardness and abrasian. Irradiation of up to 6.57 Mrad improved the modulus of the copolymers. Hardness and abrasion were improved by increasing cellulose nitrate content. The prepared copolymers that contained cellulose nitrate of 11.4% nitrogen showed secondary transition points. The increase of cellulose nitrate concentration shifted both first and second transition points to relatively higher values.

  13. Novel antifouling oligo(ethylene glycol) methacrylate particles via surfactant-free emulsion polymerization.

    PubMed

    Buyukserin, Fatih; Camli, Sevket Tolga; Yavuz, Mustafa Selman; Budak, Gurer Guven

    2011-03-01

    The use of particle formulations with antifouling surface properties attracts increasing interest in several biotechnological applications. Majority of these studies utilize a poly(ethylene glycol) coating to render the corresponding surface nonrecognizable to biological macromolecules. Herein, we report a simple way to prepare novel antifouling colloids composed of oligo(ethylene glycol) backbones via surfactant-free emulsion polymerization. Monodisperse cross-linked poly(ethylene glycol) ethyl ether methacrylate particles were characterized by dynamic light scattering and transmission electron microscopy. The effects of monomer, cross-linker and initiator on particle characteristics were investigated. More importantly, a prominent blockage of bovine serum albumin adsorption was obtained for the poly(ethylene glycol)-based sub-micron (~200 nm) particles when compared with similar-sized poly(methyl methacrylate) counterparts.

  14. Atom transfer radical polymerization to fabricate monodisperse poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres and its application for protein affinity purification.

    PubMed

    Yu, Ling; Shi, Zhuan Zhuan; Li, Chang Ming

    2015-09-01

    Poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres for the first time were successfully synthesized by atom transfer radical polymerization (ATRP) method at room temperature. The co-polymerization approach was investigated to delicately control the microsphere morphology and size-distribution by reaction conditions including solvent percentage, monomer loading and rotation speed. The results show that the average size of the microspheres is ∼5.7 μm with coexistence of epoxy, hydroxyl and ether groups, which provide plentiful functional sites for protein anchoring. The mechanism of the microsphere formation is proposed. The microsphere successfully demonstrates its unique application for affinity purification of proteins, in which the functional epoxy group facilitates a simple and efficient protein covalent immobilization to purify immunoglobulin G on the microspheres, while the hydrophilic poly (ethylene glycol) motif can repulse nonspecific protein adsorption for good specificity. This microspheres can be used in broad protein biosensors due to their abundant functional groups and high surface to volume ratio.

  15. Poly(glycidyl methacrylate)-A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    NASA Astrophysics Data System (ADS)

    Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.

    2015-12-01

    Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  16. Relationship between water structure and properties of poly(methyl methacrylate-b-2-hydroxyethyl methacrylate) by solid-state NMR.

    PubMed

    Mochizuki, Akira; Miwa, Yuko; Miyoshi, Riko; Namiki, Takahiro

    2017-03-22

    We previously reported that the platelet compatibility of methyl methacrylate (MMA)-2-hydroxyethyl methacrylate (HEMA) diblock copolymers is related to the characteristic water structure in the copolymer, as the copolymer has an excess amount of nonfreezing water when compared with that estimated from the amounts of water in HEMA and MMA homopolymers. Thus, in this study, the relationship between water structure and polymer structure, including the heterogeneity and mobility of the copolymer, was investigated using differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy. The prepared copolymers were classified into two groups: copolymers with a short, constant polyMMA segment length (Mn = ~2900) and copolymers with a constant polyHEMA segment length (Mn = ~9500), whereas the lengths of the counter segments varied. DSC analysis showed that when the polyMMA and polyHEMA segment lengths are similar, the amount of nonfreezing water increases, regardless of the total molecular weight of the copolymer. NMR analysis showed that heterogeneity of the copolymer is enhanced and the mobility of the copolymer decreases when the segment lengths are similar. These findings suggested that the excess amount of nonfreezing water is formed when the properties of water near the HEMA unit change from freezing to nonfreezing owing to interactions with the MMA unit. In addition, it is suggested that the heterogeneity of the copolymer structure or the mobility of the polymer are involved in the generation of excess nonfreezing water.

  17. Study of polymeric interactions of copolymers: 2-hydroxyethyl methacrylate (HEMA) and 2,3-dihydroxypropyl methacrylate (DHPMA) with copper hydroxylated nanoballs.

    PubMed

    McCann, Krystal; Knudsen, Bernard; Ananthoji, Ramakanth; Perry, John J; Hilker, Brent; Zaworotko, Michael J; Harmon, Julie P

    2010-09-01

    2-hydroxyethyl methacrylate (HEMA) and 2,3-dihydroxypropyl methacrylate (DHPMA) were used to synthesize novel nanocomposites containing 0.5% by weight of copper hydroxylated nanoballs. Glass transition temperatures of the copolymers and their respective nanocomposites were determined by using differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) was employed to measure the degradation temperatures of the samples and to determine if the degradation is a single step process or multiple step process. The dielectric permittivity (epsilon') and loss factor (epsilon") were measured via Dielectric Analysis (DEA) in the frequency range 0.1 Hz to 100 kHz and between the temperature -150 to 190 degrees C. gamma, beta, and alphabeta conductivity relaxations were revealed using the electric modulus formalism. The activation energies for the relaxations were calculated. Argand plots of M" versus M' were used to study the viscoelastic effects of both copolymer and the composites. Herein we show that it is possible to tune solubility and relaxation properties which are important to the design of new biomaterials.

  18. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate).

    PubMed

    Wei, Hua; Cheng, Cheng; Chang, Cong; Chen, Wen-Qin; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2008-05-06

    Shell cross-linked (SCL) thermoresponsive hybrid micelles consisting of a cross-linked thermoresponsive hybrid hydrophilic shell and a hydrophobic core domain were synthesized from poly(N-isopropylacrylamide-co-3- (trimethoxysilyl)propyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-MPMA)-b-PMMA) amphiphilic block copolymers. Transmission electron microscopy (TEM) images showed that the SCL micelles formed regularly globular nanoparticles. The SCL micelles showed reversible dispersion/aggregation in response to temperature cycles through an outer polymer shell lower critical solution temperature (LCST) for PNIPAAm at around 33 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). The drug loading and in vitro drug release properties of the SCL micelles bearing a silica-reinforced PNIPAAm shell were further studied, which showed that the SCL micelles exhibited a much improved entrapment efficiency (EE) as well as a slower release rate which allowed the entrapped molecules to be slowly released over a much longer period of time as compared with pure PNIPAAm-b-PMMA micelles.

  19. Effect of mouse VEGF164 on the viability of hydroxyethyl methacrylate-methyl methacrylate-microencapsulated cells in vivo: bioluminescence imaging.

    PubMed

    Cheng, Dangxiao; Lo, Chuen; Sefton, Michael V

    2008-11-01

    Bioluminescent imaging was used to track the viability of luciferase transfected L929 cells in poly(hydroxyethyl methacrylate-co-methyl methacrylate) (HEMA-MMA) microcapsules. Bioluminescence, as determined by Xenogen imaging after addition of luciferin to microcapsules in vitro, increased with time, consistent with an increase in cell number. Capsules were suspended in Matrigel and injected subcutaneously. The bioluminesence in vivo increased over the first 3 weeks and then decreased, both with and without the delivery of mVEGF(164) (1.2 ng/24 h/200 microcapsules in vitro); VEGF delivery was from microencapsulated doubly transfected cells (both luciferase and mVEGF(164)). VEGF delivery was sufficient to generate a greater number of vascular structures, but this did not result in the expected increase in microencapsulated cell viability. Interestingly, the number of vessels at day 28 was less than at day 21, consistent with what would be an expected reduction in VEGF secretion when cell viability is lost. The results presented here do not support the hypothesis that transfection of microencapsulated cells with VEGF is sufficient to correct the oxygen transport limitation, at least with this type of tissue engineering construct. On the other hand, bioluminescent imaging proved to be a useful method of monitoring microencapsulated cell viability over many weeks in vivo.

  20. Surface segregation of fluorinated moieties on poly(methyl methacrylate-ran-2-perfluorooctylethyl methacrylate) films during film formation: Entropic or enthalpic influences.

    PubMed

    Ye, Xiuyun; Zuo, Biao; Deng, Mao; Hei, Yanlin; Ni, Huagang; Lu, Xiaolin; Wang, Xinping

    2010-09-01

    The effects of solvents, fluorinated monomer content and film-formation methods on the surface structures of random copolymers composed of methyl methacrylate (MMA) and 2-perfluorooctylethyl methacrylate (FMA) were investigated by contact angle goniometry, X-ray photoelectron spectroscopy, sum frequency generation (SFG) vibrational spectroscopy and surface tension measurement. It is found that, with cyclohexanone as the solvent, there is a critical FMA content of 9mol%, below which the copolymer films by spin coating have a more surface segregation extent of fluorinated moieties than those by solution casting; above which the copolymer films by solution casting have a more surface segregation extent of fluorinated moieties than those by spin coating. However, with toluene as solvent, the critical FMA content lowers down to 3mol%. We believe that the solvent nature and the content of fluorinated moieties in the random copolymer have the great effect because the combined effect of these two factors can determine the random copolymer chain conformations and their thermodynamic dominating factors in the solution and at the solution-air interface. A thermodynamic analysis combining the entropic and enthalpic effects is suggested to explain the observed phenomenon. This research is believed to obtain an enhanced understanding of the surface formation mechanism of the polymer films and thus demonstrate how to promote the segregation of fluorinated moieties at the polymer film surfaces.

  1. Protein-resistant polyurethane by sequential grafting of poly(2-hydroxyethyl methacrylate) and poly(oligo(ethylene glycol) methacrylate) via surface-initiated ATRP.

    PubMed

    Jin, Zhilin; Feng, Wei; Zhu, Shiping; Sheardown, Heather; Brash, John L

    2010-12-15

    Protein-resistant polyurethane (PU) surfaces were prepared by sequentially grafting poly(2-hydroxyethyl methacrylate) (poly(HEMA)) and poly(oligo(ethylene glycol) methacrylate) (poly(OEGMA)) via surface-initiated atom transfer radical polymerization (s-ATRP). The chain lengths of poly(HEMA) and poly(OEGMA) were regulated via the ratio of monomer to sacrificial initiator in solution. The surfaces were characterized by water contact angle and X-ray photoelectron spectroscopy (XPS). The protein resistant properties of the surfaces were assessed by single and binary adsorption experiments with fibrinogen (Fg), lysozyme (Lys), and lactalbumin (Lac). The adsorption of all three proteins on the sequentially grafted poly(HEMA)-poly(OEGMA) surfaces (PU/PH/PO) was greatly reduced compared with the unmodified PU. Adsorption decreased with increasing poly(OEGMA) chain length. On the PU/PH/PO surface with longest poly(OEGMA) chain length (∼100), the decrease in Lys adsorption was in the range of 95-98% and the decrease in Fg and Lac adsorption was >99% compared with the unmodified PU. Adsorption from binary protein solutions showed that the PU/PH/PO surfaces resisted these proteins more or less equally, that is, independent of protein size.

  2. Photophysical, photochemical and laser behavior of some diolefinic laser dyes in sol-gel and methyl methacrylate/2-hydroxyethyl methacrylate copolymer matrices

    NASA Astrophysics Data System (ADS)

    Sakr, Mahmoud A. S.; Abdel Gawad, El-Sayed A.; Abou Kana, Maram T. H.; Ebeid, El-Zeiny M.

    2015-08-01

    The photophysical properties such as singlet absorption, molar absorptivity, fluorescence spectra, dipole moment, fluorescence quantum yields, fluorescence lifetimes and laser activity of 1,4-bis (β-Pyridyl-2-Vinyl) Benzene (P2VB), 2,5-distyryl-pyrazine (DSP) and 1,4-bis(2-methylstyryl)benzene(MSB) diolefineic laser dyes have been measured in different restricted hosts. (P2VB), (DSP) and (MSB) are embedded in transparent sol-gel glass and a copolymer of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) media. The absorption and fluorescence properties of these laser dyes in sol-gel glass matrices are compared with their respective properties in copolymer host. The photostability of these laser dyes in sol-gel glass and (MMA/HEMA) copolymer samples are measured in terms of half-life method (using nitrogen laser 337.1 nm in pumping), as the number of pulses necessary to reduce the dye laser intensity to 50% of its original value. The gel laser materials show improved photostability upon pumping by nitrogen laser compared with those in organic polymeric host matrix.

  3. Study of the water structure in poly(methyl methacrylate-block-2-hydroxyethyl methacrylate) and its relationship to platelet adhesion on the copolymer surface.

    PubMed

    Mochizuki, Akira; Namiki, Takahiro; Nishimori, Yusuke; Ogawa, Haruki

    2015-01-01

    The water structure and platelet compatibility of poly(methyl methacrylate (MMA)-block-2-hydroxyethyl methacrylate (HEMA)) were investigated. The molecular weight (Mn) of the polyHEMA segment was kept constant (average: 9600), while the Mn of the polyMMA segment was varied from 1340 to 7390. The equilibrium water content of the copolymers was found to be mainly governed by the HEMA content. The water structure in the copolymers was characterized in terms of the amounts of non-freezing and freezing water (abbreviated as Wnf and Wfz, respectively) using differential scanning calorimetry. It was found that the Wnf for the copolymers were higher than those estimated from the Wnf for the HEMA and MMA homopolymers and that the amount of excess non-freezing water depended on the polyMMA segment length. In addition, X-ray diffraction analysis revealed that some of the copolymers had cold-crystallizable water. These facts suggested that the polyMMA segments were involved in determining the water structures in the copolymers. Furthermore, the platelet compatibility of the copolymers was improved as compared to that of the HEMA homopolymer. It was therefore concluded that the platelet compatibility of the copolymer was related to the amount of excess non-freezing water.

  4. Poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers: preparation and aqueous solution properties.

    PubMed

    Horgan, Adrian; Saunders, Brian; Vincent, Brian; Heenan, Richard K

    2003-06-15

    A series of water-soluble, amphiphilic graft copolymers has been prepared by free-radical copolymerization of methoxypoly(ethylene glycol) macromonomers, with either methyl methacrylate or butyl methacrylate as the comonomers, in water/ethanol solvent mixtures. Lower molecular weight copolymers were obtained by increasing the concentration of the initiator, azobisisobutyronitrile (AIBN), used in the polymerization reaction. However, the route used also led to the formation of significant quantities of tetramethylsuccinodinitrile, a toxic byproduct resulting from the cage reaction of AIBN. Static fluorescence measurements using pyrene as a probe, along with 1H NMR experiments, showed that the graft copolymers form aggregates in water at very low concentrations (approximately 0.01 g l(-1)) with the pendant hydrophilic graft chains forming a stabilizing shell around the hydrophobic backbone. An increase in the hydrophile-lipophile balance of the graft copolymers was found to lead to smaller aggregates with lower aggregation numbers and highly swollen hydrophilic shells, as revealed by small angle neutron scattering (SANS).

  5. Polystyrene nanoparticles based on poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers.

    PubMed

    Horgan, Adrian; Vincent, Brian

    2003-06-15

    The solubilization of styrene by poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers has been examined. From turbidity measurements the solubility limit of the monomer in the micelles was obtained and the distribution coefficients were evaluated. Dynamic light scattering revealed that below the solubility limit, solubilization leads to a slight increase in micelle size, while above the solubility limit, there is a dramatic increase in particle size and turbidity as oil-in-water emulsions are formed through coalescence of monomer-swollen micelles. Polymerizations carried out below the solubility limit using the graft copolymer micelles as templates resembled microemulsion polymerizations in nature and led to very fine sterically stabilized polystyrene latex particles. Through careful control of the monomer concentration and the polymerization temperature it was possible to obtain spherical nanosize latex particles with similar size to those of the micelle precursors (10 nm) up to 11% monomer by weight. Polymerizations above the solubility limit, on the other hand, showed similarities with emulsion polymerizations and resulted in larger particles with higher polydispersity.

  6. Detection of leachables and cytotoxicity after exposure to methacrylate- and epoxy-based root canal sealers in vitro.

    PubMed

    Lodienė, Greta; Kopperud, Hilde M; Ørstavik, Dag; Bruzell, Ellen M

    2013-10-01

    Root canal sealing materials may have toxic potential in vitro depending on the cell line, cytotoxicity assay, material chemistry, and degree of polymer curing. The aims of the present study were to detect leaching components from epoxy- or methacrylate-based root canal sealers and to investigate the degree of cytotoxicity after exposure to extracts from these materials. Qualitative determination of substances released from the materials was performed by gas- and liquid chromatography/mass spectrometry. Submandibular salivary gland acinar cell death (apoptosis/necrosis) was determined using a fluorescence staining/microscopy technique. The major leachable monomer from the epoxy-based material was bisphenol-A diglycidyl ether (BADGE), whereas leachables from the methacrylate-based materials were mainly triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), hydroxyethyl methacrylate (HEMA), and polyethyleneglycol dimethacrylate (PEGDMA). Exposure to diluted extracts of cured methacrylate-based materials caused a postexposure time-dependent increase in cell death. This effect was not demonstrated as a result of exposure to undiluted extract of cured epoxy-based material. Extracts of all fresh materials induced apoptosis significantly, but at lower dilutions of the epoxy- than the methacrylate-based materials. The degree of leaching, determined from the relative chromatogram peak heights of eluates from the methacrylate-based sealer materials, corresponded with the degree of cell death induced by extracts of these materials.

  7. 2-(2-methoxyethoxy)ethyl methacrylate hydrogels with gradient of cross-link density

    NASA Astrophysics Data System (ADS)

    Kadlubowski, Slawomir; Matusiak, Malgorzata; Adamus, Agnieszka; Olejniczak, Magdalena N.; Kozanecki, Marcin

    2016-01-01

    Electron beam irradiation of 2-(2-methoxyethoxy)ethyl methacrylate and ethylene glycol dimethacrylate mixtures leads to the formation of cross-linked structures that exhibit a gradient of cross-link density, as demonstrated by gel fraction, swelling and Differential Scanning Calorimetry analysis. The reason for observed phase separation is formation of the high molecular weight clusters and its precipitation before gelation dose. This effect can be controlled/influenced by absorbed dose and cross-linker concentration.

  8. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration.

    PubMed

    Chung, Justin J; Fujita, Yuki; Li, Siwei; Stevens, Molly M; Kasuga, Toshihiro; Georgiou, Theoni K; Jones, Julian R

    2017-03-08

    Hybrids that are molecular scale co-networks of organic and inorganic components are promising biomaterials, improving the brittleness of bioactive glass and the strength of polymers. Methacrylate polymers have high potential as the organic source for hybrids since they can be produced, through controlled polymerization, with sophisticated polymer architectures that can bond to silicate networks. Previous studies showed the mechanical properties of hybrids can be modified by polymer architecture and molar mass (MM). However, biodegradability is critical if hybrids are to be used as tissue engineering scaffolds, since the templates must be remodelled by host tissue. Degradation by-products have to either completely biodegrade or be excreted by the kidneys. Enzyme, or bio-degradation is preferred to hydrolysis by water uptake as it is expected to give a more controlled degradation rate. Here, branched and star shaped poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (poly(MMA-co-TMSPMA)) were synthesized with disulphide based dimethacrylate (DSDMA) as a biodegradable branching agent. Biodegradability was confirmed by exposing the copolymers to glutathione, a tripeptide which is known to cleave disulphide bonds. Cleaved parts of the star polymer from the hybrid system were detected after 2weeks of immersion in glutathione solution, and MM was under threshold of kidney filtration. The presence of the branching agent did not reduce the mechanical properties of the hybrids and bone progenitor cells attached on the hybrids in vitro. Incorporation of the DSDMA branching agent has opened more possibilities to design biodegradable methacrylate polymer based hybrids for regenerative medicine.

  9. Fabrication of Poly(methyl Methacrylate) microfluidic chips by redox-initiated polymerization

    SciTech Connect

    Chen, Jiang; Lin, Yuehe; Chen, Gang

    2007-08-16

    In this report, a method based on the redox-initiated polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of PMMA microfluidic chips.The new fabrication approach obviates the need for special equipment and significantly simplifies the process of fabricating microdevices. The attractive performance of the novel PMMA microchips has been demonstrated in connection with contactless conductivity detection for the separation and detection of ionic species.

  10. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Technology (Revised) (Presentation)

    SciTech Connect

    Miller, D. C.; Carloni, J. D.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R.

    2012-01-01

    Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).

  11. Organophosphazenes.22 Copolymerization of (Alpha-Methylethenylphenyl) Penta-fluorocyclotriphosphazenes with Styrene and Methyl Methacrylate.

    DTIC Science & Technology

    1988-03-15

    pennultimate effects , 19. BSTRACT (Continue on reverse it necessary and identify by block number) i ., i. Both 3- and 4- (l-Methylethenylphenyl...parameters for theA, styrene system show that the major perturbation produced by the phosphazene is a polar6 electron withdrawing effect . The methyl...methacrylate system was found to exhibit significant penultimate effects in its reactivity behavior. The copolymers were characteri-zed using elemental

  12. Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber

    NASA Astrophysics Data System (ADS)

    Flores-Rojas, G. G.; Bucio, E.

    2016-10-01

    Silicone rubber (SR) was modified with a graft of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) using either gamma-radiation or azobisisobutyronitrile (AIBN). The graft efficiency was evaluated as a function of monomer concentration, absorbed dose, reaction temperature, and concentration of AIBN. The hydrophilicity of the grafted films was measured by contact angle and their equilibrium swelling time in ethanol. Additional characterization by infrared (FTIR-ATR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is also reported.

  13. Inhibition of the polymerization of methyl methacrylate and methyl acrylate by mixtures of chloranil with phenothiazine

    SciTech Connect

    Ivanov, A.A; Lysenko, G.M.; Zholina, I.N.

    1985-09-01

    This paper investigates the kinetic peculiarities of inhibited polymerization of methyl methacrylate and methyl acrylate in the presence of mixtures of chloranil with phenothiazine. It is shown that depending on the structure of the monomer and the concentrations of the electron donor and electron acceptor, the radicals of propagation may form complexes with chloranil or with phenothiazine at the first step of the inhibition reaction or may interact with the complex (phenothiazine to chloranil).

  14. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan

    NASA Astrophysics Data System (ADS)

    Casimiro, M. H.; Botelho, M. L.; Leal, J. P.; Gil, M. H.

    2005-04-01

    In the present study, 2-hydroxyethyl methacrylate has been grafted onto chitosan by using either chemical initiation, or photo-induction or gamma radiation-induced polymerisation, all under heterogeneous conditions. The evidence of grafting was provided by Fourier transform infrared spectroscopy and thermal analysis. The results concerning the effect of initiator concentration, initial monomer concentration and dose rate influencing on the yield of grafting reactions are presented. These suggest that gamma irradiation is the method that leads to higher yields of grafting.

  15. Synthesis of poly (2-hydroxyethyl methacrylate) (PHEMA) based nanoparticles for biomedical and pharmaceutical applications.

    PubMed

    Saini, Rajesh; Bajpai, Jaya; Bajpai, Anil K

    2012-01-01

    The performance of polymeric nanomaterials relies greatly upon their properties which are intimately related to the methods of fabrication of the materials. Among various synthetic polymers, the polymers of 2-hydroxyetyhyl methacrylate (PHEMA) maintain a prime position in biomedical field due to their useful physicochemical properties and suitability for controlled drug delivery applications. Here we focus on three methods of preparation of PHEMA nanoparticles, by suspension polymerization, emulsion polymerization and dispersion polymerization without the use of any surfactants.

  16. Preliminary dose response study of a gel dosimeter using 2-Hydroxyethyl Methacrylate (HEMA).

    PubMed

    Trapp, J V; Leach, M O; Webb, S

    2005-09-01

    In this work we present a gel dosimeter based on 2-Hydroxyethyl Methacrylate (HEMA). The gel dosimeter is manufactured in normal atmospheric oxygen (normoxic) and undergoes a measurable change after irradiation. The gel is shown to provide a signal to noise ratio of up to at least 35 and have a linear change in transverse relaxation rate up to 70 Gy when measured with magnetic resonance imaging.

  17. Photoluminescence of Electrospun Poly-Methyl-Methacrylate:Alq3 Composite Fibres

    NASA Astrophysics Data System (ADS)

    Tong, Ke-Qin; Xu, Chun-Xian; Wang, Qiong; Gu, Bao-Xiang; Zheng, Ke; Ye, Li-Hua; Li, Xin-Song

    2008-12-01

    Tris(8-hydroxyquinoline) aluminium doped poly-methyl-methacrylate (PMMA:Alq3) composite nanofibres are fabricated by electrospinning. The morphology of fibres is characterized by scanning electron microscopy. The photoluminescence of a series of the nanofibres with various contents of Alqs to PMMA is investigated. UV-visible absorption and the PL spectra analysis are employed to analyse the interaction between the polymer and the luminescent molecule.

  18. Occupational exposure to methyl methacrylate monomer induces generalised neuropathy in a dental technician.

    PubMed

    Sadoh, D R; Sharief, M K; Howard, R S

    1999-04-24

    A 36-year-old dental technician for 14 years developed paraesthesia and numbness in her legs. Neurophysiological studies revealed absent sensory nerve action potentials (SNAPs) from her lower limbs and normal upper limb SNAPs on presentation. Motor nerve studies were normal. Repeat studies 2 months after leaving her job showed some improvement in the lower limb SNAPs. It is suggested that her symptoms were caused by occupational exposure to methyl methacrylate monomer.

  19. Fabrication, Modeling and Characterization of Multi-Crosslinked Methacrylate Copolymeric Nanoparticles for Oral Drug Delivery

    PubMed Central

    Ngwuluka, Ndidi C.; Pillay, Viness; Choonara, Yahya E.; Modi, Girish; Naidoo, Dinesh; du Toit, Lisa C.; Kumar, Pradeep; Ndesendo, Valence M.K.; Khan, Riaz A.

    2011-01-01

    Nanotechnology remains the field to explore in the quest to enhance therapeutic efficacies of existing drugs. Fabrication of a methacrylate copolymer-lipid nanoparticulate (MCN) system was explored in this study for oral drug delivery of levodopa. The nanoparticles were fabricated employing multicrosslinking technology and characterized for particle size, zeta potential, morphology, structural modification, drug entrapment efficiency and in vitro drug release. Chemometric Computational (CC) modeling was conducted to deduce the mechanism of nanoparticle synthesis as well as to corroborate the experimental findings. The CC modeling deduced that the nanoparticles synthesis may have followed the mixed triangular formations or the mixed patterns. They were found to be hollow nanocapsules with a size ranging from 152 nm (methacrylate copolymer) to 321 nm (methacrylate copolymer blend) and a zeta potential range of 15.8–43.3 mV. The nanoparticles were directly compressible and it was found that the desired rate of drug release could be achieved by formulating the nanoparticles as a nanosuspension, and then directly compressing them into tablet matrices or incorporating the nanoparticles directly into polymer tablet matrices. However, sustained release of MCNs was achieved only when it was incorporated into a polymer matrix. The experimental results were well corroborated by the CC modeling. The developed technology may be potentially useful for the fabrication of multi-crosslinked polymer blend nanoparticles for oral drug delivery. PMID:22016653

  20. UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nair, J. R.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.

    In this paper, we report the synthesis and characterisation of novel methacrylic based polymer electrolyte membranes for lithium batteries. The method adopted for preparing the solid polymer electrolyte was the UV-curing process, which is well known for being easy, low cost, fast and reliable. It consists of a free radical photo polymerisation of poly-functional monomers: Bisphenol A ethoxylate (15 EO/phenol) dimethacrylate (BEMA) was chosen, as it can readily form flexible 3D networks and has long poly-ethoxy chains which can enhance the movement of Li +-ions inside the polymer matrix. The preliminary results reported here refer to systems where LiPF 6 solutions swelled the preformed polymer membranes. The tests on the conductivity, stability and cyclability of the membranes put in evidence the importance of the polymerisation in presence of mono-methacrylates acting as reactive diluents. Good values of ionic conductivity have been found, especially at ambient temperature. Much better results can be expected by choosing an appropriate mono-methacrylate to modify the polymeric membrane properties and by modifying the methodology of Li +-ions incorporation inside the polymer matrix.

  1. Hypercalcemia secondary to granulomatous disease caused by the injection of methacrylate: a case series

    PubMed Central

    Negri, Armando Luis; Rosa Diez, Guillermo; Del Valle, Elisa; Piulats, Elsa; Greloni, Gustavo; Quevedo, Alejandra; Varela, Federico; Diehl, Maria; Bevione, Pablo

    2014-01-01

    Summary Association of dysregulated calcium homeostasis and granulomatous disease is well established. There exist reports in the literature of granulomatous reactions produced by silicones associated with hypercalcemia. In this case series we report four young women that underwent methacrylate injections in gluteus, thighs and calves that developed granulomas with posterior appearance of hypercalcemia. This complication presented as subacute around 6 months after the procedure. The four patients have as common elements the presence of moderate to severe renal insufficiency, suppressed PTH and elevated calcitriol levels for the degree of renal function. In the image studies, two patients presented in the nuclear magnetic resonance of the gluteus hypodense nodular images compatible with granulomas. Two patients had a positron emission tomography performed showing increased metabolic activity in the muscles of the gluteal region compatible with granulomas. Two patients had a partial surgical resection of the gluteal lesions with the finding of methacrylate associated to foreign body granulomas. In these patients hypercalcemia was treated with oral or local injections of corticoids, intravenous bisphosphonates or ketoconazole with good response. Although the prevalence of this complication with methacrylate injection is not common, hypercalcemia secondary to granulomas should be considered in the differential diagnosis of patients with hypercalcemia when there is a history of this procedure, and especially if they have a reduction in their renal function. PMID:25002879

  2. Determination of thermodynamic properties of poly (cyclohexyl methacrylate) by inverse gas chromatography.

    PubMed

    Kaya, Ismet; Pala, Cigdem Yigit

    2014-07-01

    In this work, some thermodynamic properties of poly (cyclohexyl methacrylate) were studied by inverse gas chromatography (IGC). For this purpose, the polymeric substance was coated on Chromosorb W and which was filled into a glass column. The retention times (t(r)) of the probes were determined from the interactions of poly (cyclohexyl methacrylate) with n-pentane, n-hexane, n-heptane, n-octane, n-decane, methanol, ethanol, 2-propanol, butanol, acetone, ethyl methyl ketone, benzene, toluene and o-xylene by IGC technique. Then, the specific volume (Vg(0)) was determined for each probe molecule. By using (1/T; lnVg(0)) graphics, the glass transition temperature of poly (cyclohexyl methacrylate) was found to be 373 K. The adsorption heat under the glass transition temperature (deltaH(a)), and partial molar heat of sorption above the glass transition (deltaH1(S)), partial molar free energy of sorption (deltaG1(S)) and partial molar entropy of sorption (deltaS1(S)) belonging to sorption for every probe were calculated. The partial molar heat of mixing at infinite dilution (deltaH1(infinity)), partial molar free energy of mixing at infinite dilution (deltaG1(infinity)), Flory-Huggins interaction parameter (chi12(infinity)) and weight fraction activity coefficient (a1/w1)(infinity) values of polymer-solute systems were calculated at different column temperatures. The solubility parameters (delta2) of the polymer were obtained by IGC technique.

  3. Blends of isoprene-styrene/methacrylate monomer systems as denture soft lining material.

    PubMed

    Nazhat, S N; Parker, S; Riggs, P D; Braden, M

    2001-08-01

    This work further develops the concept of using an elastomer gelled with methacrylate monomers to produce a methacrylate-based soft lining material without the use of a plasticizer. An isoprene-styrene (SIS) block copolymer was mixed with methyl methacrylate (MMA) and 1,6-hexandiol dimethacrylate (HDMA). The HDMA was used as a cross-linking agent. The elastomer/monomer ratios were maintained at 50/50 whereas the monomers ranged from 0 to 100%) HDMA. Mechanical properties and water absorption/desorption characteristics were used to assess the effect of varying the monomer compositions. The results indicated that phase separation took place, in particular at high HDMA content. This significantly increased the Young's modulus and decreased the elongation to break. Generally, the water uptake tended to decrease with increasing HDMA content, reflecting the effect of modulus. Second absorption cycles gave higher uptake values compared to the first. Formulations with a high amount of HDMA gave materials with modulus values too high for soft lining applications. This suggests that the optimum formulation requires a compromise between modulus and water uptake.

  4. Fabrication, modeling and characterization of multi-crosslinked methacrylate copolymeric nanoparticles for oral drug delivery.

    PubMed

    Ngwuluka, Ndidi C; Pillay, Viness; Choonara, Yahya E; Modi, Girish; Naidoo, Dinesh; du Toit, Lisa C; Kumar, Pradeep; Ndesendo, Valence M K; Khan, Riaz A

    2011-01-01

    Nanotechnology remains the field to explore in the quest to enhance therapeutic efficacies of existing drugs. Fabrication of a methacrylate copolymer-lipid nanoparticulate (MCN) system was explored in this study for oral drug delivery of levodopa. The nanoparticles were fabricated employing multicrosslinking technology and characterized for particle size, zeta potential, morphology, structural modification, drug entrapment efficiency and in vitro drug release. Chemometric Computational (CC) modeling was conducted to deduce the mechanism of nanoparticle synthesis as well as to corroborate the experimental findings. The CC modeling deduced that the nanoparticles synthesis may have followed the mixed triangular formations or the mixed patterns. They were found to be hollow nanocapsules with a size ranging from 152 nm (methacrylate copolymer) to 321 nm (methacrylate copolymer blend) and a zeta potential range of 15.8-43.3 mV. The nanoparticles were directly compressible and it was found that the desired rate of drug release could be achieved by formulating the nanoparticles as a nanosuspension, and then directly compressing them into tablet matrices or incorporating the nanoparticles directly into polymer tablet matrices. However, sustained release of MCNs was achieved only when it was incorporated into a polymer matrix. The experimental results were well corroborated by the CC modeling. The developed technology may be potentially useful for the fabrication of multi-crosslinked polymer blend nanoparticles for oral drug delivery.

  5. The electrochemical detection of Ru(II) in a methyl methacrylate solution.

    PubMed

    De Wael, Karolien; Adriaens, Annemie; Temmerman, Eduard

    2006-02-15

    This article describes the voltammetric behaviour of RuCl(2)(PPh(3))(3) in a methyl methacrylate (MMA) solution. Acquiring this type of information is only possible when the ohmic resistance can be kept sufficiently low. Therefore, the conductivity study of pure methyl methacrylate and a tetrabutylammonium tetrafluoroborate (TBABF(4)) methyl methacrylate solution has been described as well. Impedance measurements show an increase in conductivity by adding TBABF(4), while a conductometric curve illustrates the presence of ion pairs, triple ions and quadrupoles depending on the TBABF(4) concentration. The conductivity of a 0.1molL(-1) TBABF(4)-MMA solution (formation of charged triple ions) was high enough to perform electrochemical experiments and a calibration curve could be obtained. The ability of obtaining relevant electrochemical data in low conducting media opens up new perspectives, especially for electroanalytical purposes used to monitor polymer reactions, more specific atom transfer radical polymerization (ATRP) reactions. This method employs a redox process with transition metal complexes in which a halogen ion is transferred reversibly between the transition metal and the polymer chain end. The dynamic equilibrium can be monitored by measuring the ruthenium concentration.

  6. Effect of dimethylaminohexadecyl methacrylate mass fraction on fracture toughness and antibacterial properties of CaP nanocomposite

    PubMed Central

    Wu, Junling; Zhou, Han; Weir, Michael D.; Melo, Mary Anne S.; Levine, Eric D.; Xu, Hockin H. K.

    2015-01-01

    Objectives Biofilm acids contribute to secondary caries which is a reason for restoration failure. Previous studies synthesized nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM). The objectives of this study were to develop DMAHMD-NACP nanocomposite for double benefits of antibacterial and remineralization capabilities, and investigate the DMAHMD mass fraction effects on fracture toughness and biofilm response of NACP nanocomposite for the first time. Methods DMAHDM was incorporated into NACP nanocomposite at mass fractions of 0% (control), 0.75%, 1.5%, 2.25% and 3%. A single edge V-notched beam method was used to measure fracture toughness Kic. A dental plaque microcosm biofilm model using human saliva as inoculum was used to measure the antibacterial properties of composites. Results Kic was about 1 MPa·m1/2 for all composite (mean ± sd; n = 6). Adding DMAHDM from 0% to 3% did not affect Kic (p > 0.1). Lactic acid production by biofilms on composite containing 3% DMAHDM was reduced to less than 1% of that on composite control. Metabolic activity of adherent biofilms on composite containing 3% DMAHDM was reduced to 4% of that on composite control. Biofilm colony-forming unit (CFU) counts were reduced by three orders of magnitude on NACP nanocomposite containing 3% DMAHDM. Conclusions DMAHDM-NACP nanocomposite had good fracture resistance, strong antibacterial potency, and NACP for remineralization (shown in previous studies). The DMAHDM-NACP nanocomposite may be promising for caries-inhibiting dental restorations, and the method of using double agents (DMAHDM and NACP) may have a wide applicability to other dental materials including bonding agents and cements. PMID:26404407

  7. Clavanin bacterial sepsis control using a novel methacrylate nanocarrier.

    PubMed

    Saúde, Amanda C M; Ombredane, Alicia S; Silva, Osmar N; Barbosa, João A R G; Moreno, Susana E; Araujo, Ana Claudia Guerra; Falcão, Rosana; Silva, Luciano P; Dias, Simoni C; Franco, Octávio L

    2014-01-01

    Controlling human pathogenic bacteria is a worldwide problem due to increasing bacterial resistance. This has prompted a number of studies investigating peptides isolated from marine animals as a possible alternative for control of human pathogen infections. Clavanins are antimicrobial peptides isolated from the marine tunicate Styela clava, showing 23 amino acid residues in length, cationic properties, and also high bactericidal activity. In spite of clear benefits from the use of peptides, currently 95% of peptide properties have limited pharmaceutical applicability, such as low solubility and short half-life in the circulatory system. Here, nanobiotechnology was used to encapsulate clavanin A in order to develop nanoantibiotics against bacterial sepsis. Clavanin was nanostructured using EUDRAGIT(®) L 100-55 and RS 30 D solution (3:1 w:w). Atomic force, scanning electron microscopy and dynamic light scattering showed nanoparticles ranging from 120 to 372 nm in diameter, with a zeta potential of -7.16 mV and a polydispersity index of 0.123. Encapsulation rate of 98% was assessed by reversed-phase chromatography. In vitro bioassays showed that the nanostructured clavanin was partially able to control development of Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Furthermore, nanostructures did not show hemolytic activity. In vivo sepsis bioassays were performed using C57BL6 mice strain inoculated with a polymicrobial suspension. Assays led to 100% survival rate under sub-lethal sepsis assays and 40% under lethal sepsis assays in the presence of nanoformulated clavanin A until the seventh day of the experiment. Data here reported indicated that nanostructured clavanin A form shows improved antimicrobial activity and has the potential to be used to treat polymicrobial infections.

  8. Clavanin bacterial sepsis control using a novel methacrylate nanocarrier

    PubMed Central

    Saúde, Amanda CM; Ombredane, Alicia S; Silva, Osmar N; Barbosa, João ARG; Moreno, Susana E; Guerra Araujo, Ana Claudia; Falcão, Rosana; Silva, Luciano P; Dias, Simoni C; Franco, Octávio L

    2014-01-01

    Controlling human pathogenic bacteria is a worldwide problem due to increasing bacterial resistance. This has prompted a number of studies investigating peptides isolated from marine animals as a possible alternative for control of human pathogen infections. Clavanins are antimicrobial peptides isolated from the marine tunicate Styela clava, showing 23 amino acid residues in length, cationic properties, and also high bactericidal activity. In spite of clear benefits from the use of peptides, currently 95% of peptide properties have limited pharmaceutical applicability, such as low solubility and short half-life in the circulatory system. Here, nanobiotechnology was used to encapsulate clavanin A in order to develop nanoantibiotics against bacterial sepsis. Clavanin was nanostructured using EUDRAGIT® L 100-55 and RS 30 D solution (3:1 w:w). Atomic force, scanning electron microscopy and dynamic light scattering showed nanoparticles ranging from 120 to 372 nm in diameter, with a zeta potential of -7.16 mV and a polydispersity index of 0.123. Encapsulation rate of 98% was assessed by reversed-phase chromatography. In vitro bioassays showed that the nanostructured clavanin was partially able to control development of Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Furthermore, nanostructures did not show hemolytic activity. In vivo sepsis bioassays were performed using C57BL6 mice strain inoculated with a polymicrobial suspension. Assays led to 100% survival rate under sub-lethal sepsis assays and 40% under lethal sepsis assays in the presence of nanoformulated clavanin A until the seventh day of the experiment. Data here reported indicated that nanostructured clavanin A form shows improved antimicrobial activity and has the potential to be used to treat polymicrobial infections. PMID:25382976

  9. Development of microporous drug-releasing films cast from artificial nanosized latexes of poly(styrene-co-methyl methacrylate) or poly(styrene-co-ethyl methacrylate).

    PubMed

    Otto, Daniel P; Vosloo, Hermanus C M; Liebenberg, Wilna; de Villiers, Melgardt M

    2008-08-01

    Two sets of copolymers comprising of styrene and either methyl or ethyl methacrylate as comonomer were conveniently synthesized by microemulsion copolymerization. The purified materials were characterized by GPC-MALLS and were shown to form artificial nanolatexes in THF. ATR-FTIR analysis revealed differences in copolymer composition and based on the copolymer properties, a selection of copolymers was chosen to cast drug-loaded, microporous films that exhibit microencapsulation of drug agglomerates. The contact angles of the copolymers suggested potential applications in medical devices to prevent the formation of bacterial biofilms that commonly result in infections. Additionally, the different copolymeric films showed two phases of drug release characterized by a rapid initial drug release followed by a zero-order phase. Depending on the application, one could select the copolymer films that best suited the application i.e. for short-term drug release applications such as urinary catheters or long-term applications such as artificial implants.

  10. Identification of covalent binding sites of ethyl 2-cyanoacrylate, methyl methacrylate and 2-hydroxyethyl methacrylate in human hemoglobin using LC/MS/MS techniques.

    PubMed

    Jeppsson, Marina C; Mörtstedt, Harriet; Ferrari, Giovanni; Jönsson, Bo A G; Lindh, Christian H

    2010-10-01

    Acrylates are used in vast quantities, for instance in paints, adhesive glues, molding. They are potent contact allergens and known to cause respiratory hypersensitivity and asthma. Here we study ethyl 2-cyanoacrylate (ECA), methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA). There are only limited possibilities to measure the exposure to acrylates, especially for biological monitoring. The aim of the present study was to investigate the chemical structures of adducts formed after reaction of hemoglobin (Hb) with ECA, MMA, and HEMA. This information may be used to identify adducted Hb peptides for biological monitoring of exposure to acrylates. Hb-conjugates with ECA, MMA, and HEMA were synthesized in vitro. The conjugates were digested by trypsin and pronase E. Adducted peptides were characterized and analyzed by liquid chromatography and nano electro spray/hybrid quadrupole time-of-flight mass spectrometry (MS) as well as tandem quadrupole MS. The search for the adducted peptides was facilitated by visualizing the MS data by different computer programs. The results showed that ECA binds covalently to cysteines at the 104 position in the α and the position 112 in the β-chains in Hb. MMA and HEMA bound to all the cysteines in both chains, Cys(104) in the α-chain and Cys(93) and 112 in the β-chain. The full-length spectra of in un-digested Hb confirmed this binding pattern. There was no reaction with N-acetyl-L-lysine at physiological pH. The adducted peptides were possible to measure using LC/MS/MS in selected reaction monitoring mode. These peptides may be used for biological monitoring of exposure to ECA, MMA and HEMA.

  11. Amphiphilic model conetworks based on cross-linked star copolymers of benzyl methacrylate and 2-(dimethylamino)ethyl methacrylate: synthesis, characterization, and DNA adsorption studies.

    PubMed

    Achilleos, Demetra S; Georgiou, Theoni K; Patrickios, Costas S

    2006-12-01

    Six amphiphilic model conetworks of a new structure, that of cross-linked "in-out" star copolymers, were synthesized by the group transfer polymerization (GTP) of the hydrophobic monomer benzyl methacrylate (BzMA) and the ionizable hydrophilic monomer 2-(dimethylamino)ethyl methacrylate (DMAEMA) in a one-pot preparation. The synthesis took place in tetrahydrofuran (THF) using tetrabutylammonium bibenzoate (TBABB) as the catalyst, 1-methoxy-1-(trimethylsiloxy)-2-methyl-propene (MTS) as the initiator, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. Three heteroarm star-, two star block-, one statistical copolymer star-, and one homopolymer star-based networks were prepared. The synthesis of these star-based networks involved four to six steps, including the preparation of the linear (co)polymers, the "arm-first" and the "in-out" star copolymers, and finally the network. The precursors and the extractables were characterized using gel permeation chromatography (GPC) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The degrees of swelling (DSs) of all the networks were measured in THF, while the aqueous DSs were measured as a function of pH. The DSs at low pH were higher than those at neutral or high pH because of the protonation of the DMAEMA units and were found to be dependent on the structure of the network. The DSs in THF were higher than those in neutral water and were independent of the structure. Finally, DNA adsorption studies onto the networks indicated that the DNA binding was governed by electrostatics.

  12. Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate.

    PubMed

    Ryan, Sinéad M; Wang, Xuexuan; Mantovani, Guiseppe; Sayers, Claire T; Haddleton, David M; Brayden, David J

    2009-04-02

    Salmon calcitonin (sCT) was conjugated via its N-terminal cysteine to a comb-shaped end-functionalized poly(poly(ethylene glycol) methyl ether methacrylate) (PolyPEG, 6.5 kDa), and to linear PEG (5 kDa). Conjugate molecular weight and purity was assessed by SEC-HPLC and MALDI-TOF MS. Bioactivity of conjugates was measured by cyclic AMP assay in T47D cells. Calcium and calcitonin levels were measured in rats following intravenous injections. Stability of conjugates was tested against serine proteases, intestinal and liver homogenates and serum. Cytotoxicity of conjugates was assessed by lactate dehydrogenase (LDH) assay and by haemolytic assay of rat red blood cells. Results showed that the two conjugates were of high purity with molecular weights similar to predictions. Both conjugates retained more than 85% bioactivity in vitro and had nanomolar EC(50) values similar to sCT. While both sCT-PolyPEG(6.5 K) and sCT-PEG(5 K) were resistant to metabolism by serine proteases, homogenates and serum, PolyPEG (6.5 K) was more so. Although both conjugates reduced serum calcium to levels similar to those achieved with sCT, PolyPEG(6.5 K) extended the T(1/2) and AUC of serum sCT over values achieved with sCT-PEG and sCT itself. None of PolyPEG, PEG or methacrylic acid displayed significant cytotoxicity. PolyPEG may therefore have potential to improve pharmacokinetic profiles of injected peptides.

  13. Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-01-30

    A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications.

  14. Influence of exchange group of modified glycidyl methacrylate polymer on phenol removal: A study by batch and continuous flow processes.

    PubMed

    Aversa, Thiago Muza; da Silva, Carla Michele Frota; da Rocha, Paulo Cristiano Silva; Lucas, Elizabete Fernandes

    2016-11-01

    Contamination of water by phenol is potentially a serious problem due to its high toxicity and its acid character. In this way some treatment process to remove or reduce the phenol concentration before contaminated water disposal on the environment is required. Currently, phenol can be removed by charcoal adsorption, but this process does not allow easy regeneration of the adsorbent. In contrast, polymeric resins are easily regenerated and can be reused in others cycles of adsorption process. In this work, the interaction of phenol with two polymeric resins was investigated, one of them containing a weakly basic anionic exchange group (GD-DEA) and the other, a strongly basic group (GD-QUAT). Both ion exchange resins were obtained through chemical modifications from a base porous resin composed of glycidyl methacrylate (GMA) and divinyl benzene (DVB). Evaluation tests with resins were carried out with 30 mg/L of phenol in water solution, at pH 6 and 10, employing two distinct processes: (i) batch, to evaluate the effect of temperature, and (ii) continuous flow, to assess the breakthrough of the resins. Batch tests revealed that the systems did not follow the model proposed by Langmuir due to the negative values obtained for the constant b and for the maximum adsorption capacity, Q0. However, satisfactory results for the constants KF and n allowed assuming that the behavior of systems followed the Freundlich model, leading to the conclusion that resin GD-DEA had the best interaction with the phenol when in a solution having pH 10 (phenoxide ions). The continuous flow tests corroborated this conclusion since the performance of GD-DEA in removing phenol was also best at pH 10, indicating that the greater availability of the electron pair in the resin with the weakly basic donor group contributed to enhance the resin's interaction with the phenoxide ions.

  15. Effect of curing environment on mechanical properties and polymerizing behaviour of methyl-methacrylate autopolymerizing resin.

    PubMed

    Ogawa, T; Hasegawa, A

    2005-03-01

    Methyl-methacrylate autopolymerizing resin is used for multiple applications. Therefore, the mechanical properties of autopolymerizing resin should be assessed comprehensively including strength, stiffness and hardness. Any methods that effectively improve these mechanical properties are desirable. The objective of this study is to examine the effects of the curing environment: air or water with/without pressure, and air or water temperature during polymerization, on the strength, stiffness and hardness of autopolymerizing resin. In addition, we examined the polymerizing behaviour associated with the mechanical properties. Autopolymerizing methyl-methacrylate resin (Unifast II) was polymerized under the following conditions: in air and water with/without pressure at 10, 23, 30, 40, 60 and 80 degrees C. The resin specimens were subjected to a transverse test (three-point flexural test) and micro-Brinell surface hardness test. Fractured surfaces of the specimens after the transverse test were examined using a scanning electron microscope (SEM). The transverse strength and transverse modulus increased with increasing curing temperature in both wet and dry conditions. Pressured wet conditions increased transverse strength and transverse modulus over non-pressured wet and dry conditions. The resin polymerized in dry conditions showed higher surface hardness than the one polymerized in wet conditions at matching temperature. The SEM images of fractured surfaces cured at lower temperature exhibited porosity within the polymer base and cracks between the base and poly-methyl-methacrylate (PMMA) particulates. Surfaces of the resin polymerized in wet conditions were characterized with PMMA particulates having rougher surfaces suggestive of water incorporation. Raising temperature and pressuring during polymerization increase strength and stiffness of autopolymerizing resin. However, wet condition reduces surface hardness of resin compared with dry condition. These altered

  16. Flexural Strength Comparison of Silorane- and Methacrylate-Based Composites with Pre-impregnated Glass Fiber

    PubMed Central

    Doozandeh, Maryam; Alavi, Ali Asghar; Karimizadeh, Zahra

    2016-01-01

    Statement of the Problem Sufficient adhesion between silorane/methacrylate-based composites and methacrylate impregnated glass fiber increases the benefits of fibers and enhances the mechanical and clinical performance of both composites. Purpose The aim of this study was to evaluate the compatibility of silorane and methacrylate-based composites with pre-impregnated glass fiber by using flexural strength (FS) test. Materials and Method A total of 60 bar specimens were prepared in a split mold (25×2×2 mm) in 6 groups (n=10). In groups 1 and 4 (control), silorane-based (Filtek P90) and nanohybrid (Filtek Z350) composites were placed into the mold and photopolymerized with a high-intensity curing unit. In groups 2 and 5, pre-impregnated glass fiber was first placed into the mold and after two minutes of curing, the mold was filled with respective composites. Prior to filling the mold in groups 3 and 6, an intermediate adhesive layer was applied to the glass fiber. The specimens were stored in distilled water for 24 hours and then their flexural strength was measured by 3 point bending test, using universal testing machine at the crosshead speed of 1 mm/min. Two-way ANOVA and post-hoc test were used for analyzing the data (p< 0.05). Results A significant difference was observed between the groups (p< 0.05). The highest FS was registered for combination of Z350 composite, impregnated glass fiber, and application of intermediate adhesive layer .The lowest FS was obtained in Filtek P90 alone. Cohesive failure in composite was the predominant failure in all groups, except group 5 in which adhesive failure between the composite and fiber was exclusively observed. Conclusion Significant improvement in FS was achieved for both composites with glass fiber. Additional application of intermediate adhesive layer before composite build up seems to increase FS. Nanohybrid composite showed higher FS than silorane-based composite. PMID:27284555

  17. Addition of silver nanoparticles reduces the wettability of methacrylate and silorane-based composites.

    PubMed

    Kasraei, Shahin; Azarsina, Mohadese

    2012-01-01

    Incorporation of silver nanoparticles into composite resins is recommended for their reported antibacterial properties, but this incorporation can affect the wettability of such materials. Therefore, this study evaluated the effect of nano-silver addition to silorane-based and methacrylate-based composites on their contact angle. Nano-silver particles were added to Z250 (methacrylate-based) and P90 (silorane-based) composites at 0.5% and 1% by weight. The control group had no additions. SEM-EDX analysis was performed to confirm the homogeneity of the nano-silver distribution. Seventy-two composite discs were prepared and standardized to the identical surface roughness values, and then distributed randomly into 6 groups containing 12 samples each (N = 12). Two random samples from each group were observed by atomic force microscopy. Distilled water contact angle measurements were performed for the wettability measurement. Two-way ANOVA, followed by the Tukey-HSD test, with a significance level of 5%, were used for data analysis. It was observed that wettability was significantly different between the composites (p = 0.0001), and that the addition of nano-silver caused a significant reduction in the contact angle (p = 0.0001). Wettability varied depending on the concentration of the nano silver (p = 0.008). Silorane-based composites have a higher contact angle than methacrylate-based composites. Within the limitations of this study, it can be concluded that the addition of 0.5% nano-silver particles to the composites caused a decrease in the contact angle of water.

  18. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.

    PubMed

    Zhao, Chao; Li, Lingyan; Wang, Qiuming; Yu, Qiuming; Zheng, Jie

    2011-04-19

    The development of nonfouling biomaterials to prevent nonspecific protein adsorption and cell/bacterial adhesion is critical for many biomedical applications, such as antithrombogenic implants and biosensors. In this work, we polymerize two types of hydroxy-functional methacrylates monomers of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA) into polymer brushes on the gold substrate via surface-initiated atom transfer radical polymerization (SI-ATRP). We systematically examine the effect of the film thickness of polyHEMA and polyHPMA brushes on their antifouling performance in a wide range of biological media including single-protein solution, both diluted and undiluted human blood serum and plasma, and bacteria culture. Surface plasmon resonance (SPR) results show a strong correlation between antifouling property and film thickness. Too thin or too thick polymer brushes lead to large protein adsorption. Surfaces with the appropriate film thickness of ∼25-45 nm for polyHPMA and ∼20-45 nm for polyHEMA can achieve almost zero protein adsorption (<0.3 ng/cm(2)) from single-protein solution and diluted human blood plasma and serum. For undiluted human blood serum and plasma, polyHEMA brushes at a film thickness of ∼20-30 nm adsorb only ∼3.0 and ∼3.5 ng/cm(2) proteins, respectively, while polyHPMA brushes at a film thickness of ∼30 nm adsorb more proteins of ∼13.5 and ∼50.0 ng/cm(2), respectively. Moreover, both polyHEMA and polyHPMA brushes with optimal film thickness exhibit very low bacteria adhesion. The excellent antifouling ability and long-term stability of polyHEMA and polyHPMA brushes make them, especially for polyHEMA, effective and stable antifouling materials for usage in blood-contacting devices.

  19. Effect of Accelerated Artificial Aging on Translucency of Methacrylate and Silorane-Based Composite Resins

    PubMed Central

    Shirinzad, Mehdi; Rezaei-Soufi, Loghman; Mirtorabi, Maryam Sadat; Vahdatinia, Farshid

    2016-01-01

    Objectives: Composite restorations must have tooth-like optical properties namely color and translucency and maintain them for a long time. This study aimed to compare the effect of accelerated artificial aging (AAA) on the translucency of three methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) and one silorane-based composite resin (Filtek P90). Materials and Methods: For this in vitro study, 56 composite discs were fabricated (n=14 for each group). Using scanning spectrophotometer, CIE L*a*b* parameters and translucency of each specimen were measured at 24 hours and after AAA for 384 hours. Data were analyzed using one-way ANOVA, Tukey's test and paired t-test at P=0.05 level of significance. Results: The mean (±standard deviation) translucency parameter for Filtek Z250, Filtek Z250XT, Filtek Z350XT and Filtek P90 was 5.67±0.64, 4.59±0.77, 7.87±0.82 and 4.21±0.71 before AAA and 4.25±0.615, 3.53±0.73, 5.94±0.57 and 4.12±0.54 after AAA, respectively. After aging, the translucency of methacrylate-based composites decreased significantly (P<0.05). However, the translucency of Filtek P90 did not change significantly (P>0.05). Conclusions: The AAA significantly decreased the translucency of methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) but no change occurred in the translucency of Filtek P90 silorane-based composite. PMID:27928237

  20. Far infrared-assisted encapsulation of filter paper strips in poly(methyl methacrylate) for proteolysis.

    PubMed

    Chen, Qiwen; Bao, Huimin; Zhang, Luyan; Chen, Gang

    2016-02-01

    Filter paper strips were enclosed between two poly(methyl methacrylate) plates to fabricate paper-packed channel microchips under pressure in the presence of far infrared irradiation. After the enclosed paper strip was oxidized by periodate, trypsin was covalently immobilized in them to fabricate microfluidic proteolysis bioreactor. The feasibility and performance of the unique bioreactor were demonstrated by digesting BSA and lysozyme. The results were comparable to those of conventional in-solution proteolysis while the digestion time was significantly reduced to ∼18 s. The suitability of the microfluidic paper-based bioreactors to complex proteins was demonstrated by digesting human serum.

  1. Controlling of optical energy gap of Co-ferrite quantum dots in poly (methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    El-Sayed, H. M.; Agami, W. R.

    2015-07-01

    Different crystallite sizes of Co-ferrite nanoparticles were prepared and dispersed in the matrix of poly (methyl methacrylate) (PMMA) polymer. The effect of crystallite size on the structure and optical energy gap of Co-nanoferrite/PMMA composite has been studied. The optical energy gap of Co-ferrite was greatly affected by the crystallite size. This result was discussed in terms of the formation of electron-hole exciton using particle in a box model. The effective mass and the Bohr radius of the formed exciton have been calculated from the spectroscopic measurements.

  2. Generalized peripheral neuropathy in a dental technician exposed to methyl methacrylate monomer

    SciTech Connect

    Donaghy, M.; Rushworth, G.; Jacobs, J.M. )

    1991-07-01

    A 58-year-old dental prosthetic technician developed generalized sensorimotor peripheral neuropathy. Neurophysiologic studies showed a generalized sensorimotor neuropathy of axonal degeneration type. Examination of a sural nerve biopsy showed a moderately severe axonal neuropathy with loss of large myelinated fibers and unmyelinated axons. There was evidence of slow ongoing degeneration and considerable fiber regeneration. Electron microscopy showed increased numbers of filaments in a few fibers. These findings show resemblances to the nerve changes caused by another acrylic resin, acrylamide. They suggest that the neuropathy may have been caused by 30 years of occupational cutaneous and inhalational exposure to methyl methacrylate monomer since they excluded other recognized causes of neuropathy.

  3. Radiation synthesis of acrylamide/N,N-(dimethylamino) ethyl methacrylate grafted onto low density polyethylene films

    NASA Astrophysics Data System (ADS)

    Abdel Ghaffar, A. M.

    2011-02-01

    Radiation-induced graft copolymerization of acrylamide/N,N-(dimethylamino) ethyl methacrylate (AAm/DMAEMA) onto low density polyethylene films was carried out. The effect of grafting conditions such as solvent type and comonomer composition were studied. Characterization of the prepared films was investigated by Fourier transform infrared. Some selected properties such as thermal stability and swelling behavior were determined. It was found that grafting efficiency, swelling behavior and thermal stability increased with increasing DMAEMA content. Scanning electron microscopy was used for predicting the change in surface morphology via the grafted films. The improvement in properties of the prepared films make it possible to use them in some practical applications.

  4. Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends

    NASA Astrophysics Data System (ADS)

    Mathur, Vishal; Sharma, Kananbala

    2016-12-01

    The present paper reports the investigationsto evaluate thermal behavior of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends, prepared at different compositions through solution casting method. The glass transition temperatures have been obtained using dynamic mechanical analyzer. Simultaneous measurements of temperature dependentthermal transport properties (thermal conductivity and thermal diffusivity) have been made using Hot Disk Thermal Constants Analyzer based on transient plane source. The study reveals that blending of PS with PMMA leads to different phase morphologies corresponding to different composition range which further affects the thermal performance of respective blends.

  5. Turning electrospun poly(methyl methacrylate) nanofibers into graphitic nanostructures by in situ electron beam irradiation

    SciTech Connect

    Duan, H. G.; Xie, E. Q.; Han, L.

    2008-02-15

    Using ultrathin electrospun poly(methyl methacrylate) (PMMA) nanofibers as precursor, graphitic nanofibers, nanobridges, nanocones, and fullerenelike onions could be prepared by electron beam irradiation in a controlled manner. With the help of the high resolution transmission electron microscopy, the real time processing of the carbonization and graphitization of the PMMA nanofibers could be investigated. This way to obtain graphitic nanostructures has promising applications in graphitic carbon nanostructure electronics and devices. Because PMMA is a widely used standard high resolution electron resist, this graphitization could be combined with electron beam lithography to obtain high resolution patterned graphitic circuits.

  6. Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate).

    PubMed

    Zoubir, Arnaud; Lopez, Cedric; Richardson, Martin; Richardson, Kathleen

    2004-08-15

    Femtosecond laser direct writing is employed for the fabrication of buried tubular waveguides in bulk poly(methyl methacrylate). A novel technique using selective chemical etching is presented to resolve the two-dimensional refractive-index profile of the fabrication structures. End-to-end coupling in the waveguides reveals a near-field intensity distribution that results from the superimposition of several propagating modes with different azimuthal symmetries. Mode analysis of the tubular waveguides is performed using the finite-difference method, and the possible propagating mode profiles are compared with the experimental data.

  7. Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications

    NASA Astrophysics Data System (ADS)

    Mehlem, Jeremy John

    Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well

  8. Photoinitiated polymerization of methyl methacrylate using Q-sized ZnO colloids

    SciTech Connect

    Hoffman, A.J.; Yee, H.; Mills, G.; Hoffmann, M.R.

    1992-06-25

    Q-sized ZnO particles are determined to be efficient photoinitiators of methyl methacrylate polymerization. The effects of semiconductor particle size, solvent, initiator concentration, monomer concentration, and light intensity on reaction rates are examined. The reaction path is initiated anionically, followed by free-radical propogation steps. Polymerization increases with increased photoinitiator and monomer concentration and particle size; it also has a dependence upon the square root of the light intensity. Illumination-induced holes are scavenged by the solvent. 29 refs., 8 figs., 2 tabs.

  9. Polyelectrolyte complexes based on (quaternized) poly[(2-dimethylamino)ethyl methacrylate]: behavior in contact with blood.

    PubMed

    Yancheva, Elena; Paneva, Dilyana; Danchev, Dobri; Mespouille, Laetitia; Dubois, Philippe; Manolova, Nevena; Rashkov, Iliya

    2007-07-09

    Polyelectrolyte complexes (PECs) between (quaternized) poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and (crosslinked) N-carboxyethylchitosan (CECh) or poly(2-acrylamido-2-methylpropane sodium sulfonate) (PAMPSNa) were prepared and characterized in terms of their stability, equilibrium water content, and surface morphology. The evaluation of the behavior of the studied PECs in contact with blood revealed that the (crosslinked) CECh/(quaternized) PDMAEMA complexes had lost the inherent PDMAEMA cytotoxicity but still preserved haemostatic activity. In contrast, the complex formation between (quaternized) PDMAEMA and PAMPSNa allowed the preparation of materials with improved blood compatibility.

  10. Amine functionalization of cellulose surface grafted with glycidyl methacrylate by γ-initiated RAFT polymerization

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Güven, Olgun; Kodama, Yasko

    2016-07-01

    This study presents the functionalization of poly(glycidyl methacrylate) (PGMA) grafted cellulose filter paper by a model compound, ethylenediamine (EDA), through the epoxy groups of PGMA. Cellulose based copolymers were prepared via the radiation-induced and RAFT-mediated graft polymerization. The samples were characterized by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurements and scanning electron microscopy (SEM). An efficient modification density of around 1 mmol EDA/mg copolymer was attained within ca. 8 h, indicating that chemical composition of well-defined copolymers may further be tuned by appropriately selecting the reactive agents for use in many emerging fields.

  11. Elaboration of ammonio methacrylate copolymer based spongy cationic particles via double emulsion solvent evaporation process.

    PubMed

    Zafar, Nadiah; Bitar, Ahmad; Valour, Jean Pierre; Fessi, Hatem; Elaissari, Abdelhamid

    2016-04-01

    The aim of present work is to investigate systematic study of the preparation of biodegradable particles via double emulsion solvent evaporation technique. The used formation is based on cationic ammonium methacrylate copolymer Eudragit® RS 100, without the use of any stabilizer. The effect of process parameters like ultra turrax® stirring speed and stirring time, ultrasonication time, polymer amount, and volume of outer aqueous phases on the colloidal properties of particles was investigated. All prepared dispersions were characterized in terms of size, size distribution, and electrokinetic properties, and surface morphology was investigated.

  12. In-situ photopolymerization of monodisperse and discoid oxidized methacrylated alginate microgels in a microfluidic channel

    DOE PAGES

    Wang, Shuo; Jeon, Oju; Shankles, Peter G.; ...

    2016-02-03

    Here, we present a simple microfluidic technique to in-situ photopolymerize (by 365 nm ultraviolet) monodisperse oxidized methacrylated alginate (OMA) microgels using a photoinitiator (VA-086). By this technique, we generated monodisperse spherical OMA beads and discoid non-spherical beads with better shape consistency than ionic crosslinking methods do. We found that a high monomer concentration (8 w/v %), a high photoinitiator concentration (1.5 w/v %) and absence of oxygen are critical factors to cure OMA microgels. This photopolymerizing method is an alternative to current methods to form alginate microgels and is a simpler approach to generate non-spherical alginate microgels.

  13. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles.

    PubMed

    Kong, Hyeyoung; Jang, Jyongsik

    2008-03-04

    Poly(methyl methacrylate) (PMMA) nanofiber containing silver nanoparticles was synthesized by radical-mediated dispersion polymerization and applied to an antibacterial agent. UV-vis spectroscopic analysis indicated that the silver nanoparticles were continually released from the polymer nanofiber in aqueous solution. The antibacterial properties of silver/PMMA nanofiber against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria were evaluated using minimum inhibitory concentration (MIC), the modified Kirby-Bauer method, and a kinetic test. The MIC test demonstrated that the silver/PMMA nanofiber had enhanced antimicrobial efficacy compared to that of silver sulfadiazine and silver nitrate at the same silver concentration.

  14. Properties of cellulase as template molecule on chitosan—methyl methacrylate membrane

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xuefang; Wu, Haixia; Song, Shitao; Wang, Dongjun

    2015-12-01

    In this study, a novel molecular imprinting membrane made of chitosan and methyl methacrylate (MMA) was fabricated with cellulase as template molecule and the thermal response to cellulase was characterized. The film was characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and the permeation experiment. The results showed that the space structure of the film was as similar as the cellulase. Moreover, the membrane had advanced molecular imprinting capability to cellulase comparing to pepsin and pectinase at any temperature and the film had excellent ability to identify specific template molecule (cellulase) at the synthesis temperature compared to other temperatures.

  15. Non-fouling hydrogels of 2-hydroxyethyl methacrylate and zwitterionic carboxybetaine (meth)acrylamides.

    PubMed

    Kostina, Nina Yu; Rodriguez-Emmenegger, Cesar; Houska, Milan; Brynda, Eduard; Michálek, Jiří

    2012-12-10

    Five poly(betaine) brushes were prepared, and their resistance to blood plasma fouling was studied. Two carboxybetaines monomers were copolymerized with 2-hydroxyethyl methacrylate (HEMA) to prepare novel hydrogels. By increasing the content of the zwitterionic comonomer, a 4-fold increase in the water content could be achieved while retaining mechanical properties close to the widely used poly(HEMA) hydrogels. All hydrogels showed an unprecedentedly low fouling from blood plasma. Remarkably, by copolymerization with 10 mol % of carboxybetaine acrylamide, hydrogels fully resistant to blood plasma were prepared.

  16. Poly (methyl methacrylate) Formation and Patterning Initiated by Synchrotron X-ray Illumination

    SciTech Connect

    Xiao, J.; Je, J. H.; Wang, C. H.; Yang, T. Y.; Hwu, Y.

    2007-01-19

    A facile radiation method was developed to obtain micro-sized poly (methyl methacrylate) (PMMA) particles and create patterned coating on different substrates by a synchrotron x-ray induced dispersion polymerization. The polymerization of MMA monomer and well defined patterning was successfully realized. The produced PMMA particles and patterning were characterized by Fourier transformation infrared (FTIR), 1H-Nuclear Magnetic Resonance (NMR), and Scanning Electron Microscope (SEM). The observed patterning contrast essentially derived from a variation of size, density and morphology of particles and the type of substrate materials used.

  17. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study.

    PubMed

    Berrong, J M; Weed, R M; Young, J M

    1990-01-01

    The reinforcing effect of Kevlar fibers incorporated in processed poly(methyl methacrylate) resin samples was studied using 0% (controls), 0.5%, 1%, and 2% by weight of the added fibers. The samples were subjected to impact testing to determine fracture resistance, and sample groups were statistically compared using an ANOVA. Each reinforced sample had significantly greater fracture resistance (P less than 0.05) than the control, and no difference was found either within or between control groups. The use of reinforcing Kevlar fibers appears to enhance the fracture resistance of acrylic resin denture base materials.

  18. Vibrational overtone enhancement of methyl methacrylate polymerization initiated by benzoyl peroxide decomposition

    NASA Astrophysics Data System (ADS)

    Grinevich, Oleg; Snavely, D. L.

    1997-03-01

    Vibrational overtone initiated polymerization has been demonstrated using intracavity photolysis of a benzoyl peroxide/methyl methacrylate mixture. Excitation of the 6 νCH overtone transition of the ground electronic state of benzoyl peroxide creates radicals which subsequently begin the polymerization process. Polymer yield was monitored by comparison of the 2 νCH overtone absorptions for the methyl, methylenic and olefinic CH stretches at 5946 and 6170 cm -1, respectively. Plots of polymer yield versus time demonstrate an autoacceleration of the polymerization rate commencing many hours after the photolysis period. The delay before autoacceleration depends on the duration of the photolysis.

  19. Emission from Polymethyl Methacrylate Irradiated by a Beam of Runaway Electrons of Subnanosecond Pulse Durations

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Beloplotov, D. V.; Tarasenko, V. F.

    2016-08-01

    Spectral and amplitude-temporal characteristics of emission from polymethyl methacrylate (fiberglass, PMMA) irradiated with a beam of runaway electrons of subnanosecond duration are investigated. It is found that at the beam current pulse duration within 200-600 ps at half maximum and the beam current density 10-200 A/cm2, the intensity maximum is registered at the wavelength ~490 nm and the emission pulse FWHM in the visible spectrum is ~1.5 ns at the half width. It is shown that the main contribution into the emission comes from luminescence.

  20. Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal.

    PubMed

    Salama, Ahmed; Shukry, Nadia; El-Sakhawy, Mohamed

    2015-02-01

    A novel adsorbent was prepared via crosslinking graft copolymerization of 2-(dimethylamino) ethyl methacrylate (DMAEMA) onto carboxymethyl cellulose (CMC) backbone. Ethylene glycol dimethacrylate and potassium persulphate were used as crosslinker and initiator, respectively. CMC-g-PDMAEMA hydrogel was used to remove methyl orange (MO) from aqueous solutions. The adsorption kinetics and isotherms were found to follow Pseudo-second-order kinetic model and Langmuir model, respectively. The high maximum adsorption capacity (1825 mg/g) implied that CMC-g-PDMAEMA can be used as promising adsorbent for the synthetic dyes removal from wastewater.